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1 Introduction

Quantum tunneling has been conventionally described by instantons in the imaginary-time
path integral formalism [1–3], which enables us to investigate, for instance, the decay of a
false vacuum in quantum field theory and in quantum cosmology within the semi-classical
approximation [2–9]. The tunneling amplitude one obtains in this way is suppressed in
general by e−S0/ℏ with S0 being the Euclidean action for the instanton configuration, which
reveals its genuinely nonperturbative nature.

Despite this success, it should be noted that such calculations do not tell us how the
tunneling actually occurs. For that purpose, it is important to understand quantum tunnel-
ing in the real-time path integral formalism, in which it is widely recognized that complex
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solutions to the classical equation of motion play a crucial role.1 However, a complete un-
derstanding has been missing so far. For instance, infinitely many complex solutions for a
finite elapsed time have been obtained in simple quantum mechanical systems [11, 12], but
it was not possible to identify the relevant ones from the viewpoint of the Picard-Lefschetz
theory as we explain shortly. It was also pointed out that the complex trajectories that
can be obtained by analytic continuation of the instanton solution has a spiral shape in the
complex plane, which extends very far from the potential minimum [11, 12] and becomes
singular in the strict real-time limit [13].

The origin of complex trajectories can be naturally understood in the Picard-Lefschetz
theory [12], which renders the oscillatory integral that appears in the real-time path integral
formalism absolutely convergent by deforming the integration contour into the complex
plane using the anti-holomorphic gradient flow equation. Based on Cauchy’s theorem, one
can then rewrite the original integral as a sum over integrals along the steepest descent
contours (“Lefschetz thimbles”) associated with some saddle points. Thus this theory tells
us which saddle points are “relevant” to the original path integral. The problem, however,
was that it was technically difficult to identify the relevant saddle points.

More recently, there have been various developments on the description of quantum
tunneling in the real-time path integral formalism. For instance, the optical theorem has
been used to demonstrate that the decay rate of a false vacuum can be correctly reproduced
including one-loop corrections by the analytically continued instantons [14], which become
singular in the strict real-time limit as we mentioned above. On the other hand, by dealing
with the real-time evolution of the density matrix, quantum tunneling can be described
solely by real classical solutions and the associated thimbles for a positive definite initial
density matrix such as the ones given by the Gaussian distribution [15, 16]. Similar ideas
are used also in quantum field theory to calculate the decay rate of a false vacuum within
the semi-classical approximation [17].2

Here we deal with the real-time evolution of the wave function for a finite time, and
show that quantum tunneling in that case is described by regular complex trajectories by
explicit Monte Carlo calculations. Thus we hope to provide a new picture of quantum
tunneling, which is complementary to the one provided by the recent works mentioned
above. The physical meaning of the complex trajectories and the transition to classical
dynamics shall also be discussed.

The main obstacle in performing first-principle calculations in the real-time path in-
tegral by using a Monte Carlo method is the severe sign problem, which occurs due to
the integrand involving an oscillating factor eiS[x(t)], where the action S[x(t)] ∈ R depends
on the path x(t). In fact, the Picard-Lefschetz theory suggests a way to overcome this
problem; namely one deforms the integration contour numerically by the anti-holomorphic
gradient flow for a fixed amount of flow time so that the problem becomes mild enough
to be dealt with by reweighting. This is nowadays known as the generalized Lefschetz
thimble method (GTM) [21], which, in particular, makes the calculations possible without

1See, for instance, ref. [10] for a detailed analysis of complex solutions in a quantum chaos system.
2In fact, there is another paper [18] in this direction, which, however, turned out to be incorrect both

conceptually and numerically as was demonstrated in refs. [19, 20].
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prior knowledge of the relevant saddle points and the associated thimbles unlike the earlier
proposals [22–24].

Recently there have been further important developments of this method. First, an
efficient algorithm to generate a new configuration was developed based on the Hybrid
Monte Carlo algorithm (HMC), which is applied to the variables after the flow [22, 25]
or before the flow [26]. The former has an advantage that the modulus of the Jacobian
associated with the change of variables is included in the HMC procedure of generating a
new configuration, whereas the latter has an advantage that the HMC procedure simplifies
drastically without increasing the cost as far as one uses the backpropagation to calculate
the HMC force. Second, the integration of the flow time within an appropriate range has
been proposed [27] to overcome the multi-modality problem that occurs when there are
contributions from multiple thimbles that are separated far from each other in the config-
uration space. This proposal is a significant improvement over the related ones [25, 28, 29]
based on tempering with respect to the flow time, which requires the calculation of the
Jacobian when one swaps the replicas. Third, it has been realized that, when the system
size becomes large, there is a problem that occurs in solving the anti-holomorphic gradient
flow equation, which can be cured by optimizing the flow equation with a kernel acting on
the drift term [30].

In this paper we apply the GTM to the real-time path integral3 for the transition
amplitude in simple quantum mechanical systems, where the use of various new techniques
mentioned above turns out to be crucial. This, in particular, enables us to identify the
relevant complex saddle points that contribute to the path integral from first principles,
which was not possible in the previous related works [11, 12]. By introducing a sufficiently
large momentum in the initial wave function, we find that the saddle point becomes close
to real, which clearly indicates the transition to classical dynamics.

In fact, the ensemble average of the coordinate x(t) at time t gives the “weak value” [33]
of the Hermitian coordinate operator x̂ evaluated at time t with a post-selected final wave
function, which is a physical quantity that can be measured by experiments (“weak mea-
surement”) at least in principle. In refs. [11, 34], it was pointed out that the complex
trajectory that describes quantum tunneling can be probed by such experiments. We cal-
culate the weak value of x̂ by taking the ensemble average numerically and reproduce the
result obtained by solving the Schrödinger equation, which confirms the validity of our
calculations. While the obtained result turns out to be complex in general, we find that
it is not always a good indicator of quantum tunneling. For instance, the weak value can
be complex in the case where the path integral is dominated by more than one real saddle
points, which typically have different complex weights. Similarly, we observe that the weak
value can be close to real in the case where the path integral has contributions from more
than one complex saddle points. In particular, when the post-selected final wave function
is chosen to be the wave function that can be obtained by time-evolving the initial wave
function, the weak value reduces to the ordinary expectation value, which is always real
even in the case where quantum tunneling occurs.

3See refs. [31, 32] for earlier works in this direction.
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We also show that the spiral shape similar to the analytically continued instantons
appears in the case of a double-well potential when one calculates the transition amplitude
between the initial and final wave functions, which are chosen to be Gaussian functions cen-
tered at the two potential minima, respectively. Furthermore the complex trajectories we
obtain for a finite time turn out to be completely regular unlike the analytically continued
instantons obtained in the long-time limit [13].

Thus we establish a general statement that quantum tunneling is characterized by the
contribution of complex saddle points, which can be identified by using the Picard-Lefschetz
theory. In the semi-classical limit, the corresponding transition amplitude is suppressed by
a factor e−c/ℏ with c being the imaginary part of the action for the complex saddle point,
which is shown to be positive in general. This statement holds not only for a double-well
potential but also for a quartic potential as we confirm explicitly.

The rest of this paper is organized as follows. In section 2 we show that the real-
time path integral can be made well-defined by the Picard-Lefschetz theory and use it to
characterize quantum tunneling in the semi-classical limit. In section 3 we briefly review
some previous works in the case of a double-well potential, which will be important in our
analysis. In section 4 we show our main results obtained by applying the GTM to the
real-time path integral. In particular, we identify relevant complex saddle points, which
are responsible for quantum tunneling. We also clarify the relationship to the singular
complex trajectory obtained by analytic continuation of the instanton solution. Section 5
is devoted to a summary and discussions. In the appendix we explain the details of the
calculation method used in obtaining our main results.

2 Quantum tunneling in the real-time path integral

In this section, we first make the real-time path integral well-defined using the Picard-
Lefschetz theory. Then we provide a new picture of quantum tunneling in the real-time
path integral, which we will establish by explicit numerical calculations later.

2.1 The real-time path integral

Quantum tunneling has been conventionally described by instantons in the imaginary-time
formalism [1–3]. However, in order to gain information on how the tunneling actually
occurs, it is important to describe it in the real-time path integral formalism. Another
option is to solve the Schrödinger equation, which however requires the computational cost
that grows exponentially with the number of dynamical variables and hence it is not of
practical use in many-body systems or in field theories.

In the real-time path integral formalism, the time evolution of the wave function Ψ(x; t)
is described by the integral such as

Ψ(xf;T ) =
∫

x(T )=xf
DxΨ(x(0)) eiS[x]/ℏ , (2.1)

where Ψ(x) ≡ Ψ(x; 0) represents the initial wave function and S[x] is the action given by

S[x] =
∫ T

0
dt

{1
2 mẋ2(t) − V (x(t))

}
(2.2)
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as a functional of the path x(t) with the time 0 ≤ t ≤ T . For later convenience, let us also
introduce the “effective action” as

Ψ(xf;T ) =
∫

x(T )=xf
Dx e−Seff [x] , (2.3)

Seff [x] = − i

ℏ

∫ T

0
dt

{1
2 mẋ2(t) − V (x(t))

}
− log Ψ(x(0)) . (2.4)

2.2 The Picard-Lefschetz theory

Note that the expression (2.3) is actually a formal one since the path x(t) has uncountably
infinite degrees of freedom. Let us therefore discretize the time as t = nϵ (n = 0, · · · , N),
where T = Nϵ, and introduce the discretized dynamical variables xn = x(nϵ). The path
integral (2.3) can then be represented as4

Ψ(xf ;T ) =
∫
dx e−Seff(x) , (2.5)

where dx =
∏N−1

n=0 dxn and Seff(x) is a function of x = (x0, · · · , xN−1) given by5

Seff(x) = − iϵ
ℏ

N−1∑
n=0

{
1
2 m

(
xn+1 − xn

ϵ

)2
− V (xn+1) + V (xn)

2

}
− log Ψ(x0) , (2.6)

where xN = xf .
The integral (2.5) is still not well-defined since it is not absolutely convergent. Here

we use the Picard-Lefschetz theory [35, 36] to define this integral.6 The idea is to apply
Cauchy’s theorem and deform the integration contour of x = (x0, · · · , xN−1) ∈ RN in CN

by the anti-holomorphic gradient flow equation

dzi(σ)
dσ

= ∂Seff(z(σ))
∂zi(σ) (2.7)

with the initial condition z(0) = x ∈ RN , where σ plays the role of the deformation
parameter and Seff(z) is the holomorphic generalization of (2.6). Note that (2.7) defines
a one-to-one map from x ∈ RN to z(τ) ∈ CN for some τ , which is referred to as the flow
time. We denote the deformed contour defined in this way by Mτ ⊂ CN .

The important property of the anti-holomorphic gradient flow equation (2.7) is that

dSeff(z(σ))
dσ

=
∑

i

∂Seff(z(σ))
∂zi

dzi(σ)
dσ

=
∑

i

∣∣∣∣∂Seff(z(σ))
∂zi

∣∣∣∣2 ≥ 0 , (2.8)

4Here and henceforth, we omit the overall normalization factor for the wave function, which will not be
important throughout this paper.

5Note that the log term in (2.6) has a branch cut. This does not cause any problem below, however,
since in actual calculations we only need either ∂Seff(x)/∂x or exp (−Seff(x)).

6More precisely, one introduces a convergence factor by replacing m by meiε with ε > 0 and take the
ε → 0 limit of the Picard-Lefschetz theory for the ε-deformed model, which is equivalent to what we are
doing here. Note that this regularization works even for an unbounded potential V unlike the Wick rotation.
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which means that the imaginary part of the effective action is constant along the flow,
whereas the real part Seff(z(σ)) keeps on growing with σ unless one reaches some saddle
point z = z⋆ defined by

∂Seff(z⋆)
∂zi

= 0 . (2.9)

Thus, in the τ → ∞ limit, the manifold Mτ is decomposed into the so-called Lefschetz
thimbles, each of which is associated with some saddle point. The saddle points one obtains
in this way are called “relevant” in the Picard-Lefschetz theory. In particular, the saddle
points on the original integration contour are always relevant. Note also that there can
be many saddle points that are not obtained by deforming the original contour in this
way, which are called “irrelevant”. By comparing the integral over the thimble associated
with each relevant saddle point, we can determine which saddle points have important
contributions to the original integral.

2.3 Characterization of quantum tunneling

Having understood how to make sense of the formal expression (2.1), let us discuss how to
characterize quantum tunneling in the real-time path integral formalism.

For that purpose, we consider the semi-classical limit, which corresponds to taking the
ℏ → 0 limit with the initial wave function Ψ(x) assumed to have a form7

Ψ(x) = ψ(x) exp
(
i p x

ℏ

)
. (2.10)

When we take the ℏ → 0 limit, we fix the profile function ψ(x) and the parameter p
in (2.10) as well as the end point xf and the total time T .

In the semi-classical limit, the complex path z(t) that dominates the path integral in
the Picard-Lefschetz theory is given by the relevant saddle point z⋆ that has the smallest
ReSeff [z⋆]. Using the continuum notation in section 2.1, the saddle-point equation (2.9)
reduces in the ℏ → 0 limit to

0 = δS[z(t)] + p δz(0) (2.11)

=
∫ T

0
dt {m ż(t) δż(t) − V ′(z(t)) δz} + p δz(0) (2.12)

=
∫ T

0
dt {−m z̈(t) − V ′(z(t))} δz(t) +m

{
ż(T ) δz(T ) − ż(0) δz(0)

}
+ p δz(0) (2.13)

=
∫ T

0
dt {−m z̈(t) − V ′(z(t))} δz(t) + {p−m ż(0)} δz(0) , (2.14)

7Similar discussions are given in ref. [11], where the initial wave function is assumed to have a form
Ψ(x) = exp{−α(x− x0)2/ℏ}. However, this leads to a mixed boundary condition involving both ix(0) and
ẋ(0), which does not allow a real solution like the one we have in (2.16). Thus our choice (2.10) is crucial
in characterizing quantum tunneling by making clear the difference from a classical motion.
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where ˙ and ′ represent the derivative with respect to t and z, respectively, and we have
used δz(T ) = 0 in (2.13). Thus we obtain

m z̈(t) = −V ′(z(t)) , (2.15)
m ż(0) = p , z(T ) = xf , (2.16)

which represents the classical equation of motion with the constraints on the initial mo-
mentum and the final position. Note that the solution becomes real if z(0) ∈ R.

Let us here assume8 that the profile function ψ(x) in (2.10) has a compact support
∆. Then we consider a set of real solutions z(t) ∈ R with the initial condition z(0) ∈ ∆,
ż(0) = p/m and define a domain D ⊂ R which is composed of z(T ). If xf /∈ D, there is no
real solution to (2.15) satisfying the boundary condition (2.16) with z(0) ∈ ∆. In that case,
the path integral is dominated by some complex solution z⋆. The important point here is
that this solution z⋆ has to be a relevant saddle point, which implies ReSeff [z⋆] ∼ c/ℏ with
c > 0 due to the property (2.8). The transition amplitude (2.1) is therefore suppressed
by a factor exp(−c/ℏ) as expected for quantum tunneling, whereas a classical motion that
corresponds to a real saddle point does not have this suppression factor. In this way, we can
characterize quantum tunneling in the real-time path integral as the dominance of some
relevant complex saddle point based on the Picard-Lefschetz theory.9

Note also that in the strict classical limit (ℏ → 0), the transition amplitude has a
support as a function of xf , which is given by the domain D defined above. In fact, this
domain D shrinks to a point when the support of the profile function ∆ shrinks to a point
(|∆| → 0). Thus the quantum dynamics reduces to the classical dynamics by taking the
two limits 1) ℏ → 0 and 2) |∆| → 0 in this order. Our setup (2.10) is useful here as well
since it allows us to take the two limits separately.

Let us note that the initial wave function Ψ(x) in (2.1) plays an important role in
determining the dominant saddle points. For instance, we can alternatively separate it as

Ψ(xf;T ) =
∫
dxiG(xi, xf ;T ) Ψ(xi) , (2.17)

G(xi, xf ;T ) =
∫

x(T )=xf,x(0)=xi
Dx eiS[x]/ℏ , (2.18)

and apply the same argument as above to the propagator G(xi, xf ;T ) as has been done in
ref. [12]. In that case, the boundary condition (2.16) becomes

z(0) = xi , z(T ) = xf (2.19)

8Here the profile function ψ(x) we have in mind is, e.g., a Gaussian function, which is well localized in
some region ∆ for any practical purposes. Alternatively, one can make a change of variable from x0 to ξ0

through x0 = 1
2{(a+ b) − (b− a) tanh ξ0} to impose a ≤ x0 ≤ b in the discretized formulation (2.6).

9For finite ℏ, the saddle-point equation involves the profile function ψ(x) in (2.10), and hence it does not
allow real solutions in the strict sense. Furthermore, (almost) real solutions and complex solutions can have
comparable contributions to the path integral (2.3). However, we can still identify the latter contribution
as the effect of quantum tunneling. Thus the characterization of quantum tunneling is valid beyond the
semi-classical limit.
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irrespectively of the initial wave function. With this boundary condition, there are always
some real solutions to the classical equation of motion (2.15) since the initial momentum
can become arbitrarily large. According to the Picard-Lefschetz theory, this implies that
there is no room for complex saddle points to be dominant in the semi-classical limit.
Note, however, that the integration with respect to the real variable xi in (2.17) is highly
oscillatory, and in particular, it washes out the contributions of real solutions with the
initial momentum other than p in (2.10). This calls for another application of the Picard-
Lefschetz theory, which deforms the integration contour of xi into the complex plane. For
this reason, taking the semi-classical limit in evaluating the propagator (2.18) is not useful
in evaluating the transition amplitude (2.17) in the same limit.

This is in contrast to the situation in the real-time evolution of the density ma-
trix [16–18], where the separation of the initial density matrix and the subsequent real-time
evolution with fixed initial data [15] enables description of quantum tunneling in terms of
real classical solutions and the associated thimbles if the initial density matrix is chosen
appropriately. Thus the statement that quantum tunneling is described by complex trajec-
tories depends on how one formulates the problem. In the next section, we therefore make
clear the context in which the complex trajectories can be regarded as physical objects.

2.4 Complex trajectories as physical objects

As we discussed in section 2.3, quantum tunneling is described by complex saddle points
that appear when we deform the integration contour for the real-time path integral based on
the Picard-Lefschetz theory. A natural question to ask here is whether such complex saddle
points are merely some mathematical notion that is useful in evaluating the transition
amplitude or they have some physical meaning. In fact, one can see that the effects of the
complex saddle points can be probed by the “weak value” of the coordinate operator x̂
with some post-selected wave function as pointed out in refs. [11, 34].

Let us first recall that the weak value is defined as [33]

w(t) = ⟨Φ| Û(T − t) x̂ Û(t) |Ψ⟩
⟨Φ| Û(T ) |Ψ⟩

, (2.20)

where Û(t) = exp(−i tĤ/ℏ) is the time-evolution unitary operator with the Hamiltonian
Ĥ. The quantum states |Ψ⟩ and |Φ⟩ correspond to the initial wave function and the post-
selected wave function, respectively. If we choose the latter as |Φ⟩ = Û(T ) |Ψ⟩, the weak
value w(t) reduces to the usual expectation value

w(t) = ⟨Ψ| Û †(t) x̂ Û(t) |Ψ⟩
⟨Ψ|Ψ⟩

, (2.21)

which implies that the weak value generalizes the notion of the expectation value by speci-
fying the final state |Φ⟩ to be different from Û(T ) |Ψ⟩. Note that the weak value is complex
in general unlike the expectation value, which is real for a Hermitian operator such as x̂.
It is not only a mathematically well-defined quantity but also a physical quantity that can
be measured by experiments using the so-called “weak measurement” [33].
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Now the crucial point for us is that the weak value can be expressed in the real-time
path integral formalism as

w(t) = 1
Z

∫
Dxx(t) Ψ(x(0)) Φ(x(T )) eiS[x]/ℏ , (2.22)

Z =
∫

DxΨ(x(0)) Φ(x(T )) eiS[x]/ℏ , (2.23)

where the action S[x] is given by (2.2), and Ψ(x), Φ(x) represent the wave functions of
the quantum states |Ψ⟩, |Φ⟩, respectively. In particular, if we choose Φ(x) = δ(x−xf), the
denominator Z is nothing but the time-evolved wave function (2.1) discussed earlier.

Note that the path integral (2.22) can also be evaluated by the Picard-Lefschetz theory.
In particular, if there is only one saddle point z⋆(t) that dominates the path integral in
the semi-classical ℏ → 0 limit, the weak value is given by w(t) = z⋆(t). Therefore, in
order to see whether the dominant saddle point is real or complex in the evaluation of the
time-evolved wave function (2.1) at x = xf , we just have to measure the weak value with
the post-selected wave function chosen to be Φ(x) = δ(x − xf). In particular, we obtain
a complex weak value w(t) in the ℏ → 0 limit if the end point xf is located outside the
domain D defined below (2.16).

In general, the path integral is not dominated by a single saddle point, but many saddle
points can contribute comparably. In that case, the weak value is given by a weighted
average of the saddle points z⋆(t) with the weight exp(−Seff [z⋆]) being complex in general.
Therefore it is possible that the weak value becomes close to real due to cancellation in the
imaginary part even if the path integral is dominated by some complex saddles as we see
later in section 4.2. For instance, if one uses a post-selected wave function corresponding to
|Φ⟩ = Û(T ) |Ψ⟩, the weak value w(t) is always real since it is nothing but the expectation
value (2.21) of x̂ at time t for the initial quantum state |Ψ⟩. On the contrary, it can also
happen that the weak value becomes complex even if the path integral is dominated by real
saddle points due to interference as we see later in section 4.3. Thus a complex weak value
is neither a necessary condition nor a sufficient condition for non-negligible contribution
from complex saddle points in general.

Note also that unlike the expectation value, the weak value cannot be obtained by
the density matrix. In particular, when one describes quantum tunneling using the den-
sity matrix [16–18], one can only probe the real-time evolution of the expectation value.
Therefore, the fact that complex saddle points do not appear in the path integral formalism
for the density matrix [15] with an appropriate initial condition does not contradict the
assertion here that quantum tunneling is described by complex saddle points.

3 Brief review of previous works

In this section we review some previous works which will be important in our analysis in
section 4. First we review ref. [12], in which all the solutions to the classical equation of
motion were obtained analytically in the case of a double-well potential10 although it was

10See ref. [11] for earlier results in the case of an unbounded potential with a local minimum.

– 9 –



J
H
E
P
0
9
(
2
0
2
3
)
1
1
0

not possible to identify the relevant complex solutions from the viewpoint of the Picard-
Lefschetz theory. Then we review ref. [13], which discusses the analytic continuation of the
instanton solution in the imaginary-time formalism.

3.1 Exact classical solutions for a double-well potential

Let us consider a quantum system described by the action (2.2) in the continuous time
formulation with a double-well potential

V (x) = λ(x2 − a2)2 , (3.1)

which is a typical example used to discuss quantum tunneling. Here we take λ = 1/2 and
a = 1 in the potential (3.1) and set m = 1 in the action (2.2) without loss of generality.

From the classical equation of motion (2.15), one can derive the complex version of
the energy conservation (

dz

dt

)2
+ (z2 − 1)2 = q2 , (3.2)

where q is some complex constant. This differential equation can be readily solved as

z(t) =
√
q2 − 1

2q sd
(√

2q(t+ c),
√

1 + q

2q

)
, (3.3)

where c is another complex constant and sd(x, k) is the Jacobi elliptic function. Thus the
general solution to (2.15) can be parametrized by the two integration constants q and c.

Given the fixed end points z(0) = xi and z(T ) = xf, which can be complex in general,11

the parameters q and c can be determined. (See ref. [12] for the details.) Note that the
solution after fixing the end points still depends on two integers (n,m), which we will refer
to as “modes” of the solution in what follows.

For each solution z(t) obtained above, we can obtain a solution z̃(t) = az(a
√

2λt) for
arbitrary λ and a in (3.1) that satisfies the boundary conditions z̃(0) = axi and z̃(T ) = axf.

3.2 Analytic continuation of the instanton

Here we discuss a complex classical solution that can be obtained by analytic continuation
of the instanton solution in the imaginary-time formalism [13].

For that, we consider the Wick rotation t = e−iατ , where τ ∈ R runs from −∞ to ∞.
In particular, α = 0 corresponds to the real time and α = π/2 corresponds the imaginary
time. Then the action (2.2) becomes

S[x] = 1
2

∫ ∞

−∞
dτ
{
eiαẋ2(τ) − e−iα(x2(τ) − 1)2

}
, (3.4)

where ˙ represents the derivative with respect to τ . The classical equation of motion reads

z̈(τ) = −2e−2iαz(τ)(z2(τ) − 1) . (3.5)
11Note that xi and xf are assumed to be real in ref. [12] since the authors were evaluating the propaga-

tor (2.18). As we discussed at the end of section 2.3, however, it is important to include the initial wave
function in the analysis, which requires us to generalize the solutions to complex xi. When we discuss the
weak value with the post-selected final wave function as in section 2.4, we have to make xf complex as well.
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Figure 1. (Left) The instanton solution (3.6) in the imaginary time formalism (α = π
2 ), which

connects the two potential minima indicated by the horizontal dashed line. (Right) The trajectory
of the complex solution obtained by analytic continuation of the instanton solution is shown in the
complex plane for α = 0.1 × π

2 .

For α = π
2 , we obtain a real solution12

z⋆(τ) = tanh τ , (3.6)

which satisfies the boundary condition

z⋆(−∞) = −1 , z⋆(∞) = 1 (3.7)

and therefore connects the two potential minima as we plot in figure 1 (Left). This is
the instanton solution in the imaginary-time formalism, and it actually describes quantum
tunneling as is discussed, for instance, in ref. [1].

By making an analytic continuation of (3.6), we can obtain a solution to (3.5) for
arbitrary 0 < α ≤ π

2 , which is given by

z⋆(τ) = tanh
(
iτe−iα

)
(3.8)

satisfying the same boundary condition (3.7). Note that this solution is complex for α < π
2

and it gives a trajectory with a spiral shape as shown in figure 1 (Right) for α = 0.1× π
2 . For

smaller and smaller α, the trajectory winds more and more around the potential minima as
τ → ±∞ and it also extends farther and farther in the complex plane. Thus the solution
that can be obtained by analytic continuation of the instanton is actually singular in the
α→ 0 limit.

On the other hand, if one plugs (3.8) in the action (3.4), one finds that the τ integration
for different α is related to each other by just rotating the integration contour of τ in the
complex plane, which implies that the action (3.4) is independent of α due to Cauchy’s
theorem. Therefore, the transition amplitude one obtains for this solution in the α →

12In fact, the general solution satisfying the boundary condition (3.7) is z⋆(τ) = tanh(τ − τ0), where τ0

is an arbitrary parameter. Here we set τ0 = 0 since it does not affect our discussion.
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0 limit is suppressed by eiS[z⋆]/ℏ = e−SE/ℏ, where SE > 0 is the Euclidean action for
the instanton solution (3.6), which implies that the transition amplitude can be correctly
reproduced by the complex saddle point obtained in this way as far as one introduces an
infinitesimal α > 0 as a kind of regulator. In fact, this is confirmed recently including
one-loop corrections [14], where the decay rate of a false vacuum has been reproduced
correctly based on the optical theorem. However, the singular behaviors in the strict real-
time limit α→ 0 still requires clarification. This is important, in particular, since complex
trajectories are actually physical objects that can be probed by experiments at least in
principle by the so-called weak measurement as we have discussed in subsection 2.4.

4 Monte Carlo results obtained by the GTM

In this section we present our results obtained by Monte Carlo calculations using the GTM.
The partition function is given by the transition amplitude (2.23), which is discretized as

Z =
∫
dx e−Seff(x) , (4.1)

where dx =
∏N

n=0 dxn and

Seff(x) = − iϵ
ℏ

N−1∑
n=0

{
1
2 m

(
xn+1 − xn

ϵ

)2
− V (xn+1) + V (xn)

2

}
− log Ψ(x0) − log Φ(xN ) .

(4.2)
The initial wave function (2.10) is chosen as

Ψ(x) = 1
(2π)1/4σ1/2 exp

{
− 1

4σ2 (x− b)2 + ipx

ℏ

}
. (4.3)

If we choose the post-selected wave function as Φ(x) = δ(x− xf), which amounts to fixing
the end point to xN = xf , eq. (4.1) reduces to the time-evolved wave function (2.5).

In all the simulations in this work, we set the mass to m = 1 and the total time to
T = 2, which is divided into N = 20 intervals. Except in subsection 4.4, where we discuss
the semi-classical ℏ → 0 limit, we set ℏ = 1. See appendix A for the details of the method
used for our simulations.

4.1 The case of a double-well potential

In this section we consider the case of a double-well potential (3.1) with a = 1. The height
of the potential at the local maximum x = 0 is V0 = λ. We use b = −1 and σ = 0.3 for
the initial wave function (4.3) so that it is well localized around x = −1, which is one of
the potential minima. We use Φ(x) = δ(x− xf) for the post-selected wave function, where
xf = 1 is chosen to be the other potential minimum.

In order to choose an appropriate value for λ in the potential to probe quantum
tunneling, we consider the probability

P =
∑

E≥V0

|⟨E|Ψ⟩|2 (4.4)
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Figure 2. The distribution |Ψ(x; t)|2 at time t = 0 (purple line), t = 2 (yellow line) and t = 5
(green line) are shown for the initial wave function (4.3) with σ = 0.3, b = −1, p = 0 in the
double-well potential (3.1) with λ = 2.5, a = 1 (gray, dashed line).

of the initial quantum state |Ψ⟩ having energy larger than the potential barrier V0, where
|E⟩ represents the normalized energy eigenstate with the energy E. If we choose the
momentum p = 0 in the initial wave function (4.3), we obtain P ∼ 0.11 for λ = 2.5. We
therefore use λ = 2.5 in our calculation.13

Note that a typical tunneling time can be evaluated by

t0 ∼ πℏ
∆E , (4.5)

where ∆E is the energy difference between the ground state and the first excited state.
For λ = 2.5, we find t0 ∼ 5. In figure 2 we plot the wave functions at t = 0, t = 2
and t = 5 obtained for this setup by solving the Schrödinger equation with Hamiltonian
diagonalization. The result for t = 2 shows that the significant portion of the distribution
has moved to the other potential minimum x = 1, which implies that quantum tunneling
has indeed occurred.

In figure 3 (Top), we show our results for the weak value w(t) of the coordinate at time
t defined by (2.22) for the initial wave function (4.3) with σ = 0.3, b = −1, p = 0 and the
post-selected wave function Φ(x) = δ(x−xf) with xf = 1 in the double-well potential (3.1)
with λ = 2.5, a = 1. The dashed lines represent the results obtained directly from (2.20)
by solving the Schrödinger equation with Hamiltonian diagonalization. The agreement
between our data and the direct results confirms the validity of our calculation. We find

13In ref. [16], thimble calculations for the density matrix time-evolution were performed with a double-
well potential V = 1

2ϕ
2(1 − gϕ)2, which corresponds to ours (3.1) through x = 2g(ϕ − 1

2g
), a = 1 and

λ = 1
32g2 . Their choice g = 0.3 and g = 0.5 for simulations corresponds to λ ∼ 0.35 and 0.125, respectively,

and their initial wave function corresponds to choosing b = 0, σ = 1√
2 ∼ 0.71 and p = 0 in (4.3). The

probability (4.4) is given by P ∼ 0.54 and P ∼ 1.0 for g = 0.3 and g = 0.5, respectively. It would be
interesting to see whether their method works even in the case that corresponds to smaller P .
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Figure 3. The results obtained for the initial wave function (4.3) with σ = 0.3, b = −1, p = 0 and
the post-selected wave function Φ(x) = δ(x−xf) with xf = 1 in the double-well potential (3.1) with
λ = 2.5, a = 1. (Top) The weak value of the coordinate is plotted against time t in the Left panel,
while the trajectory of the weak value is plotted in the complex plane in the Right panel. The dashed
lines represent the result obtained from (2.20) by solving the Schrödinger equation. (Bottom) Two
typical trajectories obtained from the numerical simulation with the same parameters as in the Top
panels. The dashed lines represent the closest classical solutions obtained by choosing the mode
(n,m) and the initial point xi with the final point xf = 1 fixed.

that the weak value w(t) is indeed complex except for the end point, which is fixed to
w(T ) = xf = 1. Note, in particular, that w(0) is also complex although it is close to
x = −1, which is the center of the Gaussian wave function (4.3).

In the Bottom panels of figure 3, we show two typical trajectories obtained from the
simulation with the same parameters as in the Top panels. These trajectories are obtained
for a sufficiently long flow time τ ∼ 4 in the GTM (see appendix A.2) so that they are
expected to be close to some relevant saddle points except for fluctuations along the thimble,
which are seen as small wiggles in the observed trajectories. Indeed we are able to find
a classical solution discussed in section 3.1 which is close to each of these trajectories by
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Figure 4. The results obtained for the initial wave function (4.3) with the momentum p = −2.
All the other parameters are the same as in figure 3. (Top) The weak value of the coordinate is
plotted against time t in the Left panel, while the trajectory of the weak value is plotted in the
complex plane in the Right panel. The dashed lines represent the result obtained from (2.20) by
solving the Schrödinger equation. (Bottom) Two typical trajectories obtained from the numerical
simulation with the same parameters as in the Top panels. The dashed lines represent the closest
classical solutions obtained by choosing the mode (n,m) and the initial point xi with the final point
xf = 1 fixed.

choosing the mode (n,m) and the initial point xi with the final point xf = 1 fixed. We
find that the typical trajectories have a larger imaginary part on the left and a smaller
imaginary part on the right, which suggests that quantum tunneling occurs first and then
some classical motion follows. This feature is obscured in the weak value w(t) shown in
the Top-Right panel. This is possible since the weak value w(t) is a weighted average of
x(t) obtained from the simulation, where the weight (A.7) is complex in general since it
consists of the phase factor e−i ImSeff and the Jacobian for the change of variables.

Next we introduce nonzero momentum p = −2 in the initial wave function (4.3). In
figure 4 we show our results with all the other parameters the same as in figure 3. Since the
initial kinetic energy is p2/2 = 2, which is close to the potential barrier λ = 2.5, a classical
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motion over the potential barrier is possible if the initial point x(0) is slightly shifted from
the potential minimum. Indeed we find that the weak value and the typical trajectories
become close to real.

4.2 The case with a Gaussian post-selected wave function

So far, we have been fixing the end point to the other potential minimum xf = 1. This, in
particular, allows us to see what kind of trajectories dominate the real-time path integral
for the time-evolved wave function (2.1) in the Picard-Lefschetz theory. We were able to
see that complex saddle points indeed dominate by choosing the parameters in the initial
wave function and the double-well potential appropriately.

On the other hand, the analytic continuation of the instanton solution suggests that the
relevant complex trajectory that describes quantum tunneling in the case of a double-well
potential has a spiral shape shown in figure 1 (Right). In order to clarify the relationship
to this result, we consider a post-selected wave function Φ(x) other than Φ(x) = δ(x− xf)
in the real-time path integral (2.23).

In fact, considering the parity symmetry x 7→ −x of the quantum system at hand, it
is natural to choose the post-selected wave function as

Φ(x) = Ψ(−x) , (4.6)

where the initial wave function Ψ(x) is given by (4.3). This makes the saddle-point equa-
tion (2.9) invariant under simultaneous reflection of time t 7→ T − t and space z 7→ −z, and
hence allows a solution with the symmetry z(T − t) = −z(t), which is compatible with the
spiral shape in figure 1 (Right).

In figure 5 we show our results for the initial wave function (4.3) with all the parameters
the same as in figure 3 and the post-selected wave function now given by (4.6). Unlike the
previous cases with Φ(x) = δ(x − xf), the end point of the trajectories is not constrained
to x(N) = xf and it flows into the complex plane due to the flow equation (2.7). In
particular, the typical trajectory shown in figure 5 (Bottom-Right) has a spiral shape with
the symmetry z(T −t) = −z(t), which resembles the trajectory in figure 1 (Right) obtained
by analytic continuation of the instanton solution. Furthermore the classical solutions that
appear in our simulation are all regular even though we are working in the strict real-time
limit α→ 0 discussed in section 3.2. It is conceivable that the spiral winds more and more
around the potential minima as we increase the time T . We also note that the weak value
shown in the Top-Right panel turns out to be quite close to real, which is possible since
there are more than one relevant complex saddle points that interfere with each other.
We consider that the situation is similar to the case with the post-selected quantum state
|Φ⟩ = Û(T ) |Ψ⟩ discussed at the end of section 2.4.

4.3 The case of a quartic potential

In this section we discuss the case of a quartic potential

V (x) = κx4 , (4.7)

in which there is no potential barrier to tunnel through.
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Figure 5. The results obtained for a post-selected wave function (4.6) with all the other parameters
the same as in figure 3. (Top) The weak value of the coordinate is plotted against time t in the
Left panel, while the trajectory of the weak value is plotted in the complex plane in the Right
panel. The dashed lines represent the result obtained from (2.20) by solving the Schrödinger
equation. (Bottom) Two typical trajectories obtained from the numerical simulation with the same
parameters as in the Top panels. The dashed lines represent the closest classical solutions obtained
by choosing not only the mode (n,m) and the initial point xi but also the final point xf unlike the
previous cases.

In figure 6 we show our results for κ = 1. As in section 4.1, the initial wave function is
chosen as (4.3) with σ = 0.3, b = −1, p = 0 and the post-selected wave function is chosen
as Φ(x) = δ(x− xf) with xf = 1.

The typical trajectories shown in the Bottom panel are close to real, which suggests
that classical motions are allowed with the chosen parameters. Note, however, that, the
weak value shown in the Top-Right panel turns out to be complex, which can be understood
as a result of interference among various trajectories with relative complex weights. This
is in contrast to the situation with the p = −2 case discussed in section 4.1, where the
typical trajectories and the weak value are both close to real.
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Figure 6. The results obtained for the quartic potential (4.7) with κ = 1. As in figure 3, the initial
wave function is chosen as (4.3) with σ = 0.3, b = −1, p = 0 and the post-selected wave function
is chosen as Φ(x) = δ(x − xf) with xf = 1. (Top) The weak value of the coordinate is plotted
against time t in the Left panel, while the trajectory of the weak value is plotted in the complex
plane in the Right panel. The dashed lines represent the result obtained from (2.20) by solving the
Schrödinger equation. (Bottom) Two typical trajectories obtained from the numerical simulation
with the same parameters as in the Top panels.

4.4 The semi-classical limit

So far, we have chosen ℏ = 1 in (4.2) and (4.3). In this section, we reduce it to ℏ = 0.5
and discuss what happens in the semi-classical limit.

Let us consider the double-well potential case with p = 0 shown in figure 3, where
typical trajectories are complex for ℏ = 1. With all the parameters being the same, here
we reduce ℏ to ℏ = 0.5. In figure 7 (Top-Left), we find that typical trajectories are close to
real suggesting the dominance of real saddle points corresponding to some classical motions.
These classical motions are possible since for the initial position x ≤ −

√
2, the potential

energy (3.1) of the particle becomes larger than the potential barrier V0 = λ. Indeed we
find that the initial point z(0) is close to x = −

√
2. Namely, for this setup, we expect that

real saddle points dominate in the ℏ → 0 limit.
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Figure 7. Typical trajectories for ℏ = 0.5 obtained in various cases. (Top-Left) The case with
a double-well potential with all the parameters other than ℏ being the same as in figure 3. In
particular, the initial wave function is chosen as (4.3) with b = −1, σ = 0.3, p = 0. (Top-Right)
The same as the Top-Left panel except that the initial wave function is chosen now as (4.3) with
b = −0.8, σ = 0.2, p = 0. (Bottom-Left) The case with a quartic potential with all the parameters
other than ℏ being the same as in figure 6. In particular, the end point is fixed to xf = 1. (Bottom-
Right) The same as the Bottom-Left panel except that the end point is now fixed to xf = 1.9.

Here we change the parameters in the initial wave function (4.3) from the previous
ones b = −1, σ = 0.3 to the new ones b = −0.8, σ = 0.2 with p = 0 unchanged so that the
initial wave function is almost zero at x ≤ −

√
2. In figure 7 (Top-Right), we indeed find

that typical trajectories in this case are complex for ℏ = 0.5. Namely, for this setup, we
expect that complex saddle points dominate in the ℏ → 0 limit.

Next we consider the quartic potential case shown in figure 6, where typical trajectories
are close to real for ℏ = 1. With all the parameters being the same, here we reduce ℏ to
ℏ = 0.5. In figure 7 (Bottom-Left), we find that typical trajectories are still close to real
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suggesting the dominance of real saddle points corresponding to some classical motions.
These classical motions are possible since for the initial position x ≤ −1, the potential
energy is larger than the potential energy V0 = κ at the end point xf = 1. Namely, for this
setup, we expect that real saddle points dominate in the ℏ → 0 limit.

Here we change the end point from the previous one xf = 1 to the new one xf = 1.9
with all the other parameters unchanged. In order to have a classical motion, the initial
position should be x ≤ −1.9, where the initial wave function is almost zero for b = −1 and
σ = 0.3. In figure 7 (Bottom-Right), we indeed find that typical trajectories in this case
are complex for ℏ = 0.5. Namely, for this setup, we expect that complex saddle points
dominate in the ℏ → 0 limit. This case highlights the role played by the post-selection in
characterizing quantum tunneling.

5 Summary and discussions

In this paper we have investigated the description of quantum tunneling in the real-time
path integral formalism, in which complex trajectories were expected to play a crucial role.
In particular, we were able to determine, for the first time, the complex saddle points that
are relevant from the viewpoint of the Picard-Lefschetz theory using Monte Carlo methods.
The severe sign problem that occurs in evaluating the oscillating integral was overcome by
the GTM with various new techniques developed recently. Our results establish a state-
ment that quantum tunneling is characterized by complex saddle points, which dominate
the path integral in the semi-classical limit when the classical motion is not allowed by
boundary conditions. We have also clarified the relationship to the instanton, which is
widely used as a standard description of quantum tunneling based on the imaginary-time
path integral formalism.

Among various applications of the description of quantum tunneling in the real-time
path integral formalism, we consider that the false vacuum decay is important in the con-
text of cosmology and particle physics [37]. We would also like to recall that quantum
tunneling is expected to have taken place at the beginning of our universe [38, 39]. The
problem here was that there seemed to be no guiding principle to choose the integration
contour in the path integral formalism and hence it was not possible to determine the
saddle points that actually contribute [40]. This problem was solved recently by the recog-
nition that quantum gravity should be formulated using the real-time (or Lorentzian) path
integral based on the Picard-Lefschetz theory [41]. From this point of view, the quantum
tunneling at the beginning of the Universe is described by the emergence of Euclidean
geometry as a dominant complex saddle point. Aiming at going beyond the minisuper-
space approximation, numerical studies of Lorentzian quantum gravity have recently been
started [42–44]. (See refs. [45, 46] and references therein for earlier works.) The impor-
tance of using the Lorentzian metric has also been realized in nonperturbative formulation
of superstring theory [47, 48] based on the IKKT matrix model [49]. Recent Monte Carlo
studies suggest the emergence of expanding space-time [50, 51] unlike in the Euclidean ver-
sion of the model [52]. We consider that the insights gained in this work will be important
in pursuing these directions further.
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Unlike solving the Schrödinger equation, the path integral formalism can be readily
extended to many-body systems and field theories once we overcome the sign problem, for
instance, by the GTM as we have demonstrated. It should also be emphasized that, unlike
the other promising methods [53–56], the GTM has a peculiar advantage that it is based
on the Picard-Lefschetz theory, which enables us to understand nonperturbative effects in
terms of nontrivial saddle points and the associated thimbles that appear in evaluating the
oscillating integral. This feature of the GTM was made full use of in our work in the context
of quantum tunneling, where the connection to semi-classical descriptions was of particular
importance. From this point of view, we hope that the GTM is also useful in elucidating
various fundamental problems in quantum theory such as the measurement problem and
the quantum-to-classical transition based on the decoherence theory [57], which requires
the environment to be included in the simulation.
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A The calculation method used in this work

In this appendix, we discuss how we obtained the Monte Carlo results presented in section 4.
First we briefly review the basic idea of the GTM to solve the sign problem. Then we review
the idea of integrating the flow time to solve the multi-modality problem, and discuss how
to apply the HMC algorithm, which enables efficient simulation. Finally we explain the
problem of the anti-holomorphic gradient flow that occurs in large systems, and discuss
how to solve it by optimizing the gradient flow.

A.1 The basic idea of the GTM

In this section we give a brief review of the GTM, which is a promising method for solving
the sign problem based on the Picard-Lefschetz theory. Here we consider a general model
defined by the partition function and the observable

Z =
∫
dNx e−S(x) , ⟨O⟩ = 1

Z

∫
dNxO(x) e−S(x) , (A.1)

where x = (x1, x1, · · · , xN ) ∈ RN and dNx =
∏N

n=1 dxn. The action S(x) is a complex-
valued holomorphic function of x, which makes (A.1) a highly oscillating multi-dimensional
integral and hence causes the sign problem when the number N of variables becomes large.
This general partition (A.1) includes the real-time path integral (4.1) with the action (4.2).
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Let us first recall that the Picard-Lefschetz theory makes the oscillating integral well-
defined by deforming the integration contour using the anti-holomorphic gradient flow
equation

dzi(σ)
dσ

= ∂S(z(σ))
∂zi

(A.2)

with the initial condition z(0) = x ∈ RN , where σ plays the role of the deformation
parameter. See eq. (2.7) and below in section 2.2. This flow equation defines a one-to-one
map from x = z(0) ∈ RN to z = z(τ) ∈ Mτ ∈ CN . Due to Cauchy’s theorem, the partition
function and the observable (A.1) can be rewritten as

Z =
∫
Mτ

dNz e−S(z) , ⟨O⟩ = 1
Z

∫
Mτ

dNzO(z) e−S(x) . (A.3)

In the τ → ∞ limit, ImS(z) becomes constant on each Lefschetz thimble due to the
property (2.8) so that the sign problem is solved except for the one14 coming from the
measure dNz. In the GTM [21], the flow time τ → ∞ limit is not taken. This has a
significant advantage over the earlier proposals [22–24] with τ = ∞, which require prior
knowledge of the relevant saddle points. The sign problem can still be ameliorated by
choosing τ ∼ logN , which makes the reweighting method work. However, the large flow
time τ causes the multi-modality problem (or the ergodicity problem) since the transitions
among different regions of Mτ that flow into different thimbles in the τ → ∞ limit are
highly suppressed during the simulation.

A.2 Integrating the flow time

In order to solve both the sign problem and the multi-modality problem, it was pro-
posed [27] to integrate the flow time τ as

ZW =
∫ τmax

τmin
dτ e−W (τ)

∫
Mτ

dNz e−S(z) (A.4)

with some weight W (τ), which is chosen to make the τ -distribution roughly uniform in
the region [τmin, τmax]. The use of this idea is important in our work since we have to be
able to sample all the saddle points and the associated thimbles that contribute to the
path integral. The validity of our simulation in this regard is confirmed by reproducing the
correct results for the weak value, which is an ensemble average of the sampled trajectories.
See the Top panels in figures 3, 4, 5 and 6.

For an efficient sampling in (A.4), we use the Hybrid Monte Carlo algorithm [58],
which updates the configuration by solving a fictitious classical Hamilton dynamics treating
ReS(z) as the potential. When we apply this idea to (A.4), there are actually two options.

One option is to define a fictitious classical Hamilton dynamics for (z, τ) ∈ R with z ∈
Mτ , where R is the “worldvolume” obtained by the foliation of Mτ with τ ∈ [τmin, τmax].
While this option has an important advantage (see footnote 15), one has to treat a system

14The sign problem due to the complex integration measure dNz is called the residual sign problem. The
severeness of this problem depends on the model and its parameters [22].
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constrained on the worldvolume, which makes the algorithm quite complicated. Another
problem is that the worldvolume is pinched if there is a saddle point on the original inte-
gration contour, which causes the ergodicity problem.

Here we adopt the other option, which is to rewrite (A.4) as

ZW =
∫ τmax

τmin
dτ e−W (τ)

∫
dNx det J(x, τ)e−S(z(x,τ)) , (A.5)

where z(x, τ) represents the configuration obtained after the flow starting from x ∈ RN and

Jij(x, τ) = ∂zi(x, τ)
∂xj

(A.6)

is the Jacobi matrix associated with the change of variables. Then one can define a fictitious
classical Hamilton dynamics for (x, τ) ∈ RN × [τmin, τmax]. Here one only has to deal with
an unconstrained system, which makes the algorithm simple. The disadvantage, however,
is that the Jacobian det J(x, τ) that appears in (A.5) has to be taken into account by
reweighting, which causes the overlap problem15 when the modulus | det J(x, τ)| fluctuates
considerably during the simulation. In that case, only a small number of configurations
with large | det J(x, τ)| dominate the ensemble average and hence the statistics cannot
be increased efficiently. It turns out that this problem does not occur in the simulations
performed in this work if we optimize the flow equation as we describe in section A.4. In
all the simulations, we have chosen τmin = 0.2, which is small enough to solve the multi-
modality problem, and τmax = 4, which is large enough to obtain typical trajectories close
to the relevant saddle points. Note also that the sign problem is solved already at τ ∼ 2.

Once we generate the configurations (x, τ), we can calculate the expectation value ⟨O⟩
by taking the ensemble average of O(z(x, τ)) with the reweighting factor

R(x, τ) = det J(x, τ) e−i ImS(z(x,τ)) (A.7)

using the configurations (x, τ) obtained for an appropriate range of τ [59].
In either option of the HMC algorithm, the most time-consuming part is the calculation

of the Jacobian det J(x, τ), which requires O(N3) computational cost in the reweighting
procedure. In order to calculate the Jacobi matrix J(x, τ), one has to solve the flow
equation

∂

∂σ
Jij(σ) = Hik(z(σ)) Jkj(σ) (A.8)

with the initial condition J(0) = 1N , where we have defined the Hessian

Hij(z) = ∂2S(z)
∂zi∂zj

. (A.9)

15Note that this problem does not occur in the first option since the modulus | det J(x, τ)| is included
in the integration measure |dNz| in (A.4) although the phase factor eiθ = dNz/|dNz| should be taken into
account by reweighting.
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A.3 Backpropagating Hybrid Monte Carlo algorithm

In this section we review the backpropagating HMC algorithm [26], which is crucial in
simulating the system (A.5). Here we discuss the case of fixed flow time τ for simplicity
and comment on the case of integrating τ at the end of this section.

The first step of the HMC algorithm [58] is to introduce new variables pi (i = 1, · · · , N)
with the partition function

ZHMC =
∫
dNx dNp e−

p2
2 −ReS(z(x,τ)) , (A.10)

where the Gaussian integral of p simply yields a constant factor. In order to update the
configuration (x, p), we first generate p with the probability distribution ∝ exp(−p2/2) and
solve the fictitious Hamilton equation with the Hamiltonian

H(x, p) = 1
2

N∑
i=1

p2
i + ReS(z(x, τ)) , (A.11)

which reads

dxi(s)
ds

= pi(s) , (A.12)

dpi(s)
ds

= Fi(s) (A.13)

with the force Fi(s) defined by

Fi(s) = − ∂ReS(z(x, τ))
∂xi

∣∣∣∣
x=x(s)

. (A.14)

We solve the Hamilton equation (A.12) and (A.13) for a fixed time sf to obtain a new
configuration x(sf) and p(sf).

In actual calculation, we discretize the Hamilton equation using the standard leap-
frog discretization, which respects the reversibility and the preservation of the phase space
volume [58]. Let us divide the total time sf into Ns segments as sf = Ns∆s. Then we
define the discretized Hamilton equation as

xi(sn+1/2) = xi(sn) + ∆s
2 pi(sn) , (A.15)

pi(sn+1) = pi(sn) + ∆s Fi(sn+1/2) , (A.16)

xi(sn+1) = xi(sn+1/2) + ∆s
2 pi(sn+1) (A.17)

for n = 0, 1, . . . , Ns − 1, where sν = ν∆s with ν being an integer or a half integer. Since
the Hamiltonian conservation is violated by the discretization, we have to treat the new
configuration given by x(sf) and p(sf) as a trial configuration, which is subject to the
Metropolis accept/reject procedure with the acceptance probability min(1, e−δH), where

δH = H(x(sf), p(sf)) −H(x(0), p(0)) , (A.18)
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which guarantees the detail balance exactly. The parameters sf and Ns in the HMC algo-
rithm can be optimized in a standard way by minimizing the computational cost required
for generating a statistically independent configuration.

Note that the force (A.14) can be rewritten as

Fi(s) = fj(s)Jji(x(s), τ) + fj(s)Jji(x(s), τ) , (A.19)

where we define the “force”

fi(s) = − ∂ReS(z)
∂zi

∣∣∣∣
z=z(x(s),τ)

(A.20)

at z(x(s), τ) on the deformed contour Mτ . If we use eq. (A.19) to calculate the force,
we need to calculate the Jacobi matrix Jji(x(s), τ) at each step of solving the Hamilton
equation. It was found recently [26] that this can be avoided by using backpropagation as
we explain below.

Let us first rewrite the flow equations for the configuration (A.2) and the Jacobi ma-
trix (A.8) in the discretized form as16

zi(σ + ϵ) = zi(σ) + ϵ
∂S(z(σ))
∂zi

, (A.21)

Jij(σ + ϵ) = Jij(σ) + ϵHik(z(σ))Jkj(σ) . (A.22)

Note that (A.22) can be written in a matrix notation as(
J(σ + ϵ)
J(σ + ϵ)

)
= U(σ)

(
J(σ)
J(σ)

)
, (A.23)

U(σ) =
(

1N ϵH(z(σ))
ϵH(z(σ)) 1N

)
. (A.24)

Using this, we can rewrite the force (A.19) as

F⊤(s) =
(
f⊤(s) f̄ ⊤(s)

)(J(τ)
J(τ)

)

=
(
f⊤(s) f̄ ⊤(s)

)
U(τ − ϵ)U(τ − 2ϵ) · · · U(2ϵ)U(ϵ)

(
1N

1N

)
. (A.25)

Note that evaluating this quantity by multiplying the matrices from the right corresponds to
using eq. (A.19) naively to calculate the force. This requires matrix-matrix multiplications,
which cost O(N3) computation time or O(N2) if the Hessian is sparse as in local systems.
However, we can actually evaluate (A.25) by multiplying the matrices from the left, which
corresponds to backpropagating the force on the deformed contour to the original contour.
This requires only vector-matrix multiplications and thus reduces the computational cost
by the order of O(N) in this procedure.

16The original version of this argument was given in appendix A of ref. [26] without discretizing the flow
equations.
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figure w1 w2 w3 w4 w5 w6
figure 3 −26.4297 25.8099 −13.814 4.0988 −0.6254 0.0382
figure 4 −31.949 35.409 −21.3925 7.0716 −1.1934 0.0805
figure 5 −33.9717 36.9599 −21.7341 7.0366 −1.1676 0.0775
figure 6 −26.344 27.6191 −15.0622 4.5638 −0.7146 0.0452

figure 7(TL) −26.4127 25.5518 −13.7184 4.0885 −0.6254 0.0382
figure 7(TR) −26.4127 25.5518 −13.7184 4.0885 −0.6254 0.0382
figure 7(BL) −27.748 30.1805 −18.2515 6.04706 −1.0202 0.06868
figure 7(BR) −64.38 68.644 −40.113 12.9891 −2.1781 0.14779

Table 1. The parameters (A.29) in the function W (τ) chosen for the case shown in each figure.
TL, TR, BL and BR in the left-most column imply Top-Left, Top-Right, Bottom-Left and Bottom-
Right, respectively.

In our simulation, we actually use the optimized flow equation explained in the next
section, and hence the flow equations (A.21) and (A.22) have to be modified accordingly.
However, the idea of backpropagation remains applicable.

So far we have explained the idea of the HMC algorithm for a fixed flow time τ for
simplicity. In actual simulation, however, we also integrate the flow time τ as in (A.5)
to avoid the multi-modality problem. Accordingly, we have to treat τ as a dynamical
variable in the HMC algorithm together with its conjugate momentum pτ . The partition
function (A.10) should then be replaced by

Z̃HMC =
∫
dτ dpτ dx dp e

−H , (A.26)

H = 1
2m(τ)(pi)2 + 1

2(pτ )2 + ReS(z(x, τ)) +W (τ) , (A.27)

where we introduce the τ -dependent mass function m(τ). See section 6.1 of ref. [26] for
the details. Here we just mention that m(τ) should be chosen to be proportional to the
typical value of | det J(x, τ)|2/N for various x with fixed τ so that the simulation can realize
a random walk on the deformed manifold with almost uniform discretization. Also the
weight function W (τ) in (A.5) should be chosen so that the distribution of τ obtained
by simulations becomes as uniform as possible within the region τmin ≤ τ ≤ τmax. The
functions m(τ) and W (τ) used in each simulation are parametrized as

m(τ) = m0 +m1τ , (A.28)

W (τ) =
6∑

k=1
wkτ

k . (A.29)

We use m0 = −0.209 and m1 = 1.5851 for all cases, while wk are chosen as in table 1.
As for the parameters in the HMC algorithm, we always use sf = 1, whereas Ns is

chosen to be 10 except for the cases in figure 7, where we use Ns = 30 to keep the acceptance
rate high enough.
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A.4 Optimizing the flow equation

In this section, we discuss a problem17 that occurs when we use the original flow equa-
tion (A.2) for a system with many variables such as (4.1) with N = 20 studied in this
paper. We solve this problem by optimizing the flow equation, which actually has large
freedom of choice if we are just to satisfy the property (2.8). Here we explain the basic
idea and defer a detailed discussion to the forth-coming paper [30].

The problem with the original flow (A.2) can be readily seen by considering how its
solution z(x, σ) changes when the initial value z(x, 0) = x ∈ RN changes infinitesimally.
Note that the displacement ζi(σ) ≡ zi(x + δx, σ) − zi(x, σ) for an infinitesimal δx can be
obtained as

ζi(σ) = Jij(σ) δxj , (A.30)

where Jij(σ) is the Jacobi matrix at the flow time σ, which satisfies the flow equation (A.8).
Thus we find that the displacement satisfies the flow equation

dζi(σ)
dσ

= Hij(z(σ)) ζj(σ) (A.31)

with the boundary condition ζi(0) = δxi, where Hij(z) is the Hessian defined by (A.9).
Let us consider the singular value decomposition (SVD) of the Hessian Hij(z(σ))

given as18

H(z(σ)) = U⊤(σ) Λ(σ)U(σ) , (A.32)

where U(σ) is a unitary matrix and Λ = diag(λ1, · · · , λN ) is a diagonal matrix with λ1 ≥
· · · ≥ λN ≥ 0. Plugging this in (A.8), we obtain

dJ(σ)
dσ

= U(σ)† Λ(σ)U(σ) J(σ) , (A.33)

and similarly for the displacement

dζ(σ)
dσ

= U(σ)† Λ(σ)U(σ) ζ(σ) . (A.34)

Roughly speaking, the magnitude of the displacement ζ(σ) grows exponentially with σ,
and the growth rate is given by a weighted average of the singular values with a weight
depending on δx. If the singular values have a hierarchy λ1 ≫ λN , some modes grow much
faster than the others. This causes a serious technical problem in solving the flow equation
since it may easily diverge during the procedure.

In order to solve this problem, we pay attention to the freedom in defining the flow
equation. As we discussed in section 2.2, the important property of the flow equation (A.2)
is (2.8). Let us therefore consider a generalized flow equation

dzi(σ)
dσ

= Aij(z(σ), z(σ))∂S(z(σ))
∂zj

, (A.35)

17See ref. [60] for discussions on the anti-holomorphic gradient flow and its modification from a different
point of view.

18This is known as the Takagi decomposition, which is the SVD for a complex symmetric matrix.
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which generalizes the equation (2.8) as

dS(z(σ))
dσ

=
∑

i

∂S(z(σ))
∂zi

dzi(σ)
dσ

=
∑
ij

∂S(z(σ))
∂zi

Aij(z(σ), z(σ))∂S(z(σ))
∂zj

. (A.36)

For this to be positive semi-definite, the kernel Aij(z, z̄) has only to be Hermitian positive,
and it does not have to be holomorphic.19

Accordingly, the flow of the Jacobi matrix becomes

∂

∂σ
Jij(σ) = AikHkl(z(σ)) Jlj(σ) +

(
∂Ail

∂zk
Jkj(σ) + ∂Ail

∂z̄k
Jkj(σ)

)
∂S(z(σ))
∂zl

. (A.37)

Note that the discretized version of (A.37) can still be written in the form (A.23), which
means that the backpropagation [26] can be used even with the generalized flow equation.

From (A.37), we obtain the flow of the displacement as

∂

∂σ
ζi(σ) = AikHkl(z(σ)) ζl(σ) +

(
∂Ail

∂zk
ζk(σ) + ∂Ail

∂z̄k
ζk(σ)

)
∂S(z(σ))
∂zl

. (A.38)

Let us here assume that the first term is dominant20 in (A.38). Then plugging (A.32)
in (A.38), we obtain

dζ(σ)
dσ

∼ AU(σ)† Λ(σ)U(σ) ζ(σ) . (A.39)

Therefore, by choosing

A = U(σ)† Λ−1(σ)U(σ) , (A.40)

we obtain

dζ(σ)
dσ

∼ U(σ)† U(σ) ζ(σ) , (A.41)

in which the problematic hierarchy of singular values λi in (A.34) is completely eliminated.
From this point of view, (A.40) seems to be the optimal choice for the “preconditioner” A
in the generalized flow equation (A.35). Note also that, under a similar assumption, the
flow of the Jacobi matrix changes from (A.33) to

∂

∂σ
J(σ) ∼ U(σ)† U(σ) J(σ) . (A.42)

Thus, in our simulation, the use of the optimal flow equation solves the overlap problem
that actually occurs otherwise due to the large fluctuation of | det J |. (See the discussions
below (A.6).)

19While this generalization does not change the saddle points, it changes the shape of the thimbles
associated with them. Note, however, that the integral over each thimble remains unaltered due to Cauchy’s
theorem.

20This assumption is valid when z(σ) is close to a saddle point, for instance. Otherwise, it should be
simply regarded as a working hypothesis.
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In order to implement this idea, let us first note that (A.40) can be written as

A(z(σ), z(σ)) =
{
H†(z(σ))H(z(σ))

}−1/2
=
{
H(z(σ))H(z(σ))

}−1/2
. (A.43)

Here we use the rational approximation

x−1/2 ≈ a0 +
Q∑

q=1

aq

x+ bq
, (A.44)

which can be made accurate for a wide range of x with the real positive parameters aq and
bq generated by the Remez algorithm. Thus we obtain

A(z, z̄) ≈ a0 1N +
Q∑

q=1
aq

{
H(z)H(z) + bq 1N

}−1
. (A.45)

With this expression, the derivative of A in (A.37) can be calculated straightforwardly as

∂A
∂zk

= −
Q∑

q=1
aq(H̄H + bq1N )−1H̄

∂H

∂zk
(H̄H + bq1N )−1 , (A.46)

∂A
∂z̄k

= −
Q∑

q=1
aq(H̄H + bq1N )−1 ∂H

∂zk
H(H̄H + bq1N )−1 . (A.47)

The matrix inverse (H̄H + bq1N )−1 does not have to be calculated explicitly since it only
appears in the algorithm as a matrix that acts on a particular vector, which allows us
to use an iterative method for solving a linear equation such as the conjugate gradient
(CG) method. The factor of Q in the computational cost can be avoided by the use of a
multi-mass CG solver [61]. These techniques are well known in the so-called Rational HMC
algorithm [62, 63], which is widely used in QCD with dynamical strange quarks [64] and
supersymmetric theories such as the BFSS and IKKT matrix models. (See refs. [47, 65, 66],
for example.)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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