

RECEIVED: August 6, 2024 ACCEPTED: August 7, 2024 PUBLISHED: September 2, 2024

Erratum: Keeping matter in the loop in dS_3 quantum gravity

Alejandra Castro,^a Ioana Coman,^{b,c} Jackson R. Fliss a,c and Claire Zukowski^d

^aDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, U.K.

^bKavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

^cInstitute for Theoretical Physics, University of Amsterdam,

Science Park 904, 1090 GL Amsterdam, The Netherlands

^dDepartment of Physics and Astronomy, University of Minnesota Duluth, 1023 University Drive, Duluth, MN 55812, U.S.A.

E-mail: ac2553@cam.ac.uk, ioana.coman@ipmu.jp, jf768@cam.ac.uk, czukowsk@d.umn.edu

ERRATUM TO: JHEP07(2023)120

ARXIV EPRINT: 2302.12281

The expression in (3.83) is incorrect due to an extra condition on global regularity of solutions contributing poles to Z_{scalar} . A more proper treatment of the scalar one-loop determinant can be found in [1]. However the procedures following (3.83) apply to the result there and lead to the same Wilson spool, (3.89). The broad conclusions of section 3.3.2 and the rest of the paper remain unchanged.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

 R. Bourne, A. Castro and J.R. Fliss, Spinning up the spool: Massive spinning fields in 3d quantum gravity, arXiv:2407.09608 [INSPIRE].

OPEN ACCESS, © The Authors. Article funded by $SCOAP^3$.