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1 Introduction

Given a quantum field theory T parametrized by some set of generalized couplings or
deformations {λi}, it is a natural question to ask whether the set of such T ({λi}) admits any
interesting topology. Indeed, this is necessary for any attempt to rigorize the notion of “the
space S(T ) of theories,” and investigate, for instance, the set of path-connected components
π0(S(T )) or connected components H0(S(T )).

Recently, Gaiotto, Johnson-Freyd, and Witten introduced the notion of “flowing up and
down the RG trajectories” [1]. Given a 2d N = (0, 1) supersymmetric quantum field theory
(SQFT) T , one introduces a supersymmetric mass deformation to yield a theory T ′, which
is equivalent to T at long distances. Then one supersymmetrically perturbs T ′ to yield a
third theory T ′′. These authors were interested in investigating whether the perturbation to
T ′′ can trigger spontaneous supersymmetry breaking. They effectively described a sequence
of theories T → T ′ → T ′′ that are continuously connected in a family of supersymmetric
theories. With these supersymmetric deformations, the theories T , T ′, and T ′′ are in the
same “homotopy class.”
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There is an interesting, albeit conjectured, connection between 2d N = (0, 1) SQFTs and
the generalized cohomology theory of Topological Modular Forms (TMF) [2–8]. Building
on some earlier work by Segal [9, 10], Stolz and Teichner [11, 12] conjectured that to every
2d N = (0, 1) SQFT, there corresponds a class in TMF. This map is expected to descend
to homotopy classes of 2d N = (0, 1) SQFTs, which are naturally graded by an anomaly
coefficient ν ∈ Z, leading to a map1

DefClass :
{

homotopy class of
2d N = (0, 1) SQFT with anomaly ν

}
7−→ TMF−ν . (1.1)

Assuming the validity of the Segal-Stolz-Teichner conjecture, TMF classes make it possible
to study, among other things, the path-connected components of the space of 2d N = (0, 1)
theories. (We will review some aspects of this in section 6.) For string theorists, 2d N = (0, 1)
superconformal field theories (SCFTs) arise rather naturally as worldsheet CFTs for the
heterotic string [15–17].2 A detailed investigation under the assumption of the Segal-Stolz-
Teichner conjecture (1.1) led Tachikawa and Yamashita [14, 18] to conclude that there are
no global anomalies in the heterotic string. This requires a careful analysis of the subtle
torsion invariants measured by TMF classes.3

The perturbative heterotic string in the NSR formalism in lightcone gauge [31, 32]
takes as input a modular-invariant 2d N = (0, 1) worldsheet SCFT with central charge
(cleft, cright) = (24, 12), and yields as outputs the spacetime Hilbert space (spacetime spectrum)
and the spacetime scattering amplitudes. Computing scattering amplitudes involves an
integration over the moduli space of super-Riemann surfaces. In the simplest case, when the
Riemann surface has the topology of a 2-torus T2, this integration involves a sum over the
four spin structures on T2, which amounts to a GSO projection [33–35].

This work will restrict our attention to 2d N = (0, 1) SCFTs that model the internal
worldsheet degrees of freedom of two nine-dimensional non-supersymmetric heterotic string
theories. Non-supersymmetric string theories have been known for years [35–46] and their het-
erotic versions have since been revisited in different contexts [47–63]. The non-supersymmetric
heterotic strings we consider here have a spacetime tachyon. Nevertheless, their worldsheet
theories are well-defined modular-invariant 2d N = (0, 1) SCFTs.

For a general d-dimensional heterotic string model (where 2 < d ≤ 10), the internal
degrees of freedom correspond to a modular-invariant 2d CFT with (cleft, cright)internal =
(26 − d, 3

2(10 − d)).4 It is a general fact that internal bosonic (resp. fermionic) CFTs5

lead to spacetime supersymmetric (resp. spacetime non-supersymmetric) theories [57]. The
deformation class of an internal 2d N = (0, 1) SCFT for the d-dimensional non-supersymmetric
heterotic string thus determines a class [T] ∈ TMF22+d by (1.1). A key motivation for this
work is the following question:

1We define TMF−ν := TMF−ν(pt), where pt denotes a point. The conjecture stated here is a special case
(for spin SCFTs) of some wide-ranging results; see [13, 14] for detailed expositions, including the corresponding
equivariant and twisted versions.

2For a 2d N = (0, 1) SCFT with central charge (cL, cR), the anomaly coefficient is ν := −2(cL − cR).
3See also [13, 19–30] for some other recent discussions of TMF.
4The spacetime degrees of freedom contribute (cleft, cright)spacetime = (d− 2, 3

2 (d− 2)).
5Fermionic (or spin) CFTs require a choice of spin structure for their definition, whereas bosonic CFTs

do not.
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Claim. Given two 2d N = (0, 1) SQFTs T and T ′ with anomaly coefficient ν, are they in
the same homotopy class? Equivalently, do they determine the same class in TMF−ν in the
image of (1.1)?

In particular, if the image of the forward map (1.1) is mathematically intractable to
compute for T ′, one can ask if it is possible to find another 2d N = (0, 1) theory T in the
same homotopy class, for which the image (1.1) is computable using, for example, the results
of [14, 64, 65]. Here, we will consider the following d = 9 spacetime non-supersymmetric
heterotic theories:

• Theory 1: the model obtained by fibering the (E8)1 × (E8)1 current algebra over the
N = (0, 1) σ-model on S1 with antiperiodic spin structure, such that the two E8 factors
are exchanged as one goes around the circle.

• Theory 2: the (E8)2 current algebra with a single right-moving Majorana-Weyl fermion
on S1 with antiperiodic spin structure, with a Z2 action.

The N = (0, 1) σ-model on a circle of radius6 R consists of a compact boson X (which we
denote by cbR) along with its superpartner, a right-moving Majorana-Weyl fermion, denoted
by ψ̃. The internal worldsheet N = (0, 1) theories with central charge (cL, cR) = (17, 3

2)
corresponding to the above spacetime theories are

• T1⊗ψ̃: the tensor product of a fermionization of the product theory cb2R⊗(E8)1×(E8)1,
with a right-moving Majorana-Weyl fermion ψ̃. More precisely,

T1 := [cb2R ⊗ (E8)1 × (E8)1 ⊗ Arf] //diag
(
Zh.p.

2 × Zσ2 × ZArf
2
)
, (1.2)

where the Arf theory [66–68] is a fermionic invertible phase [69] with a ZArf
2 symmetry,

Zh.p.
2 is the half-period shift symmetry of the compact boson (under which X 7→ X+2πR),

and Zσ2 flips the two (E8)1 factors.7 The theory T1 ⊗ ψ̃ is the worldsheet theory for the
angular part of the 7-brane of [58].

• T2 ⊗ ψ̃: the tensor product of a fermionization of the product cb2R′ ⊗ (E8)2 × λ with a
right-moving Majorana-Weyl fermion ψ̃. More precisely,

T2 := [cb2R′ ⊗ (E8)2 × λ] //diag
(
Zh.p.

2 × (−1)F
)
, (1.3)

where (E8)2 × λ is a fermionic theory obtained from (E8)1 × (E8)1 by fermionization:

(E8)2 × λ :=
(
(E8)1 × (E8)1 ⊗ Arf

)
//diag

(
Zh.p.

2 × ZArf
2
)
, (1.4)

and comes equipped with a fermion parity symmetry generated by (−1)F .

In this work, we show that8

6We use the notation S1
R := R/(2πRZ) for a circle of radius R.

7The fermionization of the compact boson with the Arf theory crucially endows the spacetime fermions a
spacetime antiperiodic spin structure around S1

R, see section 4.
8The T-duality of T1 and T2 morally follows from much earlier work of Ginsparg and Vafa [39]. See

also [59].
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1. Given a bosonic 2d CFT TA with a non-anomalous Z(A)
2 symmetry, the 2d spin CFTs

X1 :=
(
cb2R ⊗ TA ⊗ Arf)//diag

(
Zh.p.

2 × Z(A)
2 × ZArf

2
)
, (1.5)

and

X2 :=
(
cb2R′ ⊗ TF′

)
//diag

(
Zh.p.

2 × (−1)F
)
, (1.6)

are T-dual for R′ = 1
2R . Here TF′ is the tensor product of the fermionization of TA with

the Arf theory, i.e., TF′ := (TA ⊗ Arf)//diag(Z(A)
2 × ZArf

2 ) ⊗ Arf. This T-duality follows
from that of the compact boson, and the theory TA serves merely as a spectator in
this duality.

2. T1 is T-dual to T2 for R′ = 1
2R . This is a special case of the previous result when TA is

taken to be the bosonic holomorphic (E8)1 × (E8)1 theory.

Therefore, the two spacetime non-supersymmetric heterotic string theories with internal
2d N = (0, 1) SCFTs T1 ⊗ ψ̃ and T2 ⊗ ψ̃ are T-dual to each other.

3. The worldsheet theory T1 ⊗ ψ̃ is continuously connected to the 2d N = (0, 1) (E8)2
SQFT obtained by a certain tachyonic deformation of T2 ⊗ ψ̃ that leaves only the (E8)2
current algebra as the light degrees of freedom — we often refer to this as the “(E8)2
theory”. Therefore, the T1 ⊗ ψ̃ theory and the (E8)2 theory are related by moving up
and down the RG trajectories.

Combining the above with the results of [14, 64], we give a physical derivation of the
following fact (cf. Conjecture A.10 of [65]):

The (E8)2 theory corresponds to the unique nontrivial torsion element [(E8)2] in
TMF31 with zero mod-2 elliptic genus.

This paper is organized as follows: in section 2, we review Z2 orbifolds of 2d CFTs as a
preparation for later sections. A key ingredient here is the fermionization of a bosonic theory
by the Arf theory mentioned above. In section 3, we use fermionization to construct building
blocks leading up to theories T1 and T2. In section 4, we discuss a general T-duality between
two fermionic CFTs, a special case of which leads to the T-duality of the theories T1 and
T2. Along the way, we also comment on the effect of worldsheet fermionization on spacetime
spin structure. In section 5, we explain how a tachyonic deformation added to theory T2 ⊗ ψ̃

induces an RG flow to the (E8)2 theory, thereby proving that the two theories are continuously
connected in the space of theories. Finally, in section 6, we discuss a consequence of these
findings for TMF, and in section 7, we list our conclusions and outline some future directions.

In appendix A, we review the Jacobi theta functions and their SL(2,Z) transformations.
In appendix B, we review the characters of (E8)1 × (E8)1 and (E8)2, and in appendix C, we
review the factoring out of universal (super)Virasoro contributions in torus partition functions.

Readers familiar with these worldsheet models could skip directly to sections 4, 5, and 6.
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A untwisted twisted
even S U
odd T V

D untwisted twisted
even S T
odd U V

Table 1. States of theories A and D.
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2 Review of Z2 orbifolds of 2d CFTs

This section is a self-contained pedagogical review of the modern perspective on Z2 orbifolds
of 2d CFTs as originally developed in [68] — readers familiar with this work may safely
skip this section.

Consider a (1+1)d bosonic theory A with a non-anomalous Z2 symmetry denoted by Z(A)
2 .

On a spatial S1, the Hilbert space of A can be twisted or untwisted, depending on whether
or not one introduces a twist by the Z(A)

2 symmetry around the spatial circle. We decompose
the untwisted Hilbert space of A in terms of sectors that are even (resp. odd) under the Z(A)

2
action, namely HA,S (resp. HA,T): Huntwisted

A = HA,S ⊕HA,T. The Z(A)
2 -twisted Hilbert space

of A can likewise be decomposed into even (resp. odd) sectors, denoted by HA,U (resp. HA,V):
Htwisted

A = HA,U ⊕HA,V. The partition function of the theory A is then, quite simply,

ZA = ZS + ZT . (2.1)

Orbifolding the theory A by Z(A)
2 yields the bosonic theory D := A//Z(A)

2 , the partition
function of which is

ZD = ZS + ZU . (2.2)

The theory D has a Z(D)
2 symmetry and orbifolding by it gives back theory A [70]. In the

Z(D)
2 -twisted Hilbert space, the Z(D)

2 - even and odd sectors are T and V respectively. We
list the states of A and D in table 1. One can fermionize the theory A by tensoring it with
a fermionic theory called the Arf theory, whose lowest energy state on the spatial circle is
nondegenerate.9 As a fermionic theory, it has a Z2 (fermion number) symmetry denoted
by ZArf

2 , with eigenvalues depending on the periodicity of the ground state. The symmetry
9The Arf theory is an invertible topological theory [69], with a one-dimensional Hilbert space. It can be

understood as the extreme low-energy limit of the nontrivial topological phase of the Kitaev chain [71] or the
infrared limit of a mass deformation of the (cL, cR) = ( 1

2 ,
1
2 ) Ising CFT. See [67, 72, 73] for more details.
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A ⊗ Arf A QA (−1)FArf sF F
S ⊗ AP

untwisted
uA = +1

+1 +1 −1 bosonic, antiperiodic (S,APF)
S ⊗ P +1 −1 × ×

T ⊗ AP −1 +1 × ×
T ⊗ P −1 −1 +1 fermionic, periodic (T,PF)

U ⊗ AP
twisted
uA = −1

+1 +1 +1 bosonic, periodic (U,PF)
U ⊗ P +1 −1 × ×

V ⊗ AP −1 +1 × ×
V ⊗ P −1 −1 −1 fermionic, antiperiodic (V,APF)

Table 2. States of the theories A ⊗ Arf and F. Note that sF = −(−1)FArfuA.

is generated by the fermion number operator10

(−1)FArf
∣∣∣
ground state

=
{

+1 antiperiodic (NS) ,
−1 periodic (R) . (2.3)

The product theory A ⊗ Arf has a Z(A)
2 × ZArf

2 symmetry. One can define a fermionic theory
F from it by orbifolding by the diagonal Z2:

F := (A ⊗ Arf)//diag(Z(A)
2 × ZArf

2 ) . (2.4)

The states of F are states in the twisted and untwisted Hilbert spaces of A ⊗ Arf that are
even under the diagonal Z2. Let QA denote the Z(A)

2 charge. States that survive the orbifold
satisfy QA(−1)FArf = +1. We decompose the four sectors of A ⊗ Arf (untwisted or twisted
with respect to each Z2 factor) in terms of two labels (uA, sF) where uA = +1 (resp. uA = −1)
denotes untwisted (resp. twisted) with respect to the Z(A)

2 action, and sF denotes the fermion
periodicity of F which is either sF = +1 (periodic (P)) or sF = −1 (antiperiodic (AP)).
Now, (2.3) implies that (−1)FArf = −sFuA. So, the states of F satisfy QA = −sFuA, and are
called bosonic (resp. fermionic) if they come from states with (−1)FArf = +1 (resp. −1), see
table 2. Fermionizing D using Arf leads to a new fermionic theory:

F′ := (D ⊗ Arf)//diag(Z(D)
2 × ZArf

2 ) . (2.5)

Since T and U are exchanged in going from theory A to theory D, the states of the theory
F′ can be inferred directly from those of F, see table 3. If U and T are isomorphic, the
theories F and F′ = F ⊗ Arf coincide.

Our remarks so far applied to 2d field theories. We now assume that A is a 2d bosonic
CFT with central charge (cL, cR). The torus partition function contributions from the S,

10For a Riemann surface Σ with spin structure ρ, FArf := Arf[Σ, ρ] is the Arf invariant of a quadratic
refinement of the intersection form on H1(Σ,Z2) [74]. In particular, when Σ = T2 is the 2-torus, Arf[Σ, ρ] = 1
if ρ = (R,R) and Arf[Σ, ρ] = 0 if ρ = (NS,NS), (NS,R) or (R,NS), where NS (antiperiodic) and R (periodic)
denote the spin structures around the two homologically nontrivial 1-cycles [75]. See [66] for a nice pedagogical
review of the Arf invariant and the Arf theory.
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F antiperiodic (NS) periodic (R)
bosonic S U

fermionic V T

F′ antiperiodic (NS) periodic (R)
bosonic S T

fermionic V U

Table 3. States of theories F and F′.

T, U, and V sectors are

ZS = truntwisted

(1 + g
2

)
qL0−cL/24qL0−cR/24 , ZT = truntwisted

(1 − g
2

)
qL0−cL/24qL0−cR/24 ,

(2.6)

ZU = trtwisted

(1 + g
2

)
qL0−cL/24qL0−cR/24 , ZV = trtwisted

(1 − g
2

)
qL0−cL/24qL0−cR/24 ,

(2.7)

where g denotes the nontrivial generator of the Z(A)
2 action on the Hilbert space. Note that

ZS, ZT, ZU and ZV have all non-negative q, q-expansion coefficients.
Under an S transformation (τ 7→ − 1

τ ),

ZA = ZS + ZT
S−−→ ZU + ZV , ZD = ZS + ZU

S−−→ ZT + ZV . (2.8)

From table 2, we have, for the fermionic theory F,

ZF
NS = ZS + ZV , ZF

R= ZU + ZT . (2.9)

The torus partition functions of a fermionic theory are graded by the choice of spin structure
NS (antiperiodic) or R (periodic) on each of the two homologically nontrivial 1-cycles [75]:

ZNS,NS = trNS q
L0−

cL
24 qL0−

cR
24 , (2.10)

ZNS,R = trNS (−1)F qL0−
cL
24 qL0−

cR
24 , (2.11)

ZR,NS = trR q
L0−

cL
24 qL0−

cR
24 , (2.12)

ZR,R = trR (−1)F qL0−
cL
24 qL0−

cR
24 . (2.13)

By design, ZNS,NS and ZR,NS have all nonnegative coefficients, whereas the other two do not.
Also, ZR,NS and ZNS,R are related by an S transformation. Therefore, ZF

NS can be identified
with ZF

NS,NS and ZF
R with ZF

R,NS. To summarize, the partition functions of F and F′ can be
reconstructed from those of A as follows:

ZF
NS,NS = ZS + ZV , (2.14)

ZF
NS,R = ZS − ZV , (2.15)

ZF
R,NS = ZU + ZT , (2.16)

ZF
R,R = ZU − ZT . (2.17)

ZF′
NS,NS = ZS + ZV , (2.18)

ZF′
NS,R = ZS − ZV , (2.19)

ZF′
R,NS = ZU + ZT , (2.20)

ZF′
R,R = −ZU + ZT . (2.21)

– 7 –
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The Arf theory is 2d spin CFT with central charge (cL, cR) = (0, 0), and its torus
partition function is

ZArf
p,q = (−1)Arf[T2,(p,q)] =

{
+1 , (p, q) = (NS,NS), (NS,R), (R,NS) ,
−1 , (p, q) = (R,R) , (2.22)

where the Arf invariant Arf[T2, (p, q)] was defined in footnote 10.
In [57], the symbols χeven

NS and χodd
NS are used to denote NS sector characters of fermionic

CFTs corresponding with (−1)F even and odd respectively. Here is a translation between
their notation and ours:11

χeven
NS = 1

2
(
ZF

NS,NS + ZF
NS,R) = “ZS” = trNS

(
1 + (−1)F

2

)
qL0−

cL
24 qL0−

cR
24 , (2.23)

χodd
NS = 1

2
(
ZF

NS,NS − ZF
NS,R) = “ZV” = trNS

(
1 − (−1)F

2

)
qL0−

cL
24 qL0−

cR
24 . (2.24)

Clearly, under an S transformation,

χeven
NS − χodd

NS = ZF
NS,R

S−−→ ZF
R,NS , (2.25)

gives the partition function on a torus in the (R,NS) sector.12

If (cL − cR) is strictly integral, (−1)F is well-defined on the R sector, and we have,

χeven
R = 1

2
(
ZF

R,NS + ZF
R,R) = “ZU” = trR

(
1 + (−1)F

2

)
qL0−

cL
24 qL0−

cR
24 , (2.26)

χodd
R = 1

2
(
ZF

R,NS − ZF
R,R) = “ZT” = trR

(
1 − (−1)F

2

)
qL0−

cL
24 qL0−

cR
24 . (2.27)

There is a variant of this obtained by tensoring with the Arf theory, which exchanges χeven
R

and χodd
R .

If (cL−cR) is strictly half-integral, the resulting partition function computed by S(χeven
NS −

χodd
NS ) = ZF

R,NS has non-negative q-expansion coefficients but the coefficients are
√

2 times
non-negative integers. It is conventional to write this as

√
2χR, where χR has non-negative

integer q-expansion coefficients. In this case, the fermionic parity (−1)F is not well-defined
on the states counted by χR. While this is true in general whenever (cL − cR) is strictly
half-integral, one extreme example of it is the theory of the single Majorana-Weyl fermion,
see [64, 76, 77] — we will encounter it in section 5. In these cases, (−1)F is not well-defined
in the R sector and consequently, χeven

R and χodd
R are not well-defined.

11The theories in [57] are chiral, so the right-moving sector is empty (cR = 0) and their χ’s denote
chiral characters.

12In [57], this is referred to as the torus partition function with the spatial circle in the R sector and the
temporal circle in the NS (antiperiodic) sector. In our notation, the first subscript corresponds to the spin
structure around the “spatial” circle, and the second corresponds to that around the “temporal” circle, denoted
there by Ztime

space.

– 8 –
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3 Theories from Fermionization

In this section, we will assemble the partition functions of various building block theories,
leading up to the partition functions of theories T1 and T2. We will extensively use the
methods of section 2.

3.1 Compact boson

The (free) compact boson CFT X on the 2-torus is a map X : T2 → S1
R (denoted by

cbR), with action,

S(cbR) = 1
4π

∫
T2
d2z∂X∂X . (3.1)

It has central charge (cL, cR) = (1, 1). The partition function on T2 with modular pa-
rameter τ is

Z(cbR) := 1
|η(τ)|2

∑
m,n∈Z

q
1
4 ( m

R
+nR)2

q
1
4 ( m

R
−nR)2

, (3.2)

where q = e2πiτ , m and n are the momentum and winding modenumbers, and η(τ) is the
Dedekind function (see appendix A). In our conventions, α′ = 1. The partition function
satisfies Z(cbR) = Z(cb1/R) — this is the familiar T-Duality of the compact boson.

The CFT cbR has a non-anomalous Z2 symmetry, under which X shifts by half a period:
X 7→ X + πR. We denote it by Zh.p.

2 . This acts on the Hilbert space state |m,n⟩ as
|m,n⟩ 7→ (−1)m|m,n⟩. The Zh.p.

2 -twisted partition function is written as Za,b, where a and b
denote the Z2-holonomies around the two homologically nontrivial 1-cycles of T2. Specifically,
the Zh.p.

2 -twisted partition function of cbR is

Za,b(cbR;Zh.p.
2 ) = 1

|η(τ)|2
∑
m∈Z

n∈Z+ 1
2 a

(−1)mbq
1
4 ( m

R
+nR)2

q
1
4 ( m

R
−nR)2

. (3.3)

In the Zh.p.
2 -twisted sector, the winding number is valued in Z + 1

2 . Taking cb2R as ‘theory A’
in the language of section 2, and using (3.3) the S, T, U, V decompositions are

ZS(cb2R;Zh.p.
2 ) = 1

2|η(τ)|2
∑

m,n∈Z
(1 + (−1)m) q

1
4 ( m

2R
+2nR)2

q
1
4 ( m

2R
−2nR)2

, (3.4)

ZT(cb2R;Zh.p.
2 ) = 1

2|η(τ)|2
∑

m,n∈Z
(1 − (−1)m) q

1
4 ( m

2R
+2nR)2

q
1
4 ( m

2R
−2nR)2

, (3.5)

ZU(cb2R;Zh.p.
2 ) = 1

2|η(τ)|2
∑

m,n∈Z
(1 + (−1)m) q

1
4 ( m

2R
+2(n+ 1

2 )R)2
q

1
4 ( m

2R
−2(n+ 1

2 )R)2
, (3.6)

ZV(cb2R;Zh.p.
2 ) = 1

2|η(τ)|2
∑

m,n∈Z
(1 − (−1)m) q

1
4 ( m

2R
+2(n+ 1

2 )R)2
q

1
4 ( m

2R
−2(n+ 1

2 )R)2
. (3.7)

The orbifold D(cb2R) := cb2R//Zh.p.
2 = cbR is a compact boson at half the radius, with

partition function

Z
(
D(cb2R)

)
= ZS(cb2R;Zh.p.

2 ) + ZU(cb2R;Zh.p.
2 ) = Z(cbR) . (3.8)
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The fermionization,

F(cb2R;Zh.p.
2 ) := (cb2R ⊗ Arf)//diag(Zh.p.

2 × ZArf
2 ) , (3.9)

has partition functions given by (2.14)–(2.17):

ZNS,NS
(
F(cb2R;Zh.p.

2 )
)
= ZS(cb2R;Zh.p.

2 ) + ZV(cb2R;Zh.p.
2 ) , (3.10)

ZNS,R
(
F(cb2R;Zh.p.

2 )
)

= ZS(cb2R;Zh.p.
2 ) − ZV(cb2R;Zh.p.

2 ) , (3.11)
ZR,NS

(
F(cb2R;Zh.p.

2 )
)

= ZU(cb2R;Zh.p.
2 ) + ZT(cb2R;Zh.p.

2 ) , (3.12)
ZR,R

(
F(cb2R;Zh.p.

2 )
)

= ZU(cb2R;Zh.p.
2 ) − ZT(cb2R;Zh.p.

2 ) . (3.13)

The fermionization of the compact boson by the Arf theory has also been discussed in [78].
Note that (3.10)–(3.13) can be written as:

Zp,q

(
F(cb2R;Zh.p.

2 )
)

= 1
2|η(τ)|2

∑
s1,s2

∈{NS,R}

(−1)(s1+p)(s2+q)
∑
m∈Z

n∈Z+ 1
2 s1

(−1)ms2q
1
4 ( m

2R +2nR)2
q

1
4 ( m

2R−2nR)2
,

(3.14)

here p, q ∈ {NS,R} and we identify13 {NS,R} = {0, 1}.

3.2 (E8)1 × (E8)1 and (E8)2 × λ

The (E8)1 × (E8)1 current algebra as a holomorphic (left-moving) CFT has central charge
(cL, cR) = (16, 0). It admits a non-anomalous Z2 symmetry that exchanges the two E8 factors,
denoted by Zσ2 . Using the coset relation,

(E8)1 × (E8)1
(E8)2

= Virc=1/2 , (3.15)

where Virc=1/2 denotes the holomorphic theory of a Majorana-Weyl fermion (sometimes
denoted by λ), each state in a representation of (E8)1 × (E8)1 can be written as a product
of a state in a representation of (E8)2 with a state in a representation of Virc=1/2 [79, Ch.
18]. In particular, the Zσ2 -twisted partition functions of (E8)1 × (E8)1 can be decomposed
in terms of the characters of (E8)2,

χE8
1 , χE8

248 , χE8
3875 , (3.16)

and the characters of Virc=1/2,

χVir
0 , χVir

1/2, χVir
1/16 . (3.17)

(See appendix B and [41] for details.) The Zσ2 -twisted partition functions of (E8)1 × (E8)1 are

Z0,0
(
(E8)1 × (E8)1;Zσ2

)
= χVir

0 χE8
1 + χVir

1/2χ
E8
3875 + χVir

1/16χ
E8
248 , (3.18)

Z0,1
(
(E8)1 × (E8)1;Zσ2

)
= χVir

0 χE8
1 + χVir

1/2χ
E8
3875 − χVir

1/16χ
E8
248 , (3.19)

Z1,0
(
(E8)1 × (E8)1;Zσ2

)
= χVir

1/2χ
E8
1 + χVir

0 χE8
3875 + χVir

1/16χ
E8
248 , (3.20)

Z1,1
(
(E8)1 × (E8)1;Zσ2

)
= −χVir

1/2χ
E8
1 − χVir

0 χE8
3875 + χVir

1/16χ
E8
248 . (3.21)

13Note that s1 + p and s2 + q are defined by the relations NS + NS = NS = 0, NS + R = R + NS = R = 1,
and R + R = NS = 0.
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So the S, T, U, V decompositions are

ZS
(
(E8)1 × (E8)1;Zσ2

)
= χVir

0 χE8
1 + χVir

1/2χ
E8
3875 , (3.22)

ZT
(
(E8)1 × (E8)1;Zσ2

)
= χVir

1/16χ
E8
248 , (3.23)

ZU
(
(E8)1 × (E8)1;Zσ2

)
= χVir

1/16χ
E8
248 , (3.24)

ZV
(
(E8)1 × (E8)1;Zσ2

)
= χVir

1/2χ
E8
1 + χVir

0 χE8
3875 . (3.25)

The fermionization of this theory is referred to as (E8)2 × Ising or (E8)2 × λ,

F
(
(E8)1 × (E8)1;Zσ2

)
:= (E8)2 × λ =

(
(E8)1 × (E8)1 ⊗ Arf

)
//diag(Zσ2 × ZArf

2 ) , (3.26)

and has the following partition functions:

ZNS,NS
(
(E8)2 × λ

)
=
(
χVir

0 + χVir
1/2
)(
χE8

1 + χE8
3875

)
, (3.27)

ZNS,R
(
(E8)2 × λ

)
=
(
χVir

0 − χVir
1/2
)(
χE8

1 − χE8
3875

)
, (3.28)

ZR,NS
(
(E8)2 × λ

)
=

√
2χVir

1/16 ·
√

2χE8
248 , (3.29)

ZR,R
(
(E8)2 × λ

)
= 0 . (3.30)

The fermionic theory (E8)2×λ has a Z2 symmetry, generated by the fermion number operator
(−1)F . Note that the T and U sectors of (E8)1 × (E8)1 are identical, so the fermionization
F′ = F ⊗ Arf coincides with F.

3.3 Intermezzo: gauging fermion parity

Defining a fermionic theory F (with a Z2 fermion parity symmetry generated by the fermion
number (−1)F ) on a Riemann surface Σ requires a choice of spin structure ρ. We denote
its partition function by ZF[Σ, ρ]. If we turn on a gauge field a for (−1)F , it acts by shifting
the spin structure: ρ 7→ ρ + a. Equivariantizing the theory with a fixed spin structure ρ
with respect to (−1)F amounts to treating a as a fluctuating field that is now summed over,
yielding a theory F̃ with partition function

ZF̃[Σ, ρ, A] = 1√
|H1(Σ,Z2)|

∑
a

(−1)
∫

Σ a∪AZF[ρ+ a] , (3.31)

where we have turned on a background field A for the Z2 symmetry of F̃, and the phase
factor has an expression in terms of Arf invariants, details of which can be found in [67].14

Gauging fermion parity can be implemented by turning on holonomies for Z2 gauge
fields (around the A- and B- cycles of T2), represented by a pair of integers a, b ∈ {0, 1},
while retaining the spin structure grading on T2 given by (p, q) where p, q ∈ {NS,R}. This

14Summing over the gauge field a naively seems to be equivalent to summing over spin structures, but
a careful analysis [57, 80] reveals that spin structure summation and gauging fermion parity are in general
different operations, and coincide only when the gravitational anomaly of the theory is 0 mod 16: in such
cases the theory F̃ with partition function (3.31) is a bosonic theory (this is true bosonization). Gauging
fermion parity is possible even when the anomaly is 8 mod 16, in which case the result is another fermionic
theory (refermionization).

– 11 –



J
H
E
P
0
9
(
2
0
2
4
)
0
5
6

leads to a “refined” partition function labeled by four indices, ZF
p,a;q,b. The background gauge

field a for (−1)F shifts the spin structure, leading to

ZF
p,a;q,b := ZF

p+a,q+b , (3.32)

where the r.h.s. is completely specified by the unrefined fermionic partition function and
the mod 2 rules that define p + a.15 One can consider the same operation on F′ = F ⊗ Arf
instead of F. In this case,

ZF′
p,a;q,b := ZF

p+a,q+bZArf
p,q , (3.33)

where ZArf
p,q is given by (2.22). Given a bosonic theory Tbos with a non-anomalous Z(bos)

2 -
symmetry, one can construct a tensor product Tbos ⊗ F and gauge it by a Z2-action that acts
as Z(bos)

2 on Tbos and as (−1)F on F. The T2-partition function of the orbifold theory,(
Tbos ⊗ F

)
//diag

(
Z(bos)

2 × (−1)F
)
, (3.34)

is given by16

Zp,q = 1
2

∑
a,b∈{0,1}

ZTbos
a,b ZF

p,a;q,b = 1
2

∑
a,b∈{0,1}

ZTbos
a,b ZF

p+a,q+b . (3.35)

One can construct another orbifold by replacing F with F′ in (3.34).

3.4 Tensoring (E8)1 × (E8)1 and (E8)2 × λ with a compact boson

Following section 2, we take as ‘theory A’ the tensor product,

A1 := cb2R ⊗ (E8)1 × (E8)1 . (3.36)

This theory admits a Zh.p.
2 × Zσ2 symmetry. The twisted partition function with holonomies

(a, b) is

Za,b
(
cb2R ⊗ (E8)1 × (E8)1;Zh.p.

2 × Zσ2
)

:= Za,b(cb2R;Zh.p.
2 ) × Za,b((E8)1 × (E8)1;Zσ2 ) . (3.37)

For brevity, we define

Zcb
a,b := Za,b(cb2R;Zh.p.

2 ) . (3.38)

In terms of S, T, U, V decompositions, we have,

ZS(A1) = 1
2
[
Zcb

0,0

(
χVir

0 χE8
1 +χVir

1/2χ
E8
3875+χVir

1/16χ
E8
248

)
+Zcb

0,1

(
χVir

0 χE8
1 +χVir

1/2χ
E8
3875−χVir

1/16χ
E8
248

)]
,

(3.39)

ZT(A1) = 1
2
[
Zcb

0,0

(
χVir

0 χE8
1 +χVir

1/2χ
E8
3875+χVir

1/16χ
E8
248

)
−Zcb

0,1

(
χVir

0 χE8
1 +χVir

1/2χ
E8
3875−χVir

1/16χ
E8
248

)]
,

(3.40)
15NS + 0 = NS, NS + 1 = R, R + 0 = R, and R + 1 = NS.
16For Σ = T2,

∣∣H1(Σ,Z2)
∣∣ = 4, so one gets a familiar factor of 1/2.
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ZU(A1) = 1
2
[
Zcb

1,0

(
χVir

1/2χ
E8
1 +χVir

0 χE8
3875+χVir

1/16χ
E8
248

)
+Zcb

1,1

(
−χVir

1/2χ
E8
1 −χVir

0 χE8
3875+χVir

1/16χ
E8
248

)]
,

(3.41)

ZV(A1) = 1
2
[
Zcb

1,0

(
χVir

1/2χ
E8
1 +χVir

0 χE8
3875+χVir

1/16χ
E8
248

)
−Zcb

1,1

(
−χVir

1/2χ
E8
1 −χVir

0 χE8
3875+χVir

1/16χ
E8
248

)]
.

(3.42)

The fermionization of theory A1,

T1 :=
(
cb2R ⊗ (E8)1 × (E8)1 ⊗ Arf

)
//diag(Zh.p.

2 × Zσ2 × ZArf
2 ) , (3.43)

has the following partition functions:

ZT1
NS,NS = 1

2

[
Zcb

0,0

(
χVir

0 χE8
1 +χVir

1/2χ
E8
3875+χVir

1/16χ
E8
248

)
+Zcb

0,1

(
χVir

0 χE8
1 +χVir

1/2χ
E8
3875−χVir

1/16χ
E8
248

)
+ Zcb

1,0

(
χVir

1/2χ
E8
1 +χVir

0 χE8
3875+χVir

1/16χ
E8
248

)
−Zcb

1,1

(
−χVir

1/2χ
E8
1 −χVir

0 χE8
3875+χVir

1/16χ
E8
248

)]
,

(3.44)

ZT1
NS,R = 1

2

[
Zcb

0,0

(
χVir

0 χE8
1 +χVir

1/2χ
E8
3875+χVir

1/16χ
E8
248

)
+Zcb

0,1

(
χVir

0 χE8
1 +χVir

1/2χ
E8
3875−χVir

1/16χ
E8
248

)
−Zcb

1,0

(
χVir

1/2χ
E8
1 +χVir

0 χE8
3875+χVir

1/16χ
E8
248

)
+Zcb

1,1

(
−χVir

1/2χ
E8
1 −χVir

0 χE8
3875+χVir

1/16χ
E8
248

)]
,

(3.45)

ZT1
R,NS = 1

2

[
Zcb

1,0

(
χVir

1/2χ
E8
1 +χVir

0 χE8
3875+χVir

1/16χ
E8
248

)
+Zcb

1,1

(
−χVir

1/2χ
E8
1 −χVir

0 χE8
3875+χVir

1/16χ
E8
248

)
+ Zcb

1,0

(
χVir

1/2χ
E8
1 +χVir

0 χE8
3875+χVir

1/16χ
E8
248

)
−Zcb

1,1

(
−χVir

1/2χ
E8
1 −χVir

0 χE8
3875+χVir

1/16χ
E8
248

)]
,

(3.46)

ZT1
R,R = 1

2

[
Zcb

1,0

(
χVir

1/2χ
E8
1 +χVir

0 χE8
3875+χVir

1/16χ
E8
248

)
+Zcb

1,1

(
−χVir

1/2χ
E8
1 −χVir

0 χE8
3875+χVir

1/16χ
E8
248

)
−Zcb

1,0

(
χVir

1/2χ
E8
1 +χVir

0 χE8
3875+χVir

1/16χ
E8
248

)
+Zcb

1,1

(
−χVir

1/2χ
E8
1 −χVir

0 χE8
3875+χVir

1/16χ
E8
248

)]
.

(3.47)

Another combination that we can consider is the tensor product,

A2 := cb2R′ ⊗ (E8)2 × λ . (3.48)

This is a fermionic theory based on (3.26). We consider the orbifold of this theory by the
diagonal of the product of the half-period Zh.p.

2 acting on the compact boson and the fermion
parity ((−1)F ) action of (E8)2 × λ. Gauging (−1)F of a fermionic theory was introduced in
section 3.3. Following (3.35), we define the partition function of theory A2 as

ZA2
p,a;q,b := Za,b(cb2R′) × Z(E8)2×λ

p,a;q,b = Za,b(cb2R′) × Z(E8)2×λ
p+a,q+b . (3.49)

Then, the orbifold theory

T2 := A2//Z2 =
(
cb2R′ ⊗ (E8)2 × λ

)
//diag

(
Zh.p.

2 × (−1)F
)
, (3.50)

has partition function,

ZT2
p,q = 1

2
∑

a,b∈{0,1}
ZA2
p,a;q,b = 1

2
∑

a,b∈{0,1}

(
Za,b(cb2R′) × Z(E8)2×λ

p+a,q+b

)
. (3.51)
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As before, we define

Zcb′

a,b := Za,b(cb2R′ ;Zh.p.
2 ) . (3.52)

Evaluating (3.51) explicitly, we find:

ZT2
NS,NS = 1

2Zcb′

0,0

(
χVir

0 χE8
1 + χVir

1/2χ
E8
1 + χVir

0 χE8
3875 + χVir

1/2χ
E8
3875

)
+ 1

2Zcb′

0,1

(
χVir

0 χE8
1 − χVir

1/2χ
E8
1 − χVir

0 χE8
3875 + χVir

1/2χ
E8
3875

)
+ Zcb′

1,0χ
Vir
1/16χ

E8
248 , (3.53)

ZT2
NS,R = 1

2Zcb′

0,1

(
χVir

0 χE8
1 + χVir

1/2χ
E8
1 + χVir

0 χE8
3875 + χVir

1/2χ
E8
3875

)
+ 1

2Zcb′

0,0

(
χVir

0 χE8
1 − χVir

1/2χ
E8
1 − χVir

0 χE8
3875 + χVir

1/2χ
E8
3875

)
+ Zcb′

1,1χ
Vir
1/16χ

E8
248 , (3.54)

ZT2
R,NS = 1

2Zcb′

1,0

(
χVir

0 χE8
1 + χVir

1/2χ
E8
1 + χVir

0 χE8
3875 + χVir

1/2χ
E8
3875

)
+ 1

2Zcb′

1,1

(
χVir

0 χE8
1 − χVir

1/2χ
E8
1 − χVir

0 χE8
3875 + χVir

1/2χ
E8
3875

)
+ Zcb′

0,0χ
Vir
1/16χ

E8
248 (3.55)

ZT2
R,R = 1

2Zcb′

1,1

(
χVir

0 χE8
1 + χVir

1/2χ
E8
1 + χVir

0 χE8
3875 + χVir

1/2χ
E8
3875

)
+ 1

2Zcb′

1,0

(
χVir

0 χE8
1 − χVir

1/2χ
E8
1 − χVir

0 χE8
3875 + χVir

1/2χ
E8
3875

)
+ Zcb′

0,1χ
Vir
1/16χ

E8
248 . (3.56)

In the next section, after a slight but essential digression, we will show that T1 and T2 are
T-dual to each other for R′ = 1

2R . While one can prove this by comparing (3.44)–(3.47)
with (3.54)–(3.56), doing so involves a tedious change of variables. We opt for a more
conceptual explanation based on the methods of section 2.

4 Fermionizations and T-dualities

4.1 T-duality of T1 and T2

We first demonstrate the T-duality of a pair of 2d spin CFTs using the fermionization of
section 2. Let TA be a left-moving bosonic CFT that admits a non-anomalous Z(A)

2 symmetry,
with Z(A)

2 -twisted partition functions denoted by ZTA
i,j where i, j ∈ {0, 1}. We can fermionize

TA to obtain a theory TF :=
(
TA ×Arf

)
/diag

(
ZA

2 ×ZArf
2
)

with partition functions (2.14)–(2.17)
which read17

ZTF
NS,NS = ZTA

S + ZTA
V = 1

2
(
ZTA

0,0 + ZTA
0,1 + ZTA

1,0 − ZTA
1,1

)
, (4.1)

ZTF
NS,R = ZTA

S − ZTA
V = 1

2
(
ZTA

0,0 + ZTA
0,1 − ZTA

1,0 + ZTA
1,1

)
, (4.2)

ZTF
R,NS = ZTA

U + ZTA
T = 1

2
(
ZTA

1,0 + ZTA
1,1 + ZTA

0,0 − ZTA
0,1

)
, (4.3)

ZTF
R,R = ZTA

U − ZTA
T = 1

2
(
ZTA

1,0 + ZTA
1,1 − ZTA

0,0 + ZTA
0,1

)
. (4.4)

17We denote the fermionizations of TA by TF := F(TA), and TF′ := F′(TA) = F(TA) × Arf.
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Construction of theory X1

Consider the theory,

(compact boson at radius 2R) ⊗ TA , (4.5)

which we will abbreviate by ‘cb ⊗ TA’. This theory has a Zh.p.
2 × Z(A)

2 symmetry, with the
first factor corresponding to the half-period shift of the compact boson and the second factor
the Z2 symmetry of TA. We are interested in the diagonal Z2 subgroup, with respect to
which we can construct the twisted and untwisted sectors. The S, T, U and V sectors of
cb ⊗ TA have the following partition functions:

Zcb⊗TA
S = 1

2(Zcb
0,0ZTA

0,0 + Zcb
0,1ZTA

0,1) , (4.6)

Zcb⊗TA
T = 1

2(Zcb
0,0ZTA

0,0 − Zcb
0,1ZTA

0,1) , (4.7)

Zcb⊗TA
U = 1

2(Zcb
1,0ZTA

1,0 + Zcb
1,1ZTA

1,1) , (4.8)

Zcb⊗TA
V = 1

2(Zcb
1,0ZTA

1,0 − Zcb
1,1ZTA

1,1) . (4.9)

The corresponding fermionized theory,

X1 := F(cb2R ⊗ TA) =
(
cb2R ⊗ TA ⊗ Arf)//diag

(
Zh.p.

2 × Z(A)
2 × ZArf

2
)
, (4.10)

has the following partition functions:

ZX1
NS,NS = Zcb⊗TA

S + Zcb⊗TA
V = 1

2
(
Zcb

0,0ZTA
0,0 + Zcb

0,1ZTA
0,1 + Zcb

1,0ZTA
1,0 − Zcb

1,1ZTA
1,1

)
, (4.11)

ZX1
NS,R = Zcb⊗TA

S − Zcb⊗TA
V = 1

2
(
Zcb

0,0ZTA
0,0 + Zcb

0,1ZTA
0,1 − Zcb

1,0ZTA
1,0 + Zcb

1,1ZTA
1,1

)
, (4.12)

ZX1
R,NS = Zcb⊗TA

U + Zcb⊗TA
T = 1

2
(
Zcb

1,0ZTA
1,0 + Zcb

1,1ZTA
1,1 + Zcb

0,0ZTA
0,0 − Zcb

0,1ZTA
0,1

)
, (4.13)

ZX1
R,R = Zcb⊗TA

U − Zcb⊗TA
T = 1

2
(
Zcb

1,0ZTA
1,0 + Zcb

1,1ZTA
1,1 − Zcb

0,0ZTA
0,0 + Zcb

0,1ZTA
0,1

)
. (4.14)

In terms of the S, T, U, V sectors of cb and TA, they reduce to:

ZX1
NS,NS = Zcb

S ZTA
S + Zcb

T ZTA
T + Zcb

V ZTA
U + Zcb

U ZTA
V , (4.15)

ZX1
NS,R = Zcb

S ZTA
S + Zcb

T ZTA
T − Zcb

V ZTA
U − Zcb

U ZTA
V , (4.16)

ZX1
R,NS = Zcb

T ZTA
S + Zcb

S ZTA
T + Zcb

U ZTA
U + Zcb

V ZTA
V , (4.17)

ZX1
R,R = −Zcb

T ZTA
S − Zcb

S ZTA
T + Zcb

U ZTA
U + Zcb

V ZTA
V . (4.18)

Construction of theory X2

The theory X2 is defined as,

X2 :=
(
cb2R′ ⊗ TF′

)
//diag

(
Zh.p.

2 × (−1)F
)
, (4.19)
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where TF′ = F(TA) ⊗ Arf = (TA ⊗ Arf)//diag(Z(A)
2 × ZArf

2 ) ⊗ Arf. Following section 3.3, the
partition function of this orbifold theory is

ZX2
p,q := 1

2
∑

a,b∈{0,1}

(
Zcb′

a,b × ZTF′
p,a;q,b

)
. (4.20)

Evaluating (4.20) explicitly, we find:

ZX2
NS,NS = 1

2
(
Zcb′

0,0ZTF
NS,NS + Zcb′

0,1ZTF
NS,R + Zcb′

1,0ZTF
R,NS − Zcb′

1,1ZTF
R,R

)
, (4.21)

ZX2
NS,R = 1

2
(
Zcb′

0,0ZTF
NS,R + Zcb′

0,1ZTF
NS,NS − Zcb′

1,0ZTF
R,R + Zcb′

1,1ZTF
R,NS

)
, (4.22)

ZX2
R,NS = 1

2
(
Zcb′

0,0ZTF
R,NS − Zcb′

0,1ZTF
R,R + Zcb′

1,0ZTF
NS,NS + Zcb′

1,1ZTF
NS,R

)
, (4.23)

ZX2
R,R = 1

2
(
−Zcb′

0,0ZTF
R,R + Zcb′

0,1ZTF
R,NS + Zcb′

1,0ZTF
NS,R + Zcb′

1,1ZTF
NS,NS

)
. (4.24)

Using (4.1)–(4.4), these can be written as

ZX2
NS,NS = 1

4(Zcb′

0,0 + Zcb′

0,1 + Zcb′

1,0 + Zcb′

1,1)ZTA
0,0 + 1

4(Zcb′

0,0 + Zcb′

0,1 − Zcb′

1,0 − Zcb′

1,1)ZTA
0,1

+ 1
4(Zcb′

0,0 − Zcb′

0,1 + Zcb′

1,0 − Zcb′

1,1)ZTA
1,0 + 1

4(−Zcb′

0,0 + Zcb′

0,1 + Zcb′

1,0 − Zcb′

1,1)ZTA
1,1 , (4.25)

ZX2
NS,R = 1

4(Zcb′

0,0 + Zcb′

0,1 + Zcb′

1,0 + Zcb′

1,1)ZTA
0,0 + 1

4(Zcb′

0,0 + Zcb′

0,1 − Zcb′

1,0 − Zcb′

1,1)ZTA
0,1

+ 1
4(−Zcb′

0,0 + Zcb′

0,1 − Zcb′

1,0 + Zcb′

1,1)ZTA
1,0 + 1

4(Zcb′

0,0 − Zcb′

0,1 − Zcb′

1,0 + Zcb′

1,1)ZTA
1,1 , (4.26)

ZX2
R,NS = 1

4(Zcb′

0,0 + Zcb′

0,1 + Zcb′

1,0 + Zcb′

1,1)ZTA
0,0 + 1

4(−Zcb′

0,0 − Zcb′

0,1 + Zcb′

1,0 + Zcb′

1,1)ZTA
0,1

+ 1
4(Zcb′

0,0 − Zcb′

0,1 + Zcb′

1,0 − Zcb′

1,1)ZTA
1,0 + 1

4(Zcb′

0,0 − Zcb′

0,1 − Zcb′

1,0 + Zcb′

1,1)ZTA
1,1 , (4.27)

ZX2
R,R = 1

4(Zcb′

0,0 + Zcb′

0,1 + Zcb′

1,0 + Zcb′

1,1)ZTA
0,0 + 1

4(−Zcb′

0,0 − Zcb′

0,1 + Zcb′

1,0 + Zcb′

1,1)ZTA
0,1

+ 1
4(−Zcb′

0,0 + Zcb′

0,1 − Zcb′

1,0 + Zcb′

1,1)ZTA
1,0 + 1

4(−Zcb′

0,0 + Zcb′

0,1 + Zcb′

1,0 − Zcb′

1,1)ZTA
1,1 . (4.28)

In terms of S,T,U,V sectors of cb′ and TA, they reduce to:

ZX2
NS,NS = Zcb′

S ZTA
S + Zcb′

U ZTA
T + Zcb′

V ZTA
U + Zcb′

T ZTA
V , (4.29)

ZX2
NS,R = Zcb′

S ZTA
S + Zcb′

U ZTA
T − Zcb′

V ZTA
U − Zcb′

T ZTA
V , (4.30)

ZX2
R,NS = Zcb′

U ZTA
S + Zcb′

S ZTA
T + Zcb′

T ZTA
U + Zcb′

V ZTA
V , (4.31)

ZX2
R,R = Zcb′

U ZTA
S + Zcb′

S ZTA
T − Zcb′

T ZTA
U − Zcb′

V ZTA
V . (4.32)

T-duality of X1 and X2

Note that the theory TA does not participate in the T-duality and serves merely as a spectator.
For R′ = 1

2R ,

Zcb
S = Zcb′

S , Zcb
U = Zcb′

T , Zcb
T = Zcb′

U , Zcb
V = Zcb′

V . (4.33)

So the S and V sectors of the compact boson are mapped into themselves, whereas the T
and U sectors are exchanged. Using (4.33) (with R′ = 1

2R ) in (4.15)–(4.18) and (4.29)–(4.32),
it is easy to verify that

ZX1
NS,NS= ZX2

NS,NS , ZX1
NS,R = ZX2

NS,R , ZX1
R,NS= ZX2

R,NS , ZX1
R,R = −ZX2

R,R . (4.34)
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Therefore, the theories

X1 :=
[
cb2R ⊗ TA ⊗ Arf

]
//diag

(
Zh.p.

2 × Z(A)
2 × ZArf

2
)
, (4.35)

and

X2 :=
[
cb2R′ ⊗ TF′

]
//diag

(
Zh.p.

2 × (−1)F
)
, (4.36)

are T-dual to each other for R′ = 1
2R . We emphasize the crucial role of the additional Arf

theory in the definition of the theory X2 (we used TF′ , and not TF corresponding to a given
TA). Whenever ZTA

T and ZTA
U are equal, the fermionizations TF and TF′ coincide and this

additional stacking with the Arf theory is unnecessary.

T-duality of T1 and T2

For TA = (E8)1 × (E8)1, the fermionizations TF′ and TF coincide because the T and U sectors
are identical, see (3.23), (3.24). Applying the general result above, we directly conclude
that the theories,

T1 := [cb2R ⊗ (E8)1 × (E8)1 ⊗ Arf] //diag
(
Zh.p.

2 × Zσ2 × ZArf
2
)
, (4.37)

and

T2 := [cb2R′ ⊗ (E8)2 × λ] //diag
(
Zh.p.

2 × (−1)F
)
, (4.38)

are T -dual to each other for R′ = 1
2R . Both T1 and T2 have central charge (cL, cR) = (17, 1).

4.2 Fermionization and spacetime spin structure

An important feature of fermionizing the compact boson by the Arf theory is that it endows
the spacetime fermions with an antiperiodic spin structure around S1

R. To see this, it is
instructive to consider the following 2d N = (0, 1) SCFT with central charge (17, 3

2) as
modeling the internal degrees of freedom of the 9d non-supersymmetric heterotic string,

T(1)
int := (E8)1 × (E8)1 ⊗

[
cb2R × Arf

]
//Z2 ⊗ ψ̃ , (4.39)

and determine the spacetime fermionic spectrum in lightcone gauge. Including the spacetime
degrees of freedom, the GSO-projected partition function in the R sector is

Z(1)
R

∣∣∣
GSO

∼ (Imτ)−7/2

|η(τ)|14

(
ϑ2

η

)4(
χVir

0 χE8
1 +χVir

1/2χ
E8
3875+χVir

1/16χ
E8
248
)(

ZU(cb2R;Zh.p.
2 )+ZT(cb2R;Zh.p.

2 )
)
,

(4.40)

up to a nonzero numerical coefficient that we omit for brevity. Recall that the Kaluza-
Klein (KK) mass squared contribution of a scalar field compactified on a circle of radius
R is of the form M2 ∼ m2/R2 if the scalar obeys periodic boundary conditions and is
M2 ∼

(
m+ 1

2

)2
/R2 if it obeys antiperiodic boundary conditions. From (3.5) and (3.6), the

total scaling dimension contributions from the T and U sectors are

U : m2

2R2 + 2n2R2 ,

T :

(
m+ 1

2

)2

2R2 + 2
(
n+ 1

2

)2
R2 ,

 m,n ∈ Z . (4.41)
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From the nine-dimensional viewpoint, the Kaluza-Klein modes of the 10d gravitino have zero
winding numbers. Between U and T, only sector T contributes such states for which the mass
squared contribution reflects the spacetime antiperiodic boundary condition around S1

R.
If we repeat the preceding analysis for the following internal theory with central

charge (17, 3
2):

T(2)
int := (E8)1 × (E8)1 ⊗ cbR ⊗ ψ̃ , (4.42)

we find (again up to an overall nonzero numerical coefficient),

Z(2)
R

∣∣∣
GSO

∼ (Im τ)−7/2

|η(τ)|14

(
ϑ2
η

)4(
χVir

0 χE8
1 + χVir

1/2χ
E8
3875 + χVir

1/16χ
E8
248
)
Z(cbR) . (4.43)

From (3.2), the total scaling dimension of a typical state of cbR with zero winding number is
m2

2R2 for m ∈ Z, reflecting the spacetime periodic boundary condition around S1
R.

To summarize, the spacetime spin structure — which manifests in this case (in the R
sector) as the boundary condition on the 10d gravitino around S1

R — is encoded in the
spectrum of conformal dimensions of the internal theory, and more crucially, it is sensitive
to whether or not we fermionize the worldsheet theory using the Arf theory. We refer the
reader to [81–84] for previous discussions of the dependence of spacetime spin structure
on worldsheet choices.

5 Tachyonic deformation

The internal CFT of the non-supersymmetric heterotic string in d = 9 spacetime dimensions
is a theory with central charge (cL, cR) = (17, 3

2). We will consider the particular example
of a spacetime theory constructed using the internal theory18

T2 ⊗ ψ̃ =
[
cb2R ⊗ (E8)2 × λ

]
//diag

(
Zh.p.

2 × (−1)F
)
⊗ ψ̃ = T2 ⊗ ψ̃ , (5.1)

(with ψ̃ denoting a right-moving Majorana-Weyl fermion) after a GSO projection. The
resulting theory has a gravitational anomaly ν = −2(cL−cR) = −31. This internal N = (0, 1)
worldsheet SCFT contributes a spacetime tachyon essential for establishing our main claim.
In this section, we present an algorithm to count tachyons in the above theory and study
its deformation by a tachyon vertex operator.

5.1 Counting tachyons

In this section, we slightly generalize a result of [57] about counting spacetime tachyons
(based on an analysis of the worldsheet partition function) to non-chiral internal SCFTs.
We will use this result to count tachyons in the spacetime theory, which correspond to NS
sector states with L0 − L0 = 1

2 as we demonstrate below.
Suppose D denotes the number of compact dimensions of the heterotic string, so D = 10−

d. Then the internal SCFT has central charge (26−d, 3
2(10−d)) = (16+D, 3D

2 ). In appendix C,
18The left-moving part of (5.1) was constructed in section 3.4, see (3.50).
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we give the expressions for the NS sector partition functions of any two-dimensional N = (0, 1)
SCFT, see (C.15) and (C.16). For (cL, cR) = (16 +D, 3D

2 ), (C.15) and (C.16) reduce to:

ZT
NS,NS = q−( 2

3 + D
24 )q−D/16 ∑

∆′,∆′

N∆′,∆′q∆′
q∆′

, (5.2)

ZT
NS,R = q−( 2

3 + D
24 )q−D/16e−4πi/3eiπD/24 ∑

∆′,∆′

N∆′,∆′e2πi(∆′−∆′)q∆′
q∆′

. (5.3)

Consider a general spacetime theory T given by a tensor product of two N = (0, 1) SCFTs:

T := (8 −D) · (XL, XR, ψ̃)︸ ︷︷ ︸
(cL,cR)=(8−D, 3

2 (8−D))
and N=(0,1)

⊗ T︸︷︷︸
(cL,cR)=(16+D, 3D

2 )
and N=(0,1)

. (5.4)

The GSO-projected partition function in the NS sector is

ZT
NS

∣∣∣
GSO

= (4π2Im τ)−(8−D)/2

|η(τ)|2(8−D)
1
2

(ϑ3(τ)
η(τ)

)(8−D)/2

ZT
NS,NS + aD

(
ϑ4(τ)
η(τ)

)(8−D)/2

ZT
NS,R

 ,
(5.5)

where aD is a D-dependent constant relating
(
ϑ3(τ)
η(τ)

)(8−D)/2
to
(
ϑ4(τ)
η(τ)

)(8−D)/2
under a T -

transformation: (
ϑ3(τ)
η(τ)

)(8−D)/2
τ 7→τ+17−−−−−→ eiπD/24e−iπ/3︸ ︷︷ ︸

aD

(
ϑ4(τ)
η(τ)

)(8−D)/2
. (5.6)

Therefore,

aD = e−iπD/24eiπ/3 . (5.7)

Note that aD combines with the phase in ZT
NS,R to give −1.

We begin by noting that(
ϑ3(τ)
η(τ)

)(8−D)/2

= q(D−8)/48(1+(8−d)q1/2+ (8−D)(7−d)
2 q+· · ·

)
:= q(D−8)/48

∞∑
n=0

tnqn/2 . (5.8)

(
ϑ4(τ)
η(τ)

)(8−D)/2

= q(D−8)/48(1−(8−D)q1/2+ (8−D)(7−D)
2 q+· · ·

)
:= q(D−8)/48

∞∑
n=0

(−1)ntnqn/2 .

(5.9)
1

η(τ)8−D = q(D−8)/24
∞∑
n=0

p(n,8−D)qn . (5.10)

Here p(n, k) is the number of partitions of a positive integer n into k parts. Also, the
{tn}’s are D-dependent.

Ignoring the center-of-mass contribution, we have

ZT
NS

∣∣∣
GSO

∼ q−1q−
1
2

∞∑
n,j,k=0

∑
∆′,∆′

tnp(j,8−D)p(k,8−D)N∆′,∆′

(
1−e2πi(∆−∆′)(−1)n

)
2 q∆′+j q∆′+ n

2 +k .

(5.11)
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A state of T with (L0, L0) eigenvalues (∆′,∆′) leads to a spacetime tachyon if

∆′ + j − 1 = ∆′ + n

2 + k − 1
2 < 0 , (5.12)

for some non-negative integers n, j, k. For sufficiently positive n, j, or k, this would imply a
negative ∆′ or negative ∆′, which are both impossible as the theory is unitary. Therefore,
we must have n = j = k = 0, which implies that,

0 ≤ ∆′ < 1 , 0 ≤ ∆′
<

1
2 , ∆′ − ∆′ = 1

2 . (5.13)

This generalizes a result in [57, section 6] to non-chiral CFTs. For n = j = k = 0, (5.11)
reduces to:

1
qq1/2

∑
∆′,∆′

N∆′,∆′

1 − e2πi(∆−∆′)

2

 q∆′
q∆′

= 1
qq

∑
∆′

N∆′,∆′− 1
2
q∆′

q∆′
. (5.14)

Therefore, a state with (L0, L0) eigenvalue (∆′,∆′ − 1
2) contributes to tachyons if the GSO-

projected partition function in the NS sector can be reduced to the form (5.14) for n = j =
k = 0, and then the number of tachyons is simply the value of the integer coefficient N∆′,∆′− 1

2
,

which can be read off (5.2). To illustrate this, we present two concrete examples.

The D = 0 case. For D = 0, the theory T of (5.4) has central charge (cL, cR) = (16, 0),
and one particular version of it is the (E8)2 × λ theory19 for which, the (NS,NS) partition
function (3.27) is

Z(E8)2×λ
NS,NS =

(
χVir

0 + χVir
1/2
)(
χE8

1 + χE8
3875

)
. (5.15)

Its q-series expansion is

Z(E8)2×λ
NS,NS = q−2/3

(
1 + q1/2 + 248q + 4124q3/2 + · · ·

)
. (5.16)

In this case, ∆′ = 0 (there are no right movers in T) and so ∆′ = 1
2 is the only contributor

to tachyons. Comparing (5.16) with (5.2), we read off N 1
2 ,0

= 1. So there is a single
spacetime tachyon.

The D = 1 case. For D = 1, the theory T of (5.4) has central charge (cL, cR) = (17, 3
2)

and one realization of it is the tensor product theory

T2 ⊗ ψ̃ =
[
cb2R ⊗ (E8)2 × λ

]
//diag

(
Zh.p.

2 × (−1)F
)
⊗ ψ̃ , (5.17)

where T2 was discussed in section 3.4 (see (3.50)) and ψ̃ denotes a right-moving Majorana-Weyl
fermion. We will show that this theory has a single tachyon for any odd integer value of the
momentum modenumber, provided the radius is large enough. Readers who wish to avoid the
details of this analysis can safely refer to the final result (5.30) and skip to the next subsection.

19This is the (E8)2 × λ theory in the notation of [57].
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The partition functions of T2 were derived in (3.54)–(3.56). For a right-moving Majorana-
Weyl fermion,

Zψ̃NS,NS = χVir
0 + χVir

1/2 , (5.18)

Zψ̃NS,R = eiπ/24(χVir
0 − χVir

1/2
)
, (5.19)

where the phase factor in the second equation follows from aD=7, see (5.7). Therefore, for
the product theory T := T2 ⊗ ψ̃,

ZT
NS,NS =

(1
2Zcb

0,0

(
χVir

0 χE8
1 +χVir

1/2χ
E8
1 +χVir

0 χE8
3875+χVir

1/2χ
E8
3875

)
+ 1

2Zcb
0,1

(
χVir

0 χE8
1 −χVir

1/2χ
E8
1 −χVir

0 χE8
3875+χVir

1/2χ
E8
3875

)
+Zcb

1,0χ
Vir
1/16χ

E8
248

)(
χVir

0 +χVir
1/2

)
,

(5.20)

which is a function of (q, q) and R (the radius of the compact boson is 2R). The q-series
of the (E8)2 and Ising characters (see appendix B) yield

χVir
0 χE8

1 + χVir
1/2χ

E8
1 + χVir

0 χE8
3875 + χVir

1/2χ
E8
3875 = q−2/3

(
1 + q1/2 + 248 q + 4124 q3/2 + · · ·

)
:= q−2/3

∞∑
n=0

rnqn/2 , (5.21)

χVir
0 χE8

1 − χVir
1/2χ

E8
1 − χVir

0 χE8
3875 + χVir

1/2χ
E8
3875 = q−2/3

(
1 − q1/2 + 248 q − 4124 q3/2 + · · ·

)
:= q−2/3

∞∑
n=0

rn(−1)nqn/2 , (5.22)

χVir
1/16χ

E8
248 = q+1/3

(
248 + 34752q + 1057504q2 + · · ·

)
:= q+1/3

∞∑
n=0

snqn . (5.23)

The integer coefficients rn and sn can be read off from the corresponding series expansions.
From (5.8),

χVir
0 + χVir

1/2 =
(
ϑ3(τ)
η(τ)

)1/2

= q−1/48
(
1 + q1/2 + q3/2 + q2 + · · ·

)
= q−1/48 ∑

n=0
tnqn/2 . (5.24)

Using (5.10),

1
|η(τ)|2 = q−1/24q−1/24

∞∑
n′,m′=0

p(n′, 1)p(m′, 1)qn′
qm

′
. (5.25)

Therefore, we can rewrite (3.3) for cb2R as:

Za,b(cb2R;Zh.p.
2 ) =

∞∑
n′,m′=0

p(n′, 1)p(m′, 1)
∑
m∈Z

n∈Z+ 1
2 a

(−1)mbq
1
4 ( m

2R
+2nR)2− 1

24 q
1
4 ( m

2R
−2nR)2− 1

24 .

(5.26)
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Finally, (5.20) can be written as

ZT
NS,NS =

q−
17
24 q−

1
16

( ∑
n,m∈Z

∞∑
n′,m′,
ℓ′,κ′=0

p(n′,1)p(m′,1)rℓ′tκ′

(
1+(−1)m+ℓ′

2

)
q

1
4 ( m

2R +2nR)2+m′+ 1
2 ℓ′q

1
4 ( m

2R−2nR)2+n′+ 1
2 κ′

+
∑

n,m∈Z

∞∑
n′,m′,
ℓ′,κ′=0

p(n′,1)p(m′,1)sℓ′tκ′q
1
4 ( m

2R +2(n+ 1
2 )R)2+m′+ 1

2 ℓ′+1q
1
4 ( m

2R−2(n+ 1
2 )R)2+n′+ 1

2 κ′
)
. (5.27)

There are two classes of states that contribute to the partition function:

• Class I:
states with (∆′,∆′) =

(
1
4
(
m
2R + 2nR

)2 +m′ + 1
2ℓ

′ , 1
4
(
m
2R − 2nR

)2 + n′ + 1
2κ

′
)

,

• Class II:
states with (∆′,∆′) =

(
1
4
(
m
2R+(2n+1)R

)2+m′+ 1
2ℓ

′+1 , 1
4
(
m
2R−(2n+1)R

)2+n′+ 1
2κ

′
)
.

It is easy to check that ∆′ − ∆′ is valued in 1
2Z for both classes. For tachyons to exist, the

condition (5.13) must be satisfied. This translates to the following conditions:

1. Class I: the following conditions must be concurrently satisfied:

(I.A) mn+m′ − n′ + 1
2ℓ

′ − 1
2κ

′ = 1
2

(I.B) 0 ≤ 1
4
(
m
2R + 2nR

)2 +m′ + 1
2ℓ

′ < 1
(I.C) 0 ≤ 1

4
(
m
2R − 2nR

)2 + n′ + 1
2κ

′ < 1
2

2. Class II: the following conditions must be concurrently satisfied:

(II.A) mn+m′ − n′ + 1
2m+ 1

2ℓ
′ − 1

2κ
′ = −1

2

(II.B) 0 ≤ 1
4
(
m
2R + (2n+ 1)R

)2 +m′ + 1
2ℓ

′ + 1 < 1
(II.C) 0 ≤ 1

4
(
m
2R − (2n+ 1)R

)2 + n′ + 1
2κ

′ < 1
2

States from Class II do not contribute tachyons because condition (II.B) is always violated.
Therefore, we restrict our attention to Class I. We further observe that:

1. For a physical state (m+ ℓ′) must be even, due to the projector in (5.27). So m and ℓ′
are both even or both odd.

2. If ℓ′ and κ′ both vanish, condition (I.A) cannot hold.
3. If κ′ ≥ 1, condition (I.C) cannot hold. Therefore we must have κ′ = 0. Then, by the

previous observation, ℓ′ ̸= 0.
4. With κ′ = 0, condition (I.C) cannot hold if n′ ≥ 1. Therefore we must have n′ = 0.
5. Condition (I.B) cannot be satisfied if ℓ′ ≥ 2. And since point 3. required ℓ′ ̸= 0, we

must have ℓ′ = 1. Then point 1. implies that m must be odd.
6. With ℓ′ = 1, condition (I.B) implies that 1

4
(
m
2R + 2nR

)2 +m′ < 1
2 . This cannot hold if

m′ ≥ 1. Therefore we must have m′ = 0.
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7. Finally, with m′ = n′ = κ′ = 0 and ℓ′ = 1, condition (I.A) reduces to mn = 0, which
implies that at least one of m or n is zero. Since point 5. required that m be odd, we
take m ̸= 0. Therefore n = 0.

To summarize,

κ′ = 0 , n′ = 0 , ℓ′ = 1 , m′ = 0 , m is odd , and mn = 0 . (5.28)

The number of tachyons with (n,m, n′,m′, ℓ′, κ′) = (0,m, 0, 0, 1, 0) is

p(n′, 1)p(m′, 1)rℓ′tκ′
(

1 + (−1)m+ℓ′

2

)
= p(0, 1)p(0, 1)r1t0 = 1 . (5.29)

Therefore, there is single tachyon for any m ∈ 2Z + 1 provided the radius satisfies

R >
|m|
2
√

2
, m odd . (5.30)

5.2 Deformation by the tachyon vertex operator and RG flow

We continue our discussion of the D = 1 worldsheet theory T2 ⊗ ψ̃ theory defined in (5.17).
As we saw, the spacetime spectrum contains a tachyon. By the state-operator map, it
corresponds to a tachyon vertex operator in the worldsheet SCFT. We will deform the
worldsheet theory by this operator, which is characterized by the following properties: (1) It
is a Virasoro primary with conformal weight

(
m2

16R2 + 1
2 ,

m2

16R2

)
where m is odd and20 R > |m|

2
√

2 ,
and (2) it is a superVirasoro primary.

The worldsheet superfields in N = (0, 1) superspace parametrized by (z, z, θ) are

Xµ(z, z, θ) = Xµ(z, z) + iθ ψ̃µ(z) , (scalar multiplet) (5.31)
λA

′(z, θ) = λA
′(z) + θ FA

′(z) , (Fermi multiplet) (5.32)

where FA′ is an auxiliary field. Here A′ = (1, . . . , 32) and A = (1, . . . , 31), and we will
isolate the A′ = 32 lone Fermi multiplet, conventionally written without a superscript. Next,
we add a deformation21

∆S := µ

∫
d2z dθO(z, z, θ) , (5.33)

to the worldsheet action of the heterotic string.22 In general, turning on an N = (0, 1)
superpotential,

O(z, z, θ) := λ J(X) , (5.34)
20Note that the conformal weights are upper-bounded.
21As a superfield, O(z, z) = O0(z, z) + θO1(z, z), where the components satisfy L0 · O0 = hO0, L0 · O1 =

(h+ 1
2 )O1, Lm · O0,1 = 0 for m ≥ 1 (idem for the right-handed components, with L↔ L̃ and h↔ h̃ := h− 1

2 ),
G̃−1/2O0 = O1, G̃r · O0 = 0 for r ≥ 1

2 , G̃−1/2 · O1 = ∂O0, G̃1/2 · O1 = 2h̃O0, and G̃r · O1 = 0 for r ≥ 3
2 . We

follow the conventions of [31].
22See [85] and [31, section 12.3] for a discussion of the N = (0, 1) sigma model action.
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where λ is the Fermi superfield corresponding to the lone Majorana-Weyl fermion on the
worldsheet, and J is a real function of the superfield X, yields

∆S = µ

∫
d2z dθλ J(X) = µ

∫
d2z

(
FJ(X) − iλψ̃µ ∂J

∂Xµ

)
. (5.35)

Integrating out the auxiliary field F using23 F = 1
2µJ(X), this gives a scalar potential

V (X) = 1
2µ

2J2(X). For the tachyon vertex operator deformation, we take J(X) = eik·X ,
for which ∆S = µ

∫
d2z

(
F + λkµψ̃

µ
)
eik·X . The integrand is the (off-shell) tachyon vertex

operator for the non-supersymmetric heterotic string [48–50]. We will add the real part of
this to the worldsheet, which reads

∆S = µ

∫
d2z

(
F cos(k ·X) + iλkµψ̃µ sin(k ·X)

)
. (5.36)

This corresponds to J(X) = cos(k ·X), and integrating out the auxiliary field gives

∆S = µ

∫
d2z

[
µ

2 cos2(k ·X) + iλkµψ̃µ sin(k ·X)
]
. (5.37)

Let us consider a single compactified X coordinate, a.k.a. a compact boson (with its super-
partner ψ̃ being a right-moving Majorana-Weyl fermion). This is a relevant deformation if24

k2

4 = m2

16R2 <
1
2 , (5.38)

that is, if,

k = ±|m|
4R ∈ (−

√
2,
√

2) . (5.39)

Without loss of generality, we can pick the positive sign. Therefore, the scalar potential for X is

V (X) = 1
2µ

2 cos2
( |m|X

4R

)
(m ∈ 2Z + 1) . (5.40)

The minima of V (X) are X = 2πR
|m| (2p+ 1) where p ∈ Z. As X is compact, there is an odd

number |m| of vacua.25 This deformation breaks the U(1) rotation symmetry to a discrete
Z|m| symmetry, which simply permutes the |m| vacua. It is clear (for example, by expanding
about one of the |m| vacua) that the scalar X, its superpartner ψ̃, and the lone fermion λ all
acquire a mass, with a scale set by µ. Below this mass scale, the light degrees of freedom
correspond to the (E8)2 current algebra fermions.

Therefore, adding this relevant deformation to the T2⊗ψ̃ theory triggers an RG flow to the
(E8)2 theory. Combining this with the previously established T-duality of T1 ⊗ ψ̃ and T2 ⊗ ψ̃,
we have effectively shown that the theory T1⊗ ψ̃ is continuously connected to the (E8)2 theory.

23Here, we are setting the pullbacks of the connections for both λA and λ to zero. It may be interesting to
study generalizations where the corresponding gauge fields are turned on.

24In our conventions, α′ = 1, so the operator eik·X has conformal dimension ( k2

4 ,
k2

4 ).
25Strictly speaking, there is no spontaneous symmetry breaking at finite volume due to tunneling. We

assume that R is large enough to justify the large-volume argument to claim that there are |m| vacua.
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6 Implication for Topological Modular Forms

As remarked in the introduction, there is a conjectured relation due to the work of Segal [9, 10],
and Stolz and Teichner [11, 12], between 2d N = (0, 1) SQFTs and the generalized cohomology
theory known as Topological Modular Forms (TMF) [2–8, 13, 18, 64, 65]. We begin with a
very rudimentary review to motivate a consequence of the above results for TMF. If S−ν
denotes the space of all 2d N = (0, 1) SQFTs with an anomaly ν ∈ Z and X is a topological
space, the Segal-Stolz-Teichner conjecture states that26

TMF−ν(X)∼=

{ families of
2d N = (0,1) SQFTs ∈S−ν

parametrized by X

}/{ continuous
SUSY-preserving

deformations

}
= [X,S−ν ] := Map(X,S−ν)/∼ .

(6.1)

Physically, this means that the deformation class of a theory in S−ν parametrized by X is
a representative of a cocycle for TMF−ν(X). More formally, (6.1) states that deformation
classes of 2d N = (0, 1) SQFTs with anomaly coefficient ν ∈ (IZΩspin)4(pt) ∼= Z (where
IZΩspin denotes the Anderson dual27 of the spin-bordism group) form the Abelian group
TMF−ν(X). When X = pt, this reduces to an isomorphism,

TMF• := TMF•(pt) ∼= π0(S•) , (6.2)

between TMF classes and the set of path-connected components of S•. TMF• is an E∞-ring
spectrum, graded by a degree −ν ∈ Z. Therefore,

πν(TMF) = TMFν = TMF−ν = π0(S−ν) . (6.3)

The ring structure on S• is given by defining the sum of theories Tα+Tβ (with the Hilbert space
being the direct sum H(Tα)⊕H(Tβ)), the product of theories Tα⊗Tβ (noninteracting stacking,
with the Hilbert space being the tensor product H(Tα) ⊗ H(Tβ)), and a parity-reversal
operation ‘−’ (under which the fermionic parity of the R-sector vacuum is flipped; note that
−Tα = Tα⊗Arf is simply a product with the Arf theory). The first two operations correspond,
respectively, to the sum and product operations in TMF•. On S•, the multiplicative unit 1 is
a theory with a single gapped vacuum and zero degrees of freedom, such that 1 ⊗ Tα ∼= Tα ⊗
1 ∼= Tα, whereas the additive unit 0 is the empty theory with no vacuum and zero degrees of
freedom, such that 0 ⊗ Tα ∼= Tα ⊗ 0 ∼= 0. With this structure, it is clear that the set π0(S•)
is, in fact, an Abelian group, and (6.3) is therefore an isomorphism of Abelian groups.

In a series of works [14, 18, 64, 65], this conjectured relationship between 2d N = (0, 1)
theories and TMF has been extensively fleshed out from physical and mathematical viewpoints,
in the context of general 2d N = (0, 1) SQFTs, and also those that appear as internal theories
for the d-dimensional heterotic string. In the latter setting, the internal 2d N = (0, 1) theory

26There exist equivariant and twisted versions, see [13, 14].
27The appearance of the Anderson dual can be traced back to the work of Freed and Hopkins [86, section 9],

who described a natural transformation α : KOd−2(X) → (IZΩspin)d+2(X) that maps a d-dimensional massless
fermionic theory to the deformation class of its invertible anomaly field theory.
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has anomaly coefficient ν = −2(cL − cR) = −22 − d. Let us briefly summarize some salient
points of [65]. For any degree ν ∈ Z, there is a homomorphism between homotopy groups,28

Φ : πνTMF −→ πνKO((q)) , (6.4)

with kernel and image denoted respectively by Aν and Uν . A given 2d N = (0, 1) SQFT T
of degree ν specifies, by the Segal-Stolz-Teichner isomorphism (6.2), a class [T ] ∈ TMFν , and
one can compute its image Φ([T ]) under this map. When ν ≡ 0, 4 mod 8, for which KOν

∼= Z,
the image is the q-expansion of the standard elliptic genus of T [88]. When ν ≡ 1, 2 mod 8, for
which KOν

∼= Z/2Z (which we will always denote by Z2 below), the image is the q-expansion
of the mod-2 elliptic genus of T , which was studied in [64]. If the image Φ([T ]) is nonzero in
Uν , the theory has a nonzero mod-2 elliptic genus, whereas if the image vanishes (which means
that the corresponding TMF class lives in Aν), the theory has a zero mod-2 elliptic genus.

For us, the pertinent case is d = 9, when ν = −31 ≡ 1 mod 8. Indeed, the T-dual
pairs T1 ⊗ ψ̃ and T2 ⊗ ψ̃ as well as the (E8)2 theory, all belong to the space S−31. First of
all, TMF−31 splits as the direct sum TMF−31 = A−31 ⊕ U−31 (see [8, Thm. 9.26] and [65,
Prop. E.11]). The TMF class defined by,

x−31 :=




the model obtained by fibering (E8)1×(E8)1

over the N = (0,1) S1 sigma model with antiperiodic
spin structure such that the two E8 factors

are exchanged upon going around S1


=

[
T1⊗ψ̃

]
∈TMF−31 ,

(6.5)

has been shown by Tachikawa and Yamashita in [65, section 4.4] to be the generator of
A−31 ∼= Z2. The proof relies on interpreting x−31 in terms of a certain power operation for
the Adams spectral sequence for TMF. In other words, our theory T1 ⊗ ψ̃ is the generator
x−31 of A−31. In [64], Tachikawa, Yamashita, and Yonekura further show that U−31 — which
is pure torsion by definition — is, in particular, the mod-2 reduction of an integral modular
form of weight −16. To summarize, TMF−31 is pure torsion.

In general, suppose an ultraviolet (UV) 2d N = (0, 1) theory TUV ∈ S−ν has N vacua
labeled by i = 1, . . . , N in infinite volume. Suppose that on the ith vacuum, the theory in
the infrared (IR) limit is Xi. Then the total IR theory is the sum of {Xi}Ni=1 in S−ν . So,
for the corresponding TMF classes, we have,

[TUV] =
N∑
i=1

[Xi] in TMFν . (6.6)

If we take as UV theory the T1 ⊗ ψ̃ model with the tachyon vertex deformation of section 5.2
added, there are |m| vacua where m is odd.29 We have shown that this theory is continuously

28The homomorphism (6.4) is induced by the morphism at the level of spectra, TMF σ−→ KO((q)), described
in [87, appendix A]. Here, KO((q)) denotes a Laurent series with coefficients valued in KO. As explained
in [14], the morphism σ amounts to putting a 2d SQFT on S1 so that it is equivariant with respect to the U(1)
action, and the power of q then specifies the weight of this action. The morphism (6.4) physically corresponds
to considering the right-moving ground states of the internal SCFT in the R sector, from which one can infer
the massless spacetime fermionic spectra [14, 64].

29Here we are implicitly invoking T-duality to replace T1 ⊗ ψ̃ with T2 ⊗ ψ̃.
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connected to the (E8)2 theory and that in each vacuum, the theory in the IR limit is a
copy of the (E8)2 theory.30 It follows that,

x−31 =
[
T1 ⊗ ψ̃ + tachyon deformation

]
= |m| · [(E8)2] , (6.7)

where [(E8)2] denotes the nontrivial TMF class of the (E8)2 theory in TMF−31. But since
m is always odd,

2 · [(E8)2] = 0 . (6.8)

So, in effect, we have shown that

x−31 = [(E8)2] ∈ A−31 = ker
(
π−31TMF → π−31KO((q))

) ∼= Z2 . (6.9)

This result has a nice consistency check based on the mod-2 elliptic genus. For a left-moving
spin CFT with degree ν ≡ 1 mod 8, the mod-2 elliptic genus is simply the mod-2 reduction
of the q-expansion of χR,NS [64]. In our case, in the deep IR, the light degrees of freedom
at any one of the odd number of vacua are those of the (E8)2 current algebra, which is
a left-moving CFT with central charge (31

2 , 0) and degree ν = −31 ≡ 1 mod 8, for which
χR,NS = χE8

248. Using (B.12), the q-expansion of this is31

χE8
248 = q7/24 (248+34504q+1022752q2+16275496q3+179862248q4+1551303736q5+O(q6)

)
.

(6.10)

The q-expansion has even coefficients32 and hence, the mod-2 elliptic genus vanishes. Thus
the TMF class [(E8)2] of the (E8)2 theory lives in the kernel A−31, confirming (6.9).

This proves that the (E8)2 theory corresponds to the unique nonzero class in TMF−31
with zero mod-2 elliptic genus, thus giving a physical derivation of Conjecture A.10 of [65].

7 Conclusions and future directions

In this paper, we have established that the torsional class in TMF−31 corresponding to the
(E8)1×(E8)1 theory (which was discussed in [65]) admits another distinguished representative,
namely the (E8)2 theory. Our conclusion relies on the fact that these two theories are
continuously connected in the space of 2d N = (0, 1) SQFTs with anomaly coefficient
ν = −31 (as shown in section 5.2), and that Topological Modular Forms are complete
deformation invariants of 2d N = (0, 1) SQFTs under the assumption of the Segal-Stolz-
Teichner conjecture.33 In particular, we have used physical arguments to give a homotopy

30In more general situations, for a given UV theory with a given degree ν — the gravitational anomaly
— one might have distinct summands in (6.6), but each summand will have the same degree ν due to
anomaly matching.

31The leading power of q reflects the conformal weight 15
16 of the integrable representation 248 (adjoint) of

(E8)2 and the central charge 31
2 .

32Furthermore, the coefficients are multiples of 8. Both facts have been verified numerically to O(q800).
33The term “complete deformation invariant” means the following: two 2d N = (0, 1) SQFTs (with

the same anomaly coefficient ν) are in the same deformation class or equivalently, are homotopic (and
hence can be smoothly deformed into each other) if their images in TMF−ν under the Segal-Stolz-Teichner
isomorphism (1.1) coincide.
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between these theories [1] defined in terms of a relevant tachyon vertex deformation. This
work identifies the TMF class of the (E8)2 theory with that of the (E8)1 × (E8)1 theory.
This is not a mere curiosity: at the time of writing this paper, an independent mathematical
derivation of the TMF class [(E8)2] of the (E8)2 theory was not available, at least to the
knowledge of the author.

Computations in TMF involve the intricate use of spectral sequences [7, 8], and physics-
inspired reasoning based on dualities and RG flows can provide hints when conventional
mathematical techniques prove to be intractable. To determine the TMF class of a given
2d N = (0, 1) SQFT, one can try to find another representative in its deformation class,
one for which the TMF class is already known or is more easily computable. Indeed, this
was a key motivation spelled out in the Introduction. The philosophy of exploiting dualities
and RG flows to connect field theories in the space of 2d N = (0, 1) SQFTs can naturally
be applied to other classes of models. (See [30, section 5] for some recent applications to
ten-dimensional heterotic strings.) Another potential direction is the study of TMF classes of
UV theories with multiple vacua splitting into distinct IR theories — along the lines of (6.6),
but now with not all isomorphic summands (see footnote 30). Finally, an investigation
of TMF classes of internal CFTs that arise in certain heterotic string compactifications to
lower dimensions is work in progress.

A Theta functions

We follow [75] with only mild notational changes. The general theta function is defined by

ϑ

[
θ

ϕ

]
(z|τ) =

∑
n∈Z

exp
[
iπ(n+ θ)2τ + 2πi(n+ θ)(z + ϕ)

]
. (A.1)

Setting z = 0, we obtain

ϑ

[
θ

φ

]
(τ) := ϑ

[
θ

ϕ

]
(0|τ) = η(τ)e2πiθϕq

θ2
2 − 1

24

∞∏
n=1

(
1 + qn+θ− 1

2 e2πiϕ
) (

1 + qn−θ−
1
2 e−2πiϕ

)
=

∞∑
n=−∞

exp
[
iπ(n+ θ)2τ + 2πi(n+ θ)ϕ

]
, (A.2)

where q = e2πiτ , and η is the Dedekind eta function,

η(τ) = q
1

24

∞∏
n=1

(1 − qn) = q
1

24

∞∑
n=−∞

(−1)nq
3n2−n

2 . (A.3)

In particular,

ϑ3(τ) := ϑ

[
0
0

]
(τ) =

∞∏
n=1

(1 − qn)
(
1 + qn−

1
2
)2

=
∞∑

n=−∞
q

1
2n

2
, (A.4)

ϑ4(τ) := ϑ

[
0
1
2

]
(τ) =

∞∏
n=1

(1 − qn)
(
1 − qn−

1
2
)2

=
∞∑

n=−∞
(−1)nq

1
2n

2
, (A.5)

ϑ2(τ) := ϑ

[
1
2
0

]
(τ) = 2q1/8

∞∏
n=1

(1 − qn)(1 + qn)2 =
∞∑

n=−∞
q

1
2 (n+ 1

2 )2
, (A.6)
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ϑ1(τ) := ϑ

[
1
2
1
2

]
(τ) = iq1/8

∞∏
n=1

(1 − qn)2(1 − qn−1) = 0 . (A.7)

They satisfy

ϑ4
2(τ) − ϑ4

3(τ) + ϑ4
4(τ) = 0 . (A.8)

Further, under modular transformations,

ϑ

[
θ

ϕ

]
(τ + 1) = e−iπ(θ2−θ) ϑ

[
θ

θ + ϕ− 1
2

]
(τ) , (A.9)

ϑ

[
θ

ϕ

](
−1
τ

)
= (−iτ)

1
2 ϑ

[
ϕ

−θ

]
(τ) , (A.10)

η(τ + 1) = e
iπ
12 η(τ) , (A.11)

η

(
−1
τ

)
= (−iτ)

1
2 η(τ) , (A.12)

and under shifts of the characteristics,

ϑ

[
θ + a

ϕ+ b

]
(τ) = e2πiθbϑ

[
θ

ϕ

]
(τ) , a, b ∈ Z . (A.13)

Therefore,

ϑ2(τ + 1) = e
iπ
4 ϑ2(τ) , ϑ2

(
−1
τ

)
= (−iτ)1/2ϑ4(τ) , (A.14)

ϑ3(τ + 1) = ϑ4(τ) , ϑ3

(
−1
τ

)
= (−iτ)1/2ϑ3(τ) , (A.15)

ϑ4(τ + 1) = ϑ3(τ) , ϑ4

(
−1
τ

)
= (−iτ)1/2ϑ2(τ) . (A.16)

It is also useful to note that

ϑ′1(τ) = 2πq
1
8

∞∑
n=0

(−1)n(2n+ 1)q
n(n+1)

2 = 2πη3(τ) . (A.17)

B Characters of (E8)1 × (E8)1 and (E8)2

The weight vectors of E8 are

λ =
{

(n1, . . . , n8) ,(
n1 + 1

2 , . . . , n8 + 1
2

) 8∑
i=1

ni = even integer. (B.1)

The lattice sum for E8,

PE8 =
∑

λ

eiπτλ2
, (B.2)
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can be rewritten by inserting 1+eiπ
∑8

i=1 ni

2 which enforces the ∑8
i=1 ni = even constraint

in (B.1). This yields

PE8 = 1
2

 8∏
i=1

∑
ni∈Z

eiπn2
i τ +

8∏
i=1

∑
ni∈Z

eiπn2
i τeiπni +

8∏
i=1

∑
ni∈Z

eiπ(ni+ 1
2 )2

τ +
8∏

i=1

∑
ni∈Z

eiπ(ni+ 1
2 )2
eiπ(ni+ 1

2 )


= 1
2
[
ϑ8

3(τ)+ϑ8
4(τ)+ϑ8

2(τ)
]
, (B.3)

where, in the last line, we have expressed the result in terms of Jacobi ϑ functions reviewed
in appendix A. For (E8 × E8)1, the relevant lattice sum is

P 2
E8 = 1

4
[
ϑ8

3(τ) + ϑ8
4(τ) + ϑ8

2(τ)
]2

= 1 + 480q + 61920q2 + 1050240q3 + O(q4) . (B.4)

Under modular transformations, P 2
E8

(τ + 1) = P 2
E8

(τ) and P 2
E8

(− 1
τ ) = τ8P 2

E8
(τ).

Following [57] and [41], we define the (holomorphic) Ising characters as

χVir
0 = B0

I(τ) =
√
ϑ3(τ) +

√
ϑ4(τ)

2
√
η(τ)

= 1
2q

−1/48
{ ∞∏
n=1

(
1 − qn−1/2

)
+

∞∏
n=1

(
1 + qn−1/2

)}
,

(B.5)

χVir
1/2 = B1

I(τ) =
√
ϑ3(τ) −

√
ϑ4(τ)

2
√
η(τ)

= 1
2q

−1/48
{ ∞∏
n=1

(
1 − qn−1/2

)
−

∞∏
n=1

(
1 + qn−1/2

)}
,

(B.6)

χVir
1/16 = B2

I(τ) = q1/24
∞∏
n=1

(1 + qn) = 1√
2

√
ϑ2(τ)
η(τ) . (B.7)

Under modular transformations, these transform as

TIsing

B0
I(τ)

B1
I(τ)

B2
I(τ)

 =

e
−iπ/24 0 0

0 −e−iπ/24 0
0 0 eiπ/12


B0

I(τ)
B1
I(τ)

B2
I(τ)

 , (B.8)

SIsing

B0
I(τ)

B1
I(τ)

B2
I(τ)

 =


1
2

1
2

1√
2

1
2

1
2 − 1√

2
1√
2 − 1√

2 0


B0

I(τ)
B1
I(τ)

B2
I(τ)

 . (B.9)

One can verify that S2
Ising = 1 and (SIsingTIsing)3 = 1.

The (E8)2 characters are defined as

χE8
1 = B0

E8(τ) = 1
η31/2

[1
2P

2
E8

( 1√
ϑ4

+ 1√
ϑ3

)
− 1

4

( 1√
ϑ3
P3 + 1√

ϑ4
P2

)]
, (B.10)

χE8
3875 = B1

E8(τ) = 1
η31/2

[1
2P

2
E8

( 1√
ϑ3

− 1√
ϑ4

)
− 1

4

( 1√
ϑ3
P3 −

1√
ϑ4
P2

)]
, (B.11)

χE8
248 = B2

E8(τ) =
√

2
η31/2

1√
ϑ2

[1
2P

2
E8 −

1
4P1

]
, (B.12)
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where

P1(τ) := ϑ4
3ϑ

4
4

{1
8
(
ϑ8

3 + ϑ8
4

)
+ 7

4ϑ
4
3ϑ

4
4

}
, (B.13)

P2(τ) := ϑ4
3ϑ

4
2

{1
8
(
ϑ8

3 + ϑ8
2

)
+ 7

4ϑ
4
3ϑ

4
2

}
, (B.14)

P3(τ) := −ϑ4
4ϑ

4
2

{1
8
(
ϑ8

4 + ϑ8
2

)
− 7

4ϑ
4
4ϑ

4
2

}
. (B.15)

Under modular transformations, the Pi’s transform as follows:

P1(τ + 1) = P1(τ) , P1

(
−1
τ

)
= τ8P2(τ) , (B.16)

P2(τ + 1) = P3(τ) , P2

(
−1
τ

)
= τ8P1(τ) , (B.17)

P3(τ + 1) = P2(τ) , P3

(
−1
τ

)
= τ8P3(τ) . (B.18)

Therefore, the modular transformations of the (E8)2 characters are

TE8

B0
E8

B1
E8

B2
E8

 =

e
−31iπ/24 0 0

0 −e−31iπ/24 0
0 0 e−17iπ/12


B0

E8

B1
E8

B2
E8

 , (B.19)

SE8

B0
E8

B1
E8

B2
E8

 =


1
2

1
2

1√
2

1
2

1
2 − 1√

2
1√
2 − 1√

2 0


B0

E8

B1
E8

B2
E8

 . (B.20)

One can check that S2
E8

= 1 and (SE8TE8)3 = 1. We note that SE8 = SIsing. Furthermore,
we note that SIsing,E8 and TIsing,E8 have determinant −1.

It is easy to verify the following identity:

η−16P 2
E8 = B0

E8B0
I + B1

E8B1
I + B2

E8B2
I . (B.21)

This implies that

χ0,0 = truntwisted q
L0− c

24 = η−16P 2
E8 =

∑
i,j∈{0,1,2}

cijBiE8BjI , where cij = δij . (B.22)

The Z2 action exchanges the two (E8)1 factors, but this action commutes with the (E8)2 × λ

decomposition, and therefore the coefficients c′ij in the resulting decomposition can only be
±1. A detailed analysis of the Hs and Has subspaces of the Hilbert space [41] reveals that,
in fact, (c′00, c

′
11, c

′
22) = (0, 1,−1). Therefore,

χ0,1 = truntwisted g q
L0− c

24 = B0
E8B0

I + B1
E8B1

I − B2
E8B2

I . (B.23)

The S-transformation of χ0,1 yields

χ1,0 = trtwisted q
L0− c

24 = B1
E8B0

I + B0
E8B1

I + B2
E8B2

I , (B.24)

and finally, the T transformation of χ1,0 yields

e−4πi/3χ1,1 = e−4πi/3trtwisted g q
L0− c

24 = −e2πi/3
(
B1
E8B0

I + B0
E8B1

I − B2
E8B2

I

)
,

which yields

χ1,1 = trtwisted g q
L0− c

24 = −B1
E8B0

I − B0
E8B1

I + B2
E8B2

I . (B.25)
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C Factorizing internal SCFT partition functions

For a 2d CFT with central charge (cL, cR), the Hilbert space decomposes in terms of Verma
modules as

H =
⊕
∆,∆

c∆,∆V(cL,∆) ⊗ V(cR,∆) , (C.1)

where {c∆,∆} is a theory-dependent set of coefficients. The partition function has the
schematic form

Z(τ, τ) =
∑
∆,∆

c∆,∆χ∆(q)χ∆(q) . (C.2)

For unitary CFTs cL ≥ 1 and cR ≥ 1 (see [31, Ch. 15] and [79, Ch. 7]), and the only module
inside V(cL,∆)⊗V(cR,∆) that has a null state is the vacuum module with ∆ = 0 and ∆ = 0.
So, all Verma modules other than the vacuum module are irreducible (that is, devoid of null
submodules containing singular vectors or null states). To summarize,

χ∆(q) =


q∆+(1−cL)/24

η(τ) for a non-vacuum module (∆ ̸= 0) ,
(1−q)q(1−cL)/24

η(τ) for a vacuum module (∆ = 0) ,
(C.3)

with a similar expression for χ∆(q) with cL → cR, q → q, τ → τ , and ∆ → ∆. Thus (C.2)
has the form

Z(τ,τ) =

q
(1−cL)

24 q
(1−cR)

24

|η(τ)|2
(
c0,0(1−q)(1−q)+(1−q)

∑
∆ ̸=0

c0,∆q
∆+(1−q)

∑
∆ ̸=0

c∆,0q
∆+

∑
∆ ̸=0
∆ ̸=0

c∆,∆q
∆q∆

)
.

(C.4)
Next, consider a generic 2d N = (0, 1) SCFT with central charge (cL, cR). As we will admit
theories for which cL − cR could be a half-integer, we restrict our attention to the NS sector,
where we have the following well-defined left-moving chiral characters:

χNS,NS = TrNS[qL0−
cL
24 ] = q∆− cL

24

∞∏
n=1

1 + qn−
1
2

1 − qn
, (C.5)

χNS,R = TrNS[(−1)FqL0−
cL
24 ] = q∆− cL

24

∞∏
n=1

1 − qn−
1
2

1 − qn
. (C.6)

But we must be careful about the vacuum module as in the bosonic case. First of all, note that
for the NS sector, L−1 = G2

−1/2 (here {Gr}r∈Z+ 1
2

denote the modes of the supercurrent, and
{Lm}m∈Z denote the modes of the energy-momentum tensor). So, since L−1 annihilates the
vacuum state, so does G−1/2. Therefore, the characters (C.5) and (C.6) should be refined to

χNS,NS =

 q∆− cL
24
∏∞
n=1

1+qn− 1
2

1−qn , for a non-vacuum module (∆ ̸= 0) ,

q−
cL
24 ,

∏∞
n=2

1+qn− 1
2

1−qn for the vacuum module (∆ = 0) .
(C.7)

χNS,R =

 q∆− cL
24
∏∞
n=1

1−qn− 1
2

1−qn , for a non-vacuum module (∆ ̸= 0) ,

q−
cL
24
∏∞
n=2

1−qn− 1
2

1−qn , for the vacuum module (∆ = 0) .
(C.8)
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Let us define

f+(q) :=
∞∏
n=1

1+qn− 1
2

1−qn = 1+q1/2+q+2q3/2+3q2+4q5/2+5q3+· · ·=
∑

n∈Z≥0

pnq
n/2 , (C.9)

f−(q) :=
∞∏
n=1

1−qn− 1
2

1−qn = 1−q1/2+q−2q3/2+3q2−4q5/2+5q3−·· ·=
∑

n∈Z≥0

(−1)npnqn/2 .

(C.10)

Note that
∞∏
n=2

1 ± qn−
1
2

1 − qn
= (1 ∓ q1/2)

∞∏
n=1

1 ± qn−
1
2

1 − qn
= (1 ∓ q1/2)f±(q) . (C.11)

The partition function of an internal 2d N = (0, 1) SCFT in the (NS,NS) sector is

ZNS,NS =
∑
∆,∆

C∆,∆χNS,NS,∆(q)χNS,NS,∆(q) = q−cL/24q−cR/24|f+(q)|2
∑
∆,∆

α∆,∆q
∆q∆ , (C.12)

where α∆,∆ is related to C∆,∆ by

α0,0 = C0,0 , α 1
2 ,0

= −C0,0 + C 1
2 ,0
, α0, 1

2
= −C0,0 + C0, 1

2
, α 1

2 ,
1
2

= C0,0 + C 1
2 ,

1
2
,

α0,∆ = C0,∆ , α 1
2 ,∆

= −C0,∆ if ∆ ̸= 0 ,

α∆,0 = C∆,0 , α∆, 1
2

= −C∆,0 if ∆ ̸= 0 ,

α∆,∆ = C∆,∆ if ∆ ̸= 0, 1
2 and ∆ ̸= 0, 1

2 .
(C.13)

Under a T -transformation (τ 7→ τ + 1 and τ 7→ τ + 1), f+(q) 7→ f−(q). We define

ZNS,R = q−cL/24q−cR/24e−2πi (cL−cR)
24 |f−(q)|2

∑
∆,∆

e2πi(∆−∆)α∆,∆q
∆q∆ . (C.14)

Note that (∆ + n
2 ,∆ + m

2 ) is the conformal dimension of the state at level (n,m) in the
conformal family (∆,∆). Therefore, defining ∆ + n

2 := ∆′ and ∆ + m
2 := ∆′, we can recast

the partition functions as

ZNS,NS = q−cL/24q−cR/24 ∑
∆′,∆′

N∆′,∆′q∆′
q∆′

, (C.15)

ZNS,R = q−cL/24q−cR/24e−2πi (cL−cR)
24

∑
∆′,∆′

N∆′,∆′e2πi(∆′−∆′)q∆′
q∆′

, (C.16)

where

N∆′,∆′ :=
∑

n,m∈Z≥0

α∆′−m
2 ,∆′−n

2
pnpm . (C.17)
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