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1 Introduction

String theory provides a consistent quantum framework for unifying gauge and gravitational
interactions and describing particle physics and cosmology involving phenomena at very
different scales. An important prerequisite towards this goal is stabilising the string moduli
and thus fixing the compactification parameters down to four dimensions in a controllable way.
A well known systematic mechanism for the geometric (closed string) moduli stabilisation is
based on turning on 3-form fluxes for the field-strengths of the NS-NS (Neveu-Schwarz) and
R-R (Ramond) 2-form gauge potentials, in the framework of type IIB string compactifications
on Calabi-Yau threefolds, which preserve N = 2 supersymmetry in four dimensions [1–4].
The fluxes can be chosen in a way to break supersymmetry down to N = 1 and lead to a
superpotential depending on the complex structure moduli and the axio-dilaton modulus [5].
The resulting scalar potential can be minimised in a supersymmetric way, fixing all complex
structure deformations of the compactification manifold, as well as the string coupling, in
terms of the discrete flux quanta obeying the Dirac quantisation. Indeed, the number of
complex structure moduli is equal to the number of holomorphic (2, 1) cycles, given by the
Hodge number h2,1, which when supplemented with the axio-dilaton modulus and the flux

– 1 –



J
H
E
P
0
9
(
2
0
2
4
)
0
1
6

around the unique (3, 0) cycle, leads to h2,1 + 1 complex equations for the same number
of complex moduli variables. An a-posteriori consistency condition for the validity of the
above mechanism is to obtain a small value for the string coupling gs justifying the neglect
of string quantum corrections.

The multitude of possible background fluxes stabilising the complex structure and axio-
dilaton leads to a large landscape of vacua. These vacua have undergone great scrutiny in the
past decades. The study of their statistics was initiated in the seminal works of [6, 7], and
was then gradually complemented by searches using different algorithmic methods or looking
for more specific phenomenological properties of flux vacua [8–12]. In parallel, several works
searched for all possible solutions on explicit examples [13–17]. Exhausting flux vacua in
explicit examples is a way to showcase explicitly both the finiteness of the flux landscape [18–
21], to compute exact vacua statistics, and to test the strong constraints coming from the
tadpole cancellation [22–24]. It is one of the motivation of this work.

After complex structure moduli and axio-dilaton stabilisation, one is left with a constant
superpotential W0 that leads to a supersymmetric anti-de Sitter (AdS) vacuum in the
particular case of no Kähler class moduli, counted by the Hodge number h1,1. However, in the
general case of h1,1 ̸= 0, supersymmetry is broken along the Kähler class moduli directions but
the scalar potential vanishes at lowest order due to the no-scale structure of the corresponding
effective supergravity [25, 26]. An extra ingredient is therefore needed for a controlled
stabilisation of the Kähler moduli. A non perturbative superpotential, induced for instance
by gaugino condensation in a strongly coupled gauge sector [27] or by D-brane instantons [28],
leads again, generically, to an AdS supersymmetric minimum. This minimum may be uplifted
to small positive value by adding for instance anti-D3-branes breaking supersymmetry to a
non-linear version [28], or α′ corrections and D-terms [29–32], but their full consistency was
challenged by swampland conjectures [33] and other constraints, see e.g. [34, 35] for reviews.

An alternative perturbative method was proposed recently, based on quantum corrections
to the Kähler potential that grow logarithmically with the size of the 2-dimensional space
transverse to D7-branes [36]. This is due to the propagation of massless closed strings
corresponding to local tadpoles whose existence is not forbidden by global tadpole cancellation.
Explicit computations can be done in the case of geometric untwisted moduli in orientifolds
of orbifold compactifications [37]. Such models contain at most three Kähler class moduli, all
from the untwisted orbifold sector, as well as at most three mutually orthogonal stacks of D7-
branes magnetised along their four-dimensional internal world-volume. Using as parameters
the values of gs and W0 determined by the first step of moduli stabilisation with 3-form
fluxes, as well as the Fayet-Iliopoulos (FI) D-terms induced by the magnetic fluxes, it was
shown that the resulting scalar potential can develop a shallow de Sitter (dS) minimum and
produce a novel model of inflation starting around the inflection point [38].

Towards the ambitious goal of providing an explicit, calculable and physically interesting
model of complete moduli stabilisation, in this work we restrict to the first step. We perform
an exhaustive investigation of complex structure and axio-dilaton moduli stabilisation in
N = 1 orientifolds of toroidal orbifold compactifications of type IIB string theory in the
presence of 3-form closed string fluxes [39–44], as well as of 2-form open string internal
magnetic fields along the world-volume of D7-branes. Such compactifications have been the
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playground for many examples of partial moduli stabilisation and Standard Model embedding,
but no systematic study of their flux vacua was performed in the past. Recent works [16, 17]
have made great progress in the systematic study of the landscape of orbifolds flux vacua,
initiated earlier in [41]. They addressed several orbifolds, and restricted to solutions with
vanishing superpotential. We go beyond these works and confirmed their results whenever
our works intersect.

Orbifold compactifications involve two types of closed string moduli:

- toroidal deformations of the six-dimensional internal metric and R-R antisymmetric
tensor which are invariant under the orbifold action. They arise from the untwisted
orbifold sector;

- deformations blowing up the orbifold singularities into smooth Calabi-Yau manifolds.
They arise from the twisted orbifold sector. These twisted deformations are associated to
a discrete symmetry which is unbroken at the orbifold point [39, 45, 46], corresponding
to vanishing vacuum expectation value (VEV) of the twisted deformations.

When implemented by a corresponding transformation of the fluxes around the twisted
cycles, the discrete symmetry of the twisted sector remains an invariance of the effective
supergravity. It follows, as we show explicitly in a particular example, that all twisted
deformations can be stabilised at the orbifold point by choosing vanishing fluxes around the
twisted cycles. For such fluxes we are therefore left with the stabilisation of the untwisted
complex structure moduli, which are at most three. We analyse their stabilisation in
great detail.

Our study is based mostly on analytic and partly on numerical computations, focusing
mainly on two aspects: (i) the multiplicity of inequivalent vacua by modding out S and U

duality transformations and (ii) the minimum value of the string coupling which controls the
magnitude of quantum corrections and thus the validity of the stabilisation mechanism.

Our two main results are:

1. we provide strong evidence that we exhausted the finite number of inequivalent vacua
for a given total 3-form flux number Nflux by constructing them explicitly; the existence
of a finite number of inequivalent vacua is predicted by finiteness theorems [18–21], but
the value of this number is not.

2. the minimum value of the string coupling depends only on Nflux and satisfies the
asymptotic relation

gs, min ∼ c

Nα
flux

; α = 1, 2

with c an order one model dependent parameter and α depends on the number of complex
structure moduli of the orbifold. The 3-form fluxes are subject to the D3-brane tadpole
condition imposing the vanishing of the total charge and since Nflux can be shown to be
positive, it is bounded by the number of orientifold O3-planes to which is added the induced
D3-brane charge. In presence of magnetised D7-branes the latter can have both signs, or be
vanishing. The number of D7-branes is also subject to the D7-brane tadpole condition, which
is non-trivial if the orbifold has Z2 elements implying the existence of O7-planes.
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The outline of our paper is the following. In section 2, we present a short review of
the toroidal orbifolds, including the possible presence of discrete torsion, and describe their
complex structures (subsection 2.1 and 2.5). It turns out that there are zero, one or three
complex structure moduli. We also introduce the possible 3-form fluxes and the induced
superpotential, as well as the effective N = 1 supergravity action and describe the complex
structure moduli stabilisation mechanism (subsections 2.2 and 2.3). We then discuss the
D3-brane charge tadpole condition (subsection 2.4). Section 3 contains our detailed analysis
of moduli stabilisation, finiteness of inequivalent string vacua and computation of the minimal
value of the string coupling as a function of the total D3-brane flux Nflux, for the cases of
zero (subsection 3.1) and one complex structure modulus (subsection 3.2). In section 4, we
study in great detail the moduli stabilisation in the only case of three untwisted complex
structure moduli, which is the orbifold Z2 × Z2. This orbifold has also three untwisted
Kähler moduli as well as 48 twisted moduli which can be either complex structure or Kähler,
depending on whether there is or not discrete torsion, the two cases being exchanged by
mirror symmetry [47]. We first discuss the stabilisation of twisted moduli (in the presence
of discrete torsion) at the orbifold point (subsection 4.1) and then the stabilisation of the
untwisted complex structure moduli (subsection 4.2). We proceed with the counting of
independent string vacua and the computation of the minimal value of the string coupling
(subsection 4.3), while we exclude the existence of solutions with flux integers hierarchy and
parametric control on gs (subsection 4.4). Finally, we study the presence of magnetised
D7-branes (subsection 4.5). Section 5 contains our conclusions, while appendix A displays
tables with the complex structure data of the orbifolds used in our analysis.

2 Toroidal orbifolds with fluxes

In this work, we consider type IIB string compactifications on an internal space Y chosen to
be an orientifold of a T 6/G toroidal orbifold, with G = ZN ,ZN × ZM .

2.1 Orbifolds construction, cohomology basis and complex structures

Orbifold group and action. We start this section by reviewing the construction of toroidal
orbifolds, largely based on [48]. The construction starts from a 6-torus T 6 = R6/Λ, where
Λ is a six dimensional lattice. In the torus, points are thus identified as xi ∼ xi + li where
l ∈ Λ. Once the lattice is specified, we can choose an automorphism Γ as the orbifold group,
or point group, to quotient by. Imposing that the resulting orbifold has SU(3)-holonomy,
for N = 1 supersymmetry purposes, restricts Γ to be a subgroup of SU(3). If we further
restrict to abelian orbifold groups, and require that Γ acts crystallographically on the torus
lattice, we end up with a short list of groups:

Γ = ZN with N = 3, 4, 6, 7, 8, 12,

Γ = ZN × ZM with M = kN and N, M = 2, 3, 4, 6. (2.1)

The action of the group on the torus has a simple expression in complex coordinates
(z1, z2, z3). For the group generator element θN ≡ (n1, n2, n3), it reads:

θN : (z1, z2, z3) → (e2iπn1/N z1, e2iπn2/N z2, e2iπn3/N z3). (2.2)
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The groups ZN are generated by one element θN and the groups ZN × ZM are generated
by two elements θN , θM . Note that there are two inequivalent embeddings for the ZN with
N = 6, 8, 12. For instance θ6,I = (1, 1,−2) or θ6,II = (1, 2,−3). To illustrate the previous
notation Z6,I acts as

θ6,I : (z1, z2, z3) → (e2iπ/6z1, e2iπ/6z2, e−4iπ/6z3). (2.3)

In table 1, we give the list of toroidal orbifolds considered in [48], along with the corresponding
torus lattices and group actions (θN , θM ).

Untwisted cohomology basis. The H3(T 6,Z) complex cohomology basis is written as:

ωA0 = dz1 ∧ dz2 ∧ dz3, ωA1 = dz̄1 ∧ dz2 ∧ dz3, ωA2 = dz1 ∧ dz̄2 ∧ dz3, ωA3 = · · · ,

ωB0 = dz̄1 ∧ dz̄2 ∧ dz̄3, ωB1 = dz1 ∧ dz̄2 ∧ dz̄3, ωB2 = dz̄1 ∧ dz2 ∧ dz̄3, ωB3 = · · · ,

ωC1 = dz1 ∧ dz̄1 ∧ dz2, ωC2 = dz1 ∧ dz̄1 ∧ dz3, ωC3 = · · · ,

ωD1 = dz1 ∧ dz̄1 ∧ dz̄2, ωD2 = dz1 ∧ dz̄1 ∧ dz̄3, ωD3 = · · · . (2.4)

We normalise the top (3, 0)-form Ω to ωA0 , namely:

Ω = dz1 ∧ dz2 ∧ dz3 = ωA0 . (2.5)

In the above basis, the cohomology structure of the 3-forms is clear: ωA0 is a (3, 0)-form,
ωAi , ωCi are (2, 1)-forms, ωBi , ωDi are (1, 2)-forms and ωB0 is a (0, 3)-form.

The untwisted orbifold cohomology is obtained from the torus one by keeping only the
forms invariant under the action of the orbifold group. As the orbifold acts simply on the
complex coordinates through (2.2), the complex cohomology basis (2.4) is convenient to
identify the orbifold cohomology basis. For instance, the ωCi and ωDi are projected out
in all the orbifolds. The numbers of (1, 1)-forms dzi ∧ dz̄j and (2, 1)-forms dzi ∧ dzj ∧ dz̄k

left invariant under the orbifold action are counted by the Hodge numbers h1,1 and h2,1.
On top of these forms, the orbifold contains additional twisted forms, counted by h̃1,1 and
h̃2,1. In these notations, the total Hodge numbers are thus (h1,1 + h̃1,1, h2,1 + h̃2,1). They
also count the number of untwisted and twisted Kähler and complex structure moduli, and
are indicated in table 1.

The cohomology can also be expressed in terms of a real basis. Introducing the notation
(ijk) ≡ dxi ∧ dxj ∧ dxk, we define our real basis as:

α0 = (135), β0 = (246), γ1 = (123), δ1 = −(456), γ5 = (156), δ5 = −(234),
α1 = (235), β1 = −(146), γ2 = (125), δ2 = −(346), γ6 = (356), δ6 = −(124),
α2 = (145), β2 = −(236), γ3 = (134), δ3 = −(256),
α3 = (136), β3 = −(245), γ4 = (345), δ4 = −(126),

(2.6)
One can check that in the convention

∫
dx1 ∧ dx2 ∧ · · · ∧ dx6 = −1, the basis elements satisfy∫

αi ∧ βj = δj
i and

∫
γi ∧ δj = δj

i . It is not obvious to construct 3-forms invariant under the
orbifold action from the real basis. The simplest way is to identify them in the complex basis
as explained above, and then express them in terms of the forms of the real basis.

To go from the complex basis eq. (2.4) to the real basis (2.6), one needs the expressions
of the complex coordinates zi in terms of the real ones xi. These are determined by the
complex structure of the orbifold, as is described hereafter.
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orbifold torus lattice Λ θN θM h1,1 h2,1 h̃1,1 h̃2,1

Z3 SU(3)3 (1, 1,−2) 9 0 27 0
Z4,a SU(4)2 (1, 1,−2) 5 1 20 0
Z4,b SU(2)× SU(4)× SO(5) (1, 1,−2) 5 1 22 2
Z4,c SU(2)2 × SO(5)2 (1, 1,−2) 5 1 26 6
Z6,Ia G2 × SU(3)2 (∗) (1, 1,−2) 5 0 20 1
Z6,Ib G2

2 × SU(3) (1, 1,−2) 5 0 24 5
Z6,IIa SU(2)× SU(6) (1, 2,−3) 3 1 22 0
Z6,IIb SU(3)× SO(8) (1, 2,−3) 3 1 26 4
Z6,IIc SU(2)2 × SU(3)2 (∗) (1, 2,−3) 3 1 28 6
Z6,IId G2 × SU(2)2 × SU(3) (1, 2,−3) 3 1 32 10
Z7 SU(7) (1, 2,−3) 3 0 21 0

Z8,Ia SU(4)× SU(4) (∗) (1, 2,−3) 3 0 21 0
Z8,Ib SO(5)× SO(9) (1, 2,−3) 3 0 24 3
Z8,IIa SU(2)× SO(10) (1, 3,−4) 3 1 24 2
Z8,IIb SO(4)× SO(9) (1, 3,−4) 3 1 28 6
Z12,Ia E6 (1, 4,−5) 3 0 22 1
Z12,Ib SU(3)× F4 (1, 4,−5) 3 0 26 5
Z12,II SO(4)× F4 (1, 5,−6) 3 1 28 6
Z2 × Z2 SU(2)6 (1, 0,−1) (0, 1,−1) 3 3 48 0
Z2 × Z4 SU(2)2 × SO(5)2 (1, 0,−1) (0, 1,−1) 3 1 58 0
Z2 × Z6,I G2 × SU(2)2 × SU(3) (1, 0,−1) (0, 1,−1) 3 1 48 2
Z2 × Z6,II G2

2 × SU(3) (1, 0,−1) (1, 1,−2) 3 0 33 0
Z3 × Z3 SU(3)3 (1, 0,−1) (0, 1,−1) 3 0 81 0
Z3 × Z6 G2

2 × SU(3) (1, 0,−1) (0, 1,−1) 3 0 70 1
Z4 × Z4 SO(5)3 (1, 0,−1) (0, 1,−1) 3 0 87 0
Z6 × Z6 G3

2 (1, 0,−1) (0, 1,−1) 3 0 81 0

Table 1. List of simple toroidal orbifolds borrowed from [48], along with the corresponding torus
lattices, group actions (θN , θM ) and number of untwisted and twisted Kähler and complex structure
moduli, respectively (h1,1, h2,1) and (h̃1,1, h̃2,1), in the absence of discrete torsion. In all of these
orbifolds, the matrix M representing the action of the group on the real coordinates is the transpose
of the Coxeter element of the torus lattice, except for the three entries marked by (∗) where the action
is realised as a generalised Coxeter twist, see [48].
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The complex structure. The action of the orbifold group in real coordinates xi is rep-
resented by a six-dimensional matrix M :

xi → M i
jxj , M = Qt. (2.7)

This matrix can be taken as the transpose of the Coxeter element Q of the torus lattice Λ,
M = Qt. There are other possibilities, see [48] for reference. The orbifold actions in real and
complex coordinates are compatible if the eigenvalues of Q and θN are equal. This selects
only one or a few possible lattices for each orbifold group and embedding.

The complex coordinates zi are written in terms of the real coordinates xi through
the complex structure. The latter is determined by writing the complex coordinates as
arbitrary linear combinations of the real coordinates zi = Ai

jxj , and imposing invariance
under the orbifold action. For instance, for a ZN orbifold we see from eqs. (2.2) and (2.7)
that we should require:

θN (zi) = e2iπni/N zi = e2iπni/N Ai
jxj = Ai

jM j
kxk. (2.8)

The expression of the matrix elements M j
k thus gives a set of relations between the coefficients

Ai
j . This fixes the complex structure up to a complex normalisation. After fixing the latter,

the remaining free coefficients are the untwisted complex structure moduli. This procedure
gives the complex structures listed in appendix A, a sample of which is given in table 2.

Let us show the details of the procedure for the Z4,b orbifold. The group generator given
in table 1 is θN = (1, 1,−2) and the matrix M reads:

M = Qt =



1 −1 0 0 0 0
2 −1 0 0 0 0
0 0 0 0 −1 0
0 0 1 0 −1 0
0 0 0 1 −1 0
0 0 0 0 0 −1


(2.9)

The identification (2.8) thus reads:

iA1
kxk = (A1

1+2A1
2)x1−(A1

1+A1
2)x2+A1

4x3+A1
5x4−(A1

3+A1
4+A1

5)x5−A1
6x6,

iA2
kxk = (A2

1+2A2
2)x1−(A2

1+A2
2)x2+A2

4x3+A2
5x4−(A2

3+A2
4+A2

5)x5−A2
6x6, (2.10)

−A3
kxk = (A3

1+2A3
2)x1−(A3

1+A3
2)x2+A3

4x3+A3
5x4−(A3

3+A3
4+A3

5)x5−A3
6x6,

which is solved for:

z1 = A1
1

(
x1 + 1

2(i − 1)x2
)
+ A1

3

(
x3 + ix4 − x5

)
,

z2 = A2
1

(
x1 + 1

2(i − 1)x2
)
+ A2

3

(
x3 + ix4 − x5

)
, (2.11)

z3 = A3
3

(
x3 − x4 + x5

)
+ A3

6x6.

We see that the space parameterised by z1 and z2 is generated by two vectors, with coefficients
A1

1, A1
3, A2

1, A2
3. To have independent coordinates z1 and z2 with unit overall coefficient, one

– 7 –
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can make the choice A1
1 = A2

3 = 1 and A1
3 = A2

1 = 0. On the other hand, the z3 coordinate is
expressed in terms of two additional independent vectors, such that fixing the overall complex
normalisation leaves one free coefficient. The latter corresponds to the complex structure
modulus U which survives the orbifolding, from the initial nine complex structure moduli
of T 6. The final complex coordinates thus read:

z1 = x1 + 1
2(i − 1)x2,

z2 = x3 + ix4 − x5, (2.12)
z3 = x3 − x4 + x5 + Ux6.

Notice that the orbifold action symmetry z1 ↔ z2 was still clear in eq. (2.11) before making
our choice for the remaining Ai

k. This is not the case anymore once they are fixed in eq. (2.12).
On the other hand, if there remains a symmetry after fixing the arbitrary parameters, it has
to be a symmetry of the orbifold action (see for instance the orbifold T 6/Z3 × Z3 in table 2).

Projective coordinates. We conclude this section by mentioning that the (3, 0)-form Ω can
be parameterised in the real basis through the complex structure moduli. It takes the form:

Ω = dz1 ∧ dz2 ∧ dz3 + twisted forms
= Xaαa + Gaβa, (2.13)

where Xa are projective coordinates. They can be set to (X0, X i, XI) = (1,U i,DI) when
evaluating the above relation, with i = 1, . . . , h2,1 parameterising the untwisted complex
structure moduli and I = 1, . . . , h̃2,1 the twisted ones. Similarly, the total cohomology basis
(αa, βa) = (αi, αI , βi, βI) is constructed from the untwisted one (2.6) supplemented by the
twisted cohomology basis. See section 2.5 for a more complete introduction to the twisted
moduli. In eq. (2.13), the function G is the prepotential introduced in eq. (2.30) and Ga

denotes its derivative with respect to the Xa coordinate [40, 49–51].

2.2 Fluxes, superpotential and complex structure moduli stabilisation

We just detailed the construction of the toroidal orbifolds considered in this work. In what
follows, we study in detail the stabilisation by background fluxes of their h2,1 untwisted
complex structure moduli. In the orbifolds we consider, h2,1 ∈ {0, 1, 3} and the equations of
stabilisation are algebraic, making an analytic treatment technically possible.

In addition, we will choose fluxes such that the h̃2,1 twisted complex structure moduli
are stabilised at the orbifold point, i.e. have vanishing VEVs. This is possible due to the
orbifolds discrete symmetries, as described in section 2.5 and shown explicitly for T 6/Z2 ×Z2
in section 4.1.

Background fluxes superpotential and charge. In the effective theory, the presence of
background 3-form fluxes H3 (NS-NS) and F3 (R-R) generate a superpotential for the complex
structure moduli. This superpotential is expressed in terms of the 3-form G3 and reads [5]:

W =
∫

G3 ∧ Ω, where G3 ≡ F3 + SH3. (2.14)

– 8 –
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coefficients of the complex structure
orbifold x1 x2 x3 x4 x5 x6

z1 1 e2iπ/3 0 0 0 0
Z3 z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 e2iπ/3

z1 1 e3iπ/4/
√
2 0 0 0 0

Z4,b z2 0 0 1 i −1 0
z3 0 0 1 −1 1 U
z1 1 U1 0 0 0 0

Z2 × Z2 z2 0 0 1 U2 0 0
z3 0 0 0 0 1 U3

z1 1 e2iπ/3 0 0 0 0
Z3 × Z3 z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 −eiπ/3

Table 2. Complex structures of some orbifolds of table 1. U ,U i are complex structure moduli.

In our conventions, the axio-dilaton is defined as S ≡ C0 + ie−ϕ = C0 + i/gs. The background
fluxes also contribute to the D3 tadpole by inducing a positive charge Nflux:

Nflux =
∫

T 6
H3 ∧ F3 = mHnF − mF nH + pHqF − pF qH . (2.15)

The last equality is written in terms of the flux integers, that we introduce hereafter. The
products of flux integers denote the sum over all basis elements, e.g. mHnF =

∑3
i=0 mH

i nF
i ,

see eqs. (2.6) and (2.16).

Flux quanta and integers. The fluxes F3 and H3 should satisfy a Dirac quantisation
condition, so that their expansion coefficients on a normalised 3-form cohomology basis
should be integers. As introduced in eq. (2.6), we work with a normalised real cohomology
basis generated by αi, βi, γj , δj . Hence, the quantised 3-form G3 is expanded in terms of
flux integer quanta as:

G3 = miαi+niβ
i+pjγj +qjδj , where mi = mF

i +SmH
i , ni = nF

i +SnH
i , etc. (2.16)

where i = 0, . . . , 3 and j = 1, . . . 6. The flux quanta mH,F
i , nH,F

i , pH,F
i , qH,F are integers. In

the rest of the paper, we call flux parameters the coefficients of G3 on the real cohomology
basis, hence mi, ni, pj , qj . They are not all independent. Indeed, αi, βi, γj and δj are elements
of the real basis of the torus T 6. However, as G3 is expanded on the orbifold cohomology basis,
it only depends on real 3-forms surviving the orbifolding. Such forms are linear combinations
of the real basis elements, producing relations between the flux parameters mi, ni, pj , qj . The
easiest way to identify the real 3-forms surviving the orbifolding is to match them to the
complex ones through the complex structure, see section 2.1.

As explained below eq. (2.4), it is indeed easier to identify the orbifold 3-forms in the
complex basis because the orbifold action is simpler there. In the complex basis the G3
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form reads:

G3 = AiωAi + BiωBi , with i = 0, . . . , 3, (2.17)

where the Ai and Bi coefficients are not integer and only the ωAi and ωBi , surviving the
orbifolding, are considered. In this basis, the superpotential W of eq. (2.14) simply reads:

W = B0
∫

ωB0 ∧ ωA0 . (2.18)

As we chose to normalise the real basis, both the integral and the B0 coefficient depend on
the complex structure. The dependence on the flux quanta comes from B0.

When expanding the (3, 0)-form Ω in the projective coordinates (2.13), we see from
eqs. (2.14) and (2.16) that the flux superpotential is expressed simply as:

W = naXa + maGa. (2.19)

This latter expression is derived from the special geometry of the moduli space and involves
the derivative Ga of the prepotential G, see eq. (2.30) [52].

To summarize the previous discussion, in order to express the superpotential in terms of
flux integers, we have to compute the B0 coefficients of eq. (2.17), that enters in (2.18), for
the ωAi and ωBi forms surviving the orbifold. This is done by equating the two expressions of
G3 in (2.17) and (2.16) with the ωAi and ωBi expanded on the real basis using the complex
structures of appendix A. It produces at the same time the Ai and Bi coefficients, in particular
B0, and the aforementioned constraints between the flux parameters mi, ni, pj and qj . When
solving these constraints and expressing some parameters as function of others, one should
ensure that the quanta all remain integers. The easiest way to do so is to express all flux
parameters in terms of the smallest parameters, that we call basis parameters. For instance,
if one of the constraints gives n1 = 2m1, one should take m1 as basis parameter rather than
n1, so that taking mF

1 and mH
1 integers ensures that nF

1 and nH
1 are integers as well.

The T 6/Z3 example. In this orbifold, only the ωA0 and ωB0 survive the projection. This
means that the complex structure is completely fixed by the orbifold: there is no untwisted
complex structure modulus and h2,1 = 0. The G3 flux should thus be expanded as:

G3 = A0ωA0 + B0ωB0 . (2.20)

The complex structure, i.e. the relation between complex and real coordinates, is given in
table 2 and allows to write the ωA0 and ωB0 forms as:

ωA0 = dz1 ∧ dz2 ∧ dz3 = (dx1 + e2iπ/3dx2) ∧ (dx3 + e2iπ/3dx4) ∧ (dx5 + e2iπ/3dx6)

= α0 + β0 + e2iπ/3(α1 + α2 + α3)− e−2iπ/3(β1 + β2 + β3),

ωB0 = dz̄1 ∧ dz̄2 ∧ dz̄3 = (dx1 + e2iπ/3dx2) ∧ (dx3 + e2iπ/3dx4) ∧ (dx5 + e2iπ/3dx6)

= α0 + β0 + e−2iπ/3(α1 + α2 + α3)− e2iπ/3(β1 + β2 + β3). (2.21)

Using these expansions in eq. (2.20) and matching with the real basis expansion (2.16) we
deduce that pj = qj = 0, m0 = n0 = A0 + B0, m1 = m2 = m3 = A0e2iπ/3 + B0e−2iπ/3, n1 =
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n2 = n3 = m0+m1. One can then invert these relations to obtain B0 = −i/
√
3(e2iπ/3m0−m1),

and obtain the flux superpotential (2.18) as:

W = B0
∫

ωB0 ∧ ωA0 = −3e2iπ/3(m0 + e2iπ/3m1). (2.22)

In addition, replacing the flux quanta in (2.15) yields Nflux = −3(mH
0 mF

1 − mF
0 mH

1 ). Note
that it is a multiple of 3. This is a consequence of the orbifold geometry, without any
restriction on the integers. See later discussion.

Parameterisations of the superpotential. For orbifolds with h2,1 = 0 of table 1, we
parameterise the flux superpotential (2.14) as

W = K(a + γb), where a = aF + SaH , b = bF + SbH . (2.23)

Here a, b are the independent basis parameters. It turns out that Nflux is always multiple
of an integer k depending on the orbifold, but not of the flux quanta:

Nflux = k(aHbF − aF bH), k ∈ Z fixed by the orbifold geometry. (2.24)

For orbifolds with h2,1 = 1, we can similarly parameterise:

W = UA + B, where A ≡ AF + SAH , B ≡ BF + SBH . (2.25)

The coefficients A and B are simple combinations of flux parameters. With this notation
the flux number reads:

Nflux = k(Re(AHB̄F )− Re(AF B̄H)), k ∈ Q fixed by the orbifold geometry. (2.26)

In these cases k is not necessarily integer anymore. However Nflux turns out to be again
multiple of an integer ℓ depending on the orbifold, due to the specific combination of the
flux parameters appearing in its expression. It indeed reads:

Nflux = ℓn, n ∈ N fixed by the orbifold geometry. (2.27)

For instance, the orbifold T 6/Z4,a has ℓ = 4 and the exact expression of Nflux reads:

Nflux = 4
(
mH

0 nF
0 −mF

0 nH
0 +mH

1 nF
0 −mF

1 nH
0 +mH

0 mF
2 −mF

0 mH
2 +2(mH

1 mF
2 −mF

1 mH
2 )
)
. (2.28)

In tables 3 and 4, we provide the data for the orbifolds of table 1 with these parameterisations.
The only orbifold with h2,1 = 3 present in our list is T 6/Z2 × Z2. We take it as an

example to discuss full stabilisation of untwisted and twisted complex structure moduli,
and reserve it for section 4.
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orbifold a b K γ k

Z3 m0 m1 −3e2iπ/3 eiπ/3 −3
Z6,Ia m0 m1 2

√
3e5iπ/6 √

3eiπ/6 3
Z6,Ib n0 n1 −

√
3eiπ/6 e5iπ/6/

√
3 3

Z7 m0 m1 7/2(7 + i
√
7) (1 + i

√
7)/4 7

Z8,Ia m0 m1 16i
√
2

√
2eiπ/4 8

Z8,Ib n0 n1 −4i
√
2 e3iπ/4/

√
2 4

Z12,Ia m0 m1 12eiπ/6 eiπ/3 3
Z12,Ib m0 m1 −3e5iπ/6 eiπ/3 3

Z2 × Z6,II n0 n1 −
√
3eiπ/6 e5iπ/6/

√
3 3

Z3 × Z3 m0 m1 3e2iπ/3 eiπ/3 3
Z3 × Z6 n0 n1 −1 e2iπ/3 3
Z4 × Z4 n0 n1 −2 e3iπ/4/

√
2 4

Z6 × Z6 n0 n1 −1 e5iπ/6/
√
3 3

Table 3. Superpotential and Nflux data for orbifolds with h2,1 = 0, with the parameterisation (2.23).

orbifold basis integers A B k ℓ

Z4,a m0, m1, m2, n0 4
√
2e3iπ/4m0 − 8m1 4

√
2e3iπ/4n0 − 8m2 1/8 4

Z4,b m1, m3, n0, n3 2m1 − 2
√
2eiπ/4n3 −2

√
2e3iπ/4m3 − 4in0 1/2 2

Z4,c m1, n0, n1, n3 m1 −
√
2eiπ/4n3 −

√
2eiπ/4n0 + n1 2 2

Z6,IIa m1, m3, n2, p1 −6m1 + 12e2iπ/3p1 −6i
√
3m3 − 18n2 1/18 6

Z6,IIb m0, m1, m2, m3 A6,IIb B6,IIb −2/9 3

Z6,IIc m0, m3, p2, q2 −6m0 − 2i
√
3p2 6m3 − 2i

√
3q2 1/6 2

Z6,IId m0, m1, n0, n1 −eiπ/3m0 − i
√
3m1 −

√
3eiπ/6n0 + n1 2 1

Z8,IIa m0, m1, n0, n2 4im0 − 4
√
2m1 −8in0 + 4(2i +

√
2)n2 −1/8 4

Z8,IIb m1, m2, n0, n2 2(2i −
√
2)m1 − 4im2 4in0 − 2(2i +

√
2)n2 1/4 2

Z12,II m0, m3, p4, q2 −
√
3m0 +

√
6eiπ/4p4

√
3m3 +

√
6eiπ/4q2 2/3 2

Z2 × Z4 m2, n0, n1, n2 im2 −
√
2eiπ/4n1

√
2e3iπ/4n0 − in2 −2 2

Z2 × Z6,I m0, m2, n0, n2 −eiπ/3m0 − i
√
3m2 −

√
3eiπ/6n0 + n2 2 1

Table 4. Superpotential and Nflux data for orbifolds with h2,1 = 1, with the parameterisation (2.25).
To avoid a wide table, we introduced the notation A6,IIb = −3eiπ/3m0+3i

√
3m1+3e2iπ/3m2−3i

√
3m3

and B6,IIb = 3m0 + 3i
√
3m1 + 3e2iπ/3m2. The integer ℓ defined in (2.27) such that Nflux ∈ ℓN, comes

solely from the orbifold action, not from the quantisation of the flux integers, see section 2.4.

– 12 –



J
H
E
P
0
9
(
2
0
2
4
)
0
1
6

2.3 Supergravity effective theory, moduli stabilisation and vacuum solutions

The N = 1 effective supergravity theory is described by the Kähler potential K and super-
potential W . In this work, we only consider the flux induced superpotential (2.14). In our
conventions, the tree-level Kähler potential K reads:

K = −2 log(V)− log
(
− i(S − S̄)

)
− log

(
i

∫
Ω ∧ Ω̄

)
, (2.29)

where the three terms correspond respectively to the Kähler moduli, axio-dilaton and complex
structure moduli. The part depending on the internal volume V , parameterised by the Kähler
moduli, satisfies the famous no-scale structure [25, 26]. The complex structure moduli part
can be written [40, 49–51] in terms of the projective coordinates (2.13) as:

e−Kc.s. = i

∫
Ω ∧ Ω̄ = −i

(
XaḠa − X̄aGa

)
. (2.30)

The last equality including the derivative Ga of the prepotential G comes from the symplectic
structure of the special geometry of N = 2 moduli space [40, 49–51]. The supergravity
scalar potential is eventually obtained by:

V = eK
(
Kij̄DiWD̄j̄W − 3WW

)
, (2.31)

where the indices run over all moduli fields. The Kähler covariant derivatives are defined as
Di = ∂i +Ki. Due to the tree-level no-scale structure of the Kähler sector, the sum over the
Kähler moduli cancels the negative contribution, leading to the remaining scalar potential:

V = eKKab̄DaWD̄b̄W, (2.32)

where now the a, b̄ indices only run over the complex structure moduli and the axio-dilaton.
This scalar potential is positive and is minimised at points where DaW = 0, for all a. These
are exactly the supersymmetry conditions for the complex structure moduli. They are
sufficient conditions to find a vacuum. Minimising this potential thus stabilises the complex
structure moduli and the axio-dilaton totally or partially, depending on the flux background.

2.4 Orientifolding and tadpole condition

Tadpole constraint. In addition to quantisation conditions, the mi, ni, pi, qi flux parameters
should also satisfy the tadpole condition. The latter translates the fact that the total D3-
brane charge QD3 supported by the compact manifold must vanish. Using the conventions
of [53], this condition reads

N Y
flux + ND3 = 1

4NO3, (2.33)

where N Y
flux is the Y orientifold flux number obtained from Nflux of (2.15) as described below,

around eq. (2.36). Similarly, ND3, NO3 denote the D3-brane and O3-plane charges in the
quotient space, obtained from the orbifold charges without counting orientifold images. In the
absence of anti-D3-brane charge, ND3 ≥ 0. In that case, as N Y

flux is positive at the vacuum
solution, it is bounded by the number of O3-planes.
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orbifold NO3 orbifold NO3 orbifold NO3

Z3 22 Z7 10 Z2 × Z2 64
Z4,a 22 Z8,Ia 12 Z2 × Z4 40
Z4,b 28 Z8,Ib 22 Z2 × Z6,I 24
Z4,c 40 Z8,IIa 16 Z2 × Z6,II 22
Z6,Ia 14 Z8,IIb 24 Z3 × Z3 10
Z6,Ib 22 Z12,Ia 8 Z3 × Z6 17
Z6,IIa 16 Z12,Ib 14 Z4 × Z4 28
Z6,IIb 24 Z12,II 16 Z6 × Z6 17
Z6,IIc 16
Z6,IId 24

Table 5. Numbers of O3-planes in the orientifolds with involution xi → −xi constructed from the
orbifolds of table 1.

The number and the loci of O3-planes are fixed by the choice of orientifolding. This
is a further quotient of the orbifold by a geometric involution combined with a reversal of
worldsheet orientation. The number of O3-planes NO3 is obtained by counting the number
of involution fixed points, their localisations are then simply the fixed points coordinates.
We consider the simplest reflection involution xi → −xi. It is the involution maximising the
number of O3-planes NO3, thus giving weakest bound on Nflux.

On the torus T 6, there are 26 = 64 fixed points, with real coordinates (ι1, . . . , ι6) on
the torus lattice, where ιi = 0 or 1/2. Some of these points are however identified by the
orbifold action, acting through the matrix M introduced in eq. (2.7). Such points should
count only once. We obtain the number of O3-planes reported in table 5 for each orientifold
of table 1. We have some mismatches with the results of [48], for the orientifolds T 6/Z6,Ia

and T 6/Z3 ×Z3. In this work, we will not consider quantised NS-NS B2 field requiring exotic
Op-planes and lowering the total Op-planes charges [54–56]. All Op-planes RR charges thus
have opposite signs with respect to those of Dp-branes.

In general Calabi-Yau compactifications, O7-planes and D7-branes wrapped around
4-dimensional submanifolds of the internal space also induce geometric contribution to the
D3-brane charge [57]. This geometric contribution is proportional to the submanifold Euler
characteristic. In the case of toroidal orbifolds, the wrapped submanifolds have vanishing
Euler characteristic and the geometric contribution vanishes. In presence of world-volume
magnetic fluxes, D7-branes can also induce D3-brane charge. Depending on the choice of
fluxes in toroidal orientifolds, magnetised D7-branes thus also contribute to the D3 tadpole
of toroidal orientifolds [58–61]. We come back to this point in section 4.5.

A bit more on flux quantisation in orbifolds: quantised quanta. At this stage, we
shall introduce an additional fact about the quantisation of the flux integers [3, 39, 40, 62].
Namely, to avoid subtleties associated with additional 3-cycles that are not present in the
covering T 6, we take the flux quanta to be multiples of 2|G|, where |G| = N, NM is the
cardinal of the orbifold group for T 6/ZN or T 6/ZN ×ZM orbifolds. The factor |G| comes from
the orbifold action and the factor of 2 comes from the Z2 involution in the orientifold action.
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Such quantisation can be understood from the fact that in (2.16) we defined the flux
integers on the cohomology of the covering torus T 6. They can indeed be expressed as:

mH
i =

∫
Ai

H3, (2.34)

where Ai is the 3-cycle that is Poincaré dual to αi. However, under the orbifold quotient
of the torus by G, this cycle is mapped to a cycle Ãi, which is |G| times smaller. More
precisely, the 3-cycles have |G| homologically equivalent images under the orbifold action
from the torus point of view. All of them are identified to a single 3-cycle in the orbifold.
The flux integrals over this cycle can be used to define the “orbifold flux integers” which
are thus smaller than the torus ones. For instance, we get:

m̃H
i =

∫
Ãi

H3 = 1
|G|

∫
Ai

H3 → mH
i = |G|m̃H

i . (2.35)

The Dirac quantisation in the orbifold, hence for m̃H
i , implies that mH

i is multiple of |G|.
Moreover, taking the orientifold quotient, in absence of discrete fluxes on exotic Op-planes,
imposes an additional factor of 2 [3, 63]. The same quantisation conditions hold for all the
flux quanta so that when using the “torus integers” of (2.16) in the orientifold of T 6/G,
they should always be multiples of 2|G|.

In a similar manner, the flux number appearing in the tadpole constraint should be
computed on the orientifold Y rather than on the torus T 6. This is the motivation of the
definition of N Y

flux used in the tadpole constraint (2.33):

N Y
flux ≡

∫
Y

H3 ∧ F3 = 1
2|G|

∫
T 6

H3 ∧ F3, (2.36)

with now the fluxes computed using the properly quantised “torus integers”. The ratio
between the volumes of the torus and of the orientifold Y gives the factor 2|G|. The cardinal
|G| = N, NM accounts for the volume of the orbifold fundamental cell, while the additional
factor of 2 accounts for the orientifolding. From the quantisation of the “torus integers”,
we thus see that the torus NT 6

flux and the orientifold N Y
flux are multiple of a minimal integer

value, respectively 4|G|2 and 2|G|. Indeed, we have:

NT 6
flux = 4|G|2Nflux, N Y

flux = 2|G|Nflux, |G| = N, NM, (2.37)

where Nflux is computed ignoring the further orbifold quantisation of the “torus integers”,
hence with the m̃i, ñi (taking arbitrary integer values), instead of the mi, ni of eq. (2.35).
We recall that Nflux is however multiple of an integer k or ℓ for other reasons, see eqs. (2.24)
and (2.27).

In [39, 40], authors considered the orientifold T 6/Z2 × Z2, for which |G| = 4 leads to
NT 6

flux being multiple of 82 = 64. We see that NT 6
flux overshoots the orientifold charge, which is

NO3/2 = 32 for this orientifold, unless one turns-on fluxes on twisted 3-cycles, which carry
smaller quanta. However, the previous discussion shows that we should rather use N Y

flux in
the tadpole constraint, which is multiple of 8 and thus seems to invalidate their conclusion.1

1We thank Ralph Blumenhagen and Tomasz R. Taylor for discussion on this topic.
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orbifold (h̃1,1, h̃2,1)
without with discrete torsion

Z2 × Z2 (48, 0) (0, 48)
Z2 × Z4 (58, 0) (18, 8)
Z2 × Z6,I (48, 2) (16, 18)
Z2 × Z6,II (33, 0) (13, 15)
Z3 × Z3 (81, 0) (0, 27)
Z3 × Z6 (70, 1) (10, 13)
Z4 × Z4 (87, 0) (39, 0) (3, 12) (3, 12)
Z6 × Z6 (81, 0) (48, 3) (24, 3) (6, 9)

Table 6. Twisted Hodge numbers (h̃1,1, h̃2,1) in ZN × ZM orbifolds with discrete torsion [65].

2.5 Twisted moduli and discrete torsion

We come back to the twisted Kähler and complex structure moduli. They are additional
degrees of freedom corresponding to strings closing up to the action of the orbifold group, on
the covering space of the orbifold. They are necessary for the theory to be well defined on the
singular geometry of the orbifold, in particular to ensure modular invariance of the partition
function. They correspond geometrically to deformation parameters allowing to resolve
singularities lying at fixed loci of the orbifold action. In the effective theory, they correspond
to additional scalars, counted by the twisted Hodge numbers (h̃1,1, h̃2,1), see section 2.1. The
cohomology basis can be extended by addition of twisted forms. The latter are dual to twisted
cycles made from cycles blowing up the orbifold singularities. They are thus located at the
orbifold fixed points and their sizes are parameterised by the twisted moduli.

For the Z2 × Z2 orbifold with discrete torsion (see just below) the twisted cohomology
basis can be constructed taking the dual forms of the twisted 3-cycles [62]:

[Egi
αβ ]⊗ [Ai] → αi,αβ , [Egi

αβ ]⊗ [Bi] → βi,αβ . (2.38)

The twisted sectors gi = θ2, θ′2, θ2θ′2, with θ2 and θ′2 the generators of two Z2 of table 1, keep
the torus T 2

i fixed. The 1-cycles [Ai] and [Bi] are the generators of this torus. The indices
α, β = 1, . . . , 4 label the 16 fixed points of gi in the two other tori. In this orbifold, there
are thus 2 × 3 × 16 = 96 elements αi,αβ , βi,αβ in the twisted cohomology basis. The [Egi

αβ]
2-cycles are parameterised by 48 twisted moduli Di

αβ.
In T 6/ZN × ZM orbifolds, there is an arbitrary choice of discrete torsion [64]. It

corresponds to the possibility of a discrete phase between different twisted sectors of the
partition function, keeping modular invariance. The choice of discrete torsion has a non-trivial
effect on the geometric interpretation of the twisted moduli [47]. As shown in [65], it affects
the numbers of twisted Kähler and complex structure moduli (h̃1,1, h̃2,1). The Hodge numbers
of these orbifolds in presence of discrete torsion are explicitly shown in table 6.

In particular, in the case of the orbifold T 6/Z2×Z2, we see that discrete torsion exchanges
h̃1,1 with h̃2,1. This is a particular case where the orbifolds with and without discrete torsion
are related by mirror symmetry. This does not happen for the other orbifolds.
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If we do not turn on fluxes on the twisted 3-cycles parameterised by the twisted moduli,
the latter are generically stabilised locally at the orbifold point, i.e. with vanishing vacuum
expectation value. This is due to the discrete symmetry of the moduli space at the orbifold
point. By choosing fluxes that are invariant under this symmetry, the vacuum equations of
the non-invariant moduli are solved automatically [39]. Similar discrete symmetries have been
used in the past in more general Calabi-Yau compactifications to reduce the number of complex
structure moduli to be stabilised by fluxes [66–71]. To summarise, as long as we do not turn on
fluxes on the twisted 3-cycles the corresponding twisted moduli are automatically stabilised at
the orbifold point. We show it explicitly in the case of the T 6/Z2 × Z2 orbifold in section 4.1.

3 Orbifolds with h2,1
untw. = 0, 1: vacuum solutions and string coupling

In this section, we study the stabilisation of the untwisted complex structure moduli and
axio-dilaton for the orbifolds listed in table 1, except the T 6/Z2 ×Z2 treated in section 4. As
reminded in section 2.2, we search for sets of background fluxes that stabilise the moduli. A
vacuum solution is thus a combination of the flux quanta together with a point in moduli
space, depending on the flux quanta, which minimises the scalar potential. The scalar
potential depends on the superpotential W , which for the orbifolds of table 1 was presented
and parameterised in section 2.2. The expression (2.32) of the scalar potential shows that its
minimisation is ensured for solutions satisfying the supersymmetry conditions DaW = 0. We
thus look for such solutions. We remind that these are not a necessary conditions.

We find vacua stabilising all the complex structure moduli and the dilaton for these
orbifolds and we exhibit evidence for an exact relation between the minimal value of the
string coupling gs and Nflux. In orbifolds with h2,1 = 0, 1, i.e. with zero or one untwisted
complex structure modulus, this relation goes in the large flux number limit Nflux ≫ 1 as:

gs,min ∼ 1
Nflux

. (3.1)

The exact relation is given in the next subsections. We comment that this relation does not
seem to match in these cases with the one that could be estimated from the early works [6, 7]
on flux vacua statistics. See discussion around eq. (4.36) for such estimate in the case of
Z2 × Z2 where it gives the correct result.

When supplemented with the tadpole condition (2.33) satisfied by Nflux, the above
relation places a constraint on the value of the string coupling. In absence of negative D3
charge, this constraint is a lower bound, which depends on the particular orbifold. We stress
that all these conclusions only hold for supersymmetric vacua, satisfying DaW = 0.

3.1 Orbifolds with no complex structure moduli

Vacuum relation between gs and Nflux. We derive relation (3.1) for orbifolds with
no untwisted complex structure moduli, thus with h2,1 = 0. We parameterised the flux
superpotential of such orbifolds in eq. (2.23). It reads:

W = K(a + γb) where a = SaH + aF and b = SbH + bF . (3.2)
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orbifold C orbifold C

Z6,Ia 2
√
3 Z2 × Z6,II 2

√
3

Z6,Ib 2
√
3 Z3 × Z3 2

√
3

Z7 2
√
7 Z3 × Z6 2

√
3

Z8,Ia 8 Z4 × Z4 4
Z8,Ib 4 Z6 × Z6 2

√
3

Z12,Ia 2
√
3

Z12,Ib 2
√
3

Table 7. Values of C in the relation (3.5) for the toroidal orbifolds with no complex structure moduli.

It only depends on the flux integers and the axio-dilaton S, as long as aH or bH is non-
vanishing. The flux charge reads Nflux = k(aHbF − aF bH), with k ∈ Z, see eq. (2.24). See
table 3 for the values of K, γ and k for each h2,1 = 0 orbifold.

Vacua are obtained solving DSW = 0, which yields:

S̄ = − aF + γbF

aH + γbH
, aH ̸= 0 or bH ̸= 0. (3.3)

The inverse of the string coupling, defined below eq. (2.14), is given by the imaginary part
of S. It thus reads:

1
gs

= Im(γ)(aHbF − aF bH)
(aH + bHRe(γ))2 + (bHIm(γ))2 = Nflux

k

Im(γ)
(aH + bHRe(γ))2 + (bHIm(γ))2

≤ Nflux
k

Im(γ)
min(Re2(γ), Im2(γ))

. (3.4)

The last inequality comes from the fact that, when (aH , bH) are integers different from (0, 0),
the denominator is bounded from below. Eq. (3.4) leads to a relation between the minimal
value for the string coupling and the flux charge Nflux, as advertised in (3.1). This relation
depends on γ and k, with values for each h2,1 = 0 orbifold shown in table 3, and reads:

gs,min = C

Nflux
. (3.5)

The values of C are shown in table 7.
Note that the sign of C is the one of Im(γ)/k. For T 6/Z3, C is negative. Since Nflux

is positive we deduce that there are no physical vacua with gs > 0 at the points DSW = 0
for the orbifold T 6/Z3.

Duality, fundamental domain and equivalent vacua. In this paragraph we comment on
the use of S-duality to relate seemingly different vacuum solutions. The S-duality enjoyed by
type IIB string theory [72] is implemented by the transformation acting on the axio-dilaton
and the fluxes as:

S → aS + b

cS + d
and

(
H3
F3

)
→

(
d −c

−b a

)(
H3
F3

)
, (3.6)
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with a, b, c and d integers satisfying ad − bc = 1. This transformation defines the SL(2,Z)
group, generated by S → −1/S and S → S + 1.

Through their action on the fluxes H3 and F3, these transformations also act on the
flux integers. They however leave Nflux invariant

Nflux = mHnF − mF nH → (ad − bc)(mHnF − mF nH) = Nflux. (3.7)

Such SL(2,Z) transformations can be used to bring the dilaton S in the fundamental domain:

F = {−1/2 < Re(S) ≤ 1/2 and |S| ≥ 1}. (3.8)

We can infer that a priori different vacuum solutions, obtained through eq. (3.3) from different
choices of integers aH , bH , aF , bF , can be mapped by means of S-duality transformations.
The easiest way to compare vacuum solutions is thus to bring S to its fundamental domain.

As an example, we take the γ parameter of the superpotential (3.2) with value γ = 1 + i.
It does not correspond to any orbifold of table 3 but serves as a simple illustration of the
duality. For Nflux = 1 and integers with |aH |, |bH |, . . . ≤ 1, we obtain 20 choices of fluxes
stabilising S with Im(S) ̸= 0. Not all of these 20 combinations have S in the fundamental
domain. For instance, the following vacuum solution:

(aH , bH , aF , bF ) = (1, 1, 0, 1), ⟨S⟩ = −3
5 + i

5 , (3.9)

can be mapped through S-duality to ⟨S⟩ → i, its representative in F . The parameters (3.6)
of this duality transformation are (a, b, c, d) = (2, 1, 1, 1). It brings the flux integers to
(aH , bH , aF , bF ) = (1, 0,−1, 1).

We find that all of the 20 combinations with Nflux = 1 and integers in the range
|aH |, |aF |, |bH |, |bF | ≤ 1 have the same representative S = i in the fundamental domain. Even
with integers above this range, we checked that all integer combinations with Nflux = 1
lead to S = i once brought in the fundamental domain. We conclude that the axio-dilaton
solution S = i can be obtained with different choices of flux parameters satisfying Nflux = 1.
Although all these choices of parameters give the same S, the specific values of parameters
may give different masses for the stabilised moduli.

For Nflux ≥ 1, we obtain other vacuum solutions for S. They always come in finite
numbers for each value of Nflux: when spanning for integers below a certain range k, we find a
certain range kNflux

max# above which no new vacua exist. In table 8 we give the number of different
values of S found for the first values of Nflux in the toy orbifold under consideration, with
γ = 1+ i in (3.2). In figure 1, we also plot the locations of the values of S for Nflux = 8, before
and after duality transformation. All of the eight inequivalent vacua are found within the
range |m|, |n| ≤ k8

max# = 4. Greater ranges k ≥ kNflux
max# lead to the same number of solutions.

The tadpole constraint. The previous relation between the minimal value of the string
coupling and the flux charge Nflux can be combined with the tadpole constraint (2.33). In
absence of negative D3 charge, the latter gives a bound Nflux given by the number of O3-planes.
For the involution xi → −xi this number was given in table 5 for each orbifold. For instance,
in T 6/Z6,Ia in absence of negative D3-charge, the tadpole bound reads:

NY
flux = 2|G|Nflux = 12Nflux ≤ NO3

4 = 7
2 , Nflux = kn = 3n, n ∈ N∗. (3.10)
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Nflux 1 2 3 4 5 6 7 8 9 10
# of values for S 1 2 2 4 3 6 4 8 7 8

Table 8. Numbers of different vacuum solutions for S, at fixed Nflux, obtained solving DSW = 0 for
the axio-dilaton dependent superpotential (3.2) with γ = 1 + i.

Figure 1. Values of S for vacuum solutions with Nflux = 8 in the complex plane. Each blue dot
corresponds to a different combination of integers. The corresponding values of S are all mapped to
one of the eight orange dots in the fundamental domain (shaded blue region) under S-duality.

We remind that according to the discussion around equation (2.35), NY
flux = 2|G|Nflux =

12Nflux, and that Nflux is multiple of k = 3 in this orbifold, see table 3. Hence, the tadpole
condition cannot be satisfied in absence of negative D3-charge. The same conclusion is
reached for all the orientifolds listed in table 3.

3.2 Orbifolds with one complex structure modulus

Vacuum solutions. In toroidal orbifolds with h2,1 = 1, i.e. with one untwisted complex
structure modulus, the relation (3.1) is analytically harder to derive. We recall that we search
for vacua satisfying DaW = 0 for the superpotential parameterised in (2.25) by:

W = UA + B, where A ≡ AF + SAH , B ≡ BF + SBH . (3.11)

The expressions of A, B in terms of the flux integers can be found in table 4 for each
orbifold. We also parameterise Nflux = k(Re(AHB̄F )− Re(AF B̄H)), see eq. (2.26). Solving
DUW = 0 gives:

Ū = −SBH + BF

SAH + AF
. (3.12)

Once plugged in the second equation DSW = 0, it yields a second order equation for S:

Im(AHB̄H)S2 +
(
Im(AF B̄H) + Im(AHB̄F )

)
S + Im(AF B̄F ) = 0. (3.13)
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The imaginary part of S thus reads:

1
gs

=

√
4Im(AHB̄H)Im(AF B̄F )− (Im(AHB̄F ) + Im(AF B̄H))2

2Im(AHB̄H)
, (3.14)

when the argument of the square root is positive. Otherwise, the imaginary part of S
vanishes. Eventual solutions with AH = BH = 0 do not satisfy this solution either, since
the superpotential does not depend on the axio-dilaton S. The latter is thus not stabilised
by such fluxes.

Contrary to the solutions of h2,1 = 0 orbifolds, with gs given in eq. (3.4), it seems difficult
to identify Nflux in the current solution (3.14). To extract our relation, we first investigate
inequivalent vacua, as in the previous subsection.

Dualities, fundamental domains and equivalent vacua. We verify again that some
different choices of flux integers, leading to vacua with different (S,U), can be related by
duality transformations. As before, we can bring S to its fundamental domain using S-duality
transformations (3.6). Under this transformation Nflux is unmodified, see (3.7), and so is
U , as can be checked from its vacuum solution (3.12).

In addition to S-duality, the theory is invariant under the following U -duality:

U → aU + b

cU + d
,

(
BH,F

AH,F

)
=
(

d −c

−b a

)(
BH,F

AH,F

)
. (3.15)

It can be understood from the invariance of the superpotential (3.11) under S ↔ U and
AF ↔ BH . In the exchange, S-duality is traded with the above U -duality. Just like Nflux
and U are invariant under S-duality, one can check using the previous expressions that Nflux
and S are invariant under this U -duality.

We can thus bring both S and U into their fundamental domains by using both duality
transformations. For a given value of Nflux, we find a finite number of inequivalent vacua.
We proceed by choosing a range for the flux integers, finding combinations of integers in
this range which give the correct Nflux and finally scanning over all these combinations to
find solutions satisfying eq. (3.14). We increase this range and observe that after some value
there are no new vacua. We show this procedure more explicitly for the case of T 6/Z2 × Z2
in section 4.3. The boundedness of gs, advertised in (3.1), appears thus as a byproduct of
this finiteness of the number of inequivalent vacua.

In table 9, we report the number of vacua for the first values of Nflux for the T 6/Z4,a

orbifold. We also give the obtained minimal vacuum values of 1/g2
s,min. The multiplicative

factor in Nflux is the parameter ℓ = 4 of table 4, coming from the geometry of the orbifold. It
does not come from the quantisation of the flux integers explained around equation (2.35).

In the T 6/Z4,a orbifold of table 9, we can guess the explicit relation between gs,min
and Nflux. It reads:

gs,min =
√

64
N2

flux − 16
, (3.16)
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Nflux/4 1 2 3 4 5 6 7 8 9 10
# of vacua 0 1 3 9 20 37 66 104 159 226
1/g2

s,min − 3/4 2 15/4 6 35/4 12 63/4 20 99/4

Table 9. Number of inequivalent vacua and values of 1/g2
s,min, at fixed Nflux/4, obtained solving

DU,SW = 0 for the T 6/Z4,a orbifold.

and realises the relation (3.1) for large Nflux. Similar results and relations can be obtained
for the other orbifolds. We can always parameterise gs,min as:

gs,min =
(

N2
flux
c2

− 1
c0

)−1/2
. (3.17)

The values of the parameters c2 and c0 for the orbifolds under consideration are given
in table 10. They all have c2 ̸= 0 and therefore satisfy the advertised relation (3.1), i.e.
gs,min ∼ 1/Nflux in the limit Nflux ≫ 1. For some orbifolds, the parameter c0 is a function of r,
defined through Nflux/ℓ = r mod p, where the integer p depends on the orbifold, see table 10.

Note the absence of the orbifolds T 6/Z6,IIb and T 6/Z8,IIa and T 6/Z2 × Z4 from this
table. Table 4 shows that they have k < 0, see eq. (2.26) for the definition of k. They thus
suffer from the same issue as the orbifold T 6/Z3 explained after equation (3.5): they do
not admit solutions of DU ,SW = 0 with gs > 0.

Tadpole constraint. As we did for the orientifolds with no complex structure modulus
around equation (3.10), we now discuss the tadpole condition (2.33). For the xi → −xi

involution, the number of O3-planes are given in table 5. In absence of negative D3-brane
charge, the tadpole condition puts a constraint on the flux charge. For instance, in the
orientifold of T 6/Z4,a, containing 22 O3-planes, the constraint reads:

NY
flux = 2|G|Nflux = 8Nflux ≤ NO3

4 = 11
2 , Nflux = ℓn = 4n, n ∈ N∗. (3.18)

We remind that NY
flux = 2|G|Nflux = 8Nflux, due to the quantisation of flux integers discussed

around equation (2.35). On top of this, we recalled the quantisation of Nflux by ℓ = 4
consequence of the orbifold projection. We deduce that the tadpole constraint cannot be
satisfied in absence of negative D3-charge.

The same goes for all the orientifolds of table 10.

4 The T 6/Z2 × Z2 orbifold: vacuum solutions and string coupling

The T 6/Z2 ×Z2 orbifold is unique on several respects. First, it is the only orbifold of our lists
with h2,1 = 3, hence three untwisted complex structure moduli Ui, i = 1, 2, 3. Second, adding
discrete torsion transform all the twisted sector from Kähler to complex structure moduli.
The latter can be stabilised with 3-form fluxes, leaving behind only three untwisted Kähler
class moduli. Third, its orientifold has the greatest number of O3-planes of the list, NO3 = 64.

We treat this example in great detail and show explicitly that we can stabilise all complex
structure moduli, untwisted and twisted, for certain choices of flux. We showcase the following
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orbifold ℓ c2 c0

Z4,a 4 64 4

Z4,b 2 16 1 for Nflux/ℓ ∼=
{ 0 mod 2

2 1 mod 2
Z4,c 2 16 4

Z6,IIa 6 48 4 for Nflux/ℓ ∼=
{ 0 mod 2

4/3 1 mod 2

Z6,IIc 2 48

4

for Nflux/ℓ ∼=


0 mod 6

12 1, 5 mod 6
3 2, 4 mod 6

4/3 3 mod 6

Z6,IId 1 12 1 for Nflux/ℓ ∼=
{ 0 mod 3

3 1, 2 mod 3

Z8,IIb 2 32
4

for Nflux/ℓ ∼=
{ 0 mod 4

8 1, 3 mod 4
2 2 mod 4

Z12,II 2 16 4

Z2 × Z6,I 1 12 1 for Nflux/ℓ ∼=
{ 0 mod 3

3 1, 2 mod 3

Table 10. Values of the parameters in the relation (3.17) between gs,min and Nflux for the toroidal
orbifolds with one complex structure modulus of table 4. See (2.27) for the definition of ℓ.

relation between the minimal value of the string coupling and Nflux:

gs,min ∼ 16
N2

flux
. (4.1)

We also show that for this orbifold, this relation agrees with the one derived from the seminal
works on flux vacua statistics [6, 7].

We proceed as follows. We start by presenting explicitly how to stabilise the twisted
moduli at the orbifold point, realising the method described in section 2.5. We then study
analytic solutions to the equations DSW = 0, DUiW = 0, ensuring scalar potential minimisa-
tion and stabilisation of the untwisted moduli. Next, we show evidence that the number of
inequivalent vacua is finite for given value of Nflux and that they realise the relation (4.1). We
then point that in absence of negative D3-charge the tadpole condition cannot be satisfied.
We eventually describe how to relax this constraint by introducing supersymmetry breaking
magnetised D7-branes.

4.1 Twisted moduli stabilisation

We study the T 6/Z2 × Z2 orbifold with discrete torsion. According to table 6, it has h2,1 = 3
untwisted complex structure moduli Ui, i = 1, 2, 3, and h̃2,1 = 48 twisted ones. The latter are
denoted Di

αβ with i = 1, 2, 3 and α, β = 1, . . . , 4 labelling the fixed points of the twist element
gi = θ, θ′, θθ′. They correspond to the elements of the cohomology basis shown in section 2.5.
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The complex structure moduli Kähler potential can be expanded around the orbifold
point as:

K =− log
(
−i(U1 − Ū1)(U2 − Ū2)(U3 − Ū3)− i

2(U
1 − Ū1)(D1

αβ − D̄1
αβ)2

− i

2(U
2 − Ū2)(D2

αβ − D̄2
αβ)2 − i

2(U
3 − Ū3)(D3

αβ − D̄3
αβ)2 +O(D4)

)
. (4.2)

The untwisted sector part, depending only on the U i, can be obtained from the last term of
eq. (2.29) once the Ω (3, 0)-form is expressed in terms of the complex structure of table 2,
following the method of section 2.1. In the expansion around the orbifold point, twisted
moduli should appear in pairs. Indeed, they are acted upon by a discrete Z2 symmetry of the
orbifold group [73], and they do not mix among themselves, which is reminiscent of the fact
that the exceptional divisors of a T 4/Z2 do not intersect one another [74]. Their coefficients
are related to those of the untwisted moduli [73], ensuring the form of the expansion (4.2).

From the above Kähler potential, we infer the corresponding prepotential through
eq. (2.30):

G = X1X2X3

X0 + 1
2

Xi(XI)2

X0 = U1U2U3 + 1
2U

i(Di
αβ)2 +O(D4). (4.3)

In the first equality we kept the projective coordinates, used to compute the derivatives
Ga, while in the second we replaced them as explained below eq. (2.13) by (X0, X i, XI) =
(1,U i,Di

αβ). This prepotential allows to compute the flux superpotential as expressed in
eq. (2.19):

W = n0 + n1U1 + n2U2 + n3U3 + m1U2U3 + m2U1U3 + m3U1U2 − m0U1U2U3

+ (ni,αβ + mi,αβU i)Di
αβ + (mi − m0U i)(Di

αβ)2. (4.4)

The ni,αβ , mi,αβ are the flux parameters on the twisted cycles parameterised by the twisted
complex structure moduli Di

αβ.
From this superpotential and the Kähler potential of eq. (4.2), we can derive the scalar

potential (2.32). If terms of the scalar potential linear in the twisted complex structure
moduli Di

αβ (and their conjugates D̄i
αβ) all vanish at the same time, the twisted moduli

are stabilised at the orbifold point, where they all vanish. This is achieved when taking
vanishing fluxes on twisted cycles, as we show now.

Take background fluxes such that mi,αβ = ni,αβ = 0, i.e. with no component along the
twisted 3-cycles. In that case, the superpotential (4.4) contains quadratic but no linear terms
in Di

αβ (and conjugates), and so does the Kähler potential (4.2). This implies that terms
in the scalar potential linear in Di

αβ can only come from terms containing exactly one of

the following terms: ∂Di
αβ

W , KDi
αβ

≡ ∂Di
αβ
K or KU i D̄j

αβ ≡ ∂U i D̄j
αβK. The first two appear

through the covariant derivatives DDi
αβ

while the last is just a component of the inverse
Kähler metric. Such terms are only included in the scalar potential (2.32) as:

V ⊃ KDi
αβD̄

j
γδ(DDi

αβ
W )(D̄D̄j

γδ
W̄ ) +KU i Dj

αβ (DU iW )(D̄D̄j
αβ

W̄ ), (4.5)
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so that they always come in pairs. Hence, in that case, the scalar potential does not contain
linear terms in the twisted moduli Di

αβ nor in their conjugate. It however contains positive
quadratic terms, which shows that all twisted moduli are stabilised at the orbifold point:

Di
αβ = 0, i = 1, 2, 3, α, β = 1, . . . , 4. (4.6)

To summarise, as advertised and previously used in the literature [39], taking vanishing
fluxes along the twisted cycles mi,αβ = ni,αβ = 0 allows to stabilise the twisted moduli at the
orbifold point. We have shown it explicitly. The remaining superpotential is just the one
for the untwisted complex structure moduli, the stabilisation of which we study below. We
conclude this section mentioning that twisted moduli can also be stabilised with non-vanishing
twisted fluxes, albeit away from the orbifold point. This was done for instance in the large
complex structures limit in [63, 75] to study new flux vacua.

4.2 Untwisted moduli stabilisation

Solving the vacuum equations DS,UiW = 0 analytically. Once the twisted moduli are
stabilised at the orbifold point (4.6), the flux-induced superpotential (4.4) reduces to:

W = n0 + n1U1 + n2U2 + n3U3 + m1U2U3 + m2U1U3 + m3U1U2 − m0U1U2U3. (4.7)

We recall that the dependence in the axio-dilaton is contained in the flux parameters ma, na

through ma = SmH
a + mF

a , . . . , see eq. (2.16). The equations DSW = 0, DU iW = 0 read:

n̄0 + n̄1U1 + n̄2Ū2 + n̄3Ū3 + m̄1Ū2Ū3 + m̄2U1Ū3 + m̄3U1Ū2 − m̄0U1Ū2Ū3 = 0,

n0 + n1U1 + n2Ū2 + n3U3 + m1Ū2U3 + m2U1U3 + m3U1Ū2 − m0U1Ū2U3 = 0,

n0 + n1U1 + n2U2 + n3Ū3 + m1U2Ū3 + m2U1Ū3 + m3U1U2 − m0U1U2Ū3 = 0,

n̄0 + n̄1U1 + n̄2U2 + n̄3U3 + m̄1U2U3 + m̄2U1U3 + m̄3U1U2 − m̄0U1U2U3 = 0. (4.8)

The symmetry of this system makes it solvable under certain conditions through the steps
described below. As will be clear from the procedure, the necessary condition is that the
solution has all imaginary parts of the complex structure moduli and axio-dilaton stabilised
and non-vanishing. This condition corresponds to non-vanishing tori angles and string
coupling constant and is thus a necessary assumption. It is also consistent with the definitions
of the axio-dilaton S and complex structure moduli Ui Kähler potentials shown in (2.29)
and (4.2). In our conventions we thus look for solutions satisfying:

Im(U i) < 0, Im(S) > 0. (4.9)

To solve the system (4.8), we first notice that all four equations are linear in each moduli,
e.g. in U1. They can thus be written as:

Lk ×
(

1
U1

)
= 0, (4.10)

where Lk is a 1 × 2 matrix that depends on (U2,U3). For instance,

L1 = (n̄0 + n̄2Ū2 + n̄3Ū3 + m̄1Ū2Ū3, n̄1 + m̄2Ū3 + m̄3Ū2 − m̄0Ū2Ū3). (4.11)
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With pairs of such Lk, we can form 2×2 matrices which, by virtue of (4.10), have a vanishing
eigenvalue with eigenvector (1,U1). Their determinants thus vanish and can be combined to
rewrite the system. One combination of such determinants turns out to be particularly useful:

det
(

L̄1
L̄4

)
− det

(
L2
L3

)
= 0. (4.12)

The U2 dependence of this combination completely factorises as (U2 − Ū2), which according
to contributions (4.9) is nonzero. We thus obtain a second order equation on U3 only

n1n2 − m3n0 + (m0n0 + m1n1 + m2n2 − m3n3)Re(U3) + (m0n3 + m1m2)|U3|2 = 0. (4.13)

Similar equations can be obtained for U1 and U2 by the same procedure. We parameterise
them as:

ai + biRe(U i) + ci|U i|2 = 0. (4.14)

From the explicit equation (4.13), we see that for U3 the a3, b3, c3 parameters read:

a3 = n1n2 − m3n0, b3 = m0n0 − m3n3 + m1n1 + m2n2, c3 = m0n3 + m1m2. (4.15)

Similar expressions hold for a1, b1, c1 and a2, b2, c2. Equation (4.14) is solved by:

xi ≡ Re(U i) = ρi cos θi = − Im(āici)
Im(b̄ici)

, ρ2
i = |U i|2 = Im(āibi)

Im(b̄ici)
, U i ≡ ρie

iθi . (4.16)

These solutions hold as long as the denominator Im(b̄ici) does not vanish. We come back to
this point in the next paragraph. Note that U i is uniquely determined, because we look for
solutions with Im(U i) < 0, see eq. (4.9), which uniquely determines θi. Moreover, for this
solution to make sense, we must ensure that ρi > 0 and ρ2

i ≥ x2
i .

So far, we have obtained the complex structure moduli U i as functions of the axio-dilaton
S, through the expressions of ma, na. We can thus obtain an equation on S by inserting the
expressions of U i in any of the initial equations (4.8). There is however a more convenient
way to proceed, making use of the symmetry of the system. We rewrite the system (4.8)
by making explicit the dependence in S and hiding the dependence in e.g. U1. Indeed, the
superpotential (4.7) can be rewritten as

W = q0 + q1S + q2U2 + q3U3 + p1U2U3 + p2SU3 + p3SU2 − p0SU2U3, (4.17)

with

p0 = −mH
1 + mH

0 U1, p1 = mF
1 − mF

0 U1, p2 = nH
3 + mH

2 U1, p3 = nH
2 + mH

3 U1

q0 = nF
0 + nF

1 U1, q1 = nH
0 + nH

1 U1, q2 = nF
2 + mF

3 U1, q3 = nF
3 + mF

2 U1. (4.18)

We obtain a system of the same form as the previous one, with U1 ↔ S and (ma, na) ↔ (pa, qa).
Note that in our conventions, the Kähler potential is not invariant under the exchange U1 ↔ S.
We can solve this system as before and obtain an expression for S as a function of U1. Indeed,
by defining:

as = q2q3 − p1q0, bs = p0q0 − p1q1 + p2q2 + p3q3, cs = p0q1 + p2p3, (4.19)
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we get the solution:

xs ≡ Re(S) = ρs cos θs = − Im(āscs)
Im(b̄scs)

, ρ2
s = |S|2 = Im(āsbs)

Im(b̄scs)
, where S ≡ ρseiθs .

(4.20)
Here again, this holds for non-vanishing Im(b̄scs), see next paragraph.

At this point, eqs. (4.15) and (4.16) provide U1 as a function of S while eqs. (4.18)
and (4.20) provide S as a function of U1. Combining the two thus gives an equation for
S. But for that, we should make explicit the S-dependence of U1 and vice versa. Upon
inspection, we obtain that the imaginary parts appearing in eqs. (4.16) and (4.20) all take
the following form:

Im(ā1b1) = ys(N0
ab + N1

abxs + N2
abρ

2
s), Im(āsbs) = y1(N0

ab + 2N0
acx1 + N0

bcρ
2
1),

Im(ā1c1) = ys(N0
ac + N1

acxs + N2
acρ

2
s), Im(āscs) =

1
2y1(N1

ab + 2N1
acx1 + N1

bcρ
2
1),

Im(b̄1c1) = ys(N0
bc + N1

bcxs + N2
bcρ

2
s), Im(b̄scs) = y1(N2

ab + 2N2
acx1 + N2

bcρ
2
1). (4.21)

Similarly to the real parts xs, xi introduced before, ys, yi are the imaginary parts of S,U i.
The N ’s are combinations of the integers mH

a , nH
a , mF

a , nF
a defined as:

N0
ab ≡ aF F

1 bHF
1 − aHF

1 bF F
1 , N1

ab ≡ 2(aF F
1 bHH

1 − aHH
1 bF F

1 ),
N2

ab ≡ aHF
1 bHH

1 − aHH
1 bHF

1 , (4.22)

and similarly for the Nac and Nbc. We used the following notation, derived naturally from
the definition (4.15) of the parameters ai:

aF F
1 = nF

2 nF
3 − mF

1 nF
0 , aHH

1 = nH
2 nH

3 − mH
1 nH

0 ,

aHF
1 = nH

2 nF
3 + nF

2 nH
3 − mH

1 nF
0 − mF

1 nH
0 , (4.23)

and similarly for the bi and ci. Combining (4.16), (4.20) and (4.21), we then obtain:

xs = −A0 + A1xs + A2ρ2
s

B0 + B1xs + B2ρ2
s

, ρ2
s = C0 + C1xs + C2ρ2

s

B0 + B1xs + B2ρ2
s

, (4.24)

with

A0 = A⃗ · N⃗0 A1 = A⃗ · N⃗1, A2 = A⃗ · N⃗2, B0 = B⃗ · N⃗0, B1 = B⃗ · N⃗1, B2 = B⃗ · N⃗2,

C0 = C⃗ · N⃗0, C1 = C⃗ · N⃗1, C2 = C⃗ · N⃗2, (4.25)

computed from the vectors

A⃗ ≡ 1
2(N

1
ab,−2N1

ac, N1
bc), B⃗ ≡ (N2

ab,−2N2
ac, N2

bc), C⃗ ≡ (N0
ab,−2N0

ac, N0
bc), (4.26)

N⃗0 ≡ (N0
bc, N0

ac, N0
ab), N⃗1 ≡ (N1

bc, N1
ac, N1

ab), N⃗2 ≡ (N2
bc, N2

ac, N2
ab). (4.27)

The Ai, Bi and Ci are, again, integers expressed as combinations of the mH
a , nH

a , mF
a , nF

a ,
obtained combining the previous formulae. Their complete expressions are horrendous.
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Solving for S. To have a well-defined solution for S, the denominator appearing in both
equations of the system (4.24) shall not be vanishing. The system is then equivalent to:

B1x2
s + B2xsρ2

s + (A1 + B0)xs + A2ρ2
s + A0 = 0, (4.28)

B1xsρ2
s + B2ρ4

s − C1xs + (B0 − C2)ρ2
s − C0 = 0. (4.29)

This is a polynomial system of degree two in the two variables X = xs and Y = ρ2
s. Each of

them can be seen as the parameterisation in Cartesian coordinates of a conic section: ellipse,
hyperbola or parabola. Solving the system (4.29) thus amounts to find the real intersections
of two conic sections. This is a classical algebraic geometry problem [76]. There can be
at most four such intersections, except in the case where the two conics are degenerate
and share a common line.

Conics are degenerate when their defining second degree polynomial factorises in two
first degree ones. Such conics are then unions of two lines. These lines can be coincident or
distinct, parallel or intersecting. In the most degenerate case, the conic is just a point, the
centre of a degenerate ellipse. Two degenerate conics, hence two pairs of lines, can have an
infinite number of intersection points if they share a line. These cases correspond physically
to vacua with a flat direction, hence an axio-dilaton not fully stabilised. In such cases the flat
direction is parameterised by a line equation, which factorises both equations of eq. (4.29).

We wrote an algorithm to solve (4.29) in the general case, thus computing the intersection
points of the two arbitrary conic sections. For any conic coefficients, thus flux quanta, our
algorithm finds the intersection points, and rules out cases with physical flat directions. Our
algorithm follows the general procedure detailed in [76].

In the majority of cases, solutions of the system (4.29) can also be derived more directly.
Indeed, one can use the first equation to express ρ2

s as a function of xs. Inserting this
expression in the second equation of (4.24) yields a polynomial in xs of degree (at most)
three. When the polynomial admits real roots, they can be used back in the first equation
of eq. (4.24) to find ρ2

s. However, such method does not consider degenerate cases, and one
should stick to the general procedure to avoid missing solutions.

Solutions (xs, ρ2
s) of the system (4.29), found through our algorithm, constitute vacuum

solutions only if they satisfy additional constraints: ρ2
s should be positive and greater than

x2
s. In this case, Im(S) is obtained directly from ρs and xs, together with the condition

Im(S) > 0 of eq. (4.9). This solution for S can then be injected in the solution (4.16) to
obtain ρi and xi, and then U i. Here again they should satisfy consistency conditions similar
to those of S, explained below eq. (4.16). When all these conditions are fulfilled, we end
up with a complete solution of the system (4.8).

Some comments. Let us make two important comments on the solution we obtained. First,
as already mentioned, the denominators in eqs. (4.16) and (4.20) must be non-vanishing for
the solutions to be well defined. In cases where a denominator vanishes, the solution breaks
down, and a special treatment is needed. Actually, this only happens when a modulus is
unstabilised. Indeed, the vanishing of the denominator is a condition on the flux integers,
which removes the dependence of the superpotential in the real or imaginary part of one of
the moduli. For instance, if b1 = 0, the denominator of (4.16) vanishes. However as Re(U1)
drops out of the equation (4.14), Re(U1) ends up unstabilised.
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Having unstabilised real parts of complex structure moduli is not necessarily problematic.
For instance, the unstabilised real part of the modulus associated to a D-brane anomalous U(1)
can be eaten by the gauge boson. This scenario implies Kähler moduli or the axio-dilaton. If
such mechanism occurs for the latter, we should also consider cases where xs is not stabilised
by the fluxes. In the unitary gauge, we could then impose xs = 0 to remove the dependence of
the superpotential in this variable, as discussed above. In the results presented in the following
sections, this possibility was not considered. As far as we checked it does not significantly
affects our result. It introduced a few additional vacua and hence changed slightly some of
the values reported in the following tables. However, all the conclusions remained the same.

Second, the solution involves solving a third order polynomial equation on either xs or ρ2
s.

Such equations can have up to three real solutions, so it seems that some choices of fluxes can
lead to multiple vacua. However, the system (4.24) has to be supplemented by constraints
ensuring that xs and ρ2

s are the real part and the square modulus of S. In particular, we must
impose ρ2

s ≥ x2
s on the solution. The same goes with xi and ρ2

i in (4.16). After imposing
these constraints, we did not find any choice of fluxes leading to multiple solutions.

Dualities. As for the orbifolds with h2,1 = 0, 1, we now study the possibility to go from one
solution to another using duality transformations. We reintroduce S-duality transformations
shown in eq. (3.6):

S → aS + b

cS + d
and

(
H3
F3

)
→

(
d −c

−b a

)(
H3
F3

)
, (4.30)

and recall that they leave Nflux unchanged. We can also explicitly check on the solutions for
U i given by (4.16) that the complex structure moduli are left invariant. This is expected since
the theory, and thus equations (4.8) are themselves invariant. It is a however a non-trivial
consistency check.

Let us recall that in orbifolds with one complex structure modulus described in section 3.2,
the S ↔ U symmetry of the superpotential (3.11) trades S-duality with a U -duality (3.15)
acting on U . For our current orbifold T 6/Z2 × Z2, we encountered a similar symmetry when
deriving the analytic solution above. The superpotential is indeed symmetric under U1 ↔ S
and (ma, na) ↔ (pa, qa), see (4.17). This later exchange trades S-duality with a U1-duality
acting on U1 just like (3.15) and leaving (S,U2,U3) invariant. Similarly, there exist U2
and U3-dualities acting only on U2 and U3 respectively. Using all these dualities, we can
bring the axio-dilaton S and all of the complex structure moduli U i to their fundamental
domain independently:

F = {−1/2 < Re(A) ≤ 1/2 and |A| ≥ 1} with A = S or U i. (4.31)

4.3 Exhausting the finite number of vacua

Counting vacua algorithmically. Once the background fluxes are set to zero on the
deformations cycles, thus setting the twisted moduli VEVs to zero, see eq. (4.6), we are
left with the choice of 16 free flux integers mF

i , mH
i , nF

i , nH
i , i = 0, . . . , 3. Indeed, contrary

to the cases with h2,1 = 0, 1 studied in sections 2 and 3, the presence of three untwisted
complex structure moduli does not introduce any relation between these integers. We recall
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# of flux integer combinations, with:
k three eq. tori two eq. tori no symmetry
1 416 21492 975968
2 18276 14325076 8726828016
3 99428 386921556 1099101964400
4 622732 5566156388 · · ·
5 1999388 37625301028
6 4905948 213491079460
7 11893404 · · ·

Table 11. Number of combinations giving Nflux = 4 for flux integers in the range k, see (4.32),
depending on the symmetry between the three tori.

that Nflux is computed from unquantised, thus arbitrary, flux integers. The orientifold NY
flux

appearing in the tadpole condition is however multiple of Nflux, thus taking the quantisation
of integers into account, see eq. (2.37).

We searched for solutions proceeding as follows. For a given Nflux, we chose flux integers
in a certain range k:

|mF
i |, |mH

i |, |nF
i |, |nH

i | ≤ k, for a certain fixed range k ∈ N. (4.32)

We constructed algorithmically all combinations of integers in the range k giving flux num-
ber Nflux. For each such flux quanta combination, we computed the coefficients of the
systems (4.24) and (4.16) determining the vacuum solutions, as explained in the previous
section. We solved the system eq. (4.24) following the procedure described around eq. (4.29).
When such solution gave a physical vacuum, we brought the moduli and axio-dilaton in
their fundamental domains using dualities.

Note that the combinations of flux integers in a range k giving Nflux are just a fraction of
all combinations of integers in the range k. This helps decreasing the number of combinations
to be plugged in the analytic solutions. Nevertheless, when increasing the allowed range k for
a given Nflux, there is still a large and rapidly growing number of combinations. Even for
solutions preserving some symmetry between the different tori of T 6 = T 2

1 × T 2
2 × T 2

3 , this
number stays large. We illustrate these facts in table 11, showing the number of combinations
of integers giving Nflux = 4 for ranges k ≤ 7.

The actual number of choices can be reduced by taking into account symmetries of
the system. For instance, solutions can be related by reversing the sign of all the flux
integers at once. The numbers of table 11 are thus upper bounds, which however make
clear that algorithmic explorations are challenging. We will show evidence that the number
of inequivalent vacua for fixed Nflux is nevertheless finite, and that these vacua realise the
relation (4.1).

Three equivalent tori. Let us start with the symmetric case where the three tori are
equivalent. In this case, it is still manageable to compute the analytic solutions for every
combination of integers, with given Nflux and flux integers in the range k defined in eq. (4.32).
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# solutions imposing three equivalent tori

k
Nflux 1 2 3 4 5 6 7 8 9 10

1 0 0 0 5 7 1 5 1 0 0
2 0 0 1 6 13 28 56 82 101 114
3 0 0 1 6 13 30 65 102 168 234
4 0 0 1 6 13 30 65 102 171 252
5 0 0 1 6 13 30 65 102 171 252
6 0 0 1 6 13 30 65 102 171 252

Table 12. Number of inequivalent flux vacua for T 6/Z2 × Z2, as a function of Nflux and the flux
integers range k, see (4.32), for solutions found by imposing three equivalent tori. For each Nflux we
underlined the maximal number of vacua obtained with the smallest range kNflux

max# (e.g. k8
max# = 4).

Greater ranges k ≥ kNflux
max# lead to the same number of solutions.

For each solution, we bring both S and U i in the fundamental domain (4.31). We then
simply count the number of distinct (S,U i) obtained in this way. In table 12, we report
the number of inequivalent symmetric vacua found in T 6/Z2 × Z2. Note that our results
approximatively match the formula (3.28) of [7] for the number of supersymmetric vacua
of T 6/Z2 with equivalent tori. According to [7], for T 6 with factorised identical tori the
number of SUSY flux vacua follows the relation:

NSUSY ≈ α NK
flux ≈ α N4

flux, α = π4

5184 . (4.33)

The exponent K = 2m = 4 in the above formula is given by 1+ the number of moduli,
which in the case of equivalent tori gives indeed m = 1 + 1 = 2. The coefficient α is
found in terms of the intersection form on a cohomology basis and of derivatives of the
holomorphic form of the compact space, see [7]. The value of α given above corresponds
to the particular T 6/Z2 example.

In table 12 we also observe the behaviour mentioned in the previous sections: for given
Nflux, when increasing the allowed range k for the integers, we reach a value kNflux

max# above
which we find no new vacua. Even if the table stops at k = 6, we checked beyond this value,
e.g. up to k = 30 for Nflux = 4. This allows us to claim that we have found all the vacua
for this value of Nflux, unless a great hierarchy is present between the flux parameters, see
section 4.4 for discussion on this point. Note that all the vacua are often found for small
kNflux

max#. We comment on a subtlety here: as explained above, we found vacua by looking at
integer combinations in a range k with given Nflux, and then bringing the moduli in their
fundamental domains by dualities. The integers transform under these dualities as shown in
eq. (4.30), such that they might exit the range k. The ranges k in the tables of this section
are thus to be understood as the minimal ranges along the duality orbits.

The fact that gs is bounded, as advertised in (4.1), is thus a byproduct of the finiteness
of the number of vacua. In table 13, we give the values of 1/gs,min as a function of Nflux and
the range k for the integers. Here again, for a given Nflux the minimal value is reached at
certain range kNflux

min , and above this range no new minimal value is found. When Nflux = 4p
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1/gs,min for solutions imposing three equivalent tori

k
Nflux 3 4 5 6 7 8 9 10

1 none 1.148 1.263 1.520 1.990 1.000 none none
2 0.8660 1.495 2.076 2.632 3.056 4.000 2.760 3.331
3 0.8660 1.495 2.076 2.632 3.175 4.000 5.061 6.249
4 0.8660 1.495 2.076 2.632 3.175 4.000 5.061 6.249
5 0.8660 1.495 2.076 2.632 3.175 4.000 5.061 6.249

Table 13. Values of 1/gs,min for T 6/Z2 × Z2, as a function of Nflux and the flux integers range
k, see (4.32), for solutions found by imposing three equivalent tori. For each Nflux, we underlined
the maximal inverse string coupling constant 1/gs,min obtained with the smallest range kNflux

min (e.g.
k7

min = 3). Greater ranges k ≥ kNflux
min lead to the same value.

for integer p ≥ 2, we find the exact formula:

gs,min = 16
N2

flux
for Nflux = 4p, p ∈ N \ {0, 1}. (4.34)

It obviously realises the relation (4.1). For other values of Nflux, this formula does not hold
exactly, but still gives a very good fit, exception made of the very first values of Nflux. This is
shown in figure 2. Such conclusions could be infer from past work on flux vacua statistics [6].
Imposing bounds on the coupling constant amounts to reduce the integration domain of the
axio-dilaton integral appearing in their computation of the number of vacua. They thus obtain:

NSUSY g2
s<ϵ ∼ 3ϵNSUSY. (4.35)

Using this formula, the minimum value of gs can be estimated by finding ϵmin = g2
s, min AD

such that NSUSY g2
s<ϵmin = 1, giving:

g2
s, min AD = ϵmin = 1

3NSUSY
∼ 1

3αN4
flux

, (4.36)

where in the last line we used the estimate (4.33) of the number of vacua. We see that this
estimate, derived from the flux vacua statistics of [6, 7], is consistent with our result (4.34).

Only two equivalent tori. So far, we discussed solutions preserving three equivalent tori.
Relaxing this condition, we still expect to find a finite number of inequivalent vacua at given
Nflux. This number is higher, since relaxing the symmetry between the three tori allows for
more freedom. In table 14, we show the number of vacuum solutions preserving only two
equivalent tori. In principle, the values of gs,min could differ from the case imposing three
equivalent tori. As we can see in table 15, this is the case for some values of k, but as far as
we explored, the absolute gs,min for given Nflux remains the same as in the symmetric case
in table 13. This suggests that gs,min is obtained from solutions with three equivalent tori,
even looking for solutions imposing only two equivalent ones. We checked that explicitly
in the cases with Nflux ≤ 10. This would mean that the relation between gs,min and Nflux
remains unchanged even when not imposing symmetry in the solution among the three
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Figure 2. Minimal string coupling gs,min as a function of Nflux, for our vacuum solutions. The blue
points are the exact values found as explained in the text. The orange curve is the fit gs,min = 16/N2

flux.
The green shaded points are the values gs,min found with lower ranges of integers. Increasing this
range, the points converge towards the orange curve.

# solutions imposing only two equivalent tori

k
Nflux 1 2 3 4 5 6 7 8 9 10

1 0 0 1 9 66 16 17 1 0 0
2 0 0 1 11 94 408 1182 2730 4891 6899
3 0 0 1 11 94 412 1249 3051 6881 13388

Table 14. Number of inequivalent flux vacua for T 6/Z2 × Z2, as a function of Nflux and the allowed
flux integers range k, see (4.32), for solutions found by imposing two equivalent tori. For each Nflux
we underlined the maximal number of vacua obtained with the smallest range kNflux

max# (e.g. k5
max# = 2).

Greater ranges k ≥ kNflux
max# lead to the same number of solutions.

1/gs,min for solutions imposing only two equivalent tori

k
Nflux 3 4 5 6 7 8 9 10

1 0.8660 1.148 1.654 1.925 1.990 1.000 none none
2 0.8660 1.495 2.076 2.632 3.056 4.000 5.032 5.396
3 0.8660 1.495 2.076 2.632 3.175 4.000 5.061 6.249

Table 15. Values of 1/gs,min for T 6/Z2 × Z2 as a function of Nflux and the range k of the integers,
for solutions found imposing two equivalent tori. For each Nflux, we underlined the maximal inverse
string coupling constant 1/gs,min obtained with the smallest range kNflux

min (e.g. k8
min = 2). Greater

ranges k ≥ kNflux
min lead to the same value.
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tori. The number of choices of integers is however too large to check this explicitly for
larger values of Nflux.

Let us eventually comment that, in the present case with only two equivalent tori, some
“equivalent” vacua give different values of the invariant |W̃0| defined in eq. (4.38). In other
words, different flux quanta gives the same VEVs for the axio-dilaton and the two independent
complex structure moduli, with however different |W̃0|. With our way of counting vacua,
introduced at the beginning of the section, such vacua are called “equivalent”, whereas they
can have different physical properties. This point does not affect our conclusions on the
minimal string coupling nor the exhaustion of vacua for given flux charge Nflux and range
k, as it only concerns the way of counting them.

Tadpole constraint and minimal gs in absence of negative D3-charge. We continue
this discussion by studying the tadpole condition (2.33). For the xi → −xi involution, we
read the number of O3-planes from table 5, NO3 = 64. In absence of negative D3-brane
charge, the tadpole condition thus puts the following constraint on the flux charge:

NY
flux = 2|G|Nflux = 8Nflux ≤ NO3

4 = 16, Nflux = n, n ∈ N∗. (4.37)

We recall that NY
flux = 2|G|Nflux = 8Nflux due to the integer quantisation discussed around

equation (2.35). In absence of negative D3 charge, the tadpole condition eq. (4.37) constrains
the flux charge Nflux ≤ 2. As can be seen from tables 12 and 14, there are no solutions below
this bound. We insist on the fact that this conclusion is reached in constructions without
negative D3-charges. In section 4.5 we show how it can be lifted in presence of negative
D3-charges induced by magnetised D7-branes.

Residual constant superpotential. We eventually introduce the following Kähler invariant
quantity, related to the residual constant superpotential W0 after complex structure moduli
stabilisation:

W̃0 ≡ VeK/2W0 = Vm3/2, (4.38)

where the volume factor V compensate the Kähler moduli part of the Kähler potential (2.29).
It is related to the complex gravitino mass parameter m3/2 of the supergravity effective
Lagrangian [77]. It is also invariant under the S- and U -dualities described above. In figure 3,
we show the distributions of W̃0 for our vacuum solutions with three equivalent tori and
Nflux ≤ 9. In this plot we did not bring the moduli to their fundamental domains through
the S- and U -dualities: the different values of W̃0 organise in the complex plane in circles
of fixed |W̃0|, corresponding to different orbits of these dualities. The fact that we obtain
distinct circles shows that |W̃0| is discrete, which is again a consequence of the finiteness of
flux vacua. The number of circles approximatively matches the number of vacua found in
table 12. There is however a small discrepancy because few distinct vacua give the same value
of |W̃0|. In other words, different solutions with S and Ui in their fundamental domains give
the same value of |W̃0|, so that some of the circles correspond to superposed duality orbits.

Eventually, note that for three equivalent tori, we obtain solutions with a vanishing
superpotential only for Nflux multiple of 3. These are the solutions studied in detail in [16].
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Figure 3. Distributions of W̃0 in the orientifold T 6/Z2 × Z2 with three equivalent tori, for values
Nflux = 4, . . . , 9.

4.4 Eventual solutions with flux integers hierarchy and parametric control on gs

We recall that we found our vacua from the analytic solutions to the DSW = 0, DU iW = 0
supersymmetric equations by scanning over a range of flux integers |mH,F |, |nH,F | ≤ k and
increasing the range k. As explained in the previous section, the maximal number of vacua
for a given Nflux was obtained at a certain range kNflux

max #. Increasing the range further we
found no new vacua and stopped the search after a while. For instance, for Nflux = 4 we
obtain k4

max# = 2 and we searched until k = 30. One drawback of this procedure is that we
might be missing solutions with a huge hierarchy between some integers. Indeed, a solution
with nH

0 = 1 and mF
2 = 2048, which can in principle have small Nflux if some flux quanta

cancel between each others, could only be reached for the range k = 2048. Reaching this
range by scanning over all combinations is way too time consuming. If such solution exists,
we expect that it comes together with an entire family of solutions, parameterised by the
ratio of some integers or, equivalently, parameterised by one or several of the integers. These
families could allow for parametric control on gs.

We thus searched for infinite families of solutions of the system DSW = 0, DU iW = 0,
parameterised by the choice of one flux integer. We would say that we have parametric
control on gs if the family is such that we can vary the integers while keeping Nflux constant,
keeping the complex structure moduli in a physical region, and sending ys = 1/gs to infinity.
If such a family exists, we should be able to solve the system order by order in the quantities
(integers and moduli) that become large. We recall that in the T 6/Z2 × Z2 orbifold, the
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flux charge defined in eq. (2.15) reads:

Nflux = mHnF − mF nH . (4.39)

The summation over the indices labelling the cohomology basis is implicit, see below eq. (2.15).
We show in few examples different obstructions to the existence of such family of solutions,

and hence of parametric control. Expanding the system DSW = 0, DU iW = 0 in real and
imaginary parts leads to:

nF
1 x1 + nF

2 x2 + nF
3 x3 + mF

1 x2x3 + mF
2 x1x3 + mF

3 x1x2

+xs(nH
1 x1 + nH

2 x2 + nH
3 x3 + mH

1 x2x3 + mH
2 x1x3 + mH

3 x1x2)
+nF

0 + nH
0 xs − mF

0 x1x2x3 − mH
0 x1x2x3xs + mH

0 y1y2y3ys = 0, (4.40)
nH

1 x1ys + nH
2 x2ys + nH

3 x3ys + mH
1 x2x3ys + mH

2 x1x3ys

+mH
3 x1x2ys + nH

0 ys − mF
0 y1y2y3 − mH

0 xsy1y2y3 − mH
0 x1x2x3ys = 0, (4.41)

mF
1 y2y3 + mH

1 xsy2y3 − mH
2 x3y1ys − mH

3 x2y1ys − nH
1 y1ys

−mF
0 x1y2y3 − mH

0 x1xsy2y3 + mH
0 x2x3y1ys = 0, (4.42)

nF
1 y1 + mF

2 x3y1 + mF
3 x2y1 + nH

1 xsy1 + mH
1 y2y3ys + mH

2 x3xsy1

+mH
3 x2xsy1 − mF

0 x2x3y1 − mH
0 x2x3xsy1 − mH

0 x1y2y3ys = 0, (4.43)

and cyclic permutations of these two last equations. We again used the notation S = xs + iys

and U i = xi + iyi.

Case 1: ys → +∞ with one integer going to infinity. We first try simple limits where
only one integer goes to infinity, while the imaginary part ys blows together with this integer,
ys → +∞, and other quantities stay of order xs, xi, yi ∼ O(1).

Take for instance nF
0 → +∞. In this case, (4.40) becomes, at leading order, nF

0 +
mH

0 y1y2y3ys = 0. We must impose mH
0 = 0 for Nflux to remain finite, so we end up with

nF
0 = 0, which is in contradiction with nF

0 → ∞.
One can also choose mF

0 → +∞, with nH
0 = 0. In this case, the system eqs. (4.40)–(4.43)

at leading order gives ys = (mF
0 x1x2x3)/(mH

0 y1y2y3) and x2
i + y2

i = (mH
i /mH

0 )xi, along with
the constraints mH

0 nH
1 + mH

2 mH
3 = 0, with cyclic permutations, and mH

1 mH
2 mH

3 = 0. Hence,
one of the mH

i needs to be zero. However, for the corresponding i we then have x2
i + y2

i = 0.
This leads to a vanishing untwisted complex structure modulus. This is not a valid solution,
as can be seen from the T -dual theory where it corresponds to the decompactification limit.

Case 2: ys → +∞ with two integers going to infinity. A more elaborate example
would be with two integers going to infinity, for instance nF

0 , mF
0 → +∞, with mH

0 , nH
0 = 0.

We can further simplify by assuming that the three tori are equivalent (1 = 2 = 3 = i). In
this case, the system of eq. (4.40) to eq. (4.43) becomes, at leading order:

nF
0 − mF

0 x3
i = 0, −mF

0 y3
i + 3mH

i x2
i ys + 3nH

i xiys = 0,

mF
0 xiy

2
i + 2mH

i xiyiys + nH
i yiys = 0, mF

0 x2
i yi − mH

i y2
i ys = 0. (4.44)
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The first, third and last equations give directly:

x3
i = nF

0
mF

0
, y3

s = mF
0 (nF

0 )2

(mH
i )3y3

i

and y2
i = − (nF

0 )1/3nH
i

(mF
0 )1/3mH

i

− 2(nF
0 )2/3

(mF
0 )2/3 , (4.45)

while the second equation becomes a constraint on the integers that can be written as:(
(mF

0 )1/3nH
i + (nF

0 )1/3mH
i

)2
− (mF

0 )1/3(nF
0 )1/3mH

i nH
i = 0. (4.46)

This equation is of the form (x + y)2 = xy, and it has no solutions with both x and y real.

Case 3: ys, xs → +∞ with two integers going to infinity. Finally, we can imagine
limits where both xs and ys go to infinity with the integers that go to infinity, while
xi, yi ∼ O(1). Let us still take again nF

0 , mF
0 → +∞ and mH

0 , nH
0 = 0, still with equivalent

tori. In this rather specific case, the system eq. (4.40) to eq. (4.43) reads at leading order:

3nH
i xixs + 3mH

i x2
i xs + nF

0 − mF
0 x3

i = 0, (4.47)
3nH

i xiys + 3mH
i x3

i ys − mF
0 y3

i = 0, (4.48)
mH

i xsy2
i − 2mH

i xiyiys − nH
i yiys − mF

0 xiy
2
i = 0, (4.49)

nH
i xsyi + mH

i y2
i ys + 2mH

i xixsyi − mF
0 x2

i yi = 0. (4.50)

The first two equations are solved by:

xs = mF
0 x3

i − nF
0

3xi(mH
i xi + nH

i )
and ys = mF

0 y3
i

3xi(mH
i xi + nH

i )
, (4.51)

and the third one by:

y2
i = −2mF

0 mH
i x3

i + 3mF
0 nH

i x2
i + nF

0 mH
i

2mF
0 mH

i xi + mF
0 nH

i

. (4.52)

Once plugged in eq. (4.50) these solutions give a cubic equation in xi, with coefficients
depending on the flux quanta only:(

4mF
0 nF

0 (mH
i )3 + 2(mF

0 )2(nH
i )3

)
x3

i + 6mF
0 nF

0 (mH
i )2nH

i x2
i

+ 6mF
0 nF

0 mH
i (nH

i )2xi − (nF
0 )2(mH

i )3 + mF
0 nF

0 (nH
i )3 = 0. (4.53)

It can be used to eliminate the x3
i term in the solution for y2

i of (4.52), yielding the new
equation:

y2
i = − 3(nF

0 (mH
i )2 − mF

0 (nH
i )2xi)2

mF
0 (mF

0 (nH
i )3 + 2nF

0 (mH
i )3)(2mH

i xi + nH
i )

. (4.54)

The numerator being positive, we need a negative denominator to ensure that y2
i is positive.

It is rather difficult to evaluate its sign using our system of equations. The value of y2
i

obtained from eq. (4.54) can however be evaluated by plugging the solutions of the third order
equation in xi. We show in figure 4 the numerical values obtained for all combinations of
integers satisfying |mH,F

i |, |nH,F
i | ≤ 10. We see that the result is always negative, suggesting

that the system does not have consistent solution in the limit chosen in the present case.
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Figure 4. Values of y2
i obtained from eq. (4.54) with xi numerically evaluated as the a solution of its

third order equation (4.53), for all flux quanta satisfying |mH,F
i |, |nH,F

i | ≤ 10.

We considered other limits in addition to the ones displayed here. They all fail to be
consistent for similar reasons: they lead to the vanishing of the imaginary part of a complex
structure modulus, the impossibility of satisfying certain constraint on the integers, or present
other inconsistency as the one just described. There are of course too many possible limits
to be exhaustive, and some of them are hard to analyse, but all hints towards the absence
of family of solutions and hence parametric control over the string coupling.

These results thus go in the direction of the finiteness of flux vacua. A family of solutions
with parametric control over the string coupling and constant Nflux would lead to infinite
number of solutions with the dilaton in its fundamental domain and taking different values.
The fact that we did not find such families agrees with the fact that we found finite numbers
of solutions for each Nflux through the analysis of previous sections.

4.5 Magnetised D7-branes

We come back to the possibility of evading the tadpole constraint in the T 6/Z2 × Z2 orbifold.
As already explained, it requires the presence of negative D3-brane charge, namely D3-brane
charges. Such charges are directly related to supersymmetry breaking objects. They could be
either genuine D3-branes or magnetised D7-branes [39, 78]. As we discuss below, D7-branes
being naturally present in most of the toroidal orientifolds, we focus on this latter option.
Magnetised D7-branes also play a key role in the fully perturbative Kähler moduli stabilisation
mechanism using logarithmic loop corrections [36, 79].

We stress that including magnetised D7-branes does not change the relation (4.1) between
the minimal string coupling gs,min and the flux number Nflux. This relation comes directly
from complex structure moduli and axio-dilaton stabilisation by quantised background 3-form
fluxes and is thus insensitive to the presence of the D7-branes. Yet, the value of Nflux in
the construction is directly related to the brane configuration.

Worldvolume fluxes and RR charges. In the T 6/Z2×Z2 orbifold, a stack a of magnetised
D7-branes, with worldvolumes along two tori and localised in the third torus, carry magnetic
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fields Fa associated to their U(1) gauge group. The latter satisfy the standard Dirac
quantisation on fluxes:

mi
a

∫
T 2

i

F i
a = 2πni

a, (4.55)

for each of the two wrapped tori T 2
i . The wrapping numbers mi

a and flux quanta ni
a shall be

coprime integers. Moreover, due to the Z2 orientifold quotient, ni
a can take half-integer values.

Through their Chern-Simons couplings, such magnetised D7-branes induce RR D3-charges on
top of their D7-charges. Similarly, D7-branes can themselves be seen as magnetised D9-branes
with vanishing wrapping number on the torus where they are localised [39]. We thus assign
vanishing wrapping numbers mk

a = 0 and unit fluxes nk
a = 1 on the torus where D7-branes are

localised, on top of the flux quanta of eq. (4.55) on the tori wrapped by their worldvolumes.
E.g., a stack a of Na D7-branes localised in the first torus T 2

1 has magnetic numbers:

T 2
1 T 2

2 T 2
3

Na → D7a (1, 0) (n2
a, m2

a) (n3
a, m3

a) (4.56)

In these conventions, the magnetic numbers of a standard D7-brane wrapping the second
and third tori without magnetic flux are:

D7F =0 (1, 0) (0, 1) (0,−1) (4.57)

In terms of these magnetic numbers, the RR charges of a stack a of Na D7-branes read [39]:

Qa
D3 = Nan1

an2
an3

a, (4.58)
(i)Qa

D7 = −Nani
amj

amk
a, i ̸= j ̸= k ̸= i. (4.59)

The stack a only has non-vanishing D7-charge on the torus where it is localised, e.g. (1)Qa
D7 ̸= 0

and (2)Qa
D7 = (3)Qa

D7 = 0 for the stack (4.56). We see that magnetised D7-branes can easily
induce negative D3-charges, namely D3-charges, for flux quanta ni

a of opposite signs on the
wrapped tori. For instance, a single D7a as in eq. (4.56) with opposite fluxes n2

a = −n3
a = 1,

induces a negative unit charge Qa
D3 = −1. Note also that in these conventions, the standard

D7-brane without magnetic flux eq. (4.57) has positive RR charge QD7 = 1.

Tadpole conditions with magnetised D7-branes. The induced charge Qa
D3 should

be included in the D3-brane number ND3 appearing in the tadpole condition (2.33). As
advertised, magnetised D7-branes inducing negative D3-charges can relax the constraint
imposed by the tadpole condition on the G3 flux charge Nflux. In T 6/Z2 × Z2 the tadpole
constraint obtained in absence of negative D3-charge was given in eq. (4.37). It can thus
a priori be relaxed. Consistency of the orientifold construction however also requires the
cancellation of the RR tadpole related to the D7-charge. Such tadpole condition relates the
magnetised brane charges (4.59) to the charges of the O7-planes present in the construction.
Hence for a fixed orientifold geometry, one cannot choose arbitrary D7 magnetic fluxes na

i

and wrappings ma
i .

The T 6/Z2 × Z2 orientifold with involution reversing all coordinates xj → −xj , j =
1, . . . , 6, contains 3× 4 O7i-planes, i = 1, 2, 3. Each of them wraps two tori and is localised
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in the third torus T 2
i at one of the four fixed points of the orbifold action, see section 2.4.

For instance, the four O72-plane are localised at (0, 0, ι3, ι4, 0, 0) with ι3, ι4 = 0, 1/2.
The RR tadpole cancellation then requires the total magnetised D7a charges (4.59)

to satisfy [39]:

∑
a

Qa
D3 + NY

flux =
∑

a

Nan1
an2

an3
a + NY

flux = 1
4NO3 = 16, (4.60)∑

a

(1)Qa
D7 = −

∑
a

Nan1
am2

am3
a = 4NO71 = 16, (4.61)∑

a

(2)Qa
D7 = −

∑
a

Nam1
an2

am3
a = 4NO72 = 16, (4.62)∑

a

(3)Qa
D7 = −

∑
a

Nam1
am2

an3
a = 4NO72 = 16. (4.63)

The first line is a rewriting of the tadpole condition (2.33) associated to the D3-charge,
expressing explicitly the charge from magnetised D7-branes. These four tadpole conditions
are the same as in the T-dual model of [80, 81] with D6-branes at angles [82, 83].

Solutions relaxing the constraint on Nflux. The tadpole condition (4.60) shows that
each stack a with an odd number of negative ni

a contributes negatively to the D3-charge,
thus increasing the allowed NY

flux = 2|G|Nflux. In the conventions (4.56) the flux number
corresponding to the torus not wrapped by the stack is always nk

a = 1, so that to have negative
contributions we need one positive and one negative flux numbers for the two wrapped tori.
Moreover, as explained under eq. (4.59) a single stack Na contributes to only one among the
tadpole conditions (4.61) to (4.63). For this contribution to be of the correct sign, we need
one positive and one negative wrapping number, as for the unmagnetised brane (4.57).

We consider the simple configuration of three D7-branes stacks with magnetic numbers:

T 2
1 T 2

2 T 2
3

N1 → D71 (1, 0) (n2
1,−1) (−n3

1, 1)
N2 → D72 (−n1

2, 1) (1, 0) (n3
2,−1)

N3 → D73 (n1
3,−1) (−n2

3, 1) (1, 0) (4.64)

with all ni
a > 0. The configuration satisfies all the tadpole conditions related to the D7-

charges for Na = 16, a = 1, 2, 3.
We recall that a negative Qa

D3 only requires one positive and one negative flux numbers,
so that we made an arbitrary choice for the relative signs between the fluxes of different
stacks and tori. We chose to take unit wrapping numbers mi

a = ±1. A configuration with
the same (i)Qa

D7 charge, hence satisfying the tadpole condition, but with greater wrapping
numbers mi

a would require lower Na, thus leading to a smaller absolute value of the Qa
D3

charge. The total D3-charge for the configuration (4.64) is:

QD3 =
3∑

a=1
Qa

D3 =
3∑

a=1
Nan1

an2
an3

a = −16(n2
1n3

1 + n1
2n3

2 + n1
3n2

3). (4.65)
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For all the stacks a to preserve supersymmetry, their flux numbers need to satisfy a constraint,
which in the present context reads:

3∑
i=1

ζ(i)
a ≡

∑
i

1
π
Arctan(2πα′F i

a) =
∑

i

1
π
Arctan

(
mi

aα′

ni
aAi

)
= 0. (4.66)

The ζ(i)
a correspond to oscillator shifts of open string modes caused by the modification

of boundary conditions by magnetic fields [58, 84]. The second equality used the explicit
magnetic flux quantisation condition (4.55) for wrapped tori T 2

i of area 4π2Ai.
We see that in the configuration (4.64), all D7-brane stacks break SUSY. They cannot

satisfy the condition (4.66). Such configuration generically produce tachyons, coming from
open strings with endpoints on the same or different stacks, called doubly charged or mixed
states. The mass of such states were explicitly written in e.g. [79]. Doubly charged tachyons
can be eliminated by introducing separations between branes and their orientifold images,
namely by moving the branes away from the orientifold planes [79]. This allows to increase
the mass of such states to positive values. On the other hand, the following conditions on
ζ

(i)
a allow to cancel the mass of all mixed tachyonic states [79]:

(A − 1) ζ(3)
1 = ζ(1)

2 = ζ(2)
3 , ζ(2)

1 = ζ(3)
2 = ζ(1)

3 ;
2) ζ(3)

1 = ζ(1)
2 = −ζ(2)

3 , ζ(2)
1 = ζ(3)

2 = −ζ(1)
3 ;

3) ζ(3)
1 = −ζ(1)

2 = ζ(2)
3 , ζ(2)

1 = −ζ(3)
2 = ζ(1)

3 ;
4) ζ(3)

1 = −ζ(1)
2 = −ζ(2)

3 , ζ(2)
1 = −ζ(3)

2 = −ζ(1)
3 ;

(B − 1) ζ(2)
1 = ζ(3)

1 , ζ(1)
2 = ζ(3)

2 , ζ(1)
3 = ζ(2)

3 ;
2) ζ(2)

1 = −ζ(3)
1 , ζ(1)

2 = −ζ(3)
2 , ζ(1)

3 = −ζ(2)
3 . (4.67)

Solution (B − 2) satisfies (4.66) and thus preserves supersymmetry, with all lowest-lying
states remaining massless. In the solutions (A − i), all the doubly charged states D7a–D7a

have identical tachyonic masses, equal to α′m2 = −2
∣∣∣ζ(2)

1 + ζ(3)
1

∣∣∣, while for solution (B − 1)
they can have different masses. The possible arbitrary choices of relative signs between ni

a,
in configurations similar to (4.64), always allow to satisfy (B − 1) or only one of the (A − i).
The specific choice (4.64) allows to satisfy (A − 1) or (B − 1). For these configurations
the QD3 charge (4.65) then reads:

(A − 1) QD3 = −48n2
1n3

1, (4.68)

(B − 1) QD3 = −16
(
(n2

1)2 + (n1
2)2 + (n1

3)2
)
. (4.69)

We see that in any of these two cases, the QD3 charge can be made arbitrary large choosing
large values of ni

a. The tadpole condition (4.60) for these two configurations free of mixed
tachyons leads to:

(A − 1) 1
4NY

flux = 2Nflux = 2n = 4(1 + 3n2
1n3

1), n ∈ N∗, (4.70)

(B − 1) 1
4NY

flux = 2Nflux = 2n = 4
(
1 + (n2

1)2 + (n1
2)2 + (n1

3)2
)
, n ∈ N∗. (4.71)
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This shows that the constraint (4.37) obtained without negative D3-charge is, as expected,
totally lifted in such a configuration. The flux charge Nflux = n ∈ N∗ can thus in principle
be arbitrarily large, while still satisfying the tadpole condition. Therefore, one can get
solutions with small values of gs min.

For instance, in both cases (A − 1) or (B − 1) with ni
a = 1, the tadpole condition (4.71)

forces Nflux = 8. The string coupling found in our vacuum solutions is then bounded following
eq. (4.34), giving:

gs ≥ gs,min = 16
N2

flux
= 0.25. (4.72)

Configurations with greater ni
a give yet smaller minimal values of gs.

As explained below eq. (4.66), such D7-brane setup totally breaks supersymmetry.
Condition (4.66) shows that supersymmetry is recovered in the limit of large volumes, with
tori areas Ai → +∞, which corresponds to diluted magnetic fluxes. This SUSY breaking
configuration induces Fayet-Ilipopoulos (FI) terms in the 4d effective theory, which depend
on the Kähler moduli related to the areas Ai [61, 79, 85]. When these FI terms are associated
with logarithmic loop corrections to the Kähler potential of these moduli, the latter can
be stabilised at a metastable de Sitter vacuum [36, 38]. Hence, with the complex structure
moduli stabilisation presented in the present paper, this leads to a toroidal orbifold model
with metastable de Sitter vacuum and all moduli stabilised explicitly. The explicit model
with all moduli stabilised in this way is left for future work.

5 Conclusions

In this work, we studied the stabilisation by fluxes of the axio-dilaton and complex structure
moduli of simple N = 1 orientifolds of orbifold compactifications of type IIB string theory.
In this simple but calculable setup, we showed how the finiteness of (inequivalent up to S-
and U -duality) flux vacua manifests itself. Enumerating all flux integer combinations for
fixed 3-form flux contribution to the D3-brane tadpole Nflux and fixed range of the integers
|m|, |n| ≤ k, there is simply a value of k above which no new vacua are found numerically.

We also found explicit expressions for the minimal string coupling gs,min of the form
gs,min ∼ 1/Nα

flux, with α = 1 for orbifolds with zero or one complex structure modulus, and
α = 2 in the case of T 6/Z2 × Z2. Since Nflux is bounded by the tadpole constraint, these
relations can be used in principle to obtain the lowest value of the string coupling achievable
by flux compactification on these orbifolds, in the absence of magnetised D7-branes. In the
case of orbifolds with zero or one untwisted complex structure moduli, the tadpole constraint
turns out to be too constraining for turning on fluxes in the first place. While for T 6/Z2 ×Z2
this is not true, there are still no vacua satisfying the tadpole cancellation condition. The
simplicity of toroidal orbifolds allows to be relatively explicit, but it may lack some important
features of a Calabi-Yau compactification.

Magnetised D7-branes can give a negative contribution to the D3-brane tadpole and the
strict bound on Nflux is in general relaxed, allowing for much smaller values of the string
coupling. The case of T 6/Z2 × Z2 with discrete torsion is particularly interesting since after
stabilisation of all complex structure moduli, one is left with only three untwisted Kähler
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moduli that may be stabilised based on perturbative corrections and the use of magnetic
fluxes on the three sets of D7-branes. It remains to be seen if a concrete physically interesting
example exists with all closed string moduli stabilised in a controllable way.
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A Complex structures of the orbifolds

In this appendix, we give the complex structure of all the orbifolds listed in table 1. Details
of their computation were given in section 2.
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coefficients of the complex structure

orbifold x1 x2 x3 x4 x5 x6

z1 1 e2iπ/3 0 0 0 0
Z3 z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 e2iπ/3

z1 1 i −1 0 0 0
Z4,a z2 0 0 0 1 i −1

z3 1 −1 1 U −U U
z1 1 e3iπ/4/

√
2 0 0 0 0

Z4,b z2 0 0 1 i −1 0
z3 0 0 1 −1 1 U
z1 1 e3iπ/4/

√
2 0 0 0 0

Z4,c z2 0 0 1 e3iπ/4/
√
2 0 0

z3 0 0 0 0 1 U
z1 1 e5iπ/6/

√
3 0 0 0 0

Z6,Ia z2 0 0 1 e2iπ/3 −1 eiπ/3

z3 0 0 1 e2iπ/3 1 −eiπ/3

z1 1 e5iπ/6/
√
3 0 0 0 0

Z6,Ib z2 0 0 1 e5iπ/6/
√
3 0 0

z3 0 0 0 0 1 −eiπ/3

z1 1 eiπ/3 e2iπ/3 −1 −eiπ/3 0
Z6,IIa z2 1 e2iπ/3 −eiπ/3 1 e2iπ/3 0

z3 1 −1 1 −1 1 U
z1 1 eiπ/3 −1 −1 0 0

Z6,IIb z2 0 0 0 0 1 e2iπ/3

z3 1 −1 U 1− U 0 0
z1 1 −e2iπ/3 −eiπ/3 −e2iπ/3 0 0

Z6,IIc z2 1 eiπ/3 −e2iπ/3 −eiπ/3 0 0
z3 0 0 0 0 1 U
z1 1 e5iπ/6/

√
3 0 0 0 0

Z6,IId z2 0 0 1 e2iπ/3 0 0
z3 0 0 0 0 1 U

Table 16. Complex structures of the orbifolds listed in table 1 (part 1 of 3). Here, U is a complex
structure modulus, and the table reads in a straightforward way. For instance, for the orbifold T 6/Z3,
the complex coordinates are given by z1 = x1 + e2iπ/3x2, z2 = x3 + e2iπ/3x4, z3 = x5 + e2iπ/3x6, etc.
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coefficients of the complex structure
orbifold x1 x2 x3 x4 x5 x6

z1 1 e2iπ/7 e4iπ/7 e6iπ/7 −eiπ/7 −e3iπ/7

Z7 z2 1 e4iπ/7 −eiπ/7 −e5iπ/7 e2iπ/7 e6iπ/7

z3 1 −eiπ/7 e2iπ/7 −e3iπ/7 e4iπ/7 −e5iπ/7

z1 1 i −1 −eiπ/4 e3iπ/4 eiπ/4

Z8,Ia z2 1 −1 1 i −i i

z3 1 i −1 eiπ/4 −e3iπ/4 −eiπ/4

z1 1 eiπ/4 i −(1 +
√
2 + i)/2 0 0

Z8,Ib z2 0 0 0 0 i e3iπ/4/
√
2

z3 1 −eiπ/4 i −(1−
√
2 + i)/2 0 0

z1 1 eiπ/4 i −(1 +
√
2 + i)/2 −(1 +

√
2 + i)/2 0

Z8,IIa z2 1 e3iπ/4 −i −(1−
√
2− i)/2 −(1−

√
2− i)/2 0

z3 0 0 0 1 −1 U
z1 1 eiπ/4 i −(1 +

√
2 + i)/2 0 0

Z8,IIb z2 1 e3iπ/4 −i −(1−
√
2− i)/2 0 0

z3 0 0 0 0 1 U
z1 1 eiπ/6 eiπ/3 −1 −eiπ/6 −

√
2eiπ/12

Z12,Ia z2 1 e2iπ/3 −eiπ/3 1 e2iπ/3 0
z3 1 −eiπ/6 eiπ/3 −1 eiπ/6 −

√
2e7iπ/12

z1 1 eiπ/6 e11iπ/12/
√
2 −eiπ/12/

√
2 0 0

Z12,Ib z2 0 0 0 0 1 e2iπ/3

z3 1 −eiπ/6 e5iπ/12/
√
2 −e7iπ/12/

√
2 0 0

z1 1 eiπ/6 e11iπ/12/
√
2 −eiπ/12/

√
2 0 0

Z12,II z2 1 e5iπ/6 −e7iπ/12/
√
2 e5iπ/12/

√
2 0 0

z3 0 0 0 0 1 U

Table 17. Complex structures of the orbifolds listed in table 1 (part 2 of 3). Here, U is a complex
structure modulus, and the table reads in a straightforward way. For instance, for the orbifold T 6/Z7,
the complex coordinates are given by z1 = x1 +e2iπ/7x2 +e4iπ/7x3 +e6iπ/7x4 −eiπ/7x5 −e3iπ/7x6, etc.
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coefficients of the complex structure

orbifold x1 x2 x3 x4 x5 x6

z1 1 U1 0 0 0 0
Z2 × Z2 z2 0 0 1 U2 0 0

z3 0 0 0 0 1 U3

z1 1 U 0 0 0 0
Z2 × Z4 z2 0 0 1 e3iπ/4/

√
2 0 0

z3 0 0 0 0 1 −eiπ/4/
√
2

z1 1 U 0 0 0 0
Z2 × Z6,I z2 0 0 1 e5iπ/6/

√
3 0 0

z3 0 0 0 0 1 e2iπ/3

z1 1 e5iπ/6/
√
3 0 0 0 0

Z2 × Z6,II z2 0 0 1 −eiπ/3 0 0
z3 0 0 0 0 1 e5iπ/6/

√
3

z1 1 e2iπ/3 0 0 0 0
Z3 × Z3 z2 0 0 1 e2iπ/3 0 0

z3 0 0 0 0 1 −eiπ/3

z1 1 e2iπ/3 0 0 0 0
Z3 × Z6 z2 0 0 1 e5iπ/6/

√
3 0 0

z3 0 0 0 0 1 −eiπ/6/
√
3

z1 1 e3iπ/4/
√
2 0 0 0 0

Z4 × Z4 z2 0 0 1 e3iπ/4/
√
2 0 0

z3 0 0 0 0 1 −eiπ/4/
√
2

z1 1 e5iπ/6/
√
3 0 0 0 0

Z6 × Z6 z2 0 0 1 e5iπ/6/
√
3 0 0

z3 0 0 0 0 1 −eiπ/6/
√
3

Table 18. Complex structure of the orbifolds listed in table 1 (part 3 of 3). Here, the U are a
complex structure moduli, and the table reads in a straightforward way. For instance, for the orbifold
T 6/Z2 × Z2, the complex coordinates are given by z1 = x1 + U1x2, z2 = x3 + U2x4, z3 = x5 + U3x6.
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