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1 Introduction

The AdS/CFT correspondence [1–3] has been brought up for a long time while there are
lots of attempts [4–12] aiming to construct the duality relation between the quantum gravity
theory with (asymptotically) flat background and the boundary conformal field theories. It
is not clear whether the flat/CFT could work in the same way as AdS/CFT or not until
recently the construction of flat/CFT dictionary from the bottom-up point of view [13].
Basic principles and underlying physical interpretations for flat holography dictionary are
discussed using the scalar field as an example. Here, following the same spirit, we will
establish the dictionary between the d + 2 dimensional bulk theories including gravity and
the d dimensional boundary conformal field theories on the celestial sphere thus make the
construction of flat/CFT duality more complete and concrete.

To study the gravitational theory on asymptotically flat background in a formal way, the
first step is to specify the definition of asymptotic flatness. The general guideline for defining
asymptotic flatness is that it must make the spacetime close enough to flat case while the
deformations should at the same time contain enough non trivial physical contents for us
to investigate. For example, the well studied Bondi gauge [14–16] in gravity literature. To
establish the flat/CFT dictionary, one also needs to construct the map of data between the
bulk and boundary but there is no clue on how to decompose the bulk data in Bondi gauge.
Noting that Minkowski spacetime is foliated by AdS hyperboloids and the specific map of
data for AdS/CFT is clearly studied in terms of Fefferman Graham coordinates [17–22],
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therefore in this paper we choose to define the asymptotically flat spacetime in terms of
Fefferman Graham like coordinates written as

ds2 = −dτ2 + τ2
(

d2ρ

4ρ2 + ρgij(ρ, x)dxidxj

)

+ τ

ρ2 m(ρ, x)d2ρ + τρ σij(ρ, x)dxidxj + τAi(ρ, x)dρdxi + · · · , (1.1)

where the first line is the leading contribution to the spacetime coming from the asymptotic
AdS slices and the second line is the subleading contribution for large τ . We will see that
most of the non trivial physical results in addition to the AdS/CFT duality would come
from the existence of such subleading sector. In section 2, we will explore such gauge in a
careful way by determining the asymptotic symmetries and solving the Einstein equation at
different order of τ and ρ. The strategy here is that we choose to expand the parameters
gij(ρ, x), m(ρ, x), σij(ρ, x), Ai(ρ, x) in terms of 1/ρ and determine the constraints between the
coefficients g

(2k)
ij (x), m(2k)(x), σ

(2k)
ij (x), A

(2k)
i (x) by solving the Einstein equations Rµν = 0

at the zero and first order of 1/τ .
After the study of asymptotically flat spacetime, for d = 2, we propose the flat/CFT

dictionary as

exp
(
iSgr,ren[G]

)
=
〈
exp 1

2

∫
S2

d2x
√

Ḡ Ḡij Tij

〉
(1.2)

where G and Ḡ are the bulk metric and the background metric for the CFT, respectively.
Tij is the energy-stress tensor of the boundary CFT. To make such dictionary well defined
and work the same way as the AdS/CFT dictionary, one further needs to perform the proper
renormalisation procedure on the bulk gravitational action Sgr[G] making it finite and to
specify the exact map of data between two sides. Here the exact map means that given the
bulk metric we should be able determine boundary data Ḡ and Tij or vice versa. These
are two main obstacles during the development of flat holography dictionary and we will
discuss them in section 3.

In the context of AdS/CFT, one needs to perform holographic renormalisation in order
to obtain the finite renormalised action Sgr,ren[G]. The infinity coming from the integral over
the whole spacetime is treated as the IR divergence and is regulated by choosing the AdS
spatial radius ρ as the IR cut-off. Here for the flat spacetime, we have one more timelike
non-compact direction labeled by τ and we simply choose to impose a bound L on it, i.e.
τ ∈ [0, L]. After performing the holographic renormalisation in the given interval [0, L],
we obtain the renormalised gravitational action and then further propose the map of data
between bulk and boundary as

Ḡij = g
(0)
ij + 1

L
σ

(0)
ij + · · · , (1.3)

where Ḡij = g
(0)
ij is originally the AdS/CFT map and now we are taking the soft sector into

consideration treating L as the energy cut-off of the boundary CFT. Using the flat/CFT
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dictionary, we obtain a specific expression for the energy stress tensor ⟨Tij⟩, given by

⟨Tij⟩ = iL2

16πGN
(g(2)

ij − g
(0)
ij Tr g(2))−

iL

8πGN

(
(Trσ(2) − σ

(0)
kl gkl

(2)) g
(0)
ij (1.4)

+Tr g(2)σ
(0)
ij − σ

(2)
ij + 2m(0)(g(2)

ij − g
(0)
ij Tr g(2))

)
+ · · · .

Moreover, by considering the anomalies of the energy-stress tensor ⟨T i
i ⟩, the central charge

is then determined to be

c = i3L2

4GN
+ iML3(α − 2)

2GN
(1.5)

where M = m(0) and α are constants characterising the behaviour of asymptotically flat
spacetime. The behaviour of the leading term is already argued in the work [23–25] and
here we determine its value in a precise way. With the help of flat/CFT dictionary, we can
in principle determine all the subleading contributions and in this paper we just present
the first order term.

The Einstein equations will impose constraints on the parameters in the metric and those
constrains on the boundary will correspond to the Ward identity of the stress tensor. The
story for AdS/CFT or for the hard sector is that the bulk equation of motion implies that
the conservation of energy-stress tensor ∇j⟨Tij⟩ = 0. By checking the Einstein equations
at the first order, we find that it will not give us the conservation of the soft energy-stress
tensor while we have

∇̄j⟨Tij⟩ =
iL

16πGN
(8∇im

(2) + 4M∇i Tr g(2) − σmk
(0) ∇mg

(2)
ki ), (1.6)

where ∇̄i, ∇i are the covariant derivative with respect to Ḡij , g
(0)
ij , respectively. Thus one

can interpret the soft modes as the radiation modes which generate flow of energy at the null
boundary leading to a non conserved energy-stress tensor from the boundary point of view.

2 Fefferman Graham gauge

In this section, we will start from the coordinate for asymptotically flat spacetime then recast
it to the asymptotically AdS form. For the spacetime of dimension d + 2, we first introduce
the standard coordinate Xµ for µ = 0, 1, · · · , d + 1 in which the flat metric takes the form
η00 = −1, η11 = · · · ηd+1,d+1 = 1. The Euclidean AdS of dimension d + 1 can be regarded as
the hyperboloid embedded in the d + 2 flat spacetime given by the relation1

−(X0)2 + (X1)2 + · · ·+ (Xd+1)2 = −τ2, (2.1)

in which τ ≥ 0 is the radius of the AdS surface.
Motivated by such foliation, we now choose to write the asymptotically flat spacetime

given by the metric G(X) into the form

ds2 = Gµν(X)dXµdXν = −dτ2 + τ2Ĝab(τ, y)dyadyb, (2.2)
1Such patch is called Milne wedge for Minkowski while one can study Rindler wedge by the analytic

continuation of the radius τ → iτ . The Rindler wedge is sliced by dS hypersurfaces.
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where a, b = 1, · · · , d+1 and we have fixed the gauge in order to make the dτdya term vanish.
One can always manage to find such gauge by performing local diffeomorphism transformation.
For flat spacetime, the metric Ĝab will be independent of τ and reduced to the metric for
AdSd+1 described by y while it will become asymptotically AdS when the spacetime is near
flat. At the null boundary, we can expand the metric Ĝab(τ, y) around 1/τ = 0 written as

Ĝab(τ, y) = Ĝ0
ab(y) + Ĝ1

ab(y)
1
τ
+ · · · = Ĝ0

ab + hab(τ, y), (2.3)

in which Ĝ0
ab(y) is the metric for d + 1 dimensional asymptotically AdS while Ĝn

ab(y) are
higher order corrections and they together form a complete description of asymptotically flat
spacetime. We put all the higher order corrections into the term hab. In this article, to study
asymptotically AdS spacetime G0

ab, we choose to use Fefferman and Graham coordinates
written as

Ĝ0
abdyadyb = 1

r2 (dr2 + gij(r, x)dxidxj) (2.4)

= dρ2

4ρ2 + ρ gij(x, ρ)dxidxj , (2.5)

in which y = (r, xi) for i = 1, · · · d are coordinates on the AdS hyperboloid and ρ = 1/r2.
The d dimensional metric gij(x, ρ) has been extensively studied in the AdS/CFT literature
and the main method is that one can organise the data by doing expansion of the order
ρ for ρ → ∞. The leading term will contribute to the AdS spacetime while lower order
terms are asymptotically AdS corrections.

2.1 Asymptotic symmetries

To illustrate the spacetime structure introduced above in a more precise way, for simplicity,
we take d = 2 as an example therefore the spacetime becomes asymptotically Minkowski.
In this case, the metric is then given by

ds2 = −dτ2 + τ2
(

d2ρ

4ρ2 + ρ dzdz̄ + · · ·
)

+ τ

ρ2 m(ρ, z, z̄)d2ρ + τρ σzz̄(ρ, z, z̄)dzdz̄ + 2τAz(ρ, z, z̄)dρdz + τρ σzz(ρ, z, z̄)dzdz

+c.c. + · · · , (2.6)

in which the Minkowski space is written in terms of Milne coordinates (τ, ρ, z, z̄) at the first
line while the first order deviations with respect to τ are described by the functions m(ρ, z, z̄),
Az(ρ, z, z̄), σzz̄(ρ, z, z̄), σzz(ρ, z, z̄) together with the corresponding complex conjugates. The
dots in the first line represent the asymptotically AdS deformation while the dots in the
third line represent higher order contributions according to 1/τ . Written in the form of
Gµν , the metric are

Gρρ = τ2

4ρ2 + τ

ρ2 m +O(τ0) (2.7)
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for ρρ component and for zz̄ component we have

Gzz̄ = τ2ρ

2 + τρ σzz̄ +O(τ0). (2.8)

At leading order, Gρz Gzz will vanish while for asymptotic flat spacetime there could be
subleading contribution like

Gρz = τAz +O(τ0) Gρz̄ = τAz̄ +O(τ0) (2.9)

and
Gzz = τρ σzz +O(τ0) Gz̄z̄ = τρ σz̄z̄ +O(τ0). (2.10)

Now, we will study asymptotic symmetry which is the diffeomorphism that preserves the
metric of the form shown in (2.6). Given the Killing vector ξ(τ, ρ, z, z̄), the variation of
the metric δGτρ is then deduced to be

δGτρ = −∂ρξτ + τ2

4ρ2 ∂τ ξρ + τ

ρ2 m∂τ ξρ + τAz∂τ ξz + τAz̄∂τ ξz̄ +O
( 1

τ2

)
(2.11)

and for δGτz we have

δGτz = −∂zξτ + τ2ρ

2 ∂τ ξz̄ + τAz∂τ ξρ + τρ σzz∂τ ξz + τρ σzz̄∂τ ξz̄ +O
( 1

τ2

)
, (2.12)

in which we have shown the variation up to O
(

1
τ

)
and higher order terms are omitted.

For other terms we have

δGzz̄ = τ2

2 ξρ + τ2ρ

2 (∂zξz + ∂z̄ξz̄) +O(τ), (2.13)

δGzz = τ2ρ ∂zξz̄ +O(τ), (2.14)

δGρz = τ2

4ρ2 ∂zξρ + τ2ρ

2 ∂ρξz̄ +O(τ), (2.15)

δGρρ = τ2

2ρ3 (ρ∂ρξρ − ξρ) +O(τ). (2.16)

To find out the asymptotic symmetries, one needs to determine the Killing vector ξ which
can be expanded as

ξµ(τ, ρ, z, z̄) = ξµ
0 (ρ, z, z̄) + 1

τ
ξµ

1 (ρ, z, z̄) + · · · (2.17)

where ξµ
k for k ∈ N are coefficients associated to the term 1/τk. For δGτρ and δGτz they

have to vanish since we are working in the gauge Gτρ = Gτz = 0. From the expression (2.11)
and (2.12), at the order of O(1) we obtain

∂zξτ
0 + ρ

2ξz̄
1 = 0, ∂ρξτ

0 + 1
4ρ2 ξρ

1 = 0. (2.18)

Moreover, we have

Azξρ
1 + ρ σzzξz

1 + ρ σz̄z̄ξz̄
1 = 0 (2.19)
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and
m ξρ

1 + ρ2Azξz
1 + ρ2Az̄ξz̄

1 = 0 (2.20)

when considering the δGτρ = δGτz = 0 of the order 1/τ . For δGzz and δGz̄z̄, the contribution
at the leading order τ2 should also vanish in order to preserve the condition of asymptotic
flatness therefore we have

∂zξz̄
0 = ∂z̄ξz

0 = 0. (2.21)

For the same reason we have

ρ∂ρξρ
0 − ξρ

0 = 0 (2.22)

when considering the component Gρρ in the (2.16). Then, together with the condition
δGττ = 0, the Killing vector can be written as

ξτ = χ(z, z̄), (2.23)
ξρ = 0, (2.24)
ξz = Y z(z, z̄), (2.25)
ξz̄ = Y z̄(z, z̄), (2.26)

where χ is an arbitrary function on z, z̄ and we have ∂zY z̄ = ∂z̄Y z = 0 therefore the BMS
group [14–16] is recovered at the leading order. The transformation of the spacetime metric
under such symmetry group is then given by

δgzz̄ = gzz̄(∂zY z + ∂z̄Y z̄) + Y z∂zgzz̄ + Y z̄∂z̄gzz̄ (2.27)
δgzz = 2gzz ∂zY z + Y z∂zgzz + Y z̄∂z̄gzz (2.28)
δAz = Y z∂zAz + Y z̄∂z̄Az + Az∂zY z (2.29)
δσzz = Y z∂zσzz + Y z̄∂z̄σzz + 2σzz∂zY z + 2χgzz (2.30)
δσzz̄ = Y z∂zσzz̄ + Y z̄∂z̄σzz̄ + (∂zY z + ∂z̄Y z̄)σzz̄ + 2χgzz̄ (2.31)

where we have used the complex metric gzz̄ for the hard sector. From the above translation
rules, one can see that the superrotation part described by Y z, Y z̄ will act on the leading
and subleading part of the metric while the supertranslation part described by χ will only
act on the subleading part.

2.2 Equation of motion

Now we turn to study the dynamics of the gravitational system. The general d+2 dimensional
asymptotic flat spacetime is described by the coordinate

ds2 = −dτ2 + τ2
(

d2ρ

4ρ2 + ρgij(ρ, x)dxidxj

)

+ τ

ρ2 m(ρ, x)d2ρ + τρ σij(ρ, x)dxidxj + τAi(ρ, x)dρdxi + · · · (2.32)

in terms of the real coordinates (τ, ρ, xi) for i = 1, . . . , d. In the first line, the metric
is mainly built up from asymptotically AdS hyperboloids. It describes the hard sector
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of the gravitational theory and manifests the superrotation symmetry. The second line
is the subleading contribution to the asymptotically flat spacetime according to 1/τ . It
describes the soft modes coming from the radiation and manifests the superrotation and
supertranslation symmetry.

In this section, we are going to determine the constraints on the metric gij and the
soft parameters by checking the Einstein equations Rµν = 0 at different orders. Starting
with the connections, they are given by

Γτ
ab = τĜab +

1
2τ2∂τ Ĝab (2.33)

and
Γa

bτ = δa
b

τ
+ 1

2Ĝac∂τ Ĝcb (2.34)

while we have Γτ
ττ = Γτ

τa = Γa
ττ =0 and Γa

bc = Γ̂a
bc[Ĝ]. In our definition the Ricci tensor

is now given by

Rab[G] = Rd+1
ab [Ĝ]− Γτ

abΓc
cτ + 2Γc

aτΓτ
bc − ∂τΓτ

ab, (2.35)

which can be further decomposed into

Rab[G] = Rd+1
ab [Ĝ]− dĜab

−d + 1
2 τ∂τ Ĝab −

1
2τ2∂2

τ Ĝab −
τ

2 ĜabĜ
cd∂τ Ĝcd

+1
2τ2∂τ Ĝcb∂τ ĜdaĜcd. (2.36)

For ττ component we have

Rττ [G] = 1
τ

Ĝab∂τ Ĝab +
1
2∂τ (Ĝab∂τ Ĝab) +

1
4ĜacĜbd∂τĜab∂τ Ĝcd (2.37)

while for τa one can deduce that

Raτ [G] = 1
2∇̂a(Ĝbc∂τ Ĝbc)−

1
2∇̂b(Ĝbc∂τ Ĝca), (2.38)

where the covariant derivative is with respect to the metric Ĝab. In practice, to study the
equation of motion at different orders, we choose to write the Ricci curvature perturbatively
according to the expansion (2.3), which means we have

Rµν [G0 + h] = R0
µν [G0] + 1

τ
R1

µν + · · · (2.39)

where the zero order mainly comes from the hard sector of the metric described by G0 and
the soft modes will go into the first or higher order terms.

2.2.1 Zero order

For convenience, we will denote Ĝ0
ab(y) as Ĝab(y) in this subsection and consider the equation

of motion at leading order of 1/τ . In such case, connections involving τ component are given
by Γτ

ab = τĜab, Γa
bτ = 1

τ δa
b and Γτ

ττ = Γτ
τa = Γa

ττ = 0. For the connections not involving

– 7 –



J
H
E
P
0
9
(
2
0
2
4
)
0
6
0

τ component denoted as Γa
bc, they are given by the direct d + 1 dimensional calculation

using the AdS metric τ2Ĝab(y). Now, to solve the vacuum Einstein equation with zero
cosmology constant

Rµν [G] = 0, (2.40)

we should deduce the Ricci curvature R written as R[G] = Ra
a[G] + Rτ

τ [G]. One can easily
verify that Rτµ = 0, while for Rab one has

Rab[G] = R
(d+1)
ab [Ĝ]− dĜab, (2.41)

in which we have introduced the notion R(d+1)[Ĝ] to denote that the Ricci curvature induced
on the d + 1 dimensional AdS hyperboloid. Therefore, the Ricci curvature for near flat
spacetime is then deduced to be

R[G] = R(d+1)[Ĝ]− d(d + 1) (2.42)

and the Einstein equation in (2.40) is equivalent to

R
(d+1)
ab [Ĝ]− 1

2R(d+1)[Ĝ] Ĝab = ΛĜab (2.43)

for
Λ = −d(d − 1)

2 . (2.44)

We can treat Λ as the effective cosmology constant and τ as the effective AdS radius since we
are recasting the curvature R[G] for d + 2 dimensional near flat metric Ĝµν into the induced
curvature R(d+1)[Ĝ] for d + 1 dimensional asymptotically AdS metric Ĝab(y).

In terms of Fefferman Graham gauge, the study of equation of motion at zero order
is equivalent to the study of the differential equation for gij(x, ρ). The function gij(x, ρ)
are determined by [18–21]

ρ2(2ρg′′ij + 4g′ij − 2ρglmg′mjg′li + ρglmg′lm g′ij) + Rij [g] + (d − 2)ρ2g′ij + ρ2glmg′lm gij = 0

∇i( glmg′lm)−∇jg′ij = 0

gij(ρg′′ij + 2g′ij)−
1
2ρgikgjmg′ijg′km = 0

(2.45)
according to the equation (2.40) or (2.43) and the covariant derivative is with respect to
the metric gij . A brief study of such equation is shown in appendix B and here we have
g′ij = ∂ρgij . Moreover, for even d, one has the expansion

gij(x, ρ) = g
(0)
ij + ρ−1g

(2)
ij + · · ·+ ρ−d/2g

(d)
ij + cijρ−d/2 log ρ + · · · (2.46)

when ρ goes to infinity. Here, following the convention from the previous literature, the
superscript 2k in coefficients g

(2k)
ij are used to keep track of the order of r. Or equivalently, k

is used to keep track of the order of ρ. Coefficients g
(2k)
ij are uniquely determined by the lower

order terms via checking the equation (2.45) at the order of ρk while such procedure will fail
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until 2k = d. In such case, the equation of motion will only allow us to determine Tr g(d) and
it also leaves us freedom to introduce the traceless algorithm term parameterised by cij . Fox
example, by checking the first two equations at the leading order, one can obtain the relation

Rij [g(0)] = (d − 2)g(2)
ij + g

(0)
ij Tr g(2) (2.47)

together with

∇i(Tr g(2))−∇jg
(2)
ji = 0 (2.48)

where the covariant derivative ∇i and the trace Tr now are with respective to the metric g
(0)
ij

while we will keep such convention in the following part of this paper. One can see that g
(2)
ij is

fully determined as a function of g
(0)
ij for d ̸= 2 while only the trace part is fixed when d = 2.

2.2.2 First order

We have studied R0
µν in the previous section while here we are going to deal with R1

µν

therefore determine equation of motion at first order. It is easier to calculate the Rττ and
Rτa components by checking the formula (2.37) and (2.38). The Rττ = 0 will be trivial
at first order while for R1

τa, we have

R1
τa = 1

2∇̂a(Ĝbc
0 Ĝ1

bc)−
1
2∇̂

bĜ1
ab (2.49)

where the covariant derivative ∇̂a is with respect to the metric Ĝ0
ab. For the Rab components,

we have

R1
ab = Rd+1,1

ab − d + 1
2 Ĝ1

ab +
1
2Ĝ1

abG
cd
0 G1

cd (2.50)

from which one can see that the first order contribution Rd+1,1
ab of Rd+1

ab will also contribute
to the first order R1

ab therefore it will make the results more complicated. The strategy
here is to determine the first order term in Rd+1

ab then add the other terms in (2.50) which
also contribute at the first order.

Such soft sector is described by the first order term hµν . More precisely, it is determined
by the parameter m, σij and Ai once the gauge is fixed. To simplify the calculation further,
now we consider the expansion of parameter m, σij and Ai by the order 1/ρ. Taking the
parameter m(ρ, x) for example, we have

m(ρ, x) = m(0)(x) + 1
ρ

m(2)(x) + · · · , (2.51)

in which m(0)(x) is the leading term while m(2)(x) is the subleading contribution. m(0), m(2)

describe the zero order and first order contribution to the soft sector according to the spatial
radius of AdS hyperboloid ρ. For the parameter σij , Ai we adopt similar convention and
the corresponding coefficients are denoted as A

(2k)
i and σ

(2k)
ij .

Therefore following the equation of motion given by the Einstein equation explicitly
showed in the appendix C, we obtain the constraints

Trσ(0) = 4dm(0) (2.52)
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by considering Rρρ = Rρτ = 0. Moreover we have

A
(0)
i = 0 (2.53)

by checking the equation of motion Riτ = 0 at the zero order of 1/ρ. For the equation
Rij = 0, again at leading order, we obtain

d − 1
2 σ

(0)
ij + 1

2g
(0)
ij Trσ(0) − 2(2d − 1)m(0)g

(0)
ij = 0, (2.54)

which is compatible with the constraint (2.52) after taking the trace on both sides. One
can also obtain the relation

∇jσ
(0)
ji = 4∇im

(0) (2.55)

after acting the covariant derivative ∇j on both sides.
Now we consider the Einstein equations at first order of 1/ρ in order to determine m(2),

A
(2)
i and σ

(2)
ij . By checking the equation of motion Riτ = 0 at the first order, we have

2∇im
(0) = A

(2)
i (2.56)

while for Rρi = 0 we obtain the relation

3d − 1
2 A

(2)
i − d∇im

(0) + 1
4∇

jσ
(0)
ij − 1

4∇i Trσ(0) = 0. (2.57)

Given the above equation, we can deduce that A
(2)
i = 0 after using the relation (2.52), (2.55)

and (2.56). This tells us that the parameter m(0) should be a constant and the zero order
coefficient σ

(0)
ij is conserved with respect to the metric g

(0)
ij , written as

Trσ(0) = 4dM ∇jσ
(0)
ij = 0 (2.58)

where we have denoted the parameter m(0) as constant M . For the equation of motion
Rρτ = 0 and Rρρ = 0, they will give us the relations

dm(2) + 1
4 Trσ(2) − Tr g(2)m

(0) = 0 (2.59)

and
d

2m(2) + 1
8 Trσ(2) − 1

8gij
(2)σ

(0)
ij = 0. (2.60)

From these two equations one can see that, in order to make m(2) and σ
(2)
ij solvable, one

should further impose constraint on gij
(2)σ

(0)
ij thus we have

gij
(2)σ

(0)
ij = 4Tr g(2)m(0). (2.61)

To obtain σ
(2)
ij , one needs to check Rij = 0 explicitly. The equation is more involved and

here we just present the result
3− d

2 σ
(2)
ij + (6− 4d)m(2)g

(0)
ij − 6g

(2)
ij m(0) − 1

2(Trσ(2) − glk
(2)σ

(0)
lk )g(0)

ij (2.62)

+4Tr g(2)m(0)g
(0)
ij − Tr g(2)σ

(0)
ij + 1

2 Trσ(0)g
(2)
ij + δRij = 0,

– 10 –
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where Rij

[
g + 1

τ σ
]
= Rij [g] + δRij ,2 and we can see that, given the value of m(2), σ

(2)
ij is

determined by solving the equation. After taking the trace on both sides, we have
3− 2d

2 Trσ(2) + (6− 4d)dm(2) − 6Tr g(2) m(0) + d

2glm
(2)σ

(0)
lm + 2dm(0) Tr g(2) = 0, (2.63)

from which we will obtain the same relation as (2.61) after the substitution of (2.59) or (2.60).
From above calculation, we see that the value of m(2k) are related to the trace of

soft metric coefficients Trσ(2k). More precisely, by considering the constraint (2.52), (2.59)
and (2.61), one can find that they obey the more compact relation

Tr(2k)(σ − 4mg) = 0 (2.64)

where Tr(2k) is defined as the trace over the metric g
(2k)
ij and we denote Tr(0) = Tr. The

relation between (2.64) and the Einstein equations is not clear but we expect this is true
when going to the higher order.

Further more, by checking the equation of motion Riτ = 0 at the order of 1/ρ2, we
obtain the relations involving ∇jσ

(2)
ij written as

(2− d)A(4)
i + 2∇im

(2) + 1
2∇i(Trσ(2) − gkl

(2)σ
(0)
kl )

−1
2∇

jσ
(2)
ij + 1

4∇kgmk
(2) σ

(0)
mi +

1
4∇ig

mn
(2) σ(0)

mn = 0 (2.65)

where we have used the relation (2.48) and the last two terms come from the variation of
the connection δΓi

jk. It turns out that, although a little bit tedious, equation (2.65) will be
useful for us to study Ward identities of the boundary conformal field theory with the help of
flat/CFT dictionary. Moreover, by studying the equation of motion Riρ = 0 at second order
of 1/ρ2 one should be able to determine A

(4)
i once m(2) or equivalently Trσ(2) is fixed.

3 The flat/CFT dictionary

The Einstein-Hilbert action for the gravitational theory on a four dimensional asymptotically
flat manifold M with boundary ∂M is given by [26]

Sgr[G] = 1
16πGN

(∫
M

d4X
√
−G R[G] +

∫
∂M

d3X
√
−γ 2K

)
, (3.1)

in which K is the trace of the second fundamental form and γ is the induced metric on
the boundary. To evaluate the action, we first choose to use the equation of motion (2.40)
and set the boundary as the surface with constant AdS spatial radius ρ = 1/ϵ. Then the
regulated action is given by

Sgr,reg = 1
16πGN

∫ ∞

0
dτ

∫
S2

d2x
√
−γ 2K

∣∣∣
ρ=1/ϵ

(3.2)

where we have γττ = −1, γij = τ2Ĝij .3

2More precisely, we have δRij = 1
2 (∇m∇mσij + ∇i∇jσm

m − ∇k∇iσ
k
j − ∇k∇jσk

i ). Then, using the rela-
tions (2.52), (2.54) and the fact that m(0) is a constant, we have ∇kσ

(0)
ij = 0 therefore δRij = 0.

3In fact, there are three components that belong to the boundary ∂M . One is at ρ = 1/ϵ while the other
two are at τ = 0 and τ = ∞. In this paper we focus on the renormalisation of the divergence at ρ = 1/ϵ. For
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Moreover, to calculate the integral over K, one should notice the relation Kij = ∇̂inj

thus we obtain4

∫ ∞

0
dτ

∫
d2x

√
−γ 2K

∣∣∣
ρ=1/ϵ

=
∫ ∞

0
τdτ

∫
S2

d2x

√
Ĝ

Ĝρµ√
Ĝρρ

(2Ĝij∂iĜjµ − Ĝij∂µĜij)
∣∣∣
ρ=1/ϵ

(3.3)

in which nµ is the outward unit normal for the boundary ∂M . In our case, for the boundary
ρ = 1/ϵ, the only non-zero component is nρ =

√
Gρρ. To see the divergent part of the

regulated action in a more precise way, for even d, one can use the expansion for g shown
in (2.46) and extract the infinite part written as

Sgr,reg = 1
16πGN

∫ ∞

0
dττ

∫
S2

d2x
√

g(0)
(
ϵ−1a1(τ, x) + a0(τ, x) + log ϵ b(τ, x) +O(ϵ0)

)
,

(3.4)
where ai and b are the corresponding coefficients. To get the renormalised action Sgr,ren,
one should introduce the local and covariant counterterm Sgr,ct to eliminate the divergence,
which takes the form

Sgr,ct =
∫ ∞

0
dτ

∫
S2

d2x f(τ, z)
√
−γ +

∫ ∞

0
dτ

∫
S2

d2x g(τ, z)
√
−γ R [γ] + · · · (3.5)

where f , g are scalar functions of τ , x and they are determined by the coefficients ai, b

in (3.4). Given the renormalised action Sgr,ren = Sgr,reg + Sgr,ct together with the dictionary

exp
(
iSgr,ren[G]

)
=
〈
exp 1

2

∫
S2

d2x
√

Ḡ Ḡij Tij

〉
(3.6)

the CFT stress tensor Tij is then deduced to be

⟨Tij⟩ = lim
ϵ→0

2i√
Ḡ

δSgr,ren

δḠij
, (3.7)

where Ḡij is the background metric of the boundary CFT. Before going into the detail of
holographic renormalisation, here we briefly discuss the structure of renormalised gravity
effective action. Through the renormalisation procedure, the IR divergence is regulated by
choosing the AdS spatial radius ρ = 1/ϵ as the low energy cut-off. However, for the flat
spacetime, we also have timelike direction labelled by τ and here we treat it as the UV
cut-off from boundary point of view by specifying the range of integral 0 ≤ τ ≤ L. Therefore,
organized by the powers of L, the action takes the form

Sgr,reg = S0
gr,reg + S1

gr,reg + · · · . (3.8)

the integral along the surface of constant τ , we treat them as the assignment of initial and final data. The
treatment of the integral at the constant time surface is equivalent to the procedure that we fix the initial
modes by hand or inserting proper iε description in the path integral. More rigorously, like the treatment
for real time holography [27–29], one can choose to glue a Euclidean cap at τ = 0 surface and make the
divergence cancelled.

4We are abusing the notion here and ∇̂ means the covariant derivative with respect to the metric Ĝij .
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where S0
gr,ren is the leading contribution while S0

gt,ren is subleading. After performing the
integral of τ during the holographic renormalisation, we have

Sgr,ren = L2S0
gr,ren + LS1

gr,ren +O(logL), (3.9)

in which S0
gr,ren is the contribution to the renormalised action of the order L2 and S1

gr,ren is
the lower order term. We identify S0

gr,ren as the hard sector since it comes from the AdS
hyperboloid while the soft sector is identified as S1

gr,ren coming from soft modes in the metric.
Given the dictionary (3.6), to perform the calculation and make it work the same as

the AdS/CFT dictionary, we need the specific map between the boundary and bulk data
and here we propose the relation to be

Ḡij = g
(0)
ij + 1

L
σ

(0)
ij + · · · (3.10)

where the boundary background metric is expanded by the order of energy cut off L given
by the bulk data g

(0)
ij and σ

(0)
ij .

3.1 Hard sector

In this section, we choose to perform the holographic renormalisation for the hard sector
ignoring the soft contribution from hij . It turns out the treatment of the hard sector is
equivalent to the linear summation over all the AdS hyperboloid contribution and one can
regard this part as the review of AdS/CFT holographic renormalisation. At zero order,
the onshell action takes the form

Sgr,reg = −1
16πGN

∫ L

0
dττ

∫
S2

d2x
√

g 2ρ2
(2

ρ
+ gij∂ρgij

)∣∣∣∣∣
ρ=1/ϵ

(3.11)

and the counterterm is given by

Sgr,ct = − d − 1
8πGN

∫ L

0
dτ

∫
S2

d2x
1
τ

√
−γ. (3.12)

Now, following the above discussion, we will show the result for d = 2. In such case, g(0)ij
is the metric on the sphere and the regulated stress tensor T reg

ij on the celestial sphere is
therefore given by

T reg
ij = iL2

16πGN
(Kij − γijK) = iL2

16πGN
ρ
(
(d − 1)gij + ρgijglk∂ρglk − ρ∂ρgij

)∣∣∣
ρ=1/ϵ

,

(3.13)

in which L is the upper bound of the integral over τ and we have set ρ = 1/ϵ. After the
subtraction of the counterterm

T ct
ij = − iL2

16πGN

(d − 1)gij

ϵ
+ · · · , (3.14)

one then obtains the stress tensor

⟨Tij⟩ =
iL2

16πGN
(g(2)

ij − g
(0)
ij Tr g(2)) (3.15)

– 13 –
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by taking the limit ϵ → 0. Moreover, with the help of the relation

g(2)ij = 1
2(Rg(0)ij + tij), Tr t = −R, (3.16)

where R = R [g(0)] and tij is a conserved symmetric tensor ∇itij = 0, we have

⟨Tij⟩ =
iL2

32πGN
tij . (3.17)

Therefore, after taking the trace, the Weyl anomaly is then deduced to be

⟨T i
i ⟩ = − c

24π
R, (3.18)

in which c is the central charge on the celestial sphere

c = i3L2

4GN
. (3.19)

One can see the central charge will approach i∞ as argued in [23–25] if one treats L as
the scale of energy.

The infinite behaviour of the central charge can be easily understood given the detail of
the flat/CFT dictionary, which has been extensively studied in the case for scalar fields [13].
The onshell scalar field is studied by the method of variable separation which splits the τ

direction and other coordinates on the AdS hypersurfaces and it turns out that one could
decompose a single scalar field into infinite number of modes labelled by the complex number
k making the scale dimension of the dual operator live on the principal series. Here we have
the metric Gµν while it is hard to apply the variable separation method to split the nonlinear
Einstein equation into the τ dependent part and the other part which describes the equation
of motion on the AdS hyperboloid therefore decompose the metric into the form of

Gµν(τ, ρ, x) −→ Gµν(ρ, x; k) (3.20)

labelled by the parameter k. But here it is still reasonable to assume that the bulk metric
is dual to infinite number of operators on the boundary described by stress-tensor modes
denoted as Tij(x; k) and the energy-stress tensor calculated here are in fact the summation
of all these modes. Each mode will contribute to the central charge in a finite way while
the total effect will become infinite after summing over all the modes labelled by k treated
as the frequency space dual to the τ direction.

3.2 Soft sector

Now, based on our study of the hard sector, we move on to the study of soft sector. In
order to obtain the next leading order correction S1

gr,ren, one needs to consider the higher
order terms in 1/τ of the onshell action (3.3)

S0
gr,reg + S1

gr,reg = −1
16πGN

∫ L

0
dττ

∫
S2

d2x

√
Ĝ

4ρ√
Ĝρρ

(
(d + ρgij∂ρgij) (3.21)

− 1
τ
(2∇iAi − gijρ∂ρσij + σijρ∂ρgij)

)
,

– 14 –
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therefore regulated action at the first order now becomes

S1
gr,reg = L

8πGN

∫
S2

d2z
√

g(0) ρ
(
2∇iAi − ρgij∂ρσij + σijρ∂ρgij (3.22)

− (2m + 2dM)(d + ρgij∂ρgij)
)∣∣∣

ρ=1/ϵ

where the integral over τ has already been performed and the contribution in the second
line comes from the determinant

√
Ĝ and the norm vector factor

√
Gρρ. Together with the

expression of the extrinsic curvature

Kij = −ρ(ρ∂ρgij + gij) +
ρ

τ

(
∇iAj +∇jAj − ρ∂ρσij − σij + 2m(ρ∂ρgij + gij)

)
, (3.23)

one can obtain the soft stress tensor T 1,reg
ij

T 1,reg
ij = iL

8πGN
ρ
(
(∇iAj +∇jAi − ρ∂ρσij − σij) + (ρglk∂ρglk + d)σij (3.24)

−(2∇iA
i − ρglk∂ρσlk + ρσlk∂ρglk)gij + 2m(ρ∂ρgij + gij)− 2m(ρglk∂ρglk + d)gij

)
by checking the first order of Kij − γijK then performing the integral over τ like we have
done for the hard sector. From the above expression one can see the stress tensor will go to
infinity at large ρ. One of the divergent term comes from ∇iAj while the other term comes
from the first order metric on the sphere σij . However, taking the constraint A

(0)
i = A

(2)
i = 0

and the counterterm

Sgr,ct = − d − 1
8πGN

∫ L

0
dτ

∫
S2

d2x τ

√
Ĝ
(
4ρ2Ĝρρ

)− 1
2 (3.25)

into consideration, we have

T ct
ij = iL2

16πGN
(1− d)ρ

(
gij +

2
L
(σij − 2mgij)

)
+ · · · (3.26)

therefore the corresponding finite renormalised stress tensor at first order becomes

⟨T 1
ij⟩ = − iL

8πGN

(
(Trσ(2) − σ

(0)
kl gkl

(2)) g
(0)
ij +Tr g(2)σ

(0)
ij

− σ
(2)
ij + 2m(0)(g(2)

ij − g
(0)
ij Tr g(2))

)
. (3.27)

3.3 Ward identities

Given the flat/CFT dictionary and the specific expression of the energy-stress tensor, now
we turn to study Ward identities concerning ⟨Tij⟩ with the help of constraints on the gravity
metric studied before. For Weyl anomaly, we will perform the calculation from the boundary
point of view which means that the indices now are raised and lowered by the metric Ḡij .
After taking the trace, for the soft stress tensor, we have5

⟨T i
i ⟩1 = − iL

16πGN

(
2(d − 1)

(
Trσ(2) − σ

(0)
ij gij

(2) − 2m(0) Tr g(2))
+Tr g(2) Trσ(0) − σ

(0)
ij gij

(2)

)
, (3.28)

5Here ⟨T i
i ⟩1 represents the first order of Ḡij⟨Tij⟩, i.e. ⟨T i

i ⟩1 = ⟨T 1
ij⟩gij

(0) −
1
L
⟨T 0

ij⟩σij
(0).
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which is equivalent to

⟨T i
i ⟩1 = iL

πGN
m(2) (3.29)

after using the relation (2.59), (2.61) and setting d = 2. As we have studied, m(2) could be
an arbitrary scalar function therefore it will contribute to the anomaly at the subleading
order in an arbitrary way. At the same time, one should note that the form of anomaly are
highly constrained in two dimensional conformal field theory [30, 31], the anomaly should
be proportional to the Euler density, which means one should consider a special class of
asymptotically flat spacetime in order to make the boundary field theory conformal. Here,
we choose to consider a set of solutions of m(2) written as

Trσ(2) = αM Tr g(2) dm(2) =
(
1− α

4

)
M Tr g(2) (3.30)

satisfying the constraint (2.59) and (2.60) for a real parameter α. Such choice could be
treated as the fix of gauge for soft sector like the gauge of asymptotic AdS hyperboloids are
fixed in terms of Fefferman Graham coordinates where G0

ρρ = 1/4ρ2. Therefore, we will have

⟨T i
i ⟩1 = − iL

16πGN
(2α − 8)Tr g(2)m(0). (3.31)

In such case, we can treat the contribution from m(2) as part of the central charge at
subleading order. To determine the central charge at the order of 1/L, we can use the relation

⟨T i
i ⟩ = − c

24π
R [Ḡ]. (3.32)

where R[Ḡ] = R[g0] + 1
L(g

ij
(0)δRij − σij

(0)Rij [g(0)]). By checking the formula (3.31) and (3.32)
specifically, we have

c = i3L2

4GN
+ iML3(α − 2)

2GN
(3.33)

from which we can see the central charge will have first order correction that depends on
the geometry of spacetime characterised by the parameter M and α while we leave higher
order correction for further investigation.

Before going to study the conservation laws of energy-stress tensor, we first recall some
lessons learnt from the AdS/CFT correspondence. For the asymptotically AdS case, the
spacetime behaves like a box and no particle could finally reach the infinity while this fits
the calculation that the dual CFT energy-stress tensor is conserved. Following our definition
of asymptotic flatness, the hard sector is built up by the AdS hyperboloid therefore the
dual energy-stress tensor on the celestial sphere is expected to be conserved at leading
order, written as

∇̄j⟨Tij⟩0 = 0, (3.34)

which can be deduced using (2.61) and (3.15). Comparing with the AdS spacetime, one
of the main feature for asymptotically flat spacetime is that there could be gravitational
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radiation at the boundary and thus the system is not strictly closed i.e., energy could be
carried in or away by particles passing through the null boundary. Now, for the stress
tensor at subleading order, we have

∇̄j⟨Tij⟩1 = − iL

16πGN

(
2∇i(Trσ(2) − σ

(0)
kl gkl

(2))− 2∇jσ
(2)
ji

+ σmk
(0) ∇mg

(2)
ki +∇j Tr g(2)σ

(0)
ij

)
(3.35)

where we have used the relation (2.48) and the covariant derivative ∇̄i is with respect to
the background metric Ḡij of the boundary CFT. Moreover, taking the constraint (2.65)
into consideration, we have

∇̄j⟨Tij⟩ =
iL

16πGN
(8∇im

(2) + 4M∇i Tr g(2) − σmk
(0) ∇mg

(2)
ki ), (3.36)

from which we can see that the stress tensor is not conserved at the subleading order due
to the existence of soft modes therefore we can interpret such soft modes as the radiation
modes which generate the flow of energy through the null boundary.

4 Conclusion

In this paper, we have developed the holographic renormalisation procedure for the grav-
itational action on the asymptotically flat background and then obtained the flat/CFT
dictionary between the d + 2 dimensional theory in the bulk and the d dimensional CFT on
the celestial sphere. Based on the construction of flat/CFT dictionary, we get a precise map
between the asymptotic bulk data and the conformal energy stress tensor. By considering
the conformal anomalies, we deduce the value of the central charge up to the first subleading
order, which comes from the soft sector of the energy stress tensor. It turns out that the
central charge takes a complex value approaching infinity. Such behaviour has already been
argued for long while here, given the flat/CFT duality relation, we may ask if the complex
central charge implies that the boundary CFT is not unitary and we will leave this to further
investigation. Moreover, we can see the value of the central charge is expressed as power
expansion according to the energy cut-off L and the physical implication of such expansion
is also not clear from either bulk or boundary point of view.

The introduction of the cuff-off L can be treated as the extra input when performing
the renormalisation for the gravitational action. For the scalar case [13], we also have the
integral over τ from zero to infinity while there is no need to introduce the cut-off to make
the action finite. That is because the integral over τ together with the weight function and
τ modes will produce orthogonal relations telling us the coupling between different modes
labelled by k. We have seen such orthogonal relation by solving the Klein-Gordon equation
explicitly while here the treatment for the Einstein equation will be much harder as we have
briefly discussed in section 3. In this paper, we have not studied each graviton mode in a
microscopic way while we choose to study those infinite number of modes macroscopically
by introducing the cut-off L.

As we have seen, for the flat/CFT duality, most of the nontrivial results come from the
contribution of the soft sector. It will lead to a non-conserved stress-energy tensor from
the boundary point of view. Such stress tensor makes the behaviour of boundary CFT

– 17 –



J
H
E
P
0
9
(
2
0
2
4
)
0
6
0

more complicated while it enables us to investigate the gravitational bulk radiation from
the boundary point of view. Therefore the interpretation of the non-conserved part of the
energy-stress tensor is more like the introduction of heat bath or matter fields studied in
the AdS/CFT correspondence.

The definition of asymptotic flatness is clarified in the whole paper as (2.32) while one
may ask if we could consider the asymptotically flat spacetime in a more general sense. It is
interesting to explore how the renormalisation works when the Fefferman-Graham gauge is
broken. For example, one can consider the case that G0

ρρ takes an arbitrary form or G0
ρi ̸= 0.

For the spacetime in (2.32), the choice of spatial radius ρ on the AdS hyperboloid as the
IR regulator is straightforward since it will not break the asymptotic symmetry while the
development of holographic renormalisation will become more complicated if one wants to
deal with more generic metric.

For the soft sector, we also meet the similar problem like the gauge fixing of the AdS
hyperboloid and this comes from the freedom of the choice of Trσ(2) or equivalently m(2).
As we have seen, the trace part Trσ(2) tends to contribute to the subleading part of the
anomalies of the stress tensor ⟨T i

i ⟩ in an arbitrary way while the form of Weyl anomaly is
highly constrained from the CFT point of view. After the holographic renormalisation, to
make the field theory coming from the bulk gravitational theory conformal, we have to further
fix the gauge of Trσ(2) as shown in (3.30). Here we have the freedom to do so but this leads
to the problem that if all the asymptotically flat gravitational theory is dual to the CFT
on the boundary. In fact, the definition of asymptotically flat spacetime is a vague concept
in gravity as we have discussed in the introduction. In addition to the Ricci flat condition
Rµν = 0, one should also make the spacetime approach flat at infinity so that recover enough
flat space results and properties. On the other hand, the CFT is well studied thus such
mismatching makes the construction of flat/CFT duality challenging.

At the end, we illustrate some connections to the celestial holography. The duality
between the bulk metric and the boundary stress-energy tensor has also been studied in the
work [23, 32] in order to manifest the duality between bulk scattering soft theorems and
boundary Ward identities. Here we derived the expression for the boundary energy-stress
tensor with the guidance of the flat/CFT dictionary (3.6) while this enables us to determine
both the hard and the soft sector of the energy-stress tensor in terms of expansions from
bulk metric in a local way therefore boundary Ward identities will naturally correspond to
the Einstein equation in the bulk. It is interesting to quantize those gravitational modes
and find the relation between these two kinds of bulk gravity and boundary energy-stress
tensor duality. We will leave this to further investigation.
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A Asymptotic symmetries

Given the Killing vector ξ, we can then further write down the variation of the metric as

LξGµν = ξσ∂σGµν + Gµσ ∂νξσ + Gνσ ∂µξσ, (A.1)

in which the expression is true for generic metric. In this article we will work in the
Fefferman Graham gauge which means we have Gττ = −1 and Gτa = 0. In such gauge,
for ττ component, we have

LξGττ = ξσ∂σGττ + 2Gτσ ∂τ ξσ = −2∂τ ξτ (A.2)

while for the τρ and τz component we have

LξGτρ = Gτσ ∂ρξσ + Gρσ ∂τ ξσ (A.3)
= −∂ρξτ + Gρρ∂τ ξρ + Gρz∂τ ξz + Gρz̄∂τ ξz̄ (A.4)

and

LξGτz = Gτσ ∂zξσ + Gzσ ∂τ ξσ (A.5)
= −∂zξτ + Gρz∂τ ξρ + Gzz∂τ ξz + Gzz̄∂τ ξz̄. (A.6)

For the spatial ρzz̄ part, we have

LξGzz̄ = ξσ∂σGzz̄ + Gzσ∂z̄ξσ + Gz̄σ∂zξσ (A.7)
LξGzz = ξσ∂σGzz + 2Gzσ∂zξσ (A.8)
LξGρρ = ξσ∂σGρρ + 2Gρσ∂ρξσ (A.9)
LξGρz = ξσ∂σGρz + Gρσ∂zξσ + Gzσ∂ρξσ. (A.10)

B Fefferman and Graham coordinates

In terms of Fefferman and Graham coordinates (r, xi). The metric for asymptotic AdS
spacetime takes the form

Ĝrr = 1
r2 , Ĝij = gij

r2 , Ĝri = 0, (B.1)

in which the asymptotic behaviour is described by the function gij(r, xi). In such coordinates,
the connection is then given by

Γr
rr = −1

r
, Γr

ri = Γi
rr = 0. (B.2)

For the other components that involve r component, in terms of the function gij , the
connections can be written as

Γr
ij = −r2

2 ∂rĜij = gij

r
− 1

2∂rgij (B.3)

and

Γi
rj = 1

2Ĝik∂rĜkj = −
δi

j

r
+ 1

2gik∂rgkj (B.4)
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For the connections that do not involve the r component, they are determined by the function
gij and one can treat them as the connection of gij , i.e., Γi

jk = Γ̂i
jk[g].

Given the connections, we can use them to calculate the Ricci tensor following the
definition (C.2), the rr component is given by

Rd+1
rr [Ĝ] = ∂rΓk

rk + Γl
rkΓk

rl − Γr
rrΓk

kr

= 1
2 gij ∂2

r gij −
1
2r

gij∂rgij −
1
4gij glm ∂rgil ∂rgjm + d

r2 (B.5)

and the ir components is determined to be

Rd+1
ir [Ĝ] = ∂iΓk

rk − ∂kΓk
ri + Γk

rlΓl
ik − Γm

riΓk
km (B.6)

= 1
2∂i( glm ∂rglm)− 1

2∂k( gkl ∂rgil) +
1
2gkm Γl

ik ∂rglm − 1
2gmk Γl

lm ∂rgik.

Moreover, in terms of covariant derivative ∇i with respective to the metric gij , Rir can
be simplified to

Rd+1
ir [Ĝ] = 1

2∇i(glm ∂rglm)− 1
2∇

j∂rgji. (B.7)

The ij component is given by

Rd+1
ij [Ĝ] = Rij [g]− ∂rΓr

ij + Γk
irΓr

jk + Γr
ilΓl

jr − Γr
ijΓl

lr − Γr
ijΓr

rr (B.8)

= Rij [g] +
1
2∂2

r gij +
d

r2 gij +
1− d

2r
∂rgij −

1
2gkm∂rgki∂rgmj

+1
4∂rgijglm∂rglm − 1

2r
gijglm∂rglm,

in which the induced Ricci tensor of gij is denoted as Rij [g].

C Equation of motion

To calculate the Ricci tensor, we will use the convention

R σ
µνρ = ∂µΓσ

νρ − ∂νΓσ
µρ + Γσ

µλΓλ
νρ − Γσ

νλΓλ
µρ (C.1)

so that the tensor is given by

Rµν = R ρ
µρν = ∂µΓρ

νρ − ∂ρΓρ
µν + Γρ

µλΓ
λ
νρ − Γρ

ρλΓ
λ
µν . (C.2)

For d dimensional spacetime, in terms of the Milne coordinates, the Einstein equation at
linear level could be written as

Rττ [G] = 4ρ2

τ
∂τ hρρ + 2ρ2∂2

τ hρρ +
1
2gij∂2

τ hij +
1
τ

gij∂τ hij (C.3)

Rτi[G] = 2ρ2∇i∂τ hρρ +
1
2ρ

∇i( gjm∂τ hjm)− 1
2ρ

∂τ∇khki − 2ρ2∂ρ∂τ hiρ

−4ρ∂τ hiρ − 2ρ2∂τ hρiΓa
aρ (C.4)
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in which we have

Γa
aρ = d − 2

2
1
ρ
+ 1

2glm∂ρglm (C.5)

and Rτρ is deduced to be

Rτρ[G] = − 1
2ρ2 gij∂τ hij +

1
2ρ

∂ρ(gij∂τ hij)− 2ρ∂τ hρρ −
1
2ρ

∂τ∇ihiρ

−2ρ2∂τ hρρΓa
aρ +

1
2ρ

gij∂τ hjkΓk
iρ. (C.6)

For other components, with the help of the expansion of the Ricci curvature,

Rd+1
ab [Ĝ(0) + h] = Rd+1

ab [Ĝ(0)] + 1
2(∇̂

2hab + ∇̂a∇̂bh − ∇̂c∇̂ahc
b − ∇̂c∇̂bh

c
a) +O(h2) (C.7)

where ∇̂a is the covariant derivative with respect to the metric Ĝ
(0)
ab . Then one can obtain

Rρρ[G] = −dhρρ −
d + 2
2 τ∂τ hρρ −

1
2τ2∂2

τ hρρ −
τ

8ρ3 gij∂τ hij +
(
4ρ2Γi

ρjΓ
j
iρ −

gij

ρ2 Γ
ρ
ij

+gij

ρ
Γk

iρΓ
ρ
jk − 4(d + ρgij∂ρgij)

)
hρρ −

(
2ρ(d + ρgij∂ρgij) +

gij

2ρ
Γρ

ij

)
∂ρhρρ

+ 1
2ρ

∇i∇ihρρ −
1
ρ
∇i∂ρhi

ρ −
2
ρ
Γk

iρ∇ihkρ −
1
ρ2∇ih

i
ρ +

1
2ρ

∂2
ρhi

i −
1
2ρ2 ∂ρhi

i

+1
ρ
Γi

ρj∂ρhj
i +

1
2ρ3 hi

i +
1
ρ

gijΓk
iρΓl

jρhkl −
1
ρ2Γ

i
ρjhj

i −
1
ρ
Γi

ρjΓk
ρih

j
k (C.8)

where we have hi
j = gikhkj and hi

ρ = gikhkρ. The connections used here are given by Γρ
ρρ = −1

ρ ,

Γi
jρ = δi

j

2ρ + 1
2gik∂ρgkj and Γρ

ij = −2ρ2gij − 2ρ3∂ρgij . For the components of Riρ, Rij we have

Riρ[G] = −d+1
2 τ∂τ hiρ −

1
2τ2∂2

τ hiρ − dhiρ − 2ρ∇ihρρ − 2ρ2∇k(Γk
iρhρρ)−

1
2ρ

∇m(Γρ
mihρρ)

−2ρ2Γa
aρ∇ihρρ +

1
2ρ

(∇m∇mhiρ −∇k∇ih
k
ρ)+ 2ρ2∂ρ(Γj

ρihρj)−
1
2ρ

∂ρ(Γρ
ijhj

ρ)

+3
2Γ

ρ
miΓ

k
nρgmnhkρ +

gmn

2ρ
Γρ

mnΓ
j
ρihjρ +

1
2ρ

gmnΓk
mρΓ

ρ
nkhiρ +

1
2ρ

Γj
kρΓ

ρ
ijhk

ρ

− 1
2ρ2 gmnΓρ

mnhiρ +2ρ2Γj
kρΓ

k
jρhρi +Γa

aρ

(
−2ρhρi +2ρ2Γj

ρihρj +2ρ2Γk
iρhρk −

1
2ρ

Γρ
ijhj

ρ

)
+8ρΓj

iρhρj − 2hiρ +
1
ρ
Γρ

ij∂ρhj
ρ − 2ρ∂ρhiρ − 2ρ2Γa

aρ∂ρhρi +
1
ρ
∇k(Γl

iρhk
l )

− 1
2ρ

Γk
mρ∇mhik +

1
2ρ

Γk
jρ∇ih

j
k −

1
2ρ

∇j(Γk
jρhik)−

1
2ρ

∇j(Γj
ρkhk

i )+
1
2ρ

Γj
kρ∇jhk

i

+ 1
2ρ2∇khk

i −
1
2ρ2∇ih− 1

2ρ
Γk

iρ∇kh+ 1
2ρ

∇i∂ρh− 1
2ρ

∇j∂ρhj
i (C.9)
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and

Rij [G] = −dhij −
d + 1
2 τ∂τ hij −

1
2τ2∂2

τ hij −
τ

2gij(gmn∂τ hmn + 4ρ3∂τ hρρ)

+∂ρ(4ρ2Γρ
ijhρρ)− 2ρ2(Γk

ρiΓ
ρ
kjhρρ + Γk

ρjΓ
ρ
kihρρ) +

1
ρ
Γρ

niΓ
ρ
njgmnhρρ + 2ρ2∇i∇jhρρ

+4ρ2Γa
aρΓ

ρ
ijhρρ − Γρ

ij∂ρ(2ρ2hρρ)− 2∂ρ(ρ2∇ihρj)− 2∂ρ(ρ2∇jhρi)

−2ρ2∇k(Γk
iρhjρ)− 2ρ2∇k(Γk

jρhiρ) +
1
2ρ

Γρ
kj∇ih

k
ρ + 1

2ρ
Γρ

ki∇jhk
ρ + 1

ρ
∇k(Γρ

ijhk
ρ)

−2ρ2Γa
aρ(∇ihjρ +∇jhiρ)− 2ρ2Γk

ρihρj − 2ρ2Γk
ρjhρi − 2ρ2Γk

ρj∇ihkρ − 2ρ2Γk
ρi∇jhkρ

− 1
2ρ

∇n(Γρ
nihρj)−

1
2ρ

∇n(Γρ
njhiρ)−

1
2ρ

Γρ
mi∇

mhρj −
1
2ρ

Γρ
mj∇

mhρi

− 1
2ρ

(∇k∇ih
k
j +∇k∇jhk

i ) +
1
2ρ

∇i∇jh + 1
2ρ

∇m∇mhij + 2ρ2∂2
ρhij + 2ρ∂ρhij

−2ρ2(∂ρ(Γk
ρihkj) + ∂ρ(Γk

ρjhki) + Γk
ρi∂ρhkj + Γk

ρj∂ρhki

)
+ 1

2ρ2Γ
ρ
ijh − 1

2ρ
Γρ

ij∂ρh

+1
2Γ

ρ
ki∂ρ

(1
ρ

hk
j

)
+ 1

2Γ
ρ
kj∂ρ

(1
ρ

hk
i

)
− 1

2∂ρ

(1
ρ
Γρ

kih
k
j

)
− 1

2∂ρ

(1
ρ
Γρ

kjhk
i

)
+2ρ2(Γk

ρiΓm
ρkhmj + Γk

ρjΓm
ρkhmi + 2Γk

ρiΓm
ρjhmk)−

1
2ρ

(Γρ
kiΓ

m
ρj + Γρ

kjΓ
m
ρi)hk

m

+ 1
2ρ

(Γρ
kiΓ

k
ρmhm

j + Γρ
kjΓ

k
ρmhm

i + Γk
ρiΓ

ρ
kmhm

j + Γk
ρjΓ

ρ
kmhm

i )− 2ρΓk
ρihkj − 2ρΓk

ρjhki

− 1
2ρ

Γa
aρ(Γ

ρ
imhm

j + Γρ
jmhm

i ) + gmn

2ρ

(
Γρ

mn(Γk
iρhkj + Γk

ρjhki) + Γk
nρ(Γ

ρ
mjhki

+Γρ
mihkj)− Γρ

mn∂ρhij

)
. (C.10)

Given the Einstein tensor, then one should be able to deduce hab exactly by solving
the Einstein equation Rµν = 0. For simplicity, we consider the equation at the leading
order which means for hab we have

hρρ = 1
ρ2τ

m(ρ, z, z̄), hij = ρ

τ
σij(ρ, z, z̄), hρi =

1
τ

Ai(ρ, z, z̄) (C.11)

where higher order terms of 1/τ are omitted.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
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medium, provided the original author(s) and source are credited.
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