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Abstract: The eigenstate thermalization hypothesis (ETH) is the leading conjecture for the
emergence of statistical mechanics in generic isolated quantum systems and is formulated
in terms of the matrix elements of operators. An analog known as the ergodic bipartition
(EB) describes entanglement and locality and is formulated in terms of the components of
eigenstates. In this paper, we significantly generalize the EB and unify it with the ETH,
extending the EB to study higher correlations and systems out of equilibrium. Our main
result is a diagrammatic formalism that computes arbitrary correlations between eigenstates
and operators based on a recently uncovered connection between the ETH and free probability
theory. We refer to the connected components of our diagrams as generalized free cumulants.
We apply our formalism in several ways. First, we focus on chaotic eigenstates and establish
the so-called subsystem ETH and the Page curve as consequences of our construction. We
also improve known calculations for thermal reduced density matrices and comment on an
inherently free probabilistic aspect of the replica approach to entanglement entropy previously
noticed in a calculation for the Page curve of an evaporating black hole. Next, we turn
to chaotic quantum dynamics and demonstrate the ETH as a sufficient mechanism for
thermalization, in general. In particular, we show that reduced density matrices relax to their
equilibrium form and that systems obey the Page curve at late times. We also demonstrate
that the different phases of entanglement growth are encoded in higher correlations of the
EB. Lastly, we examine the chaotic structure of eigenstates and operators together and
reveal previously overlooked correlations between them. Crucially, these correlations encode
butterfly velocities, a well-known dynamical property of interacting quantum systems.
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1 Introduction

There has been recent interest in the physics of thermalization in quantum many-body systems.
Thermalization was historically established by Boltzmann’s ergodic hypothesis, which states
that systems uniformly sample the entire phase that is consistent with their macroscopic
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symmetries [1]. Despite its remarkable predictive power, the ergodic hypothesis is manifestly
inconsistent with unitarity. A similar issue arises in the study of the black hole information
paradox, where general relativity appears inconsistent with unitarity near an event horizon [2].
Nonetheless, quantum systems do thermalize [3–6], and understanding how they thermalize
has led to a deeper understanding of quantum and statistical mechanics [7, 8]. Since the
field of quantum chaos was born partly to resolve the inconsistency between quantum and
statistical mechanics, it is fitting that it has returned to prominence in attempts to solve the
inconsistency between quantum mechanics and general relativity [9, 10].

Roughly 30 years ago, Deutsch and Srednicki introduced the eigenstate thermalization
hypothesis (ETH) to justify the emergence of statistical mechanics for generic isolated
quantum systems [4, 5]. Since then, the ETH has been implicated in a variety of physical
phenomena including holography [11], quantum error correction [12], scrambling [13, 14],
and transport [15]. Furthermore, the failure of the ETH has led to the discovery of a
fascinating phase of matter known as many-body localization [16]. Six years ago, motivated by
contemporaneous work in the string theory community [17], Foini and Kurchan reformulated
the ETH to account for higher order correlations [13], and last year, along with Pappalardi,
reinterpreted their results in terms of free probability theory [18].

The ETH purports that the emergence of statistical mechanics and thermalization in
isolated quantum systems is the result of pseudorandomness in the matrix elements of
operators. Formally [13],

Xi1i2 · · ·Xini1 = e−(n−1)S(Ē)fn(Ē; ω⃗), ip ̸= iq for p ̸= q, (1.1)

where X is a local operator,1 {|im⟩} are eigenstates of a chaotic Hamiltonian, S is the
microcanonical entropy, f is an O(1) spectral function, and the overline denotes arithmetic
averaging over a narrow energy band. More than justifying the results of equilibrium statistical
mechanics, the ETH ensures that thermalization occurs in real time. Though systems which
obey the ETH are considered chaotic, it is not clear how the ETH interacts with other
principles of quantum chaos. For instance, eq. (1.1) does not fundamentally harbor a notion
of locality except via an implicit but vague restriction that it only applies to “simple” operators.
It also does not obviously capture the non-local entanglement structure of the Page curve.

A recent, state-based idea that addresses this issue is the ergodic bipartition (EB), an
ansatz on the pseudorandom structure of chaotic eigenstates when split over two subsystems.
Formally [19–21],

⟨i|ab⟩ ≡ ciab,
∣∣ciab∣∣2 = e−S(Ei)F (Ei − Ea − Eb) (1.2)

where |i⟩ is an eigenstate of the full Hamiltonian H = HA +HB +HAB , |ab⟩ is a product of
eigenstates of subsystem Hamiltonians HA and HB, and HAB is the interacting term that
couples subsystems A and B. eS(E) is the density of states of the system at energy E and F is
a window function that ensures Ei ≈ Ea + Eb. The moments of F are roughly those of HAB ,

1One may consider correlations between n distinct operators, too. For any sequence of operators
or “word”, W , constructed from individual operators or “letters”, there is a unique associated fW , up
to cyclic permutations of the letters. For example, for operators X, Y, Z and word Y ZY X, we have
Yi1i2 Zi2i3 Yi3i4 Xi4i1 = e−3S(E)fY ZY X(E; ω⃗) for distinct i1, i2, i3, i4.
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∫
ω F (ω)ωn ≈ ⟨Hn

AB⟩i (see appendix C.2). Therefore, if HAB lives on the boundary between
A and B, it may be regarded as a subextensive perturbation and F is sharply peaked in its
argument. The EB implies that the reduced density matrices of eigenstates are consistent
with those of the microcanonical ensemble and obey a Page curve. Additionally, the tensor
product structure allows it to distinguish local systems from nonlocal ones. Structurally,
the EB is formulated in analogy with the ETH, but presently is only capable of computing
static quantities for systems prepared in eigenstates.

Both the ETH and the EB are avatars of Berry’s conjecture [22]: the hypothesis that
most eigenfunctions of chaotic potentials are, in essence, Gaussian random waves. Berry’s
conjecture is predated by Von Neumann’s quantum ergodic theorem [3], which states that
the overwhelming majority of pure states in a many-body system approximate the local
properties of microcanonical ensemble arbitrarily well. It is then natural to conjecture that the
eigenstates of many-body systems also retain the properties of the microcanonical ensemble, if
they can be treated as random waves. In this light, Berry’s conjecture would be a manifestly
quantum version of Boltzmann’s ergodic hypothesis where uniform sampling of phase space
has been supplanted by random vectors.

In systems with few degrees of freedom, not all eigenstates can be treated as random [22].
However, as one takes the thermodynamic limit, V → ∞, provided it is well-defined, two
things happen simultaneously: (1) the level spacing of the system vanishes exponentially
fast ∼ O(e−S) and (2) the local physics of the system become insensitive to microscopic
perturbations2 ≪ O(1) [23]. As such, any microscopic perturbation ≪ O(1) added to the
system can mix an exponentially large number of eigenstates ∼ O(eS) without modifying
any physics. Thus, if the thermodynamic limit is to be well-defined, all pure states in a
microscopically small energy window should have identical physical properties [15, 24].3 This
line of reasoning underlies early work on chaos in many-body systems [4, 26] and, more recently,
investigations into emergent rotational symmetry at small frequencies, that is, an invariance of
physics to arbitrary norm-preserving4 linear transformations of eigenstates that are sufficiently
close in energy [27, 28]. From it, we can conjecture that eigenstates of thermodynamically
large systems retain the properties of random vectors and of the microcanonical ensemble.

In this paper, we formulate a many-body Berry’s conjecture (MBBC): the hypothesis
that chaotic eigenstates are essentially random vectors up to the symmetry constraints of the
system, and show that it unifies the ETH and the EB. To our knowledge, this term was first
used in ref. [20], which studied entanglement entropies of chaotic eigenstates. We show that
free probability theory naturally emerges from the MBBC and build on this insight to develop
a diagrammatic formalism for calculating general correlations of eigenstates and operators,
greatly generalizing the EB, in particular. With this formalism we are able to justify or

2This cannot strictly be true for eigenstates sufficiently close to the ground state of the system as both
conditions are violated. An arbitrarily small relevant perturbation can modify IR physics and the density
states is not exponentially large.

3In a system with multiple conservation laws, or in a symmetry broken phase [25], mixing states with
distinct, non-energy, quantum numbers would generically require a perturbation that is ∼ O(1) and capable of
modifying some local physics. In integrable systems, which contain an extensive number of conservation laws,
the number of states in the microscopic window that can be mixed by an integrability-preserving perturbation
is not exponentially large, and the ETH cannot hold in the strong form we present [23].

4I.e. orthogonal, unitary, or symplectic.
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Figure 1. The system is split into two subsystems A and B. An operator X lives within A, a distance
R from the boundary.

improve several known results for chaotic eigenstates on a common footing. We show that
chaotic eigenstates have thermal reduced density matrices consistent with the subsystem
ETH conjecture and Von Neumann entanglement entropies consistent with the Page curve.
We then show that both these properties are shared by non-equilibrium states at late times,
indicating that chaotic systems thermalize in real time. We additionally study signatures of
local dynamics: ballistic and diffusive entanglement growth and butterfly velocities.

In our setup, we consider a system split into two subsystems A and B and a local
operator X living deep within A, see figure 1. The goal of doing so is to study the reduced
density matrix on a single subsystem and the bipartite entanglement between the subsystems.
However, our techniques should extend to any kind of partitioning of the system.

The outline of this paper is as follows. In section 2, we motivate our approach by studying
the properties of random vectors without appealing to formal results of Haar measures or of
free probability theory. The main result in this section, which illustrates the basic principle
behind the MBBC, is that random vectors, and therefore chaotic eigenstates, have the same
properties as equilibrium density matrices.

Section 3 is the technical backbone of the paper and contains our main results. It builds
on section 2 to establish the framework of free probability theory and its connection to the EB
and the ETH. Here, we introduce generalized free cumulants and describe the diagrammatic
framework for computing arbitrary correlations between states and operators. This formalism
is the main result of our paper. We compare our technique to analogous techniques in the
literature and provide some numerical evidence for its validity. Furthermore, we connect
the predictions of the MBBC to the predictions of rotationally invariant random matrix
ensembles. We also discuss how the emergence of free probability in the ETH has unique
consequences for the behavior of local observables over long times, connecting our observations
to recent results in the literature. We argue that the ETH, eq. (1.1), the quantum butterfly
effect characterized by the decay of out-of-time-ordered correlators (OTOCs) [17, 29], and the
emergence of rotational symmetry at small frequencies [27, 28] are all, in essence, equivalent
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definitions of chaos and avatars of free probability (we elaborate on these ideas in appendix A).
To summarize, this section contains the mathematical and diagrammatic framework of free
cumulants and a glimpse of implications that we explore in depth in the next two sections.

In section 4, we study the structure of chaotic eigenstates. Several previous works have
been dedicated to this topic [19–21, 30], but our discussion is more than a review. We
provide new derivations that show disparate results as consequences of the MBBC. First, in
section 4.1, we show that the reduced density matrix of chaotic eigenstates takes the form,

ρiaa′ ≡⟨a|TrB [|i⟩⟨i|]
∣∣a′〉= e−S(Ei)+SB(Ei−Eaa′ )

(
δaa′+

√
eSmin(Eaa′ )F̃ (Eaa′ ;ωaa′)Raa′

)
(1.3)

where Eaa′ ≡ (Ea + Ea′) /2, Smin ≡ min [SA(Eaa′), SB(Ei − Eaa′)], F̃ (Eaa′ , ωaa′) contains a
ωaa′ ≡ Ea − Ea′ dependence narrowly peaked around zero, and Raa′ is a nearly Gaussian
random matrix that encodes higher correlations in the density matrix. Eq. (1.3) improves
the result of [21] which contained an unphysical suppression of off-diagonal elements and
generalizes the state-averaging ansatz of ref. [31]. Next, we study the entanglement entropy
of chaotic systems and show that we are able to reproduce the results of ref. [21] exactly. In
particular, we show that the Von Neumann entropy obeys a Page curve,

S1 = min [SA(EiA), SB(EiB)] + ∆S (1.4)

where EiA and EiB are the microcanonically expected subsystem energies defined by EiA +
EiB = Ei and S′

A(EiA) = S′
B(EiB) and ∆S denotes subextensive corrections to the Page

curve. Furthermore, we discuss an inherently free probabilistic structure in the replica
calculation of entanglement entropy previously noticed in the gravitational path integral
calculation of the Page curve for an evaporating black hole [32–34]. Finally, in section 4.3,
we show that reduced density matrices of nearby eigenstates are exponentially close in trace
distance, a hypothesis known as the subsystem ETH [35]. More precisely, we show,

O
(
eSA/2−S/2

)
≲ ||ρiA − ρjA||1 ≲ O

(
eS

(∞)
min /2+SA/2−S/2

)
(1.5)

where || · · · ||1 is the Schatten 1-norm5 and S(∞)
min is the microcanonical entropy of the smaller

subsystem at infinite temperature.6

In section 5, we then study a system prepared out-of-equilibrium with no entanglement
between the subsystems. We first verify that all states with the same initial energy, E0, relax
towards that same equilibrium at late times, which shares its properties with nearby chaotic
eigenstates.7 Our approach reproduces the equilibrated pure state formalism of ref. [32].
Precisely, we show in section 5.1 that

ρaa′(t→ ∞) = e−S(E0)+SB(E0−Eaa′ )
(
δaa′ +

√
eSmin(Eaa′ )F̃ (Eaa′ ;ωaa′)Raa′

)
(1.6)

5For an operator M , the Schatten p-norm is defined as ||M ||p ≡ p
√∑

i
|mi|p where mi are the eigenvalues

or singular values of M .
6A stronger bound was derived in ref. [36] using similar methods.
7This statement holds for all properties except for fluctuations of approximately conserved operators,

namely the fluctuations of subsystem energies. We discuss this caveat in appendix C.1 and thank Tarun
Grover for bringing it to our attention.
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and in section 5.2 that

S1(t→ ∞) = min [SA(E0A), SB(E0B)] + ∆S (1.7)

where E0A, E0B are the microcanonical subsystem energies for total energy E0. The key
insight behind this result is that the time-independent partitions of the diagrams for time-
dependent states map uniquely to those of eigenstates. In section 5.3, we study the different
phases of entanglement growth [37–39] and find that distinct phases are encoded in distinct
diagrams. Our results provide a novel organization to chaotic entanglement dynamics.

In section 6, we consider the correlations between operators and eigenstates. When
an operator X lives deep within subsystem A, it may be natural to assume it becomes
uncorrelated with c defined in eq. (1.2). In section 6.1, we show that this assumption strongly
violates causality and that operator-state correlations are necessary for the ETH to apply
in a system with many degrees of freedom. In essence, decorrelating the elements of X
with those of c disconnects X from the time evolution operator eiHt and trivializes the
dynamics of the system. Thus, in section 6.2, we exploit causality to constrain operator-state
correlations. For X living deep within subsystem A, time evolution under HA +HB will be
identical to that under H for times shorter than R/vB, where vB is the butterfly velocity
of the system [40] and R is the distance to the boundary. Thus, local physics is necessarily
encoded in eigenstate-operator correlations.

Some calculations and discussions in this paper are left to the appendices. Appendix A
contains an informal introduction to the concepts of free probability theory we use in this
paper and motivate why the subject plays a central role in quantum chaos. Appendix B
provides an introduction to the use of saddle-point approximations for making thermal
approximations with the ETH. Appendix C discuss the non-zero width of the F function
that we mostly neglect in the body of this paper. Appendix C.1 focuses on corrections to the
energy fluctuations of subsystems that are a finite fraction of the whole system, which are
able to distinguish different pure states with the same energy density, even in equilibrium.
Appendix C.2 discusses the form of F in eq. (1.2) in the context of previously conjectured
Gaussian and Lorentzian forms for F [21, 30]. Our analysis complements appendix A of
ref. [30]. Appendix D derives eq. (1.1) from the MBBC.

2 Many-body Berry’s conjecture

Our fundamental postulate is that eigenstates of a chaotic Hamiltonian behave for all intents
and purposes as random vectors up to the symmetry constraints of the system. This idea
is what we refer to as the many-body Berry’s conjecture and attempt to make precise in
this section. We will assume conservation of energy and no other symmetries going forward.
The purpose of this section is to develop the properties of random vectors while sidestepping
a formal discussion of Haar measures or of free probability.

First, consider a d-dimensional Hilbert space and sample two normalized vectors randomly,
|1⟩ , |2⟩ from it. What is the expected value of their squared overlap, ⟨1|2⟩⟨2|1⟩? An easy
way to calculate this overlap is to rotate into an orthonormal basis, {|1′⟩}, that contains
|1⟩. Then, |2⟩, being chosen independently of |1⟩, on average will have overlap 1/

√
d with
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each basis element. Thus,

⟨1|2⟩⟨2|1⟩ = 1
d

(2.1)

We may sample three vectors, |1⟩, |2⟩ and |3⟩, and want to know the expected value of
⟨1|2⟩⟨2|3⟩⟨3|1⟩. One may be forgiven for guessing that each overlap contributes a factor
of d−

1
2 yielding d−

3
2 , but that is incorrect. The fluctuating part of a single amplitude is

indeed d−
3
2 , but the noncommutativity of the projection operators |i⟩⟨i| ensures that the 3

overlaps are correlated. Instead, consider again summing over the entire basis that contains
|1⟩. This procedure corresponds to∑

1′

〈
1′
∣∣2〉⟨2|3⟩〈3∣∣1′〉 = Tr [|2⟩⟨2|3⟩⟨3|] = ⟨3|2⟩⟨2|3⟩ . (2.2)

Linearity of averages implies

Tr
[
|2⟩⟨2|3⟩⟨3|

]
= ⟨3|2⟩⟨2|3⟩. (2.3)

Lastly, since the basis {|1′⟩} is essentially arbitrary,

⟨1|2⟩⟨2|3⟩⟨3|1⟩ = 1
d

∑
1′

〈
1′
∣∣ |2⟩⟨2|3⟩⟨3| ∣∣1′〉 = 1

d
Tr
[
|2⟩⟨2|3⟩⟨3|

]
= 1
d
⟨3|2⟩⟨2|3⟩ = d−2. (2.4)

Following this inductive argument, we can now assert:

⟨1|2⟩⟨2| · · · |n⟩⟨n|1⟩ = d−(n−1). (2.5)

Eq. (2.5) applies to vectors sampled uniformly over their Hilbert space. Note that the mean
d−(n−1) is smaller than the fluctuating part d−n/2 for n > 2.

We now want to understand how eigenstates of chaotic Hamiltonians can be understood
as random vectors. First consider a pair of Hamiltonians: H1 and H2 = H1 + λX, where X
is some subextensive perturbation. Physical arguments [4, 26] and numerical evidence [41]
indicate that even for a very small8 λ the eigenstates of H2 are nearly orthogonal to those of
H1. Specifically, we expect that for eigenstates |i1⟩ of H1 and |i2⟩ of H2 with Ei1 ≈ Ei2 ,

⟨i1|i2⟩⟨i2|i1⟩ ∼ e−S . (2.6)

Furthermore, even for λ ∼ O(1), λX cannot mix eigenstates of H1 that are very distant
in energy. Our precise requirement is that λX is small enough that H1 and H2 retain
the same entropy functions, S2(E) ≈ S1(E) ≡ S(E), which is expected to hold for any
subextensive perturbation [30]. Lastly, X may have some nontrivial energy dependence.
Thus we hypothesize,

⟨i1|i2⟩⟨i2|i1⟩ = e−S(Ē)F (Ē;ω), (2.7)
8The precise expectation is that for λX ≳ O(V−γ), eigenstates of H2 and H1 within a small energy window

are related essentially by a random rotation and cannot be computed from one another to any order in
perturbation theory where V is the volume of the system, and γ is an exponent that depends on the transport
properties of the system [15, 42, 43].
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where E = 1
2 (Ei1 + Ei2), ω⃗ = Ei1 − Ei2 , and F serves as a cutoff function that encodes the

nontrivial energy dependences. Analogously, considering n distinct Hamiltonians H1, . . . , Hn

and an overlap of n respective eigenstates |i1⟩ , . . . , |in⟩, we hypothesize,

⟨i1|i2⟩⟨i2| · · · |in⟩⟨in|i1⟩ = e−(n−1)S(Ē)F (Ē; ω⃗) (2.8)

where Ē = 1
n

∑
mEm and ω⃗ = (Ei1 − Ei2 , · · · , Ein−1 − Ein). The crux of the MBBC is

that the structure of eq. (2.8) holds for the eigenstates of any set of chaotic Hamiltonians
that are neither extremely close to one another nor extremely far from one another. In
section 3.1 we consider the situation where non-adjacent eigenstates in eq. (2.8) are taken
from the same Hamiltonian.

To reiterate, we can understand eigenstates of physical Hamiltonians as random vectors
by incorporating two constraints: mutual orthogonality and fixed energy. To handle the first
constraint, we asserted that consecutive projection operators in eq. (2.8) are eigenstates of
distinct, but similar, Hamiltonians. For the second constraint, the Hilbert space dimension, d
was replaced with the density of states, eS . Lastly, we inserted a cutoff function, F (Ē; ω⃗),
that ensures correlations are local in energy.

It is useful to formulate the above argument in terms of the density matrix of the space
from which the eigenstate was sampled. Consider, again, the overlap of n random vectors
sampled from the entire Hilbert space. The corresponding density matrix is simply the infinite
temperature state, 1

d1. Our result for random vectors can be stated as

⟨1|2⟩⟨2| · · · |n⟩⟨n|1⟩ = Tr
[(1
d
1

)n]
= d · d−n = d−(n−1) (2.9)

while for eigenstates,

⟨i1|i2⟩⟨i2| · · · |in⟩⟨in|i1⟩ ∼ Tr[ρ(Ē)n] ∼ e−(n−1)S(Ē) (2.10)

where ρ(Ē) is the microcanonical density matrix with energy Ē. Hence, narrow band averaging
imbues eigenstates with the properties of corresponding equilibrium ensembles.

We can also consider subsystems. Let the Hilbert space be a tensor product of subspaces
A and B with dimensions dA and dB = d/dA, respectively. We want to know how to compute
the expected value of an arbitrary overlap between vectors sampled on the subspaces and the
full space. If the vectors are sampled uniformly, we will again assume they can be replaced
with the corresponding density matrix. For example, consider two vectors from each space
|1⟩, |2⟩, |1A⟩, |2A⟩, |1B⟩, |2B⟩ and the following overlap,9

⟨1|1A1B⟩⟨1A2B|2⟩⟨2|2A2B⟩⟨2A1B|1⟩ = d−2Tr
[
1 |1A1B⟩⟨1A2B|1 |2A2B⟩⟨2A1B|

]
= d−2⟨2A|1A⟩⟨1A|2A⟩
= d−2d−1

A . (2.11)

An analogous overlap of eigenstates is expected to have weight e−2S−SA . We clarify this
generalization in section 3.4 and provide numerical evidence for it in section 3.6.

9An analogous calculation was performed in appendix B of ref. [35].
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Remarkably, eq. (2.8) has the same form as eq. (1.1). The fact that both changes-of-basis
and local observables obey the same correlated structure may seem surprising and raise the
question of precisely which objects are amenable to such an analysis. The answer is that
eigenstates are the natural object of study of the ETH, where local operators and change-
of-basis rotations serve equally well as scramblers (see appendix D for details). We claim
that one can mix any combination of chaotic eigenstates, density matrices, and observables
and retain such an expression. The remaining task of the section is to relate this observation
to thermalization.

We study an n-point cumulant of an operator defined as the time-dependent sum over
a product of operators that neglects repeated indices:∑

[i2···in]
eiω⃗·⃗tXi1i2 · · ·Xini1 , t⃗ ≡ (t1, . . . , tn−1) , ω⃗ ≡

(
ωi1i2 , . . . , ωin−1in

)
(2.12)

where the braces [· · · ] indicate that indices are not to be repeated in summation (i.e. im ̸= im′).
We will replace sums over sufficiently smooth correlations with integrals via the substitution∑

i

−→
∫
Ei

eS(Ei). (2.13)

Then we replace the right-hand-side of eq. (2.12) with an integral as∑
[i2···in]

eiω⃗·⃗tXi1i2 · · ·Xini1 =
∑

[i2···in]
eiω⃗·⃗t−(n−1)S(Ē)f(Ē; ω⃗)

=
∫
Ei2 ···Ein

eiω⃗·⃗t+
∑n

m=2(S(Eim )−S(Ē))f(Ē; ω⃗)

=
∫
ω⃗
e(i⃗t−βl⃗)·ω⃗f(Ei1 ; ω⃗), l⃗ =

(
n− 1
n

, . . . ,
1
n

)
≡ f(Ei1 ; t⃗+ iβl⃗ ) (2.14)

where β ≡ S′(Ei1) is the thermodynamic temperature. To go from the second to the third
line in eq. (2.14), we have utilized the approximation S(Eim)− S(Eim+1) ≈ βωimim+1 , which
holds so long as the heat capacity of the system is extensive (see appendix B) and we
have approximated f(Ē; ω⃗) = f(Ei1 − l⃗ · ω⃗; ω⃗) ≈ f(Ei1 ; ω⃗) since f is a slow function of
the total energy.

It is clear that the time-dependent cumulant is simply a mixed Fourier-Laplace transform
of f . For the case of n = 1, the right-hand side of eq. (2.14) simply reduces to the time-
independent microcanonical expectation value of X. For n > 1, we instead have a complete
set of thermal correlation functions which must decay in order for the system to equilibrate.
These cumulants are more precisely operator free cumulants, which we discuss in more
detail in section 3.2.

One should wonder when replacing sums with integrals over smooth components, as we
did in eq. (2.14), is safe. For example, the fluctuating component of Xi1i2 · · ·Xini1 is larger
than its smooth component, e−nS/2 ≮ e−(n−1)S . The answer is that it depends on the number
of sums being performed. Let the number of sums being performed be n∗. While the smooth
parts will grow with en

∗S , the fluctuating parts are uncorrelated and will only grow with
en

∗S/2. Thus, replacing the sums with integrals is valid when

e−nS/2+n
∗S/2 < e−(n−1)S+n∗S =⇒ n∗ > n− 2 (2.15)
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In eq. (2.14), we had n∗ = n − 1 and were safe by one factor of eS . If n∗ = n − 2, then
the fluctuating and smooth parts will have the same magnitude. If n∗ < n − 2, then the
smooth part will be washed away. In general, one may consider more complex situations
with different entropy factors that will need to be compared.

Another difficulty with converting sums to integrals is the presence of level repulsion.10 In
chaotic systems, the eigenvalues of the Hamiltonian should be considered correlated (pseudo-
)random variables [44]. Thus when converting a sum over multiple indices to a multi-variable
integral, in principle, one would have to introduce a joint density of states, e.g.,∑

ij

−→
∫
EiEj

eS
(2)(Ei,Ej) (2.16)

for a pair of energy indices [45]. However, to leading order in e−S , the joint density of states
factorizes eS(2)(Ei,Ej) ≈ eS(Ei)+S(Ej). Furthermore, level spacing corrections only become
relevant at unphysical late times order of the Heisenberg timescale τH ∼ eS [6]. In principle,
level spacing corrections may be computed if one has e.g. a matrix model11 [46] for a system
but a matrix model is not generally accessible in practice. More importantly, though we
consider higher-order corrections in e−S , we largely neglect the timescales necessary to observe
level repulsion effects and will presume that joint densities of states factorize.

By the convolution theorem, the decay of time-dependent free cumulants, f (⃗t), is
equivalent to the fine resolution behavior of their spectral free cumulants, f(ω⃗). If the
spectral free cumulant becomes smooth at over an energy scale ε, the associated time-
dependent free cumulant will vanish to zero over a timescale ε−1. In general, correlation
functions of local operators are expected to have nontrivial behavior over short timescales that
are associated with dissipation and scrambling and become trivial over longer timescales that
are associated with transport and hydrodynamics [15]. Beyond those timescales, correlation
functions are expected to vanish until the Heisenberg time when the level spacing of the
system becomes relevant. Accordingly, a given spectral free cumulant should appear entirely
smooth over energy scales that are smaller than those associated with hydrodynamics but
are much larger than the level spacing of a system.

3 Generalized free cumulants

Recently, it was shown that the structure of the ETH, eq. (1.1), is intimately related to free
probability theory [18], which describes the statistics of highly non-commutative random
variables [47]. For correlated operators, eq. (1.1), turn out to be their free cumulants,
analogs of the classical cumulants for maximally non-commutative variables. When classical
(commutative) random variables are sampled independently, their classical cumulants12

10The suppressed likelihood of finding two eigenstates much closer in energy than the average level spacing
in a chaotic system.

11A matrix model is an integral over matrices (e.g. a probability distribution). For example, the matrix
model of ref. [46] is a distribution over all Hamiltonians consistent with a given set of correlators. Within the
validity of saddle-point integration, (single trace) correlators computed from a single Hamiltonian sampled
from a matrix model are identical to those averaged over that matrix model to all orders in e−S . The ETH
holds for a system if there is a matrix model in the sense of ref. [46] that generalizes its Hamiltonian.

12A cumulant of degree n is, in general, some polynomial in the moments of degree m ≤ n. Both free and
classical cumulants can be defined by their respective moment-cumulant relationship.
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vanish. Analogously, when large N ×N random matrices are sampled independently, their
free cumulants vanish to leading order in 1/N . In the context of the ETH, we think of physics
as being local in energy space so the 1/N expansion is replaced by an e−S expansion and free
probability becomes a good model in the thermodynamic limit. We discuss free probability
theory and its role in quantum chaos in more detail in appendix A.

While ref. [18] clarifies the role of free cumulants for operators, an analogous structure is
missing for states, even though the analysis of section 2 indicates that factors of e−S show up
for correlations of states in the same manner as they do for operators. In this section, we
show that correlations between states are described by generalized free cumulants (GFCs) of
which the EB, eq. (1.2), is a simple example. Our generalizations account for the partitioning
of our system (figure 1) and correlations between eigenstates from distinct Hamiltonians.
We introduce a diagrammatic representation of GFCs that will aid the investigation of
state-based physics, such as evolution towards an equilibrium density matrix and the behavior
of entanglement entropy without requiring a firm knowledge of free probability. In general,
we are able to compute to arbitrary order in an e−S expansion. This formalism is the
main result of the paper.

To study ordinary free cumulants, refs. [13, 18, 48] utilize a similar diagrammatic formal-
ism known as cactus diagrams while standard references on free probability utilize so-called
non-crossing partitions [49] and ref. [46] utilizes ’t Hooft diagrams. Existing diagrammatic
approaches have substantial merit and we may have been able to modify them instead of
introducing our own diagrams. However, we feel the diagrams we introduce will be more
natural for our purposes.

3.1 Eigenstate correlations: perturbed Hamiltonian

To ease the introduction of GFCs, we first consider a Hamiltonian H0 and a perturbed
Hamiltonian H without necessarily bipartitioning the system. Later, we will take H0 to
be HA + HB and H to be HA + HB + HAB. We wish to compute, as an example, the
diagonal elements with respect to H0 of a system prepared in the canonical ensemble of H0
but evolved under H. Let us again define the symbol cµν ≡ ⟨µ|ν⟩ for the change-of-basis
tensor, |I⟩ , |J⟩ as eigenstates of the initial Hamiltonian, and |i⟩ , |j⟩ as eigenstates of the
perturbed Hamiltonian. Then our expression is,

ρII(t) =
1
Zβ

∑
Jij

⟨I|i⟩⟨i|J⟩⟨J |j⟩⟨j|I⟩ e−βEJ−iωijt ≡ 1
Zβ

∑
Jij

cIi c
i
Jc
J
j c
j
Ie

−βEJ−iωijt. (3.1)

One should expect that the typical magnitude of an element ρII is of order O(e−S). The
right-hand expression in eq. (3.1) appears to sum e3S terms while Zβ is the canonical partition
function and contributes a factor of e−S , so the summand should have average weight e−3S .
We need the overall expression to have magntidue e−S . If we compare the summand to
eq. (2.8), we see that a cyclic product of 4 overlaps has the necessary remaining factor of e−3S .

However, we have neglected some terms. If I = J , the dominant contribution to the
sum will be a product of 2 2-cycles,

(
cIi c

i
I

) (
cIjc

j
I

)
and the summand will have magnitude(

e−(2−1)S
)2

= e−2S . But we have also dropped a sum and are now only summing over
e2S terms, so our overall magnitude is the same. The same argument applies when i = j.
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We may also have I = J and i = j simultaneously. Indeed, there are 4 distinct index
partitions to consider:

ZβρII(t) =
∑
[Jij]

cIi c
i
Jc
J
j c
j
Ie

−βEJ−iωijt +
∑
[ij]

cIi c
i
Ic
I
jc
j
Ie

−βEI−iωijt

+
∑
[Ji]

cIi c
i
Jc
J
i c
i
Ie

−βEJ +
∑
[i]
cIi c

i
Ic
I
i c
i
Ie

−βEI

=
∫
ω1ω2ω3

e−it(ω2+ω3)−β(EI− 1
4ω1− 1

2ω2+ 1
4ω3)F(ω1, ω2, ω3)

+
∫
ω1ω3

e−it(−ω1+ω3)−β(EI+ 1
2ω1+ 1

2ω3)F(IJ)(ω1, ω3)

+
∫
ω1ω2

e−βEIF(ij)(ω1, ω2)

+
∫
ω1
e−S(EI)−βEIF(IJ)(ij)(ω1) (3.2)

where we have defined window functions for contracted partitions, F(··· ), and used the symbol
(· · · ) to label relevant index contractions. We have also dropped the slow dependence of
F on the average energy. Notice how the partition (IJ)(ij) carries an extra factor of e−S

ensuring that its contributions will be suppressed. Furthermore, notice that the only other
time-independent term is (ij). Therefore, if each F has a finite resolution, then the long time
value of ρII will be entirely determined by the Laplace Transform of F(ij).

First, recognize that in figure 2(d), the suppression of (IJ)(ij) is related to a double
constraint imposed by the two contractions. In general, partitions may have any number
of contractions, however, if any two contractions are connected by more than two indices
topologically, they will be suppressed by a relevant factor of the density of states. What we
refer to as a generalized free cumulant is a single connected partition, without contractions,
before summing, in which no two indices are equal. In this case, the GFC’s are individual
loops. For example, a single, n = 4 generalized free cumulant is pictured in figure 2(a),
whereas each of figures 2(b), 2(c), 2(d) depict partitions which are dominated by a product
(or products) of n = 2 generalized free cumulants. GFCs are the irreducible building blocks
of correlations in the e−S expansion.

Each GFC has an associated window function. In the present case, we can use F2(ω)
to represent the window function for the n = 2 GFC and F4(ω1, ω2, ω3) for the n = 4
GFC.13 More precisely,

cIjc
j
I = e−S(EIj)F2(EI − Ej)

cIi c
i
Jc
J
j c
j
I = e−3S(EIJij)F4(EI − Ei, Ei − EJ , EJ − Ej), I ̸= J, i ̸= j. (3.3)

Then, by comparison to eq. (3.2) or by inspecting figure 2, we can write down the window

13We should point out here the F depends, in general, on the Hamiltonians considered. Rather than name
distinct functions for the various cases we consider throughout this paper, with some abuse of notation, we
will reuse the label F for general window functions and let its arguments and context specify the specific
function under consideration.
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𝐽

𝑗

𝑖

𝐼

~𝑂(1)

(a) The full partition has 1 4-loop and 3 sums,
therefore the overall weight is O(e3S−3S) ∼ O(1).

𝐼 = 𝐽

𝑗

𝑖

~𝑂(1)

= +

~𝑂(1) ~𝑂(𝑒)

+

~𝑂(𝑒)

(b) Partition (IJ) is dominated by a product of 2
2-loops with 2 sums, therefore the overall weight
is O(e2S−S−S) ∼ O(1).

𝐽

𝑖 = 𝑗

𝐼

~𝑂(1)

= +

~𝑂(1) ~𝑂(𝑒) ~𝑂(𝑒)

+

(c) Partition (ij) is dominated by a product of 2
2-loops with 2 sums, therefore the overall weight
is O(e2S−S−S) ∼ O(1).

𝐼 = 𝐽

𝑖 = 𝑗

~𝑂(𝑒) ~𝑂(𝑒) ~𝑂(𝑒)

= + + …

(d) Partition (IJ)(ij) is dominated by a product
of 2 2-loops with 1 sum, therefore the overall
weight is O(eS−S−S) ∼ O(e−S).

Figure 2. The partitions in eq. (3.2). We have used color to indicate the eigenstates of different
Hamiltonians. Unless explicitly stated otherwise in the figure, indices are taken to be distinct in
summations. When a partition contains a contraction, it can be expressed as a sum of products of
connected components obtained from different ways of pairing off indices. In (b) and (c), there are 3
pairings only 1 of which is dominant. In (d), there are 3× 3 = 9 pairings, of which we have drawn 2 of
3 dominant terms. In (c) and (d), notice that a contraction of indices with opposite time-dependences
yields partitions that are time-independent. Note: though we have removed the contraction symbol
on the right-hand side of the above figures, the contractions still exist and need to be considered when
counting the number of sums in a diagram.

functions for the contracted terms to leading order,

F (ω1, ω2, ω3) = F4(ω1, ω2, ω3)

F(IJ)(ω1, ω2) = F2(ω1)F2(ω2)

F(ij)(ω1, ω2) = F2(ω1)F2(ω2)

F(IJ)(ij)(ω) = 3F2(ω)2. (3.4)

The general procedure for performing computations in this paper will be inspecting diagrams
to acquire the correct factors of eS and the correct form of the window function, then
evaluating integrals via saddle-points by neglecting the finite width of the window functions.
We have included a summary of notation we use in this paper in table 1.

– 13 –



J
H
E
P
0
9
(
2
0
2
4
)
0
6
6

Notation Example
(a) Eijk··· Eij = 1

2(Ei + Ej)
(b) Ē Ē = 1

n

∑n
m=1Em

(c) ωij ωij = Ei − Ej

(d) (· · · ) eq. (3.2)
(e) [· · · ]

∑
[ij]XijXji =

∑
i

∑
j ̸=iXijXji

(f) f fXY (E;ω) = e−S(Ē)∑
[ij]XijYjiδ(Ei − (E + ω/2))δ(Ej − (E − ω/2))

(g) F eq. (3.2)
(h) ⟨· · ·⟩i ⟨X(t)Y (0)X(t)Y (0)⟩i = ⟨i|X(t)Y (0)X(t)Y (0)|i⟩
(i) ⟨· · ·⟩β ⟨X(t)Y (0)X(t)Y (0)⟩β =

∑
ijklXijYjkXklYlie

i(ωij+ωkl)t−βEijkl/
∑
i e

−βEi

Table 1. Table of various notation. All notation holds analogously for various indices we will use
(i, j, I, J, a, b). (a) We use subscripts of E to denote average energies over specified indices. (b) We
use an overline to denote averaging the energy over an unspecified number of indices. (c) We use ω in
general to denote energy differences, and subscripts to specify indices. (d) We use parentheses, (· · · ),
as a short hand to denote a set of indices that are contracted. Multiple contractions are written as
products, (· · · )(· · · ). (e) Braces are used to indicate indices that are not equal to any other index in
the expression. (f) We use the letter f to denote operator free cumulants in time and frequency space.
(g) We used the letter F to denote state generalized free cumulants in time and frequency space. (h)
We use ⟨· · ·⟩i to denote the ordinary expectation value evaluated on an individual eigenstate i. (i)
We use ⟨· · ·⟩β to denote special thermally regulated correlators that are cyclically symmetric in their
arguments and are natural objects in quantum chaos.

3.2 Operator correlations: OTOCs and freeness

In eq. (2.14), we showed that the sum over a product of operators neglecting repeated indices
evaluated on an eigenstate reduced to the mixed Fourier-Laplace transform of the relevant
f function. We referred to this object as a free cumulant. Instead of evaluating the free
cumulant on an eigenstate, we can evaluate it via a special thermal regulator,

1
Zβ

∑
[i1···in]

Xi1i2 · · ·Xini1e
iω⃗·⃗t−βĒ = eβEβ−S(Eβ)

∫
Ēω⃗

eiω⃗·⃗t+(n−(n−1))S(Ē)−βĒf(Ē; ω⃗)

=
∫
ω⃗
eiω⃗·⃗tf(Eβ ; ω⃗)

= fn(Eβ ; t⃗ ), (3.5)

where the integral over Ē was evaluated via its saddle-point (see appendix B). The symmetry
between indices has removed the shift vector l⃗ which forced us to work in complex time.
Thus we find it is more natural to work with the thermally regulated correlator which is
conventional in the study of quantum chaos [17, 50].

Here, we study an out-of-time-ordered correlator (OTOC),

⟨X(t)Y (0)X(t)Y (0)⟩β = 1
Zβ

∑
ijkl

XijYjkXklYlie
iωijt+iωklt−βEijkl . (3.6)
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𝑋

𝑌 𝑋

𝑌

𝑖

𝑗

𝑘

𝑙

𝑋

𝑌 𝑋

𝑌

𝑗 = 𝑙

𝑘𝑖

𝑋

𝑌 𝑋

𝑌

𝑗 = 𝑘

𝑙

𝑖

𝑋

𝑌 𝑋

𝑌

𝑗 = 𝑘 = 𝑙

𝑋

𝑌 𝑋

𝑌

𝑗 = 𝑘𝑖 = 𝑙

𝑋

𝑌 𝑋

𝑌

𝑖 = 𝑗 = 𝑘 = 𝑙

𝑋

𝑌 𝑋

𝑌

𝑖 = 𝑘

𝑗 = 𝑙

𝑖

×1 , ~𝑂(1)
×2 , ~𝑂(1)

×4 , ~𝑂(1)
×4 , ~𝑂(1)

×2 , ~𝑂(1)

×1 , ~𝑂(1) ×1 , ~𝑂(𝑒)

Figure 3. There are a total of 15 partitions from 7 different graphs. We have drawn one representative
partition from each graph and labeled their multiplicities. Note that two different partitions with the
same graph contribute differently, so the multiplicity is not a “symmetry factor”. We have also labeled
the overall weight of each partition divided by an implicit factor of Zβ .

We have drawn all the possible contractions of eq. (3.6) in figure 3. In this case, since any
index can contract with any other index, the GFCs of our diagrams, which are the cumulants
mentioned above, are the celebrated free cumulants of the operators X(t) and Y (0) and are
represented by single loop diagrams and are associated to the f functions.

We can isolate the free cumulants from eq. (3.6) using non-crossing operator partitions
inline as follows. For convenience we will assume that all 1-point functions vanish, ⟨X⟩β =
⟨Y ⟩β = 0. We define an operator partition as a symbol that represents the associated free
cumulant of an ordered set of operators. A crossing of operator partitions results in an
overwhelming suppression. Then,

⟨X(t)Y (0)X(t)Y (0)⟩β ≡ ⟨X(t)Y (0)X(t)Y (0)⟩β

+ ⟨X(t)Y (0)X(t)Y (0)⟩β + ⟨X(t)Y (0)X(t)Y (0)⟩β
= fXYXY (Eβ ; t, 0, t) + 2fXY (Eβ ; t)2

=
∫
ω1ω2ω3

fXYXY (Eβ ;ω1, ω2, ω3)eit(ω1+ω3)

+ 2
(∫

ω
fXY (Eβ ;ω)eiωt

)2
(3.7)

where Eβ = ⟨H⟩β and we have extracted 3 terms: a partition of all 4 operators, a product of
the partition of the first two and last two operators, and a product of the partition of the first
and last operator and the second and third operator. To a non-crossing partition of n operators
is associated their n-point free cumulant. From eq. (3.7) we can see that the f -functions of
the ETH are the regularized free cumulants that have a special significance in quantum chaos.

Partitions whose contractions cross exist, but are suppressed. In this case, we have one:

⟨X(t)Y (0)X(t)Y (0)⟩β = 1
Zβ

(
2fXY (Eβ ; t)2 + fXX(Eβ ; 0)fY Y (Eβ ; 0)

)
∼ O(e−S). (3.8)
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One may wonder why 2 copies of fXY (Eβ; t)2 appeared in eq. (3.8) when we appeared to
have only contracted the pair of X’s and the pair of Y ’s. One can find all 3 terms from
the last partition in figure 3. But it is not obvious how to derive them directly from the
left-hand expression in eq. (3.8). However, it is also natural to utilize non-crossing index
partitions. In table 2, we compare our own diagrammatic approach to correlations to others
in the literature, namely, cactus diagrams, non-crossing partitions of indices, and ’t Hooft
diagrams. All approaches fundamentally contain the same content and are united in their
connection to free probability. Redoing the above calculations but taking into account 1- and
3-point functions will generate all 15 partitions discussed in figure 3. The full decomposition
into non-crossing partitions is given in appendix A.

As discussed in section 2, the thermalization of a system follows from the decay of these
free cumulants at late times. The equilibrium value of a correlation function can be obtained
by dropping all time-dependent partitions or, equivalently, all diagrams that contain arrows.
An equivalent formulation of this statement is that operators that satisfy the ETH become
freely independent, or free, at long time separations. Free independence, or simply freeness, is
the free probabilistic analog of classical independence [47]. For example, whereas a sum of
many classically independent random variables acquires a Gaussian probability distribution
function, a sum of many freely independent random variables acquires a semicircle spectrum,
a famous signature of Gaussian matrix ensembles [45]. We can draw conclusions about
physical operators from this observation.

Consider an operator X restricted to a narrow energy band,

X
(ωc)
ij ≡ Xijθ(ωc − |ωij |). (3.9)

Ref. [54] showed numerically on a spin chain that as ωc → 0, X(ωc) obtains a semicircular
spectrum and interpreted this observation as the onset of random matrix theory. We can
interpret this observation as a consequence of free independence and, thus, a necessary
consequence of the ETH. Consider the following identity,

X
(ωc)
ij ≡ Xijθ(ωc − |ωij |) =

ωc
π

∫ ∞

−∞
Xij(t) sinc(ωct)dt (3.10)

which allows us to see X(ωc) as an average of X(t) over a time period of ω−1
c . If X(t) becomes

freely independent from X(0) for t greater than some tfree, then for ωc ≪ t−1
free, X(ωc) must

obtain a semicircular spectrum. This has been more recently interpreted in terms of the
onset of an emergent rotational symmetry in the energy eigenspace of ETH satisfying systems
at asymptotically small frequencies [28].

We can draw a more direct line between freeness and the quantum butterfly effect by
defining the freeness of sublagebras. Consider two subalgebras, X and Y, of the algebra of
operators that act of the Hilbert space of our system. These subalgebras may be understood,
for example, to be the Pauli algebras of two possibly identical sites in a spin chain at possibly
different times. X and Y are freely independent if and only if for every Xi ∈ X and Yi ∈ Y
with ⟨Xi⟩ = ⟨Yi⟩ = 0,

⟨X1Y1 · · ·XqYq⟩ = 0, ∀q ≥ 1. (3.11)
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Index Cactus Non-crossing ’t Hooft
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Table 2. Comparison of diagrammatic techniques. Column 1 contains two partitions from figure 3.
Column 2 redraws these partitions using the formalism of refs. [13, 18]. Whether a diagram is leading
order is equivalent to whether it resembles a cactus (essentially a tree with round branches) in the
following sense. Each loop is a cactus pad; to any cactus pad, any number of other pads may be
connected. However, to travel from any pad to any other by hopping to adjacent pads, there can
only ever be one route without crossing the same contraction twice. This feature of cactus diagrams
is shared by the loops in index diagrams so long as we are not considering subsystems (which we
do in the next section). We also note that these are essentially the properties of tadpole diagrams
which govern the Hartree approximation in large N vector systems [51]. Column 3 utilizes so-called
non-crossing partitions of indices whose order is determined by the number of crossings. In eq. (3.7)
we utilized non-crossing partitions of operators. Non-crossing partitions of operators and of indices
enjoy a dual relationship and both function to describe free cumulants [18]. The black circumscribing
circle represents the trace and the internal lines represent index contractions. The top row contains
no crossings, while the bottom row contains 1. Column 4 depicts analogous ’t Hooft diagrams, which
play a role in large N gauge theories and whose order is closely related to the genus of the surface on
which the diagram may be drawn without crossings [52]. As for non-crossing partitions, the black
circumscribing circle represents the trace and the internal lines represent index contractions. The solid
circles explicitly represent the appropriate free cumulants, often referred to in this context as planar
connected Green’s functions [52, 53], and as such the bottom row only encodes the first term on the
right hand side of eq. (3.8) and not all terms of order e−S . ’t Hooft diagrams are the natural method
of evaluating matrix models and main technology employed by ref. [46] to study the ETH. Both ’t
Hooft and index diagrams utilize a type of double-line notation, where the former uses open circle to
denote index contractions, and the latter uses solid circles to denote operator contractions. In this
way, index and ’t Hooft diagrams share a dual relationship similar to the one shared by non-crossing
partitions of operators and of indices.
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Shifting X forward in time14 X = eiHtX (0)e−iHt, we can see that eq. (3.11) contains the
statement that all q-OTOCs of an element of X with an element of Y have decayed. Thus
OTOCs are themselves a measure of freeness. This observation was first made in ref. [55],
where a connection was drawn between OTOCs, freeness, and unitary designs. The idea we
wish to convey is that satisfying the ETH, the quantum butterfly effect, and the emergence
of rotational symmetry at small frequencies are, in essence, equivalent definitions of chaos
and avatars of free probability (see appendix A for an elaboration on these ideas).

3.3 Random matrices, replicas, and higher moments

One may also be interested in partitions where some legs are left open, as these partitions
represent fluctuations with a random tensor term, e.g. ⟨i|J⟩ =

√
e−S(EiJ )F (ωiJ)RiJ or Xij =

f1(Eij)δij +
√
e−S(Eij)f2(ωij)Rij , where R represents random matrix terms with mean 0 and

variance 1. The variance of such a term can be computed by replicating the diagram and
connecting the open legs of the original to the open legs of its conjugate, e.g., | ⟨i|J⟩ |2 ∝
RiJR

J
i ∼ 1. In general, one may compute higher moments from suitably many replicas and

apply the above-stated rules for the partitions that are generated. This procedure is key to
our computations of entanglement entropy in sections 4.2 and 5.2.

A simple consequence of the rules we have presented is that random matrix terms
are Gaussian distributed, to leading order in e−S . For example, we can show that RiJ
is Gaussian distributed ∼ N (0, 1) by recognizing that (a) odd moments of R have open
indices and vanish while (b) even moments will be dominated by the decompositions with
the largest number of loops: products of pairs (see figure 4). Then, |RiJ |2p+1 = 0 while
|RiJ |2p = µ2p(RiJRJi )p +O(e−S) = (2p− 1)!!, where µ2p = (2p− 1)!! is the number of ways
to pair up 2p copies of |RiJ | and are the central moments of the Gaussian distribution. An
analogous argument was made for matrix elements of operators in [6] and follows concretely
from (1.1). Another result which can readily obtained is that variance of the diagonal
elements of operators is exactly twice the variance of nearby off-diagonal operators [27, 56],
as the number of ways to pair indices of 2p copies of a diagonal element Rii is instead
22p(2p− 1)!!. These properties are expected features of matrices sampled from rotationally
invariant ensembles [45, 57].

The emergence of a Gaussian distribution originated from the decomposition of contrac-
tions into pairs of indices (rule 2). This derivation is essentially a converse of Isserlis’ (Wick’s)
theorem. For the case of pure operator correlations, the validity of this decomposition is
implicitly assumed throughout the literature and in key works [13, 18] and is supported by
numerics on spin chains [58]. This assumption is justified so long as we imagine random
matrix terms are consistent with a rotationally invariant random matrix ensemble. The matrix
model of ref. [46] formalizes this idea for pure operator correlations, but heuristically it should
hold for general eigenstate or operator-eigenstate correlations as well. To be more precise, as
we discuss in appendix A, eq. (1.1) is an extension of the general form for the free cumulants
of random matrices. But for the terms in eq. (1.1) to retain the combinatorial properties of
free cumulants (i.e. generate non-crossing partitions), the pairwise decomposition must hold
and as shown in ref. [46], eq. (1.1) implies that non-Gaussian terms in the corresponding

14By time evolving each element of X .
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… = (𝜇)

2𝑝

…× × + …

Figure 4. Decomposition of a contraction of 2p replicas into µ2p products of p 2-loops. This
decomposition is not special to the case shown but a general result on the moments of random matrix
terms. Where the triangle is in the above figure, any arbitrarily complicated diagram with two external
legs may be placed instead but the consequence of the replica calculation will be the same: random
matrix terms are Gaussian distributed to leading order in e−S .

𝑖

𝑏

𝑗

𝑏′

𝑎 𝑎′

~𝑂(𝑒)

Figure 5. Schematic calculation of the weight associated with the uncontracted partition of eq. (3.12).
Whole system indices are removed, each carrying a factor of e−S , and then subsystem indices
contribute a total of e−SA from what is left. Note that we are neglecting fluctuations which will vanish
under summation.

matrix model are suppressed by appropriate density of states factors. Thus the suppression
of non-Gaussianities should be understood as a generic feature of the ETH.

The procedure of using replicas to compute higher moments also holds for partitions
without open legs. In general, computing moments will reduce to counting contractions
between replicas. One will find that partitions with sufficiently many summed indices (in
the sense of eq. (2.15)) will have higher central moments suppressed by factors of e−S , as
contractions inevitably cost sums without yielding sufficiently advantageous factorizations.
Thus, these partitions will be very sharply peaked around their mean value. In contrast,
partitions with very few summed indices will lose no sums from contractions but will gain
advantageous factorizations and thus will be widely distributed from their means. The
situation with open legs discussed in the previous paragraphs is a special case where random
matrix terms acquire a Gaussian distribution with O(1) variance about their means.

3.4 Eigenstate correlations: interacting subsystems

We now wish to generalize our formalism to the situation of two interacting subsystems A and
B. We take H0 = HA +HB and H = HA +HB +HAB . Take |i⟩ and |j⟩ as possibly identical
eigenstates of H. We study, as an example of the various subtleties we will encounter, the
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𝑖

𝑏

𝑗

𝑏′

𝑎 𝑎′

~𝑂(𝑒)

(a) The full partition from eq. (3.12) has overall
weight O(e−SA).

𝑖

𝑏

𝑗

𝑏′

~𝑂(𝑒)

𝑎 = 𝑎′
=

~𝑂(𝑒)

+ …

(b) Partition (aa′) is dominated by a product of 2
2-cycles with 2 sums on subsystem B and 1 sum
on subsystem a. Therefore the overall weight is
O(e2SB+SA−S−S) ∼ O(e−SA).

𝑖

𝑏 = 𝑏′

𝑗

~𝑂(𝑒)

𝑎′ = + …𝑎

~𝑂(𝑒)

(c) Partition (bb′) is dominated by the same
partition as in figure 6(a), but with 1 fewer
sum on subsystem B, so the overall weight is
O(e−SA−SB ) = O(e−S).

𝑖

𝑏 = 𝑏′

𝑗

𝑎 = 𝑎′

= + …

~𝑂(𝑒) ~𝑂(𝑒)

(d) Partition (aa′)(bb′) is dominated by the same
partition as in figure 6(b) but with 1 fewer sum
on subsystem B, therefore the overall weight is
O(e−S).

Figure 6. The partitions of eq. (3.12). For each diagram, leading order contributions are shown. It
can be seen that the partition in figure 6(a) will share its window function with that of 6(c) and that
the partition in figure 6(b) will share its window function with that of figure 6(d) while in each case
having different weights.

Hilbert-Schmidt inner product of their reduced density matrices on A:

(
ρiA
∣∣ρjA) ≡ TrA

[
ρiAρ

j
A

]
=
∑
aa′bb′

cabi c
i
a′bc

a′b′
j cjab′ . (3.12)

First, take i and j as distinct indices. We recognize that without sums, the term in eq. (3.12)
is the eigenstate analog of equation (2.11) which we conjectured to have unsummed weight
e−2S−SA . The spirit of the calculation in eq. (2.11) was that we can remove indices on the
whole system and collect a factor of e−S for each removed index until we are left with a
product of partitions on the subsystem. We represent this calculation schematically in figure 5.
The remaining subsystem partitions contribute their factors of the subsystem densities of
states. In this case we get e−S from each of i and j, and a factor of e−SA from the remaining
2 index cycles from a, a′. We neglect the orthogonality of ⟨a|a′⟩ so long as a and a′ are
not adjacent in the original diagram.

However, we can also read the correct weights off from the full diagram directly. Restricted
to subsystem B, the left-hand-side of figure 5 appears as a product of 2 2-loops (yellow
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𝑖 = 𝑗

𝑏′

𝑎′

~𝑂(𝑒)

𝑏

𝑎 = + + …

~𝑂(𝑒) ~𝑂(𝑒)

(a) The partition (ij) receives a contribution from
two competing factors with respective weights
e−SA and e−SB . We define Smin as min(SA, SB)
in this context.

~𝑂(𝑒)

+ …

~𝑂(𝑒)

𝑖 = 𝑗

𝑏′

𝑏

𝑎 = 𝑎′

=

(b) Partition (ij)(aa′) is dominated by the same
term as the diagrma in figure 6(b), which is 1 of
2 partitions which contribute to the diagram in
figure 7(a), and carries the same weight, O(e−SA).

𝑖 = 𝑗

𝑏 = 𝑏′

𝑎′

~𝑂(𝑒)

𝑎 = + …

~𝑂(𝑒)

(c) Partition (ij)(bb′) is dominated by 1 of 2 parti-
tions that contribute to the diagram in figure 7(a)
and carries weight O(e−SB ).

𝑖 = 𝑗

𝑏 = 𝑏′

~𝑂(𝑒)

𝑎 = 𝑎′

= + …

~𝑂(𝑒) ~𝑂(𝑒)

+

(d) Partition (ij)(aa′)(bb′) is dominated by the
same partition as in figure 6(d) and one other
enabled by the contraction (ij) and carries overall
weight O(e−S).

Figure 7. The partitions of eq. (3.12) for i = j. Since there is no summation over i or j their
contraction has not cost any factors of eS , however, their contraction has enabled advantageous
decompositions when b = b′ in figures 7(a), 7(c), and 7(d) not available in figures 6(a), 6(c), and 6(d).

and green lines), each of which would contribute a factor of e−SB . Restricted to subsystem
A, it appears as a single 4-loop (blue and green lines) which would contribute e−3SA . For
connected partitions that have potentially distinct behavior over different subsystems, the
correct weight is acquired by combining terms of SA and SB as SA+SB → S, leaving leftover
factors of SA(B). In this case, we get e−2SB−3SA → e−2S−SA .

Next, we discuss the consequences of index contractions. When summing over a, a′, b, b′,
there will be terms where a = a′, or b = b′, or both. For a = a′, we can see from figure 6(b)
that the diagram factorizes into two pieces, each with weight e−S . However, for b = b′, we see
from figure 6(c) that the contraction does not yield any advantageous factorization. Previously,
in the case without subsystems, every contraction yielded an advantageous factorization.
This is one way in which GFC’s diverge from ordinary free cumulants. In the case of both
a = a′ and b = b′, the best factorization is the same one as when a = a′ alone.

Now, take i = j, as in figure 7. First, note that unlike the case i ̸= j, there is a choice in
how to decompose the contraction (ij). This results in two possible weights from the partition,
e−SA or e−SB , depending on the smaller of SA and SB (see figure 7(a)). In other words, the
contraction (ij) has introduced a symmetry between the subsystems. Next, we consider again
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𝑋𝑏

𝑎

𝑎

~𝑂(1)

𝑋

𝑖

𝑗

𝑋𝑏

𝑎

~𝑂(𝑒)

𝑋

Figure 8. The summed and unsummed partitions representing eq. (3.13).

the effects of additional index contractions from a = a′ or b = b′. The contraction (aa′) works
as before factorizing the partition into 2 simple partitions (see figure 7(b)). The contraction
of (bb′), however, can now take advantage of the new symmetry and factor the partition into 2
simple partitions as well (see figure 7(c)). The contraction (aa′)(bb′) also receives an additional
contribution (see figure 7(d)). Thus, we have seen that index contractions on partitions with
subsystems can lead to more diverse behavior than on partitions without subsystems.

An analogous technique for calculating such partitions was utilized in ref. [36] which
treated ciab as a narrow banded Wishart matrix on its lower indices and then performed
ensemble averages to calculate distinguishability measures via a version of ’t Hooft double
line notation.15 Where both techniques apply, calculations are identical. However, our
technique has the conceptual advantage of treating eigenstates of the full system on the same
footing as eigenstates of the subsystem, while interpreting eigenstates as individual samples
in the ensemble average. This conceptual advantage is particularly useful for introducing
and discussing time-dependent physics as we do in sections 5 and 6.

3.5 Operator-eigenstate correlations

Lastly, we consider partitions which contain operators and changes-of-basis. Take an operator
X deep within subsystem A. X can be understood in terms of its matrix elements in both
the HA and H eigenbases. We propose that either form of X can be used in GFC’s. For
instance, consider the 2-point correlator of X,

⟨X(t)X⟩i =
∑
jaa′b

Xijc
j
abXaa′c

a′b
i eiωijt. (3.13)

We have represented the right-hand side of eq. (3.13) in figure 8. One may wonder if there
is any nontrivial relationship between the matrix elements Xaa′ and Xij . We explore such
a relationship in section 6.

3.6 Numerical evidence

In this section, we provide some numerical evidence for our conjectured scalings via exact
diagonalization of a quantum spin chain. We consider the non-integrable Ising model for

15We thank Jonah Kudler-Flam for bring these calculations to our attention.
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𝑏′

𝑎 𝑎′

~𝑂(𝑒)

Figure 9. Diagrammatic representation of C (eq. (3.16)), up to averaging. Averaging ensures that
fluctuations are suppressed.

N spins with periodic boundary conditions, augmented by unequal local fields on the first
and the last site to break translational and reflection symmetries:

H = hz1σ
z
1 + hzNσ

z
N +

∑
r

[
Jσzrσ

z
r+1 + hzσ

z
r + hzσ

x
r

]
(3.14)

We choose the parameters J = 1.0, hz = 0.5, hx = −1.05, hz1 = −0.45, hzN = 0.15.
We split the system into two subsystems A and B with NA and NB = N −NA spins,

respectively, and define subsystem Hamiltonians,

HA = hzNσ
z
N +

N∑
r=NB+1

[
Jσzrσ

z
r+1 + hzσ

z
r + hzσ

x
r

]
,

HB = hz1σ
z
1 +

NB∑
r=1

[
Jσzrσ

z
r+1 + hzσ

z
r + hzσ

x
r

]
. (3.15)

In this setup, we study the object we previously examined in figure 5 and redrawn
in figure 9 for convenience. We had argued that C should scale as O(e−2S−SA) based
on correlations under the implicit overline averaging. Now, we explicitly implement the
overline averaging via a Gaussian weight function over a narrow energy band of width ε,

∆(iab)
ε ≡ e−

(Ei−Ea−Eb)2

2ε2 . Thus, we compute

C ≡ ciabc
ab′
j cja′b′c

a′b
i ≡

∑
[ijaa′bb′]∆

(iab)
ε ∆(jab′)

ε ∆(ja′b′)
ε ciabc

ab′
j cja′b′c

a′b
i∑

[ijaa′bb′]∆
(iab)
ε ∆(jab′)

ε ∆(ja′b′)
ε

(3.16)

Our results are presented in figure 10. We check the scaling with respect to N by fixing
NA = 6 and varying N from 10 to 14. We also check the scaling of NA by fixing N = 12 and
varying NA from 5 to 7. In all cases, we find ε = 0.4 to be adequate. We are significantly
limited by finite size corrections associated with the subsystem sizes which require us to
discard data points for NA, NB < 5. Nonetheless, we find good agreement between the slopes
of ln

(
d−2d−1

A

)
= (−2N − NA) ln(2) and ln(C) for accessible system sizes, which supports

our analytical expectation of the scaling of C with N and NA.
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Figure 10. Scaling of C (eq. (3.16)) vs. (a) N for fixed NA = 6, and (b) NA for fixed N = 12. We
compare are numerical calculations for an Ising spin chain (solid dots) to the asymptotic scaling
associated with the Hilbert space dimensions (dashed line). We find qualitatively good agreement in
both figures (a) and (b) for the slope of the curve.

4 Eigenstate correlations I: the structure of chaotic eigenstates

In this section, we consider an eigenstate |i⟩ of the full system Hamiltonian H. We focus
on two aspects of thermalization: the reduced density matrix and entanglement entropy.
In section 4.1, we compute the on and off-diagonal elements of the reduced density matrix
on subsystem A, improving the calculation of ref. [21] and generalizing that of ref. [31].
In section 4.2, we reproduce best-known results for the entanglement entropy of chaotic
eigenstates from our formalism and discuss subextensive corrections. In doing so we remark
on a qualitative resemblance of our calculation to the gravitational path integral calculation of
the entanglement entropy of an evaporating black hole that is inherently free probabilistic [32–
34]. Lastly, in section 4.3, we show that reduced density matrices of nearby eigenstates are
exponentially close in trace distance, a hypothesis known as the subsystem ETH [35].

4.1 Reduced density matrix

We wish to study the matrix elements of the reduced density matrix of subsystem A,

ρiaa′ = ⟨a|TrB [|i⟩⟨i|]
∣∣a′〉 =∑

b

cabi c
i
a′b. (4.1)

Focusing on the diagonal elements first, we find a simple expression,

ρiaa =
∑
b

cabi c
i
ab =

∫
Eb

eSB(Eb)−S(Ei)F (Ei − Ea − Eb) = e−S(Ei)+SB(Ei−Ea) (4.2)

which reduces to a Gibbs state when A is much smaller than B. This term is represented
in figure 11. We evaluated eq. (4.2) at the trivial saddle-point Ei − Ea − Eb = 0 associated
with neglecting the finite width of F . If we neglect the width of window functions we are
able to take the arguments of F functions (other than the overall energy) as saddle-points.
However, including a nonzero width of F will slightly modify eq. (4.2) and the outcomes of
the various saddle-point integrals we take in this paper. However, such a modification will
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Figure 11. The diagonal elements of a reduced density matrix are represented by the simplest
eigenstate cumulant for a bipartitioned system.

only be felt by the fluctuations of approximately conserved operators (i.e. the fluctuations
of subsystem energies) and only when subsystem A is a finite fraction of the whole system
(see appendix C.1).

For off-diagonal elements, we can immediately see that ρiaa′ contains uncontracted indices
and must have mean zero. We study instead, the variance,

ρiaa′ρ
i
a′a =

∑
bb′

cabi c
i
a′bc

a′b′
i ciab′ . (4.3)

We represent eq. (4.3) in figure 12. Notably, the leading order contribution to eq. (4.3) depends
on the smaller of SA(Ea) and SB(Ei − Ea). We define Smin(Ea, Eb) ≡ min [SA(Ea), SB(Eb)]
and Smin(Ea) ≡ min [SA(Ea), SB(Ei − Ea)]. Then, we can read off leading order terms from
figure 12 and evaluate via saddle-points,

|ρiaa′ |2 =
∑
[bb′]

cabi c
i
a′bc

a′b′
i ciab′ +

∑
b

cabi c
i
a′bc

a′b
i ciab

=
∫
EbEb′

e2SB(Ebb′ )−2S(E)−Smin(Eaa′ ,Ebb′ )F (· · · ) +
∫
Eb

eSB(Ebb′ )−2S(E)F(bb′)(· · · )

= e−2S(E)+2SB(Ei−Eaa′ )−Smin(Eaa′ )F̃ (Eaa′ ;ωaa′) (4.4)

where F̃ (Eaa′ ;ωaa′) has been defined to capture a leftover ωaa′ dependence that suppresses
correlations away from the diagonal. Combining eqs. (4.4) and (4.2), we obtain for the
reduced density matrix,

ρiaa′ = e−S(Ei)+SB(Ei−Eaa′ )
(
δaa′ +

√
e−Smin(Eaa′ )F̃ (Eaa′ ;ωaa′)Raa′

)
(4.5)

where Raa′ is an approximate Gaussian random matrix with mean zero and variance one
that encodes higher correlations in the reduced density matrix. Eq. (4.5) is a generalization
of the state-averaging ansatz of ref. [31] to the case of arbitrary subsystem sizes. Ref. [31]
further discusses higher correlations in Raa′ which we discuss implicitly in the next section
in the context of entanglement entropy.

Eq. (4.5) also improves the result of ref. [21] which neglected the terms in figure 12(a)
while keeping the term in figure 12(b). As a result, instead of our factor of Smin, they
had a factor of SB(Ei − Eaa′) in our notation. Our improvement implies a much smaller
suppression of off-diagonal elements of the reduced density matrix below the critical energy.
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𝑖

𝑏′

𝑎′

~𝑂(𝑒)

𝑏

𝑎 = + + …

~𝑂(𝑒) ~𝑂(𝑒)

(a) A true 4-point contribution which captures
sharp behavior in system size when SA ∼ SB.
Note the similarity to figure 7(a).

𝑖

𝑏 = 𝑏′

𝑎′𝑎 = + …

~𝑂(𝑒) ~𝑂(𝑒)

(b) Contribution that factors into 2-point func-
tions and only contributes at leading order when
SA ≳ SB . Note the similarity to figure 7(c).

Figure 12. Diagrams which contribute to the off-diagonal matrix elements of reduced density matrices.

This improvement is physically necessary on the following grounds. The suppression by e−SB

would imply that the eigenstates of HA are exponentially close to the eigenstates of ρiA via
⟨a|
(
ρiA
)2|a⟩ = (ρiaa)2

(
1 +O(e−SB )

)
. However, HA is only defined up to an arbitrary area

scaling term on the boundary of the subsystem and any two definitions of HA would likely
share no eigenstates. In contrast, ρiA is defined unambiguously and cannot have eigenstates
that are simultaneously exponentially close to eigenstates of all definitions of HA. Another
way of seeing the same problem is to consider preparing the system in an eigenstate of the total
Hamiltonian H and then switching off the interaction HAB thereby perturbing subsystem A

along its boundary. If the off-diagonal elements of ρiA are suppressed by e−SB , the timescale
for diagonal elements of ρiA to evolve is exponentially long ∼ O(eSB−SA). Physically, however,
we should only expect the timescale to be the time it takes for information from the boundary
of A to reach the rest of the subsystem.

4.2 Entanglement entropies and the Page curve

To compute the entanglement entropies we first focus on the α-Renyi entropies for α ≥ 2,

Sα ≡ 1
1− α

ln
(
TrA

[
(ρiA)α

])
= 1

1− α
ln

∑
{ab}

cia1b1c
a2b1
i · · · ciaαbα

ca1bα
i

. (4.6)

The diagrammatics for eq. (4.6) are represented in figure 13 for α = 2, 3, 4. To leading order,
we can ignore additional contractions in the sum and focus only on the full diagrams. The
leading order terms will come from different ways of decomposing the contraction of i indices
into pairs. When subsystem A(B) is far smaller than its complement, there is a single leading
partition with weight e−αS(Ei)−(α−1)SA(B)(Ea(b)). However, when the subsystems are similar in
size, there will be a critical energy E∗

A(B) such that SA(B)(E∗
A(B)) = SB(A)(Ei−E∗

A(B)) which
denotes a crossover between leading partitions. Near E∗

A(B), there will also be contributions
from all other non-crossing pairings of i indices, and we draw examples of these partitions in
figure 14. However, these partitions will, at best, contribute an area law term to entanglement
entropy for α < 1 and will be neglected other than to match terms to the time-dependent
case we consider in section 5.
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𝑏
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𝑏
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𝑎 𝑎
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~𝑂(𝑒)

Figure 13. Diagrams which compute the second, third, and fourth moments of the reduced density
matrix contained inside the log in eq. (4.6). For general Renyi index α, the diagram will appear as an
α-fold rotationally symmetric version of the diagrams above.

𝑏

𝑖

𝑏𝑏

𝑎𝑎

𝑎

~𝑂(𝑒)

~𝑂(𝑒) ~𝑂(𝑒) ~𝑂(𝑒)

=

+

+ …

+

~𝑂(𝑒)

+ +

~𝑂(𝑒)

Figure 14. Pictured are the 5 five leading order contributions to eq. (4.6) for α = 3, which come from
the non-crossing pair partitions of the i index. There is be a term associated to each pair partition
of 2α i indices. The non-crossing condition is not universally true of index contractions in index
diagrams but are a consequence of the ordinary rules presented in section 3.1 applied to the Renyi
entropy diagrams, figure 13. We focus only on the first 2 terms as the remaining 3 only contribute
near the isolated point SA(Ea) = SB(Eb). Not drawn are contractions of a and b indices that will
also contribute near the critical energy so long as they do not create any additional crossings.

Then we can read off for general α,

Sα = 1
1− α

ln
(∫

EaEb{ω}
eαSA(Ea)+αSB(Eb)−αS(Ei)−(α−1)Smin(Ea,Eb)F (· · · )

)
(4.7)

and taking α → 1,

S1 =
∫
EaEb

eSA(Ea)+SB(Eb)−S(Ei)Smin(Ea, Eb)F (Ei − Ea − Eb). (4.8)

Eqs. (4.7) and (4.8) are equivalent to expressions derived in ref. [21] and our results are
equivalent as well. In taking the α→ 1 limit, we have neglected the implicit dependence of
F on α. This neglect is valid as long as we also neglect the non-zero width of F .
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We can then evaluate the integrals via saddle-points. The first saddle-point condition
is given by F which will enforce that Ea + Eb = Ei. The second saddle-point condition is
given by maximizing the exponents in eqs. (4.7) and (4.8). For α ̸= 1,

Sα = 1
1− α

{α [SA(EA) + SB(EB)− S(Ei)]− (α− 1)Smin(EA, EB)} (4.9)

where EA and EB are the subsystem energies that dominantly contribute to the Renyi entropies
and are defined by the saddle-point conditions of eq. (4.7):

(I) EA + EB = Ei &


(II.1) S′

A(EA) = αS′
B(EB)

(II.2) S′
B(EB) = αS′

A(EA)
(II.3) SA(EA) = SB(EB)

(4.10)

Here, condition (II) is determined by which of the three given saddle-points minimizes Sα. For
α > 1, the saddle point is given by condition (II.1) if SA < SB and condition (II.2) if SA > SB .
For α < 1, the same result holds except at high temperatures and when the systems are of
similar size, where condition (II.3) can hold, in which case EA = E∗

A. For α = 1, we derive

S1 = min [SA(Ei,A), SB(Ei,B)] + ∆S (4.11)

where the saddle-point conditions of (4.8) are given by,

(I) Ei,A + Ei,B = Ei & (II) S′
A(Ei,A) = S′

B(Ei,B) (4.12)

and ∆S < 0 denotes subextensive corrections to S1 we will discuss shortly.
First, we note that eq. (4.11) recovers a finite temperature version of the Page curve,

noted for its linear slopes as a function of subsystem size [59]. However, for α ̸= 1, eq. (4.9)
does not obtain this form. In particular, Sα>1 is superadditive, and Sα<1 is subadditive and
thus are convex and concave functions of system size, respectively. This convexity/concavity is
referred to as the “failure of the Page curve” [20]. We can interpret this failure in the following
manner. The subsystems of a chaotic eigenstate |i⟩ obtain an effective thermodynamic inverse
temperature from S(Ei), β ≡ S′(Ei), which determines all aspects of local physics in finite
energy density states. However, for α ̸= 1, Renyi entropies of subsystems that are a finite
fraction of the whole system have access to highly nonlocal information that encodes physics
at different temperatures [60]. Thus, as the size of a small subsystem is increased, the
Renyi entropies gain access to more information from different parts of the spectrum and
bend accordingly. For α > 1 (α < 1), the Renyi entropies are dominated by low (high)
temperature physics and as α → ∞ (α → 0) the entropy will approach that of the ground
(infinite-temperature) state.

We now discuss the corrections to the Von Neumann entropy, ∆S. One generally expects
area law corrections to entanglement entropy. To acquire them, one would need to carefully
consider the structure of the F functions in the α→ 1 limit. As the F functions are generally
system-dependent, so are the area law corrections, but we do not preclude the possibility
that some generic structure may exist. There is another correction from contributions away
from the saddle point in eq. (4.8). These contributions are controlled by the heat capacities
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of the subsystems and, in homogeneous systems, contribute a correction to entanglement
entropy that is order square root in system size. This term is derived in ref. [21], and we
direct readers to their calculation rather than repeat it. This is the leading order correction
in D < 2 dimensional systems, whereas the area law correction generally is leading order in
D > 2 dimensions. For D = 2 dimensions both terms have equal order.

Despite the fact that previous studies of eigenstate entanglement [20, 21, 35, 61, 62]
did not have a general way to compute higher eigenstate correlations, refs. [20, 21] still
successfully computed the Renyi and Von Neumann entropies.16 Ref. [20] utilized similar
assumptions to our own and computed the moments of the reduced density matrix averaged
over all states consistent with the form in eq. (1.2). Ref. [21], on the other hand, computed
entanglement entropies by guessing a distribution of eigenvalues of the reduced density
matrix. Since the moments of the reduced density matrix are entirely determined by its
eigenvalues, it is not necessarily surprising that this calculation could be done without direct
computation of higher correlations.

The non-crossing constraint depicted in figure 14 is similar to one found in the gravitational
path integral computation for the Page curve of an evaporating black hole in JT gravity
and discussed in refs. [32–34]. A connection was drawn to the non-crossing partitions of
free probability theory in ref. [33] and explicated in ref. [34] in terms of so-called Kreweras
complements and free multiplicative convolution. To make the analogy precise, we model
subsystem B as an evaporating black hole and subsystem A as its radiation. At early times,
when B is much larger than A, the Page curve is dominated by the first partition on the
right-hand side of figure 14 where pairings of i-indices disconnect the replicas of B. At late
times, when most of B has evaporated, the Page curve is dominated by the second partition
where pairings of i-indices connect all replicas of B together. Where in our calculation arise
simple index contractions, the gravitational path integral predicts semiclassical wormholes
that (dis)connect the black hole replicas (contrast our figures 13 and 14 with figure 2 of
ref. [34]). Ref. [63] finds a similar analogy between index contractions and replica wormholes
in a toy model for entanglement dynamics.

The common thread between all calculations is an implicit ensemble averaging over
correlations of wavefunction overlaps that connect originally disconnected replicas and suppress
crossings by an appropriate density-of-states factor. The validity of such an averaged
calculation in systems without explicit ensemble averaging is referred to as the factorization
problem [63]. The ETH may provide a solution. In our calculation, the ensemble average
emerged as the smooth portion of the GFCs that dominate over fluctuating portions without
any explicit ensemble average. Similar logic is summoned in ref. [31] to justify the appearance
of semiclassical wormholes in evaluating gravitational path integrals.

4.3 Subsystem ETH

The expression for the density matrix given in eq. (4.5) holds up to polynomial corrections in
the system size. In contrast, ref. [35], conjectured that reduced density matrices for a given

16Aside from the fact that [20] missed the possible saddle-point condition (II.3) in (4.10) and neglected
subleading corrections.

– 29 –



J
H
E
P
0
9
(
2
0
2
4
)
0
6
6

subsystem of nearby17 eigenstates of the full system should be exponentially close in trace
distance when the subsystem is smaller than one-half the system. More precisely,

||ρiA − ρjA||1 ≡ TrA
[
|ρiA − ρjA|

]
∼ O(e−S/2), (4.13)

for Ei = Ej up to irrelevant corrections of order the level spacing. The significance of this
definition is that it implies the existence of an equilibrium reduced density matrix, ρETH

A

that specifies the thermal properties of subsystem A to a far greater degree than that of
the canonical ensemble.

Our diagrammatic formalism does not directly compute the Schatten 1-norm || · · · ||1.
However, we can compute the Schatten 2-norm and utilize the following bound,18

||M ||2 ≤ ||M ||1 ≤
√
rank(M)||M ||2 (4.14)

which holds for an arbitrary operator M and is a corollary of the Cauchy-Schwarz inequality.
First, let us expand,

||ρiA − ρjA||
2
2 ≡ TrA

[(
ρiA − ρjA

)2]
= −2TrA

[
ρiAρ

j
A

]
+TrA

[
(ρiA)2

]
+TrA

[
(ρjA)

2
]

≈ 2
(
TrA

[
(ρiA)2

]
− TrA

[
ρiAρ

j
A

])
≡ 2

((
ρiA
∣∣ρiA)− (ρiA∣∣ρjA)) (4.15)

where we the error in the approximation TrA
[
(ρiA)2

]
≈ TrA

[
(ρjA)2

]
is suppressed by e−S

when |i⟩ and |j⟩ are nearby eigenstates.19

We can now recognize that the diagrammatics of
(
ρiA
∣∣ρiA) and

(
ρiA
∣∣ρjA) are given in

figures 7 and 6, respectively. By inspection, the leading order difference comes from the terms
in figures 7(a) and 7(c) that are absent in 6(a) and 6(c), where the contraction of index i

allowed diagrams of order e−SB to contribute. Thus,(
ρiA
∣∣ρiA)− (ρiA∣∣ρjA) = ∫

EbEb′EaEa′
e2SA(Eaa′ )+SB(Ebb′ )−2S(Ei)F(ij)(· · · )

+
∫
EbEaEa′

e2SA(Eaa′ )+SB(Eb)−2S(Ei)F(ij)(bb′)(· · · )

∼ e−S(Ei)+SA(EiA). (4.16)

Lastly, recognizing that ln[rank(ρA)] is the 0-Renyi entropy, per eq. (4.9), we can recognize
that the reduced density matrices are full rank (up to a polynomial correction in subsystem
sizes): rank(ρi(j)A ) ∼ eS

(∞)
min , where eS

(∞)
min is the microcanonical entropy of the smaller subsystem

at infinite temperature. Then, rank(ρiA − ρjA) ≲ eS
(∞)
min and eq. (4.14) becomes

O(eSA/2−S/2) ≲ ||ρiA − ρjA||1 ≲ O(eS
(∞)
min /2+SA/2−S/2) (4.17)

which establishes the subsystem ETH as a consequence of the MBBC by its eS dependence.
The remaining factor crucially dictates the subsystem sizes for which the trace distance is
suppressed [35, 36]. However, this factor remains to be determined and we leave a direct
computation of the trace distance to future work.

17Defined as having a difference in energy at the order of the level spacing.
18It was brought to our attention that under the same assumptions a replica calculation of fidelities yields a

stronger bound on the trace distance. This calculation was performed in ref. [36] (eq. (197)).
19The given suppression can be justified by recognizing the gradual dependence of the 2-Renyi entropy on

total energy and its small fluctuations between nearby eigenstates.
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5 Eigenstate correlations II: thermalization of a non-equilibrium
initial state

In this section, we will show how a system that is not prepared in an eigenstate reaches
thermal equilibrium. The general result reproduces the equilibrated pure state formalism of
ref. [32]. Specifically, we show that reduced density matrices relax towards a form associated
with their energy density, and entanglement entropies will relax towards their equilibrium
values. The key insight that provides our general result in this section is that (a) time-
dependent partitions vanish and (b) the time-independent partitions factor into a product
of an “outer” partition that is identical to that of a system prepared in equilibrium and
an “inner” partition that integrates out. In the special cases we consider, this factorization
will reproduce the partitions we saw in section 4.

We initialize our system in a product of subsystem eigenstates |ab⟩ s.t. Hn
AH

m
B |ab⟩ =

EnaE
m
b |ab⟩, but we stress that our main results do not depend on this choice. Our state

has initial energy E0 = Ea + Eb, and all states with initial energy E0 will relax to the same
equilibrium so long as we neglect the width of F . In appendix C.1, we show how fluctuations
of the subsystem energy are sensitive to the specific form of F and do not exactly obtain
the properties of eigenstates, even in equilibrium, when subsystem A is a finite fraction of
the system. Ultimately, this is because the energy of a thermodynamically large subsystem
is an approximately conserved quantity.

Since dynamics are generally system-dependent, the specific forms of time-dependent
partitions that encode dynamics will be system-dependent as well. However, that does not
preclude generic features in the time-dependent partitions. Indeed, in section 5.3, we find
that the growth of entangelement entropy has an intriguing diagrammatic organization. We
find that distinct diagrams contain the ballistic growth, diffusive growth, and saturation
of entanglement entropy.

5.1 Reduced density matrix

Consider the matrix elements of the reduced density matrix on subsystem A over time
given the initial state |ab⟩:

ρa′a′′(t) =
〈
a′
∣∣Tr [e−iHt |ab⟩⟨ab| eiHt]∣∣a′′〉 (5.1)

=
∑
b′ij

〈
a′b′

∣∣i〉⟨i|ab⟩⟨ab|j⟩〈j∣∣a′′b′〉 e−i(Ei−Ej)t (5.2)

≡
∑
b′ij

ca
′b′
i ciabc

ab
j c

j
a′′b′e

−iωijt. (5.3)

We will once again be interested in both the diagonal elements ρa′a′ and the variance of
off-diagonal elements |ρa′a′′ |2. Let us first consider the diagonal elements,

ρa′a′(t) =
∑
b′ij

ca
′b′
i ciabc

ab
j c

j
a′b′e

−iωijt. (5.4)

For ρ to relax to its equilibrium form in general, two things must be true: (1) the time-
independent part of ρ must equal its equilibrium form, and (2) the time-dependent part
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𝑎 𝑏

𝑗

𝑎′ 𝑏′

~𝑂(𝑒)

(a) Uncontracted partition. Several contractions
exist, however, only ones which cancel that time
dependences on i and j will be time-independent.

𝑖 = 𝑗

𝑎 𝑏 𝑎′ 𝑏′

~𝑂(𝑒)

= + …

~𝑂(𝑒)

(b) Time independent contribution to the reduced
density matrix. Note, there is only one sum over
index i.

Figure 15. In (a) we have placed the uncontracted partition corresponding to eq. (5.4) for clarity.
Time dependence ensures that it will decay as long as its corresponding F -function is smooth. In
(b), we have placed the leading order time-independent partition. Time-independence is achieved
by contracting indices with opposite time dependences. Further time-independent partitions can be
generated by contracting a = a′ or b = b′. However, the former case will only contribute a factor of 2
for the matrix element ρaa while the latter case will suppressed by a factor of e−SB , so we neglect
both cases. Focusing on the right hand side of the equation in (b) on the left, we have a partition that
fully integrates out when summing over index i; we refer to this as the “inner” partition. On the right,
we have an “outer” partition that is identical to the partition pictured in figure 11 and describes the
diagonal elements of an equilibrium reduced density matrix. When we consider higher correlations
the “inner” and “outer” labels will become more visually apparent.

must vanish. We show the former in this section. The latter condition is contained in the
smoothness assumption of the ETH — the belief that there is a finite energy scale below
which no structure can be seen in matrix elements. Given these conditions, in the t → ∞
limit the oscillatory terms vanish and the time-independent value of ρ is obtained.

Diagrammatically, time-independent partitions are found by contracting indices with
opposite time-dependences, thereby removing oscillatory terms. The expression in eq. (5.4)
has several unique partitions, but only 1 is both nontrivial and time-independent, so we will
restrict our attention to it (see figure 15). We compute,

ρa′a′(∞) =
∑
b′i

∣∣∣cia′b′ ∣∣∣2 ∣∣∣ciab∣∣∣2

=
∫
EiEb′

eS(Ei)+SB(Eb′ )−2S(Ei)F (Ei − Ea − Eb)F (Ei − Ea′ − Eb′)

= e−S(E0)+SB(E0−Ea′ ) (5.5)

which is what we expect from the equilibrium case considered previously, though the second
F function will modify the subsystem energy variance expression (see appendix C.1). We can
see from this example that the recovery of the equilibrium result came from a factorization
of the time-independent partition into a partition equivalent to the one considered for
eigenstates, and a partition that was integrated out in eq. (5.5). This correspondence between
time-independent partitions and equilibrium partitions is general.
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𝑎 𝑏

𝑏′

𝑖′𝑗′

𝑖𝑗

𝑎′′ 𝑎′

𝑏′′

~𝑂(𝑒)

(a) Full partition representing the time-dependent
off-diagonal elements of the reduced density ma-
trix on subsystem A.

𝑎 𝑏

𝑏′

𝑖 = 𝑗′

𝑖 = 𝑗

𝑎′′ 𝑎′

𝑏′′

~𝑂(𝑒)

= + …×

~𝑂(𝑒) ~𝑂(1)

(b) Time-independent partition (ij)(i′j′) that con-
tributes to the off-diagonal elements of the re-
duced density matrix on subsystem A.

𝑎

𝑏

𝑏′

𝑖 = 𝑖′

𝑗 = 𝑗′

𝑎′′ 𝑎′

𝑏′′

~𝑂(𝑒) ~𝑂(𝑒)

= + …×

~𝑂(1)

(c) Time-independent partition (ii′)(jj′) that con-
tributes to the off-diagonal elements of the re-
duced density matrix on subsystem A.

𝑎

𝑏

𝑖 = 𝑖′

𝑗 = 𝑗′

𝑎′′ 𝑎′

𝑏 = 𝑏′′

~𝑂(𝑒) ~𝑂(𝑒)

= + …×

~𝑂(1)

(d) Time-independent partition (ii′)(jj′)(b′b′′)
that contributes to the off-diagonal elements of
the reduced density matrix on subsystem A.

Figure 16. Diagrams that contribute to the off-diagonal matrix elements of the reduced density
matrix on subsystem A. Subfigures (b-d) picture the time-independent terms and the factorizations
that dominantly contribute. Each factorization contains an inner partition that integrates out and an
outer partition that reduces to the partitions in figure 12. Note that one should not overcount the
number of integrals on the right-hand side of each diagrammatic equation.

Next, we address the off-diagonal elements,

ρa′a′′(t)ρa′′a′(t) =
∑

b′b′′iji′j′

ca
′b′
i ciabc

ab
j c

j
a′′b′c

a′′b′′
i′ ci

′
abc

ab
j′ c

j′

a′b′′e
−it(Ei−Ej−Ei′+Ej′ ). (5.6)

There are several dozen independent partitions; however, we will focus on just 4: the full
partition and the 3 largest time-independent partitions (see figure 16). The full partition
drawn in figure 16(a), is given by

F (Ea′a′′ ;ωa′a′′ ; t) =
∑

[b′b′′iji′j′]
ca

′b′
i ciabc

ab
j c

j
a′′b′c

a′′b′′
i′ ci

′
abc

ab
j′ c

j′

a′b′′e
−it(Ei−Ej−Ei′+Ej′ )

= e−2S(Ea+Eb)+2SB(Ea+Eb−Ea′a′′ )F (ωa′a′′ ; t) (5.7)

where F (ωa′a′′ ; t) is a smooth term fated to die off in t, whatever its precise form. There
are no other partitions that contribute at the same order. This partition will be studied
in the context of the 2-Renyi Entropy in section 5.3.
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Moving on to the time-independent partitions, (ij)(i′j′), (ii′)(jj′), (iji′j′), we find that
the partitions in figures 16(b), 16(c), 16(d) factor into inner partitions that integrate out
and outer partitions that resemble those in figures 12(a) and 12(b). Then again, we see that
time-independent partitions reduce to equilibrium partitions,

|ρa′a′′(∞)|2 =
∫
E′

b
Eb′′EiEi′

e2SB(Eb′b′′ )−2S(E0)−SA(Ea′a′′ )F(ij)(i′j′)(· · · )

+
∫
Eb′Eb′′EiEi′

e2SB(Eb′b′′ )−2S(E0)−SB(Eb′b′′ )F(ii′)(jj′)(· · · )

+
∫
Eb′Eb′′EiEi′

eSB(Eb′b′′ )−2S(E0)F(ii′)(jj′)(b′b′′)(· · · ) + · · ·

= e−2S(E0)+2SB(E0−Ea′a′′ )−Smin(Ea′a′′ )F̃ (ωa′a′′) (5.8)

which is the same expression derived in eq. (4.4).

5.2 Entanglement entropies and the Page curve

Once again, initializing in |ab⟩, we repeat our analysis for the Renyi entropies. The α-Renyi
entropy is

Sα(t) ≡
1

1− α
ln
(
TrA

[(
TrB

[
e−iHt |ab⟩⟨ab| eiHt

])α])
= 1

1− α
ln

 ∑
a′mb

′
mimjm

c
a′1b

′
1

i1
ci1abc

ab
j1 c

j1
b′1a

′
2
· · · ca

′
αb

′
α

iα
ciαabc

ab
jαc

jα
b′αa

′
1
e−it

∑
m
ωimjm

 . (5.9)

Time-independent partitions are those for which
∑
m ωimjm vanishes, which are obtained

by contracting i indices with j. We have drawn the minimally contracted and the largest
time-independent partitions for subsystem A much smaller than B for the 2-, 3-, and 4-Renyi
entropies in figure 17.

When SB > SA, the largest time-independent partition is (imjm), while for SA > SB,
the largest is (im+1jm). When SA ≈ SB, any pairing of i indices with j indices that is
non-crossing, as depicted previously in figure 14, contributes. Once again, we can see that
the time-independent partitions factor into an inner partition that integrates out and outer
partitions that are identical to those considered in the equilibrium case. Since the result is
general, we do not repeat our calculations from section 4.2.

5.3 Entanglement growth

From an initially unentangled state, the dynamics of Renyi entropies α > 1 generically
exhibit 4 regimes: (i) local equilibration, (ii) ballistic growth, (iii) diffusive growth, and (iv)
saturation. At late times, the equilibrium partitions once again map to eigenstate partitions
and compute a Page curve. In the previous subsection we associated saturation to equilibrium
partitions. In this subsection we will provide similar diagrammatic interpretations to the
different regimes of entanglement growth by counting entropic factors (see figure 18).

Initially, entanglement growth is limited by fidelity to the initial state [30],

Sα(t ≈ 0) ≲ 1
1− α

ln |FR(t)|2α (5.10)

where FR(t) is the return amplitude FR(t) ≡ ⟨ab|e−iHt|ab⟩ which arises under the contraction
(a1 . . . aαa)(b1 . . . bαb), represented for α = 2 in figure 18(a). We discuss functional forms
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(a) Time dependent 2nd Renyi entropy.

𝑎 𝑏

𝑏

𝑖𝑗

𝑖

𝑗 𝑖

𝑗

𝑏𝑏

𝑎𝑎

𝑎

𝑏

𝑖𝑗

𝑖

𝑗 𝑖

𝑗

𝑏𝑏

𝑎𝑎

𝑎

~𝑂(1) ~𝑂(𝑒)

𝑎 𝑏

(b) Time dependent 3rd Renyi entropy.

𝑎 𝑏

𝑏

𝑗𝑖

𝑖𝑗

𝑏
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𝑗

𝑖

𝑏
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𝑏
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𝑏
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𝑎 𝑎

𝑖

𝑗

𝑗

𝑖

~𝑂(1) ~𝑂(𝑒)

𝑎 𝑏

(c) Time dependent 4th Renyi entropy.

Figure 17. Time-dependent Renyi entropies adjacent to their leading time-independent counterpart.
The contractions between i and j indices map one-to-one with the pairings of i for the equilibrium
case, represented for the 3-Renyi entropy in figure 14.

for FR(t) in appendix C.2. At a later time, teq ∼ O(1), the system will have reached local
equilibrium [64] and will transition to ballistic entanglement growth. However, as we discuss
later in this section, eq. (5.10) does not provide an adequate accounting of entanglement
growth for t ≲ teq and further work is needed to clarify the local equilibration timescale. The
problem of modeling the propagator at short times in chaotic systems is closely related to
the motivation for the maximum entropy approach to the properties of chaotic eigenstates
presented in ref. [65]. Such an approach may be able to shed light on entanglement growth
at early times.

At intermediate times teq ≲ t ≲ tbal ≡ R

v
(α)
E

, entanglement growth is expected to be
ballistic. For an effective 1D “strip” geometry (see figure 19), this expectation implies a form,

Sα(t ≲ tbal) ≈
v
(α)
E t

R
Sα(∞) (5.11)

where R is the radius of the strip. In this regime, e(1−α)Sα is initially ∼ O(1). Whichever
partition(s) dominates this regime of entanglement growth will be the slowest decaying
partition that contributes at O(1). The remaining partitions that may contribute at O(1) are
the full, uncontracted partition and partitions generated by contractions of any summed al-
and bl-indices with a and b. Performing all such contractions yielded the term composed solely
of powers of the return ampltidue, eq. (5.10). Any partial such contraction will composed of
other metrics of fidelity to the initial state such as

〈
ρA(B)(t)

〉
a(b)

,
〈
ρA(B)(t)2

〉
a(b)

, or other
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4

~𝑂(1)

(a) The fourth power of the (modulus) return
amplitude is obtained by contracting all summed
a- and b-indices with the initial state. This is the
only term which contributes at t = 0.
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𝑏

𝑗𝑖

𝑖𝑗

𝑎 𝑎

𝑏

~𝑂(1) ~𝑂(1)

(b) The full, uncontracted partition is expected
to govern the ballistic regime of entanglement
growth, teq < t < tbal, and encode the entangle-
ment velocity.

𝑎 𝑏

𝑏

𝑗𝑖

𝑖𝑗

𝑎

𝑏

~𝑂(𝑒) ~𝑂(𝑒)

(c) At late times prior to saturation diffusive
spreading of energy limits the grwoth of α > 1-
Renyi entropies. This is captured in the relax-
ation of the diagonal elements of reduced density
matrices. Hence, we connect this behavior to the
partition that contracts all external (summed)
a-indices.

~𝑂(𝑒)

𝑎

𝑏

𝑗

𝑖

𝑎 𝑎

𝑏

~𝑂(𝑒)

𝑏

(d) At late times t > tsat, phases cancel against
each leaving only partitions that contract forward
propogators with backwards propagators.

Figure 18. Four partitions associated with the growth of 2-Renyi entropy adjacent to their leading
factorization under the assumption that subsystem A is smaller than subsystem B. When the
subsystems are of similar size, there will more contributions.

powers of the return amplitude. Since each of these terms are highly nonlocal, we expect
they should decay at faster rates than any entanglement velocity. Hence, our expectation is
that for each α-Renyi entropy, only the full uncontracted partition governs the whole regime
of ballistic entanglement growth, while other terms ∼ O(1) at best contribute during local
equilibration. We’ve included the case α = 2 in figure 18(b). Then we assert,

p(t/teq)e(1−α)
v

(α)
E

t

R
Sα(∞) ≈

∑
[··· ]

c
a′1b

′
1

i1
ci1abc

ab
j1 c

j1
b′1a

′
2
· · · ca

′
αb

′
α

iα
ciαabc

ab
jαc

jα
b′αa

′
1
e−it

∑
m
ωimjm

=
∫
···
e2αS(Ēi)+αSA(Ēa)+αSB(Ēb)−3αS(Ea+Eb)F (· · · )e−it

∑
m
ωimjm

=
∫
{ω}

F (ωi1j1 , · · · )e−it
∑

m
ωimjm (5.12)
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𝐵𝐴

2𝑅

Figure 19. An effective 1D system split into two subsystems A and B. The width of A is 2R.

where the left-hand side contains the exponential decay with a short time suppression,
p(t/teq), that ensures the expression vanishes at t ≪ teq and the right-hand side contains
the only relevant index partition. For convenience, we define ω(α)

E ≡ (α − 1)v(α)E Sα(∞)/R
and study the spectral function,

F(ω) ≡
∫
ωi1j1 ···

F (ωi1j1 , · · · )δ
(
ω −

∑
m

ωimjm

)

≈
∫ ∞

−∞
p(t/teq)ei(ω+iω

(α)
E )tdt. (5.13)

The exponential decay ensures that F(ω) analytic within the strip −ω(α)
E ≤ Im[ω] ≤ ω

(α)
E .

Furthermore, we expect p(t/teq)e−ω
(α)
E t to maximize during the crossover from the local

equilibration regime to the ballistic regime, t ≈ teq, which requires F(ω) to oscillate over all
scales larger than t−1

eq . Lastly, general arguments based on locality [66] enforce a sharp cutoff

at large frequencies F(ω) ≲ e
− |ω|−VAB

g , where VAB is an area scaling term determined by the
higher moments of HAB and g is an O(1) effective coupling constant.

At late times still prior to saturation the Renyi entropies for α > 1 will transition
from ballistic to diffusive growth [38, 39] in systems with conservation laws (i.e. energy
conservation). Close to saturation, diffusive growth implies a form

Sα(t ≲ tsat) ∝
√
Dt (5.14)

where D is the diffusivity of the system, and tsat is the saturation time for the entanglement
entropy. Since we just argued that the Renyi entropies are dominated by the full index
partition in the entropic factors, naively, one may expect the same partition to contain both
ballistic and diffusive regimes as was suggested in ref. [30]. However, at late times, the
exponential decay of the full partition will diminish its magnitude by the entropy of the
smaller subsystem. Then, any other partitions that were only suppressed by the entropy
of the smaller subsystem can contribute provided they decay sufficiently slowly. Taking A
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to be the smaller subsystem, we find precisely one partition to be suitable: the contraction
of all summed a indices, (a1a2 . . . aα).20 Defining ρA(Ea, t) ≡ ⟨a|TrA

[
e−iHt |ab⟩⟨ab| eiHt

]
|a⟩

as the diagonal elements of the reduced density matrix on subsystem A in the subsystem
energy eigenbasis, we can write,

F(a1a2...aα)(t) =
∫
Ea

eSA(Ea) (ρA(Ea, t)− ρA(Ea,∞))α + · · · ∼ O(e(1−α)SA) (5.15)

where the error in eq. (5.15) consists of partitions associated with the now negligible return
amplitude (5.10) and partitions that are too suppressed to contribute at leading order in any
regime. From eq. (5.15), it’s clear why (a1a2 . . . aα) is the right partition to describe diffusive
relaxation: ρA(Ea, t) encodes the dynamics of the approximately conserved subsystem energy.
From an arbitrary unentangled inital state, the diffusive dynamics depend not only on the
geometry of the subsystem, but on the temperature dependence of the diffusivity and heat
capacity as well. We can conclude, however, that since F(a1a2...aα)(t) decays slower than any
exponential, but faster than any polynomial, its spectral function F(a1a2...aα)(ω) is smooth,
but non-analytic on the real line.21

We now discuss the α → 1 limit. Since the saturation regime shares its structure
with pure eigenstates, the α → 1 limit will be the same as in section 4.2. Interestingly, S1
does not exhibit a diffusive regime and so we should expect F(a1a2...aα)(t) to vanish in this
limit. Indeed,

∫
Ea
eSA(Ea) (ρA(Ea, t)− ρA(Ea,∞))1 = 1 − 1 = 0. For the ballistic regime,

eq. (5.11), the analytic continuation α→ 1 holds by construction if v(α)E and Sα(∞) can be
regarded as analytic functions of α predicting a ballistic growth for S1 where one is seen
for Sα>1. In general, for the analytic continuation to exist,22 α = 1 + ϵ must imply that
Tr[ρA(t)α] = 1−S1(t)ϵ+O(ϵ2). However, eq. (5.10) clearly does not have this property, except
for t = 0. Since |FR(t > 0)|2α does not converge to 1 with α, there must exist one or more
partitions that exactly cancel the decay of FR(t) for all t > 0. We are forced to conclude that
decay of the return amplitude does not provide an adequate picture of the local equilibration
regime, which in our view remains a mysterious aspect of entanglement growth. Otherwise,
our diagrams provide an intriguing structure to the phases of entanglement growth.

6 Operator-eigenstate correlations

In the preceding sections, we assume that both subsystems A and B are thermodynamically
large, as parameterized by expansions in e−SA(B) . It follows that an operator X obeys the
ETH, eq. (1.1), with respect to eigenstates both of HA and of H. Furthermore, if X is
deep within subsystem A it should have the same properties on the subsystem and the full
system, at least over short times. This question was previously considered in ref. [30] where
it was remarked that correlations between X and c are in principle unnecessary to satisfy
these conditions based on a calculation that matched factors of the density-of-states. In

20Analogously for subsystem B. When the subsystems are a similar size, there will be a contribution from
all non-crossing contractions of summed a and b indices.

21As an example of an appropriate non-analytic function, the Fourier transform of the standard bump
function, exp

(
1

x2−1

)
, |x| ≤ 1, can be evaluated via saddle-points to get the desired asymptotic decay ∼ e−

√
t,

up to dimensionful constants and other physical features.
22It must since ρA is a positive semi-definite operator.
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Figure 20. This figure depicts the false hypothesis that operator-eigenstate correlations factor if
operators are taken to be far from the boundary between the subsystems.

fact, we show that this is not true and nontrivial correlations between X and c are necessary
for physical consistency. We additionally show that these correlations encode the time at
which operator X receives information about subsystem B, and argue that this timescale
is determined by the butterfly velocity.

6.1 The decay catastrophe

When X is deep within subsystem A it may be tempting to assume that its matrix elements
become uncorrelated with those of c. Consider the 2-point cumulant of X,

f2(t+ iβ/2) = ⟨X(t)X⟩i − ⟨X⟩2i =
∑

[j]a1a2a3a4b1b2

cia1b1Xa1a2c
a2b1
j cja3b2

Xa3a4c
a4b2
i eiωijt. (6.1)

If the elements of X and c are uncorrelated, their combined diagram must factor as in
figure 20. There are two diagrams that contribute at leading order, but we just focus on one,
(a1a4)(a2a3), to illustrate the point. For a1 ̸= a2, this partition relates the 2-point cumulant
on the whole system, f2, to the 2-point cumulant of subsystem A, f (A)2 .

The factorization allows us to perform a direct computation,

f(a1a4)(a2a3)(t+ iβ/2) =
∑

[ja1a2b1b2]
cia1b1c

a2b1
j cja2b2

ca1b2
i Xa1a2Xa2a1e

iωijt

=
∫
EaEb1Eb2ωijωa

F(a1a4)(a2a3)(Ei; · · · , ωij , ωa)f
(A)
2 (Ea;ωa)eiωijt−βωij/2

= F(a1a4)(a2a3)(−t− iβ/2)f (A)2 (0) (6.2)

where in the second line, we have defined F to be the relevant eigenstate cumulant and
emphasized its dependence on ωij and ωa = Ea1 − Ea2 . In general, decorrelating c and X

causes correlation functions to become convolutions between wavefunction partitions and
operator partitions in frequency space and products in time.

Eq. (6.2) implies the obviously false conclusion that the entire dynamics of any local
observable in subsystem A far from the boundary are contained in the dynamics of a single
eigenstate cumulant that generally depends on the nature of the interaction between the
subsystems. This outcome is not a bug associated with the partition we have chosen but an
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inevitable consequence of decorrelating c with X. Thus, we are forced to conclude that X
and c are correlated even at short times and far separations. Consequently, the elements
of c contain non-local information about the whole system. In section 6.2, we will square
this conclusion with causality.

6.2 The butterfly velocity

Existing literature discusses emergent causality in terms of the butterfly velocity, which
bounds the time at which out-of-time-ordered-correlators (OTOCs) between distant operators
can decay [40]. The simplest OTOC is g(t) ≡ ⟨W (t)VW (t)V ⟩ for distinct operators V and
W which commute at time t = 0. Let W and V be separated by a distance R. The decay
of g(t) measures the nontriviality of the commutator [W (t), V ]. Until information of W has
reached V , the commutator is approximately zero, and g(t) cannot decay. The butterfly
velocity vB is defined such that the time at which decay first occurs is tB = R/vB.

We will study an analog of the OTOC between HAB and X to bound when X has received
information about subsystem B. Consider the Heisenberg evolution of our operator X located
a distance R from the boundary between A and B. First, we will evolve X forwards in time
under HA for a time t, then switch on the interaction HAB and reverse evolution back to time
t = 0. For t < tB, X should return approximately to its initial value. Concretely, we define

h(t) ≡
〈
e−iHteiHAtXe−iHAteiHtX

〉
i
. (6.3)

For convenience, we will take ⟨X⟩i = 0 and
〈
X2〉

i = 1.
We justify using h(t) to study the butterfly velocity by defining an interaction propagator

UI(t) ≡ ei(HA+HB)te−iHt, for which U ′
I(t) = −iHAB(t)UI(t), where we have defined the time

dependence of operators in terms of HA +HB. With this definition, we have:

h(t) =
〈
U †
I (−t)XUI(−t)X

〉
i
,

h′(t) = −i
〈
U †
I (−t)[HAB(−t), X]UI(−t)X

〉
i
. (6.4)

We can understand h′(t) as an inner product on the space of Hermitian operators between
−iU †

I (−t)[HAB(−t), X]UI(−t) and X and utilize Cauchy-Schwarz,

|h′(t)|2 ≤ −
〈
U †
I (−t)[HAB(−t), X]2UI(−t)

〉
i

〈
X2
〉
i
= −

〈
[HAB, X(t)]2

〉
i
. (6.5)

Thus, h′(t) is bounded by the squared commutator of X and HAB, separated by a time of
t. This result can be readily adapted into a bound on the decay of h(t) by assuming the
growth of the commutator square is monotonic prior to tB,

|h(t)− h(0)| ≤
∫ t

0

∣∣h′(t)∣∣ dt
≤
∫ t

0

√
−⟨[HAB, X(t)]2⟩idt

≤ t
√
−⟨[HAB, X(t)]2⟩i, (6.6)

hence, the decay of h(t) is bounded by the nontriviality of the squared commutator.
We define td as the decay timescale of h(t). When tB ≫ td, h(t) will approach a

step function. Consequently, for ω < t−1
d , h(ω) will behave as ∼ sinc(Rω/vB), while for

ω > t−1
d , h(ω) will have some cutoff that in general depends on the decay of h(t). We want
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to understand correlations in the energy eigenspace of our system, so let us write eq. (6.3)
in terms of components of X and c,

h(t) =
∑

ja1a2a3a4b1b2

cia1b1Xa1a2c
a2b1
j cja3b2

Xa3a4c
a4b2
i ei(ωa1a2−ωij)t. (6.7)

Eq. (6.7) is nearly identical to eq. (6.1) and contains the same partitions. From the above
considerations,

h(ω) = 2π
∑

ja1a2a3a4b1b2

cia1b1Xa1a2c
a2b1
j cja3b2

Xa3a4c
a4b2
i δ(ωa1a2 − ωij − ω)

∼ sinc(Rω/vB)Λt−1
d
(ω) (6.8)

where Λt−1
d
(ω) is a cutoff function introduced by the finite rate of decay of h(t).

Eqs. (6.7) and (6.8) ensure a nontrivial correlated structure between X and c that is
relevant at arbitrarily short times and arbitrarily long distances. However, in contrast to
previous quantities we have studied, it is not obvious that the right-hand sides of eqs. (6.7)
and (6.8) have any particular interpretation in terms of individual generalized free cumulants
indicating that our diagrammatic approach does not capture the full picture. Our analysis
mirrors that of ref. [67], which considered the eigenbasis representation of the OTOC between
spatially separated operators in the context of the ETH and found an analogous sinc-like
universal form. More recently, ref. [65] was able to capture the physics of the butterfly velocity
from a pure wavefunction perspective analogous to our own, but considering correlations
between distinct partitionings of the system. It would be interesting to connect their
approach to our own.

7 Conclusions and discussion

The eigenstate thermalization hypothesis was originally introduced to justify the application
of statistical mechanics to quantum many-body systems. However, in recent years, especially
given the connection to free probability theory, it has become clear that the ETH does more
than justify statistical mechanics. Free probability theory has previously emerged in physics
in the context of large N limits [53, 68]. Then, the ETH is perhaps best understood as
a set of phenomena associated with an emergent e−S expansion in quantum many-body
systems. This interpretation of the ETH is automatic in the matrix model formulation
developed in ref. [46]. In this work, we have presented the many-body Berry’s conjecture
as a reformulation of the ETH, which is traditionally understood in the sense of eq. (1.1).
However, we may alternately view eq. (1.1), the many-body Berry’s conjecture, and the
various results in this paper and the literature as just aspects of a large eS limit. A mature
understanding of this limit remains to be developed.

In this paper, we have formulated the eigenstate thermalization hypothesis and the ergodic
bipartition in terms of a many-body Berry’s conjecture, the hypothesis that eigenstates of
chaotic systems are random vectors up to the symmetry constraints of the system, and we
have argued that the MBBC is the natural quantum generalization of the ergodic hypothesis.
We showed how this approach naturally leads to a diagrammatic formalism developed in
the language of free probability, which is our main result. We demonstrate the power of our
formalism by showing that systems relax to a universal reduced density matrix and obey
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the Page curve at late times, thus establishing irreversible thermalization under reversible
unitary evolution. We also establish the subsystem ETH as a consequence of the MBBC.
We also discuss the role that locality plays in the ETH and develop connections to butterfly
velocities and entanglement growth.

Our considerations in this paper are generic, and our results should apply to any system
where ergodicity is not explicitly broken, e.g., through many-body localization. Certainly
much more can be done on a similarly generic footing. While we have largely ignored the
functional forms of eigenstate cumulants (F functions), they are necessary to understand
the time-dependent dynamics of thermalization and entanglement. There is some work
that suggests eigenstate cumulants, in some cases, have universal forms that depend on
the number of dimensions, locality of interactions, etc but not the model considered [30].
Additionally, while the operator cumulants (f functions) are generally model dependent,
their high-frequency cutoffs appear connected to universal properties of scrambling, and
future work may clarify this connection [14, 18]. Other work may clarify the connection
between the butterfly velocity and spectral correlations and uncover correlated structures
that exist beyond the ETH [65, 67]. We hope the formalism we have developed will aid in
the classification of generic properties of quantum many-body systems.

On the other hand, future work may focus on concrete realizations of the above results.
Exact functional forms of generalized free cumulants may be possible to derive within toy
models, such as the SYK model. Applications of the ETH to conformal field theories and to
holographic systems [11] have revealed important structure in those systems and provided
insights into the structure of black holes [36]. Additionally, numerical evidence for our work is
severely limited by the capabilities of exact diagonalization. Modern techniques and greater
computational power could provide clean demonstrations of our results in spin chains or
other toy models [69, 70].

Some techniques in this paper are reminiscent of others in the literature. In section 5,
our means of imposing equilibrium on non-equilibrium partitions by matching opposing
time dependences reproduces the equilibrated pure state formalism of ref. [32]. In another
case, refs. [31, 65] study the statistical properties of eigenstates via an application of the
principle of maximum entropy. Ref. [65] uses this principle to study propagators at early
times and studies the behavior of OTOCs in Floquet quantum circuits. Ref. [31] argues that
the various principles of the ETH may each be understood as consequences of a maximum
entropy principle and derives a special case of our eq. (4.5) to study saddle-points in the
gravitational path integral. In our view, the principle of maximum entropy is a more formal
and fundamental approach to the heuristic arguments we present in sections 2 and 3 that
may even extend the validity of our work.
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A Free probability in quantum chaos

In this appendix, we discuss the principles of free probability theory and their emergence
in quantum chaos. We do not present rigorous or technical arguments but instead discuss
informally how key ideas, namely freeness, free cumulants, and random matrices arise, and
obtain analogs in the study of quantum chaos. In particular, we wish to motivate why the
decay of out-of-time-ordered correlators (OTOCs), the eigenstate thermalization hypothesis
(ETH), and emergent rotational symmetry are, in essence, equivalent definitions of chaos
and avatars of free probability theory. Except where another citation is provided, we direct
readers to ref. [47] for background on free probability.

First, we discuss what it means to have a probability theory in a non-commutative
setting.23 The traditional foundation of classical probability theory starts with a sample
space of possible events and a rule for assigning probabilities to subsets of events. Non-
commutative probability theory instead starts with an algebra of observables and their
expectation values. The rules of non-commutative probability theory generalize the familiar
rules of quantum mechanics where we are given a (pure or mixed) density matrix and
some (generically non-commuting) observables whose expectation values are of interest to
us. Non-commutative probability also reduces to classical probability theory in the limit
that observables of interest commute. Often in quantum systems, particularly when ℏ can
be considered small, operators are approximately commutative and principles of classical
probability theory such as sample spaces and (classical) independence become useful emergent
descriptions of statistical physics. Free probability theory concerns itself with, in some sense,
an opposite limit in which observables are as non-commutative as possible. We will see
that this notion of maximal non-commutativity can be made precise and that quantum
mechanics indeed contains such a limit.

Consider two algebras of observables, X and Y, and a state ⟨· · ·⟩ that satisfies ⟨ZW ⟩ =
⟨WZ⟩. As an example, one can take Y to be the algebra generated by Pauli operators
on a single site of a spin chain, X to be the algebra generated by the Pauli operators on
a different site evolved far forward in time, and the state to be the conventional thermal
regulator discussed in row (i) of table 1. We will return to this example. X and Y are
considered freely independent, or free, if

⟨X1Y1 · · ·XnYn⟩ = 0 for all Xi ∈ X , Yi ∈ Y such that ⟨Xi⟩ = ⟨Yi⟩ = 0. (A.1)

The expression ⟨X1Y1 · · ·XnYn⟩ is known as an alternating moment and so long as X and
Y are closed algebras any mixed moment of operators between them reduces to such an
expression. It is not obvious, but eq. (A.1) encodes maximal non-commutativity between
X and Y. If there were any nontrivial algebraic relations between elements of X and Y,
e.g. XY = Y X for some X, Y , then the definition (A.1) would imply that at least one of
X and Y is a scalar and thus that the algebraic relation is trivial, in contradiction with
the assumption of nontriviality. We sketch this proof just for commutators. Assume that
X and Y satisfy eq. (A.1) but that XY = Y X for some non-scalar X, Y . Consider the

23For an elaboration on the ideas in this paragraph, we direct readers to ref. [71].
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fluctuations δX ≡ X − ⟨X⟩, δY ≡ Y − ⟨Y ⟩. By (A.1),〈
(δXδY )n (δY )m−n

〉
=
〈
δXδY · · · δXδY m−n+1

〉
= 0. (A.2)

Since X and Y commute, eq. (A.2) reduces to,

⟨δXnδY m⟩ = 0. (A.3)

However, eq. (A.1) implies for n = 1,

⟨(X1 − ⟨X1⟩) (Y1 − ⟨Y1⟩)⟩ = 0 =⇒ ⟨X1Y1⟩ = ⟨X1⟩ ⟨Y1⟩ (A.4)

and taking X1 = δXn, Y1 = δY m,

⟨δXnδY m⟩ = ⟨δXn⟩ ⟨δY m⟩ = 0. (A.5)

However, eq. (A.5) states that the product of arbitrary central moments of X and Y vanish.
This can only be the case if at least one of X, Y has vanishing central moments and thus is a
scalar.24 Hence, our hypothesis is contradicted, and no nontrivial element of X can commute
with any nontrivial element of Y. This argument can be extended to any algebraic relation
between elements of X and Y and thus establishes the idea of maximal non-commutativity.
The notion of freeness can also be extended from algebras to pairs of operators as freeness
of the subalgebras they generate. X and Y are free if,

⟨(X − ⟨X⟩)p1 (Y − ⟨Y ⟩)q1 · · · (X − ⟨X⟩)pn (Y − ⟨Y ⟩)qn⟩ = 0 for all n ≥ 1, (A.6)

for positive integer exponents pm, qm. A pair of algebras are free if and only if any pair
of their operators are free.25

Freeness has an analogy in quantum chaos. A many-body system is considered chaotic
if for simple, few-body observables X, Y ,〈[(

X(t)− ⟨X(t)⟩β
) (
Y (0)− ⟨Y (0)⟩β

)]q〉
β
→ 0 for all q ≥ 1 (A.7)

for t > tscr, where tscr is known as the scrambling time of the system [72] and we have used
the conventional thermal regulator. (A.7) is formulated to measure the non-commutativity
of X(t) with Y (0). Eq. (A.7) is essentially the definition of the quantum butterfly effect, in
which the decay of OTOCs characterizes the ability for the unitary evolution of a system
to scramble quantum information [29]. In this light, the quantum butterfly effect is a
consequence of the asymptotic freeness between simple few-body observables at long time
separations. If the example of Pauli operators are to constitute freely independent algebras,
then their OTOCs must decay.

The definition of freeness given in eq. (A.1) is the maximally non-commutative analog
of the classical definition of independence between two variables. That is, X and Y are
classically independent, or simply independent, if,

⟨X1Y1 · · ·XnYn⟩ = ⟨X1 · · ·Xn⟩ ⟨Y1 · · ·Yn⟩ for all Xi ∈ X , Yi ∈ Y. (A.8)
24We assume faithfulness:

〈
X2〉 = 0 =⇒ X = 0. Freeness is defined with respect to a given state and

cannot say much about operators for which the chosen state is not faithful.
25Freeness can be further extended to a collection of any number of algebras or operators.
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Eqs. (A.1) and (A.8) are both rules for computing higher mixed moments from lower moments.
Such a rule is obtained from eq. (A.1) by performing the binomial expansion of

⟨(X1 − ⟨X1⟩)(Y1 − ⟨Y1⟩) · · ·⟩ = 0. The analogous rule from (A.8) is simply that mixed
moments factorize. Whereas eq. (A.1) implied that elements of X and Y have no nontrivial
algebraic relations, eq. (A.8) implies that all elements of X and Y satisfy the specific relation
that they commute, i.e. XY = Y X. This result is straightforward to prove. Consider two
alternating moments,

⟨X1Y1 · · ·Xm−1Ym−1XmYmXm+1Ym+1 · · ·XnYn⟩ = ⟨X1 · · ·Xn⟩ ⟨Y1 · · ·Yn⟩ ,
⟨X1Y1 · · ·Xm−1(Ym−1Ym)(XmXm+1)Ym+1 · · ·XnYn⟩ = ⟨X1 · · ·Xn⟩ ⟨Y1 · · ·Yn⟩ (A.9)

where both are equal per eq. (A.8). Then,

⟨· · ·Xm−1Ym−1XmYmXm+1Ym+1 · · ·⟩ − ⟨· · ·Xm−1(Ym−1Ym)(XmXm+1)Ym+1 · · ·⟩ = 0
=⇒ ⟨· · · [Xm, Ym] · · ·⟩ = 0. (A.10)

Since X1, Y1 · · · , Xm−1, Ym−1, Xm+1, Ym+1, · · · , Xn, Yn are arbitrary, eq. (A.10) can only hold
if [Xm, Ym] = 0 in general. Hence, eq. (A.8) enforces commutativity.

Many concepts of classical probability have exact analogs in free probability. Eq. (A.6)
is analogous to the factorization of mixed moments of classically independent variables
⟨XpY q⟩ = ⟨Xp⟩ ⟨Y q⟩. The classical probability distribution of an operator is instead replaced
with its spectrum. The convolution of probability distributions for sums of independent
operators is replaced with a free additive convolution of spectra for sums of free operators.
Of key importance in classical and free probability is the existence of cumulants, which to a
physicist serve as the building blocks of a theory. Cumulants also compactly formulate the
rules for computing higher moments from lower moments mentioned above for classically
or freely independent variables. Whereas the vanishing of classical cumulants indicates
independence, the vanishing of free cumulants indicates freeness. Furthermore, while classical
cumulants admit a combinatorial interpretation in terms of set partitions, free cumulants can
be interpreted in terms of non-crossing partitions. As an example we consider the cumulant
decompositions of the moment ⟨XYXY ⟩. First, in the classical case,

⟨XYXY ⟩ ≡ ⟨XYXY ⟩

+ ⟨XYXY ⟩ + ⟨XYXY ⟩ + ⟨XYXY ⟩ + ⟨XYXY ⟩

+ ⟨XYXY ⟩ + ⟨XYXY ⟩ + ⟨XYXY ⟩

+ ⟨XYXY ⟩

≡ kX2Y 2

+ 2kX2Y kY + 2kXY 2kX

+ kX2kY 2 + 2k2XY
+ k2Xk

2
Y (A.11)
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where we’ve used k to denote classical cumulants. Then in the free case,

⟨XYXY ⟩ ≡ ⟨XYXY ⟩

+ ⟨XYXY ⟩ + ⟨XYXY ⟩ + ⟨XYXY ⟩ + ⟨XYXY ⟩

+ ⟨XYXY ⟩ + ⟨XYXY ⟩

+ ⟨XYXY ⟩
≡ fXYXY

+ 2fX2Y fY + 2fXY 2fX

+ 2f2XY
+ f2Xf

2
Y (A.12)

where we’ve used f to denote free cumulants and we’ve distinguished ordinary set partitions
from non-crossing partitions by drawing the former below the line and the latter above it.

Hopefully the rules of the above partitions are clear, but there are a few aspects which
should be emphasized. It is straightforward to verify that the vanishing of free cumulants,
defined by the non-crossing partitions, implies freeness in the sense of eq. (A.6). Until 3rd

order, free and classical cumulants are identical. At 4th order and above, classical cumulants
become undefined for non-commutative operators while free cumulants become sensitive to
order (up to cyclic permutations), i.e fXYXY = fY XY X ̸= fX2Y 2 = fY 2X2 . The difference is
reflected in the fact that eqs. (A.11) and (A.12) differ by a single partition. As we discuss in
section 3.2, free cumulants are crucial to the definition of the ETH. However, to justify the
form given in eq. (1.1), we will turn to a concrete construction of free probability.

Random matrices are known to model free probability in their large N limit. A finite
N×N hermitian matrix can be classically sampled from a distribution over its N real diagonal
and N(N − 1) complex off-diagonal elements.26 Of particular importance are rotationally
invariant probability distributions. That is, for any matrix X and unitary rotation U ,

p(X) = p(U †XU) (A.13)

where p is the probability density. Next, to take the large N limit one has to specify a
sequence of N × N matrices X(N) sampled from a sequence of distributions p(N), N ∈ Z,
such that as N → ∞, the spectrum of X(N) converges to a well-defined limit. Then consider
two sequences of random matrices with large N limits, X(N) and Y (N). If for each N ,
the elements of X(N) and Y (N) are sampled independently and from rotationally invariant
probability distributions, then,

lim
N→∞

〈
n∏
i=1

(
X(N) −

〈
X(N)

〉)pi
(
Y (N) −

〈
Y (N)

〉)qi

〉
= 0 for all n ≥ 1. (A.14)

Eq. (A.14) is simply the freeness condition eq. (A.6) asymptotically in the large N limit. Since
we have considered rotationally invariant distributions, the specific state ⟨· · ·⟩, is unimportant.

26One can similarly consider real symmetric matrices and orthogonal rotations or self-adjoint quaternionic
matrices and symplectic rotations, but in this appendix we will stick to hermitian matrices and unitary rotations.
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What we have seen is the remarkable fact that hermitian random matrices whose elements
are sampled classically independently from a rotationally invariant ensemble, become freely
independent in the large N limit. Rotational invariance is crucial. Asymptotic freeness in
the large N limit holds if and only if the ensemble is rotationally invariant. Hence, where
in eq. (A.7) we found that freeness occurs at long time separations for simple observables,
we should expect that at small frequencies the matrix elements of those observables exhibit
an emergent rotational invariance.

Lastly, we can introduce the expression for free cumulants in terms of matrix elements.
For a sequence of matrices, X(N), that satisfies rotational invariance and has a well-defined
limit spectrum, its free cumulants in the large N limit are given by the classical cumulants
kn of its matrix elements [57],

fXn = lim
N→∞

Nn−1kn
(
X

(N)
i1i2

, X
(N)
i2i3

, · · · , X(N)
ini1

)
(A.15)

for any choice of distinct indices i1, . . . , in. Ref. [57] presents the result in terms of classical
cumulants, but as discussed in ref. [13] the only products of matrix elements whose expectations
are rotationally invariant are those whose indices are cyclic. Then, instead we have,

fXn = lim
N→∞

Nn−1E(X(N)
i1i2

X
(N)
i2i3

· · ·X(N)
ini1

) (A.16)

for any choice of distinct indices i1, . . . , in, where E represents the classical expectation value.
It is clear that eq. (1.1) is the chaotic analogy to eq. (A.16) where the theoretical expectation
value has simply been replaced with an empirical average and N with eS .

Hence we have seen how key concepts of quantum chaos: the butterfly effect, the ETH, and
emergent rotational invariance are each avatars of free probabilistic limit inherent in chaos of
quantum many-body systems. Yet, there are many more tools in the free probability toolbox.
We suspect broader awareness of the subject will help those tools find applications in physics.

B Saddle-points in the ETH

We briefly review the use of saddle-point integration in the context of the ETH. The basic
principle of saddle-point integration is that the total integral of a rapidly varying integrand
is sharply concentrated around its peak(s) or of a rapidly oscillating integrand around its
point(s) of stationary phase. We refer to either peaks or stationary points as saddle-points. In
the cases we consider, the contributions to integrals from regions away from the saddle-point
will be suppressed by the system size, and thus, saddle-point integration becomes exact in
the thermodynamic limit, at least within a logarithm.

We assume that our system has a Hamiltonian H with V degrees of freedom (volume).
Extensive thermodynamic quantities such as the energy E = ⟨H⟩, microcanonical entropy
S(E) = ln [

∑
i δ(Ei − E)], and heat capacity C(E) ≡ −β2 [S′′(E)]−1, all scale ∼ O(V).

Intensive thermodynamic quantities, such as the inverse temperature β ≡ S′(E) and the
expectation values of local operators ⟨X⟩ are ∼ O(1).

The diagonal elements of ETH satisfying operators are equal to their microcanonical
expectation value,

Xii = e−S(Ei)
∑
j

δ(Ej − Ei)Xj +O(e−S) ≡ f1(Ei) +O(e−S). (B.1)
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Then eigenstates, by definition, obtain the same equilibrium properties as the microcanonical
ensemble. We can also check the expectation values in the canonical ensemble,

⟨X⟩β ≡
∑
i e

−βEiXii∑
i e

−βEi
=
∫
E e

S(E)−βEf1(E) +O(e−S/2)∫
E e

S(E)−βE (B.2)

where we have exploited (B.1) and the definition of microcanonical entropy to turn the
sums into integrals. We find the saddle-point of the integral by setting the derivative of
the integrand to zero and obtain

S′(Eβ)− β + f ′1(Eβ)
f1(Eβ)

=⇒ S′(Eβ) = β +O(1/V). (B.3)

Taking only the saddle-point value of each integral we find,

⟨X⟩β = eS(Eβ)−βEβf1(Eβ)
eS(Eβ)−βEβ

= f1(Eβ). (B.4)

Eq. (B.4) implies that the properties of the canonical ensemble with temperature β are
equivalent to the properties of the microcanonical ensemble at a specific energy Eβ. From
eq. (B.3), we can realize that the saddle-point associated to the canonical inverse temperature
β is equivalent to the microcanonical definition of temperature to leading order in 1/V.
Thus, we establish ensemble equivalence in the ETH. This result extends readily to the
non-equilibrium functions fn for their slow dependence on the total system energy.

However, we have not considered the magnitude of corrections away from the saddle-point.
To do so, we consider the Taylor expansion of the exponent about the saddle-point,

S(E)− βE = S(Eβ)− βEβ −
β2(E − Eβ)2

2C +
∞∑
m=3

S(m)(Eβ)(E − Eβ)m

m! . (B.5)

If we truncate this series to second order, we find that E is Gaussian distributed about Eβ
with a width

√
C/β2 that scales ∼ O(V1/2). However, since f ′1(E) is ∼ O(1/V), contributions

away from the saddle-point in the Gaussian approximation will only contribute at most at
order ∼ O(V−1/2). If we assume that E stays close to Eβ at any order in the expansion,
self-consistently including higher derivatives of S results in an asymptotic series about V → ∞
which may be evaluated via Feynman diagrams. However, the higher order terms will be
suppressed by further powers of V, and going beyond zeroth order will be unnecessary for
our purposes.

C Non-zero width of the window function

In this appendix we discuss the non-zero width of F . In C.1 we discuss how the width
can affect some of the calculations in this paper by focusing on a specific case: subsystem
energy fluctuations for both the eigenstates and non-eigenstates. In C.2 we discuss the form
of F in eq. (1.2). This has been previously discussed in refs. [21] and [30] which predict a
Gaussian and a Lorentzian form, respectively, in tension with one another. We shed some
light on this disagreement.

– 48 –



J
H
E
P
0
9
(
2
0
2
4
)
0
6
6

C.1 Subsystem energy fluctuations

In this subappendix we consider an observable which can distinguish eigenstates from non-
eigenstates: subsystem energy fluctuations. As we will see, these fluctuations gain an extra
contribution from the energy uncertainty of a non-eigenstate when the subsystem is a finite
fraction of the whole system.

To consider the effects of finite F width, we write

ln [F (ω)] ≈ ln [F (ω0)]−
(ω − ω0)2

2∆2
0

+ . . . (C.1)

where ∆2
0 represents the variance of F and ω0 maximizes F . Eq. (C.1) is in essence a

Gaussian approximation for F but the outcomes of convolutions will be exact so long as
we are only computing variances.27

First, we consider the eigenstate case, eq. (4.2). The subsystem energy variance is given by,〈
∆H2

A

〉
i
≡
〈
(HA − EiA)2

〉
i
=
∫
EaEb

(Ea − EiA)2e−S(Ei)+SA(Ea)+SB(Eb)F (Ei − Ea − Eb).

(C.2)

Per appendix B, the density of states factors should be well approximated as Gaussians about
the saddle-point of eq. (C.2). eSA(B) obtains a variance of CA(B)T

2, where CA(B) is the heat
capacity of subsystem A(B). Then, we can write,

〈
∆H2

A

〉
i
= 1

N

∫
EaEb

(Ea − EiA)2e
− (Ea−EiA)2

2CAT 2 − (Eb−EiB)2

2CBT 2 − (Ei−Ea−Eb−ω0)2

2∆2
0 (C.3)

where N represents an overall normalization that ensures ⟨i|i⟩ = 1. The Gaussian integrals
in eq. (C.3) can be directly evaluated to find,

〈
∆H2

A

〉
i
= T 2

( 1
CA

+ 1
CB +∆2

0/T
2

)−1
. (C.4)

The variance of subsystem energies was considered in ref. [60] which contrasted the results
for eigenstates and the canonical ensemble. For a Gibbs state on subsystem A, the variance is〈

∆H2
A

〉
Gibbs

= CAT
2. (C.5)

For an eigenstate, one instead expects,28

〈
∆H2

A

〉
Eigenstate

= T 2
( 1
CA

+ 1
CB

)−1
. (C.6)

We can see that eq. (C.4) interpolates between the two cases. If for some reason ∆2
0/T

2 ≫ CA
eq. (C.4) reduces to eq. (C.5). This situation may be possible in models with long-range

27I.e. Bienaymé’s identity.
28To connect our expression to that of ref. [60] one has to assume homogeneity. I.e. that CA(B) ∝ VA(B)

where VA(B) is the volume of subsystem A(B). Then one recovers
〈
∆H2

A

〉
Eigenstate

= CAT 2 (1 − VA/V) where
V is the volume of the whole system.
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interactions and would be interesting to explore further. Such systems may also exhibit
some nontrivial scaling with temperature. If ∆2

0 is vanishing, eq. (C.6) is recovered. This
is more physical because for an eigenstate we should expect ∆2

0 to scale as the area of
the boundary between A and B. Thus, the finite width of F adds only an area scaling
correction to the subsystem energy variance. Nonetheless, this correction is perceptible in the
numerical calculations presented in figure 11 of ref. [60], where the graph of the subsystem
energy variance shows a small enhancement with respect to eq. (C.6) for a single high energy
eigenstate when A is larger than B.

Next, we consider an arbitrary initial state |ψ⟩ with initial energy Eψ = ⟨H⟩ψ. We
consider its eigenstate components,

|ψ⟩ ≡
∑
i

cψi |i⟩ (C.7)

and define,

cψi c
i
ψ ≡ e−S(E)Fψ(Ei − Eψ) (C.8)

and

ln [Fψ(ω)] ≈ ln [Fψ(ωψ)]−
(ω − ωψ)2

2∆2
ψ

+ . . . (C.9)

where ∆ψ is the energy variance of Fψ and ωψ maximizes it. Generalizing eq. (5.5), in
equilibrium, the subsystem energy variance will be given by,〈
∆H2

A(t→ ∞)
〉
ψ
=
∫
EiEaEb

(Ea − EiA)2e−S(Ei)+S(Ea)+S(Eb)F (Ei − Ea − Eb)Fψ(Eψ − Ei).

(C.10)

In this case we have two more variances to consider: CT 2 from eS and ∆2
ψ from Fψ. Once

again evaluating the Gaussian integrals, we calculate,〈
∆H2

A(∞)
〉
ψ
= T 2

(
1
CA

+ 1
CB +∆2

0/T
2 + (T 2/∆2

ψ + C−1)−1

)−1

. (C.11)

Thus we find some difference between the subsystem energy variance of a system prepared
in an eigenstate and of a system that is prepared outside of an eigenstate but allowed to
equilibrate. However, such a difference only shows up for a subsystem that is a finite fraction
of the whole system.

C.2 Form of the window function

We have not yet discussed the form of F in eq. (1.2). Where in sections 5.3 and 6.2 we were
able to relate forms of F in more complicated scenarios to known locality-related bounds,
for this simplest case the literature provides different answers.

Ref. [21] conjectured that in this case F obtains an exactly Gaussian form in D > 1
dimensional systems,

F (ω) ∝ e
− (ω−ω0)2

2∆2
0 (C.12)

where ω0 maximizes F (ω) and ∆0 is its variance. Their argument relies broadly on two claims:
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1.
∫
ω F (ω)ωn ≈ ⟨Hn

AB⟩i up to subleading order corrections that are polynomially sup-
pressed in the system size,

2. The moments of HAB are those of a Gaussian distribution.

Claim 2 follows from the fact that HAB, in D > 1 spatial dimensions, is a sum of an area
scaling number of local terms in a system with a finite correlation length and thus its moments
converge weakly towards those of a Gaussian distribution by central limit theorem. Claim 1
is more subtle. We take H ≡ HA +HB +HAB, H0 ≡ HA +HB and |i⟩, |I⟩ to label their
respective eigenstates. Starting from the identity29

⟨I|(H − EI)n|I⟩ =
∑
i

|⟨i|I⟩|2(Ei − EI)n =
∫
ω
F (ω)ωn (C.13)

ref. [21] shows that,

⟨I|(H − EI)n|I⟩ = ⟨I|([H0 − EI ] +HAB)n|I⟩ = ⟨I|(HAB)n|I⟩+O(nA
n−1

2 ) (C.14)

where A denotes the area of the boundary between the subsystems. Since the moments of
HAB are indeed Gaussian, ref. [21] concluded that F must be as well with mean ω0 = ⟨HAB⟩I
and variance ∆2

0 = ∆2 ≡
〈
H2
AB

〉
I − ⟨HAB⟩2I . However, as pointed out in ref. [30], eq. (C.14)

only bounds the first p central moments of F (ω) for some p ∼ O
(√

A
)

which may not be
sufficient to determine the form of F .

Ref. [30] instead argues for a Lorentzian form with an exponential cutoff at large
frequencies in any number of dimensions. Their argument follows by approximating the
solution to the characteristic equations for the eigenvalues of H after perturbing H0 by HAB .
Preparing the system in a product state |I⟩, we can decompose the Hilbert space into the
direct sum of |I⟩ and its complement, H = Hc ⊕ |I⟩. Diagonalizing H on the complement
Hilbert space yields a set of d−1 eigenstates |ϵm⟩. Ref. [30] then mirrors a standard derivation
of Fermi’s golden rule (FGR) [73]. The key assumption is that the nonzero level spacing
and finite bandwidth of the levels ϵ are irrevelant, that is,

ϵmax − ϵmin ≫ O(A) ≫ δϵ (C.15)

where ϵmax (ϵmin) is the largest (smallest) value of ϵ and δϵ is the typical spacing between
consecutive ϵ. Under these assumptions one can approximately solve a set of characteristic
equations to yield,

F (Ei − EI) ∼
ΓiI

(Ei − EI)2 + (ΓiI)2
(C.16)

where ΓiI gives the width of F . So long as ΓiI has a sufficiently slow dependence on Ei − EI
eq. (C.16) is consistent with a Lorentzian form for F . As a consequence, the return amplitude

29Note that our normalization convention differs from that of ref. [21] but the difference can be absorbed
into the definition of F .
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of a system prepared in |I⟩ and evolved under H exhibits an exponentially decaying return
amplitude,

eiEI t ⟨I|e−iHt|I⟩ =
∑
i

|⟨i|I⟩|2e−i(Ei−EI)t

=
∫
ω
F (ω)e−iωt

≡ F (t) ∼ e−Γi
I t (C.17)

which reflects the physical picture of FGR. Recent work [74–76] has connected FGR and its
breakdown to the many-body localization (MBL) to ETH crossover.30 Ref. [76], in particular,
argues that an exponential decay of the (modulus-squared) return amplitude is generic feature
of ETH satisfying systems so long as the perturbation is not large enough to modify the
entropy function. In contrast the argument of ref. [21] would suggest a Gaussian decay of
the return amplitude. Various numerical calculations [30, 74, 76] corroborate a regime of
exponential decay in 1 dimension, however, we are unaware of any numerical work in higher
dimensions where the tension arises.

To understand the tension, it may be enlightening to study how the moment calculation
eq. (C.14) influences the time dependence of F (t).31 Our analysis complements that in
appendix A of ref. [30] by focusing on the decay of F (t) where they focused on the decay of
F (ω). At late times, the return amplitude saturates to the overlap of two microcanonically
random vectors,

eiEI t ⟨I|e−iHt|I⟩ → e−S/2. (C.18)

The smooth F functions will not capture this saturation but determine what form the return
amplitude takes prior to the saturation time. First we estimate the saturation time, tsat,
under the Gaussian form implied by eq. (C.12),

e−∆2t2sat/2 = e−S/2 =⇒ tsat =

√
S

∆2 ∼ O

√V
A

 (C.19)

where V is the volume of the system. Next, eq. (C.14) determines only the first p derivatives
of F (t) where p ∼ O

(√
A
)

is the first (even) central moment for which the error crosses the
mean. Then we can estimate the error of the Gaussian description from its Taylor series,

|F (t)− e−∆2t2/2| ≈
∣∣∣∣(p− 1)!!∆ptp

p!

∣∣∣∣ ≈ 1√
π

∣∣∣∣∣e∆2t2

p

∣∣∣∣∣
p
2

. (C.20)

The error approximation derived in (C.20) implies that e−∆2t2/2 is only a reliable approx-
imation to F (t) for t ≲ tearly defined as

e−∆2t2early/2 ≈ 1
ϵ
√
π

∣∣∣∣∣e∆
2t2early
p

∣∣∣∣∣
p
2

=⇒
∆2t2early

p
≈W

(
e−1

(
ϵ2π

) 1
p

)
= 0.2785 · · ·+O

(1
p

)
=⇒ tearly ∼ O(A− 1

4 ) (C.21)
30We are grateful to Philip Crowley for bringing this work to our attention.
31Neglecting phase factors throughout.
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where ϵ is a small O(1) error threshold and W is the Lambert W function. Eq. (C.21) implies
that increasing the size of A will actually shorten the validity of the moment calculation.
This is physical since we are scaling p and ∆ simultaneously and F (t) grows sharp as
∆−1 ∼ O

(
A− 1

2
)

which is faster than the constraint in eq. (C.21) grows tight. Thus, the
Gaussian ansatz of ref. [21] can be expected to accurately capture the decay of F (t) for a
large number of periods ∆−1 yet only for a vanishing period of time in the thermodynamic
limit. Furthermore, eq. (C.19) shows that tsat diverges in the thermodynamic limit. We
conclude that the argument of ref. [21] cannot determine the form of F (t), or by extension
F (ω), over all physically relevant scales.

Ref. [76] uses a statistical analysis of the Jacobi diagonalization algorithm applied to
ETH satisfying systems to develop the following picture for the return amplitude. Initializing
the system in an eigenstate of H0 and perturbing it to H, the return amplitude is expected
to experience an early time Gaussian decay, intermediate exponential decay, and a late
time saturation, i.e.

eiH0t ⟨I|e−iHt|I⟩ =


Fearly(t) = e−J

2t2/2

Finter(t) ∝ e−Γt

e−S/2 (saturation)
. (C.22)

For a sufficiently weak perturbation a Gaussian description only holds at very early times
with J2 ≈ ∆2 ∼ ∆2

0. For a sufficiently strong volume-scaling perturbation the Gaussian decay
may saturate early and entirely preempt the exponential regime with J2 ≈ ∆2

0 ≫ ∆2 and.
Then, inserting Fearly(t) for F (t) into eqs. (C.20) and (C.21), we get,

e(J
2−∆2)t2early/2 − 1 = ϵ =⇒ tearly =

√
2 ln(1 + ϵ)
J2 −∆2

=⇒ J2 ≈

1 + 2ϵ
W
(
e−1(ϵ2π)

1
p

)
p

∆2 = ∆2 +O
(√

A
)

(C.23)

and our estimate of tearly indicates that the area-scaling perturbation, HAB, should be
considered weak with J2 ≈ ∆2 ≈ ∆2

0. Returning to the frequency space picture, the
exponential cut-off of F (t) after tearly will constrain the form of F (ω) on scales below
t−1
early ∼ O(A1/4). However, the width of F (ω), ∆0 ≈ ∆ ∼ O(A1/2) is parametrically larger

than this scale in D > 1 dimensions. Thus, F (ω) should appear Gaussian in D > 1 dimensions
over scales comparable to ∆ ∼ O(A1/2). F (ω) must also respect an O(1) cutoff at very
large scales ω ∼ O(A) [66].

We conclude that the tension between the Gaussian and Lorentzian forms in D > 1
dimensions boils down to relevant timescales. The F function in eq. (1.2) captures the
return amplitude of a system prepared in an eigenstate of HA +HB and evolved under the
Hamiltonian HA + HB + HAB. We expect that the return amplitude will vanish rapidly
as a Gaussian at very early times, but continue to decay as an exponential for a much
longer period until saturation. Future work should clarify how the various arguments in
the literature capture different aspects of this picture.
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D Operator thermalization

We wish to show in this section that the ETH, eq. (1.1), is a consequence of the MBBC.
Consider a local Hermitian operator X supported on a local Hilbert space of dimension
dX and an associated rotation,

UX(s) ≡ eisX =
dX−1∑
m=0

pm(s)Xm (D.1)

where the second equality states that UX is a finite polynomial in X and follows from the
Cayley-Hamilton theorem. For |i⟩ an eigenstate of a Hamiltonian H, |i(s)⟩ ≡ UX(s) |i⟩ is an
eigenstate of Hamiltonian H(s) ≡ UX(s)HUX(−s). We can decompose H(s) as

H(s) = H + (H(s)−H) ≡ H + V (s) (D.2)

where V (s) is a small O(1) perturbation so long as X is a local operator and H and sum
of local terms. Then, by eq. (2.8) we can assert the following,

⟨i1(s)|i2(2s)⟩⟨i2(2s)| · · · |in(ns)⟩⟨in(ns)|i1(s)⟩ = e−(n−1)S(Ē)FX(s; Ē; ω⃗) (D.3)

where we have considered n distinct eigenstates of H and rotated them each by a different
angle s. Since distinct eigenstates are orthogonal, FX(0; Ē; ω⃗) = 0. In fact, the first n− 1
derivatives of FX with respect to s at s = 0 must vanish as well,

e−(n−1)S(Ē)FX(s; · · · ) =
n(dX−1)∑
m=0

∑∑
l
ml=m

q{m}(s)(Xm1)i1i2 · · · (Xmn)ini1

= 0 · s0 + · · ·+ 0 · sn−1 + q{1···1},ns
nXi1i2 · · ·Xini1 +O(sn+1) (D.4)

where q{m} collects the sum of products of pm and we have defined the expansion q{m}(s) ≡∑
m′ q{m},m′sm

′ . In general, the terms pm and q{m} will depend only on the characteristic
polynomial of X and are finite for any dX . Thus we can extract correlations of X from
the following non singular limit,

Xi1i2 · · ·Xini1 = lim
s→0

q−1
{1···1},ns

−ne−(n−1)S(Ē)FX(s; · · · ) ≡ e−(n−1)S(Ē)f(Ē; ω⃗) (D.5)

and we arrive at our desired result. The approach of this section suggests a sufficient
criteria for operators to satisfy the ETH in the sense of eq. (1.1): for a given operator X,
UX(s)HUX(−s) is close to H even as X mixes a large number of eigenstates.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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