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1 Introduction

Hydrodynamics play a central role in describing the collective behavior of macroscopic
systems in the real world. The premise of hydrodynamics is that it describes the late
time and long wavelength limit of a system. The Quark-Gluon-Plasma (QGP) found in
ultrarelativistic Heavy Ion Collisions (HIC) is very short lived and the average system size
is small, yet data collected from heavy-ion collisons at RHIC and LHC suggests that the
space-time dynamics can be well modelled by hydrodynamic theories [1–4].

Considering that the QGP is initially far from equilibrium and is subject to large gradi-
ents, naturally the question arises on what time and distance scales hydrodynamic theories
can provide a realistic description of HICs [5–17]. Since in practice, hydrodynamic theories
are based on expansions around local thermal equilibrium [18–20], it has long been believed
that proximity to equilibrium is a necessary criterion for the applicability of a fluid dynamic
description. However, in recent years various studies have indicated that — at least for cer-
tain classes of microscopic systems — viscous hydrodynamics can provide a rather accurate
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description even when the system is significantly out of equilibrium, featuring for example
pressure anisotropies of order unity [21, 22]. Hence it has become customary in the field of
high-energy nuclear physics, to carefully distinguish equilibration from hydrodynamization,
which merely refers to the applicability of viscous relativistic hydrodynamics, and we refer
the interested reader to [23–30] for recent perspectives on this issue. One field of study
that emerged relatively recently to tackle the question of (in)applicability of hydrodynam-
ics, consists of analyzing so called hydrodynamic and non-hydrodynamic modes [31–35].
Hydrodynamic modes, which correspond to isolated singularities in the Fourier transformed
evolution equations of hydrodynamic theories, are calculated by linearly perturbing evolu-
tion equations and calculating the system response. These modes fulfill the hydrodynamic
limit limk→0 ω = 0, corresponding to conserved quantities. Non-hydrodynamic modes in
turn do not fulfill this large wavelength limit and are present on any length scale, albeit
varying in importance [36–38]. Although they are called non-hydrodynamic, they are also
found in hydrodynamic theories such as Müller-Israel-Stewart [39–43]. So when these non-
hydrodynamic modes are ever present, the question still stands when they dominate the
dynamics of the system. The regime, where they are non-negligible, will help understand
the boundaries of the applicability of hydrodynamics.

A common procedure to calculate the dynamics of the QGP are multi-stage models that
use kinetic theories to describe the pre-equilibrium phase which then transition smoothly
into the hydrodynamic regime [44–51]. Kinetic theories are also sometimes used to directly
derive new hydrodynamic theories, such as the DNMR hydrodynamic theory [18, 43, 52, 53].
Because of this ability to capture both non-equilibrium and non-hydrodynamic behavior
kinetic theory is a fitting model to find non-hydrodynamic modes that are so natural to the
system. Solving the Boltzmann equation analytically is not feasible for non-trivial kinetic
theories, thus we have to solve the problem numerically. The problem then is to find the
modes we are looking for. Analytically the modes are extracted as non-analytic structures
of the Green’s functions of the energy-momentum tensor, for example poles or cuts, but
numerically it is hard to do the same. Going into frequency space becomes problematic
numerically when the integral is not restricted to the real frequency axis. Therefore we
need some other method to determine the complex structure of energy-momentum Green’s
functions.

In this paper, we present a method to calculate eigenfunctions and eigenvalues of the
Boltzmann equation with non-zero gradients k in a discretized fashion by using moments
of the distribution function. Based on the method described in section 2, we can discuss
the location of singularities and the analytic structure of Green’s function in the complex
frequency plane. In section 3 the procedure is tested within the Relaxation Time Approxi-
mation (RTA) and subsequently applied to scalar ϕ4 kinetic theory in section 4. The RTA
can be compared to exact calculations and reproduce known results. The scalar calcu-
lations expand the known knowledge of zero gradient results into a finite k regime. We
find an analytic structure that goes beyond poles and cuts which was predicted by some
previous works [33, 34].
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2 Methodology

Kinetic theory is an effective mesoscopic theory, where the time evolution of the phase-
space distribution f(p, x⃗, t), where p = (p0, p⃗) = (p, p⃗) is the four-momentum and x =
(x0, x⃗) = (t, x⃗) are the space-time coordinates, is governed by a Boltzmann type equation.
Within kinetic theory, it is comparatively straightforward to calculate the time evolution
of the phase-space distribution, as well as the behavior of macroscopic quantities, such
as e.g. retarded correlation functions of the energy-momentum tensor G(t), which can be
obtained from moments of the phase-space distribution. In particular, there are several
numerical studies of kinetic theories, including scalar ϕ4-theory or even QCD kinetic the-
ory [34, 38, 45, 48, 49, 54–58], which explore the real-time dynamics of the system. How-
ever, as mentioned before, the problem of analyzing the structure of response functions in
the complex frequency space originates from the need for a Laplace transform

G(ω) =
∫ ∞

0
dt eiωt G(t)

which becomes numerically ill behaved for complex frequencies with Im(ω) < 0, as the
above integral does not converge beyond the first singularity in the lower half-plane. While
for analytic solutions of the energy momentum Green’s function it is still possible to calcu-
late the Laplace transform directly, as has been done e.g. in RTA [31, 33], this is evidently
not possible with numerical data for G(t), and thus a different approach is required.

2.1 From collision integral to matrix

In our method we will discretize the Boltzmann equation in order to calculate discrete
spectra of eigenvalues and their eigenfunctions, which tell us exactly how the system can
respond to perturbations. The general form of the Boltzmann equation is

pµ∂µf(p, x⃗, t) = pC[f ](p, x⃗, t) , (2.1)

where C[f ] is the collision operator, also called collision integral or collision term in the
following, of the distribution function f . Throughout this work we use the mostly minus
metric. We will study linear perturbations on top of an equilibrium background, which is
defined by ultrarelativistic bosons with zero mass obeying the equilibrium distribution

feq(p) = n(p) = 1
ep/T − 1

. (2.2)

Our perturbation is then of the form

f(p, x⃗, t) = n(p) + δf(p, x⃗, t). (2.3)

The collision integral, in this study only for 2 ↔ 2 scatterings, also has to be linearized
around the equilibrium background, yielding

C2↔2[δf ](p1, t) = 1
2p1

1
2

∫
d3p2d3p3d3p4

(2π)92p22p32p4
(2π)4δ4 (p1 + p2 − p3 − p4) |M|2δF , (2.4)
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where |M |2 is the scattering matrix element squared and δF is the linearized statistical
factor

δF = − δf(p1, x⃗, t) (n2(1 + n3 + n4) − n3n4) − δf(p2, x⃗, t) (n1(1 + n3 + n4) − n3n4)
+ δf(p3, x⃗, t) (n4(1 + n1 + n2) − n1n2) + δf(p4, x⃗, t) (n3(1 + n1 + n2) − n1n2) .

(2.5)

Note that we abbreviated the distribution functions in a way to show their dependence on
a specific momentum, e.g. n1 = n(p1). For RTA the collision term takes a much simpler
form, which is discussed in the respective section. For the spatial part of the Boltzmann
equation we switch into the Fourier space by transforming according to

δfk(p, t) =
∫

d3x e−ik⃗·x⃗δf(p, x⃗, t), (2.6)

where gradients are replaced by the wave vector k⃗(
∂t + ip⃗ · k⃗

)
δfk(p, t) = C[δfk](p, t). (2.7)

Fourier transformed quantities are marked with a k in the subscript. In this work we will
focus only on perturbations in the sound channel. For this we will initially perturb the
system by a temperature perturbation, such that

δfk(p, t = 0) = δT0∂T feq = δT0
T

p

T
ep/T f2

eq , (2.8)

where δT0 is the magnitude of our initial perturbation in T . Since our background is
isotropic and we will consider only scalar perturbations the perturbations will only depend
on the absolute value of the wave vector |⃗k|. Without loss of generality we orient the wave
vector along the z-axis to receive the linearized Boltzmann equation

(∂t + ik cos θ) δfk(p, t) = C[δfk](p, t), (2.9)

where cos θ = k⃗·p⃗
kp is the longitudinal momentum angle and k = |⃗k|.

The collision and gradient term will be discretized in order to solve it numerically.
How we then extract and evaluate the eigenvalues depends on the diagonalization of said
discretized collision integral.1 The discretized version of a linear operator is a finite di-
mensional matrix, which is easily decomposed into its eigenvectors. The eigenvectors of
a matrix can be divided into right and left eigenvectors, which are usually not the same.
Hermitian or symmetric matrices do not have this separation of eigenvectors. In the case
of k = 0 the evolution matrix would be symmetric, but the addition of gradient terms
in the matrix makes it neither hermitian nor symmetric, meaning we have to respect the
distinction of left and right eigenvectors. If a⃗i is the right and b⃗i the left eigenvector to the
eigenvalues λi of the matrix C they satisfy

Ca⃗i = λia⃗i, (2.10)

b⃗T
i C = λi⃗b

T
i . (2.11)

1In the following technical details we omit the gradient part of the Boltzmann equation just to illustrate
how the discretization will work.
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The eigenvector can also be used to denote the diagonalization of C via the modal matrix P

C = PDP−1, (2.12)

where D = diag(λi) is the diagonal form of C. The modal matrix and its inverse are related
to the eigenvectors via the following relations

Pij = (⃗aj)i , P−1
ij = (⃗bi)j . (2.13)

Since the discretized version of our distribution function will be a vector let us call it f⃗

here to illustrate the basic principle of the method. After the discretization process the
Boltzmann equation will transform into a vector matrix equation

∂tf = C[f ] → ∂tf⃗ = Cf⃗, (2.14)

which is solved by f⃗(t) = eCtf⃗(0). Using the diagonal form of C and the representation of
the modal matrix we receive

f⃗(t) = PeDtP−1f⃗(0) =
∑

i

eλita⃗i

(⃗
bi · f⃗(0)

)
. (2.15)

This form gives the solution to the Boltzmann equation as a sum of contributions from
each eigenvalue with some weight, that is dependent on the initial condition, which makes
it incredibly easy to discuss the individual influence of each eigenvalue. From there it is
also straight forward to go into frequency space

f⃗(ω) = −
∑

i

a⃗i

(⃗
bi · f⃗(0)

)
iω + λi

. (2.16)

This form shows that each eigenvalue directly corresponds to a singularity in frequency
space located at ωi = −Im(λi) + iRe(λi), revealing the complex structure of the theory.

2.2 Moments of the distribution function

We just showed how an operator equation may be rewritten into a much simpler and easier
analyzable form. We will now discuss how the distribution function and collision integral
are transformed into a discrete space.

We start by the introduction of moments of the distribution function

Ni(t) =
∫

d3p

(2π)3 δfk(p, t)wi(p) , (2.17)

where the wi(p) are some weight functions. This way one can construct a vector N⃗ , where
the components are the individual moments Ni. Our approach follows [56, 59] in the
construction of their weight functions. Since we will only study sound mode excitations, it
is sufficient to discretize the momentum p and the polar angle cos θ. We do this with the
use of so called wedge functions wi(x), which are defined as

wi(x) =


x−xi−1
xi−xi−1

, xi−1 < x < xi
xi+1−x
xi+1−xi

, xi < x < xi+1

0 , else
(2.18)
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where the xi are discrete grid points of the quantity that is discretized in the wedge function.
The momentum grid contains momenta from pmin = 0 to pmax evenly spaced and Np in
number. The cos θ grid contains Ncos θ points and goes from cos θmin = −1 to cos θmax = 1.
This means the grid has a total size of Ntot = NpNcos θ entries. The wedge functions fulfill
following relations ∑

i

wi(x) = Θ(xmax − x)Θ(x − xmin) ,∑
i

xiwi(x) = xΘ(xmax − x)Θ(x − xmin) .
(2.19)

So the moments of the distribution function, also sometimes called wedge moments in the
following, are then defined as

Ni(t) =
∫

d3p

(2π)3 wip(p)wiθ
(cos θ)δfk(p, t), (2.20)

where i is a combined index in the form of i = iθ + ipNcos θ. Using the properties of
the wedge function one can gather information about particle number δnk = δJ0

k , energy
δek = δT 00 and longitudinal momentum δπk = δT 03

k by simply summing over the wedge
moments in the form of

δnk(t) =
∑

i

Ni(t) , δek(t) =
∑

i

pipNi(t) , δπk(t) =
∑

i

pip cos θiθ
Ni(t), (2.21)

where we used the particle four current δJµ
k and the energy momentum tensor δT µν , cal-

culated in kinetic theory by taking moments of the distribution function

δJµ
k (t) =

∫
d3p

(2π3)
pµ

p
δfk(p, t) , (2.22)

δT µν
k (t) =

∫
d3p

(2π)3
pµpν

p
δfk(p, t) . (2.23)

We still need a way to calculate the matrix described in our method. We do this in the
same moment approach and take moments of the collision integral

Ci(t) =
∫

d3p

(2π)3 wip(p)wiθ
(cos θ)C[δfk](p, t) . (2.24)

In order to construct a matrix from this we have to invert the wedge moments back into
the form of a distribution function. We do this by approximation of the original moment
integral. When we take δfk(p,t)

feqep/T to be constant between nodes we can rewrite the Integral as

Ni(t) =
∫

d3p

(2π)3 wip(p)wiθ
(cos θ)δfk(p, t)feq(p)ep/T

feq(p)ep/T
= δfk(p, t)

feq(p)ep/T
Ai, (2.25)

where we introduced a new area function Ai that is calculated as

Ai =
∫

d3p

(2π)3 wip(p)wiθ
(cos θ)feq(p)ep/T . (2.26)
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Eq. (2.25) only holds for the surrounding of the i-th node point, thus in order to recover
the whole distribution function we have to sum over all wedges

δfk(p, t) =
∑

i

wip(p)wiθ
(cos θ)Ni(t)

feq(p)ep/T

Ai
=
∑

i

Ki(p)Ni(t) , (2.27)

where we introduced the “Cardinal Function” Ki(p)

Ki(p) = wip(p)wiθ
(cos θ)feq(p)ep/T

Ai
. (2.28)

With the introduction of this Cardinal Function the Collision integral moments become
linear functions of the distribution moments and thus we can rewrite the equation as a
matrix vector multiplication

Ci(t) =
∑

j

CijNj(t) =
(
CN⃗(t)

)
i

. (2.29)

The matrix entries are then easily calculated with the functional derivative

Cij = δCi(t)
δNj(t) . (2.30)

With these preparations we can rewrite the Boltzmann equation for k = 0 as a matrix
equation

∂tN⃗(t) = CN⃗(t) , (2.31)

which is the desired form.
In addition to the collision integral the Boltzmann equation contains parts with nonzero

k. These parts also have to be translated into the moment space. Like the collision integral
they are linear in the distribution function and thus we can calculate a matrix in a similar
fashion. The moments of the gradient contribution are given as

Mi = −ik

∫
d3p

(2π)3 cos θwip(p)wiθ
(cos θ)δfk(p, t) , (2.32)

from which we calculate the matrix M as

Mij = δMi(t)
δNj(t) . (2.33)

Note that the k dependent part is independent of p, thus one only needs to construct
angular wedge moments. Then the matrix elements can be written as

Mij = M cos θ
iθjθ

δipjp (2.34)

where M cos θ
ij are now the angular wedge moments of the gradient part. The Kronecker

Delta part is there to assure that no momenta are mixing. The angular wedge moments
are defined as

M cos θ
ij = − ik

Acos θ
j

∫ 1

−1
d cos θ wiθ

(cos θ)wjθ
(cos θ) cos θ , (2.35)
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which can be easily calculated by hand. The Acos θ
j are area functions for the angular wedge

moments just like the recent Aj but are much simpler

Acos θ
j =

{
1
2∆ cos θ , j = 1, j = Ncos θ,

∆ cos θ , else
. (2.36)

∆ cos θ = cos θi+1−cos θi is the distance between each angular grid point, which is constant
throughout because we choose an evenly spaced grid. This allows for a fast calculation of
the gradient contribution of the equation, since only k has to be multiplied to known matrix
elements. In contrast the calculation of the collision integral matrix is done with a Monte
Carlo scheme, where we update all matrix elements simultaneously with each sampling,
such that particle number and energy momentum conservation are ensured with the help
of the wedge function properties in eq. (2.19).

Both collision integral and gradient term are combined as matrices in the ordinary
differential equation

∂tN⃗(t) = (C + M)N⃗(t), (2.37)

with the solution

N⃗(t) = e(C+M)tN⃗(0). (2.38)

Calculating the collision integral matrix in high precision takes some time but can be saved
for reuse in the same discretization because for different k only the gradient contribution
changes. This also saves a lot of computation time where the remaining computation time
is due to the numeric calculation of the eigenspace.

2.3 Observables and complex frequencies

We now have the means to completely discretize the Boltzmann equation including gradient
contributions. In the following we discuss the construction of observables from moments
and the possibility to go into the complex frequency plane.

Observables that are linear moments of the distribution function δf , like energy, can
be easily retrieved (see eq. (2.21)) from wedge moments via a sum of moments in addition
to some weight. We can write a representation of the energy in our moment space as a
vector

O⃗e =


p1p

p2p

...
pNtotp

 , (2.39)

because we get the energy by forming the scalar product

δek(t) = O⃗e · N⃗(t) . (2.40)

The Green’s function is the time evolution of an observable as a response to an initial
perturbation of some sort. This initial condition is already encoded in the time evolution

– 8 –
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of N⃗(t) as N⃗(0)(see eq. (2.38)). Thus we then define the Green’s function as the scalar
product of the corresponding observable vector with the distribution vector

G(t) = O⃗ · N⃗(t) . (2.41)

The full form of the Green’s function can then be calculated using the solution to the ODE
in eq. (2.15) as

G(t) =
∑

i

eλit
(
O⃗ · a⃗i

) (⃗
bi · I⃗

)
. (2.42)

Each eigenvalue is behaving as a complex exponential function with a certain weight, we
call this the contribution or residue to the Green’s function. Let us define the contribution
of an eigenvalue as µi

µi =
(
O⃗ · a⃗i

) (⃗
bi · I⃗

)
. (2.43)

The Laplace transform of the Green’s function is then

G(ω) = −
∑

i

µi

iω + λi
. (2.44)

With this we have a direct way to study the Green’s function as a function of time or in
the complex frequency plane, where each eigenvalue is an individual singularity.

2.4 Scaling behavior

Since we are studying the theory with an approach to hydrodynamics in mind it makes
sense to use hydrodynamic scaling properties. In first order viscous hydrodynamic theory

G(t) = cos(cskt)e−
2
3

η
sT

k2t (2.45)

one can rescale the wavenumber k and time t by the viscosity to receive a universal de-
scription independent of viscosity [38]. Thus we define the rescaled wavenumber, time and
frequency as

k̄ = k
η

sT
, t̄ = t

sT

η
, ω̄ = ω

η

sT
. (2.46)

Notice that the combined k̄t̄ is still equal to kt and ω̄ is defined according to t̄, being the
Fourier counterpart of t̄. Except for the scaling variables, all dimensionful variables, like
pmax, are expressed in units of the only dimensionful scale, the background temperature T .

3 Benchmark with RTA

Before we apply the method to scalar theory we should put it to the test within a well
studied kinetic theory, the RTA [31, 33]. In RTA all excitations of different momenta decay
equally with a rate τR, the relaxation time, correlating to a branch cut in the retarded
Green’s function. The RTA Boltzmann Equation is of the form

pµ∂µf(p, x⃗, t) = pµuµ

τR
(feq(pµuµ) − f(p, x⃗, t)) , (3.1)

– 9 –
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where the local rest frame velocity uµ is determined by Landau matching as eigenvector of
the background energy momentum tensor

T µν
eq uν = eequµ. (3.2)

3.1 Analytical results

To study the linear response to a perturbation we first use the linearized version of eq. (3.1)

pµ∂µδf(p, x⃗, t) = p

τR
(δfeq(p, t) − δf(p, x⃗, t)) . (3.3)

For positions we switch into Fourier space, without loss of generality orienting the wave
vector k⃗ only along the z-axis. For time we do a Laplace transform instead of Fourier
transform since we have strictly positive times and want to include initial conditions. This
results in

−iωδfk(p, ω) − δfk(p, t = 0) + ik cos θδfk(p, ω) + 1
τR

δfk(p, ω) = 1
τR

δfk,eq(p, t) , (3.4)

where δfk(p, t = 0) is the initial condition of the distribution function. The perturbed
equilibrium distribution is given by gradients of temperature and velocity emerging from
a change in δf as

δfk,eq(p, t) = p

T
f2

eq

(
δTk

T
− δuµ

kvµ

)
ep/T . (3.5)

With this we can get the solution to eq. (3.4)

δfk(p, ω) = δfk,eq(p, ω) + δfk(p, t = 0)τR

1 + ikτR cos θ − iωτR
. (3.6)

Via Landau matching we can relate the perturbed temperature and velocity to δT µν as

δTk

T
= 1

4
δek

e
= 1

4e

∫
d3p

(2π)3 pδfk , (3.7)

δuµ
k = δT 0µ

k

e + P
= 3

4e

∫
d3p

(2π)3 pµδfk . (3.8)

Since our k⃗ only lies in z-direction the only relevant components of the Energy-Momentum
Tensor are δT 00

k = δek and δT 03
k . The energy and velocity perturbation are related to the

Green’s functions we want to find by

G00
00,k(ω) = δek

δe0
, G03

00,k(ω) = δT 03
k

δe0
.

From the above equations one receives coupled equations for δek and δT 03
k . The details of

the solution for those are found in the appendix A. When we define L = log
(

1−iτR(k+ω)
1+iτR(k−ω)

)
the perturbed energy and longitudinal momentum are

G00
00,k(ω) = −(6ikτR + (3 + k2τ2

R − 3iωτR)L)
(k2τRL + 2ik3τ2

R − 6kτRω + 3ω(i + ωτR)L)
, (3.9)

G03
00,k(ω) = ikτR(−2kτR + (i + ωτR)L)

(k2τRL + 2ik3τ2
R − 6kτRω + 3ω(i + ωτR)L)

. (3.10)
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Figure 1. Energy Green’s function G(ω̄) in RTA as a function of real frequency ω̄ for two different
gradients k̄. Analytic solution to the Boltzmann equation in black and the solution with our
numerical method in red and blue.

Evidently, the above Green’s functions feature a logarithmic branch cut extending between
the branch points ω = −k − i/τR and ω = k − i/τR in the complex frequency plane. By
expanding the inverse of the Green’s function G03

00,k to second order in ωτR one also finds
a pair of hydrodynamic poles

ω = ± 1√
3

k − 2
15 ik2τR + O(k3) (3.11)

for small frequencies and gradients, while for large gradients they disappear behind the cut
as discussed in detail in [31].

3.2 Results from numerical method

Now that we have obtained the analytic solution, we can use it to benchmark our numerical
method. Within the numerical method, we write the RTA Boltzmann equation as

∂tδfk(p, t) + ik cos θ δfk(p, t) = 1
τR

ep/T f2
eq(p)

(
p

T

δTk

T
−

δuµ
kpµ

T

)
− 1

τR
δfk(p, t) , (3.12)

which is then expanded in the moment approach as discussed in detail in appendix B. We
can now compare the results from our numeric method with the known analytic results in
RTA. In figure 1 we present the real and imaginary part of the energy Green’s function
plotted as a function of real frequency. The colored lines represent the numeric results from
our new approach and the black dotted lines are the prior calculated analytic form. The
numeric approach fully reproduces the analytic Green’s function over the whole range. As
increasing the gradient does not change this fact, we conclude that the new approach is a
suitable method to calculate kinetic theory response functions.
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Figure 2. Eigenvalues of the RTA evolution operator for finite gradients k̄ in the complex frequency
plane. Hydrodynamic modes are highlighted in red.

Of course our main goal is to analyze the analytic structure in the complex frequency
plane. Hence we still need to check if the new approach reproduces the well studied RTA
structure, namely a cut and two poles, for complex frequencies. In figure 2 we present
each eigenvalue in the complex frequency plane for three gradients k̄. We see clearly two
isolated modes on top which correspond to the two well known hydrodynamic poles. The
eigenvalues below form a line, which represents a branch cut in discretized fashion. The cut
is located at ω̄ = −0.2i which coincides with the expected RTA cut located at ω = −i/τR as
the viscosity in RTA is given by η/s = 1

5τRT [55, 60]. When k̄ increases the hydrodynamic
poles wanders towards the cut until they further disappear behind the cut. This behavior
is also known from analytical results of RTA [31]. The deviations from a straight line
occurring at higher k̄ stems from discretization effects, which are discussed in the next
section. Thus we conclude that the new approach shows the analytic structure clearly in
the complex plane, which accurately describes the analytic knowledge.

3.3 Effects of discretization

As we saw in the previous section the eigenvalues of the RTA should be two hydrodynamic
poles and one cut located at −i/τR. Additionally to the cut there are some aberrations at
the edge of the cut that lean upwards in imaginary axis direction. To check if the deviations
from the expected behavior are under control we analyze the effects of the discretization in
the following. The increase of Np converges very quickly into a final solution with Np = 64
both in the time evolved Green’s function G(t) and the eigenvalue picture in the complex
frequency plane. Thus we will only discuss the influence of Ncos θ by varying Ncos θ and
holding Np constant at Np = 16. The results are presented in figure 3, where the eigenvalues
for various discretizations are plotted in the complex frequency plane for k̄ = 1. We can
directly see that by increasing Ncos θ we push the deviation of the eigenvalues at the edges
of the cut down towards the cut, telling us that these deviations from the expected cut
are purely discretization effects. We also have to look at the effects of Ncos θ on the time

– 12 –



J
H
E
P
0
9
(
2
0
2
3
)
1
8
6

Figure 3. Eigenvalues of the RTA evolution operator for various discretizations of Ncos θ in the
complex frequency plane. The inset plot shows the real time Green’s function G(t̄) as a function of
k̄t̄ for the same discretizations.

dependent Green’s function G(t). The results of this are found in the inset plot of figure 3,
where the same coloring as the eigenvalue plot is used to display different discretizations.
For Ncos θ = 64 the time evolution already reached its limit because further increase Ncos θ

does not change the function or at least only minimally for very late times. We conclude
that discretization effects can be erased in the time evolved Green’s function entirely by
using a feasible discretization. The eigenvalue picture however requires a high Ncos θ to
come close to the analytic cut expected in RTA, which is not numerically feasible under
the consideration of also using Np = 64. The effects of the discretization are rather easy
to discern from the physics here, thus we use a discretization of Np × Ncos θ = 64 × 64 and
keep in mind that the slight arcs of the cut are artificial.

4 Scalar theory

Previously we have shown that our method is suitable to analyze kinetic theories in both
time and frequency domain. Now we will apply the method to a kinetic theory where
the behavior for non-vanishing gradients (k̄ ̸= 0) has not been studied yet, the scalar
field theory for quartic interaction, also known as ϕ4 theory. Studies for k̄ = 0 have
shown a complex structure in the form of a cut on the imaginary axis, meaning that
except for the conserved quantities all excitations of the system decay on different time
scales [34]. With the addition of gradients one expects the emergence of additional complex
structures, including two isolated poles, which coincide with hydrodynamic poles for very
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small gradients k̄ ≪ 1. These hydrodynamic poles obey a dispersion relation, which for
example in second order hydrodynamic theory [41] is given by

ω̄ = ±csk̄ − i
2
3 k̄2 ± 2

3cs

(
c2

s τ̄π − 1
3

)
k̄3. (4.1)

where c2
s = 1/3 is the speed of sound and τ̄π ≈ 6.1 is a second order transport coefficient [55].

The Lagrangian of scalar ϕ4 theory is defined by the real scalar field ϕ and the coupling
strength λ

L[ϕ, ∂µϕ] = 1
2∂µϕ∂µϕ − m2

2 ϕ2 − λ

24ϕ4 . (4.2)

s.t. following [34] the collision integral in kinetic theory then takes the form

C[f ](p1, t) = − 1
2p1

1
2

∫
d3p2d3p3d3p4

(2π)92p22p32p4
(2π)4δ4 (p1 + p2 − p3 − p4) λ2 (4.3)

× (f(p1)f(p2) [1 + f(p3)] [1 + f(p4)] − f(p3)f(p4) [1 + f(p1)] [1 + f(p2)]) .

As explained before we want to use scaling variables in order to describe the system univer-
sally and independent on viscosity. The viscosity in scalar ϕ4 theory has been calculated
numerically multiple times [34, 54, 61] and for this work we choose the result from [61],
which gives the viscosity in terms of temperature T and coupling λ as

η ≈ 3040T 3

λ2 . (4.4)

To write this in a usable manner as viscosity η over entropy density s we use the thermo-
dynamic relations of a massless gas of ultrarelativistic bosons [19] and receive

η

s
= 45

2π2
η

T 3 ≈ 6930
λ2 . (4.5)

In this form it is also straightforward to see that, by use of the scaling variables defined in
eq. (2.46), the coupling strength λ can be completely scaled out of the Boltzmann equation
eq. (2.9), such that the results presented in the forthcoming sections are independent of
the coupling strength.

We emphasize at this point, that the following results are obtained with an effective
kinetic description of the scalar ϕ4 quantum field theory. By using an effective kinetic
description, which can be derived from a combined weak-coupling and gradient expansion
in quantum field theory (see e.g. [62]), we impose at least some restrictions to the possible
eigenvalue picture in the complex frequency plane, such that for example the real part
of the complex eigenvalues is restricted to the range −k < Re(ω) < k [33]. Hence it is
possible that the analytic structure of the real quantum field theory will differ from our
kinetic theory results, as microscopic information is lost upon construction of the kinetic
description [63].
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4.1 Spectrum for k=0

Before we address the analytic structure of the Green’s functions at finite wave-number,
the first result we should reproduce concerns the analytic structure of the Green’s function
in the absence of gradients (k̄ = 0). As already shown in [34] the Green’s function for
vanishing gradients exhibits a branch cut located on the imaginary axis. In order to
analyze this behavior, we investigate the spectrum of eigenvalues of the evolution operator,
which in the absence of gradients only consists of the collision operator. Our results show
three distinct zero modes which correspond to the conservation of energy, momentum
and particle number in the sound channel. Other than that the spectrum only contains
eigenvalues which are located on the imaginary frequency axis. In order to analyze whether
this spectrum is discrete or continuous, one has to investigate how the eigenvalue density
and their respective contribution to physical observables behaves in the continuum limit.

As objects to study these properties with we choose the eigenvalue density ρ(ω̄) and
residue density ρµ(ω̄). Since all eigenvalues have no real frequency Re(ω̄) the densities
are calculated with respect to the imaginary frequency Im(ω̄). The eigenvalue density is
calculated by counting all eigenvalues λi in a frequency bin of size ∆ω̄ with the help of the
step function Θj(ω̄i, ω̄) which is defined as

Θj(ω̄i, ω̄) = Θ
(
∆ω̄ − 2|Im(ω̄)i − (j + 1/2)∆ω̄|

)
Θ
(
∆ω̄ − 2|Im(ω̄) − (j + 1/2)∆ω̄|

)
, (4.6)

where ω̄i is the frequency of each eigenvalue, as seen in eq. (2.16). Normalizing this by
the total number of eigenvalues, ignoring the three zero modes, we receive the eigenvalue
density

ρ(ω̄) =
Ntot−3∑

i=1

∞∑
j=0

Θj(ω̄i, ω̄)
(Ntot − 3)∆ω̄

. (4.7)

In order to study a non-trivial residue density a suitable observable has to be chosen. All
conserved charges have vanishing residue for ω̄ ̸= 0, hence a non conserved charge has to
be used. As observable we consequently choose the momentum squared

O⃗p2 =


p2

1p

p2
2p

...
p2

Ntotp

 . (4.8)

The residue µi of this observable per eigenvalue is given by eq. (2.43). We have to sum
this, analogously to the eigenvalue density, in a frequency bin ∆ω̄ and normalize it. Here
we don’t normalize by the total number of eigenvalues but the total residue of eigenvalues
with ω̄ ̸= 0, which is subject to small variations due to the change in discretization.2 If we
define this total non-conserved residue as

µ =
Ntot−3∑

i=0
µi, (4.9)

2These variations are negligible and don’t change the physics but rather disturb the purpose of this
analysis.
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we can write the residue density of the non-conserved observable as

ρµ(ω̄) =
Ntot−3∑

i=1

∞∑
j=0

µiΘj(ω̄i, ω̄)
µ∆ω̄

, (4.10)

where we also ignore the three zero modes in the sum. Since for our choice of initial
condition (cf. eq. (2.8)), the angular structure is trivial for k̄ = 0, the discretization
analysis is carried out by varying the number of momentum points Np, which refines the
discretization and the momentum cut-off pmax, which can be used to explore the addition
of high momentum modes.

We illustrate the results in figure 4 by plotting the eigenvalue density ρ(ω̄) in the bot-
tom panel and the residue density ρµ(ω) in the top panel. Each discretization is presented
by a different color. The first thing to notice in the bottom panel is that the increase in
pmax corresponds to an addition of eigenvalues in the low frequency regime close to the
origin, such that the number of eigenvalues decreases in higher frequency regions compared
to discretizations with the same Np. Vice versa when we fix pmax and increase the number
of momenta Np the density seems to approach a smooth continuum limit for each value of
the momentum cut-off. Since the variation in pmax induces strong changes in the eigenvalue
density we have to check if this influences the physical properties of the system. For this
see the top panel of figure 4. Here we also see that additional low frequency eigenvalues get
added when we increase pmax but all of them have exponentially small residue, thus making
them negligible for the linear response of the system. The increase in Np has the same
influence on the residue density as on the eigenvalue density. By simultaneously increas-
ing pmax and Np, the residue density seems to approach a genuine continuum limit with
better and better discretization. We conclude that in the continuum limit Np, pmax → ∞
the eigenvalues are continuously distributed along the negative imaginary frequency axis,
representing a branch cut, which is in line with the prior works of Moore [34]. While the
branch cut terminates only at the real frequency axis, the contribution of points close to the
real axis to physical observables is exponentially suppressed, as the dominant contribution
originates from points with Im(ω̄) ∼ 0.1.

4.2 Effects of discretization

Now that we have established that the zero gradient spectrum is a branch cut we will discuss
the effects of adding gradients to the Boltzmann equation. Before we discuss the results
we should analyze how the discretization plays into it. We denote a certain discretization
by Np × Ncos θ. For the results later in this work we choose a discretization of 64 × 64 and
pmax/T = 16. In figure 5 we present the results for three different discretizations for k̄ = 0.8
in comparison with the final 64 × 64 and pmax/T = 16 discretization. Eigenvalues of the
evolution matrix are plotted in the top row and bottom left panel, with the hydrodynamic
eigenvalues highlighted as big dots because they carry the largest individual residue for
k̄ = 0.8. By increasing the number of angles we see that we get a finer distribution of
eigenvalues in the real range of frequencies, as seen in the top right panel. Equivalently
we see a refinement in the imaginary frequencies by increasing the number of momenta, as
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Figure 4. Top: the residue density ρµ(ω̄) for non-conserved observable in scalar ϕ4 theory for
various discretizations as a function of imaginary frequency Im(ω̄). Bottom: the eigenvalue density
ρ(ω̄) for the same discretizations as a function imaginary frequency Im(ω̄).

seen in the bottom left panel. Although this yields more eigenvalues the overall picture of
the complex plane stays the same, especially the positions of the hydrodynamic poles do
not move. When we increase the maximum momentum cut-off, as in the top left panel, we
see that we gather more eigenvalues closer to the real axis, as we have already seen for the
case of k̄ = 0. But again this does not change the position of hydrodynamic eigenvalues.
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Figure 5. Top row and bottom left panel: eigenvalues of the scalar ϕ4 evolution operator in
the complex frequency plane for different discretizations. Hydrodynamic modes are highlighted as
larger points. Bottom right panel: real time Green’s function G(t̄) as a function of k̄t̄ for the same
discretizations. All plots have been for a gradient of k̄ = 0.8.

Despite the various refinements in the complex frequency plane, the real time Green’s
functions, plotted in the bottom right panel of figure 5, shows the same behavior, where
all curves of various discretizations lie on top of each other.

This discretization test shows that the discretization of 64 × 64 with pmax/T = 16 is
well suited for the study of the complex structure of scalar theory. The further increase
in discretization only added eigenvalues with small residues which did not change the
complex structure at all and left the eigenvalues with the largest residues untouched. The
physical description of observables, represented by the Green’s function, remains completely
unchanged upon further refinement.

4.3 Spectrum for finite gradients

When one switches to non zero gradients the appearance of hydrodynamic modes is one of
the first things happening for very small k̄. The zero modes observed for k̄ = 0, responsible
for conservation laws, become hydrodynamic modes in the finite k̄ case. All the other
modes describe the non-hydrodynamic behavior.

Since in our calculation we only receive the location of eigenvalues λi and their contri-
bution µi to the Green’s function, we first need to come up with a definition for what we
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Figure 6. The real (left) and imaginary (right) part of the dispersion relation ω̄(k̄) of the hydro-
dynamic sound mode as functions of k̄ in scalar ϕ4 theory (blue) and RTA (magenta). Black curves
show the dispersion relation in second order hydrodynamics in eq. (4.1) for comparison.

call hydrodynamic mode and how we isolate it in our data. We define the hydrodynamic
modes, where possible (more on that later), as the complex conjugated pair of modes with
the largest residue, which is obviously true for small k̄. By identifying these modes for
various k̄, we can then obtain the dispersion relation ω̄(k̄) of hydrodynamic sound modes,
which is shown in figure 6 for both scalar theory and RTA as a comparison. While at
small k̄, the dispersion relations for the real (left) and imaginary (right) part of the sound
mode agree with second order viscous hydrodynamics, sizeable deviations start to occur
for k̄ ≳ 0.15, and increase with increasing gradient strength, which is in line with the
results reported in [38]. Beyond k̄ ≈ 1.2 the residue of the hydrodynamic mode extracted
from scalar theory shrinks dramatically, as the mode disappears into a continuum of non-
hydrodynamic excitations, and it is no longer meaningful to distinguish this mode from
other excitations of the system, which is the reason that the curves in figure 6 terminate
at this value of k̄. Strikingly, a very similar behavior can also be seen in the Relaxation
Time Approximation, where the hydrodynamic modes exhibit essentially the same disper-
sion relations up to k̄ ∼ 0.9, where the hydrodynamic modes in RTA disappear behind the
branch cut.

Now that we have established the behavior of the hydrodynamic sound mode, we con-
tinue to further analyze the behavior of the Green’s functions and in particular investigate
the structure and impact of non-hydrodynamic excitations. In order to perform this analy-
sis, we monitor the behavior of the Green’s functions in the real-time and real and complex
frequency space, while varying the wave-number k̄, which characterizes the magnitude of
spatial gradients. Our results are compactly summarized in figures 7 and 8, where each row
shows the behavior of the Green’s function for a fixed value of k̄, with increasing k̄ from top
to bottom. In each row, the left most column shows the behavior of the real time Green’s
functions G(t̄) (see eq. (2.42)), along with a decomposition into the contributions from the
hydrodynamic sound mode (i.e. the complex conjugated pair of modes with the largest
residue) and the non-hydrodynamic modes (i.e. all other), which can be reconstructed by

– 19 –



J
H
E
P
0
9
(
2
0
2
3
)
1
8
6

summing only the contributions of the respective modes in eq. (2.42). In the second column
from the left, we depict the real and imaginary parts of the Green’s function G(ω̄) (see
eq. (2.44)) as a function of real frequencies ω̄/k̄. The behavior in the complex frequency
plane is elucidated in the third column of figures 7 and 8, where black circles show the loca-
tion of individual eigenvalues calculated from the matrix, which are scaled in size by their
contribution µi to the Green’s function, while the color code in these plots corresponds to
the logarithm of the absolute square of the Green’s function.3 Finally, the right most plot
is a histogram showing the summed contributions ρµ(ω̄) from non-hydrodynamic modes
as defined in eq. (4.10). Since there can be both positive and negative contributions, we
distinguish them by a color coding, where positive contributions are plotted in red and
negative contributions in blue. Contributions of the non-hydrodynamic modes are further
compared to the contribution of the hydrodynamic sound mode, which is indicated by a
green bar.

When considering the behavior of the real-time Green’s function G(t) (left column), we
find that for small gradients k̄ ≪ 1 the evolution is almost purely hydrodynamic, meaning
that only the complex conjugated pair of modes with the largest residue play a significant
role for the time evolution of the system. With increasing k̄, the contribution of non-
hydrodynamic modes becomes visible at early times, but exhibits a much faster decay than
the hydrodynamic contribution. When k̄ ∼ 1, the contributions from hydrodynamic and
non-hydrodynamic modes become of comparable size, until for k̄ ≈ 1.2 the contribution of
the hydrodynamic mode begins to disappear as non-hydrodynamic modes start to dominate
the behavior of the real-time Green’s function. By k̄ = 1.5, corresponding to the largest
value shown in figure 8, it is then no longer possible to identify a clear signature of a
hydrodynamic mode in the system.

Next we consider the Green’s function G(w̄) as a function of real frequency ω̄ (second
left column), which for small gradients (k̄ ≪ 1) features two distinct peaks in its real part
and at the same position two steep inflection points in the imaginary part. Clearly, these
features are a sign of the contribution of two very distinct regions in the complex frequency
plane, in this case the hydrodynamic poles, which for k̄ ≪ 1 are located close to real
frequency axis. By increasing k̄ the influence of the hydrodynamic poles diminishes, as their
residues shrink and they move away from the real-frequency axis, leading to a broadening
of peaks and inflections. Nevertheless, both the real-time and the real-frequency Green’s
functions exhibit a remarkably smooth behavior with increasing k̄, and do not immediately
indicate a transition from a hydrodynamic to a non-hydrodynamic regime.

Now, if we consider the behavior of the Green’s function in the complex frequency
plane (right two columns), for small k̄ ≪ 1 we can clearly see the dominance of the hy-
drodynamic modes, which correspond to simple poles in the complex frequency plane with
large residues. However, in addition to the hydrodynamic poles, additional singularities
indicated by black circles appear throughout the region where −k̄ < Re(ω̄) < k̄ and
Im(ω̄) < 0, which most likely signals the presence of an entire region of non-analyticity as

3Note that one does not see every eigenvalue here because some have such a small contribution that
their sizes are scaled to be invisible, so one only sees eigenvalues that have at least some influence on the
Green’s function.
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Figure 7. From left to right: 1. The real time Green’s function G(t̄) in scalar ϕ4 theory decomposed
into hydrodynamic and non-hydrodynamic contributions as a function of k̄t̄. 2. The real frequency
Green’s function G(ω̄) split into real and imaginary part as a function of the real frequency Re(ω̄)/k̄.
3. The eigenvalues of the evolution operator as black circles in the complex frequency plane. The
eigenvalue circle sizes are scaled by their respective residues µi. The coloring in the plane is the
logarithm of the absolute square of the Green’s function log(|G(ω̄)|2) at that position in frequency
space. 4. The residue density summed out over the real frequency range and plotted as function of
Im(ω̄), the hydrodynamic mode residue is separate as green bar as comparison. The results in each
row are obtained for one gradient k̄.
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Figure 8. From left to right: 1. The real time Green’s function G(t̄) in scalar ϕ4 theory decomposed
into hydrodynamic and non-hydrodynamic contributions as a function of k̄t̄. 2. The real frequency
Green’s function G(ω̄) split into real and imaginary part as a function of the real frequency Re(ω̄)/k̄.
3. The eigenvalues of the evolution operator as black circles in the complex frequency plane. The
eigenvalue circle sizes are scaled by their respective residues µi. The coloring in the plane is the
logarithm of the absolute square of the Green’s function log(|G(ω̄)|2) at that position in frequency
space. 4. The residue density summed out over the real frequency range and plotted as function
of Im(ω̄), the hydrodynamic mode residue is separate as green bar as comparison. Each row shows
the results for a different gradient k̄.
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discussed in [33] for the momentum dependent relaxation time approximation. Despite the
fact that the singularities cover a large region in the complex frequency plane, it appears
that the dominant contribution to the Green’s function of the energy-momentum tensor
seems to be located around Im(ω̄) ≈ −0.2, as can be seen from the residue density in
the right most panel, which reminiscent of the k̄ = 0 spectrum in figure 4 is also strongly
peaked around a single imaginary part of the frequency. Hence, the typical time scale
for the relaxation of contributions of non-hydrodynamic modes to the energy-momentum
tensor is still given by the inverse of this characteristic frequency ∼ 1/Im(ω̄) ≈ 5, which is
in line with the value of the second order transport coefficient τ̄π ≈ 6.1 [55]. Due to this
rather strong peak in the residue density, the behavior of the Green’s function in scalar
ϕ4 theory is actually not to different from the behavior in the conformal relaxation time
approximation (see also [38]) where — instead of a spread out region in the complex fre-
quency plane — the non-hydrodynamic contributions originates from a single branch-cut
located at Im(ω̄) = −1/τ̄R = 0.2.

When increasing k̄, the hydrodynamic sound mode moves further out into the complex
frequency plane and its residue decreases; at the same time the overall contribution of the
non-hydrodynamic modes increases, without any dramatic changes in the spectrum of the
residue density of the contributing modes. Even though for k̄ = 0.75, the characteristic
time scales for the decay of hydrodynamic and non-hydrodynamic modes is comparable,
the contribution of the hydrodynamic mode still stands out. With higher k̄ the complex
conjugated pair of hydrodynamic modes slowly dives deeper and deeper into the non-
analytic continuum until around k̄ = 1.2, where it gets absorbed into it and is no longer
distinguishable. Eventually, for large k̄ the remnant is a large non-analytic region with
fairly uniform impact on the Green’s function. Nevertheless, one can still see which parts
contribute more via the color coding of the Green’s function, showing that the largest
contributors are located at the edge of the region, towards Re(ω̄) = ±k.

5 Conclusions & Outlook

We developed a new method to numerically calculate linear response functions of the
energy-momentum tensor in kinetic theory. By carefully discretizing the Boltzmann equa-
tion on a momentum grid, this method allows to extract eigenvalues and eigenfunctions
of the evolution operator to access the behavior of the Green’s function in the complex
frequency plane, without the need to perform a numerical Laplace transform. The for-
malism was tested within the well studied conformal Relaxation Time Approximation and
could reproduce the known analytic structure of its Green’s functions, including the non-
hydrodynamic cut in the lower complex plane.

Subsequently, we explored for the first time the analytic structure of the Green’s func-
tion of the energy momentum tensor in the sound channel, for a scalar field theory with
quartic self-interaction. We find that for small gradients the response of the system is
dominated by hydrodynamic modes, which are embedded as single poles within a con-
tinuum of non-hydrodynamic excitations corresponding to a non-analytic region in the
complex frequency plane that extends arbitrarily close to the real frequency axis, albeit
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with exponentially suppressed contributions. Nevertheless, for sufficiently small wave num-
bers, the contribution of non-hydrodynamic excitations to physical observables is strongly
peaked around a characteristic value of the imaginary part of the frequency Im(ω̄) ∼ −τ̄−1

π .
With increasing gradient strength the non-hydrodynamic modes gain more and more in-
fluence in the response, until around k̄ ≳ 1.2 the hydrodynamic modes disappear into the
continuum and the response of the energy-momentum tensor is entirely determined by
non-hydrodynamic excitations.

Based on our analysis, it is thus conceivable that generalized hydrodynamic theories
accounting for higher gradient corrections to properly capture the dispersion relations can
provide a valid effective description of kinetic theory for sufficiently small gradients k̄ ≲ 1,
where Green’s functions of the energy-momentum tensor in the sound channel are dom-
inated by the hydrodynamic modes and a subset of non-hydrodynamic excitations with
Im(ω̄) ≈ −1/τ̄π which could be captured by effective non-hydrodynamic modes. However,
in the presence of large gradients k̄ ≳ 1, where a continuum of non-hydrodynamic modes
contributes to the Green’s function, thus reflecting the underlying microscopic dynamics,
it is not clear how hydrodynamics can provide a meaningful description of the dynam-
ics of the system. Since our analysis of the modes is of numerical nature, it is hard to
determine the precise location, where the hydrodynamic modes are completely hidden be-
hind the non-hydrodynamic continuum. Moreover, our results indicate that the transition
between the two regimes is not particularly sharp, but rather a smooth transition from
one to another where hydrodynamic and non-hydrodynamic modes exchange their relative
weights. Nevertheless, the location of the threshold k̄c ∼ 1 is in rather good agreement
with the value k̄c ∼ 0.9 previously obtained in RTA [28, 31], which is also reproduced by
our numerical RTA results. By converting this estimate into coordinate space, one obtains
a critical length scale lc ∼ 1/kc ≈ 0.16 fm

(
200 MeV

T

) (
η/s
0.16

)
for typical values of the temper-

ature and transport properties of the QGP. Below this length scale hydrodynamic modes
become suppressed and non-hydrodynamic excitations govern the dynamics. The critical
length scale is extremely small and should be seen as a lower bound for the applicability
of hydrodynamics.

Evidently this study provides a first step to an analogous calculation in QCD kinetic
theory, where on general grounds one also expect a non-analytic structure that is far more
complicated than just poles and cuts [20, 33, 34]. Beyond the extension to QCD kinetic
theory, it would also be interesting to extend the present study in scalar field, from a
kinetic description to a genuine QFT treatment, which for weakly coupled theories could
be achieved based on n-particle irreducible effective action techniques [64].
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A Analytical calculation of RTA Green’s functions

In this part we will further discuss the analytical solution of the Boltzmann equation. We
recall that the distribution function solving the perturbed equation is

δfk(p, ω) = δfk,eq(p, ω) + δfk(p, t = 0)τR

1 + ikτR cos θ − iωτR
. (A.1)

To keep in mind the perturbed equilibrium distribution is

δfk,eq(p, t) = p

T
f2

eq

(
δTk

T
− δuµ

kvµ

)
ep/T . (A.2)

Using Landau matching conditions for the energy momentum tensor (eq. (2.23)) we can
express the temperature and velocity perturbation as moments of the distribution function

δTk

T
= 1

4
δek

e
= 1

4e

∫
d3p

(2π)3 pδfk , (A.3)

δuµ
k = δT 0µ

k

e + P
= 3

4e

∫
d3p

(2π)3 pµδfk . (A.4)

Plugging in everything we know into eq. (2.23) we receive

δek = δT 00
k =

∫ ∞

0

dp

2π2T
p4ep/T f2

eq

∫ 2π

0

dϕ

4π

∫ 1

−1
d cos θ

1
4

δek
e + 3

4
δT 03

k cos θ

e + τR
4

δe0
e

1 + ikτR cos θ − iωτR
(A.5)

=
∫ 1

−1
d cos θ

1
2δek + 3

2δT 03 cos θ + 1
2τRδe0

1 + ikτR cos θ − iωτR
. (A.6)

And for the off-diagonal component

δT 03
k =

∫ 1

−1
d cos θ

1
2δek + 3

2δT 03 cos θ + 1
2τRδe0

1 + ikτR cos θ − iωτR
cos θ. (A.7)

Together they form a system of linear equations

δek = aδek + bδT 03
k + c , (A.8)

δT 03
k = dδek + gδT 03

k + h , (A.9)

where each individual coefficient is the integral of one part of the sums. The solution to
this system of equations is

δek = c − cg + bh

1 − a − bd − g + ag
, δT 03

k = cd + h − ah

1 − a − bd − g + ag
. (A.10)

The coefficients evaluate to

a = iL

2kτR
, b = i

3(i + ωτR)L − 6kτR

2k2τ2
R

, c = iδe0
2k

L , (A.11)

d = −i
2kτR − (i + ωτR)L

2k2τ2
R

, g = −3i(i + ωτR)(2kτR − (i + ωτR)L)
2k3τ3

R

, (A.12)

h = −iδe0
2kτR − (i + ωτR)L

2k2τR
, (A.13)
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where we used L = log
(

1−iτR(k+ω)
1+iτR(k−ω)

)
. Plugging these coefficients into eq. (A.10) yields the

energy momentum tensor components as

δek

δe0
= −(6ikτR + (3 + k2τ2

R − 3iωτR)L)
(k2τRL + 2ik3τ2

R − 6kτRω + 3ω(i + ωτR)L)
, (A.14)

δT 03
k

δe0
= ikτR(−2kτR + (i + ωτR)L)

(k2τRL + 2ik3τ2
R − 6kτRω + 3ω(i + ωτR)L)

. (A.15)

B Discretization of RTA collision operator in wedge moments

We start with the perturbed Boltzmann Equation in RTA (eq. (3.12))

∂tδfk(p, t) + ik cos θ δfk(p, t) = 1
τR

ep/T f2
eq(p)

(
p

T

δTk

T
−

δuµ
kpµ

T

)
− 1

τR
δfk(p, t) . (B.1)

The right hand side will be expanded in moment space as the left side only contains the
time derivative and expansive term, which was already discussed generally. The moments
of the collision kernel on the right side are given as

δCi = − 1
τR

Ni + 1
τR

∫
d3p

(2π)3 wip(p)wiθ
(cos θ)epf2

eqp
(
δT 00 + 3δT 0mvm

) 1
4e

. (B.2)

We recognize that the energy momentum tensor components can be directly decomposed
into wedge moments via eq. (2.21). Integrals with m ̸= 3 vanish. When we take the func-
tional derivative with respect to Nj only the j-th contributions to the energy momentum
components stay. The matrix elements then are

Cij = −δij

τR
+ 1

τR

1
4e

∫
d3p

(2π)3 pwip(p)wiθ
(cos θ)epf2

eq(pjp + 3pjp cos θjθ
cos θ) , (B.3)

which can finally be simplified to the form

Cij = −δij

τR
+ 1

τR

pjp

4e

∫ ∞

0

dp

(2π)2 p3wip(p)epf2
eq

∫ 1

−1
d cos θwiθ

(1 + 3 cos θjθ
cos θ) . (B.4)

The cosine integral is calculated analytically and only has different values for combinations
of i and j, which are tabulated. The p integral is calculated numerically and tabulated for
all possible i.
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