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1 Introduction

In Newtonian mechanics, a collection of charged particles, each having mass equal to
its charge (in proper units), can stay still, reaching a state of mechanical equilibrium.
Remarkably, the balance between the attractive gravitational force and the repulsive
Coulomb force still holds in general relativity where this system is described by the
Majumdar-Papapetrou (MP) multi-black hole solution [1, 2] in Einstein-Maxwell (EM)
theory without a cosmological constant. The MP solution is free of any conical singularity,
since each black hole is an extremal Reissner-Nordström black hole [3]. Thus the emsemble
of multi-black holes is also in thermal equilibrium. When a positive cosmological constant
is added, the MP solution is generalized to the Kastor-Traschen solution [4]. Whether the
analog of MP solution exists in asymptotically AdS space remains an open question while
some attempts have been made in recent years [5–8].

In higher derivative extensions of Einstein-Maxwell theory, little is known about the
existence of multi-extremal black hole solutions. The goal of this paper is to figure out
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what kind of higher derivative couplings can accommodate multi-centered extremal black
hole solutions whose total energy is independent of the position of each black hole. Such a
system of multi-black holes reaches internal mechanical and thermal equilibrium without the
aid of external forces, unlike the multi-black holes supported by strut [9], acceleration [10]
or cosmic expansion [11]. Naively, one may think that the higher derivative couplings
only modify the solution with no effects on its existence. However, lessons from Weak
Gravity Conjecture suggest that higher derivative interactions do in general break the
balance between gravity and Coulomb force [12]. Hence existence of multi-extremal black
hole solutions will require higher derivative couplings satisfy certain constraints, possibly
carving out the boundary between the landscape and the swampland. As we will see, these
constraints are stronger than those needed to protect the mass-charge ratio of extremal
black holes from higher derivative corrections.

In this paper, we focus on 4-derivative extensions of Einstein-Maxwell theory composed
of Riemann tensor and U(1) field strength. The brute-force way would be to solve the
4-derivative corrections to the multi-black hole solutions and impose certain smoothness
conditions. This approach is not feasible due to the lack of symmetry for multi-black hole
solutions. Instead, we follow a more physical path by first considering a 2-black hole system
where one of the black hole is much lighter than the other. In this case, the lighter black
hole is treated as a charged massive particle probing the background sourced by the heavier
one. The force felt by the test particle must vanish as a result of balance between gravity
and Coulomb force. The simple probe limit in the 2-black hole system already yields two
constraints on the 4-derivative couplings, of which, one combination implies that the two
black holes satisfy the same extreme mass-charge relation as in the 2-derivative theory.
Beyond the probe limit, backreactions from the test particle to the background solution are
considered up to first order in the mass of the test particle. The force-free condition derived
using the backreacted solution leads to surprisingly strong constraints on the 4-derivative
couplings such that the multi-centered MP solutions are not modified by the force-free
combinations of 4-derivative couplings.

The procedure above is carried out explicitly in 4-and 5-spacetime dimensions. In these
two dimensions, the Einstein-Maxwell theory is closely related to the bosonic action of N = 2
supergravity1 with the MP solution preserving half of supersymmetry. Thus it is conceivable
that the force-free 4-derivative terms may correspond to 4-derivative supergravity invariants.
Our results show that in D=4 and 5, the force-free 4-derivative couplings contains not only
the 4-derivative supergravity invariants (parity even terms in D = 5) but also one more
structure which we identified as the F 4 term in quasi-topological electromagnetism.

This paper is organized as follows. In section 2, we review the force-free property of
extremal black holes in Einstein-Maxwell theory. In section 3, we carry out the procedure
outlined above in 4-and 5-dimensions, deriving the 4-derivative couplings that enjoy the
force-free property and can accommodate multi-extremal black hole solutions. We conclude
with discussions in section 4.

1In D = 4, Einstein-Maxwell action is the full bosonic action of N = 2 supergravity. In D = 5, the
bosonic action contains also the Chern-Simons term which has no effect to the purely electric MP solutions.
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2 Static Charged multi-black holes in Einstein-Maxwell theory

The solutions that will be utilized here are those of the D-dimensional Einstein-Maxwell
theory

SEM = 1
2κ2

∫
dDx

√
−g

(
R − 1

4g2 FµνF µν
)

. (2.1)

The widely studied single static charged black hole solution is of the form

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
D−2 ,

f(r) = g(r) = 1 − m

2rD−3 + q2

4r2(D−3) ,

A(1) = −aD
gq

rD−3 dt , aD =
√

D − 2
2(D − 3) , (2.2)

where dΩ2
D−2 is the line element on a unit (D − 2)-sphere. To simplify the discussion, from

now on, we set U(1) coupling g = 1. Parameters m and q are related to the ADM mass M

and electric charge Q via

m = 2M

(D − 2)AD−2
, q =

√
2

(D − 2)(D − 3)
Q

AD−2
, (2.3)

where AD−2 denotes the area of a unit (D − 2)-sphere. In addition, the theory also admits
multi-extremal black hole solutions [1, 2, 13]

ds2 = −H−2dt2 + H
2

D−3 (dx2
1 + · · · dx2

D−1) , At = 2aDH−1, H = 1 +
∑

i

mi

4|x⃗ − x⃗i|D−3 ,

(2.4)
where mi, x⃗i label the mass and position of each black hole. These black holes have reached
the mechanical equilibrium, namely, the gravitational force is precisely canceled by the
Coulomb force. Indeed the i-th black hole’s mass and charge obeys

Mi = 2aDQi . (2.5)

In terms of the parameters characterizing a single black hole, it means mi = 2qi. The
mass-charge relation is usually called the extremality condition or BPS condition if the
Einstein-Maxwell theory is embedded in supergravity. The force-free property is reflected
in the fact that the energy of the multi-black hole solutions (2.4) is independent of the
position of individual black hole.

In fact, the mass-charge relation (2.5) needed for the system to be force-free can also
be obtained by considering a certain limiting situation without actually knowing the exact
multi-black hole solutions. For instance, in the case of two black holes, suppose one of the
black hole is much lighter than the other so that at the leading order of the small mass ratio,
the lighter black hole can be treated as a charged massive particle probing the background
of the heavier black hole. Needless to say, the test particle must be able to stay static is a
necessary condition underlying the existence of the 2-centered MP solution.

– 3 –



J
H
E
P
0
9
(
2
0
2
3
)
1
3
9

The action of a charged massive particle takes the form

S0 = −m0

∫ √
−gµνdxµdxν + q0

∫
Aµdxµ , (2.6)

where the target space coordinates xµ is pulled back on the world-line of the particle. The
relation between m0 and q0 will be determined later. In the background of a single charged
black hole, an initially static particle is entitled to remain motionless as long as the potential
read off from the action (2.6) is independent of r

V0 = m0
√
−gtt − q0At = const. (2.7)

Substituting the black hole solution into (2.7), we find that

V0 = m0 −
mm0 − 4aDqq0

4rD−3 − m0(m − 2q)(m + 2q)
32r2(D−3) + · · · , (2.8)

where “· · · ” are higher order terms in 1/r. Clearly, for V0 to be r-independent, the mass
and charge parameters must obey

m = 2q , m0 = 2aDq0 . (2.9)

Plugging the mass-charge relations above back to V0, we confirm that the potential is
indeed constant. Thus we see that from the simple consideration of a probe particle in the
background of a charged black hole, one indeed recovers the mass-charge relation (2.5).

Beyond the probe limit, one must include back-reaction of the probe particle to the
background solution. This eventually leads to a 2-centered MP solution and the force felt
by the lighter black hole is not well defined at its own location, since the metric and electric
potential diverge right there. Away from the center of black holes, the force-free property
is manifest in the MP solution as At = 2aD

√
−gtt. The consideration of the probe limit

applies to systems with more than 2 black holes as well. For example, in a 3-black hole
system, when one of the black hole is much lighter than the other two, the lightest one can
be treated as a test particle probing the 2-black hole solution. For Einstein-Maxwell theory,
this again leads to the extreme mass-charge ratio satisfied by the third black hole.

So far, we see that for Einstein-Maxwell theory, the probe limit adopted above reproduces
the known mass-charge relation of extremal black holes. In the next section, we apply the
same idea to study existence of multi-extremal black hole solutions in 4-derivative extensions
of Einstein-Maxwell theory. It is shown that besides the mass-charge relation (2.5), the
force-free property also requires the coefficients of higher derivative couplings satisfy certain
constraints. In other words, not all the higher derivative couplings allow the existence of
multi-extremal black holes.

3 Force-free 4-derivative action

In this section, we propose a general method of deriving the force-free higher derivative
couplings. For technical viability, we mainly focus on D = 4, 5. Interestingly, the 4-derivative
couplings determined from the force-free condition are strong enough that “there-would-be”
corrections from the 4-derivative couplings to the multi-extremal black hole solutions vanish.
This means that the multi-extremal black hole solutions in the 2-derivative Einstein-Maxwell
theory persist to be exact solutions of the force-free higher derivative theory.
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3.1 The set up

In this section, we explain our method of obtaining the higher derivative couplings that enjoy
the force-free property. We start from Einstein-Maxwell theory extended by 4-derivative
interactions of the form

SEM+4∂ = 1
2κ2

∫
dDx

√
−g

(
R − 1

4FµνF µν + ∆L
)

, (3.1)

where for the time being, the 4-derivative interactions are chosen to be parity even

∆L = c1R2 + c2RµνRµν + c3RµνρσRµνρσ

+ c4RFµνF µν + c5RµνF µρF ν
ρ + c6RµνρσF µνF ρσ

+ c7FµνF µνFρσF ρσ + c8FµνF νρFρσF σµ + c9∇µFµν∇ρF ρν . (3.2)

The coefficients c1 · · · c9 may arise from integrating out heavy degrees of freedom at UV
energy scale Λ, thus c1 · · · c9 are suppressed by 1/Λ2. From the viewpoint of effective
field theory, ci ought to be small and thus we will solve the field equations up to first
order in ci. At this order, the effect of 4-derivative corrections is encoded in an effective
energy-momentum tensor and an effective electric current built upon the leading order
solution [14]. Specifically, we shall solve field equations below only up to first order in ci

Rµν − 1
2gµνR = 1

2

(
F ρ

µ Fνρ −
1
4gµνFρσF ρσ

)
+ 1

2∆Tµν [g(0)
λσ , A(0)

σ ] ,

∇µF µν = ∆Jν [g(0)
λσ , A(0)

σ ] , (3.3)

where the effective energy-momentum tensor and the effective electric current are defined by

∆Tµν = −2√
−g

δ(
√
−g∆L)
δgµν

, ∆Jν = δ(∆L)
δAν

, (3.4)

whose explicit forms are given in appendix A.
To find the force-free 4-derivative extensions of Einstein-Maxwell theory, we consider

the simplified scenario in which one of the black hole is treated as a test particle in the
background of the other heavier black holes. At first sight, one should also extend the
minimally coupled particle action to include higher derivative corrections of the same order.
Dimensional analysis suggests the action (2.6) can be extended to

S′
0 = −m0

∫ √
−(gµν + α1gµνR + α2Rµν + α3gµνF 2 + α4FµσFν

σ)dxµdxν

+ q0

∫
(Aµ + α5∇νFνµ)dxµ , (3.5)

where coefficients αi all have dimensions of Λ−2 in accord with the coefficients of 4-derivative
couplings in the gravity action. As a matter of fact, these higher derivative corrections to the
test particle action can be absorbed into redefinition of gµν and Aµ. In terms of the redefined
metric and the U(1) gauge field, the test particle action retains the minimally coupled
form, while the gravity action is still parameterized by (3.2) with certain new coefficients c′i.
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Therefore, we can choose a frame in which the 4-derivative gravity action takes the most
general form (3.2), while the test particle action remains minimally coupled. Notice that
although the test particle action is not modified by higher derivative terms, the background
black hole solutions do in general receive corrections from the 4-derivative interactions.

In our approach, we first consider probe limits in 2-and 3-black hole systems. In the
2-black hole case, we only need to solve for 4-derivative corrections to a single charged
black hole solution which is straightforward. This leads to 2 constraints on the 4-derivative
couplings, of which, a combination implies the two black holes satisfy the same extreme
mass-charge relation as in the 2-derivative case. In the 3-black hole case, we need to solve
for 4-derivative corrections to 2-centered extremal charged black hole solutions. Obviously,
a direct construction of such solution is very hard. However, we can consider a special
situation where there is a hierarchy of masses in the 3-black hole system m0 ≪ m2 ≪ m1.
While the black hole with mass m0 is treated as the probe, 4-derivative corrections to
2-centered extremal black hole solution with m2 ≪ m1 can be solved order by order in m2
in the far zone r ≫ m1,2. We can then place the test particle in the far zone and require it
feel no force from the 2-centered extremal black holes. It turns out that utilizing perturbed
solutions up to first order in m2, we already obtain constraints on 4-derivative couplings
that ensure multi-extremal black hole solutions to exist.

To calculate 4-derivative corrections to 2-centered extremal black hole solution, we
utilize the axially symmetric ansatz. In cylindrical coordinates, the metric and the U(1)
gauge field take the form

ds2
D = −a(ρ, z)dt2 + b(ρ, z)dz2 + c(ρ, z)(dρ2 + ρ2dΩ2

D−3) , A(1) = 2aDu(ρ, z)dt . (3.6)

In terms of spherical coordinates defined by

r2 = ρ2 + z2 , z = r cos θ , (3.7)

the ansatz above (3.6) is expressed as

ds2 = −a(r, θ)dt2 +
(
b(r, θ) cos2 θ + c(r, θ) sin2 θ

)
dr2 + r2(b(r, θ) sin2 θ + c(r, θ) cos2 θ

)
dθ2

+ c(r, θ)r2 sin2 θdΩ2
D−3 +

(
c(r, θ) − b(r, θ)

)
r sin 2θdθdr ,

A(1) = 2aDu(r, θ)dt . (3.8)

Without higher derivative corrections, the 2-centered extremal black hole in spherical
coordinates is given by

a0 = H(r, θ)−2, b0 = c0 = H(r, θ)
2

D−3 , u0 = H(r, θ)−1 ,

H(r, θ) = 1 + m1
4rD−3 + m2

4(r2 + z2
2 − 2z2r cos θ)

D−3
2

, (3.9)

where the two black holes are located at z = 0, z = z2 on the polar axis respectively. Notice
that the radial coordinate in (3.9) differs from the radial coordinate in the single black hole
solution by the transformation

r̃ = rH(r)
1

D−3 , (3.10)

– 6 –
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where r̃ denotes the radial coordinate in the single black hole solution (2.2). One can check
it by setting m2 = 0 and the 2-centered black hole reduces to the extremal single charged
black hole solution (2.2).

When m2 ≪ m1, we keep the solution up to linear order in m2. The results are

a0 = f−2
(

1 − m2

2f(r2 + z2
2 − 2z2r cos θ)

D−3
2

)
+ O(m2

2) ,

b0 = c0 = f
2

D−3

(
1 + 1

2(D − 3)
m2

f(r2 + z2
2 − 2z2r cos θ)

D−3
2

)
+ O(m2

2) ,

u0 = f−1
(

1 − m2

4f(r2 + z2
2 − 2z2r cos θ)

D−3
2

)
+ O(m2

2) , f(r) = 1 + m1
4rD−3 . (3.11)

In the far zone r ≫ m1,2, z2, we can further expand the solution in (axisymmetric) spherical
harmonics as [15]

1
(r2 + z2

2 − 2z2r cos θ)
D−3

2
=

∞∑
n=0

zn
2

rD−3+n
Yn(cos θ) , (3.12)

where Yn(cos θ) = C
D−3

2
n (cos θ), and C

D−3
2

n is the n-th Gegenbauer polynomial whose first
two members are

C
D−3

2
0 (cos θ) = 1, C

D−3
2

1 (cos θ) = (D − 3) cos θ . (3.13)

Turning on 4-derivative corrections, we adopt the ansatz for the modified 2-centered black
hole solution as

a(r, θ) = a0 + δa , b(r, θ) = b0 + δb , c(r, θ) = c0 + δc , u(r, θ) = u0 + δu , (3.14)

where the corrections {δa, δb, δc, δu} are solved only up to O(ci, m2ci). In the far zone, we
also expand the perturbations in terms of (axisymmetric) spherical harmonics

δa =
∞∑

n=0

∞∑
i=0

δa(i,n)
ri

Yn(cos θ) , δb =
∞∑

n=0

∞∑
i=0

δb(i,n)
ri

Yn(cos θ) ,

δc =
∞∑

n=0

∞∑
i=0

δc(i,n)
ri

Yn(cos θ) , δu =
∞∑

n=0

∞∑
i=0

δu(i,n)
ri

Yn(cos θ) . (3.15)

In summary, we will substitute the ansatz into the field equations with 4-derivative
corrections

a(r, θ) = f−2 +
∞∑

n=0

(
− m2

2f3
zn

2
rD−3+n

+
∑
i=0

δa(i,n)
ri

)
Yn(cos θ) + O(m2

2) + O(c2
i ) ,

b(r, θ) = f
2

D−3 +
∞∑

n=0

m2f
5−D
D−3

2(D − 3)
zn

2
rD−3+n

+
∑
i=0

δb(i,n)
ri

Yn(cos θ) + O(m2
2) + O(c2

i ) ,
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c(r, θ) = f
2

D−3 +
∞∑

n=0

m2f
5−D
D−3

2(D − 3)
zn

2
rD−3+n

+
∑
i=0

δc(i,n)
ri

Yn(cos θ) + O(m2
2) + O(c2

i ) ,

u(r, θ) = f−1 +
∞∑

n=0

(
− m2

4f2
zn

2
rD−3+n

+
∑
i=0

δu(i,n)
ri

)
Yn(cos θ) + O(m2

2) + O(c2
i ) , (3.16)

and solve for the expansion coefficients {δa(i,n), δb(i,n), δc(i,n), δu(i,n)} up to O(ci, m2ci).
Then for the test particle in the background of 2-centered black hole solutions, the force-free
condition becomes

V0 = m0

√
a(r, θ) − 2q0aDu(r, θ) = const + O(c2

i ) . (3.17)

As we will see, the equation above highly constrains the coefficients of 4-derivative couplings.

3.2 D = 4

In this section, we study consequences of requiring the balance between gravity and Coulomb
force in multi-black hole systems with 4-derivative corrections (3.1). In practice, this is
carried out in the probe limit under which one of the black hole is much lighter than the rest
and is treated as a charged massive particle. It turns out that the 2-and 3-black hole cases
already yield sufficient constraints on 4-derivative couplings such that the MP solution in the
2-derivative Einstein-Maxwell theory remain to be an exact solution without any corrections.
Surprisingly, the full set of constraints obtained from the probe limit of a system involving
3 electric black holes can be reproduced by combining constraints derived from the probe
limits of two simpler systems. One consists of 2 electric black holes and the other contains
2 magnetic black holes. Furthermore, we will also study force-free condition implied by
the probe limit of 2 dyonically charged black holes. This yields the strongest constraints
compared to all previous cases. Interestingly, the resulting 4-derivative couplings almost
reproduce the 4-derivative invariants in ungauged off-shell N = 2 supergravity [16–18]
module two unconstrained coefficients c1, c9 which do not affect the solution at all in the
first order perturbation theory.

3.2.1 Probe limit in the 2-black hole system

In this subsection, we consider probe limit of the 2-electric black hole solution in which one
of the black hole is much lighter than the other so that the lighter black hole is treated as a
charged massive particle probing the background of the heavier black hole. To study the
implication of force free condition, we first find 4-derivative corrections to the single static
charged black hole solution by solving (3.3) up to first order in ci. The results are given by

ds2 = −f(r)dt2 + dr2

g(r) + r2(dθ2 + sin2 θdϕ2) , A = Atdt , (3.18)

where

f(r) = 1− m

2r
+ q2

4r2 −
q2

40r6

((
c2+2(2c3−20c4−4c5+c6+8c7+4c8)

)
q2

+20r2 (c2+4c3−4c4+2c6)−5mr
(
c2+2(2c3−6c4−c5+c6)

))
+O(c2

i ) ,

– 8 –
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g(r) = 1− m

2r
+ q2

4r2 −
q2

40r6

(
2(3c2+12c3+30c4+11c5+16c6+8c7+4c8)q2

−5mr
(
3c2+2(6c3+14c4+5c5+7c6)

)
+40r2(c2+4c3+8c4+3c5+4c6)

)
+O(c2

i ) ,

At =−q

r
− 1

20r5

(
2q3

(
1
2c2+2c3+10c4+c5−9c6−16(2c7+c8)

)
+20c6mqr

)
+O(c2

i ),

(3.19)

which agree with [19]. Notice that c1 and c9 do not affect the solution because the effective
energy momentum tensor and electric current associated with R2 and ∇µFµν∇ρF ρν vanish
on the leading order solution. Corresponding to the modified solution above, the mass-charge
relation of the extremal black hole becomes

mext = 2q −
8
(
c2 + 4c3 + 2c5 + 2c6 + 16c7 + 8c8

)
5q

+ O(c2
i ) . (3.20)

As discussed before, the action of the test particle retains the same form and thus force-free
condition requires the potential be position independent

V0 = m0

√
f(r) − q0At = const + O(c2

i ) . (3.21)

Since the perturbed solution is obtained only up to first order in ci, we impose the force-free
condition at the same order. Substituting the modified solution (3.18) into (3.21), we
obtain the mass-charge relation m = 2q, m0 = 2q0 and two constraints on the higher
derivative couplings

c4 = 1
4 (c2 + 4c3 − 2c6) , c5 = −c2

2 − 2c3 − c6 − 8c7 − 4c8 . (3.22)

Notice that the second constraint implies that the mass-charge relation for extremal black
hole becomes mext = 2q, so that the black hole obeying force-free condition is still extremal.
We also see that the force-free condition is in fact stronger than merely keeping the extreme
mass-charge ratio unaffected by the higher derivative corrections. In the next subsection,
we will explore the consequences of force-free condition using the probe limit in a 3-black
hole system.

3.2.2 Probe limit in the 3-black hole system

In a 3-black hole system, we assume there is a hierarchy of masses m0 ≪ m2 ≪ m1. The
black hole of mass m0 is to be treated as a test particle in the background consisting of 2
heavier black holes which already reach mechanical equilibrium between themselves. This is
indicated by the results from the probe limit of 2-black hole case. Without higher derivative
corrections, the 2-black hole system is described by the 2-centered MP solution. As discussed
in section 2, to circumvent the difficulty of solving for the full 4-derivative corrections to
the 2-centered MP solution, we expand the 2-centered MP solution in powers of m2 keeping
only terms up to first order in m2. Furthermore, we perform large r expansion in the far
zone r ≫ m1, m2, z2, where the test particle is placed. Corrections to the approximation
of the 2-centered MP can then be solved up to order ci, m2ci. The perturbed solutions
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associated with each (axisymmetric) harmonic function (3.16) are independent of each other.
Using the solution associated with Y0(cos θ) (given in appendix B), we obtain the following
constraints from the force-free condition (3.17)

c4 = 1
4(c2 + 4c3) , c5 = −(c2 + 4c3) , c6 = 0 , c7 = 1

16(c2 + 4c3 − 8c8) , (3.23)

which are stronger than the one obtained from the probe limit of the 2-black hole solu-
tion (3.22). Substituting the tightened constraints (3.23) into the effective energy-momentum
tensor and effective electric current, we find that

∆Tµν [g(0) , A(0)] = 0 , ∆Jν [g(0) , A(0)] = 0 , (3.24)

are satisfied not only on a 2-centered MP solution but actually on all the uncorrected multi-
centered MP solutions (2.4). This result implies that the MP solution in the 2-derivative
theory are not modified by the 4-derivative interactions fulfilling the force-free requirement.
At this stage, there is no need to explore consequences from the probe limit involving more
than 3 black holes.

Plugging (3.23) in (3.2), we obtain the 4-derivative couplings that can accommodate
multi-extremal black hole solutions

∆Lforce-free = c′1R2+c′2LW 2 +c′3LGB +c′4

[
(TrF 2)2−2Tr(F 4)

]
+c′5∇µFµν∇ρF ρν , (3.25)

where we redefined the coefficients to label the independent structures

c′1 = c1 + 1
3(c2 + c3) , c′2 = 1

2(c2 + 4c3) , c′3 = −1
2(c2 + 2c3) ,

c′4 = 1
8(c2 + 4c3 − 4c8) , c′5 = c9 − c2 − 4c3 . (3.26)

LW 2 and LGB correspond to the two 4-derivative invariants in D = 4 off-shell ungauged
N = 2 supergravity [16–18] upon eliminating the auxiliary fields

LW 2 = CµνρσCµνρσ + 1
2RFµνF µν − 2RµνF µρF ν

ρ − 1
8FµνF µνFρσF ρσ

+ 1
2FµνF νρFρσF σµ + 2(∇µFµρ)(∇νF νρ) ,

LGB = R2 − 4RµνRµν + RµνρσRµνρσ . (3.27)

Our result is consistent with and beyond the old result [20] stating that the MP solution
does not receive quantum corrections in N = 2 supergravity, since we also obtain one more
structure with coefficient c′4 that preserves the MP solution. The same combination of
F 4 terms also appeared in quasi-topological electromagnetism [21, 22]. In fact, one can
prove that the particular combination of two F 4 term does not affect all purely electric or
magnetic solution regardless of the symmetry of the solution.

3.2.3 Concerning magnetic black holes

In the previous subsection, to obtain the sufficient constraints for the 4-derivative couplings
to accommodate multi-extremal black hole solution, we have to consider probe limit in
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a 3-black hole system and solve for corrections to the 2-centered MP solution which is
technically more involved compared to the probe limit in the a 2-black hole system. Since
Einstein-Maxwell theory also admits magnetically charged black holes, one may wonder
what would be the consequences of force-free condition from the probe limit of 2 magnetic
black holes although this seems to be unrelated to our original pursuit about existence of
multi-electrically charged black holes. To our surprise, the force-free condition imposed on
the probe limit of 2 magnetic black holes yields 2 more constraints, which combined with
the 2 constraints obtained from the probe limit of 2 electric black holes, leads to the full set
of constraints derived from the probe limit in the 3-black hole case.

To study the probe limit of 2 magnetic black holes, we first find the 4-derivative
corrections to a single magnetic black hole. The computation is similar to the electric black
hole case. The only difference is that the test particle is now coupled to the dual U(1) gauge
field and The outcome of the force-free condition is that

c6 = 1
6 (−c2 − 4c3 − 4c4 − 2c5) , c7 = 1

4 (c4 − 2c8) , (3.28)

which when combined with (3.22) yields precisely the full set of constraints obtained from
the probe limit of 3-centered MP solution.

To complete the study of force-free condition implied by the probe limit in a 2-black
hole system, we consider solutions carrying both electric and magnetic charges. Up to first
order in ci, the solution takes the form

ds2 =−f(r)dt2+ dr2

f(r) +r2dΩ2
D−2 , A = Atdt+pcosθdϕ,

f(r) = 1− m

2r
+ p2+q2

4r2 − 1
40r6

(
c2
(
p2+q2

)(
5r(4r−m)+p2+q2

)
+40r2

(
(2c3+2c4+c5+c6)p2+(2c3−2c4+c6)q2

)
−10mr

(
(2c3+6c4+2c5+c6)p2+(2c3−6c4−c5+c6)q2

)
+4(2c3+c5+2c6−8c7)p2q2+2(2c3−20c4−4c5+c6+8c7+4c8)q4

+2(2c3+20c4+6c5+3c6+8c7+4c8)p4
)

+O(c2
i ) ,

At =−q

r
− 1

20r5

((
c2+4c3+20c4+2c5−18c6−32(2c7+c8)

)
q3

+20c6mqr+(c2+4c3−20c4−8c5−26c6+64c7)p2q
)

+O(c2
i ) ,

g(r) = 1− m

2r
+ p2+q2

4r2 − 1
40r6

(
2(24c3+7c5+14c6−16c7)p2q2+6c2(p2+q2)2

+2(12c3+30c4+11c5+16c6+8c7+4c8)q4−4(−6c3+15c4+2c5+c6−4c7−2c8)p4

−5mr
(
(3c2+12c3−28c4−4c5−2c6)p2+(3c2+12c3+28c4+10c5+14c6)q2

)
+40r2

(
(c2+4c3−8c4−c5)p2+(c2+4c3+8c4+3c5+4c6)q2

))
+O(c2

i ) ,

Ãt =−p

r
+ p

20r5

(
20c6mr−(c2+4c3−20c4−8c5+6c6−64c7−32c8)p2

)
− pq2

20r5
(
c2+2(2c3+10c4+c5+7c6+32c7)

)
, (3.29)
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where p, q parameterize the electric and magnetic charge respectively. The purely magnetic
black hole we discussed before is obtained from the dyonic black hole (3.29) by setting
q = 0. For a dyonically charged test particle, the force-free condition becomes

V0 = m0

√
f(r) − q0At(r) − p0Ãt(r) = const + O(c2

i ) , (3.30)

where Ã(1) is the dual U(1) gauge field satisfying dÃ(1) = ⋆M̃(2), M̃µν = −2∂L/∂Fµν , with
⋆ being the Hodge star operator. The dyonic charges should obey [23, 24]

qp0 − pq0 = 0 , (3.31)

so that the electromagnetic field does not carry angular momentum and the solution can
be static.

Substituting the modified solution to (3.30), we obtain the force-free condition on the
mass charge relation

m = 2
√

p2 + q2, m0 = 2
√

p2
0 + q2

0 , (3.32)

as well as five constraints on the 4-derivative couplings

c4 = 1
4 (c2 + 4c3) , c5 = − (c2 + 4c3) , c6 = 0, c7 = − 1

16(c2 + 4c3), c8 = 1
4(c2 + 4c3) .

(3.33)
Substituting the constraints above to the general 4-derivative action, we find that the result
can be recast into a linear combination of R2, LW 2 , LGB and (∇µFµρ)(∇νF νρ) without
the quasi-topological electromagnetism term (TrF 2)2 − 2Tr(F 4). We also noticed that the
dyonic black hole solution is not modified by the force-free combination of 4-derivative
obtained above. While it is easy to understand why R2, LGB and (∇µFµρ)(∇νF νρ) do not
affect the solution, it is not obvious that the LW 2 does not modify the solution neither.
Hence we find that two 4-derivative invariants in D = 4 N = 2 supergravity not only
preserve the supersymmetric MP solution, but also give no corrections to the non-extremal
dyonic black holes. The F -dependent terms in LW 2 (apart from the (∇µFµρ)(∇νF νρ)
term) can be expressed in terms of the energy momentum tensor of the U(1) gauge field
implying its field equations are thus invariant under electromagnetic duality [25]. Therefore
Einstein-Maxwell theory extended by LW 2 in fact admits dyonically charged multi-centered
extremal black hole solutions obtained via an electromagnetic duality rotation of the purely
electric ones.

In D = 4, one can also consider parity odd 4-derivative couplings

∆Lodd = d4RFµνF̃ µν + d5RµνF µρF̃ ν
ρ + d6RµνρσF µνF̃ ρσ

+ d7F̃µνF µνF ρσFρσ + d8F̃µνF νρFρσF σµ , (3.34)

where F̃µν = 1
2ϵµνρλF ρλ. The parity odd terms have effects only on the dyonic black holes.

Using the probe limit in a 2-dyonic black hole system, we find that the force-free condition
selects the special combination

d5 = −4d4 , d6 = 0 , d8 = −4d7 . (3.35)
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Upon using the identity
gµνFρλF̃ ρλ − 4FµρF̃ν

ρ = 0 (3.36)

one finds that all the parity odd force-free combinations vanish identically.

3.3 D = 5

In this subsection, we continue our pursuit of force-free higher derivative extensions of
Einstein-Maxwell in D = 5. This time the force-free condition obtained from the probe limit
in the 3-electric black hole system leads to five constraints on the 4-derivative couplings,
which is one more than those derived in D = 4 case. This is understandable since in D = 5,
the Gauss-Bonnet term begins to affect solution and thus its coefficient will be constrained
by the force-free condition. Another difference between D = 4 and D = 5 is that at the
2-derivative level, one can add the Chern-Simons term in the action

LCS = µCS A ∧ F ∧ F , (3.37)

which has no effects on the purely electric black hole solutions. The analysis is parallel to
those carried out in D = 4.

3.3.1 Probe limit in the 2-black hole system

Analogous to the D = 4, we first consider probe limit of the 2-black hole system in which
one of the black hole is much lighter than the other and is treated as a test particle. To
study the implication of force free condition in D = 5, we first find 4-derivative corrections
to the single static charged black hole solution by solving (3.3) up to first order in ci. The
results are given by

ds2 = −f(r)dt2 + dr2

g(r) + r2dΩ2
3 , A = Atdt , (3.38)

where

f(r) = 1− m

2r2 + q2

4r4 + 1
24r10

(
24(4c4−c5−4c6)q2r4−18(2c7+c8)q4

+q2
(
−12(8c4+c5−2c6)mr2+3(23c4+4c5−2c6)q2+8(2c1−5c2−22c3)r4

)
+ 1

4
(
48c3m2r4+16(−4c1+c2+5c3)mq2r2+(47c1+13c2+17c3)q4

))
+O(c2

i ) ,

(3.39)

g(r) = 1− m

2r2 + q2

4r4 + 1
24r10

(
−18(2c7+c8)q4−72(8c4+3c5+4c6)q2r4

−3q2
(
−4(20c4+7c5+10c6)mr2+3(11c4+4c5+6c6)q2+8(4c1+5c2+16c3)r4

)
+ 1

4
(
48c3m2r4+16(10c1+11c2+31c3)mq2r2−(65c1+67c2+191c3)q4

))
+O(c2

i ) .

At =−
√

3q

2r2 +
q3
(
−1

4(7c1+5c2+13c3)−(9c4−12c6)+36c7+18c8
)
−12c6qmr2

2
√

3r8 +O(c2
i ) .
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Corresponding to the modified solution above, the mass-charge relation of the extremal
black hole becomes

mext = 2q − 4c4 − 8c5 − 8c6 − 48c7 − 24c8 −
c1
3 − 11c2

3 − 31c3
3 + O(c2

i ) . (3.40)

The action of the test particle is given by (3.21) and the position-independence of the
potential leads to m = 2q, m0 =

√
3q0 and additional constraints on the higher deriva-

tive couplings

c4 = 1
108(−17c1 + 29c2 + 97c3 − 120c6 − 144c7 − 72c8) ,

c5 = 1
27(c1 − 16c2 − 47c3 − 12c6 − 144c7 − 72c8) . (3.41)

Similar to D = 4 case, constraints from force-free condition is stronger than requiring the
mass-charge relation of an extremal black hole be uncorrected, as a linear combination of
the two constraints above already yields mext = 2q. Thus black holes obeying the force-free
condition are still extremal. Notice that we are considering the probe limit, then these
constraints are the necessary conditions for the existence of the multi-centered black hole.
In the next subsection, we will explore the consequences of force-free condition using the
probe limit in a 3-black hole system.

3.3.2 Probe limit in the 3-black hole system

in order to study the probe limit in the 3-black hole system and its consequences through the
force-free condition, we again need to solve for the coefficients {δa(i,n), δb(i,n), δc(i,n), δu(i,n)}
in D = 5. Utilizing the solution associated with Y0(cos θ) (given in appendix B), the
force-free condition (3.17) leads to the following constraints

c3 = 0 , c4 = 1
6(c2 − c1) , c5 = −c2 , c6 = 0 , c7 = 1

144 (c1 + 11c2 − 72c8) .

(3.42)
The set of constraints above is stronger than the one derived from the probe limit in
the 2-black hole system. Interestingly, when these constraints are satisfied, the effective
energy-momentum tensor ∆Tµν and effective electric current ∆Jµ vanish not only on
the 2-centered MP solution but actually on the all the uncorrected multi-centered MP
solutions (2.4). Therefore the MP multi-centered black hole solutions remain exact in the
force-free 4-derivative extensions of Einstein-Maxwell theory. At this stage, there is no need
to consider systems with more extremal black holes.

Plugging (3.42) in (3.2), the force-free 4-derivative couplings can be written explicitly
in the form

∆Lforce-free = c1

(
R2 − 1

6RFµνF µν + 1
144FµνF µνFρσF ρσ

)
+ c2

(
RµνRµν + 1

6RFµνF µν − RµνF µρF ν
ρ −

11
144(trF 2)2 + 11

36trF 4
)

− 1
2c′8 (FµνF µνFρσF ρσ − 2FµνF νρFρσF σµ) + c9∇µFµν∇ρF ρν , (3.43)
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where c′8 = c8 − 11
36c2. Among the D = 5 force-free 4-derivative combinations given

above, those with coefficient c1 and c2 coincide precisely with the parity even terms in
Ricci scalar squared [26, 27] and Ricci tensor squared [28] supergravity actions upon
eliminating the auxiliary fields. We notice that the supergravity action involving Riemann
tensor squared [26, 29] is absent in the force-free combination. The reason is that the
multi-center black hole solution is 1

2 -BPS in the 2-derivative theory and should remain so
when supersymmetric higher derivative interactions are turned on. The curvature squared
supergravity invariants were initially constructed using the off-shell formulation of D = 5
supergravity in which the BPS equation for static black holes takes the form [26]

ρ
√
−gtt = At , (3.44)

where ρ is the scalar field inside an off-shell vector multiplet. To go to on-shell supergravity
models described by gµν and Aµ, one has to eliminate ρ by field equations. Switching on
the Weyl tensor squared supergravity action, the field equations imply that the scalar field
ρ is no longer a constant but depends on the field strength of Aµ. Thus the BPS equation
ρ
√
−gtt = At does not coincide with the force-free condition

√
−gtt = At. Whereas for the

Ricci scalar squared and Ricci tensor squared supergravity actions, ρ = 1 still holds at the
first order in the 4-derivative couplings, thus the BPS equation does imply the force-free
condition. We postpone a detailed discussion on this point to appendix C.

3.3.3 Force-free constraints from magnetic strings

In D = 5, a string can couples to the U(1) gauge field magnetically. Considering the
probe limit in a 2-magnetic string system, we find that the force-free condition leads to 4
constraints, which combined with those from the probe limit of a 2-electric black hole system,
give rise to the same amount of constraints as the probe limit in a 3-black hole system (3.42).
To proceed, we first explain the details of solving for the 4-derivative corrections to a single
magnetic string solution.

It is well-known that the Einstein-Maxwell theory in D = 5 admits a magnetic black
string solution (see [30] for instance). Its generalization to the 4-derivative theory is
straightforward by using the ansatz

ds2 = −f+(r)dt2 + f−(r)dx2 + dr2

g(r) + r2(dθ2 + sin2 θdϕ2) ,

F(2) = dA(1), A(1) = Aϕ dϕ = − cos(θ)
√

3r+r− dϕ ,

H(3) = dB(2) = ⋆M̃(2), B(2) = Btx dt ∧ dx, M̃µν = −2 ∂L
∂Fµν

, (3.45)

where H(3) is the hodge dual of M̃(2). Substituting the ansatz (3.45) into the field equations
with 4-derivative corrections given in appendix A, we find that the expression of g(r) involves
two logarithmic functions divergent on the horizon

g(r) = g+ln(r − r+)/r + g−ln(r − r−)/r + regular terms , (3.46)
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where the two constants g± are given by

g+ = 1
30r3

+(r− − r+)

(
18r2

−(2c7 + c8)(2r− − 3r+)

+ 1
4
(
−(3c1 + 33c2 + 205c3)r2

−r+ + 140c3r−r2
+ + 2(c1 + 11c2 + 45c3)r3

− − 80c3r3
+

)
+ 3

(
(−3c4 − 6c5 + 2c6)r2

−r+ − 10c6r−r2
+ + 2(c4 + 2c5 + c6)r3

− − 10cr3
+

) )
,

g− = g+|r+→r− , (3.47)

in which c is an integration constant. To remove the logarithmic divergences on the outer
horizon, we set g+ = 0, yielding the constraints

c1 = −11c2 − 59c3 − 12 (c4 + 2c5 + 12c7 + 6c8) , c6 = 7
6c3 , c = −2

3c3 . (3.48)

On these constraints, g− also vanishes by virtue of the symmetry between g− and g+.
Imposing (3.48) we obtain the magnetic black string solution with 4-derivative corrections

g(r) = (r−r−)(r−r+)
r2 + 1

9r6

(
−216(2c7+c8)r−r+

(
8r2−7(r−+r+)r+6r−r+

)
+ 1

2
(
27c2r−r+(−22r2+19rr−+19rr+−16r−r+)+2c3(6r4+3r3r−+3r3r+)

)
− 9

2r−r+
(
4c4(8r2−7rr−−7rr++6r−r+)+c5(130r2−113(r−+r+)r+96r−r+)

)
+c3

(
−2r2(5r2

−+821r+r−+5r2
+)+1401r−r+(r−+r+)r−1176r2

−r2
+

))
+O(c2

i ) ,

f+(r) = 1− r+
r

+ 1
18r5

(
2c3r

(
12( 2r

r−−r+
+1)r2+5r+r+6r2

+
)

+16c3r2r−−27r2
+r−

(
7c2+38c3+4c4+15c5+48(2c7+c8)

)
+4rr+r−

(
27c2+145c3+18c4+63c5+216(2c7+c8)

))
+O(c2

i ) ,

f−(r) = 1− r−
r

+ 1
9r5

(
4c3r2(2r++3r( 2r

r+−r−
+1)

)
+5r−c3r2+rr−r+

(
54c2+290c3+18(2c4+7c5)+432(2c7+c8)

)
+6c3r2

−r− 27
2 r2

−r+
(
7c2+38c3+4c4+15c5+48(2c7+c8)

))
+O(c2

i ) ,

Bty =−
√

3r−r+
r

+
c3
√

r−r+
(
22r(r−+r+)−237r−r++r2)

3
√

3r5

−
√

3(r−r+)
3
2 (9c2+4c4+17c5+96c7+48c8)

2r5 +O(c2
i ) . (3.49)

The action of a massive magnetic string takes the form

S0 = −τ0

∫
d2σ

√
−det(hab) + p0

2

∫
Bµνdxµ ∧ dxν , (3.50)

where σa(a = 1, 2) are the world-sheet coordinates on the string and hab is the induced metric.
To simplify the discussion, we choose the probe string to be parallel to the background
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black string solution, i.e., σ0 = t, σ1 = y. Thus the force-free condition for a static probe
string becomes

V0 = τ0

√
f+(r)f−(r) − p0Btx = const + O(c2

i ) . (3.51)

Substituting the modified solution to (3.51), we obtain the force-free constraints on the
mass charge relation of the background string and the probe string

τ0 =
√

3p0 , r+ = r− , (3.52)

as well as two constraints on the higher derivative couplings

c3 = 0, c4 = 1
2 (−3c2 − 7c5 − 48c7 − 24c8) . (3.53)

Combining (3.48) and (3.53) we obtain the full set of constraints implied by the probe limit
of 2 magnetic strings

c3 = 0, c4 = 1
36
(
−7c1−5c2 +72(2c7 +c8)

)
, c5 = 1

18
(
c1−7c2−72(2c7 +c8)

)
, c6 = 0 . (3.54)

Miraculously, combining the constraints obtained above with those (3.41) from the probe
limit of a 2-electric black hole system, we obtain the full set of constraints (3.42) obtained
from the probe limit in a 3-electric black hole system.

4 Conclusions and discussions

In this work, we obtained the 4-derivative extensions of Einstein-Maxwell theory that admit
multi-extremal black hole solutions. We did not follow the brute-force way by first solving
for the 4-derivative corrections to the multi-black hole solutions and imposing certain
smoothness conditions. Instead, we adopted a more physical approach by first considering
the probe limit in a 2-black hole system where one of the black hole was much lighter than
the other and so could be treated as a test particle probing the background source by the
heavier one. Balance between gravity and Coulomb force felt by the test particle leads
to two constraints on the 4-derivative couplings, a combination of which implies that the
extreme mass-charge relation is not modified by the constrained 4-derivative couplings.
Taking into account backreactions from the test particle, we obtain sufficient constraints so
that the resulting theory definitely admit multi-extremal black hole solutions. We verified
that force-free combinations of 4-derivative interactions do not modify the MP solution as
well as the non-extremal RN black holes. However, the force-free 4-derivative do modify
the dyonic black hole solutions whose thermodynamic quantities can be easily computed
using the recent results [31, 32].

Since Einstein-Maxwell theory also admits magnetically charged objects, out of curiosity,
we also studied consequences of force-free condition using the probe limit of 2 magnetic
black holes although this seems to be unrelated to our original pursuit about existence of
multi-electrically charged black holes. To our surprise, the force-free condition imposed on
the magnetic black holes yields 2 constraints which together with the 2 constraints obtained
from the probe limit of 2 electric black holes, leads to the same set of constraints derived
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from the probe limit of the 3-black hole case. Currently, we do not know if there is a deep
reason behind and would like to understand it better in future.

In D = 4, we noticed that the force-free combinations of the 4-derivative couplings
include the GB term, off-shell ungauged N = 2 supersymmetric Weyl tensor squared and
the F 4 term appearing in quasi-topological electromagnetism. In D = 5, the force-free
combinations recover the parity even terms in two 4-derivative supergravity invariants
and also the quasi-topological F 4 term. We recall that the Born-Infeld Lagrangian takes
the form [33]

L = −1
4FµνF µν + 1

8

[
tr(F 4) − 1

4(trF 2)2
]

+ · · · , (4.1)

which does not correspond to any choice of the coefficients in (3.25). Thus for Born-Infeld
theory to admit multi-extremal black hole solutions, proper curvature couplings allowed
by (3.25) must be added. In our approach, the field equations are solved up to first order
in the 4-derivative couplings ci and we required the force-condition be satisfied at the same
order. From the viewpoint of effective field theory, one can perform field redefinition without
affecting the physics. Thus 4-derivative couplings related to the force-free combinations
obtained here by field redefinition also allow for multi-extremal black hole solutions. The
difference resides in the fact that in the redefined theory, the test particle action is no longer
minimally coupled. In fact, applying field redefinitions, we find that in D = 4 the force-free
combinations reduce to Gauss-Bonnet term and the quasi-topological F 4 term while in
D = 5 the only irreducible structure is the quasi-topological F 4 term (see appendix D).
Moreover, the field redefinition employed here turns out to be an identity map on the
solution space. Thus a solution in EM theory extended by the quasi-topological F 4 term is
also a solution of (3.25) and (3.43). For the quasi-topological F 4 action, it is straightforward
to show that it does not affect purely electric or magnetic solutions, but it does modify the
dyonically charged solutions [21].

As possible future research directions, we would like to generalize our analysis to other
interesting models admitting multi-extremal black holes or black branes. For instance, in
D = 4, there exists the famous Garfinkle-Strominger-Horowitz multi-centered dilatonic
black hole solutions [34]. In D = 6 the bosonic sector of N = (1, 0) supergravity consisting
of (gµν , ϕ, Bµν) admits multi-extremal string solutions [35, 36]. In D = 4, we see that for
Einstein-Maxwell theory, the force-free combinations of the 4-derivative couplings include
the 4-derivative supergravity invariants. In [37], it was noticed that the known 4-derivative
supergravity invariants [38–41] in D = 6 are compatible with the force-free requirement.
The results [42] from the low energy effective theory of heterotic string suggest that when a
scalar field is present, the muti-centered extremal black holes or branes may be modified
by the higher derivative terms and structures like Riemann tensor squared and Riemann
tensor coupled to p-form field strength could appear in the force-free 4-derivative couplings.
It should be interesting to see if the force-free condition leads to just these supergravity
invariants or more structures.
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A Corrections to equations of motion

In this work, we considered the following action

SEM+4∂ =
∫

dDx
√
−g

1
2κ2 (R − 1

4g2 FµνF µν + ∆L) , (A.1)

and ∆L is

∆L = c1R2 + c2RµνRµν + c3RµνρσRµνρσ

+ c4RFµνF µν + c5RµνF µρF ν
ρ + c6RµνρσF µνF ρσ

+ c7FµνF µνFρσF ρσ + c8FµνF νρFρσF σµ + c9∇µFµν∇ρF ρν ,

+ d4RFµνF̃ µν + d5RµνF µρF̃ ν
ρ + d6RµνρσF µνF̃ ρσ

+ d7F̃µνF µνF ρσFρσ + d8F̃µνF νρFρσF σµ , (A.2)

where F = dA, F̃ = ⋆F . In the field equations given below, the term with coefficient c9
is not included, because ∇µFµν always vanishes on the leading order solution. The field
equations are given by

gµν : Rµν − 1
2Rgµν = 1

2g2 (Tµν + ∆Tµν) , (A.3)

Aµ : ∇µF µν = ∆Jν , (A.4)

where Tµν = F ρ
µ Fνρ − 1

4gµνFρσF ρσ. The electric current ∆Jν = ∇µMµν with Mµν given
by

Mµν = 2 ∂∆L
∂Fµν

= 4(c4RF µν − c5R[µ
ρF ν]ρ + c6RµνρσFρσ + 2c7F µνF ρσFρσ + 2c8F µρF νσFρσ) ,

+ 4d4RF̃ µν + d5(Rρ[µF̃ ν]
ρ + Rρ

σFρτ ϵστµν)

+ 2d6(RµνρσF̃ρσ + 1
2ϵµνλτ RλτρσF ρσ) + 4d7(F µνF̃ρσF̃ ρσ + F̃ µνFρσF ρσ)

+ 2d8(1
2ϵµνλτ FρλFστ F ρσ + F̃ρσF µρF νσ + 2F [µ

ρF̃ ν]σF ρ
σ) . (A.5)

The effective energy-momentum tensor ∆Tµν is

∆Tµν = −2√
−g

δ(
√
−g∆L)
δgµν

= −2
(
P αβγ

(µ Rν)αβγ − 2∇ρ∇σPρ(µν)σ − 1
2∆Lgµν + 1

2M α
(µ Fν)α

)
P µνρσ = ∂∆L

∂Rµνρσ

= 2c1Rgµ[ρgσ]v + c2(Rµ[ρgσ]ν − Rν[ρgσ]µ) + 2c3Rµνρσ

+ c4gµ[ρgσ]vFαβF αβ + c5
1
2(Sµ[ρgσ]ν − Sν[ρgσ]µ) + c6F µνF ρσ

+ d4gµ[ρgσ]vFαβF̃ αβ + d5
1
2(S̃µ[ρgσ]ν − S̃ν[ρgσ]µ) + d6

1
2(F µνF̃ ρσ + F ρσF̃ µν) ,

(A.6)
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where Sµν = F µ
ρF νρ, S̃µν = F

(µ
ρF̃ ν)ρ. In the derivation, we find the following formulae

are useful
∂Rαβγδ

∂Rµνρσ
= 1

2
(
δµ

[αδν
β]δ

ρ
[γδσ

δ] + δµ
[γδν

δ]δ
ρ
[αδσ

β]

)
,

∂R2

∂Rµνρσ
= 2Rgαγgβδ ∂Rαβγδ

∂Rµνρσ
= 2Rgµ[ρgσ]v ,

∂(RαβRαβ)
∂Rµνρσ

= 2Rαβgγδ ∂Rαβγδ

∂Rµνρσ
= Rµ[ρgσ]ν − Rν[ρgσ]µ ,

∂(RαβγδRαβγδ)
∂Rµνρσ

= 2Rαβγδ ∂Rαβγδ

∂Rµνρσ
= 2Rµνρσ . (A.7)

B δa(i,0), δb(i,0), δc(i,0), δu(i,0)

In D = 4, up to O(r−5) the nonzero coefficients in the spherical harmonic expansion at
n = 0 are

δa(0,0) = 64
75m2

1

(
−155c2−620c3+1676c4+330c5+728c6+528(2c7+c8)

)
+ 64m2

1875m3
1

(
20065c2+80260c3−4

(
51667c4+10185c5+24226c6+18276(2c7+c8)

))
,

δa(2,0) = 4m2

625m1

(
1165c2+4660c3−16588c4−16

(
240c5+479c6+429(2c7+c8)

))
+ 4

25
(
−5c2−20c3+116c4+30c5+48(c6+2c7+c8)

)
,

δa(3,0) = −4m1

75 (10c2+40c3+8c4+15c5−c6+48c7+24c8)

+−4m2

1875
(
895c2+3580c3−15544c4−3795c5−6832c6−6432(2c7+c8)

)
,

δa(4,0) = 1
200m2

1
(
85c2+340c3−2(266c4+30c5+173c6+96c7+48c8)

)
+ 1

1250m1m2
(
605c2+2420c3−13256c4−3330c5−6443c6−4968(2c7+c8)

)
,

δa(5,0) = 1
1600m3

1
(
−205c2−820c3+2256c4+455c5+2168c6+768(2c7+c8)

)
+ m2

1m2

40000
(
1265c2+5060c3+142192c4+44685c5+135176c6+62976(2c7+c8)

)
, (B.1)

δc(0,0) = 16
375m2

1

(
7940c2+31760c3−8

(
10546c4+2055c5+4588c6+3288(2c7+c8)

))
+ 48m2

9375m3
1

(
16
(
−21985c3+47523c4+9265c5+28094c6+23044(2c7+c8)

)
−87940c2

)
,

δc(1,0) = 256
125m1

(
115c2+460c3−1228c4−6

(
40c5+89c6+64(2c7+c8)

))
− 4096m2

9375m2
1

(
760c2+3040c3−6772c4−1335c5−4

(
979c6+804(2c7+c8)

))
,

δc(2,0) = 4m2

9375m1

(
−190955c2−763820c3+1790276c4+358680c5+994628c6+816528(2c7+c8)

)
+ 4

375

(
4735c2+2

(
9470c3−25646c4−5055c5−11138c6−8088(2c7+c8)

))
,
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δc(3,0) = 4
25m1

(
20c2+80c3−224c4−45c5−97c6−72(2c7+c8)

)
+ 12

625m2
(
−395c2−1580c3+3944c4+795c5+2032c6+1632(2c7+c8)

)
,

δc(4,0) = m1

16 (c2+4c3+8c4+3c5+4c6)(m1+2m2) ,

δc(5,0) =− m2
1

320 (9c2+36c3+80c4+29c5+40c6)(m1+3m2) , (B.2)

δu(1,0) = 4
3m1

(
26c2+104c3−4

(
74c4+15c5+8

(
4c6+6c7+3c8

)))
+ 16m2

15m2
1

(
−145c2−580c3+1552c4+315c5+736c6+576(2c7+c8)

)
,

δu(2,0) = m2

625m1

(
2330c2+9320c3−33176c4−32

(
240c5+479c6+429(2c7+c8)

))
+ 1

25
(
−10c2−40c3+232c4+60c5+96(c6+2c7+c8)

)
,

δu(3,0) = 1
150 (−55c2−220c3+316c4+30c5+148c6+96c7+48c8)m1

+ m2

1875
(
−230c2−920c3+10556c4+2955c5+3968c6+4368(2c7+c8)

)
,

δu(4,0) = m1
3000

(
−50(−50c3+98c4+15c5+59c6+48c7+24c8)m1+5c2 (125m1+37m2)

)
− 1

750m1m2
(
−185c3+1283c4+315c5+749c6+324(2c7+c8)

)
,

δu(5,0) = m3
1

3200
(
−245c2−980c3+2192c4+415c5+2056c6+896(2c7+c8)

)
−m2

1m2

80000
(
5395c2+21580c3−84544c4−21045c5−109832c6−42432(2c7+c8)

)
, (B.3)

where δb(i,0) = δc(i,0) and δu(0,0) can’t be determined from EOM due to the U(1) gauge
symmetry. In D = 5, up to O(r−18) the nonzero coefficients in the spherical harmonic
expansion at n = 0 are

δa(0,0) = 2δc(0,0)+ 4
245m1

(1753c1+18092c2+56207c3+41196c4+81201c5)

+ 288
245m1

(
6791c6+5113(2c7+c8)

)
,

δa(2,0) = 1
5880(−180945c1+1075146c2+3453529c3−30348c4+3004845c5)

+ 1
5880

(
16369032c6+12663864(2c7+c8)+5145m1δc(0,0)

)
− 3m2

245m1

(
39170c3+30600c4+55261c5+327536c6+245424(2c7+c8)

)
− m2

490m1

(
10148c1+75994c2+245m1δc(0,0)

)
,

δa(4,0) = 3m2
23520

(
1019108c4+768501c5+4902504c6+3585240(2c7+c8)

)
+ m2

23520
(
360169c1+152714c2+338543c3−2205m1δc(0,0)

)
− m1

23520 (−238393c1+759214c2+2481697c3−854124c4+1673289c5)

− m1
23520

(
8875080c6+6914808(2c7+c8)+2205m1δc(0,0)

)
,
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δa(6,0) = 3m2
1

94080
(
524331c3−500452c4+208949c5+1135832c6+902952(2c7+c8)

)
+ 1

94080(−735m3
1δc(0,0)−287849m2

1c1+463220m2
1c2)

−m1m2
6720 (48317c1−16544c2−71445c3+336540c4+125049c5)

−m1m2
6720

(
778584c6+559656(2c7+c8)−315m1δc(0,0)

)
,

δa(8,0) = 3m3
1

376320
(
594628c4+52667c5+73960c6−15336(2c7+c8)

)
+ m3

1
376320

(
3675m1δc(0,0)+297953c1−132284c2−539257c3

)
+ 9m2

1m2
376320

(
674644c4+169951c5+738440c6+475512(2c7+c8)

)
+ 3m2

1m2
376320

(
317509c1−45412c2−273661c3−1225m1δc(0,0)

)
,

δa(10,0) = −3m4
1

1505280
(
477076c4+240805c5+772936c6+381432(2c7+c8)

)
− m4

1
1505280

(
6615m1δc(0,0)+222645c1+309054c2+885091c3

)
− 20m3

1m2
1505280 (44307c1+42276c2+115685c3+248100c4)

− 20m3
1m2

1505280
(
51099c5−24

(
4889c6+8871(2c7+c8)

))
,

δa(12,0) = m5
1

6021120 (1361c1+956638c2+3042855c3+92940c4+1127547c5)

+ m5
1

6021120
(
3311352c6+1017288(2c7+c8)+9555m1δc(0,0)

)
+ 3m4

1m2
6021120

(
−758540c4−42531c5−6178296c6−7139784(2c7+c8)

)
+ m4

1m2
6021120

(
11289675c3+6615m1δc(0,0)−81779c1+3524078c2

)
,

δa(14,0) = 3m6
1

24084480
(
886740c4−485239c5−1250744c6+60024(2c7+c8)

)
+ m6

1
24084480

(
−12495m1δc(0,0)+440869c1−1926598c2−6353965c3

)
+ 6m5

1m2
24084480 (473163c1−1535826c2−5137795c3+3528900c4+317181c5)

+ 6m5
1m2

24084480
(
6985896c6+8279064(2c7+c8)−2695m1δc(0,0)

)
,
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δa(16,0) = 3m7
1

96337920
(
−2445204c4+603695c5+1440056c6−701688(2c7+c8)

)
+ m7

1
96337920

(
11315421c3+15435m1δc(0,0)−1193365c1+3355294c2

)
+ m6

1m2
96337920 (−8673535c1+19839802c2+67864023c3−59527476c4−3806265c5)

+ m6
1m2

96337920
(
−69392136c6−89835192(2c7+c8)+28665m1δc(0,0)

)
,

δa(18,0) = m8
1

1156055040 (7742746c1−15485383c2−53485954c3+47565048c4)−2δc(18,0)

+ m8
1

1156055040
(
−5525493c5−15368880c6+13302864(2c7+c8)−55125m1δc(0,0)

+ m7
1m2

289013760
(
15835916c1−27095528c2−94922924c3−33075m1δc(0,0)

)
+ 48m7

1m2
24084480

(
8654924c4+535631c5+6232600c6+8843592(2c7+c8)

)
, (B.4)

δc(2,0) = −3
11760

(
649020c4+2300831c5+13279576c6+10111464(2c7+c8)+2695m1δc(0,0)

)
+ m2

10m1
(32c1+37c2+104c3+192c4+69c5+96c6)

+ 1
11760(96801c1−1943562c2−6151465c3) ,

δc(4,0) = −3m2
47040

(
381484c4+1846101c5+10579320c6+8124552(2c7+c8)

)
+ m2

47040
(
−11025m1δc(0,0)+147781c1−1623808c2−5166109c3

)
− 3m1

47040
(
621532c4+2197953c5+12572760c6+9597096(2c7+c8)

)
− m1

47040
(
11025m1δc(0,0)−89113c1+1884424c2+5962897c3

)
,

δc(6,0) = 1
24 (4c1+5c2+14c3+24c4+9c5+12c6)m1 (m1+2m2) ,

δc(8,0) = − 1
384 (32c1+37c2+104c3+192c4+69c5+96c6)m2

1 (m1+3m2) ,

δc(10,0) = m3
1 (m1+4m2)

1280 (241c4+86c5+122c6+12c7+6c8)

m3
1 (m1+4m2)

15360
(
481c1+539c2+1519c3

)
,

δc(12,0) = −m4
1 (m1+5m2)

24576
(
257c1+283c2+799c3+1548c4+552c5

)
− 3m4

1 (m1+5m2)
1024

(
11c6+2c7+c8

)
,
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δc(14,0) = m5
1 (m1+6m2)

14336
(
283c4+101c5+146c6+36c7+18c8

)
+ m5

1 (m1+6m2)
172032

(
563c1+613c2+1733c3

)
,

δc(16,0) = −m6
1 (m1+7m2)

65536
(
389c4+139c5+202c6+60c7+30c8

)
−m6

1 (m1+7m2)
786432

(
773c1+835c2+2363c3

)
(B.5)

δu(2,0) = m2
10m1

(32c1+37c2+104c3+192c4+69c5+96c6)

− 1
11760(−39353c1+2259494c2+7123297c3+2770836c4+8234049c5)

− 1
11760

(
47332680c6+36083448(2c7+c8)+13965m1δc(0,0)

)
,

δu(4,0) = 3m1
11760

(
80986c3+68648c4+110963c5+624496c6+479088(2c7+c8)

)
+ 3m2

11760
(
80986c3+68648c4+110963c5+624496c6+479088(2c7+c8)

)
− 1

11760
(
−735m2

1δc(0,0)−14362c1 (m1+m2)−78983c2 (m1+m2)
)
,

δu(6,0) = − m2
1

31360 (10856c1+42799c2+130544c3+123552c4+170487c5+926944c6)

−m1m2
15680 (9103c1+24707c2+74337c3+82356c4+89286c5+437992c6)

− m1
15680

(
(350496m1+332856m2)(2c7+c8)+245m2

1δc(0,0)
)
,

δu(8,0) = m3
1

94080 (9593c1+27157c2+81687c3+88236c4+98106c5+512472c6)

− m3
1

188160
(
−736272(2c7+c8)−735m1δc(0,0)

)
+ m2

1m2
128 (32c1+37c2+104c3+192c4+69c5+96c6) ,

δu(10,0) = − 3m4
1

1505280
(
127424c4+113669c5+565088c6+374784(2c7+c8)+490m1δc(0,0)

)
− m3

1
1505280

(
m1 (48096c1+105519c2+312824c3)−240m2

(
8417c6+8871(2c7+c8)

))
− m3

1m2
150528 (16083c1+9642c2+23957c3+78756c4−9759c5) ,

δu(12,0) = 49m5
1

1003520 (217c1+428c2+1263c3+1644c4+1329c5+6328c6)

− m4
1

1003520
(
8m2

(
50681c6+58383(2c7+c8)

)
−49m1

(
4104(2c7+c8)+5m1δc(0,0)

))
+ m4

1m2
1003520 (46153c1+32492c2+84607c3+237996c4+801c5) ,
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δu(14,0) = − m6
1

1605632
(
45428c4+38379c5+179336c6+124728(2c7+c8)+98m1δc(0,0)

)
− m5

1
4816896

(
m1 (17517c1+35256c2+104731c3)+m2168(563c1+613c2+1733)

)
− 3m5

1m2
7168 (283c4+101c5+146c6+36c7+18c8) ,

δu(16,0) = + m7
1

8028160
(
65934c3+83512c4+77527c5+360784c6+272592(2c7+c8)

)
+ m7

1
48168960

(
60796c1+131774c2+735m1δc(0,0)

)
+ 2m6

1m2
48168960

(
3175896c6+2411208(2c7+c8)

)
+ 2m6

1m2
48168960 (197009c1+298381c2+878751c3+1382988c4+897258c5) , (B.6)

where δb(i,0) = δc(i,0). Although δc(0,0), δu(0,0) cannot be determined by EOM at O(r−18),
the force-free condition requires δc(0,0) = δu(0,0) = 0.

C Weyl tensor squared action in D = 5 supergravity

In the section, we show that the scalar field ρ that appears in D = 5, N = 2 supergravity
cannot be set to constant by field equations. We begin our discussions with the 2-derivative
action in D = 5, N = 2 supergravity. After eliminating several auxiliary fields, one ends up
with the action below [26][eq. 8.3]

e−1L2∂ = 1
8(ρ3 + 3)R + 1

3(104ρ3 − 8)TµνT µν + 4(ρ3 − 1)D + 3
4ρFµνF µν

+ 3
2ρ∂µρ∂µρ − 12ρ2FµνT µν + 1

8ϵµνρσλAµFνρFσλ , (C.1)

where comparing to [26][eq. 8.3], we have set I = J = K = 1, C111 = 1 to focus on the
minimal case. The field equations of D, Tab and ρ imply

ρ = 1, D = 0, Tµν = 3
16Fµν . (C.2)

Substituting the solutions above back to action above, we obtain the action of minimal
supergravity in D = 5

e−1L2∂ = 1
2R − 3

8FµνF µν + 1
8ϵµνρσλAµFνρFσλ . (C.3)

To recover the familar form, one needs to rescale Fab → 1√
3Fab. The relevant terms in Weyl

squared action are

e−1LWeyl =
(

1
8ρCµνρλCµνρλ + 64

3 ρD2 + 1024
9 ρTµνT µνD − 32

3 DTµνF µν + · · ·
)

, (C.4)

where we have ignored terms that are independent of the field D. Now we consider the
model L2∂ + a1LWeyl where a1 is a small coefficient. The D-equation then implies

0 = 4(ρ3 − 1) + a1(128
3 ρD + 1024

9 ρTµνT µν − 32
3 TµνF µν) . (C.5)
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Up to first order in α1, one finds

ρ = 1 + a1
2 F (0)

µν F (0)µν , (C.6)

for any 0-th order solution of Fµν .
On the other hand, the relevant terms in the Ricci scalar squared action are [26]

e−1LR2 = ρ
(

9
64R2 − 3DR + 16D2 − 2RTabT

ab + 64
3 DTµνT µν + 64

9 (TµνT µν)2 + · · ·
)

,

(C.7)
whose correction to D-equation is proportional to R − 1

4FµνF µν which vanishes on the
leading order field equations. Thus inclusion of the Ricci scalar squared invariant will not
affect the value of ρ. Also upon substituting (C.2) into LR2 and performing the rescaling
Fab → 1√

3Fab, we recover the first combination satisfying the force-free condition in five
dimensions. The analysis for the Ricci tensor squared invariant [28] is very similar and will
not be repeated here.

Further evidence can be seen from the explicit multicenter solution given in [42].
Focusing on the D = 5 case, the solution is of the form

ds2
E = −(Z+Z−Z0)−2/3dt2 + (Z+Z−Z0)1/3dxmdxm ,

A(1) = Z−1
0 dt, A(2) = Z−1

+ dt, A(3) = Z−1
− dt ,

e−2ϕ = Z
1/2
+ Z

1/2
− Z−1

0 , k = Z
1/2
+ Z

−1/2
− , (C.8)

where we have set the unnecessary constants ϕ∞ = 0 and k∞ = 1 for simplicity and dualized
the 2-form Bµν to the 1-form A1 as already suggested in [42]. [42] noticed that when the
particular supersymmetric 4-derivative interactions involving Riemann tensor squared are
turned on, the ansatz above remains the same, only the Z-functions receive corrections.
The ansatz above implies 3 force-free or BPS equations

e−4/3ϕ√−gtt = A
(1)
t , e2/3ϕk−1√−gtt = A

(2)
t , e2/3ϕk

√
−gtt = A

(3)
t . (C.9)

In the 2-derivative theory, the field equations allow the solution with Z+ = Z− = Z0. In
this case, we see that the scalar fields indeed become constant and the force-free condition
is simply

√
−gtt = At. However, when 4-derivatives interactions are switched on, the filed

equations no longer allow us to set the scalar fields to constant values. Even if we choose
Z+ = Z− = Z0 = Z(0) at the 2-derivative level, the 4-derivative interactions modify the
solution to [42],

Z+ = Z(0) − α
′

2 δZ + O(α′2), δZ = ∂mZ(0)∂mZ(0)

Z(0)2

Z0 = Z(0) + α
′

2 δZ + O(α′2), Z− = Z(0) + O(α′2) ,

e−2ϕ = (Z+Z−)
1
2 Z−1

0 =
(

1 − α′ 3δZ

4Z(0)

)
+ O(α′2) ,

k = (Z+
Z−

)
1
2 =

(
1 − α′ δZ

4Z(0)

)
+ O(α′2) . (C.10)
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Now, in our notation,
H = (Z+Z−Z0)

1
3 = Z(0) + O(α′2) , (C.11)

which means the metric in MP solution in the D = 5 supergravity is uncorrected up to
first order in α′. However, the scalar fields e−2ϕ, k are not constant and will play important
roles in the force-free condition.

D Irreducible force-free combination from field redefinitions

In D = 4, after performing the field redefinition,

gµν → gµν + δgµν , Aµ → Aµ + δAµ ,

δgµν = (c2 + 4c3)Rµν − 1
2(2c1 + c2 + 2c3)gµνR

− 1
2(c2 + 4c3)FµρFν

ρ + 1
8(c2 + 4c3)gµνF αβFαβ ,

= (c2 + 4c3)
(
Rµν − 1

2gµνR − 1
2Tµν

)
− (c1 − c3)gµνR ,

δAν = −c9∇µFµν , (D.1)

the 4-derivative Lagrangian (3.25) becomes

∆L = c3LGB + 1
8(c2 + 4c3 − 4c8)

[
(trF 2)2 − 2tr(F 4)

]
, (D.2)

where LGB denotes the standard Gauss-Bonnet term which is topological. The quartic F

term corresponds to the combination of the quasi-topological electromagnetism. In D = 4,
we recall that

(⋆FµνF µν)2 = 4tr(F 4) − 2(trF 2)2 , (D.3)

whose contributions to the field equations automatically vanishes for all purely electric or
magnetic solutions. Since GB term does not affect the field equations, it is clear that the
multi-centered static charged black holes in the 2-derivative theory remains exact solutions
when the 4-derivative interactions take the form in (D.2). Moreover, it can be checked that
δgµν = 0, δAµ = 0 after substituting the leading order EOM, which means the solution is
not modified by the field redefinitions above. Thus it is evident that up to first order in ci,
the multi-centered electric black hole solution remains uncorrected up to first order in ci in
Einstein-Maxwell theory extended by (3.25).

In D = 5, after performing the field redefinition,

gµν → gµν + δgµν , Aµ → Aµ + δAµ ,

δgµν = c2Rµν − 1
3(2c1 + c2)gµνR

− 1
2c2FµρFν

ρ + 1
18(c1 + 2c2)gµνF αβFαβ ,

δAν = c9(−∇µFµν + 3
4µCSϵρσλτ

νFρσFλτ ) , (D.4)

the 4-derivative Lagrangian (3.43) becomes

∆L = 1
8(c2 − 4c8)

[
(trF 2)2 − 2tr(F 4)

]
. (D.5)

Similar to D = 4, the F 4 above does not affect purely electric or magnetic solutions. Also,
δgµν = 0, δAµ = 0 when the leading order field equations are satisfied.
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