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1 Introduction

Symmetry plays a prominent role in physics, and have been a guiding principle for many
researches in various contexts. Here we list some examples: prediction of the form of energy
spectrum, classifying phases of matter based on symmetry breaking, understanding of physics
in the vicinity of fixed points of critical phenomena, and many more. In recent years,
a plethora of efforts have been devoted to update the concept of symmetries. One such
example is generalized symmetry, a.k.a., higher form symmetry [1–3], which is associated
with symmetry of extended objects. Fruitful interdisciplinary advances have been made for
decades by studying this symmetry, allowing us to make better understanding of problems
not only in the context of high energy physics but also in view of condensed matter physics,
such as classifying topological phases of matter.1

Newly proposed fracton topological phases [6–8] have motivated one to explore other
types of symmetries — multipole symmetries. To see how, let us first briefly recall the
property of the fracton topological phases. Distinctive feature of these phases is that
mobility constraints are imposed on fractionalized quasiparticle excitations, giving rise to

1See, e.g., recent pedagogical reviews [4, 5] and references therein.
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subextensive ground state degeneracy (GSD) on a torus geometry [9, 10]. Due to this
property, one faces an issue with the UV/IR mixing, implying incapability to resort to
preexisting theoretical frameworks, such as topological field theories. To handle this problem,
new types of symmetries have been introduced — spatially modulated symmetries. One of
such symmetries is multipole symmetry [11–17], associated with conservation of multipole
moments, such as dipole, quadrupole, and octopole, e.t.c. Previously, it was argued that the
multipole symmetries give rise to mobility constraints on excitations, which play a crucial role
in understanding of fracton topological phases (see, for instance, [14, 18–21]). Furthermore,
based on the algebraic relations between global and dipole charges, a series of topological
models have been constructed [22, 23]. Despite several attempts, full understanding of these
symmetries remains elusive.

In this paper, we discuss a class of field theories with dipole symmetry, which is the
simplest example of the multipole symmetries, and their anomalies. Furthermore, to aim
for establishing a theoretical framework which contains broader scope, incorporating dipole
symmetries and other types of symmetries in a unified way, we explore the interplay between
the dipole symmetries and higher form symmetries. To this end, we deal with two types of
symmetries on the same footing by introducing higher form dipole symmetries, and study
gauge theories associated with them.

We argue that the algebraic relation between dipole and global charges naturally yields
foliated BF theories [24, 25], BF theories defined on layers of submanifolds, which were
studied in the context of fracton physics. There has been much progress particularly in
(2+ 1)-dimensions [(2+ 1)d], such as relation between foliated BF theories and another exotic
symmetry, called subsystem symmetry (i.e., symmetry on a submanifold) [26–29]. Although a
few foliated BF theories with dipole symmetries have been studied in (2 + 1) dimensions [22],
theories defined in higher dimensions (i.e., d > 2) have been much less explored. In this
work, we introduce foliated BF theories with p-form dipole symmetries in any dimension,
which host dipole of spatially extended excitations (e.g., membranes when p = 2) and study
their physical properties and ’t Hooft anomalies of the dipole symmetries. We find that
due to the algebraic relation between global and dipole charges, gauge invariant loops have
unusual form, containing linear function of the spatial coordinate. This feature leads to the
position dependent braiding statistics and unusual GSD dependence on the system size, i.e.,
the greatest common divisor between the charge N and the system size. Note that such GSD
dependence is the manifestation of the UV/IR mixing, stemming from the conservation of the
dipole. The UV/IR mixing that our theories exhibit is distinct from the one found in previous
field theories with subsystem symmetry, such as [27] where the GSD becomes subextensive.

We also show that the theories exhibit a mixed ’t Hooft anomaly between p-form and
(d − p)-form dipole symmetries, which is canceled by an invertible theory defined in one
dimensional higher via anomaly inflow mechanism [30]. The bulk theory has a similar form
as the one which was introduced in the study of the anomaly inflow when gauging 1-form
symmetries in (2 + 1)d BF theory [3], yet crucial difference from the previous cases is that we
need to appropriately impose the flatness condition of the gauge fields as they are associated
with the dipole symmetries. Our consideration can also be applied to the cases with foliated
BF theories with subsystem symmetries [24, 25, 31], whose in-depth discussion is provided in
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appendix.2 This paper would contribute to not only better understanding of fracton physics,
but also to achieving the ultimate goal to construct a theoretical framework, incorporating
various kinds of symmetries.3

The rest of this paper is structured as follows. In section 2, we introduce algebraic
relations between global charges and dipole moments, which play a crucial role throughout this
work. In section 3, we introduce BF theories which respect higher-form dipole symmetries. We
also discuss their physical properties, such as braiding statistics between fractional excitations
and the GSD on a torus. In section 4, we study the ’t Hooft anomaly and its anomaly
inflow for the higher form dipole symmetries. Finally, in section 5 we conclude our work
with a few remarks. Some technical details, including construction of the UV spin models
that correspond to the dipole BF theories, and thorough analysis on the BF theories with
subsystem symmetry and their anomaly, are provided in appendixes.

2 Dipole algebra

To systematically introduce the foliated BF theories, we start with introducing multipole
algebra, which describes the multipole symmetries. In the present work, we focus on dipole
algebra, which is the simplest algebraic relations between global charges and dipole moments.
Note that the (zero-form) dipole algebra was introduced in the previous studies [17, 22]. In
what follows, we are going to generalize such an algebra to higher form, which is necessary
to investigate the BF theories and their anomaly.

Suppose that we have a theory in (d+1)-dimensions with conserved (p− 1)-form charges
associated with global U(1) and dipole symmetries, defined on (d + 1− p)-dimensional spatial
submanifold, Σd+1−p.4 We denote the global charge by Q[Σd+1−p] and dipole charge by
QI [Σd+1−p], where the index I = 1, · · · , d denotes the dipole degrees of freedom in the I-th
spatial direction. Also, throughout this work, we interchangeably represent the spatial
direction I = 1, 2, 3, · · · , as I = x, y, z, · · · , depending on the context.

While the charge Q follows the relation

[iPI , Q] = 0, (2.1)

the dipole charges are subject to the following relation:

[iPI , QJ ] = δIJQ. (2.2)

An intuition behind this relation can be understood by associating the global and dipole
charges with ρ, xJρ, where ρ denotes the density of the U(1) charge, and xJ as the J-
th spatial coordinate, respectively, and thinking of shifting them by a constant in the
I-th direction (I, J = 1, · · · , d) [22]. For instance, if we shift the dipole moment xIρ

by a constant in the I-th direction, then the change of dipole moment under the shift
2See also e.g., [32–35] for discussion on anomaly inflow for subsystem symmetries in other theories,

and [36, 37] for anomaly inflow for a (1 + 1)d scalar theory with the second order spatial derivatives based on
the so-called wire construction.

3Recently, a work [38] studied anomaly inflow for fractal symmetry, which is another important example of
spatially modulated symmetries. We thank D. S. Guihereme for bringing it to our attention.

4Here we take 1 ≤ p ≤ d. The p = 1 case corresponds to the ordinary global symmetry.
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gives (xI +∆xI)ρ − xIρ = (∆xI)ρ, where ∆xI is constant, corresponding to the nontrivial
commutation relation between the transnational operator and the dipole. Such an intuitive
understanding of the relation (2.2) will be useful in the discussion on the BF theories
presented in the next section.

We write the charges Q and QI via integral expression using the p-form conserved
currents as

Q[Σd+1−p] =
∫

Σd+1−p

∗j(p), QI [Σd+1−p] =
∫

Σd+1−p

∗K
(p)
I .

To reproduce the relation (2.2), we demand that

∗K
(p)
I = ∗k

(p)
I − xI ∗ j(p) (2.3)

with k
(p)
I being a local (non-conserved) current. One can verify the relation (2.2) by (2.3). With

the dipole algebra (2.2) with (2.3), we gauge these symmetries. To do so, we introduce U(1)
p-form gauge fields a(p), AI(p) with the coupling term being defined by5

Sc =
∫

Vd+1

(
a(p) ∧ ∗j(p) +

d∑
I=1

AI(p) ∧ ∗k
(p)
I

)
, (2.4)

where Vd+1 denotes the spacetime. We need to have a proper gauge transformation in such a
way that the condition of the coupling term being gauge invariant yields the conservation law
of the higher form currents. It turns out that the following gauge transformation does this job:

a(p) → a(p) + dΛ(p−1) + (−1)p−1∑
I

σI(p−1) ∧ dxI , AI(p) → AI(p) + dσI(p−1). (2.5)

Here, Λ(p−1) and σI(p−1) denote the (p − 1)-form gauge parameters. Indeed, one can verify
that the gauge invariance of the coupling term Sc under the gauge transformation (2.5) yields

d ∗ j(p) = 0, d(∗k
(p)
I − xI ∗ j(p)) = d ∗ K

(p)
I = 0.

In what follows, following the terminology in fracton physics [24, 25], we interpret dxI as
1-form field, that we dub foliation field:

eI := dxI . (2.6)

In the context of fracton topological phases, such a field was introduced so that along the
foliation field, layers of submanifolds are stacked.

For later purposes, we also define the dipole algebra with hierarchy structure being
inverted, which we call dual dipole algebra. To do this, instead of (2.1) and (2.2), we think
of d global charges Q̂I and one dipole charge Q̂ with relation

[iPI , Q̂J ] = 0, [iPI , Q̂] = −Q̂I . (2.7)
5As discussed in [22], one can regard the gauge group as U(1), taking the fact that quantization condition

of the dipole gauge field depends on the length of the dipole into consideration. As we will see soon below, if
we define the theory on a discrete lattice, it can be understood by that the dipole charge is quantized since
the lattice spacing becomes a minimal unit of distance. We set such a length to be 1 throughout this work.
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Analogous to the argument below (2.2), this relation can be intuitively understood by
interpreting the dipole and d global charges as η̂ = −

∑d
I=1 xIρI , and ρI , respectively, and

thinking of the translation operator that acts on it. For example, by shifting the dipole η̂ in
the I-th direction, one obtains the second relation in (2.7). Following the similar argument
presented around (2.3)-(2.5), we define gauge fields associated with the global and dipole
charges (2.7) as âI(p) and Â(p) respectively with the following gauge transformations:

âI(p) → âI(p) + dχ̂I(p−1) − (−1)p−1σ̂(p−1) ∧ eI , Â(p) → Â(p) + dσ̂(p−1). (2.8)

Here, χ̂I(p−1) and σ̂(p−1) the are the (p − 1)-form gauge parameters.
The dipole algebra (2.2) is related to the dual one (2.7) by inverting the hierarchy

structure of the algebra. Stated symbolically,{
Q1 Q2 · · · Qd

Q

}
↔

{
Q̂

Q̂1 Q̂2 · · · Q̂d

}
. (2.9)

These algebras put different mobility constraints on charges. In the case of the dipole
algebra (2.2), a single charge is immobile as dipole moment is conserved in any spatial
direction. On the contrary, in the case of the dual dipole algebra (2.7), which consists of
d charges (labeled by I = 1, · · · , d) and one dipole, the I-th charge, Q̂I , is mobile in the
direction perpendicular to the I-th direction, yet it is immobile in the I-th direction. Such
mobility constraints play a crucial role in understanding physics of the dipole BF theory that
we study in the next section. In what follows, we will discuss ’t Hooft anomalies in the BF
theories, relegating the discussion on the subsystem BF theories to appendix C.

3 Dipole BF theories

In this section, we introduce BF theories with the dipole symmetries that we dub dipole BF
theories. Due to the UV/IR mixing, treatment of the dipole BF theories in the continuum
limit is a bit subtle. To handle this issue, we put our theory in more appropriate format, that is
sometimes called integer BF theory [15], consisting of integer valued gauge fields on a discrete
lattice. We discuss several physical properties of the model, such as braiding statistics and
GSD on torus geometry before diving into the anomaly inflow of the higher dipole symmetries.

3.1 Model

Using the gauge fields a(p) and AI(p) in (2.5) associated with the dipole algebra (2.2), we
introduce the following gauge invariant (p + 1)-form fluxes:

f (p+1) := da(p) + (−1)p
∑

I

AI(p) ∧ eI , F I(p+1) := dAI(p). (3.1)

In terms of these fluxes, let us consider the following (d + 1)-dimensional theory, which
we call p-form dipole BF theory:6

L = N

2π

[
b(d−p) ∧ f (p+1) +

∑
I

cI(d−p) ∧ F I(p+1)
]

= N

2π

[
b(d−p) ∧

(
da(p) + (−1)p

∑
I

AI(p) ∧ eI

)
+
∑

I

cI(d−p) ∧ dAI(p)
]

, (3.2)

6Here we take 1 ≤ p ≤ d − 1. In the case of p = d, the theory describes a spontaneous symmetry braking
phase, which we do not consider in this work.
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where b(d−p) and cI(d−p) denote the (d − p)-form gauge fields. Note that this BF theory
admits the following gauge symmetries in addition to (2.5):

cI(d−p) → cI(d−p) + dχI(d−p−1) + (−1)d−pσ(d−p−1) ∧ eI , b(d−p) → b(d−p) + dσ(d−p−1) (3.3)

corresponding to the dual dipole algebra (2.8).
To study physical properties of this theory, such as braiding statistics of fractional

excitations and the GSD on a torus geometry, we face an issue with the UV/IR mixing —
the theory is sensitive to the UV physics, making analysis on the theory in the continuum
limit much more challenging. To remedy this problem, we make use of argument presented in
e.g, [22, 39], where we introduce integer BF theories, consisting of integer valued gauge fields
which are defined on a discrete lattice. In this formalism, we discuss braiding statistics and the
GSD to get more physical insights from the theory (3.2) before studying the anomaly inflow.

3.1.1 Notations

To do this, we prepare several notations. In order to investigate the integer BF theory with
dipole symmetry, comprised of integer valued gauge fields, we define an integer valued p-form
field, located on a p-cell in a (d + 1)-dimensional discrete lattice as7

Ã
(p)
[µ1···µp](r̂A) :=

1
p!
∑

σ

Sgn(σ)Ã(p)
µσ(1)···µσ(p)(r̂A), (3.4)

where [µ1 · · ·µp] denotes p-th anti-symmetrized index and σ represents the permutation with
its signature denoted by Sgn(σ). Also, we have introduced the coordinate of the field as
r̂A = (x̂0, x̂1, · · · , x̂d). Without bringing any confusion, we omit the lower case indices and
the coordinate of the gauge field on the left hand side of (3.4), and simply write it as Ã(p).
We introduce two more notations. We define a differential operator ∆, mapping a field Ã(p)

to ∆Ã(p) on (p + 1)-cell, which is given by the oriented sum of Ã(p) on the boundary of
the (p + 1)-cell. More explicitly, it is defined as

∆Ã
(p)
[µ1···µp+1] :=

1
p!
∑

σ

Sgn(σ)∆µσ(1)Ã
(p)
µσ(2)···µσ(p+1) , (3.5)

which is abbreviated as ∆Ã(p). We also define the following integer valued field located on
(p + 1)-cell, which corresponds to the wedge product between a p-form field and a foliation
field eI in the continuum:

Ã(p)eI := 1
p!
∑

σ

Sgn(σ)Ã(p)
µσ(1)···µσ(p)δ

I
µσ(p+1)

(I = 1, · · · , d). (3.6)

Here δI
J represents the Kronecker delta.

3.1.2 Integer BF theory

With these preparations, now we are in a good place to discuss the integer BF theory. The
integer BF theory that corresponds to (3.2), which is defined on a (d + 1)-dimensional

7The field with a tilde on the top (̃·) represents integer valued field throughout this work.
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discrete lattice, reads

S = 2π

N

∑
(p+1)−cell

[
b̃(d−p)

(
∆ã(p) + (−1)p

∑
I

ÃI(p)eI

)
+
∑

I

c̃(d−p)∆ÃI(p)
]

. (3.7)

Here, the gauge fields ã(p) and ÃI(p) reside on p-cells in the lattice whereas b̃(d−p) and
c̃I(d−p) do on dual (d − p)-cells. The theory (3.7) consists of d + 1 layers of the p-form
ZN BF theories, corresponding to the first and third terms, and the coupling between the
BF theories described by the second term. In this sense, (3.7) is the p-form analog of the
foliated BF theories [24, 25]. Note that while in the preexisting foliated BF theories are
made of subextensive number of layers of the BF theories, our theory consists of the finite
number of layers. As shown below, the coupling between the layers brings unusual physical
properties such as braiding statistics and the GSD.

The theory (3.7) admits the following gauge symmetry:

ã(p) → ã(p) +∆χ̃(p−1) + (−1)p−1∑
I

σ̃I(p−1)eI + Nk̃(p)
a ,

ÃI(p) → ÃI(p) +∆σI(p−1) + Nk̃
I(p)
A ,

b̃(d−p) → b̃(d−p) +∆η̃(d−p−1) + Nk̃
(d−p)
b ,

c̃I(d−p) → c̃I(d−p) +∆γ̃I(d−p−1) + (−1)d−pη̃(d−p−1)eI + Nk̃I(d−p)
c .

(3.8)

The integer valued gauge parameters χ̃(p−1) and σ̃I(p−1) are defined on (p − 1)-cells whereas
η̃(d−p−1) and γ̃I(d−p−1) are introduced on dual (d − p − 1)-cells. Also, k̃

(p)
a and k̃

I(p)
A [k̃(d−p)

b

and k̃
I(d−p)
c ] are integer valued fields on p-cell [dual (d − p)-cell]. Note that while gauge

fields ã(p) and ÃI(p) are subject to the gauge transformation of the dipole algebra (2.5), the
other gauge fields b̃(d−p) and c̃I(d−p) follow the dual dipole algebra (2.8). In the following,
to get better handle on the theory (3.7), we study several physical properties of the model
before discussing the anomaly.

3.2 Example: d = 3, p = 1

We demonstrate unusual properties of the braiding statistics and the GSD of the model (3.7)
in a specific case, setting d = 3 and p = 1. Argument presented in this subsection can be
generalized to any dimension and higher form symmetries, which is given in appendix A.

3.2.1 Loops and braiding statistics

We study braiding statistics between gauge invariant loops of the theory (3.7) with d = 3
and p = 1:

S = 2π

N

∑
2−cell

[
b̃(2)

(
∆ã(1) −

∑
I

ÃI(1)eI

)
+
∑

I

c̃(2)∆ÃI(1)
]

.

Analogous to the foliated BF theories of fracton topological phases [24, 25], the coupling
between the BF theories modify the gauge transformations, giving rise to mobility constraints

– 7 –
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on fractional charges. From the gauge transformations (3.8):

ã(1) → ã(1) +∆χ̃(0) +
∑

I

σ̃I(0)eI + Nk̃(1)
a , ÃI(1) → ÃI(1) +∆σI(0) + Nk̃

I(1)
A ,

b̃(2) → b̃(2) +∆η̃(2) + Nk̃
(2)
b , c̃I(2) → c̃I(2) +∆γ̃I(2) − η̃(2)eI + Nk̃I(2)

c ,

we can construct several types of gauge invariant operators. First we have the gauge invariant
Wilson loops in the spatial direction, described by

Wa(C) := exp
[
2πi

N

∑
C

(
ã(1) +

∑
I

x̂IÃI(1)
)]

,

W I
A(C) := exp

[
2πi

N

∑
C

ÃI(1)
]

, (I = x, y, z),
(3.9)

where C denotes closed path in subspace of 1-cells. We also have gauge invariant surface
operators given by

Vb(S∗) := exp
[
2πi

N

∑
S∗

b̃(2)
]

,

V I
c (S∗) :=

exp
[

2πi
N

∑
S∗ c̃I(2)

]
for S∗ ⊥ I-th direction

exp
[

2πi
N

∑
S∗

(
c̃I(2) − x̂I b̃(2)

)]
for S∗ ̸⊥ I-th direction

,

(3.10)

where S∗ is closed surface defined in subspace of dual 2-cells. Note that from the gauge
transformation of c̃I(2) (3.8), depending on the direction, there are two types of closed surface
operators made of c̃I : (i) when the surface S∗ is perpendicular to the I-th direction (i.e., the
surface is formed at fixed x̂I), we have the gauge invariant surface operator comprised only
of the gauge field c̃I(2), corresponding to the first line in (3.10). (ii) when the surface S∗ is
not perpendicular to the I-th direction, composite of c̃I(2) and b̃(2) is the appropriate gauge
invariant surface operator, corresponding to the second line in (3.10).

While 1-form and 2-form gauge invariant loops are also found in the conventional (3+1)d
BF theories (or the (3 + 1)d toric code [40, 41] on the lattice), in the present case, some of
the gauge invariant extended operators contain linear function of the spatial coordinate x̂I ,
which is a unique feature of the dipole BF theories [19, 23]. The form of the loops (3.9)
and (3.10) can be comprehended by mobility constraints on quasiparticles with the algebraic
relations (2.2) and (2.7).8 We recall the fact that the gauge fields ã(1) and ÃI(1) are associated
with the dipole algebra (2.2), corresponding to conservation of three dipole moments, forming
in x, y, and z-direction, and one global charge. Since the dipoles are conserved, a single charge
is immobile in any direction whereas the dipole moments are free to move. Correspondingly,
a single charge associated with the gauge field ã(1), is not mobile in any of spatial direction.
To make it mobile, the charge must accompany with the dipole moment, associated with
the gauge field ÃI(1). Also, the dipole moments are free to move — they are consistent with
the form of (3.9), that is, the form of the Wilson loop of the gauge field ã(1) is accompanied

8The mobility constraints on charges in a system which preserves the dipole moment are also discussed
in e.g., [42].
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with ÃI(1), and that of the gauge field ÃI(1) may form in any direction. Analogous line of
thoughts shows that the form of the loops (3.10) can be understood by the fact that the gauge
fields c̃I(2) and b̃(2) follow the dual dipole algebra (2.7): three global charges ρi (i = 1, 2, 3)
and one dipole moment −(xρ1 + yρ2 + zρ3). For instance, a single charge corresponding to
gauge field c̃x(2), is mobile in the y and z-direction and is not in the x-direction. To make
it mobile in the x-direction, the charge must accompany with the charge associated with
the dipole gauge field b̃(2), which is consistent with (3.10).

The loops (3.9) and (3.10) have several unusual properties compared with the ones in
the conventional BF theories. To see this, we introduce a lattice translation operator Tx̂I

which translates fields by a unit of the lattice spacing in the I-th direction. Acting the
translation operator on the Wilson loop, we find

Tx̂I
Wa(C)T−1

x̂I

Wa(Tx̂I
(C)) = W I

A(Tx̂I
(C)), (3.11)

where Tx̂I
(C) is a contour obtained by shifting C by one lattice spacing in the I-th direction.

Similarly, the surface operator not perpendicular to the I-th direction satisfies

Tx̂I
V I

c (S∗)T−1
x̂I

V I
c (Tx̂I

(S∗)) = Vb(Tx̂I
(S∗)) (S∗ ̸⊥ I-th direction), (3.12)

where Tx̂I
(S∗) is a surface obtained by shifting S∗ by one lattice spacing in the I-th direction.

These relations remind us of the dual dipole algebra (2.7) and dipole algebra (2.2) that we
have seen in the previous argument of the dipole symmetry,9 namely, translating a loop by a
constant in the I-th direction yields another type of loop, which is in line with the dipole
and dual dipole algebra where translating a dipole moment gives rise to a charge.

We also discuss braiding statistics of the loops (3.9) and (3.10). Similar to the conventional
BF theories, we think of a torus geometry and study the braiding statistics between the loops
that wind around the torus in the spatial directions. To this end, we impose the periodic
boundary conditions on the lattice and set the system size as Lx × Ly × Lz. Also, we focus
on the braiding the 1-form loops that go around the torus in the x-direction and 2-form
loops that run along yz-plane. Braiding of the loops in the other spatial directions can be
analogously discussed. The noncontratcible loops of the gauge fields ã(p) and ÃI(p) that wind
around the torus in the x-direction are given by

Wa:x(ŷ, ẑ) := Wa(Cx) = exp

2πi

N
αx

∑
Cx

(
ã(1) + x̂Ãx + ŷÃy + ẑÃz

) ,

W I
A:x(ŷ, ẑ) := W I

A(Cx) = exp

2πi

N

∑
Cx

ÃI(1)

 , (3.13)

9See also [22] for the related relations found in lattice spin models with dipole symmetry.
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where Cx represents noncontractible paths around the torus in the x-direction,10 and

αI := N

gcd(N, LI)
(I = x, y, z), (3.14)

with gcd standing for the greatest common divisor. An intuition behind the first loop (3.13)
is that the argument of the exponent has linear function of the spatial coordinate x̂, hence
the loop has to wind around the torus multiple times in order for it to be consistent with
the periodic boundary condition.11 The noncontractible loops of the gauge fields b̃(d−p) and
c̃I(d−p) that are defined in dual 2-cells on a yz-plane are described by

Vb:yz (x̂ + 1/2) := Vb(S∗
yz) = exp

2πi

N

∑
S∗

yz

b̃(2)

 ,

V I
c:yz (x̂ + 1/2) := V I

c (S∗
yz) =

exp
[

2πi
N

∑
S∗

yz
c̃I(2)

]
for I = x

exp
[

2πi
N αI

∑
S∗

yz

(
c̃I(2) − x̂I b̃(2)

)]
for I = y, z,

(3.15)

where S∗
yz denotes surfaces on yz-plane of the dual 2-cells that go around the torus, forming

noncontractible 2-form loops. Similar to the first term in (3.13), we multiply the integer αI

with the argument of the exponent of the loop V I
c:yz with I = y, z to ensure that the loop

is compatible with the periodic boundary condition.
The nontrivial braiding statistics between the loops (3.13) and (3.15) is given by

Wa:x(ŷ, ẑ)Vb:yz (x̂ + 1/2) = Vb:yz (x̂ + 1/2)Wa:x(ŷ, ẑ) exp
[
−i

2παx

N

]
W I

A:x(ŷ, ẑ)V J
c:yz (x̂ + 1/2) = V J

c:yz (x̂ + 1/2)W I
A:x(ŷ, ẑ) exp

[
−i

2π

N
(δI,J + (1− δI,J)αJ)

]
Wa:x(ŷ, ẑ)V x

c:yz (x̂ + 1/2) = V x
c:yz (x̂ + 1/2)Wa:x(ŷ, ẑ) exp

[
−i

2παx

N
x̂

]
. (3.16)

Due to the fact that some of the loops (3.13) (3.15) contain linear function of the spatial
coordinate, x̂I , we have unusual braiding statistics between the loops. Especially, a phase factor
obtained by braiding between the loops V x

c:yz and Wa:x depends on the spatial coordinates,
as shown in the third line in (3.16). We regard it as the feature specific to the BF theory
with the dipole symmetries.12

3.2.2 Ground state degeneracy

Due to the dipole symmetries, the model exhibits the unusual behaviour of the GSD when we
place it on torus geometry. To see how the model exhibits the unusual GSD dependence on
the system size, we place the theory on a discrete lattice with system size Lx × Ly × Lz with

10One naively wonders that gauge invariance retains even if ŷÃy + ẑÃz is omitted in the first line of (3.13).
However, we keep these terms for the sake of evaluating the GSD in a much simpler way than the case without
such terms; as we will see below [around (3.19)], Wa(Cx) is deformable in the y- and z-direction, allowing us
to easily obtain the number of distinct configuration of loops, contributing to the GSD.

11See e.g., [19, 22, 43–45] for the relevant discussion in a different topological model with dipole symmetry.
12Position dependent braiding statistics is also studied in the Maxwell theory with dipole symmetry in [17]

and the Higgsed phase of a tensor gauge theory in [21].
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periodic boundary conditions. The equations of motions of the BF theory (3.7) ensure that
local gauge invariant fluxes are trivial. Yet, there are non-local ones forming noncontractible
loops of the gauge fields, contributing to the GSD. Focusing on such loops of the gauge fields
ã

(1)
i and Ã

(1)
i , we evaluate the number of distinct configurations of loops, which amounts to

the GSD on torus. The gauge invariant noncontractible loops of ã
(1)
i and Ã

(1)
i are given by13

Wa:x(ŷ, ẑ) = exp
[
2πi

N
αx

Lx∑
x̂=1

(
ã(1)

x +
∑

I

x̂IÃI(1)
x

)]
,

Wa:y(x̂, ẑ) = exp

2πi

N
αy

Ly∑
ŷ=1

(
ã(1)

y +
∑

I

x̂IÃI(1)
y

) ,

Wa:z(x̂, ŷ) = exp
[
2πi

N
αz

Lz∑
ẑ=1

(
ã(1)

z +
∑

I

x̂IÃI(1)
z

)]
, (3.17)

W I
A:x(ŷ, ẑ) = exp

[
2πi

N

Lx∑
x̂=1

ÃI(1)
x

]
,

W I
A:y(x̂, ẑ) = exp

2πi

N

Ly∑
ŷ=1

ÃI(1)
y

 ,

W I
A:z(x̂, ŷ) = exp

[
2πi

N

Lz∑
ẑ=1

ÃI(1)
z

]
. (3.18)

Note that the loops Wa:x(ŷ, ẑ) and W I
A:x(ŷ, ẑ) have already appeared in the previous discussion

on the braiding statistics (3.13). To properly count the number of distinct noncontractible
loops of the gauge fields, we need to check several constraints imposed on the loops. Indeed,
from (3.17), it follows that the loop Wa:x(ŷ, ẑ) is deformable in the y- and z-directions,
indicating that the loop does not depend on the coordinate (ŷ, ẑ). By the same token, one
can show that the other loops in (3.17) and (3.18) do not depend on the coordinates. This
stems from the fact that

∆i

(
ã

(1)
j +

∑
I

x̂IÃ
I(1)
j

)
−∆j

(
ã

(1)
i +

∑
I

x̂IÃ
I(1)
i

)
= 0 (i, j = x, y, z), (3.19)

where x̂I represents the I-th spatial coordinate of the lattice. This relation is verified from
the equations of motions for b̃(2) and c̃I(2) in the BF theory (3.7):

∆iã
(1)
j −∆j ã

(1)
i − Ã

j(1)
i + Ã

i(1)
j = 0, ∆iÃ

I(1)
j −∆jÃ

I(1)
i = 0. (3.20)

Indeed, we rewrite the left hand side of (3.19) as(
∆iã

(1)
j +

∑
I

∆i(x̂I)ÃI(1)
j

)
+
∑

I

x̂I∆iÃ
I(1)
j −

(
∆j ã

(1)
i +

∑
I

∆j(x̂I)ÃI(1)
i

)
−
∑

I

x̂I∆jÃ
I(1)
i

= ∆iã
(1)
j −∆j ã

(1)
i − Ã

j(1)
i + Ã

i(1)
j +

∑
I

x̂I(∆iÃ
I(1)
j −∆jÃ

I(1)
i ) = 0. (3.21)

Here we have used the fact that ∆i(x̂I) = δi
I .

13Here we explicitly write the components of the gauge fields for the sake of illustration.
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Also, due to the periodic boundary condition, we have

Wa:x(ŷ + Ly, ẑ) = Wa:x(ŷ, ẑ), Wa:y(x̂ + Lx, ẑ) = Wa:y(x̂, ẑ), (3.22)

which is rewritten as

(W y
A:x)

αxLy = (W x
A:y)αyLx = 1. (3.23)

Furthermore, setting i = x and j = y, and summing over x̂ and ŷ in the first relation
in (3.20) yields

Lx

Ly∑
ŷ=1

Ãx
y = Ly

Lx∑
x̂=1

Ãy
x

from which we have

(W y
A:x)

Lx = (W x
A:y)Ly . (3.24)

From the two conditions (3.23) and (3.24), it follows that there are N×gcd(N, Lx, Ly) distinct
loops of W y

A:x and W x
A:y. Analogous line of thought shows that there are N × gcd(N, Ly, Lz)

[resp. N × gcd(N, Lx, Lz)] distinct loops of W y
A:z and W z

A:y [resp. W x
A:z and W x

A:z]. There is
no constraint imposed on the three loops, W x

A:x, W y
A:y, and W z

A:z.
In summary, there are

∏
i=x,y,z gcd(N, Li) distinct noncontractible loops in (3.17) whereas

there are

(N × gcd(N, Lx, Ly))× (N × gcd(N, Ly, Lz))× (N × gcd(N, Lx, Lz))× N3

distinct loops in (3.18). Therefore, the GSD, which amounts to the total number of distinct
configurations of the noncontractible loops of the gauge fields ã

(1)
i and Ã

I(1)
i , is given by

GSD = N6 × gcd(N, Lx)× gcd(N, Ly)× gcd(N, Lz)× gcd(N, Lx, Ly)
× gcd(N, Ly, Lz)× gcd(N, Lz, Lx). (3.25)

The GSD dependence on the greatest common divisor between charge N and system size
is the manifestation of the UV/IR mixing. Such UV/IR mixing is distinct from the one in
previous theories with subsystem symmetry where the GSD becomes subextensive.

By the analogous line of thoughts, one can evaluate the GSD for general p and d on torus
geometry. Relegating the details to appendix A, the GSD for the system size L1 × · · · × Ld

is found to be

GSD = NK(d,p) ×
∏

1≤i1<i2···<ip≤d

gcd(N, Li1 , Li2 , · · · , Lip)

×
∏

1≤i1<i2···<ip+1≤d

gcd(N, Li1 , Li2 , · · · , Lip+1) (3.26)

with
K(d, p) := p ×

(
d + 1
p + 1

)
. (3.27)

In appendix B, we demonstrate concrete UV spin models corresponding to the BF theory
with dipole symmetry (3.7) which exhibit the unusual behavior of the GSD (3.26).
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4 Anomaly inflow

In this section, we argue that the dipole BF theory (3.7) has a mixed ’t Hooft anomaly between
the higher form dipole symmetries. We also find a bulk theory in one higher dimensions
which cancels the ’t Hooft anomaly by anomaly inflow mechanism [30].

4.1 Review of 1-form gauging in (2 + 1)d BF theory

Before discussing anomaly inflow in the foliated BF theories (3.7), we succinctly review how
anomaly inflow mechanism works in the case of conventional (2 + 1)d BF theory [3]. Readers
who are already familiar with this argument may skip this subsection.

We start with the following BF theory

L = N

2π
a(1) ∧ db(1). (4.1)

To gauge 1-form global symmetries, we introduce a background 2-form field β(2) to gauge
one of the 1-form symmetries. Then we rewrite the theory as

L = N

2π
a(1) ∧ (db(1) − β(2)), (4.2)

which respects the 1-form background gauge symmetry:

b(1) → b(1) + λ(1), β(2) → β(2) + dλ(1). (4.3)

Likewise, one could gauge other 1-form symmetry by introducing a background 2-form
gauge field α(2) via

L = N

2π
b(1) ∧ (da(1) − α(2)) (4.4)

which has the following background gauge symmetry

a(1) → a(1) + σ(1), α(2) → α(2) + dσ(1). (4.5)

Now we gauge both 1-form symmetries simultaneously, namely

L = N

2π
a(1) ∧ (db(1) − β(2))− N

2π
b(1) ∧ α(2). (4.6)

However, the theory (4.6) is not invariant under the gauge transformations (4.3) and (4.5),
signaling a ’t Hooft anomaly. Indeed, under the gauge transformations, we find

δL = − N

2π

[
σ(1) ∧ β(2) + λ(1) ∧ α(2) + λ(1) ∧ dσ(1)

]
. (4.7)

This cannot be removed by adding counter terms consisting of the background gauge fields
α(2) and β(2) to L. Therefore (4.7) implies that the theory has the mixed ’t Hooft anomaly
between the two 1-form symmetries, which is an obstruction to gauge the both symmetries
simultaneously.
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It is known that this anomaly can be canceled by combining the theory with an appropriate
bulk theory in (3 + 1) dimensions:

Sinflow = N

2π

∫
M3+1

[
G(1) ∧ dα(2) + K(1) ∧ dβ(2) − α(2) ∧ β(2)

]
. (4.8)

Here, we have introduced the 1-form fields G(1) and K(1) to ensure the flatness condition
of the background gauge fields α(2) and β(2). To see this inflow term actually cancels the
anomaly (4.7), we first note that the theory respects the following background gauge symmetry

α(2) → α(2) + dσ(1), K(1) → K(1) − σ(1),

β(2) → β(2) + dλ(1), G(1) → G(1) − λ(1), (4.9)

up to total derivative. Then, under this transformation, variant of the theory (4.8) is given by

δSinflow = −
∫

M3+1
d
[
σ(1) ∧ β(2) + λ(1) ∧ α(2) + λ(1) ∧ dσ(1)

]
. (4.10)

Hence, if we have the theory (4.8) with the boundary in the z-direction, say at z = 0, (i.e.,
the theory is defined in z ≥ 0), the mixed ’t Hooft anomaly (4.7) is canceled, which is
the well-known anomaly inflow of 1-form symmetries. Below, we are going to apply the
similar logic to our integer dipole BF theories (3.7) to discuss the anomaly inflow when
gauging the dipole symmetries.

4.2 Anomaly inflow for dipole symmetries

Now we turn to anomaly inflow for the dipole BF theory (3.7). Introducing integer valued
background gauge fields α̃(p+1) and Γ̃I(p+1), which reside on (p + 1)-cell, we first gauge the
p-form symmetries via

S = 2π

N

∑
(p+1)−cell

[
b̃(d−p)

(
∆ã(p)+(−1)p

∑
I

ÃI(p)eI−α̃(p+1)
)
+
∑

I

c̃(d−p)
(
∆ÃI(p)−Γ̃I(p+1)

)]
.

(4.11)
The theory admits the following background gauge symmetry:14

ã(p) → ã(p) + λ̃(p)
a , ÃI(p) → ÃI(p) + λ̃

I(p)
A ,

α̃(p+1) → α̃(p+1) +∆λ̃(p)
a + (−1)p

∑
I

λ̃
I(p)
A eI , Γ̃I(p+1) → Γ̃I(p+1) +∆λ̃

I(p)
A . (4.12)

One can also gauge the (d−p)-form symmetries by introducing the integer valued background
gauge fields β̃(d−p+1) and Ξ̃I(d−p+1) on dual (d − p + 1)-cell. It can be accomplished by

S = 2π

N

[ ∑
(p+1)−cell

{
b̃(d−p)

(
∆ã(p) + (−1)p

∑
I

ÃI(p)eI

)
+
∑

I

c̃(d−p)∆ÃI(p)
}

+
∑

p−cell

{
−(−1)(p+1)(d+1)ã(p)β̃(d−p+1) − (−1)(p+1)(d+1)∑

I

ÃI(p)Ξ̃I(d−p+1)
}]

. (4.13)

14Throughout subsection, λ̃∗
∗ denotes a gauge parameter.
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The theory (4.13) respects the following gauge symmetry

b̃(d−p) → b̃(d−p) + λ̃
(d−p)
b , c̃I(d−p) → c̃I(d−p) + λ̃I(d−p)

c ,

Ξ̃I(d−p+1) → Ξ̃I(d−p+1) +∆λ̃I(d−p)
c − (−1)d−pλ̃

(d−p)
b eI , β̃(d−p+1) → β̃(d−p+1) +∆λ̃

(d−p)
b .

(4.14)

We gauge the both p-form and (d − p)-form symmetries by considering

S = 2π

N

[ ∑
(p+1)−cell

{
b̃(d−p)

(
∆ã(p)+(−1)p

∑
I

ÃI(p)eI−α̃(p+1)
)
+
∑

I

c̃(d−p)
(
∆ÃI(p)−Γ̃I(p+1)

)}

+
∑

p−cell

{
−(−1)(p+1)(d+1)ã(p)β̃(d−p+1)−(−1)(p+1)(d+1)∑

I

ÃI(p)Ξ̃I(d−p+1)
}]

. (4.15)

However, the theory (4.15) is not invariant under the background gauge transformations (4.12)
and (4.14), signaling the mixed ’t Hooft anomaly. Indeed, the variant of the action under
the transformations reads

δS = −2π

N

[ ∑
(p+1)−cell

(
λ̃

(d−p)
b α̃(p+1) +

∑
I

λ̃I(d−p)
c Γ̃I(p+1)

)

+
∑

p−cell

{
(−1)(d+1)(p+1)λ̃(p)

a

(
β̃(d−p+1) +∆λ̃

(d−p)
b

)
+ (−1)(d+1)(p+1)∑

I

λ̃
I(p)
A

(
Ξ̃I(d−p+1) +∆λ̃I(d−p)

c − (−1)d−pλ̃
(d−p)
b eI

)}]
. (4.16)

This variation cannot vanish even if we add any counter term consisting of the background
gauge fields α̃(p+1), Γ̃I(p+1), β̃(d−p+1) and Ξ̃I(d−p+1).15 Therefore the dipole BF theory has
the mixed ’t Hooft anomaly between the p-form and (d − p)-form symmetries and we cannot
gauge them simultaneously.

As in the standard BF theory, this anomaly can be canceled by attaching the dipole
BF theory to a bulk theory in one higher dimensions via an extension of anomaly inflow as
follows. Let us consider the following (d + 2)-dimensional theory

Sinflow = S0 + Sspt, (4.17)

where

S0 = −2π

N

[ ∑
(p+2)−cell

{
M̃ (d−p)

(
∆α̃(p+1) + (−1)p+1Γ̃I(p+1)eI

)
+
∑

I

Ñ I(d−p)∆Γ̃I(p+1)
}

+
∑

p−cell

{∑
I

ÕI(p)
(
∆Ξ̃I(d−p+1) − (−1)d−p+1β̃I(d−p+1)eI

)
+ P̃ (p)∆β̃(d−p+1)

}]
,

(4.18)

15Note that cancelling δS needs (d+1)-form terms, involving a product of the (p+1)-form and (d−p+1)-form
background gauge fields. However, we cannot construct such terms since they must be (d + 2)-form or higher.
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and

Sspt = −(−1)(p+1)(d+1) 2π

N

∑
(p+1)−cell

[
α̃(p+1)β̃(d−p+1) +

∑
I

Γ̃I(p+1)Ξ̃I(d−p+1)
]
. (4.19)

An intuition behind the bulk term (4.17) is that the term S0 is what corresponds to the first
two terms in (4.8) to ensure the flatness condition of the gauge fields, α̃(p+1), Γ̃I(p+1), β̃(d−p+1)

and Ξ̃I(d−p+1), introducing the four auxiliary fields, M̃ (d−p), Ñ I(d−p), ÕI(p) and P̃ I(p). Note
that the flatness condition has the different form compared with usual cases, as we deal with
the dipole gauge fields. Also, analogous to the last term in (4.8), Sspt describes an invertible
phase comprised of the background gauge fields. To see how the bulk term (4.17) works
for cancelling the anomaly, we first note that up to the total derivative, the theory (4.17)
respects the background gauge symmetries in (4.12) and (4.14), jointly with

M̃ (d−p) → M̃ (d−p) + (−1)d−p+1λ̃
(d−p)
b , Ñ I(d−p) → Ñ I(d−p) + (−1)d−p+1λ̃I(d−p)

c

ÕI(p) → ÕI(p) + (−1)d(p+1)λ̃
I(p)
A , P̃ (p) → P̃ (p) + (−1)d(p+1)λ̃(p)

a . (4.20)

Indeed, under these transformations, one has

δSinflow =−2π

N
∆
[ ∑

(p+1)−cell

(
λ̃

(d−p)
b α̃(p+1)+

∑
I

λ̃I(d−p)
c Γ̃I(p+1)

)

+
∑

p−cell

{
(−1)(d+1)(p+1)λ̃(p)

a

(
β̃(d−p+1)+∆λ̃

(d−p)
b

)
+(−1)(d+1)(p+1)∑

I

λ̃
I(p)
A

(
Ξ̃I(d−p+1)+∆λ̃I(d−p)

c −(−1)d−pλ̃
(d−p)
b eI

)}]
.

The terms inside the large bracket are identical to (4.16).

5 Conclusion

Construction of unified theoretical scheme which incorporates various kinds of symmetries
is one of the active area of researches for recent years. In this work, we focus on one of the
symmetries that has recently emerged in the context of fracton topological phases, multipole
symmetries, and incorporate such symmetries into other types of symmetries, higher form
symmetries. We introduce foliated BF theories consisting of layers of higher form BF theories
and couplings between the layers. The model admits dipoles of spatially extended excitations,
leading to unusual behavior; the position dependent braiding statistics between the loops
of the higher form gauge fields, and system size dependence of the GSD. We also discuss
the ’t Hooft anomaly of the foliated higher form BF theory. Incapability of gauging higher
form dipole symmetries signals the mixed ’t Hooft anomaly, which is canceled by invertible
phases with appropriated terms that ensure the flatness condition of the dipole gauge fields.
Exploration of the higher form dipole BF theories and their anomaly inflow are central
findings in this work, which we believe contribute to not only better understanding of fracton
physics, but also to achieving the ultimate goal to construct a theoretical framework that
unifies various types of symmetries. In addition, one can also extend our analysis to the case
with the subsystem symmetries, the details of which are given in appendix C.
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Before closing this section, let us make a few comments on future perspectives regarding
this work. In this paper, we have seen the dipole and dual dipole algebra given in (2.2), (2.7)
and (2.9). Studying the Maxwell theory with such an algebra and especially its dualities
would be an interesting direction. Relatedly, it could be intriguing to see if we have duality
defect lines or even more exotic noninvertible duality defects. Investigating whether there is
a θ-term in the Maxwell theory could be an another direction to pursue. Also, it would be
interesting to address whether one can deal with other types of symmetries in the format
that we introduced in this paper. One candidate would be higher group symmetries, such
as 2-group [46]. When studying theories with dipole symmetries, we sometimes introduce
tensor gauge theories, gauge theories with higher order spatial derivatives [12]. It could be
interesting to see whether our foliated BF theories (3.7) are described by such tensor gauge
theories, especially higher form analog of the tensor gauge theories [47, 48].

Investigating whether one can establish a lattice model of the invertible field theory that
appears in the discussion on the anomaly inflow (4.19) is an another interesting direction.
In the case of the standard BF theory in (2 + 1)d (toric code), the mixed anomaly when
gauging 1-form symmetries is canceled by the invertible theory (4.8), which has UV lattice
counterpart described by the cluster state (a.k.a. Raussendorf-Bravyi-Harrington cluster
state [49]). Indeed, one can show that on the boundary of such a state yields the toric
code. One naively wonders a similar cluster state can be constructed which give rise to the
topological model corresponding to the dipole BF theory (3.7) on the boundary.

In this work, we have seen that the ’t Hooft anomaly is canceled by the invertible
phases consisting of the dipole gauge fields. Investigating whether such invertible phases
are of usefulness in classification of symmetry protected topological phases with global
dipole symmetries would be an interesting and important direction (see e.g. [50] for relevant
discussion in the case of (1 + 1)d). Since our invertible theories are defined in any dimension,
our consideration may contribute to classifying such phases. We hopefully leave this issue
for future investigations.
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A Ground state degeneracy for general p and d

In this appendix, we derive the GSD of the BF theory with the dipole symmetry in the generic
case of p and dimension d given by (3.26). Since discussion presented in this section closely
parallels the one in the main text (section 3.2), we give the derivation succinctly. To start, we
impose the periodic boundary condition on the lattice and set the system size as L1 ×· · ·×Ld.
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The GSD amounts the number of distinct configurations of noncontractible p-form loops of the
gauge fields ã(p) and ÃI(p) that wind in the spatial direction of the torus. Defining the indices

{ik (1 ≤ k ≤ p)|1 ≤ i1 < i2 < · · · < ip ≤ d},

{jl (1 ≤ l ≤ d − p)|1 ≤ j1 < j2 < · · · < jd−p ≤ d},

where {ik} and {jl} are complement with each other, i.e., {ik} ∪ {jl} = {1, 2, · · · , d}, we
find that the noncontractible p-form loops which wind around the torus in the i1, · · · , ip-th
spatial directions, have the following forms:

Wa;(i1,··· ,ip)(x̂j1 , · · · , x̂jd−p
)

= exp

2πi

N
α(i1,··· ,ip)

Li1∑
xi1 =1

· · ·
Lip∑

xip =1

(
ã

(p)
[i1i2···ip] − (−1)p

∑
I

x̂IÃ
I(p)
[i1i2···ip]

) ,

WAI ;(i1,··· ,ip)(x̂j1 , · · · , x̂jd−p
)

= exp

2πi

N

Li1∑
xi1 =1

· · ·
Lip∑

xip =1
Ã

I(p)
[i1i2···ip]

 . (A.1)

Here, the integer α(i1,··· ,ip) is defined by α(i1,··· ,ip) := N
gcd(N,Li1 ,··· ,Lip ) . Such an integer is

multiplied with the argument in the exponent in the first term of (A.1) to ensure that the
loop, which contains the linear term of the spatial coordinate, is consistent with the periodic
boundary condition [19, 51].

There are several constrains on the loops (A.1). From equations of motion for c̃I(d−p)

in (3.7), one finds that the loop WAI ;(i1,··· ,ip)(x̂j1 , · · · , x̂jd−p
) is deformable so that is

does not depend on the spatial coordinate x̂jl
. Due to the periodic boundary condi-

tions on the loop Wa;(i1,··· ,ip)(x̂j1 , · · · , x̂jd−p
), such as Wa;(i1,··· ,ip)(x̂j1 + Li1 , · · · , x̂jd−p

) =
Wa;(i1,··· ,ip)(x̂j1 , · · · , x̂jd−p

), we have(
WAI ;(i1,··· ,ip)

)LIα(i1,··· ,ip) = 1 (I ̸= i1, · · · , ip). (A.2)

From the equation of motion for b̃(d−p) in (3.7), we obtain(
WAI ;(i1,··· ,ip)

)LI ×
(
WAi1 ;(i2,··· ,ip,I)

)−Li1 ×
(
WAi2 ;(i2,i3,··· ,ip,I,i2)

)Li2 × · · ·

×
(
WAip ;(I,i1,··· ,ip−1)

)(−1)pLip = 1, (A.3)

where the indexes I, (i1, · · · , ip) and [I ̸= i1, · · · , ip] run cyclically. Further, the equations
of motions of (3.7) ensure that the loop Wa;(i1,··· ,ip)(x̂j1 , · · · , x̂jd−p

) is deformable so that it
does not depend on the spatial coordinate x̂jl

.
With the constraints (A.2) and (A.3), we count the number of distinct noncon-

tractible loops (A.1). There are
(d

p

)
loops which have the form of Wa;(i1,··· ,ip), labeled

by Zgcd(N,Li1 ,··· ,Lip ). Regarding the loops, WAI ;(i1,··· ,ip), after some algebra, jointly with the
constraints (A.2) and (A.3), one finds that there are

N
p(d

p) ×
∏

1≤i1<i2<···<ip+1≤d

[
Np gcd(N, Li1 , Li2 , · · · , Lip+1)

]
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distinct noncontractible loops. Therefore, the GSD, which amounts the total number of
distinct configurations of loops (A.1) is given by

GSD =
∏

1≤i1<i2···<ip≤d

gcd(N, Li1 , Li2 , · · · , Lip)

× N
p(d

p) ×
∏

1≤i1<i2<···<ip+1≤d

[
Np gcd(N, Li1 , Li2 , · · · , Lip+1)

]
= NK(d,p) ×

∏
1≤i1<i2···<ip≤d

gcd(N, Li1 , Li2 , · · · , Lip)

×
∏

1≤i1<i2···<ip+1≤d

gcd(N, Li1 , Li2 , · · · , Lip+1), (A.4)

which leads to (3.26) with K(d, p) described by (3.27).

B Construction of lattice spin models with dipole symmetry

In this appendix, we demonstrate several concrete UV spin models that correspond to the
dipole BF theory (3.7). We focus on the case of d = 3 and p = 1, 2. Generalization to
other cases of d and p should be straightforward. To this end, we follow an approach
proposed in [23]. A key insight to construct the spin models is to recognize the first and
third terms in the BF theory (3.7) as the p-form BF theories whereas the second term
as the gauged “foliated symmetry protected topological (SPT) phases”, i.e., gauged SPT
phases [52] stacked in layers. Based on this observation, one can introduce a spin model
in a paramagnet phase and implement control phase gate operations on the spins, which
corresponds to accommodating the SPT phases. Gauging a global symmetry of the model
results in the desired topological spin model associated with the dipole BF theory (3.7). The
crucial point is to implement the controlled phase gate operation. Without it, we would
end up with the decoupled layers of the spin model corresponding to the p-form BF theories
(i.e., decoupled layers of the toric codes [40]).

Recalling the fact that the foliation field eI , which is a one form field along which theories
defined on submanifold are stacked, as well as that the form b(d−p) ∧ AI(p) is associated with
the topological field theoretical description of the SPT phase [53] with (d − p)- and p-form
global symmetries, the coupling term in the BF theory, b(d−p) ∧ AI(p) ∧ eI can be interpreted
as the stack of gauged Z(d−p)

N × Z(p)
N SPT phases16 along the I-th direction.

B.1 p = 1 and d = 3

To see the construction more explicitly, we envisage a cubic lattice to realize the spin model,
which corresponds to d = 3 and p = 1. Further, for simplicity, we focus on the case with
N = 2. The generalization to the case of N > 2 is straightforward by thinking of orientations
of the lattice appropriately. On the cubic lattice, we think of qubits each of which resides on
links. Also, we introduce three types of qubits on each vertex of the dual cubic lattice (i.e.,
three qubits at the center of the cube of the original lattice). Denoting the coordinate of the
vertex of the cubic [dual cubic] lattice as r := (x̂, ŷ, ẑ)

[
r∗ := (x̂, ŷ, ẑ) + (1

2 , 1
2 , 1

2)
]
, and vectors

16The index Z(q)
N denotes q-form ZN symmetry.
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(a) (b)

Figure 1. (a) Examples of pairs of qubits on which the CZ gates (B.3) act. (b) The configuration of
the qubits viewing from the x axis. The examples of the CZ gates corresponding to left, middle and
right of (a) are also shown in upper left, right, and bottom left, respectively.

to label the links of the lattice as lx := (1
2 , 0, 0), ly := (0, 1

2 , 0), lz := (0, 0, 1
2), we write the

Pauli operators acting on these qubits as τX
0,r+lI

, τZ
0,r+lI

(I = x, y, z), τX
i,r∗ , τZ

i,r∗ (i = 1, 2, 3),
where the first index of the last two operators distinguishes the three types of the qubits. We
dub the qubit (resp: three qubits) defined on links of the original cubic lattice (resp: vertex
of the dual cubic lattice) as qubits with type 0 (resp: qubit with type i = 1, 2, 3.).

With these preparations, we introduce the following paramagnet Hamiltonian:

H = −
∑
r,r∗

 ∑
I=x,y,z

τX
0,r+lI

+
∑

i=1,2,3
τX

i,r∗

 . (B.1)

We implement the controlled Z (CZ) gate on the qubits, which amounts to accommodating a
stack of SPT phases [52]. The CZ gate operation which acts on a pair of qubits reads

CZa,b |a⟩ |b⟩ = (−1)ab |a⟩ |b⟩ (a, b ∈ Z2). (B.2)

We think of acting the CZ gate on qubits with type 0 on the link in the yz plane of the
original cubic lattice and the ones with type 1 at the nodes of the dual cubic lattice which
are adjacent to the yz-plane. We show an example of such pairs of qubits in figure (1(a)).
We introduce the following CZ gates:∏

s,t=±1
CZ[1,r∗],[0,fyz+2lx+sly+tlz ],

CZ[0,r+ly ],[1,r∗−2lx]CZ[0,r+ly ],[1,r∗−2lx−2lz ], CZ[0,r+lz ],[1,r∗−2lx]CZ[0,r+lz ],[1,r∗−2lx−2ly ], (B.3)

where the first, second and third terms in (B.3) are portrayed in the left, middle, and
right of figure (1(a)). Here, fyz represents the coordinate of a plaquette on yz plane, viz
fyz := r + (0, 1

2 , 1
2). Viewing from the x axis, the CZ gates in (B.3) remind us of the cluster

states corresponding to the Z(1)
2 × Z(0)

2 SPT phase (see figure 1(b)). Likewise, we implement
CZ gates on qubits with type 2(resp: 3) on zx(resp: xy) plane and the ones with type 0 at the
nodes adjacent to the plane. By acting the CZ gates, the Hamiltonian (B.1) is transformed into

Ĥ = −
∑
r,r∗

[
τX

0,r+lx
τZ

2,r∗−2ly
τZ

2,r∗−2ly+2lz
τZ

3,r∗τZ
3,r∗−2ly

+ τX
0,r+ly

τZ
1,r∗−2lx

τZ
1,r∗−2lx+2lz

τZ
3,r∗τZ

3,r∗−2lx

+ τX
0,r+lz

τZ
1,r∗−2lx

τZ
1,r∗−2lx+2ly

τZ
2,r∗τZ

2,r∗−2lx
+ τX

1,r∗−2lx

∏
s,t=±1

τZ
0,fyz+sly+tlz

+ τX
1,r∗−2ly

∏
s,t=±1

τZ
0,fzx+slz+tlx

+ τX
1,r∗−2lz

∏
s,t=±1

τZ
0,fxy+slx+tly

]
, (B.4)
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where fzx and fxy represent the coordinate of a plaquette on zx and xy plane, respectively,
namely fzx := r + (1

2 , 0, 1
2), fxy := r + (1

2 , 1
2 , 0). The Hamiltonian (B.4) respects 1-form and

0-form global symmetries, Z(1)
2 × [Z(0)

2 ]3, i.e., it is invariant under the following spin flips:∏
l∈S∗

τX
0,l,

∏
i=1,2,3

∏
r

τX
i,r. (B.5)

Here, the first term consists of product of τX
0 on links that form a closed dual surface,

which we abbreviate as
∏

l∈S∗ .17

Now we are in a good stage to gauge the global symmetries (B.5). To do so, we promote
the global symmetries to local ones by introducing an extended Hilbert space and impose
the Gauss law [54, 55]. We define states of qubits on each face of the cubic lattice and the
ones on the links of the dual cubic lattice, whose Pauli operators are denoted by X0,fab

,
Z0,fab

(ab = xy, yz, zx), Xi,r∗+lI
, Zi,lI

. Such states are interpreted as the gauge fields. We
introduce the following Gauss law operators:

G0,r+lx
:= τX

0,r+lI

∏
f⊃lI

X0,f , Gi,r∗ := τX
i,r∗

∏
l∗⊃r∗

Xi,l∗ (i = 1, 2, 3). (B.6)

Here, the product
∏

f⊃lI
stands for multiplication of the Pauli operators on plaquettes

connected with a link r + lI . Likewise, we mean the product
∏

l∗⊃r∗ by multiplication of
the Pauli operators on dual links which are connected with a vertex on the dual lattice, r∗.
Using the operators (B.6), we impose that the physical state satisfies

G0,r+lx |phys⟩ = Gi,r∗ |phys⟩ = |phys⟩ . (B.7)

Further, we minimally couple the quartet and quadratic spin coupling terms in the Hamil-
tonian (B.4) to the gauge fields via∏

l⊂fab

τZ
0,l → Z0,fab

∏
l⊂fab

τZ
0,l, τZ

i,r∗τZ
i,r∗−2lI

→ τZ
i,r∗Zir∗−lI

τZ
i,r∗−2lI

(B.8)

so that these terms commute with the Gauss law (B.6). To ensure the fluxless condition making
the gauge theory dynamically trivial, we add the following term to the Hamiltonian (B.4):

−
∑

c

∏
fab⊂c

Z0,fab
−

∑
i=1,2,3

∑
P ∗

∏
l∗⊂P ∗

Zi,l∗ , (B.9)

where the product in the first (second) term represents multiplication of the Pauli operators
of faces (dual links) that surround a cube (dual plaquette). By the Gauss law (B.7), we set
τX

0,r =
∏

f⊃lI
X0,f , τX

i,r∗ =
∏

l∗⊃r∗ Xi,l∗ . Also, for the sake of making the figure more visually
friendly, we rearrange the lattice grid so that Pauli operators of the gauge fields are located
on links of the newly defined lattice. Overall, we arrive at the following gauged Hamiltonian:

Ĥ = −
∑
fab,r

(
P0,fxy + P0,fyz + P0,fzx + V0,r

)
−
∑

i=1,2,3

∑
fab,r

(
Pi,fxy + Pi,fyz + Pi,fzx + Vi,r

)
(B.10)

17Example of a such term is given by
∏

s,t,u=±1 τX
0,r+slx+tly+ulz

.
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Figure 2. The spin model which corresponds to (3.7) with N = 2, d = 3 and p = 1, described by the
Hamiltonian (B.10)–(B.12). The terms given in (B.11) are depicted in the first line whereas the ones
in (B.12) are in the second line.

with

P0,fxy
:= X1,fxy−lxX2,fxy−ly

∏
s,t=±1

X0,fyz+slx+tly ,

P0,fyz
:= X2,fyz−ly X3,fyz−lz

∏
s,t=±1

X0,fyz+sly+tlz

P0,fzx
:= X3,fzx−lz X1,fzx−lx

∏
s,t=±1

X0,fzx+slz+tlx ,

V0,r :=
∏

s,t,u=±1
Z0,r+slx+tly+ulz

(B.11)

and

V1,r := Z0,r+lx

∏
s,t,u=±1

X1,r+slx+tly+ulz , V2,r := Z0,r+ly

∏
s,t,u=±1

X2,r+slx+tly+ulz

V3,r := Z0,r+lz

∏
s,t,u=±1

X3,r+slx+tly+ulz , Pi,fab
:=

∏
s,t=±1

Zi,fab+sla+tlb
(a ̸= b = {x, y, z})

(B.12)

We portray the terms (B.11) and (B.12) in figure 2. The Hamiltonian (B.10) has the similar
form as four copies of the (3 + 1)d Z2 toric codes [40] with crucial difference being that a few
Pauli operators are multiplies with the terms as indicated in the first three terms in (B.11)
and (B.12), which correspond to the foliated SPT phases.

The Hamiltonian (B.10) is exactly solvable as the individual terms commute with each
other. Hence, the ground state is a state with all of the eigenvalues of the terms (B.11)
and (B.12) being one. The role of the gauged foliated SPT phases is to change the statistics
of anyons, giving rise to a topological model with dipole symmetry [23].

To see the model (B.10) indeed corresponds to the BF theory (3.7) with p = 1 and d = 3,
we evaluate the GSD on the torus geometry. Similar to the case with the toric code [40],
we count the noncontractible loops or membranes (i.e., product Pauli operators, forming a
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plane) consisting of the Pauli operators Z0, Zi, that commute with the Hamiltonian (B.10)
(namely, logical operators) on the 3D torus with system size Lx × Ly × Lz. One finds the
following membrane operators consisting of Z0:

V0:xy

(
ẑ + 1

2

)
=

Lx∏
x̂=1

Ly∏
ŷ=1

Z0,r+lz ,

V0:yz

(
x̂ + 1

2

)
=

Ly∏
ŷ=1

Lz∏
ẑ=1

Z0,r+lx ,

V0:zx

(
ŷ + 1

2

)
=

Lz∏
ẑ=1

Lx∏
x̂=1

Z0,r+ly

(B.13)

By multiplying the term V0,r, it can be shown that these loops are deformable, implying that
they do not depend on the spatial coordinate. The form of these membrane operators are
also found in the (3 + 1)d toric code, yet in the present case there are a few constraints due
to the foliated SPT phases. Indeed, multiplying V1,r over the entire lattice gives

Lx∏
x̂=1

V0:yz

(
x̂ + 1

2

)
= (V0:yz)Lx = 1, (B.14)

where we have used the fact that the membrane operators (B.13) do not depend on the
spatial coordinate. From (B.14), it follows that depending on whether Lx is even or odd,
the membrane W0;yz becomes trivial or nontrivial, which can be succinctly described by
that the membrane operator W0;yz is characterized by Zgcd(2,Lx). Similar reasoning can be
applied to other membranes in (B.13), indicating that the membranes W0:xy and W0:zx is
labeled by Zgcd(2,Lz) and Zgcd(2,Ly) respectively.

We turn to evaluation of the loops consisting of string of the Pauli operators Zi. One
finds that the model admits the following loop operators:

Wi;x(ŷ, ẑ) =
Lx∏

x̂=1
Zi,r+lx , Wi;y(ẑ, x̂) =

Ly∏
ŷ=1

Zi,r+ly , Wi;z(x̂, ŷ) =
Lz∏

ẑ=1
Zi,r+lz (i = 1, 2, 3)

(B.15)
One can verify that these loops are deformable so that they do not depend on the spatial
coordinate. Naively, there are 29 distinct loops. However, it is incorrect as we have to
take care of several constraints on the loops, stemming from the foliated SPT phases. One
constraint comes from the fact that multiplying P0:fxy on a xy plane gives

Lx∏
x̂=1

Ly∏
ŷ=1

P0:fxy = 1 ⇔ W Lx
1:y × W

Ly

2:x = 1. (B.16)

Another constraint stems from deformation of other types of loops which consists of string
of the Pauli X0 operators dressed with Zi. Indeed, one finds that the model admits the
following loop operator:

W0:x(ŷ, ẑ) =
[

Lx∏
x̂=1

X0,r+lx × (Z1,r+lx)x̂

]αx

, (B.17)
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Figure 3. The spin model which corresponds to the BF theory (3.7) with p = 2, d = 3, and N = 2,
described by the Hamiltonian (B.21)–(B.23).

where αx = 2
gcd(2,Lx) . Such a loop was discussed in different spin models in [23]. Deforming

the loop (B.17) in the y direction results in

W0:x(ŷ + 1, ẑ) = W0:x(ŷ, ẑ)W αx
2:x (B.18)

Iterative use of (B.18) and taking the periodic boundary condition into account, we have

W
αxLy

2:x = 1. (B.19)

By the same token, one can show that

W
αyLx

1:y = 1, (B.20)

where αy = 2
gcd(2,Ly) . From the conditions (B.16), (B.19) and (B.20), one finds that there are

2× gcd(2, Lx, Ly) distinct configurations of the loops, W1,y and W2,x. Likewise, one can show
that there are 2× gcd(2, Ly, Lz) [2× gcd(2, Lz, Lx)] distinct configurations of the loops, W3,y

and W2,z [W3,x and W1,z]. There is no constraint on the three loops, W1,x, W2:y, and W3:z,
each of which is labeled by Z2. Overall, the number of distinct loops (B.15) is found to be

26 × gcd(2, Lx, Ly)× gcd(2, Ly, Lz)× gcd(2, Lz, Lx).

Taking the fact that there are gcd(2, Lx) × gcd(2, Ly) × gcd(2, Lz) distinct membrane op-
erators (B.13) into consideration, we finally arrive at that the GSD has the form of (3.26)
in the main text with N = 2, p = 1, and d = 3.

B.2 p = 2 and d = 3

Similar to the argument in the previous subsection, we can also construct a UV spin model,
corresponding to the BF theory (3.7) with p = 2 and d = 3. Since the way we construct the
model closely parallels the one in the previous subsection, we outline how to do it succinctly.

In the cubic lattice, we introduce qubits on vertices and three types of qubits on the
vertices of the dual cubic lattice. Defining the paramagnet Hamiltonian in terms of Pauli
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τX operators, we implement the CZ gates on it, associated with the foliated SPT phases,
respecting global symmetries [Z(1)

2 ]3 × Z(0)
2 . After gauging global symmetries, [Z(1)

2 ]3 × Z(0)
2 ,

the Hamiltonian is given by (see figure 3)

Ĥ = −
∑
fab,r

(
P0,fxy + P0,fyz + P0,fzx + V0,r

)
−
∑

i=1,2,3

∑
fab,r

(
Pi,fxy + Pi,fyz + Pi,fzx + Vi,r

)
(B.21)

with
V0,r = Z1,r+lxZ2,r+ly Z3,r+lz

∏
s,t,u=±1

X0,r+slx+tly+ulz ,

P0,fab
:=

∏
s,t=±1

Z0,fab+sla+tlb
(a ̸= b = {x, y, z})

(B.22)

and

P1,fxy
:= Z0,fxy−lx

∏
s,t=±1

X1,fxy+slx+tly , P1,fyz
:=

∏
s,t=±1

X1,fyz+sly+tlz ,

P1,fzx
:= Z0,fzx−lx

∏
s,t=±1

X1,fzx+slz+tlx , P2,fxy
:= Z0,fxy−ly

∏
s,t=±1

X2,fxy+slx+tly ,

P2,fyz
:= Z0,fyz−ly

∏
s,t=±1

X2,fyz+sly+tlz , P2,fzx
:=

∏
s,t=±1

X2,fzx+slz+tlx

P3,fxy
:=

∏
s,t=±1

X3,fxy+slx+tly , P3,fyz
:= Z0,fyz−lz

∏
s,t=±1

X3,fyz+sly+tlz ,

P3,fzx
:= Z0,fzx−lz

∏
s,t=±1

X3,fzx+slz+tlx , Vi,r :=
∏

s,t,u=±1
Xi,r+slx+tly+ulz (i = 1, 2, 3).

(B.23)

The model has the similar form as the four copies of the toric codes with a crucial difference
being that a few Pauli operators are attached with the terms, stemming from the foliated
SPT phases.

The model (B.21) is exactly solvable and by analogous lines of thinking to count the
number of distinct noncontractible loops, comprised of Z0 or Zi, which is discussed in the
previous subsection, one finds that the GSD is given by

GSD = 28 × gcd(2, Lx, Ly)× gcd(2, Ly, Lz)× gcd(2, Lz, Lx)× gcd(2, Lx, Ly, Lz) (B.24)

which is consistent with (3.26) with p = 2, d = 3, and N = 2.

C Higher form subsystem BF theory and anomaly inflow

In this appendix, we introduce higher form BF theories with subsystem symmetry. Such
theories are obtained by imposing an additional constraints on the dipole BF theories (3.2).
We also discuss anomaly inflow for these theories.

C.1 Model

We start by the dipole BF theory (3.2). Replacing the gauge field cI(d−p) with dBI(d−p−1)∧eI ,
(I is not summed over), we have

L = N

2π

[
b(d−p) ∧

(
da(p) + (−1)p

∑
I

AI(p) ∧ eI

)
+
∑

I

BI(d−p−1) ∧ dAI(p) ∧ eI

]
. (C.1)
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Here, we demand that 1 ≤ p ≤ d−1. Note that in the case of p = 1 and d = 3, the theory (C.1)
becomes the foliated BF theory describing the X-cube model [8, 24, 25]. Compared with the
dipole BF theory (3.7), the theory (C.1) has an additional symmetry — subsystem symmetry.
Indeed, the theory (C.1) is invariant under

AI(p) → AI(p) + γI(p−1) ∧ eI (C.2)

with γI(p−1) being an arbitrary (p − 1)-form field. As shown below, the manifestation of the
subsystem symmetry can be seen by noticing that the symmetry (C.2) puts constraints on
the form of gauge invariant extended operators of the gauge fields a(p) and AI(p) which are
analogue of Wilson loops for the p-form gauge fields supported on a closed p-dimensional
spatial submanifold. The theory (C.1) respects the following gauge symmetry:

a(p) → a(p) + dΛ(p−1) + (−1)p−1∑
I

σI(p−1) ∧ eI ,

AI(p) → AI(p) + dσI(p−1) + γI(p−1) ∧ eI

b(d−p) → b(d−p) + dµ(d−p−1),

BI(d−p−1) → BI(d−p−1) + dχI(d−p−2) + (−1)p+1µ(d−p−1) + g(d−p−2) ∧ eI . (C.3)

Here, g(d−p−2) denotes an arbitrary (d − p − 2)-form field. Similar to the discussion in sec-
tion 3.2.2, one can evaluate the GSD of (C.1) on a discretized torus geometry with system size
L1 × · · · × Ld, which is accomplished by counting a distinct number of noncontractible loops
of the gauge fields a(p) and AI(p) in the spatial direction. We do not have noncontractible
loop consisting of the gauge field a(p).18 As for the loops comprised of AI(p), we have

WAI (Σp)(x̂I) =
∫

Σp

AI(p) (Σp ⊥ I-th direction). (C.4)

Here, Σp denotes the p-form spatial submanifold which has to be perpendicular to the
I-th direction due to the symmetry (C.2). Intuitively, (C.4) can be understood by that on
each codimension one layer with coordinate x̂I , which is stacked along the I-th direction,
noncontractible p-form loop is constructed.19 The loop (C.4) is the higher form analog
of the Wilson loop defined on each layers of codimension one submanifold, found in the
X-cube model.20

Naively, there are in total
(d−1

p

) (∑d
i=1 Li

)
such loops, however, there are constraints on

these loops. Indeed, equations of motions for the field b
(d−p)
[0j1···jd−p−1] gives

∂[ii
a

(p)
i2···ip+1] − (−1)p

∑
I

A
I(p)
[i1···ip

δI
ip+1] = 0. (C.5)

18One naively wonders that similar to the case with the dipole BF theory (3.7), we could construct the
loop of a(p) accompanied by the gauge fields AI(p), such as the one given in (3.9). However, due to the
symmetry (C.2), such a loop is not allowed.

19Such a loop is associated with higher form analog of “planon”.
20See also [56] for construction of the fracton lattice models hosting spatially extended excitations.
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Performing integration over spatial directions i1 · · · ip+1 of the torus results in

Li1∑
xi1 =1

WAi1 (Σ[i2···ip+1])(x̂i1)−
Li2∑

xi2 =1
WAi2 (Σ[i1i3···ip+1])(x̂i2) + · · ·

+(−1)p+1
Lip+1∑

xip+1 =1
W

Aip+1 (Σ[i1···ip])(x̂ip+1) = 0. (C.6)

Here, Σ[i2···ip+1] in the first term represents spatial submanifold in the i2 · · · ip+1 direction
and other terms which have the form Σ[∗∗] are similarly defined. There are

( d
p+1
)

constraints
on the loops (C.4) described by (C.6). Hence, the GSD is given by

GSD = NQ(d,p) with Q(d, p) :=
(

d − 1
p

)(
d∑

i=1
Li

)
−
(

d

p + 1

)
. (C.7)

The theory (C.1) is the higher form analog of the foliated BF theory of the fracton models,
such as the X-cube model. Similar to the X-cube model, our theory also exhibits the
subextensive GSD.21

C.2 Anomaly inflow

We discuss the anomaly inflow for higher form subsystem symmetry. Analogous to the
previous argument, we gauge the p-form symmetries by

L= N

2π

[
b(d−p)∧

(
da(p)+(−1)p

∑
I

AI(p)∧eI−α(p+1)
)
+
∑

I

BI(d−p−1)∧
(
dAI(p)−ΓI(p+1)

)
∧eI

]
.

(C.8)
The theory has the following gauge symmetry:

a(p) → a(p) + λ(p)
a , AI(p) → AI(p) + λ

I(p)
A

α(p+1) → α(p+1) + dλ(p)
a + (−1)pλ

I(p)
A ∧ eI , ΓI(p+1) → ΓI(p+1) + dλ

I(p)
A (C.9)

with λ
(p)
a and λ

I(p)
A being the p-form gauge parameters.

Also, one can gauge the (d − p)-form symmetries via

L = N

2π

[
b(d−p) ∧

(
da(p) + (−1)p

∑
I

AI(p) ∧ eI

)
+
∑

I

BI(d−p−1) ∧ dAI(p) ∧ eI

− (−1)(d+1)(p+1)a(p) ∧ β(d+1−p) − (−1)d(p+1)∑
I

AI(p) ∧ ΞI(d−p) ∧ eI
]
. (C.10)

This theory has the following gauge symmetry:

b(d−p) → b(d−p) + λ
(d−p)
b , BI(d−p−1) → BI(d−p−1) + λ

I(d−p−1)
B ,

β(d−p+1) → β(d−p+1) + dλ
(d−p)
b , ΞI(d−p) → ΞI(d−p) + dλ

I(d−p−1)
B + (−1)dλ

(d−p)
b . (C.11)

21As a consistency check, when we set d = 3 and p = 1, we have Q(3, 1) = 2(Lx + Ly + Lz) − 3, which
appears in the GSD of the X-cube model [8] on torus.
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If we try to gauge both of p-form and (d − p)-form symmetries by thinking of the follow-
ing theory

L= N

2π

[
b(d−p)∧

(
da(p)+(−1)p

∑
I

AI(p)∧eI−α(p+1)
)
+
∑

I

BI(d−p−1)∧
(
dAI(p)−ΓI(p+1)

)
∧eI

−(−1)(d+1)(p+1)a(p)∧β(d+1−p)−(−1)d(p+1)∑
I

AI(p)∧ΞI(d−p)∧eI
]
, (C.12)

then we have a problem; (C.12) is not invariant under the gauge transformations (C.9)
and (C.11). Indeed, the variant of L under the transformations reads

δL=− N

2π

[
λ

(d−p)
b ∧α(p+1)+

∑
I

λ
I(d−p−1)
B ∧ΓI ∧eI +(−1)(d+1)(p+1)λ(p)

a ∧
(
β(d−p+1)+dλ

(d−p)
b

)
+(−1)d(p+1)∑

I

λI
A∧

(
ΞI(d−p)+dλ

I(d−p−1)
B +(−1)dλ

(d−p)
b

)
∧eI

]
, (C.13)

signaling the mixed ’t Hooft anomaly. To cancel the anomaly, we introduced the following
terms defined in one dimensional higher:

Linflow = L0 + Lspt (C.14)

with

L0 = N

2π

[
M (d−p) ∧

(
dα(p+1) + (−1)p

∑
I

ΓI(p) ∧ eI

)
+
∑

I

N I(d−p−1) ∧ dΓI(p) ∧ eI

+ O(p) ∧ dβ(d−p+1) +
∑

I

P I(p) ∧
(
dΞI(d−p) + (−1)(d−1)β(d−p+1)

)
∧ eI

]
, (C.15)

and

Lspt = − N

2π

[
(−1)(p+1)(d+1)α(p+1) ∧ β(d−p+1) + (−1)d(p+1)∑

I

ΓI(p+1) ∧ ΞI(d−p) ∧ eI
]
.

(C.16)
The bulk terms (C.14) consist of two types of terms: the terms which ensure the flatness
conditions on the gauge fields (C.15) introducing auxiliary fields, M (d−p), N I(d−p−1), O(p),
P I(p), and the ones that correspond to invertible phases (C.16). Up to total derivative, the
bulk terms (C.14) respect the gauge symmetries (C.9) and (C.11) jointly with

M (d−p) → M (d−p) + (−1)d−pλ
(d−p)
b , N I(d−p−1) → N I(d−p−1) + (−1)d−p−1λ

I(d−p−1)
B

O(p) → O(p) + (−1)d(p+1)+1λ(p)
a , P I(p) → P I(p) + (−1)d(p+1)+dλ

I(p)
A . (C.17)

More explicitly, under the transformations (C.9), (C.11) and (C.17), (C.14) gives

δLinflow = − N

2π
d

[
λ

(d−p)
b ∧ α(p+1) +

∑
I

λ
I(d−p−1)
B ∧ ΓI ∧ eI

+ (−1)(d+1)(p+1)λ(p)
a ∧

(
β(d−p+1) + dλ

(d−p)
b

)
+ (−1)d(p+1)∑

I

λI
A ∧

(
ΞI(d−p) + dλ

I(d−p−1)
B + (−1)dλ

(d−p)
b

)
∧ eI

]
. (C.18)
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The terms inside the large bracket in (C.18) is identical to (C.13). This indicates that the
mixed ’t Hooft anomaly is canceled by (C.14) with (C.15) and (C.16).

Note that in the previous studies, such as [32–34], discussed anomaly inflow when gauging
subsystem symmetries in tensor gauge theories and exotic field theories. Here we discuss
the anomaly inflow mechanism for such symmetries, described by foliated field theories.
We leave elucidation of the relation between the anomaly inflow discussed there and the
present case for future study.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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