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ABSTRACT: We present the explicit construction of the effective field theory (EFT) of
standard model mass eigenstates. The EFT, which is invariant under U(1)e . x SU(3), is
constructed based on the on-shell method and Young Tableau technique. This EFT serves
as a new formulation of the Higgs EFT (HEFT), which can describe the infrared effects of
new physics at the electroweak symmetry-breaking phase with greater conciseness. The
current HEFT operator basis has a clear physical interpretation, making it more accessible
for research in phenomenology. A complete list of HEFT operator bases for any-point
vertices up to any dimension could be provided, and three- and four-point bases are provided
as examples. Additionally, this framework realized as Mathematica program can be used to
construct the EFT of any type of dark matter or particles with any spin.
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1 Introduction

Effective field theories (EFTs) with massive fields find a broad range of applications in

particle physics, including but not limited to lower energy quantum chromodynamics [1-5],
high spin particles [6-8], and dark matter [9-14]. To fully explain the infrared (IR) effects
of the generic ultraviolet (UV) theories, it is necessary to construct a complete set of EFT

operator bases. However, this task is complicated because EFT operators relate to each

other through equations of motion (EOMs) and integration by parts (IBP). A more efficient

method of constructing massless EFT basis is to utilize the on-shell method [15-19], which

capitalizes on the one-to-one correspondence between an EFT operator and an on-shell



amplitude basis. On-shell method is powerful to construct massless EFT basis because it is
free of EOM redundancy [15, 16]. And the IBP redundancy can be systematically removed
through the global U(NN) symmetry of massless spinors, where N represents the number of
external legs [17]. However, massive basis poses two additional challenges: EOM redundancy
and possible overall mass factors that affect the base dimension. The construction of 3-point
and 4-point amplitudes for distinguishable particles is demonstrated in [20, 21]. In addition
to that, we also take into account the effects of identical particles and gauge structures,
presenting a systematic construction of the EFT operators for a general model. A series
of works [22, 23] have found that Lorentz subgroup SU(2)r and U(N) can eliminate these
redundancies and the lowest dimensional basis, which do not have the overall mass factors,
can be obtained through the use of an algebraic method. It is worth mentioning that [24]
proposed a different method for constructing massive amplitude basis.

Using the method described above, we have leveraged a Mathematica program to
construct all 3-pt and 4-pt EFT operator bases of mass eigenstates of the standard model
(SM) up to dimension-8 at the electroweak symmetry breaking (EWSB) phase. While our
program can generate higher-point basis at any dimension, we have limited our focus to
3-pt and 4-pt processes in this study. Notably, this method is agnostic to how electroweak
symmetry is broken, enabling the generation of a generic EFT of massive standard model
fields that is invariant under U(1)gy x SU(3).. This massive HEFT can describe non-
decoupling new physics beyond the SM, unlike traditional massless SMEFT. In traditional
HEFT [25-42], basis is constructed using the linearly realized sigma field of Goldstone
and electroweak gauge eigenstates based on the Callan-Coleman-Wess-Zumino (CCWZ)
theory [43, 44]. However, this basis contains unphysical Goldstone, impeding their physical
interpretation and making the HEFT basis complex. Therefore, considering mass eigenstates
permits HEFT to be formulated much simpler and more conveniently for phenomenological
applications, while still accounting for the IR effects of UV theories at the EWSB phase
concisely. For instance, massive HEFT has fewer bases than traditional HEFT, since
certain CCWZ bases that describe the same physical interaction only differ by the insertions
of the Goldstone sigma fields. Besides, some CCWZ bases can indirectly affect some
experimental measurements by correcting the wave functions or masses of some SM fields
in the unitary gauge, making measurement parameters correlated and redundant. In
contrast, massive HEFT does not have these issues, as its bases are classified by physical
scattering processes. In addition to massive HEFT, our program can generate any dark
matter EFTs and EFTs of particles with any spin. The program is publicly accessible at
https://github.com/zizhengzhou/MassiveAmplitude.

The paper is structured as follows. Section 2 covers the fundamentals of spinor helicity
formalism and on-shell amplitudes. In section 3, we detail a method for constructing a
complete and independent set of Lorentz structure bases. To address massive EFT basis
involving identical particles, section 4 explores a comprehensible approach. Two examples
illustrating how to construct massive EFT basis with this method are presented in section 5.
Section 6 briefly discusses how to translate amplitude bases to EFT operators. Next,
section 7 lists all the 3-pt massive HEFT bases. Lastly, we conclude in section 8 and provide
a list of 4-pt massive HEFT operators below dimension-8 in appendix A.


https://github.com/zizhengzhou/MassiveAmplitude

2 Basics of on-shell amplitudes

The one-to-one correspondence between an EFT operator and an on-shell non-factorizable
amplitude basis allows us to construct the generic on-shell massive amplitudes of massive SM
fields and then map them to the operators, which are the massive HEFT bases [15, 16, 45].
We will start by briefly reviewing the general properties of on-shell scattering amplitudes.

On-shell scattering amplitudes are determined by Lorentz symmetry, locality, and
unitarity. According to Lorentz symmetry, scattering amplitudes need to be covariant under
the little groups (LGs) of external legs. As such, they are typically expressed using spinor
helicity variables that are charged under LGs. These spinor helicity variables are typically
decomposed from the momentum matrix as [46].

(Pi)aa = i) u(0")aa = lir)ali!]a (2.1)

where o# = {1, 0%} with ¢ being Pauli-matrices. The right-handed spinor |i’]; and the left-
handed spinor |i’), correspond to the doublets of the Lorentz subgroup SU(2), and SU(2);,
respectively. This is because the Lie algebra of SO(3,1) is isomorphic to SU(2); x SU(2),. I
is the index of massive LG SU(2);. The spinors with different chirality are related by EOM,

péLO'M‘Z'I] = m2|zI) , péL&“]zJ) = m1|zl] (2.2)

The massless spinors of massless momentum p;, denoted as |j]s and |j)q, have & unit charge
of the massless LG U(1); [47]. A pair of spinors can form the minimal Lorentz invariant
variables charged under LGs,

i)' = e*1i 413710, ()" = *Pli)pli)a s (2.3)

which are called square and angle brackets. The scattering amplitude must be a function
of spinor brackets. For a massive particle ¢ with spin s;, its amplitude should be in the
symmetric representation of the massive LG SU(2); with rank 2s;. On the other hand, the
amplitude of a massless particle j with helicity h; must involve 2h; unit charges of the
massless LG U(1);.

Since the operator basis in EFT is the local interaction, the corresponding amplitude
basis should be a polynomial of spinor brackets. Therefore, the complete set of amplitude
bases consists of all the independent spinor polynomials allowed by LG symmetry, gauge
symmetry, and spin statistics. We proposed a method to construct these polynomials based
on the group representation theorem in refs. [22, 23|, which we will briefly review next.

3 Constructing massive amplitude basis

In this section, we discuss constructing the on-shell amplitude basis for massive HEFT.
To construct the basis, we use irreducible representations of the U(N) and SU(2) groups,
i.e. Young diagrams, to separately construct the massive LG charged part B and the neutral
part H of the amplitude basis [22]. The tensor contractions of these two parts form a
complete and independent set of amplitude bases {B - H}. However, some bases can factor



out an overall mass factor, which leads to an incorrect count of their dimensions. Therefore,
the second step is to minimize the dimension of the above basis [23]. To achieve this, we
first construct a complete but redundant set of bases {C - F'} that always contains the lowest
dimensional bases. We then decompose the redundant {C - F'} into {B - H} basis from
lower to higher dimensions and eliminate the linearly dependent bases. This approach helps
us obtain a complete, independent and lowest-dimensional amplitude basis. We will now
provide a detailed explanation of this method.

3.1 {B-H} basis

In general, each term of the massive amplitude basis can be decomposed into two parts:
the part denoted B that is charged under the massive LG and the part H that is neutral
under the massive LG but charged under the massless LG. As the EOM can convert the
LG indices of the massive left-handed spinors into right-handed spinors, we can choose the
structure of B to be a holomorphic function of right-handed spinors. Therefore, part B is a
tensor product of right-handed massive polarization vectors (as shown below), while part
H is a function of the massive momenta and massless spinors. Any amplitude basis with m
massive legs and n massless legs can be represented as a combination of terms with the
given factorization,

M = 3N BEE (6 B (41, 15).04) (3.1)
B,H {a}

where ¢; = |ill1],, ... |i125i}]d25i is the polarization tensor of massive particle-i with spin
s; and its quantum number is (2s; + 1,2s; + 1) under SU(2); and SU(2),. The bracket
{I{,..., I3, } in the ¢ expression denotes that these 2s; indices of LG SU(2); are entirely
symmetric. We select independent polynomials, which are the results of combining the
structures of B and H, as the EFT amplitude bases. By constructing independent and
complete bases for B and H, we obtain the set of tensor contractions {8 - H }, which is also
independent and complete.

Since B is a holomorphic function of right-handed spinors, it is free from EOM and
IBP redundancies. Additionally, B is also a linear function of polarization ¢;, so any B basis
must belong to the outer product of the SU(2), representations of the m massive ¢;s.

BN (3.2)
2s;

B C ®,

The r.h.s. can be decomposed into some irreducible representations, which correspond to
the B bases.

The {H} basis may exhibit both EOM and IBP redundancies. To eliminate them, we
can first construct massless limit bases for H using U(N) Semi-Standard Young Tableau
(SSYT) and then map them back to the massive bases. The mapping from H to its massless
limit A may be many-to-one, which means that different massive H bases having the same
massless limit should be EOM redundant. This can be seen as follows: if H; and Hs
are both mapped to h simultaneously, then the difference (H; — Hj) is the product of a



lower-dimensional basis H and a mass factor m?, which denotes the EOM redundancy
term. If we just choose one of them as the independent basis, the EOM redundancy can be
removed during this process. However, since h contains no IBP redundancy (SSYT can
remove it automatically), when it is mapped back to H one-to-one (any of H; and Hy),
this set contains neither EOM nor IBP redundancies. It should be noted that the massless
limit for momentum |i!](i;| and polarization vector |i{/](i”}| is the same. To avoid this
issue, the amplitude basis should be decomposed into B and H.

The construction process for h is similar to that of the massless EFT basis, which is
a singlet under Lorentz SU(2); x SU(2), group [17]. In contrast, h is a SU(2); singlet but
possesses the same SU(2), representation as B to ensure that {5 - H} is a Lorentz singlet.

Now we will briefly discuss how to construct the complete set of h bases without IBP
redundancy. The massless spinors of N external momentums M\ = |k] (Ao = |k)) are
embedded into the (anti-) fundamental representation of U(N) symmetry with k = 1,..., N.
So each basis of the U(V) representation (i.e., an U(N) SSYT) corresponds to a polynomial
of massless spinors. Conversely, this polynomial can also be written down through the
SSYT according to the permutation symmetry of the U(N) indices. For example, the scalar

product of a right-/left-handed spinor pair can be obtained from U(N) SSYT with shape
[12]/[1¥ 2] (the [1?] is the short notation of [1,1] and so is [1V~2]).

N, - 335 = (1]

_ 6@]]421 kn— 2)\ )\]ﬁ — @Ezjk‘l...k‘]\[,g (3 3)
2 ’ )

where £F1-FN—2 is the epslion tensor. Notice that the columns in the SSYT associated
with the U(N) indices of A are blue to distinguish them from A indices.

Generally, for a polynomial of form (0o)X/2[00]"2|0]l ™" (Symbol o represents an
arbitrary index), its right-handed spinors’ YD of U(N) group is [r1, r2], while its left-handed
spinors’ YD is [(L/2)N~2]. The irreducible representation of this polynomial of the U(N)
group is the outer product of them. It can be decomposed into irreducible representations
via Littlewood-Richardson rules,

P 19 i) = N —2{ - ;®Hj;jHD
-

=N-2¢: - : @, (3.4)
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Figure 1. Contracting B basis with H basis.

where & --- represent other irreducible representations, and they are exactly the IBP
redundancy we need to discard. All the SSYTs of the first YD constitute a set of complete
h bases. And the SSYTs have (L/2 4+ 2h;) fillings for massless particle-j and L/2 fillings
for massive particle-i.

The SSYTs of B and H correspond only to the column permutation part of the Young
operator, representing the same linear space as the Young operator. In figure 1, the
contraction between B and H ¢&-indices is presented, whereby the SSYT of B is rotated by
180° and attached to that of H. The contraction conventions of B and H are not unique,
but it was proven that the {B - H} set obtained by different conventions are equivalent [23].
It is important to note that the indexes in B are identified as i’ to differentiate them from ¢
in H.

3.2 {C- F} basis

The contraction of B and H may contain an overall mass factor, either explicitly or implicitly.
Although the presence of the mass factor m; does not render the BH basis redundant in the
existing set, it increases the dimensionality of the set {8 - H} beyond its minimum. These
mass factors come from the transformation between different configurations of the same
polarization tensor, as exemplified by the case of massive particle-i,

i = (u{I))“ (]z‘I}DQSi_li  Lelo,2s]. (3.5)

Based on the EOM, eéi provides an overall factor of mi’ Next, we proceed to enumer-
ate all the polarization configurations {l;} of the massive outlines and construct their
complete bases,

(€ Pyt = cltad (st} pld (i p 15),15)) - (3.6)

The union {C - F} = Ugy{C-F U} represents a collection of redundant but complete
bases, where any lowest-dimensional amplitude basis can be found. We decompose the
elements in {C - F'} into the {B- H} set in ascending order of dimension and eliminate the
linearly dependent terms, then we get the complete, independent and lowest-dimensional
amplitude basis.

|25t obtained from the

Part Ct4i} is a holomorphic function of right-handed spinors ]z’l
polarization tensor. On the other hand, part F{} is charged by both massless and massive



LG due to the rest part |i/]'. The construction of {C - F}{4} is similar to that of {B- H}
and is considered a special case

{B-H} = {C- F}L=0} (3.7)
2
corresponding to the d-dimensional EFT operator, including the shape and filling rules of

the SSYT. We will discuss it later.
By following the corresponding rules, an EFT operator can be mapped to an ampli-

In this regard, we present a specific construction method of the amplitude basis {C - F'}

tude basis.
¢i 1, %L,w;rR |y, wiR,wlTL — |il], FZ_ZV(}W o [ith]jit)
mi Aot < \i{f1]<i12}|’ Fi;l,a“” N Ii{h>|i12}>, 8; & pi = |i1]<z’1|, (3.8)

where ¢; is scalar, ;1 g is a left-handed or right-handed massive fermion, A;, is a massive
vector field, Fijfw = 1/2(Fy + /2600 F7), 0" = oY, and 6 = ol*G¥l. For the
massless particle, the mappings are similar, except that there is no bare massless gauge field

A, in amplitude basis. According to these mappings, the dimension of EFT operators is,
d=[M]+N —ny, (3.9)

where [M)] is the energy dimension of the amplitude basis, and ny4 is the number of bare
vector fields A,. So the set {C - F }gi} can be constructed by the following procedures:

e Fill in (L/2 — ;) number-i, (2s; — ;) number-7’ and (L/2+ 2h;) number-j in the glued
Young diagram of shape [(L + R)/2, (L + R)/2, (L/2)N ], where

R=d—N+na+Y (si—L)+ > h,
L=d-N+na—> (si—li)—> hj. (3.10)

e Number-i’ can only be filled in the L/2 white columns because it comes from C{t},

e Massless limit — amplitude basis: map any [; left-handed spinor |i)s and (2s; — 1;)
right-handed spinor |i]s to eﬁ"; map the remaining |i) and |i] pairs to |i'](iz|.

Next we decompose {C - F'} to {B - H} from low to high dimension and eliminate the
linearly dependent bases. Since the difference between different BH's with the same massless
limit is EOM redundancy, we only need to decompose {C - f} to {B-h} in the massless limit
to obtain the independent lowest-dimensional basis [23]. For the dimension-d set {B - H }4,
we have

(B ha~ A€ oy o (3.11)
{l:}
Note that the decomposition process of {B-h}, for different d is independent. The following
are the step-by-step instructions for the decomposition process:

1. Input the amplitude bases in {C - f} from low to high according to (d — > 1; — na),
and multiply each of them by the corresponding factor [[;[ii']" ;



2. Replace all occurrences of |1](1] using equation SN, i](i| = 0;
2
3. Replace all occurrences of [23](32) using equation (Zfiz |i] (z|) =0;

4. Apply Schouten identities to transform the Young tableaux corresponding to left- and
right-handed spinors into semi-standard forms separately, and the number order is
I<- < N<N <. <Vl

5. Repeat steps 3 and 4 until no [23](32) appears. Now we represent this (C - f) basis as
a vector in linear space {B - h}q4.

Note that when marking the particle number, the first particle should be kept massive;
otherwise, the above process will become more cumbersome. The coefficients before each
(B - h) basis form a coefficient vector, then we arrange the vectors that represent (C- f) from
low to high in (d — >~ 1l; — n4) and eliminate terms that are linearly dependent. Afterward,
the remaining vectors give the lowest-dimensional amplitude basis which is equivalent to
the set {B- H}4. By traversing all possible values of d in {B - H}, we obtain the amplitude
bases corresponding to the general EFT operators, which we denote as {L}.

4 Basis involving identical particles

The previous section addressed the construction of basis for distinguishable particles. In
this section, we discuss constructing basis involving identical particles. The amplitude basis
for n identical bosons (fermions) must be in the totally (anti-)symmetric representation
of the permutation group S, corresponding to the Young diagram [n] ([1"]). To achieve
this, the Young operator Vg, of the S, representation [R,] = [n] or [1"] is used, which
makes the wave function of the n identical particles totally symmetric or anti-symmetric.
The eigenstates of the V|, operation must be in the [R,] representation. To construct a
complete amplitude base in the [R,] representation, we first use the Young operator Jg, to
act on the space of the complete basis { M}, at dim-d. We then obtain the representation
matrix Mg, of Vg,]- Finally, the eigenvectors with non-zero eigenvalues (actually is 1)
correspond to the amplitude bases in the [R,,] representation, whereas eigenvectors with
zero eigenvalues correspond to bases that vanish under identical particle permutations.

In the previous section, we discussed how to construct independent Lorentz structures.
Generally, an amplitude basis is composed of two parts: the gauge structure (7') and the
Lorentz structure (£),

M=TxL. (4.1)

The complete set of amplitude bases can be constructed by multiplying the complete gauge
structure bases and Lorentz structure bases,

(M} ={T} < {L}. (4.2)

It should be noted that any Young operator of the permutation group 5,, can be expressed
as a function of the permutation elements (12) and (1...n). Therefore, it is sufficient
to obtain the representation matrices M(T12),(1,...,n) and M(£12)7(17m7n) in the {T'} and {£}



space respectively, for the required Young operator of S,,. Consequently, the representation
matrix Mg, is determined by computing the outer product of the matrices M T and M~.
For example, the matrix of totally symmetric representation [3] of the S5 group can be
expressed as

Mrpas = L+ 24y + 2y +yx + 2yx)/6, w3
T L T L ’
= Mg @ Mgy, Y = M(j93) ® M),
Next, we will introduce how to construct the gauge structure basis and obtain the represen-
tation matrices in the {T'} and {L} space.

4.1 (Gauge structure

This subsection describes the construction of the gauge structure basis T and the M1 matrix,
responsible for identical permutation representation, under the SU(3). color symmetry. The
same method can be applied to the SU(IV) gauge group. For the fundamental representation
of SU(3)., the Standard Young Tableaux (SYTS) of up quark, anti-up quark, and gluons are

ucl ~ eCzcice ,acz ~ eCrcice ()\z)gi gi ~ ;Z 36‘ (4'4)

where A’ refers to the eight Gell-Mann matrices. The set {T'} of color structures represents
all SU(3). singlets in the outer product of SYT of the relevant particles. Instead of selecting
singlets from the outer product, a more efficient method is used to construct {T'}. Firstly, all
the singlet SYTs in the fundamental representation are listed. From these, the components
that satisfy the symmetry given by the SYT of each relevant particle are projected as
our result.

Consider the four-point scattering process u—u—g; —gs as an example. To construct
the basis {T'}, we start by listing all SYTs in the shape of [3,3, 3] that satisfy the SU(3).
index permutation symmetries of 4 as well as giQ. There are exactly 42 such SY'Ts and we
denote this list as {T"}. To select the {T'} basis from {T"}, we use the Young operators of
the external legs’ SYTs to act on the {7"} SYTs, which yields a 42 x 42 matrix P,

3 6] o

where the SU(3). index of each of the four particles is marked by the color indices 1¢, ..., 9.
The SYTs in {7} are not standard after being acted on by the Young operators. We can
obtain the coefficient matrix P by decomposing the symmetrized T" back into the linear
space of {T"}. The eigenvectors of P with an eigenvalue of 1 correspond to the {T'} set
required. As the rank of the P matrix is three, there exist three T" bases,

12737 [1]2°]3°] [172°]4°
{T} = Vg x Vg ¥ Ve X Ve { 1475767 » [4°]5°]7°), [316°]7°) ¢ (4.6)
676 976 76 8C 9C 66 80 9C 5C 8C 96

where T basis is obtained by multiplying the 7" basis with the Young operator. When
reading the amplitude basis from the T basis, the Young operator should be read as the



tensor factor in front of the field operator in eq. (4.4), while 7" should be read as total
antisymmetric tensors. For instance,

1¢]2¢|3¢
4|5¢] 6| ~ eCreacT ceacscs cacaco (4.7)

7¢18¢9¢

After obtaining the {7’} basis, the matrix M(:qz) (1)
permutation element on the color indices of the identical particles. For example, for identical

can be obtained by acting the

gluons g1 and gy, the permutation element (12) exchanges the color indices 4¢ <> 7¢, 5¢ > 8,
and 6° <> 9¢ in the SYTs. On decomposing the resultant non-standard Young tableaux into
combinations of the SYTs, we obtain the matrix M (7;2)’(1"“771). For instance, by applying
the element (12) to the color indices of {T"} SYTs and breaking down the resulting Young
tableaux into SYTs, we obtain the matrix M (7;2) in the {T"} space. This matrix can be
expressed as

My = My - P, (4.8)

where matrix P satisfies P2 = P due to the property that its eigenvalues are 1 and 0. In
addition, [P, M™'] = 0 because the Young operators commute with both elements (12)
and (1,...,n). Shifting our focus to eq. (4.3), we proceed to commute the P matrix to
the rightmost position. This operation transforms the representation of Ss into a totally
symmetric one, yielding the following result.

Mgz = 1+ X +Y + XY + Y X + XY X)(P @ 17)/6,
T’ L T’ L (4.9)
X = M) @ My, Y = M{i53) © M(7a3,

where 1€ is the identical matrix in the linear space of Lorentz structures.

4.2 Lorentz structure

In order to construct the M* matrix in the space of the complete Lorentz basis {£} with
the lowest dimension, we employ a similar procedure to that used for constructing the
M7 matrix. Specifically, we apply the permutation (12) to the elements in {£} and then
decompose the resulting bases into combinations of elements from {L£}. It is worth noting
that since the permutation (12) leaves the operator dimension, n4, and Y [; unchanged, so
the basis that we obtain through this decomposition satisfy

U {7 « 2{?, (4.10)

D'<D,d'<d

where D = d +ny + Y 1;. Since the set {L} is of the lowest dimension, d’ < d, and the
completeness of the {B- H} set! leads to D’ < D. This implies that both the representation
matrices, M 62) and M), as in equation (4.9), are block lower triangular matrices ordered
by D and d in the linear space. Moreover, the idempotent nature of the Young operator Y,
implies that M, is an idempotent matrix with eigenvalues of 1 and 0, and so does M.

!By retaining the LG indices during the {B- H }-decomposition (section 3.2), an arbitrary dim-d amplitude

basis can be decomposed into the set UZ<d+"A+Z AB-H}o.

~10 -



According to linear algebra, the eigenvectors of an lower triangular idempotent matrix
with an eigenvalue of 1 are determined by the diagonal matrix. The diagonal matrix
(M(Lu))fl) in the subset {£}? can be obtained by first using the {B - h}-decomposition to
obtain (M, (512))D and then extracting the diagonal blocks of different d. To obtain matrix
(MﬁQ))D, we decompose the bases in set (12){£}? back to the set {£}” in the massless
limit. We use {B - h}p as an auxiliary intermediate set for mapping purposes as

{£}7 (B h}p + (12){L}", (4.11)

and the representation matrix is
(M) = [MEE71 MEET~, (4.12)
where M, (%)HE is the coefficient matrix from decomposing the elements in (12){£}” into

{B-h}p, and MB"~£ is similar.

5 Some examples

In this section, we provide examples to illustrate the construction of the basis involving
identical particles.

5.1 Basisof Z—Z—-Z—h

In the following, we outline the construction of the amplitude basis of ZZZh at dim-5. This
basis should belong to the representation [3] of S3. Referring to eq. (3.11), we identify a
total of nine dim-5 Lorentz bases involving three distinguishable massive vectors V; 23 and
one scalar s. Specifically, there are three bases at D =9 and six at D = 11,

(12) (13) [23]
(12) [1'3][2'3 83 jzii { }
D=9 — 191 [o19! s
{£3az (iVaVas) =) (13) V2028 0 ALRST(AVRVE) =4 o) o ooy
(23) [172][1'3]
(13) (24) [427 [1'3]
(12) (34) [43] [1'2]

(5.1)
Note that we employ the temporary massless limit to express the amplitude bases. Since
both Z and h are SU(3). singlets, their 7" bases become trivial, resulting in M = L. Hence,
we only need to compute the matrices M 52) and M, (5123). By extracting the diagonal block
matrices within the D = 9 and 11 basis, we can derive the amplitude bases in the S3
representation [3], which are

-1 0 O 0 0 1
(M( ))dD_59 =10 0 —-1], (M(123))fi)=:59 =11 0 O] (5.2)
0 -1 0 0 1 0
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0 -1 0 0 0 0 010 0 0 0

-1 0 0 0 0 0 001 0 0 0

- 0 0 -1 0 0 0 - 1 00 0 00
(Mu2))iss' = o (Mauzs))gs'' =

0 0 1 1 0 0 10 0 -1 -1 0

11 -1 -2 -1 1 000 0 0 1

0 0 0 0 0 1 11 -1 -2 -1 1

(5.3)

According to the expression of the Young operator matrix of [3] in eq. (4.3), we can get the
diagonal block matrices of My,

0O 0 0 0 0 O

0O 0 0 0 0 O
M)f =0, (ammii=t| 0 " DT

1 -1 1 2 0 -2

-2 2 -2 -4 0 4

-2 2 -2 -4 0 4

The two projection matrices above illustrate that only one dim-5 operator complies with
the spin statistics in the {L}2=1 (V115 V3s) subset. The eigenvector, with the eigenvalue 1,
can be represented as Mz - (e4) 25, where (e;)2 symbolizes the i-th basis in the {£}5
set. Using the Young operator to symmetrize the amplitude basis produces the only
dim-5 operator of scattering Z3h.

Ma=5(Z°h) = Vs (13) (23) 23] [13], (5.5)

where the basis {es}2Z!! = (13) (23) [2/3] [13] is mapped into the massive one based on
the rules outlined in section 3.2. The bolding spinor |i] and |i) are employed to represent
the massive spinors for simplicity.

5.2 Basisof u—u—g—g

The gauge structure basis of uugg has nontrivial bases for up quarks and two gluons both
with +1 helicity, as shown in eq. (4.6). Using the technique outlined in section 3, the

Lorentz structure basis for fermion (f), antifermion (f), and two massless vectors (v; and
v9) at dim-8 can be constructed. We find that there exist a total of two Lorentz bases.

(5.6)

LCVR=0(f Fot o) — { (13) [34] [34] [32'] } |

(23) [34] [34] [31']
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Multiplying bases in {£} with bases in {T'} produces six bases for a quark, an antiquark,
and two distinguishable gluons.

Do 1¢/2¢[3¢| [192¢[3¢] [1¢[2¢]4¢ Do
{(MYDR(Ffoivg) =P - S [ael5el6el, [4°5°]7¢], [3¢]6°[7¢| p @ {LYEZ (ffuivg).  (5.7)
T¢IRC19¢ |6¢8¢|9¢| |H¢|R¢|9¢

Assuming v{ and vy represent identical gluons, their bases should fall under the So
representation [2]. Consequently, we can obtain the Lorentz and gauge structure matrix
M(EM) and M£4) for Sy element (34),

14/3 22/3 —2
_ -1 0 _
(M) 2% = o 1) (M{)i= = | —11/6 —8/3 1 |- (5.8)
11/3 22/3 —1

Then we can get the matrix Mg of in the linear space of the amplitude bases,

22 0 —44 0 12 0
0 —22 0 —44 0 12
11 0 2 0 -6 0
12009 11 0 22 0 -6
22 0 —44 0 12 0

0 —22 0 —-44 0 12

We observe that there exist two eigenvectors with nonzero eigenvalues: My - (61)5)::89

and Mg - (e2)2%, where (e12)P=) correspond to the first and second amplitude bases in
eq. (5.7). Similar to the previous example, the complete expressions for the two amplitude
bases are given by:

1¢)2¢|3¢ 1¢|2¢|3¢
(MY (wagtg™) = {P' 4°[5°6°| (13) [32] [34]% , PV [4°]5%(6°| (23) [31] [34]% ¢ ,
7¢18¢|9¢ 7¢18¢|9¢

(5.10)
where the Young operator acts on all the gauge indices and spinors associated with
leg-3 and 4.

Likewise, constructing amplitude basis that comprise distinct types of identical bosons
(fermions) simply requires multiplying the matrix M|, for each identical particle type to
obtain a total matrix. The eigenvectors with eigenvalue-1 represent the basis that satisfies
the identical particle statistics.

6 Amplitude bases to EFT operators

When the amplitude basis gets mapped to the EFT operator, it inherently adheres to
spin statistics. The mapping process itself resembles the function of Young operator Vg,

~13 -



Vertex | Ng Amplitude Operator

ffh 2 (12], (12) hfrfL, hfLfr

|1 | [13]23]/(13)(23) Ui SRS fL [0 Lo fr

49" 1| [13][23] / (13)(23) Guaro" qr | G 4o ar

fv 4 | [18](23), [23)(13), [13](28], (13)(23) | fLV fr, fRV fr, Vil fLo™ fr, Vi fro" fr

Table 1. The 3-pt bases for fermions, where f = {u,d,e,v}, ¢ = {u,d}, and V = {Z, W*}.

Therefore, the mapping of M; is identical to mapping Vg,| - M; to operators as granted
by Feynman rules. For instance, we can map the monomial basis (5.5) for Z3h to the dim-5
EFT operator,

(13) (23) [23] [13] — Z,Z, (D, Zs) h Tr (V5" 0”57) . (6.1)
Based on the QCD indices and SYTs correspondence in eq. (4.4) and the gauge structure
in eq. (4.7), the first operator of uug™ g™ in eq. (5.10) is:
1C 2C 36

C|KEC|RC 2
X y X 3’4550‘ X }7686‘ 4 5 6 <13> [32] [34] —
6] 99 |7¢/8¢19¢

(€creacr€escsesesesey) (€7 P ULe, 0 uT!) (ecycwﬁ Du(Gip)ii) (6026769 (G+Up)g§> ’ (6.2)

where foy =1/2(Gu £ /26400 G"), (Gu)2 = (Ainw)gz, and G, is the field strength
of gluon.

7 HEFT operators

In the SM, all particles are massless, including the Higgs doublet (H), gauge bosons of
U(1)y xSU(2)r, x SU(3). { By, Wl‘f,gz}, and fermions {Fr, e, Qr,ur, dr}, until the EWSB
takes place, causing the fields to become massive except photons and gluons. In HEFT, the
EWSB is nonlinearly realized, hence constructing HEFT basis directly in terms of SM mass
eigenstates such as {h,v,, Z,, Wj, gL} and {e,v,u,d} is more practical and convenient
for carrying out phenomenological research. In this section, we present the three-point
HEFT basis for these SM fields, which coincide with [20]. And four-point basis up to
dim-8, constructed using Mathematica codes, are listed in appendix A. It is noteworthy
that although we only generated the EFT basis for one generation of fermions, the code is
capable of creating basis for three generations as well.

As the number of 3-pt amplitude bases is finite, we can construct all of their standard
Young tableaux and derive their expressions, as the construction of {B- H} bases. The
expressions for these bases can be simplified easily due to the trivial kinematics of 3-point
amplitudes, allowing us to find bases with the lowest dimension. This section comprises
two tables that exhibit all 3-pt amplitude bases and their associated HEFT operators. For
each vertex, the number of bases is presented as Ng, and we have assumed the neutrino to
be a Dirac fermion. The table 1 enumerates all amplitudes comprising SM fermions, which
are simpler since they have no identical particles. Subsequently, we present the 3-pt EFT
operators without fermions in the table 2.
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Vertex Ns Amplitude Operator
hhh 1 Const. hhh
hy*y* (hg*g®) |1 | [23][23]/(23)(23) Iy (hGy GOHY)
A 1| [23][23]/(23)(23) h b, ZTH [ by, Z7H
hZZ (hWtW~™) | 3 (23)[23], [23][23], (23)(23) | hZ,ZH, hZ;DZ'”“’, hz,,2z " (~)
999" 1| [12)[23][31] / (12)(23)(31) | eaneGy ™ GLoP Gt
TTWEWo 2 | [12][18](28), [12[13][28] | v (WF), (W ™)y, v (W)L (WT)57
vWEWo 2| (12)(13)[23], (12)(18)(23) | v (WF),u(W ™)y, v~ H (W), (W), 7
ZWHIW= 7| {12}, (12)} x {[23],(28)} | Z,, (WH)=P (W )Hme
x{[31],(31)} Zoy (WY (W), Z(WH)P(WT) o+
remove [12][23](31) (remove the corresponding one)

Table 2. The 3-pt bases of bosons. Notation ~ means the bases are similar to the previous case.

8 Conclusion and outlook

The use of the HEFT has proven valuable in describing the IR effects of new physics, such as
the non-linear realization of electroweak symmetry. In HEFT, the unbroken gauge symmetry
is limited to U(1)e.m. X SU(3)., which restricts all SM fields, except for photons and gluons,
to be massive. Therefore, constructing HEFT operators regarding SM mass eigenstates is
more natural and convenient for phenomenological studies. However, previous works have
only constructed HEFT basis in terms of gauge eigenstates, resulting in basis that contain
unphysical Goldstones. This type of HEFT is complicated for phenomenological studies,
and its physical implications are not immediately clear.

In this work, we employed amplitude theory and the methods from [22, 23] to construct
HEFT operators in Mathematica using SM mass eigenstates directly. We referred to this
new formulation of HEFT as massive HEFT. In section 7 and appendix A, we presented
the 3-point HEFT basis and 4-point basis up to dimension-8. Further research can explore
the application of these bases to formulate the electroweak symmetry-breaking phase of the
SMEFT and distinguish HEFT from SMEFT [48].

Our method facilitates the construction of EFTs involving massive fields, which is
generally a challenging task in traditional framework. Our method utilizes Mathematica
codes and allows for the construction of generic types of EFTs, including dark matter EFTs
and high-spin field EFTs, in a straightforward manner. Additionally, this method can enable
the construction of the most comprehensive interactions between gravity and higher-spin
particles, which is crucial in exploring the high-energy physics of gravity. The potential
applications of this method in the construction of massive EFTs are vast and should be
investigated in the future.
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Lorentz structure | Fields
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A The four-point HEFT operators up to dim-8

In this appendix, we present the complete HEFT operators for some 4-point scattering
processes involving SM particles up to dimension-8. In these bases, the Greek letters
represent Lorentz indices while the English letters represent QCD color indices. The
definitions of notation can be found around eq. (3.8) and (6.2), with D,, representing the
covariant derivative.

Note that sometimes different operators correspond to the same amplitude bases, and
we indicate them in parentheses. To obtain them explicitly, we merely need to substitute
the fields in the EFT operators as suggested in parentheses. The replacement rules are
shown in the table 3, where particles enclosed in the same braces can be interchanged with
each other.

The following are some four-point scattering that are common on colliders and have
important detection significance in particle physics:

A.1 e.g. Drell-Yan process: the scattering process involving a quark-antiquark
pair annihilating into a virtual photon or Z boson, which then decays into
a lepton-antilepton pair, is an important channel for studying electroweak
interactions and searching for new physics.

A.2 e.g. Top quark pair production: the scattering process involving two top quarks
being produced and subsequently decaying into multiple jets and leptons is a
crucial probe of the top quark’s properties and its role in electroweak symmetry
breaking.

A.3 Higgs boson production and decay: the scattering process involving two Higgs
bosons decaying into two Z bosons is a significant channel for studying the
properties of the Higgs boson at the LHC.
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A.4 Top quark decay: the scattering process involving two top quarks decaying
into two W bosons is a key channel for measuring the top quark mass and its
coupling to the Higgs boson.

A.5 A.6 A.7 Vector boson scattering: the scattering process involving two W or Z bosons
scattering off each other is a pivotal test of the electroweak theory and has
the potential to reveal new physics beyond the Standard Model.

The EFT operators of other scattering processes such as the annihilation of dark matter can
be calculated using the program https://github.com/zizhengzhou/MassiveAmplitude,
here we only give the operators of the above-mentioned processes.

A1 wvavp (ddvi, uie~et, dde~et, duvet, ude i)

o Dimension = 6, O}~10

wivy d=6 OO

(uravr) (uve) | (ugvr) (URaVR)

(ugvL) (Uravr) | (ukULa) (VLVR)

(uravr) (uivR) | (uivr) (URaVR)

 Dimension = 7, O}~

uuvy d=7 OB

(w10 (D,71)) (vRo*u}) | (uh (Dubr)) (ura5”ve) | (Dyiina) 7r) (uhovr)
(uh (D,71)) (vRS™iRa) | (wh (D)) (825" 7r) | (e (Dy) (715" u})

((Duvr) Pr) (Urad"uy) | (4ra (DuVr)) (VR u])

e Dimension = 8, (91'“18

uivy d=8 O§18
) (Dyura) 00" (Dyvr)) | (upvr) (Dytire) 0%e” (Duvr)
(4Ra (Dyrr)) (upote” (Durr)
((Dyv) (DuvRr)) (upet o iLa)
(4La (Dyvr)) (ufo"a” (Duvr))
c'ug) (Duvr)6"vr) | (uprr) (Dyiga) 03” (DuPr))
( ( )
( )
(

)
)

Dyvi)) (upata"vr) | (uk (Dyira)) (vio"a” (Duvr)
) )

r) (upa"o” (Duvr)) | (uivr) (Dvtira) 06" (Duvg
(Duvr) (Dyvr)) (ug0"6” iRa)

DVUR) UuuRa) ((D;LDL) 5’”’&%)
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(ufura) (Dyvr) 0"0” (Duir))

(ufura) (Dyvr) 05" (DyuvR))

A.2 uudd

e Dimension = 6, O}~2°

widd d=6 O}

€ace€bdf (uaRdlfz) cdg (ﬂLgﬁef hJLh)

cd
€ace€bdf (u“RE Jurg

€aceCbdf (dRE iy,

= N~ /\_/

7j"Ra) ( %GCdguRg)
ﬂLaCZLb) (u%dli) €ace€pdf€™™ (uLg of JLh) (U%d%)
€ace€bdf (u“Re f dLh) cdg (uRgd%)

u% )6 g(uRedeh>
u®

7€ dguRg) (dLe efh dRh)

o Dimension = 7, O3~16

wudd d=7 O16

ﬂLa (DudLb)) (d%&“ua> eaceebdfGCdg (ﬂLg (DueethZLh)) (db 5’“11,%)

) (dljz&MaRa) €aceCbdf

)
’LL(]IQ (DyJLb) ) (ﬂLaaud%) €ace€bdf

up (Dudlﬁ)) (ﬂLcﬁ“ JRb) €aceCbdf

(DytRa) JRb) (U“R5“d%> €ace€bdf

Ra (Dudli> (CZLb&Mu%) 6(JLceebdfec

— N |~ Nl NN}V N}

U
)
(Dud%> CZR[,) (ﬂLa5MuaL) Eaceebdf ((D“dli) GethZRh) 6Cdg (ﬂLg6“u%
U
)

)
Ra (Du(ij ) (d%&“u‘i) EaceebdfGCdg (ﬂRg (D#EechRh)) (d%&“u%)
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o Dimension = 8, 0}~36

uidd d=8 O3

uhdny) ((Dyiing) 70" (Dydy) )
d

(u% (Dyiira)) (dgaﬂa (D de))

(w3 h) ((Dyiing) 05" (D))
((Dudy) (Duidis)) (w0t i)

(uf i) ((Dudh) 0" (Dydrs ) )

eechLh) ((DyeCdgﬂLg) oto? (D db )

i
uf (D#eechLhD ((D,,eCdeL )0”’0 d )
k )

)

b

R

€ace€bdf | U d%) ((DVGCdgﬂLg) oto? (D ecfh dLh)
o) o"ut) eI (dppa” (Dud}))

“uL) Ddb) fhdRh)

ot ) ((
(D dL)> (u Fhove fhdLh>
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€acobrar (WhViny ) ((Dody) 0" (Due™Mdry)
acovar (whdy) ((Dve®ir,) #o” (D)
acectar e (tny (Dod}) ) (uhoto” (Dye" dLh)
€ace€bdf ((Dudl}) ( eclh dRh)) (U ahov eIy,
€acorare™® (iiny (Dydy)) (ufoa” (Dye'"dpy)
€ace€bdf (}zdb) ((DVECngR )0“0 (D ecth dRh))
(Dveary)) (dho"a” (Due™ dp)
updy) ((Doe®iiny) oc” (Dye!” dRh)
€ace€bdf ( udli> (Duﬁefthh>)( G ote” Mg,
uf e Wigy) ((Dody) 5" (Due ™ dp,)

)
)
)
Viso)
)

)
)
)
)

A3 ZZhh

 Dimension = 4, O}

ZZhh d=4 O]
Z,Z,hh'Tr (05"

 Dimension = 6, O}~

ZZhh d=6 O

Z3, 25 hh Ty (65P7) | Z,Zs (Dyh) (Dyh) Tr (50757 0")

Zry Zoghh Tx (6" 0P7) | Z,Zy (D,Dyh) h'Tx (5%0") Tr (5°07)

 Dimension = 8, OL~7

ZZhh d=8 OT7
2 23 (DD, h) hTx (57077557

poET
Z;;Z;T (Dyh) (D,h) Tr (0“0 O‘ETO'/M>
Z Zez (Dyh) (Dh) Tr (07 045" 07 )

ZoZE (DyDyh) (Dh) T (596"5 507 )

Z,¢Zr (DuDyh) (Dyh) T (54070”5757 )

Z¢Z; (DyDyh) (DuD,h) Tr (60" 570757 o)

Z, (Do Z-) (DuDyh) (Deh) T (5"0") Tr (57075507 )
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A4 waWTW~ (ddWTW ™)

 Dimension = 5, O}~4

wWtW=- d=5 i~

W), W), (uhps"5" tira)

“w

(W+)H(W_)V (ugo" " uRa)

(W+)M(W_)V (uRtre) Tr (c"5")

(WH),,W7), (ufira) Tr (0"5")

“w

o Dimension = 6, O}~!2

wiW+W= d=6 O§?

(W), (W), (@ra5""a"uf) | (W), (W), (ras"0" ut)

(W), (W)}, (ke o"ipg) | (W), (W), (uh5" 0" tir,)

(W) (W), (016" 57ug) | (WF),(W7), (Dytiza) 56" 0" ut)

(W), (W), (" 6%ina) | (W), (Du(W7),) (ra0"0" 5" uf)

(W), (W), (024570 ug) | (W), (Du(W7),) (uh0”0" 5" tina)

(W), (W), (g0 iiga) | (W), (W), (u” (Dyiiga)) Tr (5"0")

« Dimension = 7, O}~
uaW+Tw d="17 O%N“

(W), (W), (uho™ 5 ra) (W), (W), (ufo"5"0" (Dyiig,))
(W), (W), (w0 i) (DuW),,) (W), (uf6"0" 0 ur,)
(W) (W) g (i) Tr (6™5°7) | (W), (Du(W7),,,) (ufo"0" 0" tig,)
(W) (W), (uhiga) Tr (5#577) | (W), (W), (u46*” (Dytia)) Tr (60")
(WH)e, (W), (ul5"?6"5% (Dyiiza) | (W), (Du(W)L) (uho?use) Tr (5"0")
(W), (W), (uhiira) Tr (60"7) | (W), (Du(WH)},) (whe*7iira) Tr (5"0")
(Du(W),) (W), (uh5"0" 0" uga) | (Du(W),) (W), (uha"6"0"a" (Dyiiva))
(W), (Du(W™),) (u5"5"767uRa) | (W), (Du(W"),) (uk5°6°5" 5" (Dyiira))
(W), (Du(W7),) (wha“0" 6 ura) | (W), (Du(W),) (uha"e"0"5" (Dyiira))
(Du(W),) (W), (w505 ara) | (W), (Du(W™),) (uh0°5"0" 57 (Dyiina))
(W), (W ),y (uhiiga) Tr (00*) | (Du(W),) (Du(W7),) (itgas* 00”0 uf)
(WH),,(W™), (ufo"P5"0? (Dyiira)) (DV(W+)p) (D,(W7),) (ultira) Tr (670”57 )
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o Dimension = 8, O}~3°

(W), (DuW7)se) (#ra076" 5" us )
(W), (Du(W)¢) (uko™5" 5" i, )
(W), (W) ke (Dutizg) 565407 )
(W), (W) e (75" 0™ (Dyiiva))
(W), ,(W ) e ((Dutira) 3"5"0 " ut)
(W), (W) e (wha"*5%07 (Dyiva))
(W), (W) e (upa"0"?7 (Dystina) )
(Wﬂ‘a(w—)5 (u 55" 5" 5% (D, Dyiin,))

)

)

W+)p Du(Wi)jO (U%Uag Yatol (DyuR,)

—~ —
o
=
j
<
N——
N
-]
=
=
N———
A
Q
q
Y
q
q
=
Q
>
IS4
:U

~—~ L~
-
=
S
N
%
|
q
~
—
<
h
IS}

q
Q
s
=
L~

X
)
)
q
o
N—

_((Dyury) o*uf) Tr (U”J”E )
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AS ZZZZ7

e Dimension = 4, O}

7777 d=4 O}
2,2y ZyZs Tr (6t5”) Tr (67 57)

 Dimension = 6, O}~

7777 d=6 04

22,25, 28 Tr (00”5577

20,220 28 Tr (07007557 )

Z;V Z/;U Zé Z; Tr (agg/“’apat}f)

(DuZp) Zo (D Ze) Z- Tr (075 0%5™ ) Tr (5" 0")

o Dimension = 8, O}~

7777 d=8 0§

ZJ,,Z;,Z;TZS; Tr (6‘“’&57) Tr (5905477)

Ly 2y 2828, T (6576%7) T (o4 077

2y Z g Zer Ly T (JWU&) Tr (Jp(,a@)

ZpZUZg; (DuDuZZ%) Tr (Jpa.ua,fra,uo,aa_gn)

2y, (D28 (D,20) Z, Tr (7706 5757

Zpy (D Z¢) (D2 ) 2,y Tr (60" 0™ 6" 0" )

Zpy (D Z¢) (DyZ2) Z, Tr (640770757 0 0% )

(DuZ,) Zs (D) 28, T (0769557 55) Tr (570")

2, (DuDyZr) (Do D) Zy Tr (0") T (5707570 ) Tr (5507
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A6 ZZWTW-

e Dimension = 4, (91”2

ZZWTW =

i=1 OF?

Z,2,(W*) ,(W™), Tr (6"0"575")

Z,2,(W*) (W), Tt (o"5°) Tr (0757

o Dimension = 6, O}~

ZZWTW ™

d=6 0§

+

Z,2,(WT),,

(W_)+ Tr (0“0”6575—9")

Z+ 7 (W+

WY 50 0 5ET

z,Z} (W+

+ 7+ + -
Z/LVZpU(W ) (W ) Tr

T

FHY 500 5T

O'O'5

Z;VZP(W—i_)U(W_)

Zu2,(WT) ,,(W7)

Zyu 2y W) e (W)

T

Tr (0P 57578

Q
e " e [ — [ e N N

ZWZ:,;(W*) (W), Tr (f PO FE GV 5T

2,2, (W) 3, (W), Tr (000”57

ZMZ;;(WJF);g(W_)T Tr (J a?$5TGvP

ZuZ;Lp(WJr)U(W_)gT Tr (Uuafr&a&w

2 Zpe(WF)e(WT), Tr (afa“"awy

2, Zp(W) (W), Tr (UPU“”JUE6T
Zy(WH), (W), Tr (07004 57
Zy(WH),(W™)g, Tr (0200757

Z#Z (W) )o(W7)e, T (a“aﬂffafn-ﬂ)

2,23, (W) (W), Tr (067) T (5””55T)

Tr

T

b, Zp(W) (W)

oM o 05) Tr (0P57)
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