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1 Introduction

A classic problem in (super)gravity is to formulate the dimensional reduction or truncation
of a D-dimensional theory on some d-dimensional manifold, M. This is achieved by keeping
some subset of Kaluza-Klein (KK) modes on M, such that their interactions can be described
solely in (D − d)-dimensional terms. In a consistent truncation, the modes we keep do not
source any of the modes we do not, and any lower-dimensional solution of the theory obtained
by reduction can be uplifted to a higher-dimensional solution. The simplest example of such
a truncation is the standard KK reduction on a circle, S1, keeping only the zero modes
of all fields. A more involved example of a consistent truncation is that of 11-dimensional
supergravity on the seven sphere, S7. This gives rise to the four-dimensional SO(8) gauged
maximal supergravity [1]. This retains a particular set of modes on S7.

In the latter case, SO(8) corresponds to the isometries of the manifold on which we are
reducing. This paper focuses on the question of whether it is possible to find other consistent
truncations by restricting to sets of modes invariant under some (continuous) subgroup
Gsym ⊂ SO(8). These truncations will break supersymmetry partially and, depending on the
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choice and action of Gsym on the S7, they may involve only a finite set of modes or infinite
towers of modes. The rule of thumb that distinguishes the finite and the infinite cases boils
down to the question of whether the action of Gsym is homogeneous or inhomogeneous. Either
way, both will still be truncations (from the set of all possible modes) and will still be consistent
(by the usual symmetry considerations). Examples of finite mode truncations include the
cases considered in, for example, [2, 3]. Here we will describe new infinite-mode truncations.

One powerful explanation for the existence of the maximally-supersymmetric consistent
truncation on S7 is provided by adopting the description of supergravity using exceptional
generalised geometry (EGG) [4, 5] or exceptional field theory (ExFT) [6, 7]. The maximally
supersymmetric consistent truncation on S7 can be viewed to arise from the existence of a
generalised parallelisation, i.e., a globally defined nowhere-vanishing frame, of a generalised
tangent bundle carrying a representation of E7(7) [8]. In fact this is the generic exceptional
geometric structure underlying maximally-supersymmetric consistent truncations. More
generally, the EGG/ExFT approaches have proven a very useful framework for constructing
and studying consistent truncations with both maximal and less than maximal supersymmetry,
in different dimensions e.g. [9–13]. We will draw our examples from the S7 geometry with the
E7(7) EGG/ExFT framework, but our formalism is valid, more generally, for any generalised
parallelisable manifold M.

In this paper we will show how to start with a consistent truncation arising from a
generalised parallelisation and produce from it a new generalised parallelisation characterised
by the specification of a symmetry group Gsym, which is a subgroup of the isometries of
the original parallelisation manifold. This new generalised parallelisation can be viewed as
a ‘deformation’ of the original one. The original parallelisation will typically be Leibniz,
while the deformed one will be non-Leibniz, in the sense that their associated intrinsic
torsions will be constant or not. An example of how to retrieve (a subtruncation of) the
consistent truncation [3] of D = 11 supergravity on the squashed S7 of [14] using this type
of deformed parallelisations has already appeared in [15, 16]. Here we will lay down the
systematics of this formalism.

Our deformed parallelisations also endow the underlying space with a generalised H-
structure, with H ⊂ Gsym. For this reason, our work can be also thought of an extension of
the formalism of [12, 13] to the infinite-mode truncation case. For finite consistent truncations,
our methods particularise those of [12, 13] to spaces endowed with an underlying generalised
parallelisation. This allows us to obtain full embeddings of the finite truncated theories
into EGG/ExFT and make interesting observations. For example, even if the trombone
gaugings of the truncated theory vanish, the associated coordinate-dependent trombone in
the full ExFT embedding may not.

The formalism we develop is explained in section 2. In section 2.1 we review the description
of maximally-supersymmetric consistent truncations as generalised parallelisations. Then
in section 2.2 we explain how to specify the symmetry group Gsym, construct appropriate
singlets under this group and use these to write down a new generalised parallelisation which
gives rise to — infinite and finite — consistent truncations. In section 2.3 we connect the
(generalised) geometric perspective to the physical picture in terms of towers of KK modes,
and illustrate how the geometric and algebraic nature of the singlets defining an infinite
consistent truncation can be linked to a (generalised) Kac-Moody algebra.
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Then in section 3 we present explicit examples. These examples are based on the
consistent truncation of 11-dimensional supergravity on S7, whose formulation as a generalised
presentation we briefly review in section 3.1. In section 3.2, we discuss the choice Gsym =
SU(4), and show how this recovers known finite consistent truncations. In section 3.3, we
discuss the choice Gsym = SO(7). Here — due to SO(8) triality — there are three distinct
realisations of SO(7) possible. Two of these are known finite consistent truncations which can
in fact be obtained starting with the Gsym = SU(4) examples of section 3.2. The third leads
to a new infinite consistent truncation, where the fields retain dependence on a coordinate of
the internal space, or equivalently an infinite number of modes are kept.

Further discussion is provided in section 4, and diverse technical details are relegated
to the appendices. In particular, in appendix A we present the equations of motion of
supergravity in the exceptional field theory formalism in a form adapted to describe finite
and infinite consistent truncations. These equations are used to work out the dynamics of
the examples considered in section 3. The remaining appendices B, C and D specify group
theory details needed for these examples.

2 Generalised parallelisations, symmetries and deformations

2.1 Consistent truncations as generalised parallelisations

We start with a brief overview of how EGG/ExFT [4–7], for more details and references see
the review [17], can be used to describe consistent truncations. Let us focus on the case of the
maximal 11-dimensional supergravity, on some d-dimensional manifold M. Over this manifold
we can define various bundles which appear in Ed(d) generalised geometry. Generalised vectors
are sections of the generalised tangent bundle, E ≈ TM ⊕ Λ2T ∗M ⊕ Λ5T ∗M ⊕ . . . . The
fibres of this bundle are isomorphic to a representation R1 of Ed(d). Other bundles realise
other representations of Ed(d).

The bosonic symmetries on M are diffeomorphisms generated by d-dimensional vectors
and gauge transformations generated by 2- and 5-forms. The symmetry transformation
parameters combine into a generalised vector ΛM , and their action on the fields realises
generalised diffeomorphisms via an action on the generalised Lie derivative, which for instance
is defined on a generalised vector of weight λV by:

LΛV M = ΛN ∂N V M − αPM
N

P
Q∂P ΛQV N + λV ∂N ΛN V M , (2.1)

where PM
N

P
Q projects into the adjoint of Ed(d), α is a numerical constant, and we have

formally extended the internal coordinates on M into an Ed(d) representation yM . This extra
coordinate dependence is restricted by the so-called section condition, which essentially says
that the fields only depend on the actual d coordinates of M (which we will denote by yi),
and we will always assume this is the case. Note as well that we follow the exceptional field
theory conventions where generalised vectors which are sections of E and which generate
generalised diffeomorphisms have a non-trivial weight equal to 1

n−2 , where n + d = 11.
We can always introduce locally a generalised frame field EM

A providing a basis for
generalised vectors of weight zero. The inverse EM

A can then be used as a generalised vielbein
defining a generalised metric MMN = EM

AEN
BδAB, which parametrises a coset Ed(d)/Hd,
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where Hd is the maximal compact subgroup of Ed(d). This generalised metric combines the
metric on M together with gauge fields living on M.

The other fields of the exceptional field theory approach are the n-dimensional external
metric, gµν (which is a scalar of weight 2

n−2 under generalised diffeomorphisms), and a set of
gauge fields beginning with a one-form Aµ

M with field strength Fµν
M . In this subsection

we will only discuss the ‘internal’ sector captured by the generalised metric, and we will
extend our discussion to the remaining fields later.

In a conventional consistent truncation to maximal supergravity, the generalised metric
admits a factorisation of the form

MMN (x, y) = ŮM
A(y)ŮN

B(y)M̊AB(x) . (2.2)

The matrix ŮM
A(y) depends only on the coordinates of M, and are responsible for selecting

the precise modes on M which are kept in the consistent truncation. Here these are captured in
the matrix M̊AB(x), which provides the scalars of the lower-dimensional theory. The matrices
ŮM

A(y) should define a Leibniz generalised parallelisation. This means that, introducing a
(globally defined) scalar function ∆(y) of weight 1/(n− 2) under generalised diffeomorphisms,
that ŮM

A ≡ ∆ŮM
A provide a globally defined basis for the generalised tangent bundle,

and form an algebra

LŮA
ŮB = −X̊AB

CŮC , (2.3)

under the Ed(d) generalised Lie derivative, with constant coefficients X̊AB
C . These coefficients

can be decomposed in terms of the embedding tensor and trombone gauging (see the general
formulae (A.13)): for simplicity we assume here the latter vanishes.

If we decompose the scalar matrix M̊AB as M̊AB = V̊A
C V̊B

DδCD, then the ansatz (2.2)
can be viewed as picking a generalised frame of the form E̊M

A(x, y) = ŮM
B(y)V̊A

B(x).
Setting VB

A = δA
B , we can see this as a consistent truncation about the background given by

MAB = δAB (which may or may not be a solution of supergravity). Then the generalised
parallelisation given by E̊ = Ů V̊ can be interpreted as arising from a ‘deformation’ of this
background by the scalar modes kept in the consistent truncation.

We want to extend this picture to describe situations where we retain modes that
are not present in the consistent truncation on M, but retain the structure of generalised
parallelisation — generically with non-constant gaugings appearing in the algebra (2.3).
Effectively, we will do this by making the replacement.

ŮA(y) → PA
B(x, y)ŮB(y) , (2.4)

with PA
B ∈ Ed(d) a globally defined matrix with in principle arbitrary dependence on

the coordinates of the internal manifold. We will restrict the form of PA
B by requiring

that the replacement (2.4) respects some subgroup of the symmetries associated with the
consistent truncations (2.2). This means we will specify some (continuous) symmetry group,
Gsym ⊂ Ed(d), and require that P (y) be invariant under the appropriate action of Gsym
described below Concretely, we will describe an algorithm to obtain (globally defined) ed(d)
Lie algebra-valued functions S(y) which are singlets under the action of Gsym. Given a set
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of such singlets we can define P = exp(S) and use this to construct the deformation (2.4).
Because we have imposed the symmetry Gsym, this will still be a consistent truncation,
albeit one which may not be a dimensional reduction in the usual sense due to the fact that
(as we will describe in detail below) an infinite numbers of modes on M may be retained.
This could be viewed as a consistent truncation which is still partially higher-dimensional
in nature in that the fields appearing in the ansatz resulting from (2.4) will still depend
on some of the coordinates on M.

2.2 Symmetries, singlets, deformations and generalised G-structures

Generalised parallelisations and symmetries. The existence of the Leibniz generalised
parallelisation on the manifold M means that we can write down not only a global frame
for the generalised tangent bundle, but for all other bundles appearing in the generalised
geometry. Each of these bundles provides particular representations R1, R2, . . . of Ed(d), and
in particular there is always an adjoint bundle. This can be seen explicitly by noting the
usual pairing between tangent and cotangent bundles implies the existence of the generalised
covector bundle Ē = T ∗M ⊕ Λ2TM ⊕ Λ5TM ⊕ . . . whose fibres are isomorphic to the
representation R̄1 conjugate to R1, and the tensor product R1 ⊗ R̄1 always contains the
adjoint of Ed(d). Hence we can speak of Lie algebra-valued functions f ∈ C∞(M) ⊗ ed(d)
referring to this global description provided by the parallelisation.

Thanks to this global description, there is a well-defined notion of an Ed(d) action on
such functions. However, this Ed(d) action does not affect M itself. It amounts to internal
‘rotations’ of the generalised parallelisation.

There is however an Ed(d) action on M via generalised diffeomorphisms. Consider for
simplicity first an R1-valued function, which can be viewed as arising from a set of generalised
vectors f = fAŮA. Under a generalised diffeomorphism with parameter Λ ≡ ΛAŮA, with
ΛA constant on M,

LΛf = ŮA(ΛB∂BfA − X̊BC
AΛBfC) (2.5)

where ∂A ≡ ŮM
A∂M . This defines an action specifically of the subgroup Ggauging ⊂ Ed(d)

determined by the embedding tensor X̊AB
C = X̊A

αtαB
C , thus

δΛfA = LvfA − X̊BC
AΛBfC . (2.6)

where v denotes the vector part of Λ. Here for simplicity we are assuming there is no trombone
gauging, so we gauge a subgroup of Ed(d) (rather than Ed(d) × R+, and accordingly we do
not need to be precise about the weights of fA and fα). Note that ΛA can be associated
with an element of Ggauging defined by Λ ≡ ΛAX̊A

αtα. Acting on an adjoint-valued function,
whose coefficients are fα, we will similarly have

δΛfα = Lvfα − [Λ, f ]α , (2.7)

as can be easily verified using the Leibniz rule to obtain the action of the generalised Lie
derivative on the adjoint bundle through its action on E and Ē . Note that Ggauging need not
necessarily be associated with isometries of M. We can obtain the action of Ggauging on the
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metric and form-fields on M by acting with Λ on the generalised metric. The metric on M
appears in the vector-vector components of the generalised metric as Mij = (det g)−1/(n−2)gij ,
on which the action of Λ reduces to the usual Lie derivative with respect to the vector part
of Λ. We can compute

LΛMMN = 2ŮM
(AŮN

B)δΛM̊AB , δΛM̊AB = −2ΛCX̊CD
(AM̊B)D . (2.8)

Depending on the gauging and the form of M̊AB, this is generically non-zero and we may
or may not have Killing vectors. Let’s however assume that we are dealing with special
points of the consistent truncation where δΛM̊AB = 0, which guarantees the existence of
Killing isometries on M. The main example for us will be the case where M is the round
seven-sphere, which defines a consistent truncation to SO(8) gauged maximal supergravity
in four dimensions, with M̊AB = δAB. With this in mind, let’s further assume that Ggauging
corresponds to the group of isometries of M.

Symmetries and singlets. Now specify some subgroup Gsym ⊆ Ggauging ⊂ Ed(d). Let a be
an element of the algebra of Gsym, with the embedding in ed(d) being given by a = aAX̊A

αtα.
Our goal now is to characterise all ed(d)-valued singlets invariant under the action of Gsym
induced by the action of generalised diffeomorphisms described above.

Let S denote such a singlet. Using (2.7), this obeys the defining equation

Lv[a]S = [a, S] , (2.9)

where the Killing vector v[a] associated to the Lie algebra element a is defined as the vector
part of the generalised vector aAŮA.

The set of such singlets forms an algebra. This is easy to verify. Consider the commutator
[S, S′], and act on this with Lv[a] to get

Lv[a][S, S′] = [Lv[a]S, S′] + [S, Lv[a]S
′] = [[a, S], S′] + [S, [a, S′]] = [a, [S, S′]] , (2.10)

using (2.9) followed by the Jacobi identity. Hence [S, S′] obeys the defining equation (2.9) also.
Now, by assumption there is an action of Gsym on M as a subgroup of its isometries.

Away from fixed points, this generates orbits O ≃ Gsym/H where H is the stabiliser of M
under the action of Gsym. We can show that the algebra of singlets lies within CEd(d)(H) as
follows. For any generator h ∈ H the action of h on functions is given by Lv[h]. As H is
the stabiliser of the Gsym action, it follows that there exist a point p0 ∈ O ⊂ M such that
Lv[h]f(p0) = 0 for any f ∈ C∞(M). Then, evaluating (2.9) at this point we obtain:

[h, S(p0)] = 0 , (2.11)

which constrains S to be in CEd(d)(H) as a matrix. Thus, the algebra of singlets is contained
in the Lie algebra of CEd(d)(H). To obtain a solution valid on all of M, we view M as a
fibration (Gsym/H) ↪→ M → (M/(Gsym/H)). Then we can solve the singlet equation (2.9) as

S = LbL−1 , (2.12)

where L ∈ Gsym/H parametrises the coset fibres, and b ∈ C∞(M/(Gsym/H)) ⊗ CEd(d)(H).
Here, CG(H) denotes the commutant of H ⊂ G inside G. The latter condition implies that
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Lv[a]b = 0 and h[a]b = bh[a]. The former condition means that under an infinitesimal Gsym
transformation, L transforms according to the usual coset transformation rule

−Lv[a]L + aL = Lh[a] , (2.13)

where h[a] is a local compensator valued in the Lie algebra of H. Similarly, we have
−Lv[a]L

−1 −L−1a = −h[a]L. A short calculation using the above facts then shows that (2.12)
obeys (2.9).

Note that more generally given a set of generators ba for CEd(d)(H) we can write b

in (2.12) in the form

b(x, y) =
∑

a

ϕa(x, y)ba , (2.14)

where ϕa(x, y) are arbitrary functions of the coordinates x of the n-dimensional external
spacetime, while the internal dependence is restricted such that these are functions only on
the quotient M/(Gsym/H). In practice, we will be able to choose coordinates y = (y′, ỹ) where
y′ is a coordinate on Gsym/H and ỹ a coordinate on M/(Gsym/H), such that L(y) = L(y′)
and b(y) = b(ỹ). To avoid clutter we will not make this distinction explicitly. The functions
ϕa(x, y) can be viewed as y-dependent extensions of the scalar fields that would appear if
we were carrying out a conventional finite consistent truncation. We can then expand the
y-dependence in modes on M to view this as a consistent truncation retaining an infinite
number of modes.

Deformations. The singlets (2.12) can then be used to construct a new generalised paral-
lelisation, which is a ‘deformation’ of the original one. Given some singlet S(y) = LbL−1, it
exponentiates to an Ed(d)-valued matrix. We can do this for instance in the R1 representation
to define:

PA
B(x, y) = exp(S(x, y))A

B = (L(y)V−1(x, y)L−1(y))A
B , (2.15)

where we defined V−1 ≡ exp b. We use this matrix (2.15) as in (2.4) to define a new
generalised parallelisation, such that

MMN (x, y) = ŮM
A(y)(P−1)A

C(x, y)M̊CD(x)ŮN
B(y)(P−1)B

D(x, y)
= ŮM

A(y)L(y)A
CV(x, y)C

DM̊DE(x)V(x, y)F
EL(y)B

F ŮN
B(y) ,

(2.16)

where in the second line we used the fact that L−1 ∈ Gsym ⊆ Ggauging together with our
assumption that M̊AB is preserved by Ggauging. It follows from our assumptions that the
geometry defined by (2.16) is invariant under generalised diffeomorphisms Λ = ΛAŮA with
ΛAX̊A

α ∈ Gsym, i.e. the subset of Killing vectors of the original background corresponding
to this symmetry group remain Killing vectors of the new solution.

The generalised metric factorisation (2.16) can be conveniently re-expressed as

MMN (x, y) = UM
A(y)MAB(x, y)UN

B(y) ,

MAB(x, y) ≡ V(x, y)A
CM̊CD(x)V(x, y)B

D , UM
A ≡ ŮM

BLB
A .

(2.17)
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This allows us to treat UM
A as defining the new generalised parallelisation. In terms of

UM
A ≡ ∆UM

A we have

LUAUB = −XAB
CUC , (2.18)

defining non-constant generalised gaugings XAB
C . We can express the resulting embedding

tensor and trombone Θ and θ evaluated in terms of the generalised parallelisation defined
by UA in terms of those of the original parallelisation ŮA as

ΘAB
C = T̊AB

C + κ(PRΘ)AB
C , DE

F WDE
F , θA = 1

n − 2 ∂̊BLB
A ,

T̊AB
C = LD

ALE
B(L−1)C

F Θ̊DE
F .

(2.19)

with WAB
C = LD

ALE
B ∂̊D(L−1)C

E , ∂̊A ≡ ∆ŮM
A∂M . The crucial issue here is that gener-

ically ΘAB
C and θA will still be y-dependent. Note as well that even if (as we have been

assuming) the original trombone vanishes, θ̊A = 0, that θA may be non-zero.
In addition to the generalised metric, we must specify the truncation ansatz for the

n-dimensional external metric. This will be of the form

gµν(x, y) = ∆2(y)ḡµν(x, y) . (2.20)

This uses the scalar function ∆ inherited unchanged from the original generalised paralleli-
sation we started with. On the right-hand side, we allow for ḡµν to still have an internal
coordinate dependence, specifically on the coordinates of M/(Gsym/H) which likewise appear
in MAB(x, y).

Generalised H-structures. We gain further insight into the geometry resulting from (2.16)
by adopting the language of generalised G-structures [12]. Firstly, recall that any generalised
metric can be decomposed as MMN = EM

AEN
BδAB. There is a local Hd invariance under

which EA transforms and δAB is invariant. This defines a reduction of structure from Ed(d)
to Hd, i.e. the (generalised) structure group for patching the generalised vielbein is Hd.
If EM

A is globally well-defined, giving a generalised parallelisation, then the generalised
structure group is trivial. In between these two extremes we can have other non-trivial
generalised structure groups.

The factorisation (2.17) can be easily seen to be invariant under transformations UM
A →

NA
BUM

B where NA
B is a local H transformation, using the facts that V commutes with H

in Ed(d) and the assumption that H ⊆ Gsym preserves M̊AB . This implies that the background
defined by (2.17) admits H (or a subgroup thereof) as a generalised structure group.

Gauge field sector. We now consider the gauge field sector. In exceptional field theory,
this consists of a hierarchy of external p-forms, Aµ

M , Bµνα, . . . , carrying representations Rp

of Ed(d). With a view to our later applications all in the E7(7) case, we use the index α for
the R2 representation, which in that case is indeed the adjoint, and we will not explicitly
discuss p-forms with p > 2.

To truly make use of the generalised H-structure which we have highlighted above, we
should truncate the gauge field sector to consist solely of H-invariant fields. We therefore
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proceed similarly to [12] and introduce H-invariant quantities KI
A ∈ R1 and Ja

α ∈ R2 such
that for h an arbitrary generator of the Lie algebra of H ⊂ Ed(d) we have

hB
AKI

B = 0 , hα
βJa

β = 0 . (2.21)

The index I labels the H-invariant generalised vectors, while a labels the H-invariant
generalised tensors in the R2 representation. The definition of these quantities is purely
algebraic and effected at the level of the global Ed(d) provided by the generalised parallelisation
with respect to UA, so they are genuine constants. We can then obtain generalised vectors KI ≡
∆UAKI

A and tensors Ja
α ≡ ∆2Uα

βJa
β by contracting with the generalised parallelisation

— these correspond to the K and J of [12]. We can then expand the gauge fields in terms
of these objects:

Aµ
M (x, y) = ∆(y)UM

A(y)KI
AAµ

I(x, y) ,

Bµνα(x, y) = ∆2(y)Uα
β(y)Ja

βBµνa(x, y) .
(2.22)

On the right-hand side we have indicated that the fields Aµ
I and Bµνa may still depend on

the internal coordinates, specifically on those parametrising M/(Gsym/H).
The equations of motion for the deformed generalised parallelisation with the commen-

surate expansion (2.22) follow from the general expressions in appendix A.2.

Finite consistent truncations and generalised H-structures. When the intrinsic
torsion of a generalised H-structure is constant, then it has been established [12] that there
is a conventional consistent truncation to a lower-dimensional theory obtained by expanding
all fields in terms of the invariant tensors that define the structure. For the gauge fields,
this corresponds to (2.22) with the restriction that Aµ

I and Bµνa only depend on x and
not the internal coordinates y. Let’s further explain how this works in our approach. We
can pick out the singlet torsion by defining

XIA
B ≡ KI

CXCA
B . (2.23)

This is the quantity that appears in the action of the gauge fields on generalised tensors, e.g.
LAµV M = −UM

AAµ
IXIB

AV B for V M = UM
AV A a generalised vector. Note the trombone

θI = XIA
A may be non-zero.

For a consistent truncation, XIA
B must lie in CEd(d)(H) and be constant. The first of

these conditions implies that the generalised vectors KI ≡ KI
A∆UA form an algebra

LKI
KJ = −XIJ

KKK , XIJ
K ≡ KI

AKJ
BXAB

CK̃K
C (2.24)

where K̃I
A denotes a dual set of H-invariant quantities such that K̃I

AKJ
A = δI

J .
For a standard dimensional reduction, the scalar matrix MAB should be independent of

the coordinates on M. The definition (2.17) shows that MAB depends on these coordinates
via VA

B, which lies in CEd(d)(H) meaning that the full scalar coset is in accord with the
expectations of [12]. However, VA

B in general depends on the coordinates of M/(Gsym/H).
In cases when this quotient turns out to be trivial (in particular for cases where Gsym acts
homogeneously on M), then VA

B will only depend on the external coordinates x and we
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will be able to use MAB as the scalar matrix for a lower-dimensional theory. We then also
restrict the external metric ansatz (2.20) such that ḡµν = ḡµν(x) only. Furthermore, if the
generalised H-structure branches the 8s representation leaving k singlets, we expect to recover
a supersymmetric truncation with N = k supersymmetry [12].

The equations of motion for the dimensionally reduced theory obtained by this finite
consistent truncation then follow as in appendix A.3.

Note that additional consistency requirements will appear when considering the field
strengths of the gauge fields. Let’s focus for simplicity on the case of most interest to the
applications in this paper, which is the E7(7) ExFT [9, 18]. When we expand the field strength
Fµν

M = ∆UM
AFµν

A of this theory using (2.22),1 we find a very specific combination of
fluxes multiplying the two-forms:

Fµν
A = KI

A(2∂[µAν]
I + XJK

IA[µ
JAν]

K) + (XAα − 24tαABθB)Ja
αBµνa (2.25)

Given that Ja
α is valued in CE7(7)(H), we have to require that the projection of XAα −

24tαABθB to this commutant is H-invariant and constant. Then we obtain Fµν
A = Fµν

IKI
A

with

Fµν
I = 2∂[µAν]

I + XJK
IA[µ

JAν]
K +ΩIJKJ

A(XAB
C − 24PC

B
D

AθD)Ja
C

BBµνa , (2.26)

where ΩIJ ≡ K̃I
AΩABK̃J

B is just the restriction of the E7(7) symplectic invariant to our
truncation.

2.3 Singlets, Kaluza-Klein towers and generalised Kac-Moody algebras

In this subsection, we discuss the connection between the Gsym-singlets S(y) characterised
above and the tower of Gsym-invariant KK modes on M. We will show that the formula (2.12),
expressing the singlets in terms of the coset element L ∈ Gsym/H and the CEd(d)(H)-valued
matrix b, can be viewed as capturing a rearrangement of a (possibly infinite) tower of
KK modes.

To discuss this explicitly, we will focus on two instructive examples based on the consistent
truncation of 11-dimensional supergravity on the round S7, for which Ggauging = SO(8). This
is known to be described using a generalised parallelisation in E7(7) generalised geometry
whose details we will review in section 3.1.

For the moment, we just need the basic fact that we can define the sphere S7 ⊂ R8 in
terms of embedding coordinates µA, which obey δABµAµB = 1 and transform as the 8v of
SO(8). The spherical harmonics on S7 then consist of symmetric traceless combinations
of the µA. We can organise these into KK levels based on the number of powers of µA

appearing. Thus at level 0 we have constant functions on S7, at level one we have the
embedding coordinates µA themselves, at level two we have quadratic powers µAµB, and so
on. Any smooth function f(y) on S7 can be expanded in terms of harmonics as f(y) = fΣYΣ,
where YΣ runs on the infinite set of all the S7 harmonics.

Now let’s take some Gsym ⊆ SO(8). At the Lie algebra level, the Gsym-invariant singlets
we need are sections of C∞(M)⊗ ed(d). Any such a singlet S, can be expanded in terms of

1This field strength involves an additional ‘constrained compensator’ two-form for which the appropriate
ansatz will be [9] BµνM (x, y) = −2∆2(y)UP

B(y)∂M UA
P (y)tα

A
BJa

αBµνa(x).
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harmonics as S = SΣYΣ, where SΣ = SαΣtα ∈ ed(d). The adjoint α can be branched under
SO(8), so S = SαΣYΣtα can always be expressed in terms of fundamental SO(8) indices.
The singlets under Gsym ⊆ SO(8) are obtained by further branching SO(8) under Gsym and
restricting SαΣ to be Gsym invariant tensors. Let us show this with two different examples
leading to two different structures of the KK tower of modes.

SU(4)c symmetry (homogeneous case). Under SU(4)c we have the following branching
of the fundamental representations of SO(8):

8v → 4 + 4̄ , 8c → 6 + 1 + 1 , 8s → 4 + 4̄ . (2.27)

We will not need to explicitly introduce fundamental SU(4) indices. Instead, to construct
singlets we will make use of the existence of the SU(4) invariant tensors, JAB and ΩABCD
which we write carrying 8v indices. These invariants are antisymmetric and defined in the
appendix in equation (C.4). The real and imaginary parts of the rank-four invariant Ω gives
two real invariants, ReΩ and ImΩ, each of which is self-dual.

Using invariant tensors we can systematically construct all SU(4)c invariant singlets
working level by level in the tower of KK modes i.e. the tower of spherical harmonics. In terms
of the E7(7) generators branched under SO(8) as in (B.8), where RAB ∈ 28 is antisymmetric,
SAB ∈ 35v is symmetric and t±ABCD ∈ 35c/s are antisymmetric and self-dual/anti-self-dual,
we find the following.

• Level 0. There are four independent singlets involving no µA:

S1 = ReΩABCD t+
ABCD , S2 = ImΩABCD t+

ABCD ,

S3 = 1
2JAB RAB , S4 = JABJCD t+

ABCD .
(2.28)

• Level 1. There are no possible singlets involving a single µA.

• Level 2. There are seven independent singlets involving two µA:

S5 = 1
2µAµB SAB , S6 = 1

2µAµDJCD SAC ,

S7 = 1
2µCµDJACJBD SAB , S8 = ReΩABCEµEµF t−ABCF ,

S9 = ImΩABCEµEµF t−ABCF , S10 = JABJCDµDµE t−ABCE ,

S11 = 1
2µAµCJBC RAB .

(2.29)

• Higher levels. There are no possible singlets involving more than two µA.

We therefore find a finite number of singlets. Taking appropriate linear combinations, we
find that the singlets span the algebra SL(2)× SU(2, 1) with the same commutation relations
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as the one appearing in appendix C. The correspondence is made as follows:

H0 = 2(S5 + S7) , E0 = S4 + 8S10 , F0 = 9
64(S4 − 8S10) ,

H1 = S5 − S7 , H2 = S3 + 2S11 , E2 = 128
√
2(S6 + S11) , F2 = 1

64
√
2
(S6 − S11)

E11 = S1 + 8S8 , E12 = S2 + 8S9 , F11 = 1
128(S1 − 8S8) , F12 = 1

128(S2 − 8S9) .

(2.30)
Now, recall that our geometrically obtained singlets (2.12) were of the form S = LbL−1. This
expression can be viewed as a similarity transform using the matrix L ∈ SU(4)/H acting
on b. The latter was algebraically was an element of the commutant of H, where H arose
as the stabiliser of the SU(4)c action on S7. Indeed in this case it can be verified that the
stabiliser of S7 under the action of SU(4)c is SU(3), as S7 ∼= SU(4)c/SU(3), and furthermore
SL(2) × SU(2, 1) = CE7(7) (SU(3)). Noting that there is a unique coordinate-independent
realisation of CE7(7) (SU(3)) within E7(7) (see appendix C), it follows that there must exist
a coordinate-dependent matrix L(y) = L(µ(y)) such that both bases are related. Thus,
for any coordinate-dependent b̃(y) in CE7(7) (SU(3)) we have b̃(y) = L(y)bL(y)−1, where b

is coordinate-independent.
In addition, from the general formula (2.12) for singlets we note that in this case

M/(Gsym/H) is trivial and hence the singlets b̃(y) do not have arbitrary coordinate dependence
on this quotient. This implies that we must find a finite number of singlets.

We therefore see that the role of L(y) in this case is to rotate the algebra to a basis
where the algebra of singlets can be expressed in terms of a coordinate-independent algebra.
It is also worth remarking that the L(y) provided in the appendix C in equation (C.7) can
be expressed in terms of level 2 KK modes, in correspondence with the fact that the highest
singlets in the tower for SU(4)c lie at level 2.

This example corresponds to the general case of Gsym acting homogeneously on the
internal manifold M. Whenever such an action exists, it is always true that M ∼= Gsym/H,
where H is the stabiliser of M under the action of Gsym. Hence, in these cases M/(Gsym/H)
will be trivial and the tower of singlets will be finite. The coset matrix L(y) will act as a
change of basis, twisting the algebra of singlets expressed in terms of the global Ed(d) action
carried by b ∈ CEd(d) (H). Furthermore these cases will lead to finite consistent truncations,
and it is in the coordinate-independent basis where we will be able to identify the scalars
of the truncated supergravity as the x-dependent parameters appearing in the expansion
of b in terms of generators.

SO(7)v symmetry (inhomogeneous case). Under SO(7)v we have the following branching
of the fundamental representations of SO(8):

8v → 7 + 1 , 8c → 8 , 8s → 8 . (2.31)

Correspondingly, we further branch under SO(7)v the fundamental 8v indices, A = (i, 8) with
i = 1 , . . . , 7 transforming in the 7 of SO(7)v and the 8 index transforming as a singlet. This
branching carries through for E7(7) generators RAB, SAB, t±ABCD of (B.8).
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The singlets under SO(7)v are then obtained by restricting SαΣ to be an SO(7)v invariant
tensor. In this case, as the action of Gsym is not homogeneous, the embedding coordinate
µ8 is a singlet by itself. Hence any product of µ8 with another singlet will be a singlet as
well. We therefore already see that we will encounter an infinite number of singlets, which
we can arrange in terms of a tower in powers of µ8.

For this reason, consider first all possible singlets which are µ8-independent. The only
SO(7)v invariant tensor is δij and so there are limited possibilities to construct singlets.
The only µ8-independent ones are:

S88 , µiRi8 , µiSi8 , µiµjSij , (2.32)

again terminating at level 2 of the KK tower. These four singlets can be seen as the generators
of the full KK tower of singlets, which is obtained by taking products of (2.32) with arbitrary
powers of µ8. It’s illustrative to write down the first few levels:

Level 0: S88
Level 1: µ8S88 µiRi8 µiSi8
Level 2: (µ8)2S88 µ8µiRi8 µ8µiSi8 µiµjSij

Level 3: (µ8)3S88 (µ8)2µiRi8 (µ8)2µiSi8 µ8µiµjSij

...

(2.33)

Now, it is easy to check that the generators (2.32) close into an algebra with non-constant
structure coefficients. We expect that this algebra should be linked to the imposition of
a generalised SO(6)v structure. By considering coordinate-dependent combinations of the
generators, we can construct the expected commutant CE7(7) (SO(6)v) = SO(1, 1) × SL(2).
This is achieved using the following combinations:

H0 =2
(

S88+
1

1−(µ8)2 µiµjSij

)
, (2.34)

H1 =S88−
1

1−(µ8)2 µiµjSij , E1=
√

2
1−(µ8)2 µi (Si8−Ri8) , F1=−

√
2

1−(µ8)2 µi (Si8+Ri8),

(2.35)

where (2.34) generates the SO(1, 1) factor and (2.35) generates the SL(2) one. Their com-
mutation relations are the same as the corresponding ones for the generators appearing
in appendix D.

These four generators can be used as a different basis to serve as the generators of the
KK tower. Note that their µ8-dependent coefficients can be Taylor expanded, so that they
involve infinite sums of massive KK modes. As there is a unique coordinate-independent
realisation of SO(1, 1)× SL(2) as the commutant of SO(6)v within E7(7) (see appendix D),
there must exist a coordinate-dependent matrix L(µ) such that both basis are related.

Thus, suppose that b̃(y) ≡ b̃(µ(y)) is an arbitrary linear combination (with constant
coefficients) of the generators in (2.34) and (2.35). We must have b̃(y) = L(y)bL(y)−1,
where b is coordinate independent. The most general singlet then takes into account the
µ8 dependence and can be expanded in the form

S = L(y)b(µ8)L(y)−1 , b(µ8) =
∑
n,a

ϕn,a(x)(µ8)nba , (2.36)
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where the index a runs on the Lie algebra of CE7(7) (SO(6)v). Now, in the cases where
Gsym acts homogeneously, we could view L(y) as a rotation of the algebra of singlets to a
coordinate-independent basis. In the present inhomogeneous cases, L(y) is used to transform
to the generators b(µ8) which form a Lie algebra with non-constant structure coefficients.
Only for the level 0 generators, which are the ba above, do we get a standard Lie algebra
with constant coefficients.

What are we seeing here can be recast in the language of Kac-Moody algebras. One
way to construct such an algebra (we only consider vanishing central extension) is to start
with some Lie algebra with generators ba and structure constants fab

c. Then introduce some
variable u (which for the usual loop algebra construction we take to be u = eiθ with θ ∈ S1)
and consider the algebra generated by all tensors products un ⊗ ba. This has the form

[unba, umbb] = un+mfab
cbc . (2.37)

We can refer to the generators un ⊗ ba as the level n generators, and the original Lie algebra
occurs at level 0.

Our singlet construction gives rise in this case to such an algebra with u = µ8. The
generators ba correspond to those obtained by factoring the generators of the singlet tower
(i.e. (2.34) and (2.35)) using the matrix L(y) to obtain a coordinate independent basis.
Moreover, considering the sphere parametrisation (D.4) we can see that µ8 = cos(θ7) can
be expanded in terms of exponentials of the kind einθ7 , so that the connection with the
loop algebra definition through S1 harmonics is direct. The KK tower expanded in powers
of µ8 can be re-summed just by requiring that b(θ7) in (2.12) is an arbitrary function in
C∞ (S1) ⊗ CE7(7) (SO(6)v). Note that in this case M/(Gsym/H) is one dimensional and
compact, so it can only be S1. It is worth remarking that for inhomogeneous cases, L(y)
contains a sum over an infinite number of KK modes, as it can be seen for the example
worked out here if (D.3) is expanded in terms of SO(8) harmonics.

Generalised Kac-Moody algebras. The two examples discussed above can be summarised
in a more general framework. As shown in the previous section, in general singlets are
characterised by a coset L(y) and CEd(d)(H)-valued functions on M/(Gsym/H) we denote
by b(y) (see (2.12)). These CEd(d)(H)-valued functions b(y) can be expanded in terms of
harmonics of M/(Gsym/H), say {gI(y)}, and generators of CEd(d)(H), say {ba}. Then the
commutation relations give a generalised Kac-Moody algebra of the type studied in [19, 20],
and can be written as:

[gI(y)ba , gJ (y)bb] = fIJ
Kfab

c gK(y)bc , (2.38)

where fIJ
KgK(y) accounts for the harmonic expansion of the product of two harmonics. From

the level zero harmonic we recover the Lie algebra used to construct the Kac-Moody algebra.
The role of L(y) is then to make this structure manifest at the level of the infinitesimal
singlets which one has to exponentiate to retain all the Gsym invariant KK modes. For
homogeneous actions on M the manifold M/(Gsym/H) is trivial and one recovers a honest
Lie algebra, since the only functions that can be defined over the set M/(Gsym/H) containing
just one element are constant functions.
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3 Infinite and finite truncations on the seven-sphere

3.1 Generalised parallelisations on S7

11-dimensional supergravity admits a consistent truncation on S7 to the SO(8) gauged
maximal supergravity in four dimensions. This can be described as a generalised parallelisation
in E7(7) exceptional geometry. Let’s first introduce some geometric notions associated with
the round S7. The metric g̊ij in some coordinates yi is defined by

ds2 = g̊ijdyidyj = R2δABdµAdµB , (3.1)

where µA, A = 1, . . . , 8, are embedding coordinates in R8, defining the unit sphere via
δABµAµB = 1. There is a flux of the seven-form field strength with F(7) = 6

Rvol̊g, where
the volume form is

vol̊g = R7

7! ϵA1...A8µA1dµA2 ∧ · · · ∧ dµA8 . (3.2)

The sphere admits conformal Killing vectors kA such that LkA g̊ij = −2µAg̊ij and LkAµB =
δAB−µAµB. In terms of these, the Killing vectors and the SO(8) Lie algebra they generate are:

vAB = R−1(µAkB − µBkA) , LvABvCD = 4R−1δA][CvD][B . (3.3)

In E7(7) exceptional geometry, the generalised tangent bundle is E ≈ TM⊕Λ2T ∗M⊕Λ5T ∗M⊕
(T ∗M ⊗ Λ7T ∗M), so that a generalised vector V M sits in the fundamental representation
R1 = 56 of E7(7). This decomposes under SL(8) into the 28⊕ 28, thus V M = (V MN , VMN ),
where M = 1, . . . , 8 and the pairs of indices MN are antisymmetric.

The generalised parallelisation on S7 was worked out in [8]. The generalised metric
is decomposed as

MMN = ŮM
AδABŮN

B , (3.4)

in terms of a globally defined generalised vielbein which decomposes in terms of SL(8)
representations as

ŮM
A =

(
2Ů[M

AŮN ]
B 0

0 2ŮM
[AŮN

B]

)
, (3.5)

where, letting M = (i, 8), we have SL(8) matrices

ŮM
A = g̊

1
8

(
Rg̊−1/4∂iµ

A

−g̊1/4µA + Rg̊−1/4Ci∂iµ
A

)
, ŮM

A = g̊−
1
8

(
R−1g̊1/4ki

A + g̊−1/4CiµA
−g̊−1/4µA

)
,

(3.6)

which are inverse of each other, i.e. ŮM
AŮN

A = δNM. Here we use a six-form gauge
potential Ci1...i6 for the seven-form field strength, and rewrite this as a vector density
Ci = 1

6!ϵ
ii1...i6Ci1...i6 , such that ∂iC

i = 6
R g̊1/2. In addition, the scalar density ∆ is given by

∆ = g̊1/4. Letting ŮA = ∆ŮA, the non-trivial part of the algebra is:

LŮAB
ŮCD = R−14δA][CŮD][B , LŮAB

ŮCD = R−14δ
[C
[AδB]EŮD]E , (3.7)
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realising the SO(8) gauging with

XAB,CD
EF = −XAB

EF
CD = −8R−1δ

[E
[AδB][Cδ

F ]
D] . (3.8)

We see that M = S7 is an example of a manifold admitting a generalised parallelisation
leading to a consistent truncation, where Ggauging = SO(8) corresponds to the isometries
of the background.

We can find generalised parallelisations preserving some symmetry Gsym ⊆ SO(8) ⊂
SL(8) ⊂ E7(7) following the general logic of section 2.2. For a Lie algebra generator a ∈ Gsym,
its embedding is explicitly given by:

a = aAXA
αtα = 1

2aABXAB
C
DtC

D = R−1aABt[AB] (3.9)

where we used the explicit form of the SO(8) embedding tensor XAB
C
D = 2R−1δC[AδB]D as

well as the SL(8) decomposition of the adjoint, tα = (tAB, tABCD). The generators tA
B give

the 63 of SL(8). Lowering the second index with δAB we have RAB = 2t[AB] giving the 28 of
SO(8) and SAB = 2t(AB) giving the 35, as in (B.8). We then seek to construct the singlets
obeying the equation (2.9), which can be written as

1
2aABLvABS = 1

2aAB[RAB, S] (3.10)

taking the Killing vectors to correspond to those of the unit sphere to eliminate an overall
factor of R−1. The singlets solving this equation will have the form of (2.12) and the
corresponding generalised parallelisations compatible with Gsym can be defined by (2.17)
(note ∆ is unchanged).

3.2 Example: finite truncation with Gsym = SU(4)

For our first example, we choose Gsym = SU(4)c. We already discussed some aspects
of this case in section 2.3. There we noted that SU(4)c acts homogeneously on S7, so
that S7 ∼= SU(4)/SU(3) as an homogeneous space, the stabiliser of each point of S7 being
isomorphic to SU(3). Hence the group H, that becomes the generalised structure group, is
H = SU(3). The generators b then lie in CE7(7) (SU(3)) = SL(2)×SU(2, 1) and are independent
of the sphere coordinates. Accordingly, all fields that will appear in the consistent truncation
depend only on the four-dimensional coordinates x.

Applying our construction in this case leads to a consistent truncation first worked out
in [2] as a reduction of M-theory on a 7-dimensional Sasaki-Einstein manifold, SE7. This
consistent truncation led to a four-dimensional N = 2 supergravity with five scalars, two
vector fields and a two-form, which can be dualised into another scalar.

Our approach will give an explicit embedding of this N = 2 consistent truncation into
the generalised parallelisation on the seven-sphere. Note that by starting with the duality-
covariant E7(7) ExFT we will in fact retain six scalars, four vectors and two two-forms: the
equations of motion and Bianchi identities of ExFT will encode the possible electromagnetic
duality relations between them (for instance, as usual two of the vectors can be chosen to
be electric and the other two magnetic).
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Gsym = SU(4)c H = SU(3)
Parallelisation UA = ŮB(L−1)A

B

L ∈ SU(4)c/SU(3) (C.5) and (C.7)
Scalars CE7(7)(SU(3)) = SL(2)× SU(2, 1)

V(x) ∈ SL(2)×SU(2,1)
SO(2)×SU(2)×U(1) (C.12)

ϕI = (U, V, h, a, χ1, χ2)
Vectors 4 invariant KI (C.14)

Aµ = KIAµ
I

2-forms 11 invariant Ja Generators of SL(2)× SU(2, 1)
Bµν = JaBµνa Only 2 appear

Table 1. Ingredients for the SU(4)c symmetric deformation of the S7 generalised parallelisation. This
leads to a finite-mode consistent truncation.

The original consistent truncation of [2] was extended in [21] by introducing a sign
parameter ϵ = ±1 appearing in the ansatz for the four-form flux, and corresponding to
skew-whiffing (see [22]) of the underlying AdS4 × SE7 solutions. More precisely, we explain
in this section how requiring Gsym = SU(4)c leads to the truncation with ϵ = −1 (with
action given by equation (2.6) of [21]). The truncation with ϵ = +1 corresponds to the case
Gsym = SU(4)s, which can be worked out analogously.

The ingredients we use for this embedding, and the field content involved, are summarised
in table 1. Many further explicit details can be found in appendix C.

We start by constructing the Gsym = SU(4)c singlets. The group SU(4)c corresponds to
the SU(4) ⊂ SO(8) which branches the three fundamental representations of SO(8) according
to (2.27). The generators on the 8v representation are given in equation (C.1).

In accordance with the KK analysis of section 2.3, we find that all the singlets are of the
form (2.15) with L(y) parametrising the coset SU(4)/SU(3) ∼= S7 and V(x) being generated
by CE7(7) (SU(3)) = SL(2)× SU(2, 1). The simplicity of the computations heavily relies on
the form of L(y) which, for this particular case, takes care of all the internal coordinate
dependencies. We provide a simple parametrisation for L(y) in terms of ‘Euler angles’ in
equations (C.5) and (C.7), the latter being its 56 dimensional representation constructed
from the former.

In appendix C, we provide the explicit generators of the generalised SU(3) structure as
well as its commutant. To perform the consistent truncation, we also need to introduce the
SU(3) invariant generalised vectors KI , I = 1, 2, 3, 4, defined in (C.14).

The generalised parallelisation defined by our choice (C.7) of L(y) will have non-constant
generalised fluxes defined by (2.19). Crucially, we find by explicit computation that though
the full intrinsic torsion XAB

C is not constant, the components XIB
C of the intrinsic torsion

which will be singled out by the SU(3) invariant gauge fields are constant and lie in the
commutant of SU(3). Furthermore, we find that θI = 0 even though θA is not zero, so
the truncated theory does not gauge the trombone symmetry. However, the non-vanishing
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components of the full trombone do play a role in the effective potential. The upshot is
that we indeed meet the general conditions to have a finite consistent truncation, with
generalised SU(3) structure.

Now let us discuss how we see the field content of this consistent truncation. The
coset V(x) will parametrise six scalar fields. Its explicit form is given in (C.12), where we
denote the scalar fields as

ϕI = (U , V , h , a , χ = χ1 + iχ2) . (3.11)

The vector fields and two-forms are expanded following the ansatz (2.22). We have four
vector fields Aµ

I , however the field strengths of these four vectors will be related by the
four-dimensional self-duality constraint, and below we will pick two to be regarded as the
electric vector fields that appear in the dynamics. Computing explicitly, we find that while
the gaugings XIA

B are non-zero in general, the combination XIJ
K from (2.24) vanishes

such that the vector fields generate an abelian gauge algebra. Note that even though the
lower dimensional structure coefficients X are vanishing, we will find non-vanishing covariant
derivatives in the scalars, so the gauging cannot be fully characterised in terms of XIJ

K .
The field strengths of the one-forms include contributions from the two-forms, which in

E7(7) ExFT are Lie algebra valued. The adjoint valued SU(3) invariants Ja correspond to the
generators of CE7(7)(SU(3)), given in (C.10) and (C.11). From (2.25), these appear in the field
strength projected by a particular combination of the generalised fluxes, (XAα−24tαABθB)Ja

α,
which here as required turns out to be constant and SU(3) invariant. Explicitly we find
that the ensuing field strength (2.26) involves the matrix

ΩIJKJ
A(XAB

C − 24PC
B

D
AθD)Ja

C
B =


0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 24

√
6

R 0
0 0 0 0 −96

R 0 0 0 0 −72
√

2
R 0

 . (3.12)

This projects out all except two of the two-forms. After the redefinitions B(10) →
√

2
24 B(1) ,

B(5) → 1
96B(2) of the two-forms, the field strengths are:

F I = dAI + BI =


dA(1)

dA(2)

dA(3) + 2
√

3B(1)
R

dA(4) − B(2)
R − 6B(1)

R .

 (3.13)

We have to impose the self-duality condition, (A.38). In components, this requires making a
choice of which two vectors are electric and which are magnetic. To guide us in this choice,
we now look in detail at the equations of motion and how they compare to those of [2, 21].

Einstein equation. Let us first discuss the different terms appearing in the Einstein equa-
tion (A.32). We can immediately note the Ricci tensor and scalar are their genuine four-
dimensional selves, as the trombone θI is zero. The effective potential (A.33) is determined
in terms of the full non-constant embedding tensor and trombone of the deformed generalised
parallelisation. This is a function which geometrically is a singlet of SU(4)c and so obeys
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1
2aABLvABVeff = 0 for all the SU(4)c generators. This requires that it be constant. Intuitively,
this can be shown from the fact that the action of SU(4)c on S7 is homogeneous, so there
are no fixed points, nor combinations of embedding coordinates which are annihilated by
1
2aABLvAB . Explicitly, evaluating the expression of the effective potential (A.33) in terms
of the deformed generalised parallelisation, we find

Veff = 1
R2

(
24h2e−14U−V + 24|χ|2e−12U−3V + 6e−10U+V − 48e−8U−V

+ 18
(
h2 + |χ|2 − 1

)2
e−18U−3V

)
.

(3.14)

For R = 1, this matches the potential found in [2, 21].
We stress that each of the individual terms appearing in the effective potential (A.33)

depends on the internal coordinates, even those involving the trombone θA, and it is only the
full effective potential what turns out to be constant. This highlights the fact that even though
there is no gauging of the trombone symmetry in the N = 2 supergravity arising from the
truncation, the D = 11 trombone-like terms θA are essential for the potential to be constant.

Next we can consider the terms in the Einstein equation (A.32) involving the scalars
and the gauge fields. After redefining A(1) → −

√
3A(1), we find:

1
4α

DµMABDνMAB = GIJ DµϕIDνϕJ (3.15)

where the metric on the scalar field space is

GIJ =

−24 −3 0 0 0 0
−3 −3

2 0 0 0 0
0 0 −3

2e−2(2U+V ) 0 0 0
0 0 0 −1

2e−12U 3
4χ2e−12U −3

4χ1e−12U

0 0 0 3
4χ2e−12U −3

8e−12U
(
3χ2

2 + 4e6U
)

9
8χ1χ2e−12U

0 0 0 −3
4χ1e−12U 9

8χ1χ2e−12U −3
8e−12U

(
3χ2

1 + 4e6U
)


,

(3.16)

and the covariant derivatives are defined as:

DϕI =
(

dU, dV, dh, da + 6
R

(
A(1) + A(2)

)
, dχ1 +

4
R

χ2A(2), dχ2 −
4
R

χ1A(2)
)

. (3.17)

This expression characterises the kinetic terms of the scalars, as well as their coupling to the
SU(3) invariant vectors. The term 1

4αDµMABDµMAB = GIJ DµϕIDµϕJ exactly matches the
kinetic term of the scalars and their coupling to the vector fields appearing in the lagrangian
(2.6) of [21] for the choice ϵ = −1 under the identifications:

A(1) = B̃there
1 , A(2) = Athere

1 , (3.18)

in terms of the one forms B̃1 and A1 of [2, 21]. Consequently, as the contributions involving
scalar fields in the Einstein equation (A.32) coincide with what one obtains from the variation
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of the non-linear sigma model specified by GIJ DµϕIDµϕJ , we find that they match what one
would obtain from the variation of the Lagrangian (2.6) of [21]. Note that these identifications
have fixed A(1) and A(2) as the vectors that must be chosen to be the electric ones in order
to obtain the truncation in the same form as in [21].

Referring to (3.13), we see that F (1) and F (2) are abelian and have no contribution from
the two-forms, which implies the identifications:

F (1) = H̃there
2 , F (2) = F there

2 , (3.19)

in terms of the field strengths defined in [2, 21].
Consider now the self-duality condition (A.38). This involves the following projection of

the scalar matrix MIJ = KI
AMABKJ

B . Using the parametrisation (C.12) and the definition
of the invariant vectors (C.14), we obtain

e6U+3V MIJ =
3h2 + e4U+2V

√
3h2

(
h2 + e4U+2V

)
h
(
3h2 + 2e4U+2V

) √
3h

√
3h2

(
h2 + e4U+2V

) (
h2 + e4U+2V

)3 √
3h
(
h2 + e4U+2V

)2
h3

h
(
3h2 + 2e4U+2V

) √
3h
(
h2 + e4U+2V

)2
3h4 + 4h2e4U+2V + e8U+4V

√
3h2

√
3h h3 √

3h2 1

 .
(3.20)

This is simply an SL(2)/SO(2) coset scalar matrix in the four-dimensional representation.
In terms of the N = 2 consistent truncation, this matrix codifies the coupling between the
vectors and the scalars in the vector multiplet.

We now use the self-duality condition to express F (3) and F (4) in terms of F (1) and
F (2). The explicit solution reads:

F (3) = 1
4h2 + e4U+2V

(
2
√
3hF (1) −

√
3h
(
e4U+2V + 2h2

)
F (2) −

√
3e2U+V ∗ (F (1) + h2F (2))

)
,

F (4) = 1
4h2 + e4U+2V

(
3h
(
e4U+2V + 2h2

)
F (1) + 3h2e2U+V ∗ F (1)

+
(
e4U+2V + h2

) (
2h2F (2) + e2U+V

(
e4U+2V + 3h2

)
∗ F (2)

))
.

(3.21)

A tedious but straightforward computation shows that upon the imposition of the solution of
the self-duality equation (3.21), the contribution of the vector fields to the Einstein equation
reproduces the corresponding contributions of the vector fields to Einstein’s equation directly
derived from the variation of (2.6) of [21]. All the contributions worked out above show
that upon the truncation ansatz of the beginning of the section (A.32) reproduces Einstein’s
equation of motion derived from the variation of (2.6) of [21].

One-form equation. We now turn to the one-form equation of motion (A.37), which for E7(7)
and with XIJ

K = 0 = θI reads

0 = |ḡ|−1/2∂ν(|ḡ|1/2MIJF νµJ) + 1
12MCDDµMBD

(
XIC

B − 24KI
BθC

)
, (3.22)
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We evaluate the second term using the fact that MCDDµMBD is CE7(7) (SU(3))-valued: it
is the same operator that appears with the two-form contributions to the field strength of
the one-forms. Explicitly, one obtains:

1
12MCDDµMBD

(
XIC

B − 24KI
BθC

)
=


2
√
3 e−12U

R

(
Da − 3i

4 (χ∗Dχ − χDχ∗)
)

6 e−12U

R

((
|χ|2 − 1

) (
Da − 3i

4 (χ∗Dχ − χDχ∗)
)
− ie6U (χ∗Dχ − χDχ∗)

)
0
0


, (3.23)

Upon the substitution (3.21), we find:

MIJF J =
√
3h∗F (2)−

√
3

4h2+e4U+2V

[
e2U+V

(
F (1)+h2F (2))+h

(
2∗
(
F (1)+h2F (2)))]

−3h∗F (1)+e6U+3V F (2)−2h3∗F (2)+ 3h2

4h2+e4U+2V

[
e2U+V

(
F (1)+h2F (2))+2h∗

(
F (1)+h2F (2))]

−
√
3∗F (1)

∗F (2)

 .

(3.24)

∗d
(
MIJ ∗F J

)
=− 1√

|g|
∂ν

(√
|g|MIJF νµJ

)
gµρdxρ . (3.25)

It follows immediately from this that the final two components of (3.22) are just the Bianchi
identities of the electric vectors: dF (1) = dF (2) = 0. It is then straightforward, albeit
tedious, to show that the remaining two equations of motion for the vector fields coincide
with those of [21].

At this point we can use the one-form equations of motion together with the self-
duality condition to find duality relations between the two-forms and scalar fields. From
the definition of the field strengths (3.13), since the field strengths are abelian, we can
compute their Bianchi identities just by taking an exterior derivative dF I = dBI , where
BI = (0, 0, 2

√
3B(1)/R,−B(2) − 6B(1)/R). Consequently, applying ∗d to the self-duality

condition (A.38) we obtain:

∗dBI = ΩIJ 1√
|g|

∂ν

(√
|g|MJKF νµK

)
gµρdxρ , (3.26)

so we can use the one-form field equation (3.22) to find:

∗dBI = − 1
12Ω

IJMCDDµMBD

(
XJC

B − 24KJ
BθC

)
dxµ

=



0
0

2
√
3 e−12U

R

(
Da − 3i

4 (χ∗Dχ − χDχ∗)
)

6 e−12U

R (
(
|χ|2 − 1

) (
Da − 3i

4 (χ∗Dχ − χDχ∗)
)
− ie6U (χ∗Dχ − χDχ∗))


.

(3.27)

We see from this that dB(1) = Hthere
3 gives the three-form field defined in (2.7) of [21].
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Scalar equation. Finally, the scalar equation of motion is reproduced by (A.35). In particular,
if we demand the scalars to take constant values, it takes the form VAB = 0 , which reproduces
the extremisation of the effective potential (3.14). The contribution of all the components of
the fluxes is crucial to obtain this result, in the same way it was crucial to fully determine
the effective potential (3.14).

3.3 Example: finite and infinite truncations with Gsym = SO(7)

For our second example, we take Gsym = SO(7). There are three inequivalent embeddings
of SO(7) ⊂ SO(8), due to triality. Each of these embeddings branches only one of the three
eight-dimensional representations of SO(8) to the 7 + 1 of SO(7), with the other two being
irreducible. We will denote these three embeddings by SO(7)v, SO(7)s and SO(7)c, where the
subindex indicates which 8-dimensional representation of SO(8) is branched to the 7 + 1. In
what follows we discuss these three cases, two of them leading to a consistent truncation first
worked out in [2] and the remaining one going beyond a standard finite consistent truncation
and providing an example of an infinite consistent truncation.

The homogeneous cases: Gsym = SO(7)c,s. Let’s first discuss the case Gsym = SO(7)c

symmetry. The group SO(7)c acts homogeneously on S7, as S7 ∼= SO(7)c/G2. This results in
M/(Gsym/H) being trivial, which implies that, as in the SU(4)c case, V is independent of
internal coordinates. Moreover, L(y) is given by the coset SO(7)c/G2. Instead of working
out this example explicitly from the beginning, we note that by means of the chain of
isomorphisms SU(4)c/SU(3) ∼= S7 ∼= SO(7)c/G2 we can directly study SO(7)c symmetric
configurations as a restriction of the SU(4)c symmetric ones, the only step required being the
proper truncation of the field content with respect to the generalised G2 structure imposed
by the weak G2 truncation, exactly along the lines of [2]. In terms of the scalar fields, we
find that the identifications:

U = V , χ2 = 2√
3

h , χ1 = 0 , a = 0 , (3.28)

guarantee that V(x) lies in CEd(d)(G2). Moreover, there are no G2 invariant vector fields,
so the resulting N = 1 supergravity does not have any vector fields. It is straightforward
to check that starting from the SU(4)c symmetric case of the previous subsection, these
identifications lead to the weak G2 supergravity of [2]. The case Gsym = SO(7)s similarly
follows from the analogous Gsym = SU(4)s case.

The inhomogeneous case: Gsym = SO(7)v. As we discussed in section 2.3, the action
of SO(7)v on S7 is not homogeneous. The singlet solution again has the form (2.15). The
coset element is L(y) ∈ SO(7)v/SO(6)v, we have V = e−b where algebraically b lies in
CEd(d)(SO(6)) and may depend both on the external coordinates x as well as the space
SO(7)/SO(6) which is not trivial.

To evaluate the equations of motion for this case, it’s convenient to use the following
form of the deformed generalised parallelisation:

MMN = EM
A(x, y)EM

B(x, y)δAB , EA
M = ŮM

CLC
B(y)VB

A(x, y) (3.29)
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Gsym = SO(7)v H = SO(6)v

Parallelisation UA = ŮB(L−1)A
B

L ∈ SO(7)v/SO(6)v (D.3)
Scalars CE7(7)(SO(6)v) = SL(2)× SO(1, 1)

V(x, θ7) ∈ SL(2)×SO(1,1)
SO(2) (D.7)

Vectors 2 invariant KI (D.9)
Aµ = KIAµ

I

2-forms 4 invariant Ja Generators of SL(2)× SO(1, 1)
Bµν = JaBµνa

Table 2. Ingredients for the SO(7)v symmetric deformation of the S7 generalised parallelisation.
This leads to an infinite-mode consistent truncation.

and to use the equations of motion as presented in appendix A.2 (with M̄AB = δAB). The
non-trivial internal coordinate dependence of VB

A means that this model gives rise to an
infinite consistent truncation. For instance, if we compute the effective potential (A.16) —
assuming here the four-dimensional external metric is independent of θ7 — we find

Veff = e−3ϕ(θ7)

2R2

(
4χ(θ7)φ′(θ7) + φ′(θ7)2 + 12 cot(θ7)φ′(θ7)

+ e2φ(θ7)
(
χ′(θ7)− χ(θ7)2 − 6χ(θ7) cot(θ7) + 5

)2
− sinh(2φ(θ7))

+ cosh(2φ(θ7)) + 2χ′(θ7) + 2χ(θ7)2 + 12χ(θ7) cot(θ7)− 6ϕ′′(θ7)
+ 12ϕ′(θ7)2 − 60 cot(θ7)ϕ′(θ7)− 60 (χ(θ7) cot(θ7)− 1)2 eφ(θ7)+2ϕ(θ7)

− 60 cot2(θ7)e2ϕ(θ7)−φ(θ7) + 60 csc2(θ7)− 74
)

.

(3.30)

This potential (3.30) still depends on θ7, which is a coordinate on S7 defined through (D.4).
We can understand this feature as follows. For homogeneous cases, the branching of the

8v of SO(8) under Gsym does not provide singlets (nor does any symmetrised tensor product
(8v ⊗ 8v ⊗ . . .)s). This implies that none of the embedding coordinates of the sphere, which
span the 8v of SO(8), can appear in the effective potential, as it must be a singlet under Gsym.
However, when the action of Gsym is inhomogeneous, there is at least one fixed point in the
sphere under the action of Gsym. This fixed point is a singlet of Gsym and therefore it can
appear in the potential. In the current example, using the parametrisation (D.4), we find that
y8 = cos(θ7) is a singlet of SO(7)v. More generally, any function f obeying 1

2aABLvABf = 0
for all the SO(7)v generators is a singlet, which for this parametrisation allows f = f(θ7).

We should then consider the remaining fields in this infinite-mode consistent truncation.
For instance, this configuration has two invariant vectors, arising as the two SO(6)v singlets in
the 56 of E7(7). These vector fields as well as the external metric should in principle be allowed
to depend on θ7, and the equations of motion of section A.2 used to search for solutions.
However, as a preliminary analysis of this example of an infinite consistent truncation, we can
search for ‘vacuum’ solutions, for which the gauge fields vanish, the metric depends only on
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the four-dimensional external coordinates, and the scalars depend only on θ7 and are constant
with respect to the external spacetime. Then all we have to solve are the Einstein equation
of the form 0 = Rµν(ḡ) − 1

2 ḡµν (R(ḡ)− Veff) together with the scalar field equation (A.24)
which reduces with these assumptions to the vanishing of VAB of (A.17). This leads to only
three independent equations which we record in the appendix as (D.10), (D.11) and (D.12).

It can be checked that for constant scalar fields these equations are satisfied for the
values e2φ = e4ϕ = 5, χ = 0, for which the potential evaluates to Veff = −8·53/4

R2 , recovering in
this language the SO(7)v solution of [23] in the conventions of [24]. This result has an easy
underlying explanation. The values of scalars leading to the solution enhance the SO(6)v-
structure to a SO(7)v-structure, and hence V(x) commutes with SO(7)v. Consequently, it
follows that L(y)V(x) = V(x)L(y), so that the L(y) deformation becomes trivial and we are
back in the usual case of a finite consistent truncation to maximal supergravity.

It would be interesting to scan for numerical solutions of (D.10)–(D.12) involving θ7-
dependent scalars. Genuine vacuum solutions with AdS (or Minkowski) four-dimensional
spacetime would require that the scalars give a constant Veff in the Einstein equation, which
is far from guaranteed. More generally, one could consider an appropriate ansatz involving a
θ7-dependent four-dimensional spacetime and look for solutions of this form, which would
still be solutions of the full 11-dimensional supergravity.

4 Discussion

Let us recap. We start with a background M which admits a generalised parallelisation,
with generalised metric factorising MMN (x, y) = ŮM

A(y)ŮN
B(y)M̊AB(x), leading to a

consistent truncation with gauge group Ggauging. We assume that M̊AB is invariant under
Ggauging, such that Ggauging corresponds to isometries of M. We select some subgroup
Gsym ⊆ Ggauging ⊂ Ed(d). Singlets under this subgroup are functions valued in the Lie algebra
of the global Ed(d) determined by the parallelisation, and are defined as solutions to the
equation (2.9). Using the action of Gsym on M, we can find solutions of this equation of the
form (2.12). This uses as data i) the orbits on M of Gsym, which are cosets Gsym/H for some
subgroup H, and ii) the commutant of this subgroup H in Ed(d). After exponentiating these
singlets we can build globally defined ‘deformations’ of the original generalised parallelisation,
and use these to define new consistent truncations.

The consistent truncations associated to the corresponding deformed generalised paralleli-
sation retain a finite or infinite set of modes depending on whether the action of Gsym on M is
homogeneous or not. In all cases, the uplifts to the conventional formulation of supergravity
still follow from the usual generalised Scherk–Schwarz prescription [8, 9, 25]. For example, the
uplift of SO(8)-gauged supergravity on S7 to the D = 11 metric takes on the explicit form [25]

dŝ2
11 = ∆−1 ds2

4 + 1
12 ∆2 (tAB)A

C (tCD)B
D M̄AB M̄CD µBµDDµADµC , (4.1)

with warp factor, ∆, and covariant derivatives, D, specified in [25]. Both type of truncations,
finite and infinite, discussed in this paper still uplift as in (4.1), with the scalar matrix of
the form M̄AB = (P−1)A

CδCD(P−1)B
D either µA-independent or dependent, respectively.

In the latter case, the µA dependence of M̄AB is constrained in such a way that Gsym is
contained in the isometry group of (4.1).
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We have presented some examples leading to known finite consistent truncations. The
finite consistent truncation of D = 11 supergravity on the squashed S7 of [14] presented
in [26] was obtained using these methods with Gsym = Sp(2)× Sp(1) in [15, 16]. This finite
truncation on the squashed S7 can be enlarged to a full D = 4 N = 4 supergravity [3]. The
latter can be recovered using our formalism with Gsym = Sp(2), and associated generalised
Sp(1) structure in the language of [12, 13].

More interestingly, we have provided a formalism to obtain consistent truncations to
infinite sets of KK fields, and we have specified the circumstances under which those can be
obtained. We have illustrated this method with a new infinite consistent truncation associated
to the inhomogeneous action of SO(7)v on S7. This example admits further generalisations
for Gsym = SO(d − 1) ⊂ SO(d) ⊂ SL(d) and general d. There is a uniform description
of consistent truncations with Ggauging = SO(d) using a generalised parallelisation of the
sphere Sd−1 in SL(d) generalised geometry [8]. For d = 4 this corresponds to a generalised
parallelisation on S3 using the SL(4) ∼ SO(3, 3) generalised geometric description of the
NSNS sector in 10-dimensional supergravity. For d = 5 this corresponds to the consistent
truncation of 11-dimensional supergravity on S4, using SL(5) exceptional generalised geometry.
For d = 6, this gives the consistent truncation of 10-dimensional type IIB supergravity on
S5, using an SL(6) subgroup of E6(6) generalised geometry [27]. For d = 7, we have the S7

in E7(7) generalised geometry that we have focused on in this paper. In all these cases, the
choice Gsym = SO(d − 1) leads to an inhomogeneous action, an SO(d − 2) structure and a
commutant CSL(d)(SO(d − 2)) = SL(2) × SO(1, 1). The corresponding ‘scalars’ then have
non-trivial internal coordinate dependence. We have for example analysed the equations of
motion following from the d = 4 case and found similar expressions to (D.10) to (D.12).

Another example worth considering would be Gsym = SU(3) in S7, leading to an associated
generalised SU(2)-structure. This would again lead to an infinite consistent truncation with
CE7(7)(SU(2)) = SL(2) × SO(6, 3), and S7 dependence on the corresponding ‘scalars’. The
equations of motion of appendix A.2 particularised to this setup must contain at least two
interesting anti-de Sitter solutions with residual N = 2 supersymmetry and SU(3) × U(1)
bosonic symmetry: those first obtained in [28] and [29]. The former can in fact be obtained
as a solution of the finite truncation associated to the conventional parallelisation on S7,
namely, as a vacuum of SO(8)-gauged supergravity. The solution of [29], however, lies outside
the gauged supergravity truncation and has naturally associated an infinite-dimensional
truncation of the type we have described in this paper. While the solution of [29] has already
been briefly described within EGG [30], it would be very interesting to recover it within our
formalism, in order to open up scope for further developments.

The existence of these already known solutions to our field equations cries for a systematic
search of supergravity solutions using our formalism.
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A Equations of motion for deformed generalised parallelisations

A.1 Supergravity equations of motion from exceptional field theory

The action of supergravity in the full exceptional field theory approach [7, 17] is

S =
∫

dnx dy
√
|g|
(
R̂(g) + 1

4α
DµMMNDµMMN − V (M, g)

− cA

4 MMNFµν
MFµνN + . . .

)
+
∫

LCS .
(A.1)

While we are mostly interested in the case n = 4, described by the E7(7) ExFT [18], we keep
our presentation general where possible. Thus, the dots in (A.1) denote further gauge field
kinetic terms: these are not present for n = 4, and we will ignore them below. The numerical
constant α is that appearing in the generalised Lie derivative (2.1), and for E7(7) is given
by α = 12. The coefficient cA of the kinetic term for the one-form gauge field is equal to
1/2 for E7(7), and is 1 otherwise. This reflects the fact in the E7(7) case, the field strength
of this field is subject to a self-duality constraint imposed by hand:

Fµν
M = −1

2 |g|
1/2ϵµνρσΩMNMNKFρσK . (A.2)

The ‘scalar potential’ is:

V = − 1
4α

MMN ∂MMKL∂NMKL + 1
2M

MN ∂MMKL∂LMNK

− 1
2∂M ln |g|∂NMMN − 1

4M
MN ∂M ln |g|∂N ln |g| − 1

4M
MN ∂M gµν∂N gµν .

(A.3)

Finally there is a Chern-Simons term whose definition is dimension dependent. For E7(7), this
is defined such that the variation equals (A.10), below. The equations of motion following
from varying the ExFT action (A.1) are then as follows.

Einstein equation. Varying (A.1) with respect to gµν we obtain the following Einstein equation:

0 = R̂µν − 1
2gµν

(
R̂[g] + 1

4α
gρσDρMMNDσMMN − cA

4 MMNFρσ
MFρσN

)
+ Vµν + 1

4α
DµMMNDνMMN − cA

2 MMNFµρ
MFνσ

N gρσ ,

(A.4)

where we have collected the following non-manifestly covariant terms involving internal
derivatives:

Vµν ≡ 1
2gµνV (M, g) + 1

2 |g|
−1/2gµν∂M

(
|g|1/2(∂NMMN +MMN ∂N ln |g|)

)
− 1

2 |g|
−1/2∂M (|g|1/2MMN )∂N gµν − 1

2M
MN gµρ∂M gρσ∂N gσν − 1

2M
MN ∂M ∂N gµν .

(A.5)
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The Ricci tensor and scalar are given by the usual expressions

R̂µν = DρΓµν
ρ −DµΓνρ

ρ + Γρλ
ρΓµν

λ − Γνλ
ρΓρµ

λ , R̂ = gµνR̂µν . (A.6)

in terms of the standard Christoffel symbols, where however all derivatives are covariantised
under generalised diffeomorphisms via Dµ = ∂µ − LAµ .

Scalar equation. Varying the action (A.1) with respect to MMN , and taking into account
that M parametrises a coset, we obtain what we refer to as the scalar equation of motion:

0 =MP (MPP
N)

K
QMLQKKL , (A.7a)

KMN = − 1
4α

|g|−1/2Dµ(|g|1/2DµMMN ) + 1
4α

|g|−1/2MMKMNLDµ(|g|1/2DµMKL)

+ cA

2 MMKMNLFµν
KFµν

L + V(MN) , (A.7b)

where we again collect the terms involving bare ∂M derivatives:

VMN = 1
4α

∂MMKL∂NMKL − 1
2∂MMKL∂LMNK

− 1
4α

∂K(MKL[∂LMMN − 2α∂MMLN )

+ 1
4α

MKMMLN ∂P (MP Q∂QMKL − 2αMKQ∂QMLP )

− 1
4α

∂P ln |g|MP Q(∂QMMN − 2α∂MMQN ) + 1
4∂M gµν∂N gµν − 1

2∂M ∂N ln |g| .
(A.8)

Gauge field equation. Finally, varying the action (A.1) with respect to AM
µ gives:

0 = cA|g|−1/2Dν

[
|g|1/2MMNFνµN

]
+ |g|−1/2 δLCS

δAµ
M

− 1
2α

∂MMKLDµMKL + |g|−1/2∂P (|g|1/2MKMDµMP K)

− 1
2gµλ∂M gνρDλgνρ + gµλ∂M gνρDνgρλ + 1

2∂M gµνDν ln |g|

+ gµν∂MDν ln |g|+ ∂MDνgµν .

(A.9)

For E7(7), cA = 1/2, and the Chern-Simons contributions are [18]

|g|−1/2 δLCS
δAµ

M
= −1

4 |g|
−1/2ϵµνρσDνFρσ

NΩNM , (A.10)

which double-up with the first term in (A.9) on using the self-duality condition (A.2).

A.2 Equations of motion for deformed generalised parallelisations

We now rewrite the above equations of motion in a way that is adapted to describe deformations
of generalised parallelisations. We will begin with the following ansatz

gµν(x, y) = ∆2(y)ḡµν(x, y) , MMN (x, y) = EM
A(x, y)M̄ABEN

B(x, y) , (A.11)
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where M̄AB is assumed constant. For MMN , this is completely general and always possible
locally. Similarly, contrary to the conventional ExFT generalised Scherk-Schwarz ansatz [9, 31],
we allow for a possible internal coordinate dependence of the external metric, subject to the
factorisation involving the weighted scalar ∆(y). The above can be viewed as the starting
point for a ‘flux formulation’ of ExFT, for the internal sector see [32, 33] and a version for
the full theory in the SL(5) case see [34].

Treating ∆ as a scalar of weight −ω = 1
n−2 , we define a weighted generalised frame EM

A =
∆EM

A. We then define ‘generalised fluxes’ aka non-constant trombone and embedding tensor
gaugings via the usual ExFT formulae:

LEA∆ = θA∆ , LEAEB = −XAB
CEC , (A.12)

where the embedding tensor ΘAB
C and trombone θA are defined via:

XAB
C = ΘAB

C − δC
BθA + α

n − 2
n − 1P

C
B

D
AθD , (A.13a)

θA = 1
n − 2∆((n − 1)EN

A∂N ln∆− ΩBA
B) , (A.13b)

ΘAB
C = ∆

(
ΩAB

C − αPC
B

D
EΩDA

E + α

n − 1P
C

B
D

AΩED
E
)

, (A.13c)

where ΩAB
C ≡ EM

AEN
B∂M EN

C and PA
B

C
D is the adjoint projector. The former is adjoint

projected: PA
B

C
DΩEC

D = ΩEB
A. The definition (A.13c) of the embedding tensor can

be written as

ΘAB
C = κ(PRΘ)AB

C , DE
F∆ΩDE

F (A.14)

for some projector onto the embedding tensor representation (denoted RΘ here) and a constant
κ. For E7(7) in particular, RΘ = 912 and κ = 7 (see appendix B).

Covariance under generalised diffeomorphisms guarantees that all terms in the equations
of motion will regroup in terms of the above generalised fluxes. This covariance is manifest
for all terms excluding the contributions Vµν and VMN to the Einstein and scalar equations of
motion. After some calculation, the internal contribution Vµν , given in (A.5), to the Einstein
equation (A.4), can be shown to take the form

Vµν = 1
2 ḡµνVeff−M̄AB

(1
4 ∂̂A ln |ḡ| ∂̂B ḡµν + 1

2 ḡµρ∂̂Aḡρσ∂̂B ḡσν + 1
2 ∂̂A∂̂B ḡµν + n − 2

2 θA∂̂B ḡµν

)
,

(A.15)
where we have defined ∂̂A = ∆EM

A∂M , and we have an ‘effective potential’

Veff ≡ 1
2ακ

(M̄ABM̄CDM̄EFΘAC
EΘBD

F + κM̄ABΘAC
DΘBD

C)

+ (n − 2)3

n − 1 M̄ABθAθB + 2(n − 2)M̄AB ∂̂AθB

+ M̄AB
(1
4(∂̂A ln |ḡ|∂̂B ln |ḡ| − ∂̂Aḡµν ∂̂B ḡµν) + ∂̂A∂̂B ln |ḡ|+ (n − 2)θA∂̂B ln |g|

)
.

(A.16)

Indeed, when θA = 0 and ∂̂Aḡµν = 0, this reproduces the form of the scalar potential of
maximal gauged supergravity. (Note that for n = 7, with E4(4) = SL(5), RΘ is a sum
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of two irreducible representations, leading to a slightly different structure.) Meanwhile,
the internal contribution VMN , given in (A.8), to the scalar equation (A.7), factorises as
MP (MPP

N)
K

QMQLVKL = EM
AEN

BVAB with

−VAB = M̄CDM̄E(A|∂̂CΘD|B)
E+α

n(n−2)
(n−1) M̄E(APE

B)
C

F M̄F D∂̂CθD

+(n−2)θCM̄E(AM̄CDΘ|D|B)
E

+ 1
2κ

M̄A′(APA′
B)

C
DM̄DD′(

M̄EF M̄GH(ΘCE
GΘDF

H+ΘEC
GΘF D

H)

+κΘCE
FΘDF

E−M̄EF M̄GHM̄CG′M̄DH′ΘEG
G′ΘF H

H′)
+M̄C(BPC

A)
E

DM̄DF
(
−1
4 ∂̂E ḡµν ∂̂F ḡµν+1

2 ∂̂E ∂̂F ln |ḡ|+1
2

n−2
n−1θE ∂̂F ln |ḡ|

)
+ 1
2α

∂̂C ln |ḡ|M̄CDΘD(A
EM̄B)E . (A.17)

To obtain the full equations of motion, we also need to specify an ansatz for the p-form gauge
fields. We again allow an expansion in terms of p-forms depending both on x and y, so that:

Aµ
M (x, y) = ∆(y)EM

A(x, y)Āµ
A(x, y) , Bµνα(x, y) = ∆2(y)Eα

β(x, y)B̄µνβ(x, y) , (A.18)

and similarly for higher-rank forms if present. For E7(7), the two-form Bµνα is adjoint-valued,
reflecting our use of the index α here, but for other exceptional groups the representations
involved will be different. Note that for E7(7) one also has an additional ‘constrained
compensator’ two-form BµνM , see [18], for which the appropriate ansatz in this case is [9]
BµνM (x, y) = −2∆2(y)EP

B(x, y)∂M EP
A(x, y)tα

A
BB̄µνα(x, y) +∆(y)EM

AB̄µνA(x, y). It can
then easily be checked that

Dµgνρ = ∆2D̄µḡνρ , DµMMN = EM
AEN

BD̄µM̄AB , Fµν
M = ∆EM

AF̄µν
A , (A.19)

where the covariant derivatives are

D̄µḡνρ = ∂µḡνρ − 2Āµ
AθAḡνρ − L̄Āµ

ḡνρ , (A.20)

D̄µM̄AB = 2∂µEP
CEP

(AM̄B)C − 2Āµ
C
(
ΘC(A

DM̄B)D + α
n − 2
n − 1P

D
(A|

E
CθEM̄B)D

)
− L̄Āµ

M̄AB , (A.21)

where L̄Āµ
takes the same form as the usual generalised Lie derivative expressed in terms of

the indices A, B, . . . , partial derivatives ∂̂A, and the barred fields appearing in the expansion in
terms of EM

A. The field strength of Āµ
A is, specialising here to the E7(7) case for definiteness:

F̄µν
A = 2EN

A∂[µ(EN
BĀν]

B) + XBC
AĀ[µ

BĀν]
C + (ΘAα − 16tαABθB)B̄µνα

− L̄Ā[µ
Āν]

A − 12tβAB ∂̂BB̄µνβ − 1
2Ω

ABB̄µνB .
(A.22)

For other groups, the differences will be in the representation structure and coefficients of
the term involving the two-form B̄µνα, while the compensator two-form B̄µνA will be absent.
Then, with external indices raised with ḡµν , we have the following.
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Einstein equation. The Einstein equation (A.4) is:

0 = Rµν(ḡ)−
1
2 ḡµν

(
R(ḡ) + 1

4α
ḡρσD̄ρM̄ABDσM̄AB − cA

4 M̄ABF̄ρσ
AF̄ ρσB − Veff

)
+ 1

4α
D̄µM̄ABD̄νM̄AB − cA

2 M̄ABF̄µρ
AF̄ν

ρB

− M̄AB
(1
4 ∂̂A ln |ḡ| ∂̂B ḡµν + 1

2 ḡµρ∂̂Aḡρσ∂̂B ḡσν + 1
2 ∂̂A∂̂B ḡµν + n − 2

2 θA∂̂B ḡµν

)
,

(A.23)

where Veff is defined in (A.16).

Scalar equation. The scalar equation (A.7) is:

0 = M̄E(APE
B)

C
F M̄F D

(
− 1

2α
|ḡ|−1/2D̄µ(|ḡ|1/2D̄µM̄CD) + 1

2α
M̄GHD̄µM̄CGD̄µM̄DH

+ cA

2 M̄CGM̄DH F̄µν
GF̄ µνH

)
+ VAB ,

(A.24)

where VAB is defined in (A.17).

One-form equation. The one-form equation (A.9) is:

0 = |ḡ|−1/2D̄ν(|ḡ|1/2M̄ABF̄ νµB) + 1
α

M̄CDD̄µM̄BD

(
ΘAC

B − α(n − 2)2

n − 1 δB
A θC

)
− |ḡ|−1/2M̄BC ∂̂C(|ḡ|1/2D̄µM̄AB) + ḡµν ∂̂AD̄ν ln |ḡ|+ ∂̂AD̄ν ḡµν (A.25)

− 1
2 ḡµλ∂̂AḡνρD̄λḡνρ + ḡµλ∂̂AḡνρD̄ν ḡρλ + 1

2 ∂̂AḡµνD̄ν ln |ḡ| .

For the E7(7) case, this is the equation that results after applying the self-duality condition
to combine the terms resulting from the kinetic and Chern-Simons variations. In this case we
also have the self-duality equation which takes an identical form to (A.2), namely

F̄µν
A = −1

2 |ḡ|
1/2ϵµνρσΩABM̄BC F̄ ρσC . (A.26)

The above ansatz can then be adapted to cover the cases of interest in this paper.

A.3 Lower-dimensional equations of motion for finite consistent truncations

A special case of the above construction leads to equations of motion which are those of a
conventional finite consistent truncation to a lower-dimensional theory. In this case we have

EM
A(x, y) = UM

B(y)(V−1)A
B(x) , UM

A(y) ≡ ŮM
B(y)(L−1)A

B(y) , (A.27)

and define the scalar matrix, MAB, of the consistent truncation via

MAB(x) = VA
C(x)M̄CDVB

D(x) , (A.28)

while ḡµν = ḡµν(x) and the gauge fields of the previous section are expanded as2

Āµ
A = VB

AKI
BAµ

I(x) , B̄µνα = Vα
βJa

βBµνa(x) . (A.29)
2In addition now B̄µνA = 0 for the additional compensator two-form.
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These definitions ensure firstly that we can ‘factor out’ the scalar matrix VB
A within the

equations of motion as previously formulated.

Next the expansion of the gauge fields singles out only the components XIA
B defined

in (2.23) of the generalised fluxes XAB
C , which are now defined in terms of UM

A from (A.27)
and ∆. We assume these components XIA

B are constant. Acting on the external metric and
the scalars we will thus have in particular the following covariant derivatives:

Dµḡνρ = ∂µḡνρ − 2Aµ
IθI ḡνρ ,

DµMAB = ∂µMAB − 2Aµ
IXI(A

CMB)C − 2Aµ
IθIMAB ,

(A.30)

as well as

DµFνρ
I = ∂µFνρ

I + Aµ
JXJK

IFνρ
K ,

Dµ(DνMAB) = ∂µ(DνMAB)− 2Aµ
IXI(A

CDνMB)C − 2Aµ
IθIDνMAB .

(A.31)

Einstein equation. Working through the above definitions and logic, the Einstein equa-
tion (A.23) becomes:

0 = Rµν(ḡ)−
1
2 ḡµν

(
R(ḡ) + 1

4α
ḡρσDρMABDσMAB − cA

4 MIJFρσ
IF ρσJ − Veff

)
+ 1

4α
DµMABDνMAB − cA

2 MIJFµρ
IFν

ρJ , (A.32)

Veff ≡ 1
2ακ

(MABMCDMEFΘAC
EΘBD

F + κMABΘAC
DΘBD

C)

+ (n − 2)3

n − 1 MABθAθB + 2(n − 2)MAB ∂̃AθB . (A.33)

Note that the scalar matrix MAB encodes a set of scalar fields ϕI , and we can always write
their contributions to the Einstein equation as

1
4α

DµMABDνMAB = GIJ DµϕIDνϕJ , (A.34)

where GIJ is the scalar metric of the non-linear sigma model given by 1
4α∂µMAB∂µMAB . The

covariant derivatives Dµ express the gaugings arising from the components of the intrinsic
torsion singled out by the vector fields. Here we have not attempted to simplify the form
of Veff and left it written in terms of the Y -dependent Θ and θ of (2.19). The final term
includes a derivative ∂̃A ≡ ∆UM

A∂M . To have a standard dimensional reduction, we require
that Veff does not depend on the internal coordinates.
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Scalar equation. The scalar equation (A.24) becomes:

0 = MI(API
B)

C
EMED

(
− 1

2α
|ḡ|−1/2Dµ(|ḡ|1/2DµMCD) + 1

2α
MF GDµMCF DµMDG

+ cA

2 MCF MDGFµν
F F µνG

)
+ VAB , (A.35)

−VAB = MCDME(A|∂̃CΘD|B)
E + α

n(n − 2)
(n − 1) ME(APE

B)
C

F MDF ∂̃CθD

+ (n − 2)θCME(AMCDΘ|D|B)
E (A.36)

+ 1
2κ

MA′(APA′
B)

C
D′MDD′(

MEF MGH(ΘCE
GΘDF

H +ΘEC
GΘF D

H)

+ κΘCE
FΘDF

E − MEF MGHMCG′MDH′ΘEG
G′ΘF H

H′)
.

It is clear that all the terms in this equation other than VAB are automatically independent
of internal coordinates.

One-form equation. Using the above definitions, and the fact that MCDDµMBD is CEd(d) (H)-
valued, the equations of motion of the one-forms can be shown to be:

0 = |ḡ|−1/2Dν(|ḡ|1/2MIJF νµJ) + 1
α

MCDDµMBD

(
XIC

B − α(n − 2)KI
BθC

)
. (A.37)

This assumes that the consistency conditions discussed between (2.25) and (2.26) holds.
For E7(7), we should also take into account the self-duality condition (A.26). As ΩAB is a
H-invariant tensor, the self-duality condition is projected by a similar argument to that of
MAB, leading to the reduced self-duality condition:

F I = −ΩIJMJK ∗ F K . (A.38)

B Details for E7(7)

The fundamental of E7(7) is R1 = 56 and the adjoint is R2 = 133. Let M, N, . . . denote
fundamental indices, and α, β, . . . denote adjoint indices. Denote the generators in the
fundamental by (tα)M

N . In ExFT, we make use of the adjoint projector defined as [18]

PK
M

L
N = (tα)M

K(tα)N
L = 1

24δK
M δL

N + 1
12δL

M δK
N − 1

24ΩMNΩKL + (tα)MN (tα)KL , (B.1)

where (tα)MN is symmetric. Fundamental indices are raised and lowered with the antisym-
metric invariant ΩMN such that V M = ΩMN VN , VM = V NΩNM , ΩMKΩNK = δM

N , while
adjoint indices are raised and lowered using the Killing form, καβ = (tα)M

N (tβ)N
M . In

defining the embedding tensor, we use the following projector [35]

P912A
α, B

β = 1
7

(
δB

A δα
β − αtα

E
BtβA

E + α

n − 1 tα
A

EtβE
B
)

, (B.2)

such that in fundamental indices

P912AB
C , DE

F = 1
7

(
δD

APC
B

E
F − αPC

B
D

GPE
F

G
A + α

n − 1P
C

B
G

APD
G

E
F

)
, (B.3)
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Acting on Ω•E
F which is already adjoint projected we can replace PE

F
G

H with δE
HδG

F . Hence

P912AB
C , DE

FΩDE
F = 1

7

(
δD

A δC
F δB

E − αPC
B

D
F δE

A + α

n − 1P
C

B
E

AδD
F

)
ΩDE

F = 1
7ΘAB

C .

(B.4)

SL(8) basis. Let A,B = 1, . . . , 8 denote fundamental indices of SL(8). The fundamental
of E7(7) decomposes as V M = (V AB, VAB), where V AB and VAB are antisymmetric. We use
the contraction convention V M WM = 1

2(V ABWAB + VABWAB). The adjoint decomposes
as tα = (tAB, tABCD) and the non-zero components of the generators are, following the
conventions of [36]:

(tAB)CDEF = 4
(

δB[CδEFD]A + 1
8δBAδEFCD

)
= −(tAB)EFCD ,

(tABCD)EFGH = 2δEFGH
ABCD , (tABCD)EFGH = 1

12ϵABCDEFGH .

(B.5)

Then the Killing form has non-vanishing components

κA
B
C
D = 12

(
δBC δDA − 1

8δBAδDC

)
, κABCD,EFGH = 1

12ϵABCDEFGH . (B.6)

We can write the adjoint projector used in ExFT as:

PK
M

L
N = 1

12(tE
F )M

K(tFE)N
L + 1

2ϵE1...E4F1...F4(tE1...E4)M
K(tF1...F4)N

L . (B.7)

SO(8) branching. The SO(8) branching is performed by identifying fundamental SL(8)
indices with 8v indices. One can now raise and lower indices with the SO(8) invariant tensor
δAB. The adjoint of E7(7) branches as: 133 → 28 + 35v + 35c + 35s, with the corresponding
identification of the generators as follows:

RAB = 2t[A
CδB]C , SAB = 2t(A

CδB)C , t±ABCD = 1
24
(
tABCD ± ϵABCDEFGHtEFGH

)
. (B.8)

C Details for the case Gsym = SU(4)

Here we give some details corresponding to the example worked out in section 3.2.
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The coset SU(4)/SU(3). We construct the coset SU(4)/SU(3) following [37]. Consider
the Gell-Mann-like matrices for SU(4):

a(1) =


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 , a(2) =


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , a(3) =


i 0 0 0
0 −i 0 0
0 0 0 0
0 0 0 0

 ,

a(4) =


0 0 i 0
0 0 0 0
i 0 0 0
0 0 0 0

 , a(5) =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , a(6) =


0 0 0 0
0 0 i 0
0 i 0 0
0 0 0 0

 ,

a(7) =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 , a(8) =


i√
3 0 0 0
0 i√

3 0 0
0 0 − 2i√

3 0
0 0 0 0

 , a(9) =


0 0 0 i

0 0 0 0
0 0 0 0
i 0 0 0

 ,

a(10) =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 , a(11) =


0 0 0 0
0 0 0 i

0 0 0 0
0 i 0 0

 , a(12) =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ,

a(13) =


0 0 0 0
0 0 0 0
0 0 0 i

0 0 i 0

 , a(14) =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 , a(15) =


i√
6 0 0 0
0 i√

6 0 0
0 0 i√

6 0
0 0 0 −i

√
3
2

 .

(C.1)

We can view these matrices as acting on the complex space C4 with coordinates z⃗ =
(z1, z2, z3, z4). We can identify C4 ∼= R8 and define real coordinates x⃗ = (xA) such that

z⃗ =


z1
z2
z3
z4

 =


1√
2
(
x1 + ix2)

1√
2
(
x3 + ix4)

1√
2
(
x5 + ix6)

1√
2
(
x7 + ix8)

 ,

(
z⃗
⃗̄z

)
= Ux⃗ , (C.2)

which can be seen just as a unitary rotation of the 8v representation of SO(8). The represen-
tation of the Gell-Mann matrices on the 8v of SO(8) is accordingly given by:

a
(8v)
(µ) = U−1

(
a(µ) 0
0 ā(µ)

)
U . (C.3)
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These matrices provide a (real) representation of SU(4) acting on the 8v of SO(8). In terms
of the above coordinates, the SU(4) invariant tensors {Ω, J} can be defined via:

Ω = (dx1 + idx2) ∧ (dx3 + idx4) ∧ (dx5 + idx6) ∧ (dx7 + idx8) ,

J = dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6 + dx7 ∧ dx8 .
(C.4)

Now we construct the SU(4)/SU(3) coset element L(y) acting on the 8v of SO(8) as Follow-
ing [37], it can be obtained by exponentiating in terms of Euler angles as:

L(y)(8v) = e
θ1a

(8v)
(3) e

ϕ1a
(8v)
(2) e

θ2a
(8v)
(3) e

ϕ2a
(8v)
(5) e

1√
3

θ3a
(8v)
(8) e

ϕ3a
(8v)
(10) e

1√
3

ϕ∗a
(8v)
(15) . (C.5)

The embedding coordinates of S7 in terms of this particular choice of angular coordinates are:

µA = (L(y)(8v) )BA(v0)B , v0 = (0 , 0 , 0 , 0 , 0 , 0 , 0 , 1) . (C.6)

The 56-dimensional representation of L(y) is then obtained just by the standard embedding
of SO(8) into SL(8) inside E7(7):

L(y) =
(
2(L(y)(8v))C [A(L(y)(8v))DB] 0

0 2(L−1(y)(8v))[A
C(L−1(y)(8v))B]

D

)
. (C.7)

The SU(3)-structure. The SU(3)-structure is given by the generators of SU(3) embedded
into E7(7) via

(a(8v)
(µ) )AB tA

B , (C.8)

where tA
B are the generators of SL(8) ⊂ E7(7). These SU(3) generators coincide with those

of [24], so we borrow here their notation and conventions. The branching of the 8v of SO(8)
under SU(3) reads 8v → 3 + 3̄ + 1 + 1 and leads to the splitting of the index A = (i, 7, 8),
where i is the 6 = 3 + 3̄ of SU(3). We can write CE7(7) (SU(3)) = SL(2,R) × SU(2, 1) in
terms of the SU(3) invariant tensors:

Ω = (dx1 + idx2) ∧ (dx3 + idx4) ∧ (dx5 + idx6) ,

J = dx1 ∧ dx2 + dx3 ∧ dx4 + dx5 ∧ dx6 .
(C.9)

The SL(2,R) factor is generated by

H0 = −1
2
(
ti

i − 3t7
7 − 3t8

8) , E0 = 6 J ij tij78 , F0 = 3
2 J ijJkh tijkh , (C.10)

while the SU(2, 1) factor is generated by:

H1 = −t7
7 + t8

8, H2 = Jj
i ti

j ,

E11 = −
√
2ImΩijktijk8, E12 = −

√
2ReΩijktijk8, E2 = −

√
2 t8

7,

F11 =
√
2ReΩijktijk7, F12 = −

√
2ImΩijktijk7, F2 = −

√
2 t7

8. (C.11)

The indices i, j and 7, 8 can be raised and lowered with the respective 6- and 2-dimensional
Euclidean metrics. The coset representative is defined by:

VA
B =

(
e−3UH1e

− 1√
2(aE2−

√
3χ1E11−

√
3χ2E12)e−

1
2 (2U+V )H0ehE0

)
A

B . (C.12)
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The SU(3) invariant vectors KI
A, I = 1, . . . , 4 are defined through the condition

(a(8v)
(µ) )AB (tAB)B

AKI
B = 0, (C.13)

Branching the 56 of E7(7) firstly under SO(8) and secondly under SU(3): (A) → ([AB],[AB] ) →
([ij],[i7] ,[i8] ,[78] ,[ij] ,[i7] ,[i8] ,[78] ), where i is the 6 = 3 + 3̄ of SU(3), one can express the four
invariant vectors as:

K(1) =
1√
3
(J ij , 0, 0, 0, 0, 0, 0, 0) , K(2) = (0, 0, 0, 1, 0, 0, 0, 0) ,

K(3) =
1√
3
(0, 0, 0, 0, Jij , 0, 0, 0) , K(4) = (0, 0, 0, 0, 0, 0, 0, 1) ,

(C.14)

where i, j indices are rised and lowered with δij , and we have made a convenient choice
of normalisation.

D Details for the case Gsym = SO(7)

Here we collect some details pertaining to the SO(7)v example described in section 3.3.

The coset SO(7)/SO(6). The generators of SO(8) in the 8v representation are given by:

(RAB)CD = 2δC[AδB]D . (D.1)

The 8v representation of SO(8) is branched to the 7 + 1 under SO(7)v. Therefore, we have
the splitting of the fundamental index A = (i, 8). The SO(7)v subgroup of SO(8) is generated
by Rij . Under SO(6)v the index i further branches as i = (ı, 7), where ı transforms as
the 6 of SO(6). The SO(6)v generators are given by Rı ȷ. Following [38], we obtain the
SO(7)v/SO(6)v coset by means of the exponential:

L(θ)(8v) = e
∑

ı
θıRı7 . (D.2)

This can be rewritten in terms of S6 embedding coordinates by means of the identifications
µ̃ı = θı

sin
(√∑

ı
θıθı

)√∑
ı

θıθı

, µ̃7 = 1 −
∑

ı µ̃ıµ̃ı, leading to:

L(µ̃)(8v) =

δı ȷ −
µ̃ıµ̃ȷ

1+µ̃7
−µ̃ı 0

µ̃ȷ µ̃7 0
0 0 1

 . (D.3)

The explicit evaluation of the embedding coordinates µ̃i in terms of internal coordinates give
us L(y). The embedding coordinates of S7 with this prescription are obtained as:

µi = sin(θ7)µ̃i , µ8 = cos(θ7) . (D.4)

The 56 dimensional representation of L(y) is then obtained using (C.7).
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The SO(6) structure. The commutant of SO(6)v is given by CE7(7) (SO(6)v) = SO(1, 1)×
SL(2). The factor SO(1, 1) is generated by:

H̃0 = 1
2H0 = −1

4
(
ti

i − 3
(
t7

7 + t8
8
))

, (D.5)

while the factor SL(2) is generated by:

H̃1 = 1
2H1 = −1

2
(
t7

7 − t8
8
)

, Ẽ1 = − 1√
2

E2 = t8
7 , F̃1 = − 1√

2
F2 = t7

8 . (D.6)

We define the coset representative for V ∈ CE7(7)(SO(6)v) / CSU(8)(SO(6)v) by:

VA
B = (e

1
2 ϕ(θ7)H̃0e

1
2 φ(θ7)H̃1eχ(θ7)E1)A

B . (D.7)

The SO(6) invariant vectors KI
A, I = 1, 2 are defined through the condition

(Rı ȷ)AB (tAB)A
BKI

B = 0, (D.8)

Branching the 56 of E7(7) firstly SO(8) and secondly under SO(6)v, so that (A) → ([AB],[AB] ) →
([ı ȷ],[ı7] ,[ı8] ,[78] ,[ı ȷ] ,[ı7] ,[ı8] ,[78] ), one can express the two invariant vectors as:

K(1) = (0, 0, 0, 1, 0, 0, 0, 0) , K(2) = (0, 0, 0, 0, 0, 0, 0, 1) . (D.9)

Equations for vacuum solutions. Here we record the equations of motion arising when
assuming the gauge fields vanish, the external metric ḡµν(x, y) is y-independent and the
scalars are independent of four-dimensional external coordinates. Suppressing their remaining
θ7 dependence, the equations that arise for the scalars are:

0=20(−eφ(χ+cot(θ7))2+sinh(φ)−cosh(φ))+e2(φ+ϕ)
(
χ′+5χ2+6χcot(θ7)−1

)2

+e2ϕ
(
−4φ′(5χ+3cot(θ7))+φ′2−10χ′+50χ2+60χcot(θ7)

+4ϕ′′+6ϕ′ (ϕ′+4cot(θ7)
)
+20csc2(θ7)−26

)
+25(sinh(2[ϕ−φ])+cosh(2[ϕ−φ])) ,

(D.10)

0=−80eφ
(
cot2(θ7)−4χ(χ+cot(θ7))

)
+160e3φχ2(χ+cot(θ7))2+160e−φ

+2e2ϕ
(
60χ

(
φ′−3cot(θ7)

)
−(φ′)2+30χ′−225χ2

−2
(
φ′′+2ϕ′′+23

)
+6ϕ′ (2cot(θ7)−φ′)−6(ϕ′)2+40csc2(θ7)

)
−2e2(φ+ϕ)

(
60χ3 (6cot(θ7)−φ′)−(χ′−1

)2+225χ4

−4χ
(
2φ′ (χ′−1

)
+χ′′+9cot(θ7)χ′+3

(
χ′−1

)
ϕ′−3cot(θ7)

)
+χ2

(
−2φ′′+(φ′)2+4ϕ′′−6φ′ (ϕ′+12cot(θ7)

)
+6ϕ′ (ϕ′−2cot(θ7)

)
+68csc2(θ7)−92

))
−6χ2e4φ+2ϕ

(
χ′+5χ2+6χcot(θ7)−1

)2
−150e2ϕ−2φ ,

(D.11)
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0=10e3ϕφ′−15e3ϕ (ϕ′+4cot(θ7)
)
+60cot(θ7)eφ+ϕ

(
e2φχ(χ+cot(θ7))+1

)
−e3ϕ+4φχ

(
2
(
χ′−1

)2+5χ3 (2(φ′+6cot(θ7)
)
+3ϕ′)

+2χ2
[
6cot(θ7)φ′+10χ′+9cot(θ7)ϕ′+33csc2(θ7)−41

]
+χ

[
2φ′ (χ′−1

)
+χ′′+6cot(θ7)

(
5χ′−4

)
+3
(
χ′−1

)
ϕ′
])

+e3ϕ+2φ
(
2φ′ (χ′−1

)
+χ′′+6cot(θ7)χ′

+2χ
[
φ′′−10χ′+3φ′ (ϕ′+4cot(θ7)

)
−9cot(θ7)ϕ′−33csc2(θ7)+41

]
+3
(
χ′−1

)
ϕ′−30χ2 (ϕ′+4cot(θ7)

))
.

(D.12)
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