
J
H
E
P
0
9
(
2
0
2
4
)
0
2
7

Published for SISSA by Springer

Received: July 10, 2024
Accepted: August 17, 2024

Published: September 6, 2024

A foray on SCFT3 via super spinor-helicity and
Grassmann twistor variables

Sachin Jain , Dhruva K.S , Deep Mazumdar and Shivang Yadav

Indian Institute of Science Education and Research,
Dr Homi Bhabha Road, Pashan, Pune, India

E-mail: sachin@iiserpune.ac.in, k.s.dhruva@students.iiserpune.ac.in,
deepkamal.mazumdar@students.iiserpune.ac.in,
shivang.yadav@students.iiserpune.ac.in

Abstract: In this paper, we develop a momentum super space formalism for N = 1, 2
superconformal field theories in three dimensions. First, we solve for super-correlators in the
usual momentum superspace variables. However, we found that expressing quantities in super
space spinor helicity variables greatly simplifies the analysis. Further, by performing a “half”
Fourier transform of the Grassmann coordinates which is analogous to the Twistor transform,
an even more remarkable simplification occurs. Using this formalism, we first compute all
three point correlation functions involving conserved super-currents with arbitrary spins in
N = 1, 2 theories. We discover interesting double copy relations in N = 1 super-correlators.
Further, we discovered super double copy relations that take us from N = 1 to N = 2
super-correlators. We also extend our results to correlators involving scalars as well as to
higher points. Further, we comment on the connection of our results with the flat space
super amplitudes in one higher dimension.

Keywords: Scale and Conformal Symmetries, Superspaces, Extended Supersymmetry

ArXiv ePrint: 2312.03059

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP09(2024)027

https://orcid.org/0009-0001-0934-4147
https://orcid.org/0009-0000-8990-4855
https://orcid.org/0009-0000-7901-7697
https://orcid.org/0000-0001-5617-7479
mailto:sachin@iiserpune.ac.in
mailto:k.s.dhruva@students.iiserpune.ac.in
mailto:deepkamal.mazumdar@students.iiserpune.ac.in
mailto:shivang.yadav@students.iiserpune.ac.in
https://doi.org/10.48550/arXiv.2312.03059
https://doi.org/10.1007/JHEP09(2024)027


J
H
E
P
0
9
(
2
0
2
4
)
0
2
7

Contents

1 Introduction 1

2 Setting the stage: N = 1 SCFT 2
2.1 Constraining super correlators in momentum super space 4
2.2 En route to spinor helicity and Grassmann twistor variables 5

3 Correlation functions in N = 1 SCFTs 7
3.1 Two point functions 7
3.2 Three point correlation functions 8
3.3 Double-copy relations 10
3.4 The super Ward-Takahashi identity 11
3.5 Summary of super correlators: homogeneous and non homogeneous sectors 12
3.6 Correlators involving scalar superfields 13

4 Extended supersymmetry: the N = 2 case 14
4.1 The superspace formulation 14
4.2 Super-currents and Ward identities 16
4.3 Two point functions 16
4.4 Three point function 17
4.5 Double copy: N = 1⊗N = 1 → N = 2 17
4.6 Correlators involving scalar superfields 19

5 Four point functions in N = 1 SCFT 20
5.1 Scalar superfield four point function 21

6 Discussion and future directions 22

A Notation, conventions and some useful formulae 24

B N = 1 and N = 2 superconformal algebra 27

C KSCFT =⇒ KCFT for the components 29

D A worked out example of a N = 1 three point function 31

1 Introduction

Conformal field theory (CFT) forms a cornerstone of theoretical physics. It’s applications
range from string theory to condensed matter physics. A special class of CFTs are those that
also possess supersymmetry, i.e super conformal field theories (SCFTs), see for instance [1, 2].
These theories are of utmost interest as they provide us a window into non-perturbative
physics. It is quite advantageous to formulate such theories in momentum superspace. In non
supersymmetric CFTs, momentum space has led to various interesting results such as making
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a connection to flat space scattering amplitudes in one higher dimension [3, 4], discovering
double copy structures at the level of correlation functions [5–7] and even making a connection
with early universe cosmology [3, 8–12] and AdS amplitude [13–18]. One natural direction is to
explore supersymmetric extension, their connection to supersymmetric scattering amplitude,
AdS superamplitude [19], etc. While there has been a lot of development in the Fourier
space approach to non-supersymmetric CFTs over the past decade or so [7, 20–34], its
supersymmetric counterparts have mostly been left untouched. The development of such a
formalism would greatly aid for example the study of connection to flat space S-matrix. This
development also have a application in Supersymmetric Chern-Simons matter such as [35–37]
and N = 6 ABJM theory [38]. However, such pursuits first require the development of
momentum superspace. Most of the literature, however has been in the arena of position
superspace [39–46]. Thus, we begin the programme of the development of momentum
superspace, starting with three-dimensional SCFTs which possess two or four supercharges.

Outline. In section 2, we introduce the momentum superspace formalism for N = 1 SCFTs.
After working out a three-point super-correlator as an example, we show that rather than
working in ordinary momentum superspace variables, working with super spinor helicity
variables is quite advantageous. We then show that a drastic simplification occurs if we
rather work in Grassmann twistor space, forming the nexus of our formalism. In section 3, we
present our results for all two and three-point correlators with arbitrary (half) integer spin
insertions in N = 1 SCFTs. We also discuss double copy relations as well as Ward-Takahashi
identities. In section 4, we extend our formalism to theories with four supercharges as well
as present a way to obtain N = 2 super-correlators via a super double copy construction of
their N = 1 counterparts. In section 5, we discuss four point functions in our new formalism.
Finally, in section 6, we summarize our results and discuss several exciting future directions.

We also have several appendices that complement the main text. In appendix A, we
present our notations, conventions and some useful spinor-helicity identities. In appendix B,
we present the N = 1 and N = 2 Lie superalgebras and the action of their generators on
primary superfields in various variables. In appendix C, we prove that conformal invariance of
the individual component correlators that appear in a super-correlator implies the conformal
invariance of the super-correlator itself. We then present a worked out example of a N=1
three-point function in appendix D.

2 Setting the stage: N = 1 SCFT

The coordinates of N = 1 superspace consist of a pair (xµ, θa) where xµ, µ = 1, 2, 3 are
the usual position space coordinates and θa, a = 1, 2 are the Grassmann coordinates of
the superspace [39, 47]. The generators of the N = 1 superconformal algebra that act on
the superspace consist of the usual conformal generators Pµ, Mµν , D, Kµ along with the
supersymmetry generator Qa and the special superconformal generator Sa. The Lie super-
algebra that these generators obey as well as their action on primary super fields are provided
in appendix B. We provide our notation in appendix A.

By performing a Fourier transform with respect to the xµ, we end up in momentum
superspace which is described by the coordinates (pµ, θa), where pµ is the three-momentum
and θa are the same Grassmann coordinates as in the position superspace.
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Let us now study SCFT in this superspace formalism. The quantities that we are
interested in obtaining are correlation functions involving primary superfields. In particular
the superfields that we are interested in are symmetric traceless conserved super-currents,
which we shall henceforth just refer to as a supercurrent for brevity. A spin s supercurrent
has the following component expansion in the superspace [39]:

Ja1···a2s
s (θ, x) = Ja1···a2s

s (x) + θmJ
(a1···a2s1 m)
s+ 1

2
(x)− i

θ2

4 (/∂)a1
m Ja2···a2sm

s (x). (2.1)

The indices a1 · · · a2s are symmetrized. Js and Js+ 1
2

are component currents that are conserved.
The supercurrent (2.1) satisfies the following conservation equation:

Da1Ja1···a2s
s (θ, x) = 0, (2.2)

where Da1 = ∂
∂θa1 − i

2θb(σµ)b
a1∂µ, is the supercovariant derivative.

Performing a fourier transform with respect x, we obtain the momentum superspace
counterpart to (2.1):

Ja1···a2s
s (θ, p) = Ja1···a2s

s (p) + θmJ
(a1···a2s1 m)
s+ 1

2
(p) + θ2

4 (/p)a1
m Ja2···a2sm

s (p). (2.3)

We can now construct correlation functions of these operators using the definition (2.3).
The super-correlators obey the N = 1 super ward identities. For instance, consider the
supersymmetry generator Qa. It has the following action on superfields:

Qia =
(

∂

∂θa
i

−
(/pi

)b
a

2 θib

)
. (2.4)

For an n point correlation function, invariance under the Q supersymmetry demands that,
n∑

i=1
Qia⟨J

a1···a2s1
s1 (θ1, p1) . . . Jc1···c2sn

sn
(θn, pn)⟩ = 0. (2.5)

This implies that n point correlators take the following form [35, 37]:

⟨Ja1···a2s1
s1 (θ1, p1) . . . Jc1···c2sn

sn
(θn, pn)⟩ = e−

1
2n(θa

1 +···+θa
n)(θ1b(/p1)ab+···+θnb(/pn

)ab)

F a1···c2sn ({θi − θj}, {pi}), (2.6)

where,

F a1···c2sn ({θi−θj},{pi})=F
a1···c2sn
1 ({pi})+(θ1m−θ2m)F a1···c2sn m

2 ({pi})+· · · , (2.7)

contains undetermined functions Fi({pi}) packaged together via a Grassmann spinor expan-
sion. One can now impose the Ward identities due to the other superconformal generators and
constrain the form of these functions. These constraints, however, take the form of coupled
partial differential equations involving the Fi({pi}) and hence quite difficult to solve. There
is, however, an alternative method to proceed. We expand the superfields in the correlator
using (2.3). The result is a sum of component correlators arranged in a Grassmann spinor
expansion. The invariance of the individual component correlators guarantees invariance
under the conformal transformations. Please see appendix C for proof. We then substitute
this component correlator expansion into the l.h.s. of (2.6) and equate it to the r.h.s. order by
order in the Grassmann spinor expansion. Once the resulting algebraic equations involving
the component correlators and the Fi({pi}) are solved, the resulting quantity is invariant
under the action of the entire superconformal algebra.
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2.1 Constraining super correlators in momentum super space

Let us now illustrate the methodology that we just outlined via a three-point example.
Consider the spins s1 = 3

2 , s2 = s3 = 1
2 . Using the superfield expansions provided in (2.3)

we obtain,

⟨J 3
2

(efg)J 1
2

aJ 1
2

b⟩=

θ1h⟨T (efgh)Oa
1
2
Ob

1
2
⟩−θ2c⟨J (efg)

3
2

J (ac)Ob
1
2
⟩+θ3d⟨J

(efg)
3
2

Oa
1
2
J (bd)⟩

+1
4θ1hθ2

2(/p2)
a
c ⟨T (efgh)Oc

1
2
Ob

1
2
⟩+1

4θ1hθ2
3(/p3)

b
d⟨T (efgh)Oa

1
2
Od

1
2
⟩− 1

4θ2cθ
2
1⟨J

(hfg)
3
2

J (ac)Ob
1
2
⟩

− 1
4θ2cθ

2
3(/p3)

b
d⟨J

(efg)
3
2

J (ac)Od
1
2
⟩+1

4θ3dθ2
1(/p1)

e
h⟨J

(hfg)
3
2

Oa
1
2
J (bd)⟩+1

4θ3dθ2
2(/p2)

a
c ⟨J

(efg)
3
2

Oc
1
2
Jbd)⟩

+θ1hθ2cθ3d⟨T (efgh)J (ac)J (bd)⟩+ 1
16θ2

1θ2
2θ3d(/p1)

e
h(/p2)

a
c ⟨J

(hfg)
3
2

Oc
1
2
J (bd)⟩

+ 1
16θ2

1θ2
3θ2c(/p1)

e
h(/p3)

b
d⟨J

(hfg)
3
2

J (ac)Od
1
2
⟩+ 1

16θ2
2θ2

3θ1h(/p2)
a
c (/p3)

b
d⟨T (efgh)Oc

1
2
Od

1
2
⟩, (2.8)

while the analogue of (2.6) is given by,

⟨J 3
2

(efg)J 1
2

aJ 1
2

b⟩= e
1
6 (θm

1 +θm
2 +θm

3 )((θ1−θ2)n(/p2)mn+(θ1−θ3)n(/p3)mn)
(

A
(efg)abl
1 (θ1−θ2)l (2.9)

+A
(efg)abl
2 (θ1−θ3)l+B

(efg)abl
1 (θ1−θ2)l(θ1−θ3)2+B

(efg)abl
2 (θ1−θ3)l(θ1−θ2)2

)
.

We now equate equations (2.8) and (2.9) order by order in the Grassmann spinor expansion.
For instance, we obtain at the lowest order,

A
(efg)abl
1 = ⟨J (efg)

3/2 J (al)Ob
1/2⟩,

A
(efg)abl
2 = −⟨J (efg)

3/2 Oa
1/2J (bl)⟩,

A
(efg)abl
1 + A

(efg)abl
2 = ⟨T (efgl)Oa

1/2Ob
1/2⟩, (2.10)

which forces the relation,

⟨T (efgl)Oa
1/2Ob

1/2⟩ = ⟨J (efg)
3/2 J (al)Ob

1/2⟩ − ⟨J (efg)
3/2 Oa

1/2J (bl)⟩. (2.11)

One can independently check that this holds true by computing the l.h.s. and r.h.s. separately.
Going to higher orders in the Grassmann expansion yields similar but albeit more complicated
and not very insightful relations also involving the component ⟨TJJ⟩ correlator.

In order to proceed further, we then use the fact that in a generic 3d CFT, a three point
(component) correlator can have at most three independent structures [48]:

⟨Js1Js2Js3⟩ = nb⟨Js1Js2Js3⟩B + nf ⟨Js1Js2Js3⟩F + nodd⟨Js1Js2Js3⟩odd, (2.12)

where the first and the second term are the free bosonic and free fermionic correlators whilst
the third term is a parity odd piece. Using (2.12) for each of the component correlators
appearing in the superfield expansion and demanding that relations such as (2.11) are satisfied,
reduces the number of independent coeffcients in (2.12) for every component correlator. In
fact, for the correlator in (2.8), we find nf = nb and nodd = 0 for all the component
correlators thereby obtaining a single parity even solution:

⟨TO1/2O1/2⟩ = nb

(
⟨TO1/2O1/2⟩F B + ⟨TO1/2O1/2⟩F F

)
,

⟨J3/2JO1/2⟩ = nb

(
⟨J3/2JO1/2⟩F B + ⟨J3/2JO1/2⟩F F

)
,

⟨TJJ⟩ = nb

(
⟨TJJ⟩F B + ⟨TJJ⟩F F ⟩

)
, (2.13)
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a result that is consistent with [45], that is, the existence of a single parity even solution.
The final expression for the correlator is obtained by substituting (2.13) back into (2.8) or
equivalently (2.9). By construction this correlator is invariant under the action of all the
generators of the superconformal algebra.

While we were systematically able to solve the equations at every order in the Grassmann
spinor expansion, the procedure is quite complicated. Other than dealing with various
degeneracy identities,1 there is no simple generalization to arbitrary spin correlators, no
obvious connection to the flat space scattering amplitudes in four dimensions, or the existence
of double copy relations between various super-correlators. Hence, we define our new variables
in the next section to surpass this tedious process. We give a worked-out example of the
same correlator and get the same constraints on the coefficients using our new formalism in
appendix D, circumventing all the complexities of momentum super-space variables in one go.

2.2 En route to spinor helicity and Grassmann twistor variables

Rather than attempt a tour de force and try to obtain correlators the above way, we discovered
a different set of variables that simplify the analysis significantly. As a first step, let us
use spinor helicity variable defined as

pµ = 1
2(σ

µ)a
b λa λ̄b, (2.14)

where λ and λ̄ are two component commuting spinors. The momentum pµ is invariant
under the little group transformation, λ → rλ, λ̄ → r−1 λ̄, r ∈ C. As in the case of non-
supersymmetruc correlators, the introduction of spinor helicity variables greatly helps us
in dealing with degeneracies which leads to simplification of algebra as well as expressions.
However, to truly exploit the power of spinor helicity variables, we also need to express the
Grassmann spinors θa in the basis of λ and λ̄. We define,

θa = η̄λa + η λ̄a

2p
, (2.15)

where η is a complex Grassmann variable and η̄ is it’s complex conjugate. This definition is
consistent with the fact that the dimensionality of θ is −1

2 . Further, η and η̄ must transform
as η → rη, η̄ → r−1 η̄ under little group scalings so that θ remains unaffected.

We then contract the superfield (2.3) with the polarization spinors which are given by,

ζ−a = λa√
p

, ζ+
a = λ̄a√

p
, (2.16)

and express the grassmann spinor θa in terms of the η, η̄ variables defined in (2.15). We
obtain the super-current in the ±s helicities,2

J−
s = e−

η η̄
4 J−

s + η̄

2√p
J−

s+ 1
2
,

J+
s = e

η η̄
4 J+

s + η

2√p
J+

s+ 1
2
, (2.17)

1An example of such an identity is (/p1)
l
f (/p2)

mb = (/p1)
bl(/p2)

m
f − (/p1)

kl(/p2)
m
k δb

f .
2We also use the fact that the supercurrent (2.3) is symmetric, traceless and conserved and hence it has

only two independent components which are the h = ±s ones.
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where, J±
s := ζ±a1 · · · ζ

±
a2s

Ja1···a2s
s . The Super-correlator (2.8) in these variables becomes

extremely simple. For instance in the (− −+) helicity configuration we obtain,3

⟨J−
3
2
J−

1
2
J+

1
2
⟩= 1

2√p3
⟨J−

3/2O−
1/2T +⟩

(
e− η1η̄1

4 e− η2η̄2
4 η3

− 1
E

(
e− η1η̄1

4 e
η3η̄3

4 η̄2⟨23⟩−e− η2η̄2
4 e

η3η̄3
4 η̄1⟨31⟩−

η̄1η̄2η3

2 ⟨12⟩
))

.

(2.18)

Further, the exponential of the Grassmann bilinears that appear in this expression suggests us
to perform a Grassmann “half” Fourier transform analogous to the twistor transform [49, 50].
Given a function F (η, η̄) we define the Grassmann Twistor transform as follows:

F̃ (η, χ) :=
∫

d η̄ e−
χ η̄
4 F (η, η̄). (2.19)

We then make a variable change from (η, χ) to (ξ+, ξ−) which are defined as,

ξ± = χ ± η. (2.20)

In these new Grassmann “Twistor” Variables, the correlator takes the following beautiful form:4

⟨J̃−
3
2
J̃−

1
2
J̃+

1
2
⟩=− ξ3−

256√p3
⟨J−

3
2

J−
1
2

J+
1 ⟩
[
ξ1+ξ2+ξ3+− 8

E

(
ξ1+⟨23⟩+ξ2+⟨31⟩+ξ3+⟨12⟩

)]
. (2.21)

Contrasted with (2.8), the new representation (2.21) is not only simpler but also appears in
a language that is homologous to the four-dimensional flat space scattering amplitudes [50].
Further, we shall see in the next section that the structure appearing inside the brackets
in (2.21) is one of two universal structures that appear in three-point super-correlators with
arbitrary (half) integer spin insertions! Motivated by all this simplicity, let us, from first
principles, develop our formalism in these new variables.

Grassmann twistor variables

The superfield expansion in the grassmann twistor variable can be obtained by performing
the transformation (2.19) on (2.17). The result is,5

J̃−
s = 1

4

(
ξ+J−

s + 2
√

p
J−

s+ 1
2

)
,

J̃+
s = ξ−

4

(
J+

s + ξ+
4√p

J+
s+ 1

2

)
. (2.22)

We then construct correlation functions of the super-currents in these new variables using
the superfield expansion (2.22). The only Ward identity that we need to impose is the one
due to the Q supersymmetry. In these new variables we have,

Qia = 2λia
∂

∂ξi+
+ λ̄ia

4 ξi+. (2.23)

3Similar expressions can be obtained for all other helicities.
4We can then proceed to obtain similar expressions in all the other helicity configurations as well.
5We note the similarity between (2.22) and the N = 1 superfields in the four dimensional flat space

literature, see for instance [51].
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The associated Ward identity reads,
n∑

i=1
Qia⟨J̃±

s1 · · · J̃
±
sn
⟩ = 0. (2.24)

As we can see from (2.23), Qa =
n∑

i=1
Qia is a two component spinor operator. Therefore,

it can be written in the following way:6

Qa = λ1aq + λ̄1a q̄, (2.25)

for some q, q̄. It is easy to show (using the Schouten identity, see appendix A) that we have,

q = 2 ∂

∂ξ1+
+ 1

p1

n∑
i=2

(
⟨1̄i⟩ ∂

∂ξi+
+ ⟨1̄ ī⟩

8 ξi+

)
,

q̄ = ξ1+
4 − 1

p1

n∑
i=2

(
⟨1i⟩ ∂

∂ξi+
+ ⟨1 ī⟩

8 ξi+

)
. (2.26)

Thus, the Q Ward identity (2.24), splits into two simpler Ward identities viz,

q⟨J̃±
s1 · · · J̃

±
sn
⟩ = 0,

q̄⟨J̃±
s1 · · · J̃

±
sn
⟩ = 0. (2.27)

We need not impose the Ward identities at the level of the Super-correlator for the same reason
that we mentioned just below (2.7), i.e., imposing conformal invariance at the component
level suffices to have conformal invariance at the level of the Super-correlator. Further, the
different coefficients that appear in the component correlators (2.12) get related to each
other due to the Qa ward identities (2.27).

3 Correlation functions in N = 1 SCFTs

In this section, we shall present our final results for two and three point correlators in the
ξ± variables (2.20).

3.1 Two point functions

3.1.1 ⟨J̃sJ̃s⟩, s ∈ Z>0

We obtain the following expressions for the correlator in the (−−) and (++) helicity
configurations:

⟨J̃−
s J̃−

s ⟩ = (ce + ico)
⟨12⟩2s

16p1

(
ξ1+ξ2+ − 4⟨12⟩

p1

)
,

⟨J̃+
s J̃+

s ⟩ = −(ce − ico)ξ1−ξ2−
⟨1̄ 2̄⟩2s+1

256p2
1

(
ξ1+ξ2+ − 4⟨12⟩

p1

)
, (3.1)

where ce and co are the coefficients of the parity even and parity odd contributions respectively.
6We choose to work in the (λ1a, λ̄1a) basis. One can also choose to work in other basis but the results that

we obtain will be basis independent.
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3.1.2 ⟨J̃sJ̃s⟩, s = k + 1
2 , k ∈ Z≥0

The expressions of the correlator in the (−−) and (++) helicity configurations are given by,

⟨J̃−
s J̃−

s ⟩ = −(ce + ico)
⟨12⟩2s

16p1

(
ξ1+ξ2+ − 4⟨12⟩

p1

)
,

⟨J̃+
s J̃+

s ⟩ = (ce − ico)ξ1−ξ2−
⟨1̄ 2̄⟩2s+1

256p2
1

(
ξ1+ξ2+ − 4⟨12⟩

p1

)
, (3.2)

where again, ce and co are the coefficients of the parity even and parity odd two point
function respectively.

3.1.3 Summary

Based on our results, (3.1) and (3.2), we see that general two point functions of any (half)
integer spin s conserved super-currents take the following form:

⟨J̃−
s J̃−

s ⟩ = (ce + ico)(−1)2s ⟨12⟩2s

16p1
Ξ2, ⟨J̃+

s J̃+
s ⟩ = (ce − ico)ξ1−ξ2−(−1)2s+1 ⟨1̄ 2̄⟩2s+1

256p2
1

Ξ2,

(3.3)

where we have defined the two point building block,

Ξ2 =
(

ξ1+ξ2+ − 4⟨12⟩
p1

)
. (3.4)

Thus we see that for any spin s, the two point correlators are given by a simple kinematic factor
times a universal factor Ξ2. We will find a similar structure at the level of three points as well.

3.2 Three point correlation functions

In this subsection, we present our results for three point correlators with arbitrary (half)
integer spin insertions. In contrast to the previous analysis in position space [39, 45] etc. . . ,
we find a universal form for any super-correlator independent of the spins of the insertions.

3.2.1 ⟨J̃s1J̃s2J̃s3⟩, s1, s2, s3 ∈ Z>0

The correlator of three integer spin conserved super-currents is given by the following
expressions in the various helicity configurations:

⟨J̃−
s1 J̃−

s2 J̃−
s3⟩=

1
64⟨J

−
s1J−

s2J−
s3⟩Γ3,

⟨J̃+
s1 J̃+

s2 J̃−
s3⟩=−ξ1−ξ2−

512
⟨J+

s1J+
s2J−

s3⟩E
⟨12⟩ Γ3,

⟨J̃+
s1 J̃−

s2 J̃+
s3⟩=−ξ1−ξ3−

512
⟨J+

s1J−
s2J+

s3⟩E
⟨13⟩ Γ3,

⟨J̃−
s1 J̃+

s2 J̃+
s3⟩=−ξ2−ξ3−

512
⟨J−

s1J+
s2J+

s3⟩E
⟨23⟩ Γ3,

⟨J̃+
s1 J̃+

s2 J̃+
s3⟩=

ξ1−ξ2−ξ3−
512 ⟨J+

s1J+
s2J+

s3⟩Ξ3,

⟨J̃−
s1 J̃−

s2 J̃+
s3⟩=−ξ3−

64
⟨J−

s1J−
s2J+

s3⟩E
⟨1̄ 2̄⟩

Ξ3,

⟨J̃−
s1 J̃+

s2 J̃−
s3⟩=−ξ2−

64
⟨J−

s1J+
s2J−

s3⟩E
⟨3̄ 1̄⟩

Ξ3,

⟨J̃+
s1 J̃−

s2 J̃−
s3⟩=−ξ1−

64
⟨J+

s1J−
s2J−

s3⟩E
⟨2̄ 3̄⟩

Ξ3,

(3.5)
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where Γ3 and Ξ3 are given by,

Γ3 =
[
ξ1+ξ2+ξ3+ − 8

E

(
ξ1+⟨23⟩+ ξ2+⟨31⟩+ ξ3+⟨12⟩

)]
,

Ξ3 =
[
8− 1

E

(
ξ1+ξ2+⟨1̄ 2̄⟩+ ξ2+ξ3+⟨2̄ 3̄⟩+ ξ3+ξ1+⟨3̄ 1̄⟩

)]
, (3.6)

which we note is similar to the two point case (3.4) where super-correlators are constructed
by multiplying a component correlator and a universal spin independent factor, except that
in the three point case, we have two such universal factors.7 Further, we find that for
super-correlators that obey the triangle inequality, the only non zero components are the
(−−−) and (+ + +) helicity configurations, i.e, the Super-correlator is homogeneous and
has both a parity even and a parity odd solution. In fact we have the universal formulae [31].

⟨J−
s1J−

s2J−
s3⟩=(ceven+icodd)

⟨12⟩s1+s2−s3⟨23⟩s2+s3−s1⟨31⟩s1+s3−s2

Es1+s2+s3
ps1−1

1 ps2−1
2 ps3−1

3 ,

⟨J+
s1J+

s2J+
s3⟩=(ceven−icodd)

⟨1̄2̄⟩s1+s2−s3⟨2̄3̄⟩s2+s3−s1⟨3̄1̄⟩s1+s3−s2

Es1+s2+s3
ps1−1

1 ps2−1
2 ps3−1

3 , (3.7)

where ceven and codd are the OPE coefficients corresponding to the parity even and parity
odd structures respectively. The relations between the various component correlators as
in (3.5) relate the various component correlators to each other, thereby fixing their OPE
coeffcients just in terms of ceven and codd.

For super-correlators that violate the triangle inequality, their is no parity odd solution as
the component correlator on the r.h.s. of (3.5) has no parity odd piece in this case. There exists
however, an even piece. In terms of the free bosonic and free fermionic correlators it is given by,

⟨J±
s1J±

s2J±
s3⟩ = nb

(
⟨J±

s1J±
s2J±

s3⟩F B − ⟨J±
s1J±

s2J±
s3⟩F F

)
. (3.8)

Substituting (3.8) in (3.5) and reading off the component correlators using (2.22), the other
component correlators can be obtained.

3.2.2 ⟨J̃s1J̃s2J̃s3⟩, s1, s2 ∈ Z>0, s3 = k3 + 1
2 , k3 ∈ Z≥0

We obtained the following expressions for the various helicity configurations for this half
integer spin correlator:

⟨J̃−
s1 J̃−

s2 J̃−
s3⟩=− 1

32
⟨J−

s1J−
s2J−

k3+1⟩E
⟨1̄ 2̄⟩√p3

Ξ3,

⟨J̃+
s1 J̃+

s2 J̃−
s3⟩=

ξ1−ξ2−
256

⟨J+
s1J+

s2J−
k3+1⟩√

p3
Ξ3,

⟨J̃+
s1 J̃−

s2 J̃+
s3⟩=

ξ1−ξ3−
256

⟨J+
s1J−

s2J+
k3+1⟩E

⟨2̄ 3̄⟩√p3
Ξ3,

⟨J̃−
s1 J̃+

s2 J̃+
s3⟩=

ξ2−ξ3−
256

⟨J−
s1J+

s2J+
k3+1⟩E

⟨3̄ 1̄⟩√p3
Ξ3,

⟨J̃+
s1 J̃+

s2 J̃+
s3⟩=−ξ1−ξ2−ξ3−

2048
⟨J+

s1J+
s2J+

k3+1⟩E
⟨12⟩√p3

Γ3,

⟨J̃−
s1 J̃−

s2 J̃+
s3⟩=

ξ3−
256

⟨J−
s1J−

s2J+
k3+1⟩√

p3
Γ3,

⟨J̃−
s1 J̃+

s2 J̃−
s3⟩=

ξ2−
256

⟨J−
s1J+

s2J−
k3+1⟩E

⟨23⟩√p3
Γ3,

⟨J̃+
s1 J̃−

s2 J̃−
s3⟩=−ξ1−

256
⟨J+

s1J−
s2J−

k3+1⟩E
⟨31⟩√p3

Γ3.

(3.9)
In contrast to the previous case with all integer spins, this class of correlators is non-
homogeneous, that is, the component correlators appear as a sum of the bosonic and
fermionic correlators ⟨ ⟩B + ⟨ ⟩F . The parity odd structure does not exist for these correlators.

7We note that Γ3 is antisymmetric under any exchange of (1, 2, 3) whilst Ξ3 is symmetric under any
such exchange.
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3.2.3 ⟨J̃s1J̃s2J̃s3⟩, s1 ∈ Z>0, si = ki + 1
2 , i = 2, 3 and ki ∈ Z≥0

This integer spin super-correlator has the following components:

⟨J̃−
s1

J̃−
s2

J̃−
s3
⟩= 1

64⟨J
−
s1

J−
k2+ 1

2
J−

k3+ 1
2
⟩Γ3,

⟨J̃+
s1

J̃+
s2

J̃−
s3
⟩= ξ1−ξ2−

512
⟨J+

s1
J+

k2+ 1
2
J−

k3+ 1
2
⟩E

⟨12⟩ Γ3,

⟨J̃+
s1

J̃−
s2

J̃+
s3
⟩= ξ1−ξ3−

512
⟨J+

s1
J−

k2+ 1
2
J+

k3+ 1
2
⟩E

⟨13⟩ Γ3,

⟨J̃−
s1

J̃+
s2

J̃+
s3
⟩= ξ2−ξ3−

512
⟨J−

s1
J+

k2+ 1
2
J+

k3+ 1
2
⟩E

⟨23⟩ Γ3,

⟨J̃+
s1

J̃+
s2

J̃+
s3
⟩=−ξ1−ξ2−ξ3−

512 ⟨J+
s1

J+
k2+ 1

2
J+

k3+ 1
2
⟩Ξ3,

⟨J̃−
s1

J̃−
s2

J̃+
s3
⟩= ξ3−

64
⟨J−

s1
J−

k2+ 1
2
J+

k3+ 1
2
⟩E

⟨1̄ 2̄⟩
Ξ3,

⟨J̃−
s1

J̃+
s2

J̃−
s3
⟩= ξ2−

64
⟨J−

s1
J+

k2+ 1
2
J−

k3+ 1
2
⟩E

⟨3̄ 1̄⟩
Ξ3,

⟨J̃+
s1

J̃−
s2

J̃−
s3
⟩= ξ1−

64
⟨J+

s1
J−

k2+ 1
2
J−

k3+ 1
2
⟩E

⟨2̄ 3̄⟩
Ξ3.

(3.10)

Similar to the all integer spin case (3.5), this correlator also has components that appear
as a difference between the bosonic and fermionic structures. In addition, there also exists
a parity odd structure when the triangle inequality is satisfied.

3.2.4 ⟨J̃s1J̃s2J̃s3⟩, si = ki + 1
2 , i = 1, 2, 3 and ki ∈ Z≥0

This correlator involving three half integer insertions has the following expressions in the
various helicities:

⟨J̃−
s1 J̃−

s2 J̃−
s3⟩=

1
32

⟨J−
k1+ 1

2
J−

k2+ 1
2

J−
k3+1⟩E

⟨1̄ 2̄⟩√p3
Ξ3,

⟨J̃+
s1 J̃+

s2 J̃−
s3⟩=−ξ1−ξ2−

256

⟨J+
k1+ 1

2
J+

k2+ 1
2

J−
k3+1⟩

√
p3

Ξ3,

⟨J̃+
s1 J̃−

s2 J̃+
s3⟩=−ξ1−ξ3−

256

⟨J+
k1+ 1

2
J−

k2+ 1
2

J+
k3+1⟩E

⟨2̄ 3̄⟩√p3
Ξ3,

⟨J̃−
s1 J̃+

s2 J̃+
s3⟩=−ξ2−ξ3−

256

⟨J−
k1+ 1

2
J+

k2+ 1
2

J+
k3+1⟩E

⟨3̄ 1̄⟩√p3
Ξ3,

⟨J̃+
s1 J̃+

s2 J̃+
s3⟩=

ξ1−ξ2−ξ3−

2048

⟨J+
k1+ 1

2
J+

k2+ 1
2

J+
k3+1⟩E

⟨12⟩√p3
Γ3,

⟨J̃−
s1 J̃−

s2 J̃+
s3⟩=−ξ3−

256

⟨J−
k1+ 1

2
J−

k2+ 1
2

J+
k3+1⟩

√
p3

Γ3,

⟨J̃−
s1 J̃+

s2 J̃−
s3⟩=−ξ2−

256

⟨J−
k1+ 1

2
J+

k2+ 1
2

J−
k3+1⟩E

⟨23⟩√p3
Γ3,

⟨J̃+
s1 J̃−

s2 J̃−
s3⟩=

ξ1−

256

⟨J+
k1+ 1

2
J−

k2+ 1
2

J−
k3+1⟩E

⟨31⟩√p3
Γ3.

(3.11)

This class of correlators are all non homogeneous, that is, their components appear as
a sum of bosonic and fermionic structures. We provide a detailed example of one such
correlator in appendix D.

3.3 Double-copy relations

Double-copy relations have played an important role in (supersymmetric) scattering am-
plitudes in the recent decades [52]. Such structures in the non-supersymmetric case were
later discovered in conformal field theory [5–7]. It is thus natural to attempt to extend
such results to the supersymmetric case as well. Indeed, in the ξ± variables that we have
been using in this paper, such a structure becomes apparent. Let us illustrate this with an
example: consider a three point super-correlator with s1 = s2 = s3 = 2, that is, the ⟨T̃T̃T̃⟩
correlator. As we discussed below equation (3.5), this correlator is purely homogeneous as it
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satisfies the triangle inequality. Therefore, it suffices to consider its (− − −) and (+ + +)
components. The (− − −) component correlator is,

⟨T̃−T̃−T̃−⟩ = 1
64⟨T

−T−T−⟩Γ3. (3.12)

Consider now,

⟨J̃4
−J̃4

−J̃4
−⟩ = 1

64⟨J
−
4 J−

4 J−
4 ⟩Γ3. (3.13)

If we naively square (3.12) expecting to obtain (3.13), we will obtain zero as Γ2
3 = 0 (evident

from the definition (3.6)). We note, however, that the relation at the level of component
correlators,

⟨J−
4 J−

4 J−
4 ⟩ ∝ p1p2p3⟨T−T−T−⟩2, (3.14)

implies at the superfield level (3.13) that,

⟨J̃4
−J̃4

−J̃4
−⟩ ∝ p1p2p3⟨T−T−T−⟩2Γ3. (3.15)

Equations (3.13) and (3.15) implies a double copy relation between ⟨T̃−T̃−T̃−⟩ and ⟨J̃−
4 J̃−

4 J̃−
4 ⟩.

This double copy relation can be extended for arbitrary spin as follows

⟨J̃−
s1 J̃−

s2 J̃−
s3⟩ ∝ p1p2p3⟨J−

s′1
J−

s′2
J−

s′3
⟩⟨J−

s′′1
J−

s′′2
J−

s′′3
⟩Γ3, (3.16)

⟨J̃+
s1 J̃+

s2 J̃+
s3⟩ ∝ p1p2p3⟨J+

s′1
J+

s′2
J+

s′3
⟩⟨J+

s′′1
J+

s′′2
J+

s′′3
⟩Ξ3, (3.17)

where s′1 + s′′1 = s1, s′2 + s′′2 = s2, and s′3 + s′′3 = s3. Let us also note the spins s1, s2, s3 ∈ Z>0
and obeys triangle inequality. We shall later see in subsection 4.5, an interesting double copy
relation between N = 1 and N = 2 super correlators.

3.4 The super Ward-Takahashi identity

In this subsection we present the super Ward-Takahashi identity for our non homogeneous
correlators. We also choose to work with θ variables as they suffice for our purposes. The
main aim of this subsection is to show that their is a stark distinction between the Grassmann
even and Grassmann odd cases.

Consider a Grassmann odd correlator ⟨J 3
2
J0J0⟩. The corresponding super Ward-

Takahashi identity that we obtain is given by:

D1a⟨Jabc
3
2

J0J0⟩ = a1 θ2
1

(
/p

bc
2 ⟨J0(p2)J0(−p2)⟩+ /p

bc
3 ⟨J0(−p3)J0(p3)⟩

)
. (3.18)

If we consider a Grassmann even correlator such as ⟨TJ0J0⟩, we find the following super
Ward-Takahashi identity:

D1a⟨TabcdJ0J0⟩ = a2 θ2
1

(
/p

bc
2 Dd

2⟨J0(p2)J0(−p2)⟩+ /p
bc
3 Dd

3⟨J0(−p3)J0(p3)⟩
)

, (3.19)

where a1 and a2 are proportional to the normalization of the ⟨J0J0⟩ two point super-correlator
and the action of covariant derivative is given below equation (2.2).
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Total spin Homogeneous Even Homogeneous Odd Non Homogeneous
s1 + s2 + s3 ∈ Z>0 ✓ ✓ -

s1 + s2 + s3 ∈ Z>0 + 1
2 - - ✓

Table 1. Correlation functions obeying the triangle inequality si + sj ≥ sk ∀i, j, k.

Total spin Boson-Fermion Boson+Fermion Parity Odd
s1 + s2 + s3 ∈ Z>0 ✓ - -

s1 + s2 + s3 ∈ Z>0 + 1
2 - ✓ -

Table 2. Correlation functions that violate the triangle inequality si + sj ≤ sk for some i, j, k.

3.5 Summary of super correlators: homogeneous and non homogeneous sectors

In this subsection, we summarize our findings of the structures of the super correlators
in the language of homogeneity. For correlators that obey the triangle inequality, super
correlators with total integer spin are homogeneous8 while those with total half-integer spin
are non homogeneous.9

For correlators that are not inside the triangle, we have the following results: for integer
spin correlators, the individual component correlators appear as differences between the
bosonic and fermionic results: ⟨ ⟩B − ⟨ ⟩F . In contrast, for half-integer correlators, they
appear as a sum ⟨ ⟩B + ⟨ ⟩F . Further, there is no parity odd structure compatible with
the supercurrent conservation in either case.

These results are also consistent with the free theory result. The superfield (2.1) for
the free theory can be written as follows: for integer spins s, and half integer spins k + 1

2
we have respectively10 (B stands for the free bosonic theory result and F stands for the
free fermionic theory currents),

Js =
(
(Js)B − (Js)F

)
+ θ · Js+ 1

2
+ ∂

(
(Js)B − (Js)F

)
,

Jk+ 1
2
= Jk+ 1

2
+ θ ·

(
(Jk)B + (Jk)F

)
+ ∂Jk+ 1

2
. (3.20)

For instance a correlator of three integer spin super currents at the zeroth order (denoted
by an |) is given by,

⟨Js1Js2Js3⟩| = ⟨Js1Js2Js3⟩B − ⟨Js1Js3Js4⟩F , (3.21)

which is the definition of the homogeneous piece. similarly, at all orders in the Grassmann
spinor expansion we obtain homogeneous component correlators and hence this is consistent
with table 1.

Similarly, if we consider three half integer spin supercurrents that obey the triangle
inequality, we obtain at say O(θ1θ2θ3) the following expression:

⟨Jk1+ 1
2
Jk2+ 1

2
Jk3+ 1

2
⟩|θ1θ2θ3 = θ1θ2θ3

(
⟨Jk1+1Jk2+1Jk3+1⟩B+⟨Jk1+1Jk2+1Jk3+1⟩F

)
, (3.22)

8Note that the homogeneous correlator contains both a parity even and parity odd contribution like in (3.7).
9In the component language, super correlators that are (non) homogeneous also have component correlators

that are also (non) homogeneous.
10This can easily be seen from the expressions given for the free theory super currents in [39].
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which is the definition of the non homogeneous piece and is consistent with11 table 2.
Repeating the same analysis for the other cases (two integer, one half integer or one integer,
two half integer insertions inside and outside the triangle) we find results consistent with
tables 1 and 2. As for the parity odd solution, which is necessarily homogeneous [31], one
expects to find one whenever there exists a parity even homogeneous solution as there is little
distinction between the two in spinor helicity variables. So far, we have focussed our attention
on superfields with non-zero spin. We shall now switch gears and proceed to investigate
correlators that also involve scalar superfields.

3.6 Correlators involving scalar superfields

In this subsection, we shall present our results for correlation functions involving scalar
superfields. Since the procedure to obtain them is identical to the spinning case, we present
just the final results obtained after solving the supersymmetric Ward identities (2.27) and
imposing the conformal invariance of each component correlator. The component expansion
for the scalar superfield is given by [39]:

J0 = O1 + θaOa
1
2
+ θ2O2. (3.23)

Using (2.15) and performing the Grassmann twistor transform (2.19), we see that it can
be written as follows in the η, χ variables:

J0 = 1
4

(
χO1 +

2
√

p
O−

1
2
+ 1

2√p
χηO+

1
2
− 4η

p
O2

)
. (3.24)

Changing variables as in (2.20) results in the following expression:

J̃0 = ξ+ + ξ−
8 O1 +

1
2√p

O−
1
2
+ ξ−ξ+

16√p
O+

1
2
− ξ+ − ξ−

2p
O2. (3.25)

Let us now begin with the two point function of the scalar superfield.

Two point functions

After solving for the two point function, we see that it can be expressed using the two point
building block (3.4) we obtained earlier.

⟨J̃0J̃0⟩ =
1

64p1

(
2(α11 − 4α21)− (α11 + 4α21)ξ1−ξ2−

⟨1̄2̄⟩
8p1

)
Ξ2. (3.26)

Where ⟨O1O1⟩ = α11
p1

and ⟨O2O1⟩ = α21. Let us now proceed to the case of three points.

Three point functions

⟨J̃0J̃0J̃0⟩

The three point function of identical scalar superfields after solving the supersymmetric Ward
identities (2.27) and imposing conformal invariance of the component correlators can be
expressed using the usual three point building blocks (3.6):

⟨J̃0J̃0J̃0⟩ =
1

128p1p2p3

(
(f111 − 4f112)Γ3 +

1
8(f111 + 4f112)ξ1−ξ2−ξ3−Ξ3

)
, (3.27)

11Similarly, all component correlators in the grassmann spinor expansion are non-homogeneous.
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where,

⟨O1O1O1⟩ =
f111

p1p2p3
, ⟨O1O1O2⟩ =

f112
p1p2

. (3.28)

In the free theory case f112 = 0 and hence we have,12

⟨J̃0J̃0J̃0⟩free theory = f111
128p1p2p3

(
Γ3 +

1
8ξ1−ξ2−ξ3−Ξ3

)
. (3.29)

⟨J̃sJ̃0J̃0⟩, s = 2k, k ∈ Z>0

We now consider a three point function with one conserved integer spin super-current (2.22)
and two scalar super-fields (3.25). We obtained the following expressions for the two helicity
configurations:

⟨J̃−
s J̃0J̃0⟩ =

⟨J−
s O1O1⟩
1024

(
8− ⟨2̄3̄⟩

E − 2p1
ξ2−ξ3−

)
Γ3 ,

⟨J̃+
s J̃0J̃0⟩ = −⟨J+

s O1O1⟩
1024

( 8⟨23⟩
E − 2p1

− ξ2−ξ3−

)
ξ1−Ξ3. (3.30)

⟨J̃sJ̃sJ̃0⟩, s ∈ Z>0

Consider a three point function with two conserved superfields with integer spins (2.22) and
one scalar superfield (3.25). Our results for the various helicity configurations are listed below.

⟨J̃−
s J̃−

s J̃0⟩ =
⟨J−

s J−
s O1⟩

128 Γ3 , ⟨J̃+
s J̃+

s J̃0⟩ =
⟨J+

s J+
s O1⟩
32 ξ1−ξ2−ξ3−Ξ3, (3.31)

while the mixed-helicity cases ⟨J̃∓
s J̃±

s J̃0⟩ vanish for conserved super-currents. This can be
understood from the fact that the component correlators of the form ⟨J−

s J−
s O∆⟩ in mixed

helicity configurations are zero [29].

Summary

In this sub-section, we have investigated two and several types of three point super-correlators
involving scalar superfields. We have shown that all these correlators can be expressed in terms
of the building blocks we obtained earlier viz (3.4) for two points and (3.6) for three points.

Motivated by our success, we now proceed to develop an analogous formalism for CFTs
with N = 2 supersymmetry.

4 Extended supersymmetry: the N = 2 case

4.1 The superspace formulation

The N = 2 superspace can be described by the coordinates (xµ, θa, θ̄a) where xµ are the
usual position space coordinates and θa and θ̄a are two component Grassmann spinors [44,

12An important point to note here is that (3.29) demands the existence of the semi-local term correlator
⟨O2O2O1⟩ even in the free theory. Such a contribution can arise from adding the conformally invariant term
α
∫

d3x O1(x)J2
2 (x) in the action, where J2 is the source of the O2 operator. The a priori arbitrary constant

α is fixed by supersymmetry to be equal to f111
16 .
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47]. The generators of the N = 2 superconformal algebra include the usual conformal
generators Pµ, Mµν , D, Kµ along with the supersymmetry generators Qa, Q̄a and the special
superconformal generators Sa and S̄a. More information on this formalism as well as the
action of the generators on primary superfields can be found for instance in [39, 44].

We now, parallel our analysis of the N = 1 case in section 2, first convert xµ to pµ by
a Fourier transform. We then express pµ in spinor helicity variables as in (2.14). The key
change that arises in the N = 2 is the fact the θa is no longer Hermitian. Therefore, it
has to be described by two complex Grassmann variables in contrast to the single complex
Grassmann variables η (2.15). The N = 2 Grassmann spinors can be expressed as follows:
for complex Grassmann variables η, µ, we define,

θa = η̄λa + µλ̄a

2p
,

θ̄a = ηλ̄a + µ̄λa

2p
. (4.1)

Further, just as we performed a Grassmann twistor transform in the N = 1 case (2.19), we
do so in the N = 2 case as follows. We define,

F̃ (η, χ, µ, ν) =
∫

dη̄ dµ̄ e−
χη̄
4 − νµ̄

4 F (η, η̄, µ, µ̄). (4.2)

We then define the coordinates:

ξ± = χ ± η, ω± = ν ± µ. (4.3)

In terms of these coordinates, the supersymmetry generators of the N = 2 superconformal
algebra take the following simple forms:

Qa = 2λa
∂

∂ω+
+ λ̄a

4 ξ+, Q̄a = 2λa
∂

∂ξ+
+ λ̄a

4 ω+. (4.4)

The remaining generators are identical to their N = 1 counterparts given in (B.4). However,
there is one very important distinction between the N = 1 and N = 2 cases, that is, the
presence of a U(1) R-symmetry. The Q and Q̄ operators defined in (4.4) have R charges −1
and +1 respectively. This implies the following commutation relations

[R, Qa] = −Qa, [R, Q̄a] = +Q̄a. (4.5)

The representation of R in the ξ±, ω±, acting on primary super fields is the following:

R = ω+
∂

∂ω+
− ξ+

∂

∂ξ+
, (4.6)

where R is the symmetry generator. It can easily be checked using (4.4) and (4.6) that
the commutators (4.5) hold.
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4.2 Super-currents and Ward identities

We are interested in constraining correlators involving symmetric traceless conserved super-
currents. The general form of such currents in N = 2 SCFTs can be found for instance
in [39]. Here, we present its momentum superspace avatar:13

Ja1a2...a2s
s = Ja1a2...a2s

s +θmJa1a2...a2sm
s+ 1

2
+θ̄mJ̄a1a2...a2sm

s+ 1
2

+θmθ̄nJa1a2...a2smn
s+1 + θmθ̄m

2 /p
a1
n

Ja2...a2s
s

− θ2θ̄m

4 /p
m
n

Ja1a2...a2sn
s+ 1

2
− θ̄2θm

4 /p
m
n

J̄a1a2...a2sn
s+ 1

2
− θ2θ̄2

16 p2Ja1a2...a2s
s . (4.7)

We then use the definition (4.1) and perform the Grassmann twistor transform (4.2). Their
is a drastic simplification compared to (4.7) when the result is expressed in the (ξ±, ω±)
variables (4.3). We have,

J̃−
s = 1

4

[
ξ+ω+
4 J−

s − 1
2√p

(
ω+J−

s+ 1
2
− ξ+J̄−

s+ 1
2

)
−

J−
s+1
p

]
,

J̃+
s = ξ−ω−

16

[
J+

s + 1
4√p

(
ω+J+

s+ 1
2
+ ξ+J̄+

s+ 1
2

)
− ξ+ω+

16p
J+

s+1

]
. (4.8)

We can then construct super-correlators using (4.8), as we did for the N = 1 case. The
component correlators can then be constrained using the action of Qa and Q̄a, as given
in (4.4). The R symmetry is going to play an important role here as correlators have to be
R symmetric. Before proceeding further, we note that, ξi+ has R charge −1, while ωi+ has
R charge +1. Then, correlators are forced to be made of elements of form ξi+ωi+, where
i is the operator label. This is exactly what we got and we present our findings below for
two and three point functions.

4.3 Two point functions

The N = 2 two point functions for any integer spin s take the following forms in the two
independent helicity configurations:

⟨J̃−
s J̃−

s ⟩ =
⟨12⟩2s

16 p1

(
ξ1+ω1+ξ2+ω2+

16 − ⟨12⟩
4p1

(ω1+ξ2+ + ξ1+ω2+) +
⟨12⟩2

p2
1

)
,

⟨J̃+
s J̃+

s ⟩ = ξ1−ω1−ξ2−ω2−
⟨1̄2̄⟩2s+3

65536 p4
1

(
ξ1+ω1+ξ2+ω2+

16 − ⟨12⟩
4p1

(ω1+ξ2+ + ξ1+ω2+) +
⟨12⟩2

p2
1

)
.

(4.9)
Further, the building block of N = 2 two-point functions can be written as a product of two
individual building blocks. Then, the correlators can be written as,

⟨J̃−
s J̃−

s ⟩ =
⟨12⟩2s

16 p1

(
ξ1+ω2+

4 − ⟨12⟩
p1

)(
ω1+ξ2+

4 − ⟨12⟩
p1

)
,

⟨J̃+
s J̃+

s ⟩ = ξ1−ω1−ξ2−ω2−
⟨1̄2̄⟩2s+3

65536 p4
1

(
ξ1+ω2+

4 − ⟨12⟩
p1

)(
ω1+ξ2+

4 − ⟨12⟩
p1

)
. (4.10)

It can be clearly seen after the discussion in the above section, that the correlators are
formed by the building blocks which are inherently R symmetric as they are made of elements
like ξi+ωi+.

13In an explicit realization of (4.7), the zeroth component current is of the form Jboson − Jfermion whereas
the spin s + 1 component current is of the form Jboson + Jfermion [36].
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4.4 Three point function

The structure of the three point function in the N = 2 theories are much more complicated
than their N = 1 counterpart. However, by a careful analysis, we were able still able to
obtain the three point correlators in the N = 2 theories for any arbitrary integer spin in
terms of the following building blocks which is reminiscent of the N = 1 case (3.6).

Ω1 =
(
⟨23⟩2ξ1+ω1+ + ⟨23⟩⟨31⟩ξ1+ω2+ + ⟨12⟩⟨23⟩ξ1+ω3+ + ⟨23⟩⟨31⟩ξ2+ω1+ + ⟨31⟩2ξ2+ω2+

+ ⟨12⟩⟨31⟩ξ2+ω3+ + ⟨12⟩⟨23⟩ξ3+ω1+ + ⟨12⟩⟨31⟩ξ3+ω2+ + ⟨12⟩2ξ3+ω3+
)
,

Ω2 =
(
− ⟨23⟩ξ1+ω1+

(
ξ2+ω3+ − ξ3+ω2+

)
+ ⟨31⟩ξ2+ω2+

(
ξ1+ω3+ − ξ3+ω1+

)
− ⟨12⟩ξ3+ω3+

(
ξ1+ω2+ − ξ2+ω1+

))
,

Ω3 = ξ1+ξ2+ξ3+ω1+ω2+ω3+. (4.11)

For example, in the (− − −) helicity we obtain,14

⟨J̃−
s1 J̃−

s2 J̃−
s3⟩ = ⟨J−

s1J−
s2J−

s3⟩
(Ω1

E2 + Ω2
8E

− Ω3
64

)
. (4.12)

It is straightforward to obtain analogous formulae in the remaining helicity configurations
as well. For spins that satisfy the triangle inequality, (4.12) is homogeneous similar to it’s
N = 1 counterpart (3.5). In N = 1, the non-homogeneous contributions for component
correlators that are inside the triangle arose from super-correlators with net half integer spin
(see table 1). However, in the N = 2 case, there are no half integer spin super-currents and
hence non-homogeneous component correlators that are inside the triangle are not realized.
Let us give a short proof of the same. Consider a super-correlator ⟨J̃s1 J̃s2 J̃s3⟩. For it to
be non-zero we require s1 + s2 + s3 = 2n, n ∈ Z>0. In an explicit realization, it has the
following component expansion:15

⟨J̃s1 J̃s2 J̃s3⟩= ⟨Js1Js2Js3⟩F B−F F +· · ·+Grassmann structure×⟨Js1+1Js2+1Js3+1⟩F B+F F +· · · .

(4.13)
For the FB+FF correlator to be non-zero we require s1 + s2 + s3 + 3 = 2m, m ∈ Z>0.
However, we already required s1 + s2 + s3 = 2n, n ∈ Z>0 for the super-correlator to be
non-vanishing. Reconciling these two conditions yields 2n = 2m − 3, n, m ∈ Z>0 which is
clearly a contradiction. Thus, the conclusion is that the non-homogeneous correlator do not
occur in the N = 2 spinning three point super correlators.

4.5 Double copy: N = 1 ⊗ N = 1 → N = 2

Two-point function

Consider the following integer two point functions in the N = 1 theory in the (−−) helicity
configuration (3.1),

⟨J̃−
s (ξ1+)J̃−

s (ω2+)⟩N=1 = ⟨12⟩2s

16p1

(
ξ1+ω2+ − 4⟨12⟩

p1

)
,

14We actually obtain a two parameter family of solutions. However, in this case, one of them is inconsistent
with the operator product expansion in the sense of [31] and hence we set its coefficient to zero. However, this
other solution will make its return when we investigate the three point scalar super correlator in subsection 4.6.

15See footnote 13.
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⟨J̃−
s (ω1+)J̃−

s (ξ2+)⟩N=1 = ⟨12⟩2s

16p1

(
ω1+ξ2+ − 4⟨12⟩

p1

)
, (4.14)

where we have made the dependence on the Grassmann twistor variables explicit. The reason
for the strange choice of the Grassmann twistor variable dependence of the super currents
in both lines of (4.14) will become clear shortly. We now take a product between the first
and second line of (4.14). The result is,

⟨J̃−
s (ξ1+)J̃−

s (ω2+)⟩N=1⟨J̃−
s (ω1+)J̃−

s (ξ2+)⟩N=1 =
⟨12⟩4s

16p2
1

(
ξ1+ω1+ξ2+ω2+

16 − ⟨12⟩
4p1

(ω1+ξ2+ + ξ1+ω2+) +
⟨12⟩2

p1

)
. (4.15)

By comparing the r.h.s. of the above equation with the N = 2 two point function (4.9),
we obtain a super double copy relation!

⟨J̃−
s (ξ1+)J̃−

s (ω2+)⟩N=1⟨J̃−
s (ω1+)J̃−

s (ξ2+)⟩N=1 =
1
p1

⟨J̃−
2s(ξ1+,ω1+)J̃−

2s(ξ2+,ω2+)⟩N=2.

(4.16)
The reason for the weird choices of Grassmann twistor variable dependence in (4.14) is now
clear. This and only this particular choice will ensure that the r.h.s. of (4.16), which is a
N = 2 two-point function will be invariant under the action of the R symmetry generator (4.6).
Similar results in the other helicity configuration as well as double copy relations involving
half integer N = 1 supercorrelators can also easily be obtained, all thanks to the simplicity
of the Grassmann twistor variables.

Three-point functions that satisfy the spin triangle inequality

Let us now proceed to the three point case. For simplicity, we consider the cases that satisfy
the triangle inequality si + sj ≥ sk ∀i, j, k ∈ 1, 2, 3. Our prescription for obtaining N = 2
super correlators from products of N = 1 super correlators is constructing the product such
that the resulting object possesses the required R symmetry property. Our goal is to take
products of N = 1 three-point functions (3.5) to reproduce the N = 2 answer (4.12). From
the required U(1) R symmetry of the result, we know that the total number of ξi+ and ωi+
variables appearing in each term must be equal. This then restricts our ansatz for the N = 1
product. Let us concentrate on the (− − −) helicity configuration.16 We take,

Ansatz =
[
a1⟨J̃−

s1(ξ1+)J̃−
s2(ξ2+)J̃−

s3(ξ3+)⟩N=1⟨J̃−
s1(ω1+)J̃−

s2(ω2+)J̃−
s3(ω3+)⟩N=1

+ a2⟨J̃−
s1(ξ1+)J̃−

s2(ξ2+)J̃−
s3(ω3+)⟩N=1⟨J̃−

s1(ω1+)J̃−
s2(ω2+)J̃−

s3(ξ3+)⟩N=1

+ a3⟨J̃−
s1(ξ1+)J̃−

s2(ω2+)J̃−
s3(ξ3+)⟩N=1⟨J̃−

s1(ω1+)J̃−
s2(ξ2+)J̃−

s3(ω3+)⟩N=1

+ a4⟨J̃−
s1(ω1+)J̃−

s2(ξ2+)J̃−
s3(ξ3+)⟩N=1⟨J̃−

s1(ξ1+)J̃−
s2(ω2+)J̃−

s3(ω3+)⟩N=1

]
. (4.17)

We then demand that the ansatz (4.17) is invariant under the simultaneous action of the R

symmetry generator (4.6) on all the insertions. This yields the constraint a1 = a2 = a3 = a4.
In fact (4.17) becomes,

⟨J−
s1J−

s2J−
s3⟩

2
(Ω1

E2 + Ω2
8E

− Ω3
64

)
, (4.18)

16One can carry out an analogous analysis in the other helicities.
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where the Ωi are the N = 2 building blocks (4.11). Therefore, we obtain a super double copy,

⟨J̃−
2s1(ξ1+, ω1+)J̃−

2s2(ξ2+, ω2+)J̃−
2s3(ξ3+, ω3+)⟩N=2

= p1p2p3
[
⟨J̃−

s1(ξ1+)J̃−
s2(ξ2+)J̃−

s3(ξ3+)⟩N=1⟨J̃−
s1(ω1+)J̃−

s2(ω2+)J̃−
s3(ω3+)⟩N=1

+ ⟨J̃−
s1(ξ1+)J̃−

s2(ξ2+)J̃−
s3(ω3+)⟩N=1⟨J̃−

s1(ω1+)J̃−
s2(ω2+)J̃−

s3(ξ3+)⟩N=1

+ ⟨J̃−
s1(ξ1+)J̃−

s2(ω2+)J̃−
s3(ξ3+)⟩N=1⟨J̃−

s1(ω1+)J̃−
s2(ξ2+)J̃−

s3(ω3+)⟩N=1

+ ⟨J̃−
s1(ω1+)J̃−

s2(ξ2+)J̃−
s3(ξ3+)⟩N=1⟨J̃−

s1(ξ1+)J̃−
s2(ω2+)J̃−

s3(ω3+)⟩N=1
]
. (4.19)

The double copy at the level of homogeneous component correlators was essential for this
result. For non homogeneous correlators, there exist some double copy relations albeit more
complicated ones. Our prescription to obtain N = 2 super-correlators from R symmetry
preserving products of N = 1 super-correlators could potentially generalize to higher points.

4.6 Correlators involving scalar superfields

The N = 2 scalar superfield has the following component expansion in momentum
superspace:17

J̃0 = O1 + θaOa
1
2
− θ̄aŌa

1
2
+ θaθ̄bJ

ab + 1
2θaθ̄aO2 −

1
4θ2θ̄b/p

b
a
Oa

1
2
+ 1

4 θ̄2θb/p
b
a
Ōa

1
2
− 1

16θ2θ̄2p2O1.

(4.20)

Expressing the Grassmann spinors as in (2.15), one obtains the following expression:

J̃0 =
(
1 + µµ̄ηη̄

16

)
O1 +

1
4p

(
ηη̄ + µµ̄

)
O2 +

1
2√p

η̄

(
1− µµ̄

4

)
O−

1
2
+ 1

2√p
µ

(
1 + ηη̄

4

)
O+

1
2

− 1
2√p

µ̄

(
1− ηη̄

4

)
Ō−

1
2
− 1

2√p
η

(
1 + µµ̄

4

)
Ō+

1
2
− 1

2p

(
η̄µ̄J− − ηµJ+). (4.21)

Performing Grassmann twistor transforms (2.19) with respect to the variables η̄ and µ̄, and
expressing them in the nicer Grassmann twistor variables given in (2.20), we obtain,

J̃0 =
1
32(ξ+ω++ξ−ω−)O1−

1
32p

(ξ+ω+−ξ−ω−)O2−
1

8√p
ω+O−

1
2
− 1
8√p

ξ+Ō−
1
2

+ 1
64√p

ξ−ω−ω+O+
1
2
− 1
64√p

ξ−ω−ξ−Ō+
1
2
+ 1
2p

J−+ 1
128p

ξ−ω−ξ+ω+J+. (4.22)

We shall now present explicit results for two and three point functions involving scalar
superfields.

Two point function

Much like the N = 1 scenario in subsection 3.6, the two point function of scalar super-fields
obtained via supersymmetric Ward identities can be expressed in terms of the same building
blocks of spinning super-correlators (4.10).

⟨J̃0J̃0⟩=
1

32p1

(
(α11+α12)−(α11−α12)ξ1−ξ2−ω1−ω2−

⟨1̄2̄⟩2

256p2
1

)(
ξ1+ω2+

4 − ⟨12⟩
p1

)(
ω1+ξ2+

4 − ⟨12⟩
p1

))
.

(4.23)
17This can be obtained by a simple Fourier transform of the position space expression provided in say [39]

after converting to our conventions.
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Three point functions

The three point function of scalar super-fields obtained via solving the supersymmetric Ward
identities can be expressed as follows:

⟨J̃0J̃0J̃0⟩ =
⟨O1O1O1⟩

128

(
ξ1−ξ2−ξ3−ω1−ω2−ω3−

4096

(
64− 8Ω̃2

E
+ Ω̃1

E2

)
−
(Ω1

E2 + Ω2
8E

− Ω3
64

))

− ⟨O2O2O2⟩
128 p1p2p3

(
ξ1−ξ2−ξ3−ω1−ω2−ω3−

4096

(
64− 8Ω̃2

E
+ Ω̃1

E2

)
+
(Ω1

E2 + Ω2
8E

− Ω3
64

))
.

(4.24)

Note that in addition to the building block (made out of the Ωi, i = 1, 2, 3) for the spinning
correlators given in (4.11), we also require the additional one that was thrown away for the
spinning case due to OPE inconsistency (see footnote 14). Here, the other building block
is essential and does not lead to any OPE inconsistency. The components of the second
building block, the Ω̃i, i = 1, 2, 3, are given by,

Ω̃1 =
(
⟨1̄2̄⟩2ξ1+ω1+ξ2+ω2+ + ⟨2̄3̄⟩2ξ2+ω2+ξ3+ω3+ + ⟨3̄1̄⟩2ξ3+ω3+ξ1+ω1+

− ⟨1̄2̄⟩⟨3̄1̄⟩ξ1+ω1+
(
ξ2+ω3+ + ξ3+ω2+

)
− ⟨2̄3̄⟩⟨1̄2̄⟩ξ2+ω2+

(
ξ3+ω1+ + ξ1+ω3+

)
− ⟨3̄1̄⟩⟨2̄3̄⟩ξ3+ω3+

(
ξ1+ω2+ + ξ2+ω1+

))
Ω̃2 =

(
⟨1̄2̄⟩

(
ξ1+ω2+ − ξ2+ω1+

)
+ ⟨2̄3̄⟩

(
ξ2+ω3+ − ξ3+ω2+

)
+ ⟨3̄1̄

〉
(ξ3+ω1+ − ξ1+ω3+

) )
.

(4.25)

It is now a straightforward exercise with these building blocks to obtain mixed correlators
(those involving scalars and spinning operators). We shall however, not pursue this right now
but rather, switch gears once more and investigate higher point functions.

5 Four point functions in N = 1 SCFT

In this section, we investigate the consequences of N = 1 super conformal invariance for four
point functions. As usual, we begin with the case where all operators have non-zero spin.

⟨J̃s1 J̃s2 J̃s3 J̃s4⟩, si ∈ Z>0

Consider the four-point functions of conserved super-currents with integer spins. Upon solving
for the q and q̄ Ward identities (2.27), we find that the super-correlator can be expressed
using two seed component correlators. Here, we present some prototypical examples of the
various helicity configurations, with the rest of the permutations easily obtainable given
the building blocks in (5.2). We have,

⟨J̃−
s1

J̃−
s2

J̃−
s3

J̃−
s4
⟩=

⟨J−
s1

J−
s2

J−
s3

J−
s4
⟩

256 Γ4E+
⟨J−

s1+ 1
2
J−

s2+ 1
2
J−

s3+ 1
2
J−

s4+ 1
2
⟩

128√p1p2p3p4
Ξ4E ,

⟨J̃+
s1

J̃+
s2

J̃+
s3

J̃+
s4
⟩= ξ1−ξ2−ξ3−ξ4−

⟨J+
s1

J+
s2

J+
s3

J+
s4
⟩

2048 Ξ4E+ξ1−ξ2−ξ3−ξ4−
⟨J+

s1+ 1
2
J+

s2+ 1
2
J+

s3+ 1
2
J+

s4+ 1
2
⟩

65536√p1p2p3p4
Γ4E ,
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⟨J̃−
s1

J̃−
s2

J̃+
s3

J̃+
s4
⟩= ξ3−ξ4−

256(2p3+2p4−E)⟨J
−
s1

J−
s2

J+
s3

J+
s4
⟩
(
⟨12⟩Ξ4E−⟨3̄4̄⟩

8 Γ4E

)
+ ξ3−ξ4−

1024(2p3+2p4−E)√p1p2p3p4
⟨J−

s1+ 1
2
J−

s2+ 1
2
J+

s3+ 1
2
J+

s4+ 1
2
⟩
(
⟨34⟩Ξ4E−⟨1̄2̄⟩

8 Γ4E

)
,

⟨J̃−
s1

J̃−
s2

J̃−
s3

J̃+
s4
⟩= ξ4−

⟨J−
s1

J−
s2

J−
s3

J+
s4
⟩

256 Γ4O−ξ4−
⟨J−

s1+ 1
2
J−

s2+ 1
2
J−

s3+ 1
2
J+

s4+ 1
2
⟩

1024√p1p2p3p4
Ξ4O,

⟨J̃+
s1

J̃+
s2

J̃+
s3

J̃−
s4
⟩= ξ1−ξ2−ξ3−

⟨J+
s1

J+
s2

J+
s3

J−
s4
⟩

2048 Ξ4O−ξ1−ξ2−ξ3−
⟨J+

s1+ 1
2
J+

s2+ 1
2
J+

s3+ 1
2
J−

s4+ 1
2
⟩

8192√p1p2p3p4
Γ4O,

(5.1)

where,

Γ4E =
[
ξ1+ξ2+ξ3+ξ4+− 8

E

(
ξ1+ξ2+⟨34⟩−ξ1+ξ3+⟨24⟩+ξ1+ξ4+⟨23⟩+ξ2+ξ3+⟨14⟩−ξ2+ξ4+⟨13⟩

+ξ3+ξ4+⟨12⟩
)]

,

Ξ4E =
[
8− 1

E

(
ξ1+ξ2+⟨1̄ 2̄⟩+ξ1+ξ3+⟨1̄ 3̄⟩+ξ1+ξ4+⟨1̄ 4̄⟩+ξ2+ξ3+⟨2̄ 3̄⟩+ξ2+ξ4+⟨2̄ 4̄⟩+ξ3+ξ4+⟨3̄ 4̄⟩

)]
,

Γ4O =
[
ξ1+ξ2+ξ3+− 1

E−2p4

(
ξ1+ξ2+ξ4+⟨34̄⟩−ξ1+ξ3+ξ4+⟨24̄⟩+ξ2+ξ3+ξ4+⟨14̄⟩+8ξ1+⟨23⟩

−8ξ2+⟨13⟩+8ξ3+⟨12⟩
)]

,

Ξ4O =
[
8ξ4+− 1

E−2p4

(
ξ1+ξ2+ξ4+⟨1̄ 2̄⟩+ξ1+ξ3+ξ4+⟨1̄ 3̄⟩+ξ2+ξ3+ξ4+⟨2̄ 3̄⟩+8ξ1+⟨1̄4⟩+8ξ2+⟨2̄4⟩

+8ξ3+⟨3̄4⟩
)]

, (5.2)

where, the subscripts “O” and “E” are to denote the building blocks being Grassmann odd
and even respectively. These can be viewed as generalizations of the three point building
blocks Γ3 and Ξ3 (3.6).
Our main interest in investigating four point functions is to see if supersymmetry can be used
to obtain spinning correlators from scalar ones. Let us therefore investigate the latter.

5.1 Scalar superfield four point function

In the literature, general scalar four point functions are known in the form of simplex
integrals [53–55]. Since supersymmetry connects scalar correlators to spinning ones, one
would hope to obtain simplex representations for the latter. Let us thus analyze the scalar
superfield four point function. Recall that the expansion for the scalar superfield in the
η, χ variables is as follows (3.24):

J0 = 1
4

(
χO1 +

2
√

p
O−

1/2 +
1

2√p
χηO+

1/2 − 4η

p
O2

)
. (5.3)

Using this expansion, we see that the four point function consists of 256 terms. However, half
of these terms are correlators with an odd number of the spin half operators and hence vanish
by Lorentz invariance, thus leaving us with 128 of them. Demanding q and q̄ invariance

– 21 –



J
H
E
P
0
9
(
2
0
2
4
)
0
2
7

of the super correlator brings this number down to 32. As there are a total of only 16
scalar component correlators, the spinning correlators are not entirely determined by the
scalar ones. For instance,

⟨O2O2O−
1/2O−

1/2⟩√
p3p4

=

− ⟨34⟩
32p1p2

(
⟨O1O2O1O1⟩−4⟨O1O2O1O2⟩

p4
−4⟨O1O2O2O1⟩

p3
+16⟨O1O2O2O2⟩

p3p4

)
+· · · , (5.4)

where the dots include correlators with non-zero spin. Although we can use a simplex repre-
sentations for the scalar correlators in the r.h.s. of the above equation using the expressions
obtained in [53–55], one only obtains a partial answer for the spinning correlator.

We find that the four-point function of the spin half operator (in a particular helicity)
is as follows:

1
√

p1p2p3p4
⟨O+

1
2

O+
1
2

O−
1
2

O−
1
2
⟩= ⟨1̄3⟩

2p1
√

p2p4
⟨O1O+

1
2

O1O−
1
2
⟩− 2⟨1̄3⟩

p1p3
√

p2p4
⟨O1O+

1
2

O2O−
1
2
⟩

− ⟨1̄4⟩
2p1

√
p2p3

⟨O1O+
1
2

O−
1
2

O1⟩+
2⟨1̄4⟩

p1p4
√

p2p3
⟨O1O+

1
2

O−
1
2

O2⟩

+ 2⟨1̄2̄⟩
p1p2

√
p3p4

⟨O1O2O−
1
2

O−
1
2
⟩+ ⟨1̄2̄⟩

2p1
√

p3p4
⟨O1O1O−

1
2

O−
1
2
⟩. (5.5)

Notice that it cannot be expressed purely in terms of the scalar component correlators since
the correlators ⟨O±

1/2O±
1/2O∆1O∆2⟩ themselves cannot be as we saw in (5.4). However, a

more thorough analysis may enable us to make progress and we hope to return to this
problem in the future.

6 Discussion and future directions

Summary

In this paper, we have developed a formalism to study three dimensional super conformal
field theories. Rather than working in momentum space with the usual grassmann spinors θa,
we found it advantageous to express both the momenta and the grassmann spinors in spinor
helicity variables, i.e, super spinor helicity variables. Looking at the structures that one
obtains in these variables motivated us to perform a grassmann twistor transform where we
noticed a remarkable simplification at the level of symmetry generators and super-correlation
functions. We then went on to constrain and solve for all (half) integer two and three
point functions in N = 1 SCFTs in these new variables. In contrast to the case by case
approach like in the earlier position space analysis, we obtain a universal structure for
these super-correlators. This immediately gave us a double copy relation at the level of
the super-correlators as well as give us a structure reminiscent of the four dimensional flat
space scattering amplitudes. We then investigated super-correlators that also involve scalars.
We also developed the formalism for the N = 2 case where we discovered similar universal
structures for the correlators independent of spin. Further, we presented a prescription to
obtain N = 2 super correlators from their N = 1 counterparts through a super double copy
relation. Finally, we obtained some preliminary results at the four point level.
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Future directions

Extended supersymmetry

The most natural generalization of our work is to extend our formalism to theories with higher
supersymmetry. The spinor helicity variable representation of θA

a where A is the R-symmetry
index is a simple generalization of the N = 1 definition (2.15).

θA
a = η̄Aλa + ηAλ̄a

2p
, (6.1)

which is just obtained from (2.15) by promoting the complex grassmann variable η to ηA to
accommodate the R-symmetry. Likewise, one can obtain the generators and the super-currents
and perform an analysis parallel to the one presented in this paper to obtain correlation
functions in these theories as well.

(Slightly broken) higher spin supersymmetry

Yet another important extension of our work is the study of higher spin super conformal
field theories. It would be interesting to see the interplay between higher spin symmetry and
super symmetry as both these symmetries connect correlators with different amounts of spin.
Further, the case when the higher spin symmetry is slightly broken is yet another avenue
that is worth exploring [56–66]. Supersymmetric Chern Simons+matter theories provide
one such quintessential example. We plan to pursue the development of the supersymmetric
slightly broken higher spin algebra to analyze and solve for correlation functions in the
near future. This will allow us to obtain the supersymmetric analogue of results such as
those obtained in [67] where all n point functions involving single trace primary operators
in CS+fermionic matter theory were obtained in terms of the free theory correlators. The
maximally supersymmetric version of the CS+matter theory is the N = 6 ABJM theory. We
hope that our analysis will prove also prove useful in the pursuit of its study.

A simplex representation for spinning correlators

A simplex representation for four (and higher) point scalar correlators in CFT has been
obtained [53–55]. However, an extension to the spinning cases has not yet been achieved.
Supersymmetry, as it connects correlators with different spins could provide a way to obtain
analogous simplex representations for spinning correlators starting with the known expression
for scalars. We attempted this briefly in section 5 and obtained some preliminary results
but it would be good to perform a more detailed and systematic analysis. Extending the
technology of weight shifting and spin raising operators to supersymmetric theories also
is also another venue of interest.

Making a precise connection to the four dimensional S matrices

The fascinating connection between non supersymmetric correlators in three dimensions and
flat space amplitudes in four dimensions has been analyzed thoroughly and well understood.
A similar statement for supersymmetric theories has not yet been obtained. Four dimensional
super symmetric scattering amplitudes take extremely simple forms and whilst our building
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blocks for three point super-correlators (3.6) are similar in form to the four dimensional
three point amplitude building blocks [50, 51], we have not attempted to establish a precise
connection between the two. Such a connection could facilitate a number of interesting
directions such as importing recursion relation techniques such as the BCFW recursion
relation to three dimensional SCFTs, color kinematics duality for CFT correlators and so on.
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A Notation, conventions and some useful formulae

In this appendix, we summarize our conventions and notations as well as provide some
formulae that we found useful.

Notations

Momentum conservation in all our (super) correlation functions is implicit, i.e we do not
explicitly write the momentum conserving Dirac-delta functions. The component fields
are presented in italics, whereas superfields are always presented in bold typeface. For
instance, Js is a component field whereas Js is a super field. Superfields when expressed
in the grassmann twistor variables are denoted in bold and with a tilde such as J̃s. The
subscripts b or B and f or F for component correlators refer to the free bosonic and free
fermionic theory correlators respectively.

Conventions

We work with the usual flat Euclidean metric,

δµν = diag(1, 1, 1), (A.1)

with which vector indices are raised and lowered. Since upper and lower indices are identical
in this case, we do not need to distinguish between them. Our convention for the three
dimensional Levi-Civita symbol is,

ϵ123 = ϵ123 = 1,

ϵµνρϵαβρ = δµαδνβ − δµβδνα. (A.2)

Spinor indices on the other hand are raised and lowered using the two dimensional Levi-Civita
symbol ϵab which is given by,

ϵ12 = ϵ12 = 1,

ϵabϵ
ac = δc

b . (A.3)
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Our convention for raising and lowering indices is as follows: given a spinor Aa we have,

Aa = ϵabAb ⇐⇒ Aa = ϵbaAb. (A.4)

Further, spinorial derivatives in our conventions are as follows:

∂Aa

∂Ab
= δa

b . (A.5)

However, in contrast to the index raising and lowering for spinors (A.4), we have the following
conventions for the derivatives:

ϵab ∂

∂Ab
= − ∂

∂Aa
. (A.6)

We choose the following representations of the Pauli matrices

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i

i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.7)

which satisfy,

(σµ)a
b (σν)c

a = δµνδc
b + iϵµνρ(σρ)c

b. (A.8)

Three dimensional spinor-helicity variables

Given a three-vector pµ, we can trade it for a matrix (/p)a
b in the following way:

(/p)a
b = pµ(σµ)a

b = λbλ̄
a + pδa

b . (A.9)

We can extract the magnitude of the momentum (energy) through the following bracket:

p = −1
2⟨λλ̄⟩. (A.10)

We can also contract form spinor dot products belonging to different momenta in the
following way:

⟨ij⟩ = λiaλa
j . (A.11)

Since we work with spinning operators, we require the use of polarization vectors. Our
conventions for the same are,

z−µ (σµ)a
b = (/z−)a

b = λbλ
a

p
, (A.12)

z+
µ (σµ)a

b = (/z+)a
b = λ̄bλ̄

a

p
. (A.13)

For a spin half operator we define the polarization spinor to be,

ζ−a = λa√
p

, ζ+
a = λ̄a√

p
. (A.14)
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In a correlation function involving n operator insertions, momentum conservation reads,

n∑
i=1

pµ
i = 0. (A.15)

Contracting this equation with (σµ)a
b yields momentum conservation in terms of the spinor

variables.
n∑

i=1
λibλ̄

a
i = −Eδa

b . (A.16)

The three dimensional dot product of two three vectors x and y can be written in spinor
notation using,

x · y = 1
2(/x)

a
b (/y)b

a. (A.17)

Since we work with parity odd correlation functions as well, we will require the following
formula:

ϵµνρ = 1
2i
(σµ)a

b (σν)c
a(σρ)b

c. (A.18)

For any three vectors v1, v2 and v3 we define for convenience,

ϵv1v2v3 = v1µv2νv3ρϵµνρ. (A.19)

Some useful spinor-helicity variables identities

Contracting the momentum conservation equation (A.16) with different combinations of
spinors, we get

⟨ji⟩⟨̄ik̄⟩ = E⟨jk̄⟩, (A.20)
⟨ji⟩⟨̄ik⟩ = (E − 2pk)⟨jk⟩, (A.21)
⟨j̄i⟩⟨̄ik⟩ = (E − 2pj)⟨j̄k̄⟩, (A.22)
⟨j̄i⟩⟨̄ik⟩ = (E − 2pj − 2pk)⟨j̄k⟩, (A.23)
⟨ji⟩⟨̄ij⟩+ ⟨jk⟩⟨k̄j⟩ = 0, (A.24)
⟨ij⟩⟨̄ij̄⟩ = E(E − 2pk), (A.25)

where i, j and k are all distinct labels.
The dot products of the polarizations with the momenta are given by,

pi · z−j = −⟨ij⟩⟨̄ij⟩
2pj

,

pi · z+
j = −⟨ij̄⟨̄ij̄⟩

2pj
,

z−i · z−j = − ⟨ij⟩2

2pipj
,

z−i · z+
j = − ⟨ij̄⟩2

2pipj
,

z+
i · z+

j = − ⟨̄ij̄⟩2

2pipj
.

(A.26)
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For the contractions of momentum and polarization vectors with the three dimensional
Levi-Civita symbol we have,

ϵz−i z−j pk = i
⟨ij⟩

(
⟨ik̄⟩⟨kj⟩+⟨ij⟩pk

)
2pipj

,

ϵz−i z+
j pk = i

⟨ij̄⟩
(
⟨ik̄⟩⟨kj̄⟩+⟨ij̄⟩pk

)
2pipj

,

ϵz+
i z+

j pk = i
⟨̄ij̄⟩

(
⟨̄ik̄⟩⟨kj̄⟩+⟨̄ij̄⟩pk

)
2pipj

,

ϵz−i pjpk = i
⟨ik̄⟩

(
⟨ij⟩⟨kj̄⟩−⟨ki⟩pj

)
+⟨ij̄⟩⟨ij⟩pk

2pi
,

ϵz+
i pjpk = ī

⟨ik̄⟩
(
⟨̄ij⟩⟨kj̄⟩−⟨kī⟩pj

)
+⟨ij̄⟩⟨̄ij⟩pk

2pi
.

(A.27)

We also used the two dimensional Schouten identity on many occasions which reads

δa
f ϵbc + δb

f ϵac + δc
f ϵba = 0. (A.28)

Another very important manifestation of the Schouten identity is the following. For any
two-component spinor λia we decompose it as a linear combination of λ1a and λ̄1a.

λi = −⟨ij̄⟩
2pj

λj +
⟨ij⟩
2pj

λ̄j , (A.29)

λ̄i = −⟨̄ij̄⟩
2pj

λj +
⟨̄ij⟩
2pj

λ̄j . (A.30)

B N = 1 and N = 2 superconformal algebra

N = 1 superconformal algebra

The N = 1 superconformal algebra in three dimensions consists of the following generators:
the generator of translations, Pµ, the generator of rotations, Mµν , the generator of dilatations
and the generator of special conformal transformations which are respectively denoted as
D and Kµ.

[Mµν , Mρλ] = i (δµρMνλ − δνρMµλ − δµλMνρ + δνλMµρ) ,

[Mµν , Pα] = i (δµαPν − δναPµ) , [Mµν , Kα] = i (δµαKν − δναKµ) ,

[D, Pµ] = iPµ, [Pµ, Kν ] = 2i (δµνD − Mµν) ,

{Qa, Qb} = i(σµ)abP
µ, {Sa, Sb} = i(σµ)abK

µ,

[D, Qa] =
i

2Qa, [D, Kµ] = −iKµ,

[Kµ, Qa] = i(σµ)b
aSb, [D, Sa] = − i

2Sa,

[Mµν , Qa] =
i

2ϵµνρ(σρ)b
aQb, [Pµ, Sa] = i(σµ)a

b Qb,

[Mµν , Sa] =
i

2ϵµνρ(σρ)b
aSb, {Qa, Sb} = ϵabD − i

2ϵµνρ(σρ)abM
µν . (B.1)

The (anti) commutators not listed above are zero. The representation of these generators
acting on primary superfields are as follows:
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We have,

Pµ = −i∂µ,

Mµν = −i

(
xµ∂ν − xν∂µ + i

2ϵµνρ(σρ)a
b θb ∂

∂θa

)
+Mµν ,

D = −i

(
xν∂ν + 1

2θa ∂

∂θa
+∆

)
,

Kµ = i

(
2xµxν∂ν − x2∂µ + 2∆xµ

)
− 2xνMµν + i(σµ)c

b(σν)a
c xνθb ∂

∂θa
,

Qa = ∂

∂θa
+ i

2θb(σµ)b
a∂µ, (B.2)

where ∆ is the scaling dimension of the primary and Mµν encodes the non trivial transfor-
mation of operators with spin. The expression for Sa is obtained by computing [Kµ, Qa] as
in (B.1). Given the position superspace generators in (B.2), it is straightforward to obtain
the momentum superspace generators by performing a Fourier transform to go from the
xµ to the pµ variables.

Pµ = pµ,

Mµν = −i

(
pµ

∂

∂pν
− pν

∂

∂pµ
+ i

2ϵµνρ(σρ)a
b θb ∂

∂θa

)
+Mµν ,

D = i

(
pν

∂

∂pν
+ (3−∆)− 1

2θa ∂

∂θa

)
,

Kµ = −
(

pµ
∂2

∂pν∂pν
+ 2(∆− 3) ∂

∂pµ
− 2pν

∂2

∂pν∂pµ

)
− 2i

∂

∂pν
Mµν − (σµ)c

b(σν)a
c θb ∂

∂θa

∂

∂pν
,

Qa = ∂

∂θa
− 1

2θb(σµ)b
apµ, (B.3)

with Sa obtained via (B.1).
The generators in the super spinor helicity grassmann twistor variables (2.20) are given by,

Pµ = 1
2(σ

µ)a
b λa λ̄b,

Mµν = 1
2ϵµνρ(σρ)a

b

(
λ̄b ∂

∂ λ̄a
+ λb ∂

∂λa

)
,

D = i

2

(
λ̄a ∂

∂ λ̄a
+ λa ∂

∂λa
+ 2

)
,

Kµ = 2(σµ)ab ∂2

∂λa λ̄b
,

Qa =
(
2λa

∂

∂ξ+
+ λ̄a

4 ξ+

)
,

Sa = −2i

(
2 ∂

∂ξ+

∂

∂ λ̄a
+ ξ+

4
∂

∂λa

)
. (B.4)

N = 2 superconformal algebra

Similarly we get the N = 2 algebra, all the generators will remain the same except the Qa

and Sa and we will have two more generators Q̄a and S̄a.
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Qa and Q̄a were given in the Main text (4.4), but we give them here agin with Sa and S̄a.

Qa = 2λa
∂

∂ω+
+ λ̄a

4 ξ+, Q̄a = 2λa
∂

∂ξ+
+ λ̄a

4 ω+, (B.5)

Sa = −2i

(
2 ∂

∂ω+

∂

∂λ̄a
+ ξ+

4
∂

∂λa

)
, S̄a = −2i

(
2 ∂

∂ξ+

∂

∂λ̄a
+ ω+

4
∂

∂λa

)
. (B.6)

For the sake of completeness we again write the R-symmetry generator (4.6)

R = ω+
∂

∂ω+
− ξ+

∂

∂ξ+
. (B.7)

C KSCFT =⇒ KCFT for the components

In this section we will prove that the invariance under special conformal transformations
of the Super-correlators translates to the conformal invariance of the individual component
correlators. Let us first consider an example viz ⟨J(ab)J(cd)T(ijkl)⟩. Using the superfield
expansion (2.3), we obtain,

⟨J(ab)J(cd)T(ijkl)⟩ = ⟨JabJcdT ijkl⟩ − θ1eθ2f ⟨Jabe
3/2Jcdf

3/2T ijkl⟩+ . . . (C.1)

The action of Kµ on a three point function is given by,18

Kµ = K1µ + K2µ

= −
2∑

i=1

(
piµ

∂2

∂piν∂pν
i

+ 2(∆i − 3) ∂

∂piµ
− 2piν

∂2

∂piν∂piµ

)
−

2∑
i=1

2i
∂

∂pν
i

Miµν

−
2∑

i=1
(σµ)c

b(σν)a
c θb

i

∂

∂θa
i

∂

∂pν
i

. (C.2)

Acting with Kµ on (C.1), we get,19

Kµ⟨J(ab)J(cd)T(ijkl)⟩ = Kµ⟨JabJcdT ijkl⟩ − Kµ
(
θ1eθ2f ⟨Jabe

3/2Jcdf
3/2T ijkl⟩

)
+ · · · (C.3)

At the zeroth order of this Grassmann expansion, Kθ
µ(which we define below) doesn’t play

any role, but it will play a crucial role at higher orders of expansion in getting the correct
special conformal transformation. We can write the action abstractly as,

Kµ⟨JabJcdT ⟩ = K⟨JJT ⟩
µ ⟨JabJcdT ⟩+ Kθ

µ⟨JabJcdT ⟩,

= K⟨JJT ⟩
µ ⟨JabJcdT ⟩+ 0,

=⇒ Kµ⟨JabJcdT ⟩ = K⟨JJT ⟩
µ ⟨JabJcdT ⟩,

i.e, the usual conformal ward identity for the component correlator is reproduced.
18The momentum space generators are provided in (B.3).
19Note that Kµ does not mix correlators appearing at different orders in the Grassmann spinor expansion.
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where we write the first part of Kµ as K⟨JJT ⟩, as its form is fixed by the zeroth component,

K⟨JJT ⟩
µ = −

2∑
i=1

(
piµ

∂2

∂piν∂pν
i

+ 2(∆i − 3) ∂

∂piµ
− 2piν

∂2

∂piν∂piµ

)
−

2∑
i=1

2i
∂

∂pν
i

Miµν , (C.4)

Kθ
µ = −

2∑
i=1

(σµ)c
b(σν)a

c θb
i

∂

∂θa
i

∂

∂pν
i

. (C.5)

Now, we give the actual form of K
⟨JJT ⟩
µ . First, the action of Mµν on a spinor is given as

MµνF a = −1
2ϵµνρ(σρ)a

b F b. (C.6)

Now, let’s evaluate the action of Mµν part on the zeroth order correlator.

−
2∑

i=1
2i

∂

∂pν
i

Miµν⟨JabJcdT ⟩=−2i

[
∂

∂pν
1
M1µν⟨JabJcdT ⟩+ ∂

∂pν
2
M2µν⟨JabJcdT ⟩

]

=−2i

[
− 1
2ϵµνρ(σρ)a

k

∂

∂pν
1
⟨JkbJcdT ⟩− 1

2ϵµνρ(σρ)b
k

∂

∂pν
1
⟨JakJcdT ⟩

− 1
2ϵµνρ(σρ)c

k

∂

∂pν
2
⟨JabJkdT ⟩− 1

2ϵµνρ(σρ)d
k

∂

∂pν
2
⟨JabJckT ⟩

]
(C.7)

Hence, the representation of Mµν part is fixed, and it acts on the a, b index of first insertion
and on the c, d index of second insertion. Thus, the whole expression can be given as

K⟨JJT ⟩
µ ⟨JabJcdT ⟩=[
−

2∑
i=1

(
piµ

∂2

∂piν∂pν
i

+2(∆i−3) ∂

∂piµ
−2piν

∂2

∂piν∂piµ

)
−

2∑
i=1

2i
∂

∂pν
i

Miµν

]
⟨JabJcdT ⟩, (C.8)

where ∆i = 2 i.e. the scaling dimension of spin-1 conserved currents, and the Mµν action is
given by (C.7). Hence, the action of Kµ

⟨JJT ⟩ is fixed by the zeroth order, given in (C.8).
At the second order i.e. O(θ1θ2), we obtain,

Kµ
(
θ1eθ2f ⟨Jabe

3/2Jcdf
3/2T ⟩

)
=

= θ1eθ2f K⟨JJT ⟩
µ ⟨Jabe

3/2Jcdf
3/2T ⟩+Kµ

θ

(
θ1eθ2f ⟨Jabe

3/2Jcdf
3/2T ⟩

)
,

= θ1eθ2f

[
−

2∑
i=1

(
piµ

∂2

∂piν∂pν
i

+2(∆i−3) ∂

∂piµ
−2piν

∂2

∂piν∂piµ

)
−

2∑
i=1

2i
∂

∂pν
i

Miµν

]
⟨Jabe

3/2Jcdf
3/2T ⟩

−
[ 2∑

i=1
(σµ)c

b(σν)a
c θb

i

∂

∂θa
i

∂

∂pν
i

](
θ1eθ2f ⟨Jabe

3/2Jcdf
3/2T ⟩

)
, (C.9)

where ∆i = 2 are scaling dimensions of the first two insertions in ⟨JJT ⟩.
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Consider now the third of line of (C.9). We have,

Kθ
µ

(
θ1eθ2f ⟨Jabe

3/2Jcdf
3/2T ⟩

)
=

=−
[ 2∑

i=1
(σµ)c

b(σν)a
c θb

i

∂

∂θa
i

∂

∂pν
i

]
(θ1eθ2f )⟨Jabe

3/2Jcdf
3/2T ⟩,

=−
(
δµνδl

k+iϵµνρ(σρ)l
k

)(
θk

1θ2f ϵle
∂

∂pν
1
⟨Jabe

3/2Jcdf
3/2T ⟩+θ1eθk

2ϵlf
∂

∂pν
2
⟨Jabe

3/2Jcdf
3/2T ⟩

)
,

=−θ1eθ2f

[
∂

∂pµ
1
⟨Jabe

3/2Jcdf
3/2T ⟩+ ∂

∂pµ
2
⟨Jabe

3/2Jcdf
3/2T ⟩

]
+θ1eθ2f

[
iϵµνρ(σρ)e

k

∂

∂pν
1
⟨Jabk

3/2 Jcdf
3/2T ⟩+iϵµνρ(σρ)f

k

∂

∂pν
2
⟨Jabe

3/2Jcdk
3/2 T ⟩

]
,

=−2θ1eθ2f

[1
2

∂

∂pµ
1
⟨Jabe

3/2Jcdf
3/2T ⟩+1

2
∂

∂pµ
2
⟨Jabe

3/2Jcdf
3/2T ⟩

]
−2θ1eθ2f

[
−1
2ϵµνρ(σρ)e

k

∂

∂pν
1
⟨Jabk

3/2 Jcdf
3/2T ⟩− 1

2ϵµνρ(σρ)f
k

∂

∂pν
2
⟨Jabe

3/2Jcdk
3/2 T ⟩

]
. (C.10)

Hence,

Kθ
µ

(
θ1eθ2f ⟨Jabe

3/2Jcdf
3/2T ⟩

)
=−2θ1eθ2f

[
1
2

∂

∂pµ
1
⟨Jabe

3/2Jcdf
3/2T ⟩+1

2
∂

∂pµ
2
⟨Jabe

3/2Jcdf
3/2T ⟩

]
−2θ1eθ2f

[
−1
2ϵµνρ(σρ)e

k

∂

∂pν
1
⟨Jabk

3/2 Jcdf
3/2T ⟩− 1

2ϵµνρ(σρ)f
k

∂

∂pν
2
⟨Jabe

3/2Jcdk
3/2 T ⟩

]
.

(C.11)

Using (C.11) in (C.9), it becomes,

Kµ
(
θ1eθ2f ⟨Jabe

3/2Jcdf
3/2T ⟩

)
=

= θ1eθ2f K⟨JJT ⟩
µ ⟨Jabe

3/2Jcdf
3/2T ⟩+Kθ

µ

(
θ1eθ2f ⟨Jabe

3/2Jcdf
3/2T ⟩

)
,

= θ1eθ2f

[
−

2∑
i=1

(
piµ

∂2

∂piν∂pν
i

+2
(
∆i+

1
2−3

)
∂

∂piµ
−2piν

∂2

∂piν∂piµ

)
−

2∑
i=1

2i
∂

∂pν
i

Miµν

]
⟨Jabe

3/2Jcdf
3/2T ⟩,

= θ1eθ2f

(
K

⟨J3/2J3/2T ⟩
µ ⟨Jabe

3/2Jcdf
3/2T ⟩

)
. (C.12)

Hence, after the addition of Kθ
µ action to K

⟨JJT ⟩
µ , we get the correct action on ⟨J3/2J3/2T ⟩.

This can be seen as the dimensions have shifted, ∆i → ∆i + 1
2 , which are the correct scaling

dimension of spin-3/2 conserved current. Also, the correct action of the index e and f

for both first and second insertion is added to the Mµν part. Thus making it the special
conformal transformation for the component correlator. This method can be applied to any
component. Hence, we have shown that the invariance under special conformal transformations
of the Super-correlators translates to the conformal invariance of the individual component
correlators

D A worked out example of a N = 1 three point function

In this appendix, we outline the steps for solving for N = 1 three-point correlators in the
Grassmann twistor variables, demonstrating the significant reduction of work in getting
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the constraints between different component correlator. Consider the Super-correlator
⟨J̃3/2J̃1/2J̃1/2⟩. We have, (see equation (3.11))

⟨J̃−
3/2J̃−

1/2J̃−
1/2⟩ =

E

32⟨1̄ 2̄⟩√p3
⟨J−

3/2O−
1/2J−⟩Ξ3, (D.1)

⟨J̃−
3/2J̃−

1/2J̃+
1/2⟩ = − ξ3−

256√p3
⟨J−

3/2O−
1/2J+⟩Γ3. (D.2)

In equation (D.1), we can extract the component correlators on the l.h.s. using the superfield
expansion (2.22) and compare with the corresponding expression in the r.h.s. Let’s first
consider (D.1). By matching the l.h.s. and r.h.s. at the zeroth order, ξ2+ξ3+, and ξ1+ξ3+,
we get the following relations

⟨T−J−J−⟩ =
2E

√
p1p2

⟨1̄2̄⟩
⟨J−

3/2O−
1/2J−⟩, (D.3)

⟨T−O−
1/2O−

1/2⟩ =
⟨2̄3̄⟩√p1

⟨1̄2̄⟩√p3
⟨J−

3/2O−
1/2J−⟩, (D.4)

⟨J−
3/2J−O−

1/2⟩ =
⟨1̄3̄⟩√p2

⟨1̄2̄⟩√p3
⟨J−

3/2O−
1/2J−⟩. (D.5)

This implies that,

⟨T−J−J−⟩ =
2E

√
p2p3

⟨2̄3̄⟩
⟨T−O−

1/2O−
1/2⟩, ⟨T−J−J−⟩ =

2E
√

p1p3

⟨1̄3̄⟩
⟨J−

3/2J−O−
1/2⟩. (D.6)

Similarly, in the for (− − +) helicity (D.2) we get the following relations between the
component correlators:

⟨T−J−J+⟩=2√p2p3
⟨12⟩
⟨31⟩⟨T

−O−
1/2O+

1/2⟩, ⟨T−J−J+⟩=2√p1p3
⟨12⟩
⟨23⟩⟨J

−
3/2J−O+

1/2⟩. (D.7)

Using the decomposition of a three dimensional CFT correlator as in (2.12), we can write
explicit forms for these correlators. Substituting these forms in equations (D.6) and (D.7),
we can constrain their individual coefficients and reduce the independent coefficients from
six to one. Then, correlators can be written as

⟨TJJ⟩ = nb

(
⟨TJJ⟩B + ⟨TJJ⟩F

)
, (D.8)

⟨TO1/2O1/2⟩ = nb

(
⟨TO1/2O1/2⟩B + ⟨TO1/2O1/2⟩F

)
, (D.9)

⟨J3/2JO1/2⟩ = nb

(
⟨J3/2JO1/2⟩B + ⟨J3/2JO1/2⟩F

)
. (D.10)

Thus, we obtain exactly one parity even solution, which is exactly in line with the results of [45].

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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