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1 Introduction

The intersection number between differential n-forms [1–13] is an elementary quantity that
rules the vector space properties of regulated (twisted period) integrals. The respective
integrands are defined through the product of the twist, a regulating multivalued function
that vanishes at the boundary of the integration domain, and a differential n-form. Acting as
an inner product, the intersection number yields the decomposition of the differential forms
into a basis of forms that generate the twisted de Rham cohomology group, a vector space
defined as the quotient space of the closed forms modulo the exact forms [14–17]. Linear
and quadratic relations among the elements of the vector space, as well as differential and
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difference equations for them, can be derived using intersection numbers. The translation of
these identities to their respective integral formulations is then straightforward.

The algebraic properties of Feynman integrals, central objects of study in perturbative
classical and quantum field theory, motivated us to develop the intersection theory framework.
In that framework the linear relations derived by intersection numbers are equivalent to
the well-known integration-by-parts identities (IBPs) [18, 19], used to derive the integrals
decomposition in terms of an independent set of master integrals (MIs), as well as for the
differential and difference equations obeyed by them. The same formalism can be applied
to a wider class of functions, such as Aomoto-Gelfand and Euler-Mellin integrals, as well
as Gelfand-Kapranov-Zelevinsky hypergeometric systems [20–22] which embed Feynman
integrals as special restrictions [23] (see also [24, 25]). Beyond IBP reductions, twisted
co-homology finds applications in many other relevant areas of Physics and Mathematics:
the formalism has been applied in the construction of the canonical bases for Feynman
integrals [26–29] (in presence of generalised polylogarithms as well as of elliptic functions),
correlator functions in quantum field theory and lattice gauge theory [30–34] (in perturbative
and non-perturbative approaches), orthogonal polynomials, quantum mechanical matrix
elements, Witten-Kontsevich tau-functions [32], cosmological correlators [35], representation
of Feynman integrals as single-valued hypergeometric functions [36], to name a few.1

There exist several methods for the calculation of intersection numbers using the twisted
version of Stokes’ theorem [43]. In the special case of logarithmic n-forms they can be
computed via the algorithms proposed in [2, 8, 13, 44]. In the more general situation of
meromorphic n-forms, the calculation of the intersection number can proceed according to the
so-called recursive approach, as proposed in [16, 17, 45], elaborating on [10], which, exploiting
the concept of fibration, maps the (evaluation of) intersection numbers for n-forms, into an
ordered sequence of (evaluations of) intersection numbers for 1-forms, that are computed by
considering one (integration) variable at a time. This method can be simplified by exploiting
the invariance of the representative of the cohomology classes and by avoiding the use of
algebraic extensions [46], and its application range can be extended [47, 48] also to the
case of the relative twisted cohomology [49], that deals with singularities of the integrand
not regulated by the twist. An interesting improvement of the evaluation procedure, that
makes use of the idea of avoiding polynomial factorisation and algebraic extensions, has been
recently proposed in [50], by introducing the polynomial series expansion technique, and
an efficient treatment of the analytic regulators, combined with the advantages of modular
arithmetic over the finite fields [51, 52].

Also, we have recently proposed a new algorithm for computing the intersection number
of twisted n-forms, based on a multivariate version of Stokes’ theorem, which requires the
solution of a higher-order partial differential equation and the evaluation of multivariate
residues [53], which is a natural generalization of the original algorithm [2, 43] that avoids
the fibration procedure.

Let us finally mention that an alternative method for evaluation of intersection numbers,
which is based on the solution of the secondary equation built from the Pfaffian system of

1More examples can be found in the recent theses [37–39], in the lecture notes [25] and the in the
reviews [40, 41]. For related works, see also the recent [42].
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differential equations for the generators of the cohomology group [9, 54], in combination with
an efficient algorithm for construction of such systems by means of the Macaulay matrix
has recently been proposed in [22].

The previous activities show that the development of the optimal algorithms for evaluating
intersection numbers for meromorphic twisted n-forms is an open problem of common interest
for mathematicians and physicists.

The classification of dimensionally regulated Feynman integrals as twisted period integrals
becomes manifest when, instead of the canonical momentum-space representation, parametric
representations of the integrals are adopted [14, 55]. Additional analytic regularisation [56, 57]
is often required to regulate the behaviour of inverse powers of the integration variables that
arise upon the change of variables, from the loop momenta to the new set of n integration
variables. Accordingly, auxiliary non-integer regulating exponents, hereby dubbed regulators,
are introduced in the definition of the twist [58], which are later set to zero at the end of
the calculation of the coefficients of the MIs decomposition. Therefore, intersection numbers
acquire a dependence on the evanescent regulators, beside the expected dependence on
external kinematic invariants, masses, and the continuous space-time dimensions d. For
that reason the regulators affect the load of the evaluation algorithm, which would be much
lighter if they were absent.

In the case of Euler-Mellin integrals and GKZ hypergeometric functions, non-integer
exponents are considered ab-initio in the integral representation, and, in these cases, the
intersection numbers depend on them, as well as on the multiplicative factors of the monomials
(product of integration variables) that appear in the twist — which can be considered as
external variables.

In this work, we investigate the analytic behaviour of the intersection numbers of 1-
forms on one evanescent regulator, and show that the coefficients of the MIs decomposition
can be computed just using the leading term (LT) of the Laurent series expansion of the
intersection numbers, as it was remarkably observed, by other means, in [50]. Moreover,
we show that the expression of the LT of the expansion is equivalent to the result of the
intersection number computed within the relative twisted cohomology theory [49], obtained
by means of the delta-forms introduced in [47, 48]. Although derived in the case of 1-form,
the result of our analysis allows us to present an simplification of the recursive algorithm for
the evaluation of intersection numbers of twisted n-forms, and to apply it to the complete
decomposition of a few non-trivial representative types of Feynman integrals at one and
two loops, with planar and non-planar configurations, in terms of bases of MIs. On the one
hand, we adapt the polynomial expansion technique introduced in [50], by proposing a novel
choice of the polynomial-ideal generator in the intermediate layers of the recursive approach.
On the other hand, we eliminate the need for the analytic regulators, by applying the
relative twisted cohomology theory [47–49], and present a systematic algorithm for choosing
multivariate delta-forms as elements of the dual cohomology bases, to significantly simplify
the computation of the intersection numbers.

The chosen examples of Feynman integrals involve differential n-forms with n up to
nine. The intersection-theory based decomposition is performed on cuts, along the lines
of [15, 17], so that the determination of the coefficients of the integral decomposition require
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intersection numbers of n-forms, with n up to six, only. In particular, we describe in detail
the decomposition via intersection numbers of integrals related to the one-loop box diagram
contributing to Bhabha scattering, as well as the planar and non-planar massless double-box
diagrams. Computational details for the latter two cases can be found in the ancillary files
Dbox_massless.m and Dbox_massless_nonplanar.m, respectively. For the decomposition
of the integrals related to the planar and non-planar double-box diagrams with one massive
external leg, in the text we provide just the bases of n-forms and give the computational details,
respectively, in the ancillary files Dbox_1m.m, and Dbox_1m_nonplanar.m. The decomposition
formulas are found to be equivalent to the results of an IBP decomposition. These results
demonstrate that, using intersection numbers it is possible to obtain the direct and complete
decomposition of non-trivial integrals in terms of MIs, just like any generic element of a
vector space can be projected onto a set of generators.

This work is organized as follows: In section 2 a review of the twisted de Rham cohomology
and intersection numbers is given. Section 3 contains a discussion of the application of
polynomial division and global residues for the efficient computation of intersection numbers.
Section 4 describes the computation of intersection numbers within the relative twisted
cohomology theory using delta-forms, as well as their derivation as limits of cases with
analytic regulators within the regular twisted cohomology theory. Applications to the
decomposition of one- and two-loop Feynman integrals are presented in section 5 to showcase
the novel techniques introduced in this work. We provide concluding remarks in section 6.

The manuscript contains two appendices: Appendix A contains a description of the
extended euclidean algorithm and appendix C contains an example of our algorithm for
building the bases for the (relative) twisted cohomology groups.

For our research, the following software has been used: LiteRed [59, 60], Fire [61],
FiniteFlow [52], Fermat [62], Fermatica [63], Mathematica, HomotopyContinu-
ation [64], Singular [65] and its Mathematica interface Singular.m [66], and Jax-
odraw [67, 68].

2 Integrals and twisted cohomology groups

In this section we review some basic properties of twisted cohomology and intersection theory,
focusing on the evaluation of intersection numbers for 1- and n-forms.

The frameworks of twisted homology and cohomology are concerned with twisted period
integrals of the form

I =
∫
CR

u φL := ⟨φL|CR] , (2.1)

where φL is a rational/meromorphic n-form: φL = φ̂L(z) dz ≡ φ̂L(z) dz1 ∧ . . . ∧ dzn, and
u is a multivalued function

u =
∏

i

Bγi
i , (2.2)

called the twist, with generic (polynomial) factors Bi = Bi(z) and generic exponents γi . The
generiticity condition on the γi is required to ensure that all poles of φL are regulated by u.
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Moreover, the integration domain C is chosen such that Bi(∂C) = 0. The latter condition
ensures that twisted period integrals obey integration-by-part identities (IBPs)∫

CR

d(uϕL) = 0 , (2.3)

corresponding to the vanishing integrals∫
CR

u∇ω ϕL = ⟨∇ω ϕL|CR] = 0 , (2.4)

where we introduced the covariant derivative ∇ω , defined as,

∇ω := d + ω , with ω := d log(u) =
n∑

i=1
ω̂i dzi , and ω̂i := ∂zi log(u) . (2.5)

Within twisted de Rham theory, any n-form φL is a member (equivalence class rep-
resentative) of the vector space of closed modulo exact n-forms, called the nth twisted
cohomology group Hn

ω . The equivalence relation reads ⟨φL| ∼ ⟨φL + ∇ωϕL|, where ϕL is a
generic (n−1)-form. Hn

ω identifies integrands that give the same I, upon integration over
CR . The number ν := dim (Hn

ω) of independent equivalence classes is the dimensionality
of the cohomology group.

We may also introduce the dual integrals:

I∨ =
∫
CL

u−1 φR := [CL|φR⟩ , (2.6)

whose integrands contains the multivalued function u−1 and the dual n-form φR . Similarly
to the previous case, |φR⟩ ∼ |φR + ∇−ωϕR⟩ with ϕR being an (n−1)-form. Thus φR is a
member of another vector space of closed modulo exact n-forms, called the nth dual twisted
cohomology group Hn

−ω . Elements of this group identify integrands that give the same
I∨, upon integration over CL .

Stokes’ theorem motivates the examination of the equivalence classes of integration
domains CL,R (called the nth twisted chains), which form the other two vector spaces H±ω

n

referred to as the (dual) twisted nth homology groups.2 In turn, de Rham’s theorem ensures
that the four vector spaces Hn

±ω and H±ω
n are isomorphic, which implies that dim (Hn

ω) =
dim

(
Hn

−ω

)
= dim (Hω

n) = dim (H−ω
n ).

In the case of Feynman integrals, the dimension of the twisted cohomology group
corresponds to the number of master integrals:

ν = dim
(
Hn

±ω

)
= dim

(
H±ω

n

)
= number of zeros of ω , (2.7)

which is determined by the number of critical points of the Morse height function log(|u|) [55].
Let us consider the bases {⟨ei|}i=1,··· ,ν belonging to Hn

ω and the dual bases {|hi⟩}i=1,··· ,ν
belonging to Hn

−ω. Then any arbitrary cocycle (⟨φL|) can be decomposed in terms of these
2We do not elaborate further on the homology groups, and refer the interested reader to [69] for details.
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bases following the master decomposition formula [14, 15]. This relation expresses a given
cocycle ⟨φL| in terms of a given basis ⟨ei|:

⟨φL| =
ν∑

i=1
ci⟨ei| , with ci = ⟨φL |hj⟩(C−1)ji , (2.8)

where the square matrix of all possible intersection numbers between the left- and right-bases

Cij := ⟨ei |hj⟩ (2.9)

is called the metric or simply the C-matrix.
Following the master decomposition formula [14, 15], any Feynman integral I can be

decomposed in terms of the master integrals Ji as

I = ⟨φL|C] =
ν∑

i=1
ci⟨ei|C] =

ν∑
i=1

ci Ji , (2.10)

where the coefficients of the decomposition ci are given by eq. (2.8) and Ji = ⟨ei|C
]
. Let us

observe that ci is independent of the choice of the dual bases |hj⟩ [15], and that, this degree of
freedom can be exploited to simplify the computing algorithm — as it soon will be made clear.

2.1 Intersection numbers for 1-forms

The intersection number is an integral of the product between the left and right forms. To
define it consistently, one of the forms has to be regulated by expressing it as a specific
representative of its cohomology class:

⟨φL |φR⟩ := 1
2πi

∫
X
ι(φL) ∧ φR = − 1

2πi

∫
X
φL ∧ ι(φR) , (2.11)

where the ι-operator denotes the regularization procedure defined in the univariate case as:

ι(φL) := φL −∇ω(hψL) , ι(φR) := φR −∇−ω(hψR) , (2.12)

with the Heaviside functions

h :=
∑

i∈Pω

(1 − θz,i) , θz,i := θ(|z−zi| − ϵ) , Pω :=
{
poles of ω

}
. (2.13)

The domain of integration in eq. (2.11) is defined as X := CP\Pω , and the set of singularities
Pω includes also z = ∞. The functions ψL and ψR are the solutions to the differential
equations:

∇ωψL = φL , ∇−ωψR = φR . (2.14)

To compute intersection numbers eq. (2.14) must be solved around each pole p ∈ Pω .
Considering the pole at z = p, the solution around this pole formally reads [2, 49],

ψL,p(z) = 1
(η+ − 1)u(z)

∫
Cp(z)

u(t)φL(t) ,

ψR,p(z) = u(z)
(η− − 1)

∫
Cp(z)

φR(t)
u(t) .

(2.15)
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p z

Cp(z)

Figure 1. The integration contour Cp(z) used in eq. (2.15).

Here Cp(z) is the contour given in figure 1 and η± = e±2πiαp , with αp being the non-integer
exponent of u at z = p (and thus −αp the exponent of u−1).

Following [14, 15] we may then derive the expression for the univariate intersection
number as

⟨φL |φR⟩ =
∑

p∈Pω

Resz=p(ψL,p φR) = −
∑

p∈Pω

Resz=p(ψR,p φL) . (2.16)

2.2 Intersection numbers for n-forms

The intersection number for n-forms can be computed by adopting more than one computa-
tional strategy. In this work, we will use the fibration-based approach discussed in [16, 17],
which can be applied to generic meromorphic forms. This method treats the integration
variables one at a time, so, without loss of generality, we may order them as zn, . . . , z1, listed
from the outer to the innermost integration. Each layer of the fibration has its own (internal)
basis of master forms, whose size can be counted using eq. (2.7), and can be efficiently chosen
following the algorithm explained in section 4.4 and appendix C. We denote such bases of forms
and their duals on the mth layer by e(m)

i and h
(m)
i respectively, and their dimension by νm.

This approach allows us to compute multivariate intersection numbers recursively: As-
suming all the (m−1)-variate building blocks are known, the m-variable intersection numbers
can be evaluated using

⟨φ(m)
L |φ(m)

R ⟩ =
∑

p∈P(m)

Reszm=p

(
ψ

(m)
L,i C(m−1)

ij φ
(m)
R,j

)
=

∑
p∈P(m)

Reszm=p

(
ψ

(m)
L,i ⟨e

(m−1)
i |φ(m)

R ⟩
)
,

(2.17)

where the C-matrix and the projections are given by

C(m)
ij := ⟨e(m)

i |h(m)
j ⟩ , (2.18)

φ
(m)
L,i =

νm−1∑
j=1

⟨φ(m)
L |h(m−1)

j ⟩ (C−1
(m−1))ji , (2.19)

φ
(m)
R,i =

νm−1∑
j=1

(C−1
(m−1))ij ⟨e(m−1)

j |φ(m)
R ⟩ . (2.20)

The key formula (2.17) relies on the solution to the system of differential equations:[
δij∂zm + Ω(m)

ji

]
ψ

(m)
L,j = φ

(m)
L,i , where Ω(m)

ij = ⟨(∂zm+ωm)e(m−1)
i |h(m−1)

k ⟩
(
C−1

(m−1)
)

kj
.

(2.21)
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The Ω(m) matrix also known as the connection matrix defines the set of singularities P(m)

appearing in eq. (2.17) as

P(m) :=
{
poles of Ω(m)} , (2.22)

which also includes z = ∞. In complete analogy to the univariate case of section 2.1, we
may write the dual representation of eq. (2.17) as

⟨φ(m)
L |φ(m)

R ⟩ = −
∑

p∈P(m)

Reszm=p

(
φ

(m)
L,i C(m−1)

ij ψ
(m)
R,j

)
= −

∑
p∈P(m)

Reszm=p

(
⟨φ(m)

L |h(m−1)
i ⟩ψ(m)

R,i

)
,

(2.23)

which makes use of the solution ψR to the dual differential equation and the dual connection
Ω∨(m) given by[
δij∂zm + Ω∨(m)

ij

]
ψ

(m)
R,j = φ

(m)
R,i , where Ω∨(m)

ij =
(
C−1

(m−1)
)

ik
⟨e(m−1)

k | (∂zm−ωm)h(m−1)
j ⟩ .

(2.24)

3 Intersection numbers and polynomial division

In general, the evaluation of intersection numbers in eqs. (2.11), (2.17) requires the solution
of the differential equations (2.14), (2.21), and a residue operation. In the univariate case,
these operations are performed locally around each pole of the function ω defined in eq. (2.5),
and likewise with the poles of Ω in the multivariate case. Individual contributions to the
intersection number from each pole may contain irrational terms, which only cancel upon
considering their sum. In this section we recall the idea proposed in [50] to show how
intersection numbers can be computed bypassing the precise identification of singularities of
ω, thus avoiding algebraic extensions: polynomial division and global residues can be used to
derive the solution of the differential equation, and to extract the sum over local residues
directly from the remainders of iterated polynomial divisions. In the application of these
techniques, within the recursive algorithm for the evaluation of intersection numbers, we
propose the use of a novel polynomial, built as the least common multiple of the denominators
appearing in the connection matrix.

3.1 Polynomial decomposition and global residue

Univariate polynomials. The decomposition of a univariate polynomial p(z) in terms of
another degree κ polynomial B(z) may be written as

p(z) =
max∑
i=0

pi(z)B(z)i , where pi(z) =
κ−1∑
j=0

pij z
j and κ := deg(B) . (3.1)

We observe that pi(z) correspond to the remainders of a sequential polynomial divisions
of p(z) and of the successive quotients w.r.t. B(z) [50]. By following the latter reference,
this operation can be efficiently obtained in one step by introducing a shift parameter β
and a new divisor B = B(z, β), defined as

B := B(z) − β . (3.2)

– 8 –
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The remainder of a single division of p(z) modulo B belongs to the quotient space C[z]/⟨B⟩
(where C[z] is the space of polynomials in the variable z, with complex coefficients, and ⟨B⟩
is the ideal generated by B(z, β)), is given by

⌊p(z)⌋B =
max∑
i=0

κ−1∑
j=0

pij z
j βi . (3.3)

We thus recover eq. (3.1) upon identifying β = B(z).

Univariate rational functions. Let us now consider a rational function f(z), defined as
the ratio of two polynomials n(z) and d(z):

f(z) = n(z)
d(z) , (3.4)

whose Laurent series expansion around B(z) = 0 takes the form

f(z) =
max∑

i=min
fi(z)B(z)i + O

(
B(z)max+1) , with fi(z) :=

κ−1∑
j=0

fij z
j . (3.5)

Also in this case the polynomials fi(z) can be built as remainder of the polynomial divisions
of f(z) modulo B, namely

⌊f(z)⌋B =
max∑

i=min

κ−1∑
j=0

fij z
j βi + O(βmax+1) , (3.6)

and by identifying β = B(z). The rational function f(z) is equivalent to the product of
two polynomials n(z) and d̃(z):

⌊f(z)⌋B =
⌊
n(z)
d(z)

⌋
B

= ⌊n(z) d̃(z)⌋B . (3.7)

Here, d̃(z) is the multiplicative inverse of the denominator d(z) modulo B, defined as

d̃(z) d(z) = 1 mod B , (3.8)

which can be determined3 either by ansatz, or, equivalently, by using the Extended Euclidean
Algorithm (see appendix A for details).

Global residue. Let us consider again the function f(z) as in eq. (3.4). To compute the
global residue of f(z) over some polynomial B(z), which is the sum of the local residues
evaluated at the zeroes of B(z), we may expand the function f(z) around B as in eq. (3.6),
and then use the global residue theorem (see [70] for review) to obtain:∑

p∈PB

Resz=p(f(z)) =: Res⟨B⟩(f(z)) = f−1,κ−1
ℓc

, (3.9)

where PB , ℓc , and κ are the set of zeroes, the leading coefficient, and the degree of B(z)
respectively.

3The β-shift in definition (3.2) ensures that eq. (3.8) always has a solution in C[z]/⟨B⟩.
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3.2 Intersection numbers for 1-forms and polynomial division

The polynomial decomposition technique introduced in the previous section can be applied to
the computation of intersection numbers. We consider first the univariate case. To compute
the global residue we choose the degree κ polynomial ideal generator

B(z) := LCM
(
Pω,fin

)
(3.10)

constructed via the least common multiple LCM of the finite poles of ω introduced in eq. (2.13).
The sum over the contributions to the intersection number (2.16) stemming from the finite
poles can be obtained as the global residue over the zeroes of B, namely

⟨φL|φR⟩ = −Res⟨B⟩
(
g
)
− Resz=∞

(
g
)
, (3.11)

where ψR satisfies (2.14), and g is defined as:

g = ψR φL . (3.12)

The global residue can be computed via the polynomial division in the following way:

1. Compute the series expansions of φL , φR , and ω around B(z) = 0, given by ⌊φL⌋B ,
⌊φR⌋B , and ⌊ω⌋B respectively, each having the form shown in eq. (3.6).

2. Build the ansatz

ψR =
max∑

i=min

κ−1∑
j=0

ψR,ij z
j βi , (3.13)

with unknown coefficients ψR,ij , and compute ⌊g⌋B to extract g−1,κ−1 which depends
on ψR,ij .

3. Build the system of equations formed by the differential equation (2.14) (using the
composite derivative rule) together with the global residue (3.9):⌊

∂zψR(z, β) + ∂βψR(z, β) ∂zB(z) − ω ψR(z, β) − φR

⌋
B

= 0 , (3.14)

Res⟨B⟩(g) = g−1,κ−1
ℓc

, (3.15)

and solve it for Res⟨B⟩(g) only, obtaining the global residue directly from the linear
system.

Let us finally remark, that at all stages of the calculations β can be treated as a parameter
(the actual substitutions β → B(z) is never needed), which reduces the computational load
of the problem.

3.3 Intersection numbers for n-forms and polynomial division

The same technique can be applied in the multivariate case, following the fibration approach
described in section 2.2. Let us first rewrite eq. (2.23) as:

⟨φ(m)
L |φ(m)

R ⟩ = −
∑

p∈P(m)
fin

Reszm=p
(
g(m)) − Reszm=∞

(
g(m)) , (3.16)
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where P(m)
fin are the finite poles of Ω∨(m) (cf. eq. (2.22)). The function g(m) is defined as:

g(m) := ⟨φL|h
(m−1)
i ⟩ψ(m)

R,i , (3.17)

and ψ(m)
R,i satisfies eq. (2.24). Similarly to the univariate case (3.10), to apply the polynomial

division algorithm at the mth level of iteration we use the polynomial ideal generator

B(m)(zm) := LCM
(
P(m)

fin
)

(3.18)

built out of the least common multiple of the finite poles of Ω∨(m) (namely out of the product
of the denominators of its entries, accounting for their highest multiplicity). The regularised
polynomial (3.2) is then defined as B(m) := B(m)(zm) − β , which allows us to rewrite the
sum appearing in eq. (3.16) as a global residue:

⟨φ(m)
L |φ(m)

R ⟩ = −Res⟨B(m)⟩
(
g(m)) − Reszm=∞

(
g(m)) . (3.19)

The computation of the global residue can be carried out using polynomial division modulo
the ideal ⟨B(m)⟩, in full analogy with the univariate case, where, according to eq. (3.9), the
global residue is given by:

Res⟨B(m)⟩(g(m)) =
g

(m)
−1,κ−1
ℓc

, (3.20)

with

⌊g(m)⌋B(m) =
max∑

i=min

κ−1∑
j=0

g
(m)
ij zj

m βi + O(βmax+1) , (3.21)

where κ and ℓc are the degree and the leading coefficient of B(m) respectively.
Hence, intersection numbers for n-forms can be computed within the recursive algorithm,

using polynomial division and global residue at each step of the sequence, by avoiding the
calculation of the residue (and the solution of a differential equation) around each pole,
and keeping all the intermediate calculations strictly rational, therefore allowing the use
of finite fields methods [50–52].

4 Relative twisted cohomology

In this section, we extend our framework to relative twisted cohomology [49]. We recall
the definition of delta-forms introduced in [47, 48] and show how, at least in the case of
1-forms, they emerge naturally when considering the series expansion of intersection numbers
in limit of evanescent regulator parameter.

4.1 Relative twisted cohomology and univariate delta-forms

We might consider what happens if we relax the criterion of eq. (2.1), requiring that all poles
of φL and φR are regulated by u. In such a case, if the point z = p is non regulated, a
local holomorphic solution ψp,L of the differential equation (2.14) may not exist, therefore
invalidating the algorithm of sections 2 and 3 for computing the intersection numbers. Relative
twisted cohomology [49] offers the proper mathematical framework to address such cases,

– 11 –
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where the contribution of the non-regulated poles to the intersection numbers is efficiently
evaluated through the use of n-forms built with Dirac delta functions [47–49]. These forms
play an essential role when used in the evaluation of the decomposition coefficients eq. (2.8)
where they are chosen as elements of the dual bases. We will refer to them as delta-forms
in the rest of this work.

Let us first discuss the univariate case. If z is unregulated at point z = 0 (which we pick
without loss of generality), the corresponding delta-form is defined as

δz := u(z)
u(0) dθz,0 , (4.1)

where θz,0 is defined in eq. (2.13). That this is a valid right-form can be shown by the
fact that it is closed:

∇−ωδz = du
u(0) dθz,0 + u

u(0) d2θz,0 −
du
u

u

u(0) dθz,0 = 0 . (4.2)

For delta-forms, the ι-regulation of eq. (2.11) is not needed and the intersection pairing can
be defined directly. In the univariate, case we may derive

⟨φL | δz⟩ := −1
2πi

∫
X
φL ∧ δz = Resz=0

(
u(z)
u(0)φL

)
, (4.3)

in agreement with [47–49]. We will discuss the multivariate analogue in section 4.3.

4.2 From cohomology to relative cohomology

By focusing our analysis to the case of 1-forms, we show that the formula of the intersection
number in ordinary twisted cohomology, when expressed as Laurent series with respect to a
small regulation parameter, contains the intersection numbers for relative twisted cohomology.
This relation allow us to establish, an explicit, direct link between the results of [15, 16]
and [47–49] on the one hand, and [50] on the other.

ψ in the vanishing regulator limit Let us consider the intersection number between two
forms ⟨φL | φR⟩ with a twist u, where u does not have a branch point at z = 0. If there
exists the possibility that φL or φR have a pole at z = 0 then, following [15, 16], a generic
analytic regulator ρ must be introduced, modifying the twist to uρ(z) = zρ u(z), such that uρ

is regulated around z = 0. Using eq. (2.15) the solution for ψ at z = 0 formally reads

ψ0(z) = zρ u(z)
(e−2πiρ − 1)

∫
C0(z)

t−ρ φR(t)
u(t) . (4.4)

Let us now consider this solution in the limit ρ → 0. By series expanding around ρ = 0
we obtain

zρ u(z)
(e−2πiρ − 1) = − 1

2πi

(1
ρ

+ log(z) + iπ + O(ρ)
)
u(z)

t−ρ φR(t)
u(t) =

(
1 − log(t)ρ+ O(ρ2)

) φR(t)
u(t) .

(4.5)

– 12 –
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0
z

C0(z)

ρ → 0

0
z

|z| = ϵ

Figure 2. The integration contour C0(z) used in eq. (4.4) on the left and its leading contribution in
the ρ→ 0 limit appearing in eq. (4.6) on the right.

Combining these two expansions gives

ψ0(z) = −u(z)
2πiρ

∫
C0(z)

φR(t)
u(t) + O(ρ0) ,

= −u(z)
2πiρ

∮
ϵ

φR(t)
u(t) + O(ρ0) ,

(4.6)

where in the second line we used the fact that the leading order term of the integrand is
single valued, so the integration contour C0(z) reduces to a small circle of radius ϵ encircling
the origin, see figure 2. The function ψ0 diverges in the limit ρ → 0 for generic φL/R and
has at most a simple pole in ρ.

Intersection numbers in the vanishing regulator limit For a regulated twist of the
form uρ = zρ u(z) we have concluded that at most ψ0 ∼ 1/ρ for small ρ. By using an analogue
of eq. (4.6) for any p ̸= 0 ∈ Pφ , it is not difficult to show that ψp cannot have a term of
the form ∼ 1/ρ. Using eq. (2.16) we conclude that

⟨φL | φR⟩ = 1
2πiρResz=0

(
u(z)φL(z)

∮
ϵ

φR(t)
u(t)

)
+ O(ρ0)

= 1
ρ

Resz=0
(
u(z)φL(z)

)
× Resz=0

(
φR(z)/u(z)

)
+ O(ρ0) .

(4.7)

The term O(ρ0) includes both higher term contributions in ρ coming from ψ0 and all terms
from the potentials ψp with p ̸= 0. It is important to note that if φL or φR do not have
any pole at z = 0, then the intersection number is finite in the ρ → 0 limit (because at
least one of the two residues vanishes).

Given any two forms φL and φR, such that φR behaves as φR ∼ zτ around z = 0, we
define the leading term (LT) of the intersection number as

⟨φL | φR⟩LT :=

 ⟨φL | φR⟩|ρ=0 , for τ ≥ 0 ,

Resz=0
(
u(z)φL(z)

)
× Resz=0

(
φR(z)/u(z)

)
, for τ < 0 .

(4.8)

In the above formula, ⟨φL | φR⟩|ρ=0 can be computed directly without regulators, namely by
evaluating the intersection number ⟨φL |φR⟩ using the twist u (instead of uρ), and considering
the contributions coming from the points Pω ∪ {0}.

– 13 –
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Equivalence to delta-forms. For the cases τ < 0, the definition of the leading term
in eq. (4.8) can be related to the action of the delta-forms introduced in section 4.1. In
particular, for a generic φL , and φR = 1/z, we observe that the LT of intersection number
in (ordinary) twisted cohomology reads as,〈

φL

∣∣∣∣ 1
z

〉
LT

= Resz=0

(
u(z)
u(0) φL(z)

)
= ⟨φL | δz⟩ , (4.9)

where, on the rightmost side, we consider the result of eq. (4.3), computed within relative
twisted cohomology. For cases where φR has a pole of order k this formula generalises to〈

φL

∣∣∣∣ 1
zk

〉
LT

= 1
(k − 1)! Resz=0

(
u(z)φL(z)

(
∂(k−1)

z

1
u(z)

)∣∣∣∣
z=0

)
. (4.10)

In the language of delta-forms this is would be equivalent to considering dual basis elements as

δ(k)
z ∼ u(z)

(
∂(k−1)

z

1
u(z)

)∣∣∣∣
z=0

dθ . (4.11)

Integral decompositions in the vanishing regulator limit According to the master
decomposition formula (2.8), in presence of a regulator, the coefficients ci can be computed
from intersection numbers, as:

ci = lim
ρ→0

ν∑
j=1

⟨φL | hj⟩C−1
ji , (4.12)

with Cij := ⟨ei | hj⟩. We can exploit the independence of ci on the dual bases |hj⟩ to simplify
the above result. While computing the intersection numbers ⟨η | hj⟩, with η ∈ {φL, ei}, if
an element of the dual basis |hj⟩ behaves as hj ∼ zτ with τ < 0, around z = 0, then it
can be replaced by |h′j⟩ := |ρ hj⟩ = ρ |hj⟩, without altering the final result of ci. Upon this
substitution, according to eqs. (4.7), (4.8), the singular behaviour in ρ is eliminated:

⟨η | hj⟩ ≃
⟨η | hj⟩LT

ρ
→ ⟨η | h′j⟩ ≃ ⟨η | hj⟩LT = ⟨η | δ(−τ)

z ⟩ . (4.13)

Then, only the leading terms of the intersection numbers become relevant, so that ci reduces to

ci =
ν∑

j=1
⟨φL | hj⟩LT (C−1

LT)ji , (4.14)

where (CLT)ij := ⟨ei | hj⟩LT . This formula necessarily requires that CLT be invertible: this
condition is satisfied for bases chosen according to the algorithm described in section 4.4 below.

Two observations are in order: for the evaluation of ⟨η | h′j⟩, we use eqs. (4.9), (4.10),
without needing to solve the differential equation (2.14) around the pole z = 0; moreover,
the idea of substituting |hj⟩ → ρ|hj⟩, borrowed from [50], is used here just formally in the
derivation of eq. (4.14), and it plays no explicit role in the actual evaluation algorithm.

Alternatively, as originally prescribed in [50], the simplified formula (4.14), can be effi-
ciently evaluated by extracting the leading term of the intersection numbers while solving the
(rightmost) differential equation (2.14) around the non regulated pole, with the prescription

– 14 –
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|φR⟩ → ρ |φR⟩ . Then, the solution ψ of the differential equation, to be used in (2.16), is
computed by ansatz, in the ρ → 0 limit, holding the leading coefficients in ρ only.

We consider our derivation of eq. (4.14) within ordinary twisted cohomology one of the
main results of this work, since it establishes a simple, clean link to relative cohomology [47, 48],
and it provides a sound theoretical framework to the prescription of the choice of the dual
bases suggested in [50].

4.3 Intersection numbers for n-forms in relative twisted cohomology

To avoid the use of regulators in the case of n-forms, we extend the outcome of the discussion
on the 1-forms, and make use of multivariate delta-forms [47, 48]. If the variables {z1, . . . , zm}
(out of a total of n) are non-regulated at the point zi = 0, the corresponding delta-form
is defined as

δz1,...,zm := u

u(0)

m∧
i=1

dθzi,0 , (4.15)

where we use the shorthand notation u(0) := u|z1→0,...,zm→0 .
In this work, we consider the intersection numbers ⟨φL | φR⟩ of the differential forms

belonging to the relative cohomology groups, defined according to the notation of [47–49], as:

φL ∈ Hn
ω := Hn(T,D;∇ω

)
, φR ∈ Hn

−ω := Hn(T∨, D∨;∇−ω
)
, (4.16)

where

T = Cn \ V
(
B(z)

)
\D∨ , T∨ = Cn \ V

(
B(z)

)
\D . (4.17)

Here, V(·) denotes the vanishing locus of its argument polynomial. For Feynman integrals
in Baikov representation, we take B(z) to be the Baikov polynomial (or the product of
individual factors appearing in the loop-by-loop Baikov representation), and the relative
boundary corresponding to the vanishing locus of physical denominators:

D = ∅ , D∨ = V(z1 · z2 · . . .) , (4.18)

where the set of zi are understood to be just the denominators (and not irreducible scalar
products). In particular, owing to the definition of T and T∨, differential forms in Hn

ω may
contain relative singularities, i.e. poles of the type z−τi

i , with τi > 0; whereas, differential
forms in Hn

−ω are free of relative singularities.
Given a holomorphic (n −m)-form ϕ, the delta-form (4.15) defines an element of the

relative dual cohomology group (4.16) (see appendix B for further details), and the intersection
pairing for it becomes

⟨φL|δz1,...,zmϕ⟩ := (−1)n

(2πi)n

∫
Xn

φL ∧ ι(δz1,...,zmϕ) , (4.19)

where the ι-operator only regulates the integrations over the variables which are regulated by
u, i.e. zm+1, . . . , zn , and ϕ = ϕ̂ dzm+1 ∧ . . . ∧ dzn . From this we may derive

⟨φL|δz1,...,zmϕ⟩ = (−1)n−m

(2πi)n−m

∫
Xm+1...n

Resz1=0,...,zm=0
(

u
u(0)φL

)
∧ ι(ϕ) (4.20)

=
〈

Resz1=0,...,zm=0
(

u
u(0)φL

) ∣∣ ϕ〉 , (4.21)
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where the (n−m)-variate intersection number on the r.h.s. should be computed as in the
ordinary (non-relative) cohomology, by using eq. (2.17). Let us remark that the ratio u/u(0)
in (4.21) (resp. in eq. (4.3), for the univariate case) is understood to be evaluated as a series
expansion around zi = 0 for i = 1, . . . ,m (resp. around z = 0, for the univariate case).4

4.4 Choice of basis elements

In this section, we discuss an algorithm for the determination of the elements of the basis
and dual basis. First, we address the problem of providing a valid basis of MIs for a given
integral family. In other words, we are interested in determining a basis, denoted by e, for
the twisted cohomology group.

Let us consider for concreteness a problem depending on z = {z1, . . . , zn} variables
(within Baikov representation, the number of integration variables amounts to the number
of denominators and ISPs).

We identify a sector, denoted by S, as a subset of the integration variables, say for
concreteness S = {z1, . . . , zs} ⊂ z. A subsector is identified, in a natural way, as a subset of S.

Given S, we can consider the corresponding regulated twist, say uS and the associated
ωS , defined as

uS =
∏

zi∈S
zρi

i · u , ωS = d log uS . (4.22)

The number of zeros of ωS , denoted by νS (cf. eq. (2.7)), corresponds to the number of
MIs in the sector S, including all its possible subsectors. Equivalently, it amounts to the
number of elements in the basis admitting at most {z1, . . . , zs} in the denominator (but
not other zi , with zi /∈ S).

Then, a possible strategy for the determination of the basis elements can be outlined as
follows:
We order all the possible sectors, according to the number of their elements, from the smallest
to the largest and we create a list containing all the elements in the basis. Clearly, in the
input stage the list is empty; it is updated according to the following steps

• Consider a certain sector S and count the number of zeros of the corresponding ωS (cf.
eq. (2.7)).

• Update the list of basis elements, without over-counting the elements already considered
in all the possible subsectors (if any).

• Iterate to the next sector in the list.
4When φL contains a simple, unregulated pole at z = 0, the u/u(0)-factor plays no role on the evaluation

of the residue, namely Resz=0
(
(u/u(0)) φL

)
= Resz=0(φL). In presence of a higher order pole, additional

terms of the Laurent series expansion of u/u(0) may be needed, up to the required order in z. Alternatively,
the repeated use of by-parts integration brings to the construction of an equivalent differential form, φ′

L ∼ φL,
with a simple pole only, belonging to the same cohomology group, so that the case discussed earlier applies
(see, for instance, eq. (5.20)).
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z2

z3

z4

p1

p2 p3
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Figure 3. The one-loop box integral family contributing to Bhabha scattering.

Once the list of all possible sectors is processed, the updated list will contain all the basis
elements. In the context of relative cohomology, a dual basis−denoted by h-may be obtained
by replacing inverse power of the variables by the corresponding delta-form, i.e.:

h = e|(zizj ··· )−1 → δzizj ··· . (4.23)

An important comment is in order. While analyzing a certain sector, we may encounter
the situation in which more than one basis element has to be added to the list. If this is
the case, we are free to choose the new elements in different ways (e.g. introducing ISPs
or denominators raised to higher powers) but we cannot guarantee that the new elements
are independent. We may verify the validity of our choice a posteriori, by checking that
the corresponding C-matrix is invertible, i.e. det C ̸= 0.

The strategy described above can also be applied in order to obtain a list of basis elements
for each layer in the fibration procedure. At any given layer, the full set of variables is just
a subset of the full set z, and the notion of sector has to be considered as a mathematical
definition with no clear physical analogue.

For an example of the use of this algorithm, see appendix C.

5 Applications

In this section the usage of the polynomial division algorithm (section 3), and the relative
twisted cohomology framework (section 4), are applied to efficiently decompose some specific
Feynman integrals. All examples are done using the bottom-up decomposition [17] in which
the reduction is performed on a spanning set of cuts, defined as the minimal set of cuts
(each corresponding to a maximal cut of a sector) for which each master integral appears at
least once. On a given cut, integrals depend on fewer integration variables and each cut is
associated to a different twist. Using this procedure, the reduction of the full integral (out
of cuts) may be obtained by combining the results from the individual cuts.

We anticipate, that all the decomposition formulas obtained within the intersection-theory
based approach, are verified to be equivalent to those obtained by means of IBPs.

5.1 One-loop box for Bhabha scattering

As a warm-up example exhibiting the computational technology introduced above, let us
consider the one-loop box integral family contributing to Bhabha scattering shown in figure 3.
The denominators are chosen as

z1 = ℓ2 −m2, z2 = (ℓ− p1)2, z3 = (ℓ− p1 − p2)2 −m2, z4 = (ℓ− p1 − p2 − p3)2, (5.1)
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Figure 4. The 7 master integrals for the one-loop box integral family contributing to Bhabha
scattering, before imposing symmetry relations.

while the kinematics is specified by

p2
i = m2 , s = (p1 + p2)2 , t = (p2 + p3)2 , s+ t+ u = 4m2 . (5.2)

There are 16 possible sectors, and 7 MIs depicted in figure 4 For illustration purposes we
consider here the Cut 24, associated to z2 = z4 = 0. On this cut just four MIs contribute
and we focus for concreteness on the decomposition of the target integral:

I =
∫

dz1dz3 u(z1, z3) 1
z1z2

3
(5.3)

in terms of master integrals

I =
4∑

i=1
ci Ji , (5.4)

depicted as

= c1 + c2 + c3 + c4 . (5.5)

The twist is given by

u = Bγ , where γ = d− 5
2 , (5.6)

with:
B = −4m2

(
st+ (z1 − z3)2

)
+ s2t− 2s(t(z1 + z3) + 2z1z3) + t(z1 − z3)2. (5.7)

We may compute the connection as ω = ω̂1 dz1 + ω̂3 dz3 with

ω̂1 = (d− 5)
(
s(t+ 2z3) + (4m2 − t)(z1 − z3)

)
4m2 (st+ (z1 − z3)2) − s2t+ 2st(z1 + z3) + 4sz1z3 − t(z1 − z3)2 , (5.8)

ω̂3 = (d− 5)
(
s(t+ 2z1) − (4m2 − t)(z1 − z3)

)
4m2 (st+ (z1 − z3)2) − s2t+ 2st(z1 + z3) + 4sz1z3 − t(z1 − z3)2 . (5.9)

Choosing the variable order {z1, z3} and then following the procedure of appendix C, we
get as the dimension of the inner and outer bases

ν(3) = 2 , ν(13) = 4 . (5.10)

The bases are

e(3) =
{

1 , 1
z3

}
, e = e(13) =

{
1 , 1

z1
,

1
z3
,

1
z1z3

}
, (5.11)

while the dual bases are chosen as

h(3) = {1, δ3}, h = h(13) = {1, δ1, δ3, δ13} . (5.12)

The target left form associated to the integral on the l.h.s. of eq. (5.5) is φL = 1
z1z2

3
.
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Computation

Inner layer z3. We first have to compute the C-matrix for the inner layer.
In order to do so we first find the B = B(3) − β function for the internal layer, which is

needed to compute the sum over finite poles using the polynomial residue algorithm explained
in section 3. B(3) is the denominator of Ω∨(3) = −ω3 , which in this case corresponds to the
same Baikov polynomial (5.7) with the opposite sign

B(3) = 4m2
(
st+ (z1 − z3)2

)
− s2t+ 2s(t(z1 + z3) + 2z1z3) − t(z1 − z3)2 . (5.13)

We notice that z3 = 0 is not a zero of B(3), since it is an unregulated pole. The intersection
numbers between cocycles which do not contain any delta-forms are evaluated as in eq. (2.16)

⟨e(3)
i |h(3)

1 ⟩ = −Res⟨B(3)⟩(e
(3)
i ψ

(3)
R ) − Resz=∞(e(3)

i ψ
(3)
R ) , (5.14)

while intersections with delta-forms read

⟨e(3)
i |h(3)

2 ⟩ = ⟨e(3)
i |δ3⟩ = Resz3=0(e(3)

i ) . (5.15)

Performing the computations one gets the internal C-matrix, which is then given by:

C(3) =

 −4(d−5)s(4m2−s−t)(m2t+z1(t+z1))
(d−6)(d−4)(4m2−t)2 0

z1(4m2−2s−t)−st

(d−6)(4m2−t) 1

 . (5.16)

Outer layer z1. The Ω∨(1) matrix for the outer layer is given as in eq. (2.24):

Ω∨(1) =

 (d−6)(t+2z1)
2(m2t+z1(t+z1)) 0

t(2m2−s+z1)
2(m2t+z1(t+z1))

(d−5)(4m2z1+st−tz1)
4m2(st+z2

1)−t(s−z1)2

 . (5.17)

In order to use the polynomial division algorithm in the outer layer, one has to find
the corresponding ideal generator B(1)

β = B(1) − β needed to compute the sum over finite
poles. According to eq. (3.18), it is given in terms of

B(1) = LCM(P(1)
fin ) = 2

(
m2t+ z1(t+ z1)

) (
4m2

(
st+ z2

1

)
− t(s− z1)2

)
. (5.18)

The C-matrix for the outer layer reads:

C(1) =



st2(4m2−s−t)
4(d−7)(d−3) 0 0 0

st2((8d−44)m2−(d−6)t)(4m2−s−t)
2(d−7)(d−6)(d−4)(4m2−t)2 −4(d−5)m2st(4m2−s−t)

(d−6)(d−4)(4m2−t)2 0 0
st2((8d−44)m2−(d−6)t)(4m2−s−t)

2(d−7)(d−6)(d−4)(4m2−t)2 0 −4(d−5)m2st(4m2−s−t)
(d−6)(d−4)(4m2−t)2 0

st2

(d−7)(d−6)(4m2−t)
−st

(d−6)(4m2−t)
−st

(d−6)(4m2−t) 1


.

(5.19)
When computing the intersection numbers of φ in the outer basis, we remove the higher

order pole as:

φ = 1
z1z2

3
∼ ∂z3(u)

u

1
z1z3

= ω3
z1z3

, (5.20)
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where the ∼ means that the forms belong to the same cohomology class. Then we get:

⟨φ|h(13)
j ⟩ =

(
(d−5)st

(d−7)(d−6)(4m2−t) ,
d−5
6−d ,

(d−5)(4m2−2s−t)
(d−6)(4m2−t) , d−5

4m2−s

)
. (5.21)

Combining this result with the metric C(1) via the master decomposition formula eq. (2.8)
we get the coefficients of the reduction:

⟨φ|C] = c1⟨e1|C] + c2⟨e2|C] + c3⟨e3|C] + c4⟨e4|C] , (5.22)

which are given by:

c1 = − d− 3
m2t (4m2 − s) , c2 = (d− 4)

(
4m2 − t

)
st (4m2 − s) ,

c3 = −(d− 4)
(
2m2 − s

) (
4m2 − t

)
2m2st (4m2 − s) , c4 = d− 5

4m2 − s
, (5.23)

and are in agreement with FIRE.
More generally, the full decomposition can be achieved by combining the decompositions

on different cuts, and in the following we will see it in some two-loop examples.

5.2 Planar double-box

The integral family of the planar double-box is given in terms of

z1 = k2
1 , z2 = (k1−p1)2, z3 = (k1−p1−p2)2, z4 = (k2−p1−p2)2, z5 = (k2+p4)2,

z6 = k2
2 , z7 = (k1−k2)2, z8 = (k1+p4)2, z9 = (k2−p1)2, (5.24)

where z8 and z9 are irreducible scalar products, hence they may only appear in the numerator.
The kinematics is such that:

p2
i = 0 , s = (p1+p2)2 , t = (p1+p4)2 , s+ t+ u = 0 . (5.25)

This integral family has (before application of the symmetry relations) 12 master integrals,
which we may pick as depicted in figure 5. We are interested in decomposing the target integral:

I =
∫

dz u(z) z2
8

z1z2z3z4z5z6z7
(5.26)

in terms of master integrals via a complete set of spanning cuts, as:

I =
12∑

i=1
ci Ji . (5.27)

The explicit expressions for the twist u(z) as well as the master integrals Ji can be found
in the ancillary file Dbox_massless.m.

The set of spanning cuts is given by the maximal cuts of the first six master integrals
{J1, . . . , J6}, and we will now go through them one by one.
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Figure 5. The 12 master integrals for the planar double box integral family, before imposing symmetry
relations. The index i, next to the propagators, indicates the corresponding zi variable; Num stands
for the numerator factor; s, t, and u channels are indicated, to distinguish among graphs with identical
shape, but corresponding to different integrals.

Cut 147, maximal cut of J1. Setting z1 = z4 = z7 = 0, and choosing as order of variables,
from outer to inner:

{z3, z8, z2, z6, z5, z9} (5.28)

we get as dimensions for the various layers:

ν(9) = 1 , ν(59) = 2 , ν(659) = 2 , ν(2659) = 4 , ν(82659) = 5 , ν(382659) = 4 . (5.29)

We pick as bases:

e(9) = {1} , e(59) =
{

1, 1
z5

}
, e(659) =

{
1, 1

z5z6

}
,

e(2659) =
{

1, 1
z2
, 1

z5z6
, 1

z2z5z6

}
, e(82659) =

{
1, 1

z5
, 1

z2z5
, 1

z2z5z6
, z8

z2z5z6
,
}
.

e = e(382659) =
{

1, 1
z2z5

, 1
z2z3z5z6

, z8
z2z3z5z6

}
. (5.30)

and as corresponding dual ones:

h(9) = {1} , h(59) = {1, δ5} , h(659) = {1, δ56} ,

h(2659) = {1, δ2, δ56, δ256} , h(82659) = {1, δ5, δ25, δ256, z8δ256} ,

h = h(382659) = {1, δ25, δ2356, z8δ2356} . (5.31)

We can then decompose the target left form: φ = z2
8

z2z3z5z6
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c1⟨e1|C] + c7⟨e2|C] + c11⟨e3|C] + c12⟨e4|C] . (5.32)

Cut 367, maximal cut of J2. Setting z3 = z6 = z7 = 0, and choosing as order of variables,
from outer to inner:

{z1, z8, z2, z5, z4, z9} (5.33)
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we get as dimensions for the various layers:

ν(9) = 1 , ν(49) = 2 , ν(549) = 2 , ν(2549) = 4 , ν(82549) = 5 , ν(182549) = 4 . (5.34)

We pick as bases:

e(9) = {1} , e(49) =
{

1, 1
z4

}
, e(549) =

{
1, 1

z4z5

}
,

e(2549) =
{

1, 1
z2
, 1

z4z5
, 1

z2z4z5

}
, e(82549) =

{
1, 1

z5
, 1

z2z5
, 1

z2z4z5
, z8

z2z4z5

}
,

e = e(182549) =
{

1, 1
z2z5

, 1
z1z2z4z5

, z8
z1z2z4z5

}
. (5.35)

and as corresponding dual ones:

h(9) = {1} , h(49) = {1, δ4} , h(549) = {1, δ45} ,

h(2549) = {1, δ2, δ45, δ245} , h(82549) = {1, δ5, δ25, δ245, z8δ245} ,

h = h(182549) = {1, δ25, δ1245, z8δ1245} . (5.36)

We can then decompose the target left form: φ = z2
8

z1z2z4z5
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c2⟨e1|C] + c8⟨e2|C] + c11⟨e3|C] + c12⟨e4|C] . (5.37)

Cut 257, maximal cut of J3. Setting z2 = z5 = z7 = 0, and choosing as order of variables,
from outer to inner:

{z1, z8, z3, z6, z4, z9} (5.38)

we get as dimensions for the various layers:

ν(9) = 1 , ν(49) = 2 , ν(649) = 2 , ν(3649) = 6 , ν(83649) = 10 , ν(183649) = 7 . (5.39)

We pick as bases:

e(9) = {1} , e(49) =
{

1, 1
z4

}
, e(649) =

{
1, 1

z4z6

}
,

e(3649) =
{

1, 1
z3
, 1

z4
, 1

z4z6
, z9

z4z6
, 1

z3z4z6

}
,

e(83649) =
{

1, 1
z3
, 1

z4
, z8

z4
, 1

z6
, 1

z3z6
, 1

z4z6
, z8

z4z6
, 1

z3z4z6
, z8

z3z4z6

}
,

e = e(183649) =
{

1, 1
z1z4

, 1
z3z6

, 1
z1z3

, 1
z4z6

, 1
z1z3z4z6

, z8
z1z3z4z6

}
. (5.40)

and as corresponding dual ones:

h(9) = {1} , h(49) = {1, δ4} , h(649) = {1, δ46} ,

h(3649) = {1, δ3, δ4, δ46, z9δ46, δ346} ,

h(83649) = {1, δ3, δ4, z8δ4, δ6, δ36, δ46, z8δ46, δ346, z8δ346} ,

h = h(183649) = {1, δ14, δ36, δ13, δ46, δ1346, z8δ1346} . (5.41)

We can then decompose the target left form: φ = z2
8

z1z3z4z6
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c3⟨e1|C] + c7⟨e2|C] + c8⟨e3|C] + c9⟨e4|C] + c10⟨e5|C] + c11⟨e6|C] + c12⟨e7|C] . (5.42)
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Cut 1346, maximal cut of J4. Setting z1 = z3 = z4 = z6 = 0, and choosing as order
of variables, from outer to inner:

{z8, z2, z5, z7, z9} (5.43)

we get as dimensions for the various layers:

ν(9) = 1 , ν(79) = 2 , ν(579) = 2 , ν(2579) = 4 , ν(82579) = 3 . (5.44)

We pick as bases:

e(9) = {1} , e(79) =
{

1, 1
z7

}
, e(579) =

{
1, 1

z5z7

}
,

e(2579) =
{

1, 1
z2
, 1

z5z7
, 1

z2z5z7

}
,

e =e(82579) =
{

1, 1
z2z5z7

, z8
z2z5z7

}
,

(5.45)

and as corresponding dual ones:

h(9) = {1} , h(79) = {1, δ7} , h(579) = {1, δ57} ,

h(2579) = {1, δ2, δ57, δ257} ,

h =h(82579) = {1, δ257, z8δ257} .
(5.46)

We can then decompose the target left form: φ = z2
8

z2z5z7
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c4⟨e1|C] + c11⟨e2|C] + c12⟨e3|C] . (5.47)

Cut 1357, maximal cut of J5. Setting z1 = z3 = z5 = z7 = 0, and choosing as order
of variables, from outer to inner:

{z8, z2, z4, z6, z9} (5.48)

we get as dimensions for the various layers:

ν(9) = 1 , ν(69) = 2 , ν(469) = 2 , ν(2469) = 4 , ν(82469) = 4 . (5.49)

We pick as bases:

e(9) = {1} , e(69) =
{

1, 1
z6

}
, e(469) =

{
1, 1

z4z6

}
,

e(2469) =
{

1, 1
z2
, 1

z4z6
, 1

z2z4z6

}
,

e =e(82469) =
{

1, 1
z2
, 1

z2z4z6
, z8

z2z5z6

}
,

(5.50)

and as corresponding dual ones:

h(9) = {1} , h(69) = {1, δ6} , h(469) = {1, δ46} ,

h(2469) = {1, δ2, δ46, δ246} ,

h =h(82469) = {1, δ2, δ246, z8δ246} .
(5.51)

We can then decompose the target left form: φ = z2
8

z2z4z6
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c5⟨e1|C] + c9⟨e2|C] + c11⟨e3|C] + c12⟨e4|C] . (5.52)
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Cut 2467, maximal cut of J6. Setting z2 = z4 = z6 = z7 = 0, and choosing as order
of variables, from outer to inner:

{z9, z1, z3, z5, z8} (5.53)

we get as dimensions for the various layers:

ν(8) = 1 , ν(58) = 2 , ν(358) = 4 , ν(1358) = 4 , ν(91358) = 4 . (5.54)

We pick as bases:

e(8) = {1} , e(58) =
{

1, 1
z5

}
, e(358) =

{
1, 1

z3
, 1

z5
, 1

z3z5

}
,

e(1358) =
{

1, 1
z5
, 1

z1z3
, 1

z1z3z5

}
,

e =e(91358) =
{

1, 1
z5
, 1

z1z3z5
, z8

z1z3z5

}
,

(5.55)

and as corresponding dual ones:

h(8) = {1} , h(58) = {1, δ5} , h(358) = {1, δ3, δ5, δ35} ,

h(1358) = {1, δ5, δ13, δ135} ,

h =h(91358) = {1, δ5, δ135, z8δ135} .
(5.56)

We can then decompose the target left form: φ = z2
8

z1z3z5
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c6⟨e1|C] + c10⟨e2|C] + c11⟨e3|C] + c12⟨e4|C] . (5.57)

Cut merging and symmetries. From the analysis on the complete spanning cuts, one
is able to get the coefficients of the decomposition, obtaining:

c1 = c2 = (3d− 10)(3d− 8)(s+ 2t)
(d− 4)2(d− 3)s3 , c3 = 9(3d− 10)(3d− 8)

(d− 4)2st
,

c4 = 2(2ds+ 2dt− 7s− 8t)
(d− 4)s2 , c5 = 9(3d− 10)

2(d− 4)s , c6 = (3d− 10)(2s− t)
(d− 4)s2 , (5.58)

c7 = c8 = −(d− 4)(7s+ 9t)
2(d− 3)s , c9 = c10 = 4 , c11 = (d− 4)st

2(d− 3) , c12 = −3ds− 12s− 2t
2(d− 3) .

Symmetries of the problem induce the following additional symmetry relations between
the master integrals:

J1 = J2 , J5 = J6 , J7 = J8 , J9 = J10 . (5.59)

This reduce to 8 the number of genuinely independent master integrals, meaning that the
final decomposition may be written as

I = c̃1J1 + c3J3 + c4J4 + c̃5J5 + c̃7J7 + c̃9J9 + c11J11 + c12J12 , (5.60)

where

c̃1 = c1 + c2 , c̃5 = c5 + c6 , c̃7 = c7 + c8 , c̃9 = c9 + c10 . (5.61)
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Figure 6. The 16 master integrals for the non-planar double-box integral family, before imposing
symmetry relations. The index i, next to the propagators, indicates the corresponding zi variable;
Num stands for the numerator factor; s, t, and u channels are indicated, to distinguish among graphs
with identical shape, but corresponding to different integrals.

5.3 Non-planar double-box

The integral family of the non-planar double box is given in terms of

z1 = k2
1 , z2 = (k1−p1)2, z3 = (k1−p1−p2)2, z4 = (k2−p1−p2−p3)2, z5 = k2

2 ,

z6 = (k1−k2)2, z7 = (k1−k2+p3)2, z8 = (k1−p1−p2−p3)2, z9 = (k2−p1)2, (5.62)

where z8 and z9 are irreducible scalar products. The kinematics is such that:

p2
i = 0 , s = (p1+p2)2 , t = (p1+p4)2 , s+ t+ u = 0 . (5.63)

This integral family has (before the application of symmetry relations) 16 master integrals,
which we may pick as depicted in figure 6. We are interested in decomposing the target integral:

I =
∫

dz u(z) z2
8

z1z2z3z4z5z6z7
(5.64)

in terms of master integrals via a complete set of spanning cuts, as:

I =
16∑

i=1
ci Ji . (5.65)

The explicit expressions for the twist u(z) as well as the master integrals Ji can be found
in the ancillary file Dbox_massless_nonplanar.m.

The set of spanning cuts is given by the maximal cuts of the first six master integrals
{J1, . . . , J6}, and we will now go through them one by one.
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Cut 147, maximal cut of J1. Setting z1 = z4 = z7 = 0, and choosing as order of variables,
from outer to inner:

{z8, z3, z2, z5, z6, z9} (5.66)

we get as dimensions for the various layers:

ν(9) = 1 , ν(69) = 2 , ν(569) = 2 , ν(2569) = 4 , ν(32569) = 7 , ν(832569) = 6 . (5.67)

We pick as bases:

e(9) = {1} , e(69) =
{

1, 1
z6

}
, e(569) =

{
1, 1

z5z6

}
,

e(2569) =
{

1, 1
z2
, 1

z5z6
, 1

z2z5z6

}
, e(32569) =

{
1, 1

z2
, 1

z6
, 1

z2z6
, 1

z2z5z6
, 1

z3z5z6
, 1

z2z3z5z6

}
,

e = e(832569) =
{

1, 1
z2z6

, 1
z2z5

, 1
z3z5z6

, 1
z2z3z5z6

, z8
z2z3z5z6

}
, (5.68)

and as corresponding dual ones:

h(9) = {1} , h(69) = {1, δ6} , h(569) = {1, δ56} ,

h(2569) = {1, δ2, δ56, δ256} , h(32569) = {1, δ2, δ6, δ26, δ256, δ356, δ2356} ,

h = h(832569) = {1, δ26, δ25, δ356, δ2356, z8δ2356} . (5.69)

We can then decompose the target left form: φ = z2
8

z2z3z5z6
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c1⟨e1|C] + c7⟨e2|C] + c9⟨e3|C] + c14⟨e4|C] + c15⟨e5|C] + c16⟨e6|C] . (5.70)

Cut 356, maximal cut of J2. Setting z3 = z5 = z6 = 0, and choosing as order of variables,
from outer to inner:

{z8, z1, z2, z7, z4, z9} (5.71)

we get as dimensions for the various layers:

ν(9) = 1 , ν(49) = 2 , ν(749) = 2 , ν(2749) = 4 , ν(12749) = 7 , ν(812749) = 6 . (5.72)

We pick as bases:

e(9) = {1} , e(49) =
{

1, 1
z4

}
, e(749) =

{
1, 1

z4z7

}
,

e(2749) =
{

1, 1
z2
, 1

z4z7
, 1

z2z4z7

}
, e(12749) =

{
1, 1

z2
, 1

z4
, 1

z2z4
, 1

z2z4z7
, 1

z1z4z7
, 1

z1z2z4z7

}
,

e = e(812749) =
{

1, 1
z2z4

, 1
z2z7

, 1
z1z4z7

, 1
z1z2z4z7

, z8
z1z2z4z7

}
, (5.73)

and as corresponding dual ones:

h(9) = {1} , h(49) = {1, δ4} , h(749) = {1, δ47} ,

h(2749) = {1, δ2, δ47, δ247} , h(12749) = {1, δ2, δ4, δ24, δ247, δ147, δ1247} ,

h = h(812749) = {1, δ24, δ27, δ147, δ1247, z8δ1247} . (5.74)

We can then decompose the target left form: φ = z2
8

z1z2z4z7
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c2⟨e1|C] + c8⟨e2|C] + c10⟨e3|C] + c14⟨e4|C] + c15⟨e5|C] + c16⟨e6|C] . (5.75)

– 26 –



J
H
E
P
0
9
(
2
0
2
4
)
0
1
5

Cut 246, maximal cut of J3. Setting z2 = z4 = z6 = 0, and choosing as order of variables,
from outer to inner:

{z3, z8, z1, z7, z5, z9} (5.76)

we get as dimensions for the various layers:

ν(9) = 1 , ν(59) = 2 , ν(759) = 2 , ν(1759) = 6 , ν(81759) = 10 , ν(381759) = 7 . (5.77)

We pick as bases:

e(9) = {1} , e(59) =
{

1, 1
z5

}
, e(759) =

{
1, 1

z5z7

}
,

e(1759) =
{

1, 1
z1
, 1

z5
, 1

z5z7
, z9

z5z7
, 1

z1z5z7

}
,

e(81759) =
{

1, 1
z1
, 1

z5
, z8

z5
, 1

z7
, 1

z1z7
, 1

z5z7
, z8

z5z7
, 1

z1z5z7
, z8

z1z5z7

}
,

e = e(381759) =
{

1, 1
z1z7

, 1
z3z5

, 1
z5z7

, 1
z1z3

, 1
z1z3z5z7

, z8
z1z3z5z7

}
, (5.78)

and as corresponding dual ones:

h(9) = {1} , h(59) = {1, δ5} , h(759) = {1, δ57} ,

h(1759) = {1, δ1, δ5, δ57, z9δ57, δ157} ,

h(81759) = {1, δ1, δ5, z8δ5, δ7, δ17, δ57, z8δ57, δ157, z8δ157} ,

h = h(381759) = {1, δ17, δ35, δ57, δ13, δ1357, z8δ1357} . (5.79)

We can then decompose the target left form: φ = z2
8

z1z3z5z7
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c3⟨e1|C] + c7⟨e2|C] + c8⟨e3|C] + c11⟨e4|C] + c12⟨e5|C] + c15⟨e6|C] + c16⟨e7|C] . (5.80)

Cut 257, maximal cut of J4. Setting z2 = z5 = z7 = 0, and choosing as order of variables,
from outer to inner:

{z1, z8, z3, z6, z4, z9} (5.81)

we get as dimensions for the various layers:

ν(9) = 1 , ν(49) = 2 , ν(649) = 2 , ν(3649) = 7 , ν(83649) = 10 , ν(183649) = 7 . (5.82)

We pick as bases:

e(9) = {1} , e(49) =
{

1, 1
z4

}
, e(649) =

{
1, 1

z4z6

}
,

e(3649) =
{

1, z3,
1
z6
, 1

z3
, 1

z4z6
, z3

z4z6
, 1

z3z4z6

}
,

e(83649) =
{

1, 1
z3
, 1

z4
, z3

z4
, 1

z6
, 1

z3z6
, 1

z4z6
, z8

z4z6
, 1

z3z4z6
, z8

z3z4z6

}
,

e = e(183649) =
{

1, 1
z1z4

, 1
z3z6

, 1
z4z6

, 1
z1z3

, 1
z1z3z4z6

, z8
z1z3z4z6

}
, (5.83)
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and as corresponding dual ones:

h(9) = {1} , h(49) = {1, δ4} , h(649) = {1, δ46} ,

h(3649) = {1, z3, δ6, δ3, δ46, z3δ46, δ346} ,

h(83649) = {1, δ3, δ4, z3δ4, δ6, δ36, δ46, z8δ46, δ346, z8δ346} ,

h = h(183649) = {1, δ14, δ36, δ46, δ13, δ1346, z8δ1346} . (5.84)

We can then decompose the target left form: φ = z2
8

z1z3z4z6
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c4⟨e1|C] + c9⟨e2|C] + c10⟨e3|C] + c11⟨e4|C] + c13⟨e5|C] + c15⟨e6|C] + c16⟨e7|C] . (5.85)

Cut 1346, maximal cut of J5. Setting z1 = z3 = z4 = z6 = 0, and choosing as order
of variables, from outer to inner:

{z8, z2, z5, z7, z9} (5.86)

we get as dimensions for the various layers:

ν(9) = 1 , ν(79) = 2 , ν(579) = 2 , ν(2579) = 4 , ν(82579) = 5 . (5.87)

We pick as bases:

e(9) = {1} , e(79) =
{

1, 1
z7

}
, e(579) =

{
1, 1

z5z7

}
,

e(2579) =
{

1, 1
z2
, 1

z5z7
, 1

z2z5z7

}
,

e = e(82579) =
{

1, 1
z2
, 1

z5z7
, 1

z2z5z7
, z8

z2z5z7

}
, (5.88)

and as corresponding dual ones:

h(9) = {1} , h(79) = {1, δ7} , h(579) = {1, δ57} ,

h(2579) = {1, δ2, δ57, δ257} ,

h = h(82579) = {1, δ2, δ57, δ257, z8δ257} . (5.89)

We can then decompose the target left form: φ = z2
8

z2z5z7
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c5⟨e1|C] + c12⟨e2|C] + c14⟨e3|C] + c15⟨e4|C] + c16⟨e5|C] . (5.90)

Cut 1357, maximal cut of J6. Setting z1 = z3 = z5 = z7 = 0, and choosing as order
of variables, from outer to inner:

{z8, z2, z4, z6, z9} (5.91)

we get as dimensions for the various layers:

ν(9) = 1 , ν(69) = 2 , ν(469) = 2 , ν(2469) = 4 , ν(82469) = 5 . (5.92)
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We pick as bases:

e(9) = {1} , e(69) =
{

1, 1
z6

}
, e(469) =

{
1, 1

z4z6

}
,

e(2469) =
{

1, 1
z2
, 1

z4z6
, 1

z2z4z6

}
, (5.93)

e = e(82469) =
{

1, 1
z2
, 1

z4z6
, 1

z2z4z6
, z8

z2z4z6

}
, (5.94)

and as corresponding dual ones:

h(9) = {1} , h(69) = {1, δ6} , h(469) = {1, δ46} ,

h(2469) = {1, δ2, δ46, δ246} , (5.95)
h = h(82469) = {1, δ2, δ46, δ246, z8δ246} . (5.96)

We can then decompose the target left form: φ = z2
8

z2z4z6
in terms of the outer basis, where

we omit the superscripts for simplicity, obtaining:

⟨φ|C] = c6⟨e1|C] + c13⟨e2|C] + c14⟨e3|C] + c15⟨e4|C] + c16⟨e5|C] . (5.97)

Cut merging and symmetries. From the analysis on the complete spanning cuts, one
is able to get the coefficients of the decomposition, obtaining:

c1 = c2 = −(d− 3)(3d− 10)(3d− 8)((7d− 30)s+ 8(2d− 9)t)
4(d− 4)3(2d− 9)s2(s+ t) ,

c3 = −3(d− 3)(3d− 10)(3d− 8)(4(2d− 9)s+ (5d− 22)t)
2(d− 4)3(2d− 9)st(s+ t) ,

c4 = (d− 3)(3d− 10)(3d− 8)(13ds+ 9dt− 60s− 42t)
2(d− 4)3(2d− 9)s(s+ t)2 ,

c5 = c6 = −3(d− 3)(3d− 10)
2(d− 4)2s

,

c7 = −11ds− 15dt+ 48s+ 66t
36s− 8ds ,

c8 = −11ds− 15dt+ 48s+ 66t
36s− 8ds ,

c9 = c10 = 3(14 − 3d)t2
4(2d− 9)s(s+ t) ,

c11 = −5ds− 4dt− 24s+ 18t
2(2d− 9)(s+ t) ,

c12 = c13 = −2(d− 3)
d− 4 ,

c14 = s

4 ,

c15 = st

4 ,

c16 = 1
4(2t− 3s) .

(5.98)

By applying symmetry relations one gets the following relations:

J1 = J2 , J5 = J6 , J7 = J8 , J9 = J10 , (5.99)

– 29 –



J
H
E
P
0
9
(
2
0
2
4
)
0
1
5

5

4
5

6

7

2

1

5
3

3
6 5

7
6

2 7

5
2

3 6

7

5
4

7
2

5
3

6
1

1

5

6

1
3

7
6

1
3

7
4 2 5

4

5

6

7

1
3 5

6

7
1

2

3

5 6
1

2

3
5

7

6

1
2

3 4

5 6
7

1
2 5

6

4

5
2

3 6

7

1
2

3 4

5 6

7

Figure 7. The 19 master integrals of the planar double-box with one external mass, before imposing
symmetry relations. The index i, next to the propagators, indicates the corresponding zi variable;
Num stands for the numerator factor; s, t, and u channels are indicated, to distinguish among graphs
with identical shape, but corresponding to different integrals.

that reduce to 12 the number of genuinely independent master integrals. A reduction unto
this basis is obtained by adding the corresponding coefficients as given by eq. (5.98).

5.4 Planar double-box with one external mass

The integral family of the planar double box with one external mass is given in terms of:

z1 = k2
1 , z2 = (k1+p1)2, z3 = (k1+p1+p2)2, z4 = (k2+p1+p2)2, z5 = (k1−k2)2,

z6 = (k2−p3)2, z7 = k2
2 , z8 = (k2+p1)2, z9 = (k1−p3)2, (5.100)

where z8 and z9 are ISPs. The kinematics is such that:

p2
3 = m2 , p2

1 = p2
2 = p2

4 = 0 , s = (p1+p2)2 , t = (p1+p3)2 , s+t+u = m2 .

(5.101)
This integral family has (before the application of symmetry relations) 19 master integrals,
belonging to 17 sectors, which are depicted in figure 7. We are interested in decomposing
the target integral:

I =
∫

dz u(z) z2
8

z1z2z3z4z5z6z7
(5.102)

in terms of master integrals via a complete set of spanning cuts, as:

I =
19∑

i=1
ci Ji . (5.103)

The set of spanning cuts is given by the maximal cuts of {J1, . . . , J4, J7, J9, J10}. The explicit
expressions for the twist u(z) as well as the master integrals Ji can be found in the ancillary
file Dbox_1m_planar.m.
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Figure 8. The 24 master integrals of one of the non-planar double-box with one external mass, before
imposing symmetry relations. The index i, next to the propagators, indicates the corresponding zi

variable; Num stands for the numerator factor; s, t, and u channels are indicated, to distinguish among
graphs with identical shape, but corresponding to different integrals.

5.5 Non-planar double-box with one external mass

This non-planar double-box with one external mass integral family is given in terms of:

z1 = k2
1 , z2 = (k1+p1)2, z3 = (k2+p1+p2)2, z4 = (k2−k1+p2)2, z5 = (k2−k1)2,

z6 = k2
2 , z7 = (k2−p3)2, z8 = (k2+p1)2, z9 = (k1−p3)2, (5.104)

where z8, z9 are ISPs. The kinematics is such that:

p2
3 = m2 , p2

1 = p2
2 = p2

4 = 0 , s = (p1+p2)2 , t = (p1+p3)2 , s+t+u = m2 .

(5.105)
This integral family has (before the application of symmetry relations) 24 master integrals,
belonging to 20 sectors, which are depicted in figure 8. We are interested in decomposing
the target integral:

I =
∫

dz u(z) z2
8

z1z2z3z4z5z6z7
(5.106)

in terms of master integrals via a complete set of spanning cuts, as:

I =
24∑

i=1
ci Ji . (5.107)

The set of spanning cuts is given by the maximal cuts of {J1, . . . , J7}. The explicit
expressions for the twist u(z) as well as the master integrals Ji can be found in the ancillary
file Dbox_1m_nonplanar.m.
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These applications represent significant milestones in the context of the complete de-
composition of Feynman (two-loop) integrals in terms of master integrals by projection
via intersection numbers, and, as such, they constitute another substantial part resulting
from our work.

6 Conclusions

Intersection numbers are pivotal for investigation of the vector space formed by twisted period
integrals, influencing a broad spectrum of mathematical and physical studies. In this work, we
have explored some new avenues of the twisted cohomology theory that extend this framework
and its range of applications, which enabled us to propose an simplified version of the recursive
algorithm for evaluation of the intersection numbers for differential n-forms [16, 45].

We have investigated the role of the evanescent regulators in the computation of the
intersection numbers within the framework of (ordinary) twisted cohomology. These regulators,
while being essential for the correct evaluation of the intersection numbers in the traditional
approach, may increase the complexity of the calculations. Our careful analysis offered, on
the one side, an independent, explicit proof that the coefficients of the integral decomposition
depend just on the leading term of the Laurent series expansion in the regulator of the
intersection numbers, and, on the other side, that such a leading term can be computed
directly within the relative twisted cohomology theory, when using delta-forms as bases
elements [48].

Because of such established equivalence, we made use of the twisted relative cohomology
to eliminate the need for analytic regulators, and introduced a systematic algorithm for
selecting multivariate delta-forms as elements of the dual basis. This choice induces a block-
triangular structure in the metric and in the connection matrices, therefore it simplifies the
evaluation of the intersection numbers appearing in the master decomposition formula.

Additionally, we leveraged the polynomial division algorithm and the global residue
techniques [50], to bypass the need for algebraic extensions and for polynomial factorization.
In particular, we introduced a novel polynomial ideal generator to simplify the recursive
algorithm at each stage of the sequence.

The simplified algorithm for the evaluation of intersection numbers between n-forms,
presented in this work, was successfully applied to the direct, complete decomposition of
two-loop, planar and non-planar, Feynman integrals, that appear in the scattering amplitudes
of either four massless particles or three massless and one-massive particles.

Our theoretical investigation and the novel computing algorithm related to it, constitute
a significant progress in studying the algebraic properties of cohomology groups, and their
impact on the evaluation of Feynman integrals as well as on Euler-Mellin integrals and
Aomoto/Gelfand-Kapranov-Zelevinsky hypergeometric systems. These contributions stand
to enrich both the fields of physics and mathematics, expanding our understanding of these
intricate domains, and of their (still hidden) connections.

We expect that the generalisation of the concepts discussed here, within the context of the
recursive approach to the evaluation of the intersection number, such as polynomial divisions,
global residues and delta-forms, to the recently proposed algorithm based on Stokes’ theorem
in n dimensions, and that makes use of a single, higher-order partial differential equation [53],
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therefore bypassing the need of fibrations, and, with it, of the sequential iterations, can lead
to the optimal computational strategy for computing intersection numbers for n-forms. We
defer such an important evolution to be the subject of further studies.
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A Extended Euclidean algorithm

The multiplicative inverse d̃(z), of a polynomial d(z), modulo B, defined in eq. (3.8), can be
obtained via the Extended Euclidean Algorithm (EEA). Given any two polynomials, say a(z)
and b(z), the EEA yields two polynomials, say s(z) and t(z) such that:

a(z) s(z) + b(z) t(z) = GCD(a(z), b(z)) , (A.1)

where GCD(a(z), b(z)) is the greatest common divisor of a(z) and b(z).
In our case, we can identify a(z) = d(z), and b(z) = B, which, being coprime, satisfy

GCD(d(z),B) = 1. Therefore, the EEA gives:

d(z) s(z) + B t(z) = 1. (A.2)

Reading the above equation modulo B implies:

d(z) s(z) = 1 mod B , (A.3)

hence, the function s(z) is precisely the polynomial inverse5 of d(z), i.e. s(z) = d̃(z).
5The Mathematica function PolynomialExtendedGCD can be used to find the polynomial inverse.
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B Closedness of delta-forms

In this appendix we show how the delta-forms (4.15) give rise to closed forms belonging
to the dual relative cohomology group Hn

−ω shown in eq. (4.16). Namely, we would like
to show that the n-form

δz1,...,zm ∧ ϕ = ϕ̂(z) δz1,...,zm ∧ dzm+1 ∧ . . . ∧ dzn (B.1)

is closed for holomorphic ϕ̂(z). Indeed, consider the following action of the covariant derivative:

∇−ω δz1,...,zm ∧ϕ= ud
(
u(0)−1ϕ̂(z)

m∧
i=1

dθzi,0∧dzm+1∧ . . .∧dzn

)
(B.2)

= ud
(
u(0)−1ϕ̂(0, . . . ,0, zm+1, . . . , zn)

m∧
i=1

dθzi,0∧dzm+1∧ . . .∧dzn

)
(B.3)

= 0 ,

where the second equality comes from the localization property of the dθzi,0 distributions.
The exterior derivative d in eq. (B.3) will only act on the non-relative variables zm+1, . . . , zn,
so that the result will cancel against the corresponding exterior part dzm+1 ∧ . . . ∧ dzn thus
proving that the form (B.1) is closed.

A similar analysis can also carried out for relative forms with fewer indices (i.e. subsectors)
bearing the same conclusion about their closedness.

C Choice of basis elements: an explicit example

In this appendix we illustrate with an explicit example the procedure outlined in section 4.4
for choosing basis elements.

Let us consider the three-mass elliptic sunrise integral. The propagators are given by

z1 = (k1 − p1)2 −m2
1 , z2 = (k1 − k2)2 −m2

2 , z3 = k2
2 −m2

3 ,

z4 = k2
1 , z5 = (k2 − p1)2 . (C.1)

The variables z1, z2, z3 are actual denominators, while z4 and z5 are irreducible numerator
factors (ISPs). The kinematics is given by p2

1 = s.
The twist is given by

u = Bγ , with γ = d− 4
2 and B = B0 +B1 +B2 , (C.2)

where

B0 =
(
z2+m2

2−z1−m2
1−z3−m2

3+s
) (

(z1+m2
1)(z3+m2

3) − s(z2+m2
2) + z4z5

)
, (C.3)

B1 = z4
(
(z1−z2+m2

1−m2
2)(z3+m2

3−s) + 2(z1+m2
1)z5

)
− z2

4z5 , (C.4)

B2 = B1
∣∣
z1⇌z3 , m1⇌m3 , z4⇌z5

. (C.5)
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To generate a list of MIs we perform the following 4 steps:

1. First, we list all the possible sectors{
S1, . . . ,S8

}
=
{
∅, {z1}, {z2}, {z3}, {z1, z2}, {z1, z3}, {z2, z3}, {z1, z2, z3}

}
, (C.6)

and initialize an empty list of MIs
e = ∅ . (C.7)

The counting of the number of zeros of ωSi for i = 1, . . . , 4 reads

νSi = 0, i = 1, . . . , 4 . (C.8)

This corresponds to the well-known fact that integrals of polynomials in loop momenta
vanish in dimensional regularization, so no MIs are present.

2. Next we consider S5 and observe
νS5 = 1 , (C.9)

hence we update the list of MIs with one element

e =
{ 1
z1z2

}
. (C.10)

3. Moving to S6 and S7, we find
νS6 = νS7 = 1 . (C.11)

The list of MIs at this stage receives two new elements and reads

e =
{ 1
z1z2

,
1
z1z3

,
1
z2z3

}
. (C.12)

4. Finally, we analyze S8 having
νS8 = 7 . (C.13)

To avoid overcounting we need to subtract from eq. (C.13) contributions from all the
subsectors. In particular, since Si ⊂ S8, for i = 5, 6, 7, the corresponding 3 MIs are
already taken into account, so we only need to specify

νS8 −
7∑

i=5
νSi = 7 − 3 = 4 (C.14)

new basis elements.

Thus the full list of basis elements we constructed is

e =
{

1
z1z2

,
1
z1z3

,
1
z2z3

,
1

z1z2z3
,

z4
z1z2z3

,
z5

z1z2z3
,

z2
5

z1z2z3

}
(C.15)

and the corresponding dual basis reads

h =
{
δ12, δ13, δ23, δ123, z4δ123, z5δ123, z

2
5δ123

}
. (C.16)

The procedure to choose the bases at the intermediate layers of the iterative algorithm is
similar, the only difference is the choice of active z-variables. For reader’s convenience we
collect the dimensions of the cohomoloy groups ν(m)

Si
at each layer (m) and in each sector

Si of eq. (C.6) in table 1.
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Si \ (m) (5) (35) (235) (1235) (41235)
∅ 1 1 0 0 0

{z1} 1 1 0 0 0
{z2} 1 1 1 1 0
{z3} 1 2 1 1 0

{z1, z2} 1 1 1 2 1
{z1, z3} 1 2 1 2 1
{z2, z3} 1 2 3 3 1

{z1, z2, z3} 1 2 3 6 7

Table 1. The cohomology dimensions ν(m)
Si

defined in eq. (2.7) for each sector (C.6) labeling the rows,
and on each fibration layer (m) labeling the columns. The last column contains the counting numbers
of eqs. (C.9), (C.11), (C.13). Columns in the middle collect the countings for the intermediate layers.
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