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1 Introduction

It is well known that when it comes to conjectures about quantum gravity, rigor is inversely
proportional to relevance. Statements that are supported by compelling evidence-such as
the absence of global symmetries and the mild form of the Weak Gravity Conjecture [1] —
tend to place very weak constraints on testable low-energy physics. Meanwhile, conjectures
that propose tight phenomenological constraints tend to be much more speculative.

One of the more rigorously established features of quantum gravity is the presence of
exponentially light towers of particles in infinite-distance limits of moduli space. This is
encoded in the Distance Conjecture of Ooguri and Vafa [2]:

The Distance Conjecture. Let M be the scalar field moduli space of a quantum gravity
theory in d ≥ 4 dimensions, parametrized by vacuum expectation values of massless scalar
fields. Compared to the theory at some point p0 ∈ M, the theory at a point p ∈ M has an
infinite tower of particles, each with mass scaling as

m(p) ∼ m(p0) exp(−λ||p − p0||) , (1.1)

where ||p − p0|| is the geodesic distance in M between p and p0, and λ is some order-one
number in Planck units (8πG = κ2

d = M2−d
Pl;d = 1).

As noted, the Distance Conjecture is well-supported by examples in string theory [3–9]
and conformal field theory [10, 11]. However, the price one pays for this relative rigor is
a dearth of experimental consequences. Likely the most promising route for connecting
the Distance Conjecture to observable physics is provided by large-field inflation, which
involves a scalar field that rolls a super-Planckian distance in scalar field space. This
smells like the sort of thing that the Distance Conjecture might be able to constrain, but
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there are several issues that must be addressed before the Distance Conjecture can give
meaningful constraints on inflation.

One of these issues1 is the fact that the Distance Conjecture is primarily concerned
with infinite-distance limits of moduli space. Inflation does not require an infinite field
traversal, so it is not clear that constraints on the infinite-distance limits of field space
translate into meaningful constraints on inflation. Relatedly, many models of inflation
involve periodic scalar fields (i.e., axions), which have compact support and thus are not
immediately subject to constraints on infinite-distance limits in moduli space.

One popular proposal for handling this issue goes by the name of the refined Distance
Conjecture [3, 4], which holds that the exponential scaling behavior of the towers predicted
by the Distance Conjecture is supposed to set in within an order-one distance in field space.
This could ostensibly limit the length of an inflationary field traversal that can occur before
the light towers come into play.

However, this refinement of the conjecture suffers an important drawback: even if the
mass m(p) of a tower of particles at a point p is exponentially suppressed relative to the
mass m(p0) at a point p0 in accordance with (1.1), there is no guarantee that the mass
m(p) will be suppressed relative to the Planck scale. In other words, the mass scales m(p0)
and m(p) might both be parametrically above the Planck scale, in which case the conjecture
places no interesting constraints on low-energy physics in this part of moduli space.

This issue is not merely a pathological possibility, but rather it arises even in super-
symmetric string theory in ten dimensions. In any such theory, there is a tower of string
oscillator modes beginning at the string scale,

Ms ∼ MPl;10 exp
(
− ϕ√

8

)
, (1.2)

where ϕ ≡ − log(gs)/
√

2 is the canonically normalized dilaton. Setting ϕ(p) = 0, taking
ϕ(p0) ≪ 0, and holding any other moduli fixed, we find that the (refined) Distance Conjec-
ture is indeed satisfied by the string oscillator modes, but these modes are super-Planckian
everywhere along the geodesic between p0 and p.

It is worth noting, however, that this example features not only a tower of string
oscillator modes, which become light in the limit ϕ → ∞, but also a tower of modes that
become light in the ϕ → −∞ limit, the nature of which depends on the string theory in
question. It is this latter tower, rather than the heavier tower of Kaluza-Klein modes, which
plays a role in the low-energy effective field theories along the geodesic between p0 and p.

In light of this example, it is tempting to define an alternative, bidirectional re-
finement of the Distance Conjecture, which demands that (1.1) should be satisfied with
m(p), m(p0) < MPl;d but permits a switch of p and p0, reversing the orientation of the
geodesic. However, as we illustrate with an example in the following section, this naive
refinement also runs into trouble: there exist geodesics γ(s) in moduli spaces of quantum
gravity theories for which one tower of particles becomes light as s → ∞, another becomes

1For a discussion of other issues regarding applications of the Distance Conjecture to inflation, see
section 5.
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light as s → −∞, and yet both towers are parametrically heavier than the Planck scale in
an arbitrarily large intermediate regime of finite s.

However, we will see that these examples feature additional towers, so that at any
point in moduli space at least one of the towers will be at or below the Planck scale.
This motivates a pair of closely related conjectures, which may be viewed as alternative
refinements of the Distance Conjecture:

Conjecture 1. Consider the collection of towers I which satisfy the Distance Conjecture
in the various infinite-distance limits of moduli space M, and let mi(p) be the mass scale
of the ith such tower at the point p. Then, for all p ∈ M, there exists i ∈ I such that

mi(p) ≤ c1MPl;d , (1.3)

where c1 is an order-one constant that remains to be determined.

Conjecture 2. Let M be the scalar field moduli space of a quantum gravity theory and
let γ(p0, p) be a path with endpoints p, p0 ∈ M. Then, there exists a point p1 on the
path γ(p0, p) such that the theory at p1 has an infinite tower of particles beginning at the
mass scale

m(p1) ≤ c2MPl;d exp(−λ||p − p0||/2) , (1.4)

where ||p − p0|| is the geodesic distance between p and p0,2 and c2 and λ are order-one
constants that remain to be determined.

Note that conjecture 1 is very similar to conjectures made previously in [12].3

In subsequent sections, we will provide evidence for these conjectures in simple exam-
ples. These examples satisfy the bounds (1.3), (1.4) with c1, c2 ≲ 2π, though further work
is needed to pin down universal upper bounds on these order-one coefficients. The recent
work [13] argued that the coefficient λ is bounded below as λ ≥ 1/

√
d − 2 in d dimensions,

and the examples we study below fall under the scope of that analysis.
These conjectures can be justified intuitively as follows: in quantum gravity, continuous

parameters are controlled by vacuum expectation values (vevs) of scalar fields. Parametric
growth of some mass scale mi ≫ MPl therefore requires parametric growth of some scalar
field, which is precisely when the Distance Conjecture demands the existence of some
exponentially light tower. This suggests that there can never be one tower of particles
that is parametrically heavier than the Planck scale unless another tower is parametrically
lighter than the Planck scale.

This reasoning — and even the meaning of the two conjectures — is somewhat hazy
for non-supersymmetric towers of states, as it may be difficult to define the mass scale
of a tower which heavier than the Planck scale. Consequently, in this work we will focus

2Note that ||p − p0|| is the length of the shortest geodesic between p0 and p, not necessarily the length
of the path γ(p0, p). This is especially important in cases where the moduli space is given by a discrete
quotient of some larger covering space, as it allows us to restrict our choice of representatives of p and p0

to lie within a single fundamental domain. See section 2.1 for an example of this.
3We thank Arthur Hebecker for bringing these conjectures to our attention after the first version of this

paper was posted.
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primarily on towers of BPS particles, the mass scale of which remains well-defined even
when it is super-Planckian. More generally, we might say that our conjectures simply
demand the existence of a tower with a well-defined, sub-Planckian mass scale, so they
cannot be satisfied by super-Planckian slop.

The two conjectures are closely related, but they are not quite equivalent to one an-
other.4 By taking ||p − p0|| → 0, conjecture 1 implies that at least one tower of particles
cannot be parametrically heavier than the Planck scale at any point in moduli space. This
tower will then satisfy conjecture 1 (with c1 = c2) provided the tower becomes exponentially
light in some infinite-distance limit in moduli space.

Conversely, if conjecture 1 is satisfied, then at the midpoint of the shortest geodesic
between p and p0, at least one tower of particles will have a sub-Planckian mass scale. In
many cases, this tower will decay exponentially along the geodesic in one direction or the
other in accordance with the Distance Conjecture, and in turn it will satisfy conjecture 1
with c2 ≈ c1. In the cases where this tower does not decay, we will argue that an additional,
lighter tower is present, thereby ensuring that conjecture 1 is satisfied.

Conjecture 1 is somewhat easier to verify in practice, while conjecture 1 is more relevant
for super-Planckian traversals of scalar fields, such as the ones that occur in models of
large-field inflation. In particular, conjecture 1 places an upper bound on the mass scale
of the lightest tower along the geodesic that decays exponentially with increasing geodesic
distance. If this tower consists of either string oscillator modes or Kaluza-Klein modes
in some duality frame (as suggested by the Emergent String Conjecture [14]), then this
mass scale must lie below the Hubble scale in any model of inflation, H < mKK, Mstring.
Conjecture 1 thus addresses one gap between the Distance Conjecture and inflation by
extending the former to the interior of moduli space; additional gaps will be discussed
in section 5.

The remainder of the paper is structured as follows. In section 2, we show how our
conjectures are satisfied in simple examples of string theory compactified on a torus, and
we demonstate that other refinements of the Distance Conjecture are unable to constrain
low-energy effective field theories. In section 3, we show how our conjectures are satisfied
in two simple Calabi-Yau compactifications of M-theory to five dimensions. In section 4,
we explain how conjecture 1 follows from the tower Weak Gravity Conjecture in a simple
Einstein-Maxwell-Dilaton theory in four dimensions. In section 5, we conclude this note
with a brief discussion of implications and next steps.

2 String theory on T n

2.1 String theory in ten dimensions

String theory in ten dimensions has a tower of string oscillator modes beginning at the
string scale,

Ms =
√

2πT = 1
ℓs

. (2.1)

4We thank Ben Heidenreich for his insights on these conjectures and the relationship between them.
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The string scale is related to the Planck scale in ten dimensions as

MPl;10 =
(4π

g2
s

)1/8 Ms

2π
. (2.2)

The string oscillator modes become light (in Planck units) in the limit gs ≡ exp
(
−ϕ

√
2
)
→

0, satisfying the Distance Conjecture with a coefficient λ = 1/
√

8.
Meanwhile, the strong coupling limit gs → ∞ also features a tower of light particles,

the nature of which depends on the string theory in question. For Type IIA string theory
or E8 × E8 heterotic string theory, the strong coupling limit is a decompactification limit
to M-theory, which features a tower of particles with

mKK = Ms

gs
. (2.3)

In the Type IIA case, these Kaluza-Klein modes are also known as D0-branes.
In the case of Type IIB string theory, Type I string theory, or SO(32) heterotic string

theory, on the other hand, the strong coupling limit represents the weak coupling limit of
a dual string theory, which features a tower of string oscillator modes with

M̃s = Ms√
gs

. (2.4)

In any case, the energy scales of the towers for the weak/strong coupling limits coincide
when gs = 1, at which point

Ms = M̃s = mKK = 2πMPl;10
(4π)1/8 . (2.5)

At any other point in moduli space, at least one tower will be lighter than this value. This
ensures that conjecture 1 is satisfied with c1 = 2π/(4π)1/8.

For any value of the dilaton ϕ, there is a tower of particles beginning at a scale m ≤
2πMPl;10/(4π)1/8. As the dilaton varies over a distance ∆ϕ, there will be at least one point
p1 with |ϕ(p1)| ≥ |∆ϕ|/2, and at this point one of the towers for the strong/weak coupling
limits will have mass bounded above as

m(p1) ≤ 2πMPl;10/(4π)1/8 exp
(
−|∆ϕ|/

(
4
√

2
))

. (2.6)

Comparing with (1.4), we see that conjecture 1 is satisfied along this geodesic with c2 =
2π/(4π)1/8, λ = 1/

√
d − 2 = 1/

√
8.

For Type IIB string theory, there is one remaining subtlety: we have not yet accounted
for the axion field, C0. To address this issue, we must use the SL(2,Z) of Type IIB string
theory, which implies that the fundamental domain of moduli space of Type IIB string
theory is given by the famous keyhole of figure 1. Within the fundamental domain, the
lightest tower of string modes is that of the fundamental string, with

Ms = 2πMPl;10
(4π)1/8 exp(Φ/4) , (2.7)
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Figure 1. Paths in the fundamental domain of Type IIB moduli space. The fundamental domain
of Type IIB moduli space is given by the (shaded blue) keyhole region |τ | ≥ 1, −1/2 ≤ ℜ(τ) < 1/2,
with τ = C0 + i exp(−Φ). The geodesic distance between any two points p, p0 in the keyhole region
is bounded above by the length of the path shown, one segment of which has fixed Φ and the other
of which has fixed C0.

where Φ = −
√

2ϕ = log gs is the conventionally normalized dilaton. Within the fundamen-
tal domain, we have the bound exp(Φ) ≤ 2/

√
3, which implies that conjecture 1 is satisfied

with c1 = 2π/(3π)1/8. This is larger by a factor of (4/3)1/8 ≈ 1.04 than the value of c1 we
found when we ignored the axion.

When it comes to conjecture 1, one could in principle choose the points p and p0 to lie
in different fundamental domains of the SL(2,Z) action, connected by the shortest geodesic
between them within the larger covering space. This is gauge-equivalent to choosing both
p and p0 to lie in the same fundamental domain but considering a non-minimal geodesic
between them, which may traverse the width of the keyhole region many times before
finally connecting the two points p and p0. However, as emphasized in footnote 2 above,
we have carefully defined conjecture 1 so that the relevant geodesic distance ||p − p0|| is
the length of the shortest geodesic between p and p0. Thus, for placing an upper bound
on the coefficient c2 in conjecture 1, it suffices to choose p and p0 to each lie within the
keyhole region and to bound the geodesic ||p − p0|| along the shortest geodesic between
these points.

With this, the axion ultimately has only a small effect on the coefficient c2 of conjec-
ture 1, which is due to the fact that the points p0 and p may now differ not only by a
change in the dilaton Φ, but also by a change in the axion, C0. Within the fundamental
domain, the geodesic distance between p and p0 is bounded above by

||p − p0|| ≤
1√
2
|∆Φ| + 1√

2
exp(Φ)|∆C0| ≤

1√
2

(
log

(
2/

√
3
)
− Φ

)
+ 1√

6
, (2.8)
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where in the first step we have used the path shown in figure 1, and in the last step we have
used the fact that exp(Φ) ≤ 2/

√
3 everywhere in the keyhole region, while |∆C0| ≤ 1/2.

Meanwhile, the mass scale associated with the lightest tower of string modes is given by

m = 2πMPl;10
(4π)1/8 exp(Φ/4) ≤ 2πMPl;10

(3π)1/8 exp
( 1

4
√

3
− ||p − p0||√

8

)
, (2.9)

where in the last step we have used (2.8). We conclude that conjecture 1 is satisfied for
Type IIB string theory in ten dimensions with λ = 2/

√
8 and

c2 = 2πMPl;10
(3π)1/8 exp

(
1/
(
4
√

3
))

. (2.10)

This value of c2 is larger by a factor of (4/3)1/8 exp
(
1/
(
4
√

3
))

≈ 1.2 than the value of c2
we obtained when we ignored the axions. The value of λ we obtained here is twice that
of the value we obtained above for Type IIA string theory, a result of the fact that the
domain of ϕ is semi-infinite within the keyhole region.

More generally, the inclusion of the periodic directions of moduli space makes our
conjectures a bit more difficult to verify explicitly, but we expect that the inclusion of
these directions will introduce at most order-one corrections to the factors c1, c2.

2.2 String theory on S1

Consider next the case of Type IIB string theory compactified on a circle of radius R. For
simplicity, we set the axion to vanish, leaving a two-dimensional moduli space parametrized
by the dilaton ϕ and the radion ρ.

The Distance Conjecture is satisfied in every direction in the dilaton-radion plane by
one of three towers: Kaluza-Klein modes, winding modes of the fundamental string, and
winding modes of the D-string. The mass scales associated with these three towers are
given by:

mKK = 1
R

, mwind = M2
s R , m̃wind = M2

s R

gs
. (2.11)

Meanwhile, the Planck scale in nine dimensions is related to Ms, R, and gs as

MPl;9 =
(

8π2R

g2
s

)1/7 (
Ms

2π

)8/7
(2.12)

The minimum of mKK, mwind, and m̃wind is maximized when the three energy scales
are set equal to one another. This occurs when R = Ms, gs = 1, at which point

mKK = mwind = m̃wind = Ms = 2πMPl;9
(4π)1/7 . (2.13)

As we move away from this point, at least one of these three towers becomes lighter in
Planck units. To see this, let us first define the ζ-vector of a particle of mass m at a given
point in moduli space by

ζi = − ∂

∂ϕi
log m . (2.14)

– 7 –
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Then, we may write the Kaluza-Klein and winding scales in terms of the canonically nor-
malized dilaton ϕ and radion ρ in nine dimensions:

mKK = m0 exp
(
− ϕ√

7
− ρ

)
, mwind = m0 exp

(
− ϕ√

7
+ ρ

)
, m̃wind = m0 exp

( 5ϕ

2
√

7
+ ρ

2

)
,

(2.15)
where m0 = 2πMPl;9/(4π)1/7, ϕ = −

√
7 log(Ms/m0), and ρ = log(RMs). With these

conventions, ρ → ∞ is the large volume limit, and ϕ → ∞ is the weak string coupling
limit. This scaling behavior leads to ζ-vectors

ζ⃗ KK =
( 1√

7
, 1
)

, ζ⃗ wind =
( 1√

7
,−1

)
, ζ⃗ D-wind =

(
− 5

2
√

7
,−1

2

)
. (2.16)

It is straightforward to check that the convex hull of these ζ-vectors contains the ball of
radius 1/

√
d − 2, ensuring that the sharpened Distance Conjecture of [13] is satisfied in all

infinite-distance limits of moduli space. This means that for any point (ϕ0, ρ0) in moduli
space, at least one of the three ζ-vectors satisfies ζ·(ϕ0, ρ0) ≥ 1/

√
d − 2, which means that at

least one of the three mass scales mKK, mwind, and m̃wind will be suppressed by its exponent
relative to m0. This ensures that conjecture 1 is satisfied with c1 = m0/MPl;9 = 2π/(4π)1/7.

Any geodesic in the ϕ–ρ plane of length L will then have at least one point p1 that lies
a distance of L/2 or greater from the origin. At such a point, the smallest of mKK, mwind,
and m̃wind will be bounded above as

m(p1) ≤ m0 exp
(
−L/

(
2
√

7
))

. (2.17)

Thus, conjecture 1 is satisfied in nine dimensions, this time with coefficients c2 =2π/(4π)1/7,
λ = 1/

√
d − 2 = 1/

√
7.

What happens if we include the axions in our analysis? Giving a vev to an axion field
does not affect the characteristic mass scales of the Kaluza-Klein tower or the tower of
fundamental string winding modes, but it does have an order-one effect on the mass scale
of D-string winding modes. Conjecture 1 will remain satisfied with an order-one shift of
the constant c1, as in the case of 10-dimensional Type IIB string theory discussed above.

Similarly, the coefficient c2 of conjecture 1 may be altered once we allow our geodesics
to explore the periodic directions of moduli space. Using dualities, we may choose a
fundamental domain of moduli space such that the periodic directions of moduli space
are (sub-)Planckian in size. This means that, as in the 10d case of Type IIB considered
above, any geodesic may be divided into a non-periodic variation of the dilaton/radion and
a sub-Planckian periodic variation of the axion. The effect of the latter can be absorbed as
an order-one shift of the coefficient c2, whereas the former dominates for super-Planckian
geodesic variation |p − p0| ≫ MPl;9, and our previous analysis ensures that conjecture 1
will once again be satisfied with λ ≥ 1/

√
d − 2.

This example also illustrates the problem with other possible refinements of the Dis-
tance Conjecture considered in section 1. Let us once again ignore the axions and consider
a geodesic in the ϕ–ρ plane of the form

(ϕ(s), ρ(s)) =
(
−
√

7
32s,

5√
32

s − ρ0

)
, s ∈ (−∞,∞) , (2.18)

– 8 –
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with ρ0 a constant. Note that this geodesic crosses multiple fundamental domains of
the T/S-dualities of the theory, and the limit s → ∞ is a strong coupling limit of Type
IIB string theory. Nonetheless, BPS conditions ensure that the mass formulas in (2.15)
apply even in the strong coupling regime, and the refined Distance Conjecture discussed in
section 1 is generally held to apply to any geodesic, irrespective of whether that geodesic
lies in a single fundamental domain of the duality group.

Plugging (2.18) into (2.15), the three towers scale along the geodesic as

mKK = m0 exp
(
− s√

2
+ ρ0

)
, mwind = m0 exp

( 3s√
8
− ρ0

)
, m̃wind = m0 exp

(
−ρ0

2

)
,

(2.19)

Thus, in the limit s → ∞, the Kaluza-Klein modes become exponentially light, satisfying
the Distance Conjecture with a coefficient of λ = 1/

√
2. In the limit s → −∞, the

fundamental string winding modes become exponentially light, satisfying the Distance
Conjecture with a coefficient of λ = 3/

√
8.

In the intermediate regime, the relative behavior of the Kaluza-Klein modes and the
fundamental string winding modes depends on the value of ρ0. If ρ0 = 0, then for s > 0,
the Kaluza-Klein modes are lighter, while for s < 0 the winding modes are lighter. The
crossover point occurs at s = 0, where mKK = mwind = m0 ∼ MPl;9.

For ρ0 ≫ 1, however, the crossover point between the Kaluza-Klein modes and the
fundamental string winding modes occurs at an energy scale that is exponentially larger
than the Planck scale, with mKK = mwind ∼ exp(ρ0/5)MPl;9. Furthermore, both the
Kaluza-Klein modes and the winding modes are heavier than the Planck scale in the range
3ρ0/

√
8 < s <

√
2ρ0. By taking ρ0 large, therefore, we find a parametrically large range of

length ρ0/
√

8 over which both the Kaluza-Klein scale and the winding scale are paramet-
rically heavier than the Planck scale. From this, we learn that the towers predicted from
the Distance Conjecture in the asymptotic regimes s → ±∞ do not necessarily play a role
in the low-energy effective theory in the interior of moduli space, and indeed this interior
region can be made parametrically large (see figure 2).5

However, our analysis so far has not yet accounted for the D-string winding modes,
whose masses are constant and sub-Planckian everywhere along the geodesic of interest for
ρ0 > 0. Once these are included, the minimum of mKK, mwind, and m̃wind is bounded above
by m0 everywhere along the geodesic, and both of our proposed conjectures are satisfied.

2.3 String theory on T n, n > 1

The analysis above can be generalized simply for toroidal compactification of multiple
dimensions. Compactifying Type IIB string theory on n circles of radius Ri, i = 1, . . . , n,
we find Kaluza-Klein modes, fundamental string winding modes, and D-string winding
modes at the scales

m
(i)
KK = 1

Ri
, m

(i)
wind = M2

s Ri , m̃
(i)
wind = M2

s Ri

gs
. (2.20)

5Similar behavior was observed previously in certain AdS vacua in [15].
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Figure 2. Two geodesics in the dilaton-radion plane of Type IIB string theory on S1 (left), and
scaling of Kaluza-Klein modes (blue), winding modes (yellow), and D-string winding modes (green)
along the dashed geodesic (middle) and the solid geodesic (right). By shifting the geodesic to the left
in a parallel fashion, the point at which mKK = mwind can be set arbitrarily larger than the Planck
scale, and the range over which both of these scales are super-Planckian can be made arbitrarily
large. Meanwhile, the D-string winding modes remain light everywhere along the geodesic.

The Planck scale in d = 10 − n dimensions is given by

MPl;d =
(

4π

g2
s

n∏
i=1

(2πRi)
)1/(d−2) (

Ms

2π

)8/(d−2)
. (2.21)

Once again, the minimum of all of these scales is maximized when Ri = 1/Ms, gs = 1. At
this point in moduli space, which we denote pctr, we have for all i,

m
(i)
KK = m

(i)
wind = m̃

(i)
wind = Ms = 2πMPl;d

(4π)1/(d−2) . (2.22)

There are also towers of particles associated with wrapped Dp-branes for p ≤ n odd, and
for n ≥ 5 there is a tower associated with wrapped NS5-branes. At pctr, the mass scale
associated with all of these towers is again Ms.

As in the previous subsection, we may define ζ-vectors for the various towers of particles
by (2.14). By the analysis of [13], the convex hull of these ζ-vectors contains the ball of
radius 1/

√
d − 2 centered at the origin. This means that as one moves in moduli space

away from pctr, at least one of these towers becomes lighter in Planck units, with a mass
that decays exponentially with λ ≥ 1/

√
d − 2. Any geodesic of length L in radion-dilaton

space will contain at least one point p1 that lies a distance L/2 from pctr, and at this point
at least one tower will have a mass that is bounded above by

m(p1) ≤ 2πMPl;d
(4π)1/(d−2) exp

(
−L/

(
2
√

d − 2
))

. (2.23)

Thus, once again, our proposed conjectures are satisfied if the periodic directions of moduli
space are ignored, with c1 = c2 = 2π/(4π)1/(d−2), λ = 1/

√
d − 2. By a similar argument
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to the 10d and 9d cases above, the inclusion of axions may alter c1 and c2 by an order-one
amount, but it will not affect λ.

Our analysis here generalizes straightforwardly to Type IIA string theory on T n, by
T-duality. Furthermore, because our arguments relied on rather generic scaling behavior
of Kaluza-Klein modes and wound strings, we expect that they will carry over to heterotic
string heterotic string theories on T n, and thus to M-theory/Type IIA string theory on
K3, by duality. We will explore these scenarios further in a forthcoming work [16].

3 M-theory on a Calabi-Yau threefold

In this section, we consider two simple yet illustrative examples of M-theory compacti-
fications on Calabi-Yau manifolds. The geometries we consider are the symmetric flop
geometry and the Greene-Morrison-Strominger-Vafa (GMSV) geometry [17, 18], which
were analyzed thoroughly in section 7 of [19]. Further details on these geometries (and 5d
supergravity in general) can be found in that paper.

We begin with the symmetric flop geometry. M-theory compactified on this geometry
gives rise to a 5d supergravity theory with prepotential

F = 1
3X3 + 2X2Y . (3.1)

Here, X and Y are real, and the vector multiplet moduli space is the one-dimensional slice
given by F = 1. The limit X → 0 is an infinite-distance limit in moduli space, and it is
accompanied by a tower of particles that satisfies the Distance Conjecture.

Meanwhile, a conifold singularity develops at the point Y = 0, and the geometry may
be flopped to an isomorphic phase with

F ′ = 1
3(X ′)3 + 2(X ′)2Y ′ . (3.2)

Here, X ′ = X + 4Y , and Y ′ = −Y . The physics is identical to that in the first phase,
and once again there is a tower of particles that satisfies the Distance Conjecture in the
infinite-distance limit X ′ → 0, though it is not the same tower that satisfies the Distance
Conjecture in the X → 0 limit.

We may define a canonically normalized scalar field ϕ, so that the X → 0 limit cor-
responds to ϕ → ∞, the X ′ → 0 limit corresponds to ϕ → −∞, and the flop occurs at
ϕ = 0. Then, the mass of the tower of particles that becomes light in the X → 0 limit is
given by [19]

m(ϕ) =

 (6π2)1/3MPl;5e−ϕ/
√

3, if ϕ ≥ 0
(2π2/9)1/3MPl;5

(
2e2|ϕ|/

√
3 + e−|ϕ|/

√
3
)

, if ϕ < 0

 . (3.3)

The mass of the tower of particles that becomes light in the ϕ → −∞ limit is given by the
same expression, but with ϕ → −ϕ. The masses of these two towers are equal at the point
ϕ = 0, at which point we have m(0) = (6π2)1/3MPl;5. For all other values of ϕ, one of these
towers is lighter than this value, as shown in figure 3 (left). We see that conjecture 1 is
satisfied everywhere in vector multiplet moduli space with a coefficient of c1 = (6π2)1/3.
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Figure 3. Tower masses throughout the moduli space of the symmetric flop geometry (left) and
the GMSV geometry (right). In the symmetric flop geometry, the limits ϕ → ±∞ each feature
an exponentially light tower of particles, and the masses of these towers intersect at ϕ = 0 with
m = (6π2)1/3MPl;5. In the GMSV geometry, there is only one infinite-distance limit in vector
multiplet moduli space, ϕ → ∞, but the mass of the tower which satisfies the Distance Conjecture
in this limit is bounded above as m ≤ (16π2/3)1/3MPl;5.

Furthermore, any geodesic in vector multiplet moduli space of length L will have at
least point that lies a distance L/2 or greater from ϕ = 0, and correspondingly there will
be a tower with mass m(|ϕ| = L/2) = (6π2)1/3MPl;5 exp

(
−L/

(
2
√

3
))

. This ensures that
conjecture 1 is satisfied with c2 = (6π2)1/3, λ = 1/

√
3 = 1/

√
d − 2.

The GMSV geometry similarly features one-dimensional vector multiplet moduli space,
with prepotential given by

F = 5
6X3 + 2X2Y . (3.4)

Once again, the limit X → 0 is an infinite-distance limit in moduli space, and it is accom-
panied by a tower of particles that satisfies the Distance Conjecture. A conifold singularity
develops at the point Y = 0, and the geometry may be flopped to another phase of the
geometry. In this case, however, the second phase is not isomorphic to the first, but rather
it features a prepotential of the form

F ′ = 5
6(X ′)3 + 8(X ′)2Y ′ + 24X ′(Y ′)2 + 24(Y ′)3 , (3.5)

with X ′ = X + 4Y , and Y ′ = −Y . In this case, the boundary X ′ = 0 lies at finite distance
in moduli space. This means that the vector multiplet moduli space is semi-infinite, and
there is only one tower of BPS particles which satisfies the Distance Conjecture. In the
limit X → 0, this tower becomes exponentially light, whereas at the boundary X ′ = 0, this
tower begins at the mass scale

m(X ′ = 0) = (16π2/3)1/3MPl;5 . (3.6)

At all other points in moduli space, the mass of the tower is smaller than this value,
as illustrated in figure 3 (right). Conjecture 1 is therefore satisfied with a coefficient
of c1 = (16π2/3)1/3.

– 12 –



J
H
E
P
0
9
(
2
0
2
3
)
1
3
0

In the GMSV geometry, the mass of the lightest tower is maximized at a boundary of
moduli space rather than in the interior of moduli space. From figure 3 (right), one can see
that the boundary X ′ = 0 (indicated by the vertical red line) is located a sub-Planckian
distance |ϕmin| ≈ 0.295 from the flop at ϕ = 0. In the original, unflopped phase, the mass
of the tower scales exponentially as

m(ϕ) = (12π2/5)1/3MPl;5 exp
(
−ϕ/

√
3
)

, if ϕ ≥ 0 , (3.7)

where ϕ is the geodesic distance from the flop at ϕ = 0. At a distance of |∆ϕ| = ϕ + |ϕmin|
from the boundary of moduli space, the mass of the tower is then bounded above as

m(|∆ϕ|) ≤ (16π2/3)1/3MPl;5 exp
(
−|∆ϕ|/

√
3
)

, (3.8)

so conjecture 1 is satisfied with c2 = (16π2/3)1/3, λ = 2/
√

3. The additional factor of two
in λ relative to the symmetric flop example is a consequence of the fact that the domain
of ϕ is semi-infinite.

This example illustrates precisely the behavior required by the refined Distance Con-
jecture: the asymptotic exponential falloff of the tower mass kicks in at the flop, which
lies a sub-Planckian distance from the boundary of moduli space. If (contrary to fact) the
boundary of moduli space were to lie a super-Planckian distance from the flop, the refined
Distance Conjecture could be violated, and furthermore the mass of the tower could rise
high above the Planck scale. We see that, at least in this example, the refined Distance
Conjecture and our proposed conjectures are closely related, as the boundary of moduli
space is located an order-one distance from the point where tower mass is equal to the
Planck mass and the exponential scaling of the tower mass kicks in.

M-theory compactifications on Calabi-Yau threefolds offer a vast playground for testing
our proposed conjectures (and the refined Distance Conjecture) in greater detail. It would
be worthwhile to explore this playground further.

4 Einstein-Maxwell-dilaton theory in four dimensions

Consider an Einstein-Maxwell-dilaton theory in four dimensions with action

S = 1
2

∫
d4x

√
−g

(
R− 1

2(∇ϕ)2 − 1
g2 e−αϕF 2

2

)
. (4.1)

The tower Weak Gravity Conjecture [20–22] then predicts a tower of charged particles
beginning at the mass scale6

mel = g
√

γMPl , (4.2)

where
γ−1 = 1 + α2

2 . (4.3)

Far up in the tower, we expect that these states are extremal black holes [23].
6In this section, we define ϕ, g so that ⟨ϕ⟩ = 0. A nonzero vev can be absorbed into the definition of g.
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Meanwhile, the magnetic tower Weak Gravity Conjecture implies a tower of charged
monopoles beginning at the scale

mmag =
2π

√
γ

g
MPl , (4.4)

where γ is the same as the electric case. These two mass scales become equal to each other
at the point p0 in moduli space where g = 2π/g, yielding

mel = mmon =
√

2πγMPl ≤ 2
√

πMPl . (4.5)

We see, therefore, that for all values of ϕ, either mel or mmon is parametrically at or below
the Planck scale, and there exists a point at which each of these mass scales is equal to the
Planck scale up to an order-one factor. The coefficient c1 is bounded above by 2

√
π, and

it is smaller for larger values of |α|.

5 Discussion

In this note, we have sought to address one issue separating the Distance Conjecture from
meaningful phenomenological constraints by exploring the extent to which the Distance
Conjecture constrains effective field theories in the interior of moduli space. We saw that
in some cases, the refined Distance Conjecture is satisfied only by super-Planckian towers
of particles, limiting its ability to constrain low-energy physics. However, in all cases we
considered, at least one tower of particles begins at or below the Planck scale, and for a
long geodesic path it is exponentially lighter than the Planck scale, a phenomenon which
we codified in a pair of closely related conjectures.

We showed how these conjectures are satisfied in number of examples in string/M-
theory. In theories with sufficient supersymmetry, the conjectures are satisfied because
multiple towers coalesce near the Planck scale. The prototypical example of this is a circle
compactification, in which a tower of Kaluza-Klein modes becomes light in the large-radius
limit, a tower of winding modes becomes light in the small-radius limit, and at the self-dual
radius these towers coalesce. T-duality exchanges the Kaluza-Klein and winding modes,
ensuring that the Emergent String Conjecture is satisfied in the small-radius limit.

In other theories, however, there is an alternative possibility: the minimum tower
mass might obtain its maximum at a finite-distance boundary of moduli space, as in the
5d GMSV example considered in section 3 above. In this case, our conjectures suggest
that the finite-distance boundary should be close (in Planck units) to the locus in moduli
space where the lightest tower has Planck-scale mass. In the GMSV example, this locus
was also close to the locus where the exponential scaling behavior of the tower mass set in,
resulting in a close connection between our proposed conjectures and the original refined
Distance Conjecture.

Further exploration of string compactifications could lead to further evidence for or
against our conjectures. As noted previously, one promising arena for future study is the
vector multiplet moduli spaces of 5d theories arising from M-theory compactified on Calabi-
Yau threefolds. Another intriguing class of examples is the small-volume limits of Type II
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string theory on Calabi-Yau threefolds. Such limits may be classically at infinite distance,
but quantum corrections to the metric cut off the moduli space at finite distance [24–26]. In
this case, conjecture 1 would seem to require that the quantum corrections must obstruct
the portion of moduli space in which the Kaluza-Klein scale is heavier than the Planck
scale, and it would be interesting to see how this plays out in practice.

Even if our conjectures are true, there are still several steps separating the Distance
Conjecture in its current form from meaningful constraints on inflation. For one thing,
the strongest evidence in favor of the Distance Conjecture comes from the supersymmetric
context, where the scalar fields in question are massless moduli. The idea that the Distance
Conjecture should apply more generally to non-supersymmetric theories and scalar fields
with potentials goes all the way back to the original paper on the Distance Conjecture by
Ooguri and Vafa [2], and while the evidence so far seems consistent with this idea, further
analysis is needed.

It is also not entirely clear that a tower of particles at a mass scale m < H implies a
problem for inflation at the Hubble scale, H. Here, the Emergent String Conjecture [14]
becomes relevant, as this conjecture implies that any infinite-distance limit in moduli space
is either a decompactification limit or an emergent string limit. Combined with the analysis
of [13], this suggests that the lightest tower in any infinite-distance limit should be either a
Kaluza-Klein tower or an emergent string tower in some duality frame. For such a tower,
there is a problem with m < H: if the Kaluza-Klein scale drops below the Hubble scale,
the theory experiences decompactification and cannot be considered a 4-dimensional FRW
cosmology. If the string scale drops below the Hubble scale, the universe enters a stringy
phase, and low-energy effective field theory no longer applies.

Like the Distance Conjecture, it is not clear that the Emergent String Conjecture
applies in the non-supersymmetric context to scalar fields with potentials. Preliminary
evidence suggests that this may be true [24–27], but more research is needed.

Finally, our analysis has led us to a bound on tower masses as a function of geodesic
distance between two points, but the path traversed by the inflaton is not necessarily a
geodesic. One prominent example of this is axion monodromy inflation [28, 29], in which
an axion winds around its fundamental domain multiple times. Further work is needed to
understand the quantum gravity constraints on these models of inflation.

In summary, the gap between the Distance Conjecture and robust phenomenological
constraints is still formidable, though it has narrowed in recent years. Further research
into the validity and scope of the conjectures proposed here could play an important role
in narrowing this gap further.
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