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1 Introduction

Half-maximal supergravities in four dimensions have played an important role in under-
standing several key aspects of string theory, like dualities [1], the microscopic origin of
black hole entropy [2, 3] and the existence of entire orbits of purely non-geometric string
compactifications [4]. The main reason for the interest in these theories lies in the fact
that they provide models with the maximum number of supersymmetries compatible with
a consistent coupling of the gravity multiplet to matter multiplets. This means that they
enjoy the strong constraints deriving from supersymmetry, while keeping the freedom of
adding an arbitrary number of matter vector multiplets.

While the first instances of four-dimensional pure N = 4 supergravities were con-
structed almost 50 years ago in [5–8], the coupling of N = 4 supergravity to vector mul-
tiplets, as well as some of its gaugings, were analyzed a few years later in [9–14]. More
recently, sparked by the renewed interest in flux compactifications of string theory, various
gauged N = 4 supergravity models originating from type IIB or IIA orientifold compacti-
fications [15, 16] were studied in detail [17–25], but always on a case by case basis.

Currently, the most general analysis of the structure of the gauged theory is pro-
vided by [26], where one can find a systematic discussion of the consistency conditions for
the gauging procedure as well as various results concerning the bosonic Lagrangian, the
supersymmetry transformations of the fermions and the relation of such models to flux
compactifications. However, as we will argue in the following, such analysis is incomplete
and a proper general and unified framework for all possible gaugings of N = 4 supergravity
is not readily available yet.

The contemporary understanding of four-dimensional gauged supergravities relies on
the fact that any model is fully specified by the choice of symplectic frame and of embedding
tensor. The first ingredient is related to the fact that one can formulate different equivalent
classical ungauged supergravity models according to the different realizations of the rigid
symmetry group of the Lagrangian GL, which is a subgroup of the duality group G (for
N = 4 supergravity coupled to n vector multiplets, with a total of nv = 6 +n vector fields,
G = SL(2,R) × SO(6,n)). The group GL is determined by the choice of which among the
vector fields present in the theory, AΛ

µ , Λ = 1, . . . , nv, and their magnetic duals, AΛµ, have
a local description in the Lagrangian. This choice in turn determines the embedding of G
inside the symplectic group Sp(2nv,R). Different choices of symplectic frames are indeed
connected to one another by symplectic rotations and yield in general different Lagrangians
that are not related to each other by local field redefinitions but are on-shell equivalent,
as they lead to sets of Bianchi identities and equations of motion that can be mapped
into each other by field redefinitions [27–30]. The second ingredient, the embedding tensor
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Θ, provides a duality covariant formulation of the gauging procedure, and specifies the
decomposition of the gauge group generators in terms of the generators of G, of which
the gauge group must be a subgroup. The advantage of this description of the gauging is
twofold. On the one hand, minimal couplings contain both electric and magnetic gauge
fields in G-covariant combinations through the components of the embedding tensor, which
ensures that the Bianchi identities and field equations of the gauged theory are formally
invariant under global duality transformations, provided we treat the embedding tensor as
a spurionic object that transforms under G. On the other hand, the gauge group is no
longer required to be a subgroup of the rigid symmetry group of the original ungauged
Lagrangian, which depends on the choice of the symplectic frame. This duality covariant
method for gauging a supergravity theory was introduced in [31–33] and further developed
in [34–37] (see also [28–30] for reviews), while it was applied (with some limitations) to the
cases of the gauged four- and five-dimensional N = 4 supergravities in [26].

In detail, [26] analyzed the consistency constraints on the embedding tensor, lead-
ing to the conclusion that all possible gaugings of N = 4 supergravity in four spacetime
dimensions are parametrized by two real constant SL(2,R) × SO(6,n) tensors, ξαM and
fαMNP = fα[MNP ], which are subject to a specific set of quadratic constraints that we will
review in the following. However, only partial results for the Lagrangian and supersymme-
try transformations were presented, also forcing a specific choice of symplectic frame, such
that GL = SO(1, 1)× SO(6, n). While this is a legitimate choice, it is so constraining that
not even the maximally supersymmetric anti-de Sitter vacuum can be obtained by a pure
electric gauging in this frame [38].

Our work overcomes these limitations by providing the full Lagrangian and supersym-
metry rules for the gauged four-dimensional N = 4 supergravity in an arbitrary symplectic
frame. This implies that any known (as well as yet unknown) vacuum of such a theory
can be obtained from an electrically gauged theory, which will be incorporated in our gen-
eral Lagrangian. Our general analysis allows us also to discuss the general structure of
the vacua of any such theory and we therefore discuss both the conditions for the critical
points of the scalar potential, as well the spectrum of the quadratic fluctuations about
Minkowski vacua. We then use this result to prove that the quadratic supertrace of the
mass matrices is vanishing for any Minkowski vacuum that breaks all supersymmetries
of any consistent N = 4 gauged supergravity. This is a rather non-trivial result, which
extends what has already been found in the case of the much more constrained maximal
supergravity theory [39] and gives us a first insight into the quantum corrections of this
class of theories.

All these results have been obtained by a careful reinterpretation of the quadratic
consistency constraints in terms of the fermion shifts, which we also present in detail. They
will constitute the basis of possible further applications of this work, like the computation of
the spectrum of fluctuations about anti-de Sitter vacua or the computation of higher-order
supertrace relations.

This paper is organized as follows: in section 2, we give the field content of the four-
dimensional N = 4 supergravity coupled to n vector multiplets and describe the geometry
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of the coset space SL(2,R)
SO(2) ×

SO(6,n)
SO(6)×SO(n) , parametrized by the scalar fields of the theory.

In section 3, we briefly discuss the electric/magnetic duality in N = 4 supergravity, we
introduce projectors, acting on symplectic vectors, which parametrize the choice of the
symplectic frame and we give their explicit expressions for some of the symplectic frames in
which theD = 4, N = 4 supergravity has been formulated in the literature. In section 4, we
describe the SL(2,R)×SO(6, n)-covariant formulation of the gauging procedure, which has
also been discussed in detail in [26], to keep our presentation self-contained. In section 5, we
give the complete Lagrangian in an arbitrary symplectic frame and the local supersymmetry
transformation rules for the gauged D = 4, N = 4 Poincaré supergravity coupled to n

vector multiplets, as well as some of the corresponding Bianchi identities and field equations
and we compute the commutator of two consecutive local supersymmetry transformations.
We end the section by discussing the relevant gauge fixings and by providing a constructive
definition of the symplectic matrix which connects the chosen symplectic frame to the
intrinsic electric frame of the embedding tensor. In section 6, we derive the conditions
satisfied by the critical points of the scalar potential, we specify the mass matrices of all
the fields in the theory and we compute the supertrace of the squared mass eigenvalues
for Minkowski vacua that completely break N = 4 supersymmetry. We summarize our
conventions in appendix A, while in appendix B, we point out a discrepancy of our results
with those of [26] and we compare our notation with that of [14]. In appendix C, we provide
the full derivation of the local supersymmetry transformations and of the Lagrangian for
the ungauged and the gauged D = 4, N = 4 matter-coupled Poincaré supergravities in
an arbitrary symplectic frame, using the rheonomic approach. Finally, in appendix D, we
derive the quadratic constraints satisfied by the T-tensor by appropriately dressing the
quadratric constraints on the embedding tensor with the coset representatives.

2 The ingredients of N = 4 supergravity

The N = 4 Poincaré supergravity in four dimensions is based on the Poincaré superalgebra
with four spinorial generators and U(4) R-symmetry group. We shall label the fundamental
representation 4 of the latter by the indices i, j, · · · = 1, . . . , 4. The theory allows for only
two kinds of supermultiplets containing fields with spin not exceeding 2: the gravity and the
vector ones. The gravity multiplet contains the graviton gµν , four gravitini ψiµ, six vectors
Aijµ = −Ajiµ , four spin-1/2 fermions χi (dilatini) and a complex scalar τ , parameterizing the
coset manifold SL(2,R)

SO(2) . This multiplet can be coupled to n vector multiplets, which contain
n vector fields Aaµ, a = 1, . . . , n, 4n gaugini λai, and 6n real scalar fields, parameterizing
the scalar manifold SO(6,n)

SO(6)×SO(n) . Overall, the scalar σ-model is described by the coset
space [9, 10, 12]

M = G

H
= SL(2,R)

SO(2) ×
SO(6,n)

SO(6)× SO(n) . (2.1)

In the next two subsections, we shall focus on the scalar sector and describe the coset
geometry ofM. Subsequently, in subsection 2.3, we shall fix the relevant notations as far
as the fermion fields are concerned.
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2.1 The scalar sector of the gravity multiplet

As mentioned above, the two real scalar fields contained in the gravity multiplet are the
coordinates of the SL(2,R)/SO(2) factor of the coset (2.1). As a homogeneous manifold,
SL(2,R)/SO(2) can be described in terms of a coset representative S ∈ SL(2,R), which
transforms under the isometry group SL(2,R) and the (local) isotropy group SO(2) as

S → gSh(x), (2.2)

where global SL(2,R) transformations g act on S from the left, while local SO(2) transfor-
mations h(x) act on S from the right. Following [26], we will actually use the convenient
representation in terms of a complex SL(2,R) vector

Vα = Sα
αvα, (2.3)

where α = +,− is an SL(2,R) index, α = 1, 2 is an SO(2) index and vα = (1, i)T . From
the definition (2.3), one can immediately deduce that the Vα vector satisfies

VαV∗β − V∗αVβ = −2iεαβ , (2.4)

where εαβ = −εβα and ε+− = 1. Since conjugate 2-dimensional representations of SL(2,R)
are equivalent, we can raise and lower SL(2,R) indices according to the following convention

Vα = Vβεβα, Vα = εαβVβ , (2.5)

where εαβ = −εβα, with ε+− = 1 and εαγεβγ = δαβ .
The SO(2) ∼= U(1) action on S implies that Vα transforms as a charge +1 object

Vα → eiθ(x)Vα , (2.6)

for a standard parameterization of

h(x) =

 cos θ sin θ

− sin θ cos θ

 . (2.7)

In addition, it is useful to introduce the positive definite symmetric matrix

Mαβ = Sα
αSβ

β δαβ = Re(VαV∗β) , (2.8)

which satisfies
MαβMβγ = δαγ . (2.9)

Using standard coset geometry, we can compute, for SL(2,R)/SO(2), the following
complex vielbein

P = i

2ε
αβ VαdVβ , (2.10)

in terms of which the metric on this manifold can be written as

ds2 = 2P P ∗, (2.11)
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and SO(2)-connection
A = −1

2ε
αβ VαdV∗β , (2.12)

which follow from the usual decomposition of the left-invariant one-form Ψ = S−1dS along
the basis {σ1, iσ2, σ3} of the Lie algebra sl(2,R), where iσ2 spans its compact so(2) factor.
The corresponding Maurer-Cartan equation dΨ + Ψ ∧Ψ = 0 yields the relation

DP ≡ dP − 2iA ∧ P = 0 (2.13)

and provides the SO(2)-curvature

F ≡ dA = iP ∗ ∧ P . (2.14)

With a little algebra, one can also derive the useful identity

DVα ≡ dVα − iAVα = PV∗α , (2.15)

which captures the full differential structure of the coset geometry.

2.2 The scalar sector of the vector multiplets

The coset space parametrized by the scalars of the vector multiplets can be described
by means of a coset representative LMM = (LMm, LM

a), where M = 1, . . . , n + 6 is a
vector index of SO(6,n), m = 1, . . . , 6 and a = 1, . . . , n are indices of the fundamental
representations of SO(6) and SO(n) respectively, while M is an index which, decomposed
as M = (m, a), bears the local action of SO(6) × SO(n).

The matrix L itself is an element of SO(6,n), meaning that

ηMN = ηMNLM
MLN

N = LM
MLNM = LM

mLNm + LM
aLNa, (2.16)

where ηMN = ηMN = diag(−1,−1,−1,−1,−1,−1, 1, . . . , 1). The constant matrices ηMN

and ηMN and their inverses ηMN and ηMN can be used as metrics to raise and lower the
corresponding indices.

As for the scalar sector of the gravity multiplet, it is useful to introduce the positive
definite symmetric matrix M = LLT with elements

MMN = −LMmLNm + LM
aLNa (2.17)

and its inverse MMN ,
MMNMNP = δMP . (2.18)

In this case, the σ-model geometry can be described in terms of a vielbein matrix Pam,
together with SO(6) and SO(n) connections ωmn and ωa

b respectively, constructed from
the left-invariant one-form

Ω = L−1dL, (2.19)

which, in the fundamental representation of SO(6,n), has the following matrix representa-
tion

ΩM
N = LM

MdLM
N =

(
ωm

n Pm
b

Pa
n ωa

b

)
. (2.20)
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In terms of the vielbein matrix, the metric on the coset manifold SO(6, n)/(SO(6)×SO(n))
has the form

ds2 = −Pma Pma .

Notice that Ω satisfies
ΩM

N = −ΩN
M (2.21)

and hence Pma = −P am. The so(6, n) Maurer-Cartan equations dΩM
N + ΩM

P ∧ΩP
N = 0

also imply the following relations

DPa
m ≡ dPam + ωa

b ∧ Pbm + ωmn ∧ Pan = 0 , (2.22)

Rm
n ≡ dωmn + ωm

p ∧ ωpn = −Pma ∧ Pan, (2.23)

Ra
b ≡ dωab + ωa

c ∧ ωcb = −Pam ∧ Pmb , (2.24)

which provide the definitions for the SO(6) and SO(n) curvatures Rmn and Ra
b, respec-

tively.
The SO(6) factor in the coset has to be identified with the Z2 quotient of the SU(4)

factor of the R-symmetry group. It is therefore useful to note that an SO(6)-vector vm can
alternatively be described by an antisymmetric SU(4)-tensor vij = −vji, i, j = 1, . . . , 4,
subject to the pseudo-reality constraint

vij = (vij)∗ = 1
2εijklv

kl. (2.25)

The map vm → vij can be constructed explicitly by using six antisymmetric 4×4 matrices
Γmij interpolating between the two representations,

vij = Γmijvm , (2.26)

normalized in such a way that

vmwm = −1
2εijklv

ijwkl = −vijwij = −vijwij . (2.27)

Using this representation, equation (2.16) can be written as

ηMN = −LMijLNij + LM
aLNa = −1

2εijklLM
ijLN

kl + LM
aLNa, (2.28)

implying
L(M

ikLN)jk = −1
4 δ

i
j (ηMN − LMaLNa) = 1

4 δ
i
j LM

klLNkl , (2.29)

while the Bianchi identity for the vielbein 1-forms, now Pa
ij , (2.22) may be written as

DPa
ij ≡ dPaij + ωa

b ∧ Pbij − ωijkl ∧ Pakl = 0 , (2.30)

where
ωijkl = ΓmijΓnkl ωmn . (2.31)

– 6 –



J
H
E
P
0
9
(
2
0
2
3
)
0
7
1

Since ω plays the role of an SU(4) connection, it can be shown that

ωijkl = 2ω[i
[kδ

j]
l] , (2.32)

with ωii = 0 and ωij = (ωij)∗ = −ωj i, so that (2.30) becomes

DPa
ij ≡ dPaij + ωa

b ∧ Pbij − ωik ∧ Pakj − ωjk ∧ Paik = 0 . (2.33)

In the same fashion, we can define the SU(4) curvature as

Rij = Rikjk = dωij − ωik ∧ ωkj = P aik ∧ Pajk , (2.34)

where Rijkl = ΓmijΓnklRmn, Rii = 0, Rij = (Rij)∗ = −Rj i, and the last equality in (2.34)
follows from equation (2.23). Also, the expression for the SO(n) curvature in terms of the
new vielbein 1-forms is

Ra
b = −Paij ∧ P bij . (2.35)

We close this section by giving some useful relations following from the previous defi-
nitions. These are the derivatives of the coset representatives, which satisfy

DLM
ij ≡ dLMij − ωikLMkj − ωjkLMik = LM

aPa
ij , (2.36)

DLM
a ≡ dLMa + ωabLM

b = LM
ijP aij . (2.37)

2.3 The fermion fields

As usual in supergravity theories, the fermion fields transform in representations of the
holonomy group of the scalar manifold, which in our case, locally coincides with the isotropy
group H = SO(2) × SO(6) × SO(n). More precisely, the gravitini, the dilatini and the
gaugini transform in the fundamental representation of SU(4), which is the universal cover
of SO(6), while the gaugini alone transform in the fundamental representation of SO(n) as
well. Moreover, the SO(2) ∼= U(1) factor of H acts on the fermions as a multiplication by
a complex phase eiqΛ(x), where the charges q of ψiµ, χi and λai are

q(ψiµ) = −1
2 , q(χi) = 3

2 and q(λai) = 1
2 (2.38)

respectively. More details about fermions and their properties can be found in appendix A.
We only remind here that ψiµ and λai are left-handed, while χi are right-handed, i.e.

γ5ψ
i
µ = ψiµ, γ5χ

i = −χi, γ5λ
ai = λai, (2.39)

and that their charge conjugates ψiµ = (ψiµ)c, χi = (χi)c and λ
a
i = (λai)c have opposite

chiralities
γ5ψiµ = −ψiµ, γ5χi = χi, γ5λ

a
i = −λai . (2.40)
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3 Duality and symplectic frames

The sector of the ungauged Lagrangian specifying the vector field couplings at the 2-
derivative level can be written as [30]

e−1L = 1
4IΛΣF

Λ
µνF

Σµν + 1
4RΛΣF

Λ
µν(∗FΣ)µν + 1

2O
µν
Λ FΛ

µν + e−1Lrest, (3.1)

where e = det(eaµ), AΛ
µ , Λ = 1, . . . , n+6, are the vector fields, FΛ

µν = 2∂[µA
Λ
ν] and (∗FΛ)µν =

1
2εµνρσF

Λρσ are the vector field strengths and their Hodge duals respectively. Furthermore,
IΛΣ and RΛΣ are real symmetric matrices that depend on the scalar fields, with IΛΣ being
negative definite, OµνΛ is an antisymmetric field dependent tensor that does not involve any
of the vector fields and contains at most a single derivative and Lrest represents all the
terms that do not depend on the vector fields.

If we associate a magnetic dual GΛµν to each field strength FΛ
µν by defining

GΛµν ≡ −e−1εµνρσ
∂L
∂FΛ

ρσ

= RΛΣF
Σ
µν − IΛΣ(∗FΣ)µν − (∗OΛ)µν , (3.2)

the Bianchi identities and equations of motion of the vector fields can be condensed in the
simple system  ∂[µF

Λ
νρ] = 0 ,

∂[µ|GΛ|νρ] = 0 ,
(3.3)

which also implies that for each vector field AΛ
µ there is a dual magnetic vector AΛµ,

local solution of the equations of motion, whose field strength is GΛµν . The vector fields
AΛ
µ , which are those appearing in the ungauged Lagrangian, will be referred to as electric

vectors.
The set of equations (3.3) is invariant, in principle, under general GL(2(n + 6),R)

transformations mixing FΛ and GΛ(
FΛ
µν

GΛµν

)
→
(
F ′Λµν
G′Λµν

)
=
(
AΛ

Σ BΛΣ

CΛΣ DΛ
Σ

)(
FΣ
µν

GΣµν

)
, (3.4)

which are restricted to the symplectic group Sp(2(n + 6),R) once we require that the G′

definition in terms of F ′ is the same as (3.2), possibly for a modified lagrangian L′ (see [30]
for a review and [27] for the original derivation).

A consistent choice of n+ 6 electric vector fields among the 2(n+ 6) vectors and dual
vectors is called a choice of symplectic frame.

Once one also takes into account the equations of motion of the scalar fields, one finds
that, since Lrest is only invariant under the symmetry group of the scalar σ-model, the U-
duality group, which is the group of transformations that leave the full system of Bianchi
identities and equations of motion of N = 4 supergravity invariant (up to possible suitable
modifications of the Lagrangian), reduces to

G = SL(2,R)× SO(6, n) ⊂ Sp(2(n+ 6),R) . (3.5)
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Clearly, SL(2,R) × SO(6,n) is a global symmetry group of the Bianchi identities and equa-
tions of motion but not of the Lagrangian, which is only invariant (up to a total derivative)
under an electric subgroup GL ⊂ SL(2,R) × SO(6,n).

Different choices of the symplectic frame give rise to different Lagrangians with different
off-shell invariance groups GL, which are however on-shell equivalent in the sense that they
lead to sets of Bianchi identities and equations of motion that can be mapped into each
other by field redefinitions.

In the theory at hand, the electric vector fields AΛ
µ together with their magnetic

duals AΛµ form an SL(2,R) × SO(6,n) vector AMα
µ = (AΛ

µ , AΛµ), which is also a sym-
plectic vector of Sp(2(6 + n),R). Following [26], we can therefore introduce a composite
SL(2,R) × SO(6,n) indexM = Mα and an antisymmetric symplectic form CMN defined by

CMN = CMαNβ ≡ ηMN εαβ , (3.6)

whose inverse is the opposite of

CMN = CMαNβ ≡ ηMN εαβ , (3.7)

so that
CMNCNP = CMαNβCNβPγ = −δMP δαγ ≡ −δMP . (3.8)

Every electric/magnetic split AMµ = AMα
µ = (AΛ

µ , AΛµ), such that the 2(n+ 6)× 2(n+ 6)
matrix CMN decomposes as

CMN =
(

CΛΣ CΛ
Σ

CΛ
Σ CΛΣ

)
=
(

0 δΛ
Σ

−δΣ
Λ 0

)
, (3.9)

defines a symplectic frame and any two symplectic frames are related by a symplectic rota-
tion. Note that composite SL(2,R) × SO(6,n) indices are lowered and raised according to

VM = VMα = ηMN εαβV
Nβ = CMNV

N , VM = VMα = VNβη
NM εβα = VNCNM, (3.10)

where VM is an arbitrary SL(2,R) × SO(6,n) vector.
It is convenient to parametrize the choice of the symplectic frame by means of projectors

ΠΛ
M and ΠΛM that extract the electric and magnetic components of a symplectic vector

VM = (V Λ, VΛ) respectively, according to

V Λ = ΠΛ
MV

M, VΛ = ΠΛMV
M. (3.11)

In particular, we have that AΛ
µ = ΠΛ

MA
M
µ and AΛµ = ΠΛMA

M
µ . Since the symplectic

form CMN decomposes as in (3.9) in any symplectic frame, these projectors must satisfy

ΠΛ
MΠΣ

N CMN = 0 , (3.12)

ΠΛ
MΠΣN CMN = δΛ

Σ , (3.13)

ΠΛMΠΣN CMN = 0 . (3.14)

– 9 –
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On the other hand, for an objectWM=(WΛ,W
Λ) in the representation of SL(2,R)×SO(6,n)

that is dual to the fundamental representation, we have

WΛ = ΠΛMW
M, WΛ = −ΠΛ

MW
M. (3.15)

Furthermore, for any two symplectic vectors YM = (Y Λ, YΛ) and ZM = (ZΛ, ZΛ) we have

YMZM = CMNY
MZN

= Y ΛZΛ − YΛZ
Λ

= (ΠΛ
MΠΛN −ΠΛMΠΛ

N )YMZN ,

therefore
ΠΛ
MΠΛN −ΠΛMΠΛ

N = CMN . (3.16)

Once the choice of frame has been made, the kinetic matrices for the electric vectors follow
from decomposing the 2(6 + n)× 2(6 + n) matrix

MMN = MαβMMN (3.17)

as

MMN =

MΛΣ MΛ
Σ

MΛ
Σ MΛΣ

 =

−(I +RI−1R)ΛΣ (RI−1)Λ
Σ

(I−1R)Λ
Σ −(I−1)ΛΣ

 , (3.18)

where the identifications are determined by

(I−1)ΛΣ = −ΠΛ
MΠΣ

NMMN , (3.19)

(RI−1)Λ
Σ = −ΠΛMΠΣ

NMMN , (3.20)

(I−1R)Λ
Σ = −ΠΛ

MΠΣNMMN , (3.21)

(I +RI−1R)ΛΣ = −ΠΛMΠΣNMMN . (3.22)

This decomposition gives the most general form of a matrixM satisfying

MMPCPQMQN = CMN , (3.23)

leading to the definition of the inverse as

MMN = CMPCNQMPQ . (3.24)

Moreover, the complex kinetic matrix of the vector fields

NΛΣ ≡ RΛΣ + i IΛΣ (3.25)

satisfies the following useful relations

NΛΣΠΣ
MαVαLMij = ΠΛMαVαLMij , (3.26)

NΛΣΠΣ
Mα(Vα)∗LMa = ΠΛMα(Vα)∗LMa , (3.27)

which are proven in appendix C.
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3.1 Examples of symplectic frames

Since the decomposition (3.18) can be obtained in several inequivalent ways, we discuss
now the projectors ΠΛ

Mα, ΠΛMα and the kinetic matrices of the electric vectors for some
of the symplectic frames in which the D = 4, N = 4 matter-coupled supergravity has been
formulated in the literature.

The standard frame. The first such symplectic frame follows from requiring that
the global symmetry group of the ungauged Lagrangian is GL = SO(1,1) × SO(6,n) ⊂
SL(2,R) × SO(6,n). This symplectic frame, which we shall refer to as standard frame or
SO(1, 1)×SO(6, n)-frame, corresponds to the electric/magnetic split AMα

µ = (AM+
µ , AM+µ),

where the electric vector fields AM+
µ form an SO(6,n) vector and carry SO(1,1) charge +1,

while their dual magnetic vector fields AM+µ = AM
−
µ, which also form an SO(6,n) vec-

tor, carry SO(1,1) charge −1. The two factors in the on-shell global symmetry group are
embedded in the symplectic one as follows:(

a b

c d

)
∈ SL(2,R) →

(
a 1n+6 b η

c η d 1n+6

)
∈ Sp(2(6 + n),R) , ad− bc = 1 ,

g ∈ SO(6, n) →
(
g 0
0 η g η

)
∈ Sp(2(6 + n),R) , (3.28)

where 1n+6 is the (n + 6) × (n + 6) identity matrix. It is apparent, from the above
embeddings, that the off-shell global symmetry group is SO(1, 1) × SO(6, n), as stated
earlier.

It is in this symplectic frame that the N = 4 Poincaré supergravity has been described
in [9–11, 14, 26] and in our notation with projectors we have

AM+
µ = ΠM+

NαA
Nα
µ , AM+µ = ΠM+NαA

Nα
µ , (3.29)

where
ΠM+

Nα ≡ δMN δ+
α , ΠM+Nα ≡ ηMN ε+α . (3.30)

It is straightforward to show that these projectors satisfy conditions (3.12)–(3.14)
and (3.16). Moreover, using equations (3.19) and (3.20), we find that the kinetic matrices
for the electric vectors AM+

µ are given by

IM+N+ = −(Imτ)MMN , RM+N+ = −(Reτ)ηMN , (3.31)

where
τ = 1

2

(
V+
V−

+
V∗+
V∗−

)
+ i

|V−|2
(3.32)

is the complex scalar of the N = 4 supergravity multiplet. Therefore, the Lagrangian for
the ungauged theory in this symplectic frame contains the following kinetic terms for the
electric vector fields

e−1L ⊃ −1
4(Imτ)MMNF

M+
µν FN+µν − 1

8ε
µνρσ(Reτ)ηMNF

M+
µν FN+

ρσ , (3.33)

where FM+
µν = 2∂[µA

M+
ν] .
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While this simple choice allows for a clear distinction between electric and magnetic
vectors and maintains SO(6,n) covariance, it has been shown [38] that one cannot perform
a simple electric gauging in this symplectic frame leading to a maximally supersymmetric
AdS vacuum.

Any consistent electric/magnetic split AMα
µ = (AΛ

µ , AΛµ) can be obtained from the
standard frame by means of a symplectic rotation(

AΛ
µ

AΛµ

)
=
(
BΛ

M CΛM

DΛM EΛ
M

)(
AM+
µ

AM+µ

)
(3.34)

and the corresponding projectors are

ΠΛ
Mα = BΛ

Mδ
+
α + CΛ

M ε+α, ΠΛMα = DΛMδ
+
α + EΛM ε+α . (3.35)

The expressions for the matrices IΛΣ, RΛΣ in an arbitrary symplectic frame can be ob-
tained from those in the SO(1,1) × SO(6,n)-frame, given by (3.31), by using the general
transformation property of the complex kinetic matrix NΛΣ under the symplectic transfor-
mation relating the two frames (we suppress all indices):

N = (EN0 + D) (CN0 + B)−1 =

= [−E (Re(τ) η + i Im(τ)M) + D] [B−C (Re(τ) η + i Im(τ)M)]−1 ,
(3.36)

where E ≡ (EΛ
M ), C ≡ (CΛM ), B ≡ (BΛ

M ) ,D ≡ (DΛM ) and

N0 ≡ (N0M+N+) = − (Re(τ) η + i Im(τ)M) (3.37)

is the complex kinetic matrix in the standard frame.
The standard frame naturally originates from compactifying heterotic superstring the-

ory on a six-torus T 6. In this case, on a generic point in moduli space, the resulting D = 4
supergravity is an N = 4 model with 22 vector multiplets (n = 22) which, at the classical
level, features the global symmetry group SL(2,R)×SO(6, 22) [40]. The vector fields, in this
case, consist of the six Kaluza-Klein vectors Gmµ , m = 1, . . . , 6, six vectors Bmµ originating
from the D = 10 Kalb-Ramond field, and 16 vectors Aλµ, λ = 1, . . . , 16, gauging the Cartan
subalgebra of the ten-dimensional gauge group. The SL(2,R)/SO(2) factor in the scalar
manifold of the classical theory is spanned by the four-dimensional dilaton field φ4 and the
axion dual to the 2-form Bµν , while the SO(6, 22)/[SO(6)× SO(22)] factor is parametrized
by the internal metric moduli Gmn, the scalars Bmn and Aλm, originating from the internal
components of the Kalb-Ramond field and the internal components of the ten-dimensional
gauge fields respectively.

Below, we discuss various other instances of symplectic frames, besides the standard
one, and their occurrence in superstring compactifications.

Frame in which SL(2, R) is an off-shell symmetry. Another interesting symplectic
frame is the one in which the SL(2,R) factor of the U-duality group SL(2,R) × SO(6,n)
is a global symmetry of the ungauged Lagrangian. This occurs when n = 6 and the
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fundamental representation of SO(6, 6) branches with respect to the GL(6,R) maximal
subgroup as follows:

12 → 6′+ 1
2

+ 6− 1
2
,

where the grading refers to the O(1, 1) factor in GL(6,R). Let us denote by Λ̃ = 1, . . . , 6
the index labeling the fundamental representation of GL(6,R) (and its conjugate). The
symplectic frame in which SL(2,R) is a global symmetry of the Lagrangian is the one in
which this group has a block-diagonal action and is obtained by rotating a vector VM in
the standard frame as follows:

(V Λ̃+, VΛ̃
+, VΛ̃+, V

Λ̃
+) → (V Λ̃+, V Λ̃

+, VΛ̃+, −VΛ̃
+) ,

where
V Λ̃α = ΠΛ̃α

MβV
Mβ , VΛ̃α = ΠΛ̃αMβV

Mβ , (3.38)

with the projectors ΠΛ̃α
Mβ and ΠΛ̃αMβ that characterize this frame having the following

forms:
ΠΛ

Mα = ΠΛ̃β
Mα = ΠΛ̃

Mδ
β
α, ΠΛMα = ΠΛ̃βMα = ΠΛ̃M εαβ . (3.39)

Thus, conditions (3.12)–(3.14) and (3.16) are equivalent to

ΠΛ̃
MΠΣ̃

Nη
MN = ΠΛ̃MΠΣ̃Nη

MN = 0, ΠΛ̃
MΠΣ̃Nη

MN = −δΛ̃
Σ̃ (3.40)

and
ΠΛ̃

MΠΛ̃N + ΠΛ̃MΠΛ̃
N = −ηMN . (3.41)

The 12 × 12 matrix ΠN
M ≡ (ΠΛ̃

M , ΠΛ̃M ) satisfying the above constraints takes the fol-
lowing form

ΠΛ̃
M = 1√

2

(
16 16

)
, ΠΛ̃M = 1√

2

(
16 −16

)
, (3.42)

16 being the 6×6 identity matrix. ΠN
M is nothing but the matrix which transforms the

original basis of the 12 of SO(6,6) in which ηMN is diagonal and an SO(6,6) vector has
components VM = (V m, V a), into the one in which GL(6,R) has a block-diagonal action,
η is off-diagonal and an SO(6,6) vector has components VM = (V Λ̃, VΛ̃).

The kinetic matrices for the electric vector fields AΛ̃α
µ are given by

IΛ̃αΣ̃β = −(M−1)Λ̃Σ̃Mαβ , RΛ̃αΣ̃β = −εαβΠΛ̃MΠΓ̃
NM

MN (M−1)Γ̃Σ̃ , (3.43)

where (M−1)Λ̃Σ̃ is the inverse of M Λ̃Σ̃ ≡ ΠΛ̃
MΠΣ̃

NM
MN and ΠΛ̃MΠΓ̃

NM
MN (M−1)Γ̃Σ̃ is

antisymmetric in its indices. The ungauged Lagrangian for the D = 4, N = 4 supergravity
coupled to six vector multiplets in this symplectic frame has a global SL(2,R) × GL(6,R) ⊂
SL(2,R) × SO(6,6) symmetry and originates from compactification of type IIB supergravity
on a T 6/Z2 orientifold [15, 16]. This corresponds to the (T 0 × T 6)/Z2 case reviewed, in
more detail, at the end of this section. The model and its electric gaugings have been
studied in [17–19].
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Electric gaugings with maximally supersymmetric AdS4 vacua. The most gen-
eral gaugings of an N = 4 model which feature maximally supersymmetric anti-de Sitter
vacua were studied in [38] and their electric frame is different from the standard one. The
simplest of these models involves no vector multiplets (n = 0) and we shall characterize here
its electric frame. In this model the only components of the embedding tensor that need to
be turned on are f+123 and f−456, where the indices run on the vector representation of the
SO(6) R-symmetry group, which is broken to the SO(3)+× SO(3)− subgroup. This gauging
is purely electric in the symplectic frame where the electric vectors are AΛ

µ = (Am̂+
µ , Am̃−µ )

and their magnetic duals are AΛµ = (Am̂+µ, Am̃−µ), where we have split the SO(6) index
M (recall n = 0) as M = (m̂, m̃), where m̂ = 1, 2, 3 and m̃ = 4, 5, 6 label the vector
representations of two distinct SO(3) groups. The projectors defining this frame are

ΠΛ
Mα = (Πm̂+

Mα,Πm̃−
Mα) = (δ+

α δ
m̂
M , δ

−
α δ

m̃
M ), (3.44)

ΠΛMα = (Πm̂+Mα,Πm̃−Mα) = (ε+αηm̂M , ε−αηm̃M ) (3.45)

and it is straightforward to show that they satisfy the properties (3.12)–(3.14) and (3.16).
In this symplectic frame, the kinetic matrices for the electric vectors are

IΛΣ =
(
Im̂+n̂+ Im̂+ñ−
Im̃−n̂+ Im̃−ñ−

)
= Imτ

(
ηm̂n̂ 0

0 1
|τ |2 ηm̃ñ

)
, (3.46)

and

RΛΣ =
(
Rm̂+n̂+ Rm̂+ñ−
Rm̃−n̂+ Rm̃−ñ−

)
= Reτ

(
−ηm̂n̂ 0

0 1
|τ |2 ηm̃ñ

)
. (3.47)

This result can be written in a more compact form in terms of the complex kinetic matrix:

Nm̂+n̂+ = τ̄ δm̂n̂ , Nm̃−ñ− = −1
τ̄
δm̃ñ ,

with all other entries being zero. The above expression for N is to be contrasted with the
expression of the same matrix N0 in the original standard frame: N0M+N+ = τ̄ δMN .

Symplectic frames from Type IIB compactified on (T p−3×T 9−p)/Z2-orientifolds.
We now consider the D= 4, N = 4 supergravity models discussed in [20], which originate
from Type IIB supergravity compactified on (T p−3×T 9−p)/Z2-orientifolds, in the presence
of Dp-branes, whose worldvolume fills the whole non-compact D=4 spacetime (spacetime-
filling branes) as well as p−3 directions (defining the sub-torus T p−3) in the internal torus.
We shall write the projection matrices defining the corresponding symplectic frames, while
the kinetic matrices of the vector fields have been computed in this reference. As in [20], we
shall restrict ourselves to the bulk sector, which is described by a half-maximal theory with
six vector multiplets (n= 6). The Z2 is generated by the involution I9−p Ω [(−1)FL ][

9−p
2 ],

where Ω is the wordsheet parity, I9−p denotes the inversion on the directions of the trans-
verse torus T9−p and

[
9−p

2

]
the integer part of (9−p)/2. This quotient signals the presence

of Op-planes, parallel to the spacetime-filling Dp-branes. The directions of the internal
six-torus split into p − 3 Neumann (i.e. parallel to the Dp-branes), labeled by indices
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i, j, · · · = 1, . . . , p − 3, and 9 − p Dirichlet directions (i.e. transverse to the Dp-branes),
labeled by indices a, b, · · · = p − 3 + 1, . . . , 6.1 Consequently, the GL(6,R)g group acting
transitively on the metric moduli Gij, Gia, Gab of the torus in the un-orbifolded theory, is
broken to GL(p− 3,R)×GL(9− p,R) acting on Gij, Gab, which is contained in the global
symmetry group of the four-dimensional Lagrangian.

It is useful to describe the fundamental representation of SO(6, 6) in the basis in which
the diagonal blocks describe the subgroup GL(6,R) and η is off-diagonal. In this basis, the
electric vector fields in the standard frame are AΛ

µ = (AΛ̃+
µ , AΛ̃

+
µ) = (AΛ̃+

µ ,−AΛ̃−µ) and
their magnetic duals are AΛµ = (AΛ̃+µ, A

Λ̃
+µ) = (AΛ̃+µ, A

Λ̃−
µ ), where we recall that the

index Λ̃ = 1, . . . , 6 labels the fundamental representation of GL(6,R) ⊂ SO(6, 6) and

AΛ̃α
µ = ΠΛ̃α

MβA
Mβ
µ , AΛ̃αµ = ΠΛ̃αMβA

Mβ
µ , (3.48)

where ΠΛ̃α
Mβ and ΠΛ̃αMβ are defined by equations (3.39) and (3.42). A distinctive feature

of these models is that this GL(6,R) does not coincide in general with GL(6,R)g, but
intersects the latter in the subgroup GL(p− 3,R)×GL(9− p,R) mentioned above. Indeed,
GL(6,R) acts transitively on the moduli Gij, Bia, Gab. Finally, we notice that in its first
p− 3 values, the index Λ̃ coincides with i labeling the Neumann directions of T p−3, while
in the last 9 − p values, it coincides with the index a of the dimensionally reduced fields,
labeling the Dirichlet directions along T 9−p, though in the opposite position, due to the
peculiar way GL(9− p,R) is embedded in GL(6,R). Below we discuss the different cases.

Case (T 6×T 0)/Z2: this is a compactification in the presence of D9-branes and O9-planes.
The complex scalar in the SL(2,R)/SO(2) factor is τ = c + i e

φ
2 V6, c being the four-

dimensional dual to the RR tensor Cµν , φ the ten-dimensional dilaton and V6 the volume
of T 6 in the Einstein frame. The scalars Gij, Cij, on the other hand, span the coset space
SO(6, 6)/[SO(6) × SO(6)]. In this case, the indices Λ̃ and i coincide and the symplectic
frame is defined by the electric vectors Ai+

µ = Gi
µ, Ai

+
µ = −Ai−µ = Ciµ, where Gi

µ are the
Kaluza-Klein vectors. The projectors are given by2

ΠΛ
Mα = (Πi+

Mα,Πi−Mα) = (Πi
Mδ

+
α ,ΠiM ε−α), (3.49)

ΠΛMα = (Πi+Mα,Πi−
Mα) = (−ΠiM ε+α,Πi

Mδ
−
α ), (3.50)

where Πi
M = ΠΛ̃

M and ΠiM = ΠΛ̃M are given by (3.42). This symplectic frame is
equivalent to the standard electric/magnetic split AMα

µ = (AM+
µ , AM+µ), since it is related

to the latter by a symplectic rotation of the form (3.34) that is block-diagonal, i.e. CΛM =
DΛM = 0.

Case (T 0×T 6)/Z2: this is a compactification in the presence of D3-branes and O3-planes.
The scalars consist of τ = C(0) + i e−φ parametrizing SL(2,R)/SO(2), C(0) being the ten-
dimensional RR axion, and Gab, C

ab = εaba1...a4 Ca1...a4 spanning the SO(6,6)
SO(6)×SO(6) submani-

fold (Ca1...a4 are the internal components of the RR 4-form field). In this case, the index Λ̃
1Notice that we use a special font for the indices i, j, . . . and a, b, . . ., not to confuse them with i, j, . . .

and a, b, . . ., which, in the present paper, have a different meaning.
2Here and in the following we always define the projectors as acting on the basis in which η is diagonal.
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of the GL(6,R) and the index a of the dimensionally reduced string modes coincide, aside
from their upper/lower positions, as commented above. The symplectic frame is defined
by the electric vectors Aa+

µ = Baµ, A
a

+µ = Aa−
µ = Caµ. The projection matrices are:

ΠΛ
Mα = Πaβ

Mα = Πa
Mδ

β
α, ΠΛMα = ΠaβMα = ΠaM εαβ , (3.51)

where Πa
M = ΠΛ̃

M and ΠaM = ΠΛ̃M are given by (3.42). This is the model constructed
in [15, 16] and studied, in its gauged version, in [17–19], as mentioned above.

Case (T 2 × T 4)/Z2: this is a compactification in the presence of D5-branes and O5-
planes. The scalars consist of τ = Cij + i e−

φ
2 V2 parametrizing SL(2,R)/SO(2) and

Gij, Gab, Cab, Bia, Ciabc, c spanning SO(6, 6)/[SO(6) × SO(6)]. The symplectic frame
is defined by the electric vectors Ai+

µ = Gi
µ, A

a+
µ = Baµ, A

i
+µ = Ai−

µ = εijCjµ, Aa
+
µ =

−Aa−µ = εabcdCbcdµ. The projection matrices are:

ΠΛ
Mα = (ΠΛ̃+

Mα,Πi−
Mα,Πa−Mα) = (ΠΛ̃

Mδ
+
α ,Πi

Mδ
−
α ,ΠaM ε−α), (3.52)

ΠΛMα = (ΠΛ̃+Mα,Πi−Mα,Πa−
Mα) = (−ΠΛ̃M ε+α,−ΠiM ε−α,Πa

Mδ
−
α ), (3.53)

where the GL(6,R) index Λ̃ is decomposed as Λ̃ = (i, a), Πi
M and ΠiM are the 2 ×

12 matrices that consist of the first two rows of the matrices ΠΛ̃
M and ΠΛ̃M of (3.42)

respectively, while Πa
M and ΠaM are the 4 × 12 matrices consisting of the last four rows

of ΠΛ̃
M and ΠΛ̃M respectively.

Case (T 4 × T 2)/Z2: the compactification is perfomed in the presence of D7-branes and
O7-planes. The scalars consist of τ = Cijkl + i V4 parametrizing SL(2,R)/SO(2) and
Gij, Gab, Cia, Bia, C(0), Cijab spanning the coset manifold SO(6, 6)/[SO(6)×SO(6)]. The
symplectic frame is defined by the electric vectors Ai+

µ = Gi
µ, A

a+
µ = Baµ, A

i
+µ = Ai−

µ =
εijklCjklµ, Aa

+
µ = −Aa−µ = εabCbµ. The projection matrices are:

ΠΛ
Mα = (ΠΛ̃+

Mα,Πi−
Mα,Πa−Mα) = (ΠΛ̃

Mδ
+
α ,Πi

Mδ
−
α ,ΠaM ε−α), (3.54)

ΠΛMα = (ΠΛ̃+Mα,Πi−Mα,Πa−
Mα) = (−ΠΛ̃M ε+α,−ΠiM ε−α,Πa

Mδ
−
α ), (3.55)

where again Λ̃ = (i, a), Πi
M and ΠiM are the 4× 12 matrices that consist of the first four

rows of the matrices ΠΛ̃
M and ΠΛ̃M of (3.42) respectively, while Πa

M and ΠaM are the
2× 12 matrices consisting of the last two rows of ΠΛ̃

M and ΠΛ̃M respectively. Gaugings of
these models, originating from internal fluxes, were studied in [20, 41].

4 Duality covariant gauging

The gauging procedure consists in promoting a suitable subgroup Gg of the global symmetry
group GL of the Lagrangian to a local symmetry group gauged by a subset of the electric
vector fields AΛ

µ of the theory. Gauging a group Gg requires the introduction of minimal
couplings of the gauge fields to the other fields and the modification of the Lagrangian
and the local supersymmetry transformation rules in such a way that the resulting theory
features the same amount of supersymmetry (N = 4) as the original ungauged one.
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The choice of the symplectic frame is not physically relevant in the ungauged theory,
as it affects the Lagrangian description, but not the set of equations of motion and Bianchi
identities. However, the introduction of minimal couplings explicitly breaks the original
on-shell global SL(2,R) × SO(6,n) invariance of the ungauged model, and the initial choice
of the symplectic frame has physical implications on the resulting gauged theory because
different frames correspond to different Lagrangians with different global symmetry groups
GL ⊂ SL(2,R) × SO(6,n) and thus different choices of possible gauge groups Gg.

Nevertheless, there exists an SL(2,R) × SO(6,n)-covariant formulation of the gauging
procedure that does not depend on the symplectic frame in which the ungauged theory
is written. This formulation involves the introduction of gauge fields AMµ that decom-
pose into electric gauge fields AΛ

µ and magnetic gauge fields AΛµ and gauge group gen-
erators XM = (XΛ, X

Λ). Since the gauge group Gg is a subgroup of the duality group
SL(2,R) × SO(6,n), these generators can be expressed as linear combinations of the gen-
erators tA of SL(2,R)×SO(6,n), where A is an index labeling the adjoint representation of
SL(2,R) × SO(6,n), according to

XM = ΘMAtA , (4.1)

where ΘMA = (ΘΛ
A,ΘΛA) is a constant tensor, called the embedding tensor, which en-

codes all the information about the embedding of Gg in SL(2,R) × SO(6,n). The index A
decomposes as A = ([MN ], (αβ)), where [MN ] labels the adjoint representation of SO(6,n)
and (αβ) labels the adjoint representation of SL(2,R), so equation (4.1) can be written as

XM = ΘMNP tNP + ΘMβγtβγ , (4.2)

where tNP = t[NP ] and tβγ = t(βγ) are the generators of SO(6,n) and SL(2,R) respectively
and ΘMNP = ΘM[NP ], while ΘMβγ = ΘM(βγ). Furthermore, the gauge connection is
defined by

Ωgµ ≡ gAMµ XM, (4.3)

where g is the gauge coupling constant.
The main advantage of this description of the gauging is that the Bianchi identi-

ties and equations of motion of the gauged theory are formally invariant under global
SL(2,R) × SO(6,n) transformations, as is the case in the ungauged theory, provided we treat
the embedding tensor ΘMA as a spurionic object that transforms under SL(2,R) × SO(6,n).
When freezing ΘMA to a constant, this formal on-shell SL(2,R) × SO(6,n)-invariance is
broken.

This procedure of gauging a supergravity theory has been introduced in [31–33] and
developed, in the form presented here, in [34–37] (see also [28–30] for reviews). We should
note that a quite detailed discussion of this procedure for N = 4 supergravity has been
given in [26], though with some clear limitations, as discussed in the introduction. In any
case, our presentation aims at being self-contained.

Consistency of the gauging procedure, namely the possibility of constructing a lo-
cally Gg-invariant and N = 4 supersymmetric action, requires the embedding tensor
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(ΘMNP ,ΘMβγ) to satisfy a set of linear and quadratic SL(2,R) × SO(6,n)-covariant con-
straints. The linear constraint is

X(MNP) = X(MN
QCP)Q = 0 , (4.4)

where XMNP ≡ ΘMQR(tQR)N
P + ΘMδε(tδε)N

P are the matrix elements of the gauge
generators XM in the fundamental representation of SL(2,R) × SO(6,n). The linear con-
straint restricts the embedding tensor to a particular representation of SL(2,R) × SO(6,n).
More precisely, the embedding tensor (ΘαM

NP ,ΘαM
βγ) formally transforms in the ten-

sor product of the fundamental (2,n + 6) and the adjoint (3,1) +
(
1, 1

2(n + 6)(n + 5)
)

representations of SL(2,R) × SO(6,n), which decomposes according to

(2,n + 6)×
[
(3,1) +

(
1, 1

2(n + 6)(n + 5)
)]

= 2 · (2,n + 6) + (4,n + 6) +
(

2,
(

n + 6
3

))
+
(

2, 1
3(n + 6)((n + 6)2 − 4)

)
. (4.5)

The linear constraint (4.4) removes all the representations in the above decomposition that
are contained in the 3-fold symmetric product of the (2,n + 6) representation

X(MNP) ∈ ((2,n + 6)× (2,n + 6)× (2,n + 6))sym.

= (2,n + 6) + (4,n + 6) +
(

2, 1
3(n + 6)((n + 6)2 − 4)

)
(4.6)

+
(
4, 1

6(n + 6)(n + 10)(n + 5)
)
.

Hence, the linear constraint restricts the embedding tensor to the (2,n + 6) +
(
2,
(n+6

3
))

representation of SL(2,R) × SO(6,n), and the possible gaugings of the four-dimensional
N = 4 supergravity are therefore parametrized by two real constant SL(2,R) × SO(6,n)
tensors, ξαM and fαMNP = fα[MNP ], corresponding to these representations [26]. Once
we make explicit this constraint, the components of the embedding tensor are expressed in
terms of the ξ and f tensors as

ΘαM
NP = fαM

NP − ξ[N
α δ

P ]
M , ΘαM

βγ = δ(β
α ξ

γ)
M . (4.7)

Thus, the quantities XMNP are given by

XMN
P = XMαNβ

Pγ = −δγβfαMN
P + 1

2
(
δPMδ

γ
βξαN − δ

P
Nδ

γ
αξβM − ηMNδ

γ
βξ
P
α + δPN εαβξ

γ
M

)
(4.8)

and satisfy the constraint (4.4) by construction [26].
Gauge invariance requires the embedding tensor to be invariant under the action of

the gauge group Gg that it defines. This implies the quadratic constraint

0 = ΘMBtBΘNA = ΘMB(tB)NPΘPA + ΘMBΘNCfBCA, (4.9)

where we used the fact that the generators of SL(2,R) × SO(6,n) in the adjoint repre-
sentation are given by (tB)CA = −fBCA, where fBCA are the structure constants of the
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Lie algebra of SL(2,R) × SO(6,n) defined by [tA, tB] = fAB
CtC . By contracting the last

equation with the generators tA, we obtain

[XM, XN ] = −XMNPXP , (4.10)

which amounts to the closure of the gauge algebra. It was found in [26] that the above con-
straint is equivalent to the following quadratic constraints on the tensors ξαM and fαMNP

ξMα ξβM = 0 , (4.11)

ξP(αfβ)PMN = 0 , (4.12)

3fαR[MN |fβ|PQ]
R + 2ξ(α|[M |f|β)|NPQ] = 0 , (4.13)

εαβ(ξPα fβPMN + ξαMξβN ) = 0 , (4.14)

εαβ(fαMNRfβPQ
R − ξRα fβR[M [P ηQ]N ] − ξα[M |fβ|N ]PQ + ξα[P |fβ|Q]MN ) = 0 . (4.15)

These quadratic constraints also solve

CMNΘMAΘNB = 0 , (4.16)

which implies the existence of a symplectic frame in which the magnetic components ΘΛA

of the embedding tensor vanish (electric frame). Equation (4.16) is known as the locality
constraint on the embedding tensor and guarantees that the dimension of the gauge group
Gg does not exceed the number n+ 6 of the vector fields that are present in the ungauged
Lagrangian and are available for the gauging.

In the gauged theory, the ordinary exterior derivative d is replaced by a gauge-covariant
one which acts on objects (p-forms) in an arbitrary representation of SL(2,R) × SO(6,n) as

d̂ = d− gAMXM = d− gAMαΘαM
NP tNP + gAM(αεβ)γξγM tαβ , (4.17)

where we have introduced the connection one-forms AM = AMα = AMα
µ dxµ, which we

assume to transform under a gauge transformation with infinitesimal parameters ζM(x) =
ζMα(x) as

δζA
M = d̂ζM = dζM + gXNP

MAN ζP . (4.18)

Using the relation for the closure of the gauge algebra for the generators in (4.10)

XMQ
SXNS

R −XNQSXMSR = −XMNPXPQR, (4.19)

we find that
d̂2 = −gF̂MXM, (4.20)

where
F̂M = 1

2 F̂
M
µν dx

µ ∧ dxν ≡ dAM + g

2XNP
MAN ∧AP (4.21)

are the usual non-abelian field strengths of the vector fields (in form notation). This can
also be rewritten as

F̂Mα = dAMα − g

2 f̂
M

βNP ANβ ∧APα, (4.22)
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where we have defined

f̂αMNP = fαMNP − ξα[MηP ]N −
3
2ξαNηMP , (4.23)

following [26].
It is important to stress that the field strengths (4.21) do not transform covariantly

under gauge transformations, because

δζF̂
M = −gXNPMζN F̂P + gX(NP)

M
(
2ζN F̂P −AN ∧ δζAP

)
6= −gXNPMζN F̂P .

(4.24)
In order to construct gauge covariant quantities describing the vector fields, we introduce
the two-form gauge fields BMN = B[MN ] = 1

2B
MN
µν dxµ∧dxν andBαβ = B(αβ) = 1

2B
αβ
µν dx

µ∧
dxν , transforming in the adjoint representations of SO(6,n) and SL(2,R) respectively and
we modify the field strengths as follows3 [26, 35, 36, 45]

HMα = 1
2H

Mα
µν dxµ ∧ dxν ≡ F̂Mα − g

2ΘαM
NPB

NP + g

2ξ
M
β B

αβ . (4.25)

These modified field strengths transform covariantly under gauge transformations

δζH
M = −gXNPMζNHP , (4.26)

provided the two-form gauge fields transform as (see for example [29])

δζB
MN = εαβ

(
−2ζ [M |αH |N ]β +A[M |α ∧ δζA|N ]β

)
, (4.27)

δζB
αβ = ηMN

(
2ζM(α|HN |β) −AM(α| ∧ δζAN |β)

)
. (4.28)

A consistent definition of the two-form gauge fields BMN and Bαβ requires the theory to
also be invariant under tensor gauge transformations parametrized by one-forms ΞMN =
Ξ[MN ] = ΞMN

µ dxµ and Ξαβ = Ξ(αβ) = Ξαβµ dxµ acting on the vector and two-form gauge
fields as [26]

δΞA
Mα = g

2 ΘαM
NPΞNP − g

2ξ
M
β Ξαβ , (4.29)

δΞB
MN = d̂ΞMN + εαβA

[M |α ∧ δΞA
|N ]β , (4.30)

δΞB
αβ = d̂Ξαβ − ηMNA

M(α| ∧ δΞA
N |β), (4.31)

where
d̂ΞMN ≡ dΞMN + 2gΘαPQ

[M |APα ∧ Ξ|N ]Q (4.32)
3While it is clear that in four dimensions one can always dualize a massless tensor field to a scalar and

a massive tensor field to a massive vector, very often the natural low-energy Lagrangians of supergravity
theories that come from string compactifications contain tensor fields from the beginning [42]. This sparked
the necessity to be able to clearly identify the gauged supergravity theories containing tensor fields as
physical degrees of freedom [43] and for a better analysis of the corresponding gauge structure, which takes
the form of a free differential algebra [44]. As we will see later, the embedding tensor formulation we present
here allows for an elegant and general solution to these issues.
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and
d̂Ξαβ ≡ dΞαβ − gξ(α|MAMγ ∧ Ξ|β)γ − gξγMAM(α ∧ Ξβ)γ . (4.33)

The transformation rules (4.29)–(4.31) ensure that δΞH
Mα = 0.

In the scalar sector, gauging a subgroup of the duality group means gauging the isome-
tries of the scalar σ-model. This can be accounted for by constructing gauged Maurer-
Cartan forms from which we recover the gauged vielbeins and connections of the scalar
manifold. For the coset space SL(2,R)/SO(2), the gauged Maurer-Cartan left-invariant
one-form is given by

Ψ̂α
β =(S−1)α

α
d̂Sα

β =(S−1)α
α
dSα

β + 1
2g(S−1)α

α
ξαMA

MβSβ
β + 1

2g(S−1)α
α
ξβMAMαSβ

β ,

(4.34)
and, in our conventions, has the following expansion

Ψ̂ = (ReP̂ )σ3 + (ImP̂ )σ1 + iÂσ2 , (4.35)

where we have suppressed the SO(2) indices. We then see that

P̂ = i

2ε
αβVαd̂Vβ (4.36)

is the gauged SL(2,R)/SO(2) zweibein and

Â = −1
2ε

αβVαd̂V∗β (4.37)

is the gauged SO(2) connection, where

d̂Vα ≡ dVα + 1
2gξαMA

MβVβ + 1
2gξ

MβAMαVβ . (4.38)

The one-form (4.34) satisfies the gauged Maurer-Cartan equation

dΨ̂ + Ψ̂ ∧ Ψ̂ = i

4gξαM
[
VαVβ − (Vα)∗V∗β

]
HMβσ3

+ g

4ξαM
[
VαVβ + (Vα)∗V∗β

]
HMβσ1 (4.39)

+ i

4gξ
α
M

(
VαV∗β + V∗αVβ

)
HMβσ2 ,

which implies the relation

D̂P̂ ≡ dP̂ − 2iÂ ∧ P̂ = i

2gξαMV
αVβHMβ (4.40)

and gives the following expression for the gauged SO(2) curvature

F̂ ≡ dÂ = iP̂ ∗ ∧ P̂ + g

4ξ
α
M

(
VαV∗β + V∗αVβ

)
HMβ . (4.41)

Once again, with some algebra, one can also derive the useful identity

D̂Vα ≡ d̂Vα − iÂVα = P̂V∗α . (4.42)
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On the other hand, the gauged Maurer-Cartan left-invariant one-form for the coset
space SO(6,n)/SO(6) × SO(n) is given by

Ω̂M
N = LM

M d̂LM
N = LM

MdLM
N + gAMαΘαMN

PLM
NLP

N , (4.43)

which satisfies Ω̂M
N = −Ω̂N

M and has the following matrix form in the fundamental
representation of SO(6,n)

Ω̂M
N =

(
ω̂m

n P̂m
b

P̂a
n ω̂a

b

)
, (4.44)

where ω̂mn is the gauged SO(6) connection, ω̂ab is the gauged SO(n) connection and P̂an

is the gauged SO(6,n)/SO(6) × SO(n) vielbein. The one-form (4.43) satisfies the gauged
Maurer-Cartan equations

dΩ̂M
N + Ω̂M

P ∧ Ω̂P
N = gΘαMN

PLM
NLP

NHMα, (4.45)

which, using the gauged SU(4) connection

ω̂ij = ω̂ikjk (4.46)

and the SU(4) covariant expressions for the vielbeins

P̂a
ij = La

M d̂LM
ij , (4.47)

imply that

D̂P̂a
ij ≡ dP̂aij + ω̂a

b ∧ P̂bij − ω̂ik ∧ P̂akj − ω̂jk ∧ P̂aik = gΘαM
NPLNaLP

ijHMα, (4.48)

R̂ij ≡ dω̂ij − ω̂ik ∧ ω̂kj = P̂ aik ∧ P̂ajk + gΘαM
NPLN

ikLPjkH
Mα, (4.49)

R̂a
b ≡ dω̂ab + ω̂a

c ∧ ω̂cb = −P̂aij ∧ P̂ bij + gΘαM
NPLNaLP

bHMα, (4.50)

where R̂ij and R̂ab are the gauged SU(4) and SO(n) curvatures respectively. Again, one
can also derive the following useful relations

D̂LM
ij ≡ d̂LMij − ω̂ikLMkj − ω̂jkLMik = LM

aP̂a
ij , (4.51)

D̂LM
a ≡ d̂LMa + ω̂abLM

b = LM
ijP̂ aij . (4.52)

5 The Lagrangian and supersymmetry transformation rules

The full procedure to build the supersymmetric Lagrangian and derive the supersymmetry
transformation rules of the gauged D = 4, N = 4 matter-coupled Poincaré supergravity in
an arbitrary symplectic frame using the geometric approach can be found in appendix C.
Here we provide the results, namely the Lagrangian and the local supersymmetry trans-
formations of the fields, and comment on both the equations of motion and the closure of
the supersymmetry algebra.
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5.1 The Lagrangian

The N = 4 supergravity Lagrangian can be split in 6 terms as follows

L =Lkin + LPauli + Lfermionmass
+ Lpot + Ltop + L4fermi , (5.1)

where Lkin contains the kinetic terms of the various fields, LPauli the Pauli-like couplings
of the scalar and vector field strengths to the fermions, Lfermion mass is the self-explanatory
fermion mass part, Lpot the scalar potential, Ltop the necessary couplings of the 2-form
fields that, according to the embedding tensor choice, lead to non-dynamical field equations
that ensure that we did not add new degrees of freedom by changing the explicit Lagrangian
and, finally, L4fermi are the remaining 4-fermion couplings.

We now list all the terms and the corresponding relevant definitions.

e−1Lkin = 1
2R+ i

2ε
µνρσ

(
ψ̄iµγν ρ̂iρσ − ψ̄iµγν ρ̂iρσ

)
− 1

2
(
χ̄iγµD̂µχi + χ̄iγ

µD̂µχ
i
)
−
(
λ̄
a
i γ

µD̂µλ
i
a + λ̄iaγ

µD̂µλ
a
i

)
(5.2)

− P̂ ∗µ P̂µ −
1
2 P̂aijµP̂

aijµ + 1
4IΛΣH

Λ
µνH

Σµν + 1
8ε

µνρσRΛΣH
Λ
µνH

Σ
ρσ ,

e−1LPauli = P̂ ∗µ

(
χ̄iψµi − χ̄

iγµνψiν
)

+ P̂µ
(
χ̄iψ

iµ − χ̄iγµνψiν
)

− 2P̂aijµ
(
λ̄aiψjµ − λ̄aiγµνψjν

)
− 2P̂ aijµ

(
λ̄aiψjµ − λ̄aiγµνψνj

)
(5.3)

+ 1
2H

Λ
µνO

µν
Λ ,

e−1Lfermionmass
= − 2gĀ2

aj
iχ̄
iλaj + 2gĀ2

ai
iχ̄
jλaj + 2gAabij λ̄

a
i λ

b
j + 2

3gA
ij
2 λ̄

a
i λaj

+ 2
3gĀ2ijχ̄

iγµψjµ + 2gA2aj
iλ̄
a
i γ

µψjµ −
2
3gĀ1ijψ̄

i
µγ

µνψjν + c.c. , (5.4)

e−1Lpot = g2
(1

3A
ij
1 Ā1ij −

1
9A

ij
2 Ā2ij −

1
2A2ai

jĀ2
ai
j

)
, (5.5)

e−1Ltop = 1
8gε

µνρσΠΛ
MαΠΛNβ

(
ΘαM

PQB
PQ
µν − ξMγ Bαγ

µν

)
×(

2∂ρANβσ − gf̂ N
δRS ARδρ ASβσ −

1
4gΘβN

RSB
RS
ρσ + 1

4gξ
N
δ B

βδ
ρσ

)
− 1

6gε
µνρσ

(
ΠΛ

RεΠΛSζ + 2ΠΛRεΠΛ
Sζ

)
XMαNβ

RεAMα
µ ANβν × (5.6)(

∂ρA
Sζ
σ + 1

4gXPγQδ
SζAPγρ AQδσ

)
,

e−1L4fermi =− χ̄iψiµχ̄jψ
µ
j − 4λ̄aiψjµλ̄

[i
aψ

j]µ − εijklλ̄aiψjµλ̄akψ
µ
l − εijklλ̄

i
aψ

j
µλ̄

akψlµ

+ 3
8 χ̄

iχjχ̄iχj −
1
2 χ̄

iλ
a
j χ̄iλ

j
a − χ̄iλ

a
i χ̄jλ

j
a −

1
2 λ̄

a
i λ

b
j λ̄
i
aλ

j
b

− λ̄ai λaj λ̄
i
bλ
bj + 2λ̄ai λ

b
j λ̄
i
bλ
j
a − λ̄

a
i λajχ̄

iγµψjµ − λ̄iaλajχ̄iγµψjµ

+ iεµνρσ
(1

2 χ̄iγµχ
jψ̄iνγρψjσ + λ̄

a
i γµλ

j
aψ̄

i
νγρψjσ − λ̄

a
i γµλ

i
aψ̄

j
νγρψjσ

)
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+ εijkl
(
χ̄iγ

µψνj ψ̄kµψlν −
i

2ε
µνρσχ̄iγµψjνψ̄kρψlσ

)
(5.7)

+ εijkl

(
χ̄iγµψjνψ̄kµψ

l
ν + i

2ε
µνρσχ̄iγµψ

j
νψ̄

k
ρψ

l
σ

)
+ χ̄iγµνλ

aiλ̄jaγ
µψνj + χ̄iγµνλaiλ̄

a
jγ

µψjν

− 2χ̄[iγµψ
j]
ν χ̄iγ

[µψ
ν]
j − 2λ̄iaγµψνi λ̄

a
jγ[µψ

j
ν]

− 2ψ̄iµψjνψ̄
µ
[iψ

ν
j] + 1

8(I−1)ΛΣOΛµνO
µν
Σ ,

where

OΛµν = IΛΣΠΣ
Mα

(
− 2(Vα)∗LMijψ̄iµψjν − iεµνρσ(Vα)∗LMijψ̄ρi ψ

σ
j

+ VαLMij λ̄aiγµνλ
a
j − V

αLMaχ̄iγµνλ
i
a + 2(Vα)∗LMijχ̄

iγ[µψ
j
ν]

+ iεµνρσ(Vα)∗LMijχ̄
iγρψjσ + 2VαLMaλ̄aiγ[µψ

i
ν] (5.8)

+ iεµνρσVαLMaλ̄aiγ
ρψiσ + c.c.

)
,

IΛΣ and RΛΣ follow from the solution of (3.19) and (3.20) in the chosen symplectic frame
specified by the projectors ΠΛ

Mα and ΠΛMα. Moreover, P̂µ and P̂aijµ are the components of
the spacetime one-forms P̂ and P̂aij defined in (4.36) and (4.47) respectively, i.e. P̂ = P̂µdx

µ

and P̂aij = P̂aijµdx
µ. In addition, we have defined HΛ

µν ≡ ΠΛ
MαH

Mα
µν , where the field

strengths HMα
µν were introduced in (4.25).

The field strengths of the fermionic fields have the following expressions

ρ̂iµν ≡ 2∂[µ|ψi|ν] + 1
2ω[µ|

ab(e, ψ)γabψi|ν] − iÂ[µ|ψi|ν] − 2ω̂ij [µ|ψj|ν], (5.9)

D̂µχi ≡ ∂µχi + 1
4ωµ

ab(e, ψ)γabχi + 3i
2 Âµχi − ω̂i

j
µχj , (5.10)

D̂µλai ≡ ∂µλai + 1
4ωµ

ab(e, ψ)γabλai + i

2Âµλai − ω̂i
j
µλaj + ω̂a

b
µλbi , (5.11)

where Âµ, ω̂ijµ and ω̂abµ are the components of the spacetime one-forms Â, ω̂ij and ω̂ab

respectively, i.e. Â = Âµdxµ, ω̂ij = ω̂i
j
µdx

µ, and ω̂a
b = ω̂a

b
µdx

µ and ωµab(e, ψ) is the
solution of the supertorsion constraint (C.33), T a = 0, projected on spacetime for the spin
connection as a function of the vielbein and gravitini.

Finally, the fermion mass matrices, which also appear in the scalar potential, are

Aij1 = fαMNP (Vα)∗LMklL
NikLPjl, (5.12)

A2ai
j = fαMNPVαLaMLNikLPjk −

1
4δ

j
i ξαMV

αLa
M , (5.13)

Aij2 = fαMNPVαLMklL
NikLPjl + 3

2ξαMV
αLMij , (5.14)

Aab
ij = fαMNPVαLMaL

N
bL

Pij . (5.15)
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Using the quadratic constraints (4.11)–(4.15) one can show that

2
3A

jk
1 Ā1ik −

2
9A

kj
2 Ā2ki −A2ai

kĀ2
aj
k = 1

4δ
j
i

(2
3A

kl
1 Ā1kl −

2
9A

kl
2 Ā2kl −A2ak

lĀ2
ak
l

)
. (5.16)

Note that we explicitly introduced factors of g for the terms arising from the gauging
procedure.

5.2 The supersymmetry transformation rules

Using the geometric approach presented in appendix C, one can also deduce, from the
spacetime projections of the Lie derivatives of the various superfields, the local super-
symmetry transformations of the corresponding spacetime fields. For the fermionic fields
we find

δεψiµ = D̂µεi + 1
4IΛΣΠΛ

MαVαLMijĤΣ
νργ

νργµε
j − 1

4εijkl(λ̄
j
aγµνλ

ak)γνεl

+ 1
4(χ̄iγµχj)εj −

1
4(χ̄jγµχj)εi −

1
4(χ̄iγνχj)γµνεj

+ 1
8(χ̄jγνχj)γµνεi + 1

2(λ̄ai γµλ
j
a)εj −

1
2(λ̄ai γ

νλja)γµνεj (5.17)

+ 1
4(λ̄ajγ

νλja)γµνεi − εijklχj ε̄kψlµ −
1
3gĀ1ijγµε

j ,

δελai =− 1
4IΛΣΠΛ

Mα(Vα)∗LMaĤΣ
µνγ

µνεi

− γµεj(P̂aijµ + 2λ̄a[iψj]µ + εijklλ̄
k
aψ

l
µ) (5.18)

+ (χ̄iλja)εj −
1
2(χ̄jλja)εi + gĀ2a

j
iεj ,

δεχi =− 1
2IΛΣΠΛ

Mα(Vα)∗LMijĤΣ
µνγ

µνεj

+ γµεi(P̂ ∗µ − χ̄jψjµ)− (λ̄aiλaj )ε
j + 2

3gĀ2ijε
j , (5.19)

while for the bosonic fields we have

δεe
a
µ = ε̄iγaψiµ + ε̄iγ

aψiµ, (5.20)

δεVα =V∗αε̄iχi, (5.21)

δεLMij =LMa(2ε̄[iλ
a
j] + εijklε̄

kλal), (5.22)

δεLM
a = 2LMij ε̄iλ

a
j + c.c., (5.23)

δεA
Mα
µ = (Vα)∗LMij ε̄

iγµχ
j − VαLMaε̄iγµλai + 2VαLMij ε̄

iψjµ + c.c., (5.24)

δεB
Mα
µν = 2iΘαMNPLN

aLP
ij ε̄iγµνλaj + 1

2ξ
M
β (Vα)∗(Vβ)∗ε̄iγµνχi

− 2iΘαMNPLN
aLPij ε̄

iγµνλ
j
a + 1

2ξ
M
β VαVβ ε̄iγµνχi

− 4iΘαMNPLN
ikLPjk

(
ε̄jγ[µ|ψi|ν] + ε̄iγ[µψ

j
ν]

)
(5.25)
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+ ξMβ M
αβ
(
ε̄iγ[µ|ψi|ν] + ε̄iγ[µψ

i
ν]

)
−ΘαM

NP εβγA
Nβ
[µ| δεA

Pγ
|ν] − ξ

M
β ηNPA

N(α|
[µ| δεA

P |β)
|ν] ,

where BMα
µν ≡ −1

2ΘαM
NPB

NP
µν + 1

2ξ
M
β B

αβ
µν ,

D̂µεi ≡ ∂µεi + 1
4ωµab(e, ψ)γabεi −

i

2Âµεi − ω̂i
j
µεj , (5.26)

and ĤΛ
µν = ΠΛ

MαĤMα
µν , where

ĤMα
µν ≡HMα

µν +
[
− 2(Vα)∗LMijψ̄iµψjν + 1

2V
αLMij λ̄aiγµνλ

a
j

− 1
2(Vα)∗LMaχ̄iγµνλai + 2(Vα)∗LMijχ̄

iγ[µψ
j
ν] (5.27)

+ 2VαLMaλ̄aiγ[µψ
i
ν] + c.c.

]
.

Introducing the symplectic vector GMα
µν = (HΛ

µν ,GΛµν), where

GΛµν ≡ −e−1εµνρσ
∂L
∂HΛ

ρσ

= RΛΣH
Σ
µν − IΛΣ(∗HΣ)µν − (∗OΛ)µν , (5.28)

we can write the terms in the local supersymmetry transformations of the fermions that
involve ĤΛ

µν in a manifestly SL(2,R) × SO(6,n)-covariant form as

δεχi ⊃−
1
2IΛΣΠΛ

Mα(Vα)∗LMijĤΣ
µνγ

µνεj

=− i

4V
∗
αLMijGMα

µν γµνεj + γµνε
jχ̄[iγ

µψνj] −
1
2εijklγ

µνεjψ̄kµψ
l
ν , (5.29)

δελai ⊃−
1
4IΛΣΠΛ

Mα(Vα)∗LMaĤΣ
µνγ

µνεi

= i

8V
∗
αLMaGMα

µν γµνεi + 1
2γ

µνεiλ̄ajγµψ
j
ν , (5.30)

δεψiµ ⊃
1
4IΛΣΠΛ

MαVαLMijĤΣ
νργ

νργµε
j

=− i

8VαLMijGMα
νρ γνργµε

j + 1
2γ

νργµε
jψ̄iνψjρ −

1
4εijklγ

νργµε
jχ̄kγνψ

l
ρ . (5.31)

We note that GMα
µν satisfies the twisted self-duality condition

εµνρσGMαρσ = 2ηMN εαβMNPMβγGPγµν + 2
(
− 2i(Vα)∗LMijψ̄iµψjν

+ εµνρσ(Vα)∗LMijψ̄ρi ψ
σ
j − iVαLMij λ̄aiγµνλ

a
j − iV

αLMaχ̄iγµνλ
i
a

+ 2i(Vα)∗LMijχ̄
iγ[µψ

j
ν] − εµνρσ(Vα)∗LMijχ̄

iγρψjσ (5.32)

+ 2iVαLMaλ̄aiγ[µψ
i
ν] − εµνρσV

αLMaλ̄aiγ
ρψiσ + c.c.

)
.
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The Lagrangian (5.1) is invariant, up to a total derivative, under the local supersym-
metry transformations (5.17)–(5.25) and under vector-gauge transformations, provided the
transformation rules (4.27) and (4.28) for the two-form gauge fields are modified as [29, 36]

δζB
MN
µν = −2εαβ

(
ζ [M |αG|N ]β

µν −A[M |α
[µ| δζA

|N ]β
|ν]

)
, (5.33)

δζB
αβ
µν = 2ηMN

(
ζM(α|GN |β)

µν −AM(α|
[µ| δζA

N |β)
|ν]

)
. (5.34)

It is also invariant under the tensor-gauge transformations (4.29)–(4.31). Furthermore,
there is an additional gauge invariance parametrized by rank-2 tensors ∆MNΣ

µν = ∆[MN ]Σ
µν

and ∆αβΣ
µν =∆(αβ)Σ

µν which acts only on the antisymmetric tensor fields ΠΛ
MαB

Mα
µν as [37, 46]

δ∆(ΠΛ
MαB

Mα
µν ) = ∆ΛΣρ

ρ (GΣµν −HΣµν)− 6∆(ΛΣ)ρ
[ρ|
(
GΣ|µν] −HΣ|µν]

)
, (5.35)

where
∆ΛΣ
µν ≡ −ΠΛ

MαΘαM
NP∆NPΣ

µν + ΠΛ
Mαξ

M
β ∆αβΣ

µν . (5.36)

5.3 Bianchi identities and field equations

The field strengths of the two-form gauge fields are defined by [45]

H(3)MN
µνρ ≡ 3∂[µB

MN
νρ] + 6gΘαPQ

[M |APα[µ B
|N ]Q
νρ]

+ 6εαβA
[M |α
[µ|

(
∂|νA

|N ]β
ρ] + g

3XPγQδ
|N ]βAPγ|ν A

Qδ
ρ]

)
, (5.37)

H(3)αβ
µνρ ≡ 3∂[µB

αβ
νρ] − 3gξ(α|MAMγ[µB

β)γ
νρ] − 3gξγMAM(α

[µ B
β)γ
νρ]

− 6ηMNA
M(α|
[µ|

(
∂|νA

N |β)
ρ] + g

3XPγQδ
N |β)APγ|ν A

Qδ
ρ]

)
. (5.38)

The field strengths of the vector and the two-form gauge fields satisfy the Bianchi identities

D̂[µH
Mα
νρ] = −g6

(
ΘαM

NPH(3)NP
µνρ − ξMβ H(3)αβ

µνρ

)
, (5.39)

−ΘαM
NP D̂[µH

(3)NP
νρσ] + ξMβ D̂[µH

(3)αβ
νρσ] = 3XNβPγ

MαHNβ
[µνH

Pγ
ρσ] , (5.40)

where the covariant derivatives of the field strengths appearing in the above equations are
defined as follows

D̂µH
Mα
νρ ≡ ∂µHMα

νρ + gXNβPγ
MαANβµ HPγ

νρ , (5.41)

D̂µH(3)MN
νρσ ≡ ∂µH(3)MN

νρσ + 2gΘαPQ
[M |APαµ H(3)|N ]Q

νρσ , (5.42)

D̂µH(3)αβ
νρσ ≡ ∂µH(3)αβ

νρσ − gξ(α|MAMγµH(3)|β)γ
νρσ − gξγMAM(α|

µ H(3)|β)γ
νρσ . (5.43)

The equations of motion for the two-form gauge fields BMN
µν and Bαβ

µν , which do not
have kinetic terms, take the following form

ΠΛ
MαΘαM

NP

(
HΛµν − GΛµν

)
= 0, (5.44)

ΠΛ
M(αξ

M
β)
(
HΛµν − GΛµν

)
= 0 , (5.45)

where HΛµν = ΠΛMαH
Mα
µν .
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The field equations for the vector gauge fields AMα
µ are

1
2ε

µνρσ D̂νGMα
ρσ = gJMαµ , (5.46)

where we have used the property

XPγNβ
Mα

(
HPγ
ρσ − GPγρσ

)
= 0 , (5.47)

which holds on-shell by virtue of (5.44) and (5.45). The current on the right-hand side
of (5.46) is defined as

JMαµ ≡ΘαM
NP

[
LNaL

P
ijP̂

aijµ + LNikL
Pjk

(
χ̄jγ

µχi + 2λ̄ajγ
µλia + 2iεµνρσψ̄iνγρψjσ

)
+ 2LNaLPbλ̄aiγµλib + 2LNaLP ij

(
λ̄aiψjµ − λ̄aiγµνψjν

)
+ 2LNaLPij

(
λ̄
a
iψ

µ
j − λ̄

a
i γ

µνψjν
) ]

+ ξMβ

[
i

2V
αVβ(P̂µ)∗ − i

2(Vα)∗(Vβ)∗P̂µ

+Mαβ
(3i

4 χ̄iγ
µχi + i

2 λ̄
a
i γ

µλia + 1
2ε

µνρσψ̄iνγρψiσ

)
(5.48)

− i

2V
αVβ

(
χ̄iψ

iµ − χ̄iγµνψiν
)

+ i

2(Vα)∗(Vβ)∗
(
χ̄iψµi − χ̄

iγµνψiν
) ]
.

Multiplying (5.46) by the projectors ΠΛ
Mα, we obtain the equations of motion for the

magnetic vector fields AΛµ. Using the Bianchi identity (5.39), the linear constraint (4.4)
on the embedding tensor and the on-shell condition (5.47), we can write the latter as

− 1
12ε

µνρσΠΛ
Mα

[
ΘαM

NPH(3)NP
νρσ − ξMβ H(3)αβ

νρσ

+6ΠΣ
PγX

Mα
Nβ

PγANβν (HΣρσ − GΣρσ)
]

= ΠΛ
MαJ

Mαµ . (5.49)

Furthermore, the equations of motion for the fermionic fields are

γµD̂µχi = γµγνψiµ
(
P̂ ∗ν − χ̄jψjν

)
+ 2IΛΣΠΛ

Mα(Vα)∗LMijĤΣ−
µν γ

µψjν

− 1
2IΛΣΠΛ

Mα(Vα)∗LMaĤΣ
µνγ

µνλ
a
i − γ

µψjµλ̄aiλ
a
j + 3

4χ
jχ̄iχj (5.50)

− 1
2λ

a
j λ̄

j
aχi − λ

a
i λ̄

j
aχj + 2

3gĀ2ijγ
µψjµ − 2gĀ2

aj
iλaj + 2gĀ2

aj
jλai ,

γµD̂µλai =− γµγνψjµ
(
P̂aijν + 2λ̄a[iψj]ν + εijklλ̄

k
aψ

l
ν

)
+ IΛΣΠΛ

Mα(Vα)∗LMaĤΣ+
µν γ

µψνi + 1
2IΛΣΠΛ

Mα(Vα)∗LMijĤΣ
µνγ

µνλja

+ 1
4IΛΣΠΛ

MαVαLMaĤΣ
µνγ

µνχi + γµψjµχ̄iλ
j
a −

1
2γ

µψiµχ̄jλ
j
a (5.51)

− 1
2λ

j
bλ̄
b
jλai − λ

j
aλ̄biλ

b
j + 2λjbλ̄

b
iλaj −

1
4χjχ̄

jλai −
1
2χiχ̄

jλaj

+ gĀ2a
j
iγ
µψjµ − gA2ai

jχj + gA2aj
jχi + 2gĀabijλbj + 2

3gĀ2(ij)λ
j
a ,
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γµρ̂iµν =χi
(
P̂ν − χ̄jψjν

)
+ 2λaj

(
P̂aijν + 2λ̄a[iψj]ν + εijklλ̄

k
aψ

l
ν

)
+ IΛΣΠΛ

MαVαLMijĤΣ+
µν

(
ψjµ − γµρψjρ

)
− IΛΣΠΛ

MαVαLMaĤΣ−
µν γ

µλ
a
i + IΛΣΠΛ

Mα(Vα)∗LMijĤΣ−
µν γ

µχj

− 1
2εijklγ

µρψj[µ|λ̄
k
aγ|ν]ρλ

al + 1
4εijklψ

jµλ̄kaγµνλ
al

+ 1
2γ(µ|ψj|ν)χ̄iγ

µχj + 1
4γ

µψjµχ̄iγνχ
j − 1

4γµνρψ
µ
j χ̄iγ

ρχj

− 1
8γνψiµχ̄jγ

µχj − 1
4γ

µψiµχ̄jγνχ
j + 1

8γµνρψ
µ
i χ̄jγ

ρχj

+ γ(µ|ψj|ν)λ̄
a
i γ

µλja + 1
2γ

µψjµλ̄
a
i γνλ

j
a −

1
2γµνρψ

µ
j λ̄

a
i γ

ρλja

− 1
2

(
γµψiν + 1

2γνψiµ
)
λ̄
a
jγ

µλja + 1
4γµνρψ

µ
i λ̄

a
jγ

ρλja

− εijklγµχjψ̄kµψlν −
1
2γνλaj λ̄

a
i χ

j + gĀ1ij

(
ψjν −

1
3γµνψ

jµ
)

+ 1
3Ā2jiγνχ

j + gA2ai
jγνλ

a
j . (5.52)

The terms on the right-hand sides of equations (5.50)–(5.52) that contain ĤΛ
µν can be

written in a manifestly SL(2,R) × SO(6,n)-covariant form in terms of GMα
µν as

γµD̂µχi ⊃ 2IΛΣΠΛ
Mα(Vα)∗LMijĤΣ−

µν γ
µψjν − 1

2IΛΣΠΛ
Mα(Vα)∗LMaĤΣ

µνγ
µνλ

a
i

=− i

4V
∗
αLMijGMα

νρ γµγνρψjµ −
1
2εijklγ

µγνρψjµψ̄
k
νψ

l
ρ + γµγνρψ

j
µχ̄[iγ

νψρj] (5.53)

+ i

4V
∗
αLMaGMα

µν γµνλ
a
i + γµνλ

a
i λ̄ajγµψ

j
ν ,

γµD̂µλai ⊃IΛΣΠΛ
Mα(Vα)∗LMaĤΣ+

µν γ
µψνi + 1

2IΛΣΠΛ
Mα(Vα)∗LMijĤΣ

µνγ
µνλja

+ 1
4IΛΣΠΛ

MαVαLMaĤΣ
µνγ

µνχi

= i

8V
∗
αLMaGMα

νρ γµγνρψiµ + 1
2γ

µγνρψiµλ̄ajγνψ
j
ρ (5.54)

+ i

4V
∗
αLMijGMα

µν γµνλja + 1
2εijklγ

µνλjaψ̄
k
µψ

l
ν − γµνλjaχ̄[i|γµψ|j]ν

+ i

8VαLMaGMα
µν γµνχi −

1
2γ

µνχiλ̄
j
aγµψjν ,

γµρ̂iµν ⊃IΛΣΠΛ
MαVαLMijĤΣ+

µν

(
ψjµ − γµρψjρ

)
− IΛΣΠΛ

MαVαLMaĤΣ−
µν γ

µλ
a
i + IΛΣΠΛ

Mα(Vα)∗LMijĤΣ−
µν γ

µχj

=− i

8VαLMijGMα
ρσ γµγρσγνψ

j
µ + 1

2γ
µγρσγνψ

j
µ

(
ψ̄iρψjσ −

1
2εijklχ̄

kγρψ
l
σ

)
(5.55)

− i

8VαLMaGMα
µρ γµργνλ

a
i + 1

2γ
µργνλ

a
i λ̄

j
aγµψjρ

+ i

8V
∗
αLMijGMα

µρ γµργνχ
j + 1

4γµργνχ
j
(
εijklψ̄

kµψlρ − 2χ̄[iγ
µψρj]

)
.
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5.4 Closure of the supersymmetry algebra

Let us now discuss the closure of the supersymmetry transformation rules of section 5.2.
The commutator of two consecutive local supersymmetry transformations, δQ(ε1) and
δQ(ε2), parametrized by left-handed Weyl spinors εi1 and εi2 respectively and their charge
conjugates, has the following expression:

[δQ(ε1), δQ(ε2)] = δcgct(ξµ) + δLorentz(λab) + δQ(ε3) + δSO(2)(Λ)
+ δSU(4)(Λij) + δSO(n)(Λab) + δgauge(ζMα) + δtensor(ΞMN

µ ,Ξαβµ ) , (5.56)

where the first term denotes a covariant general coordinate transformation with parameters

ξµ = ε̄2iγ
µεi1 + ε̄i2γ

µε1i , (5.57)

which is defined by [47, 48] (see [49] for a review)

δcgct(ξµ) ≡ δgct(ξµ)− δLorentz(ξµωµab)− δQ(ξµψiµ)− δSO(2)(ξµAµ)

− δSU(4)(ξµω
j
i µ)− δSO(n)(ξµω b

a µ)− δgauge(ξµAMα
µ ) (5.58)

− δtensor
(
ξνBMN

νµ + εαβξ
νA[M |α

ν A|N ]β
µ , ξνBαβ

νµ − ηMNξ
νAM(α|

ν AN |β)
µ

)
,

where δgct(ξµ) is a general coordinate transformation and Aµ, ωijµ and ωabµ are the com-
ponents of the ungauged SO(2), SU(4) and SO(n) one-form connections A, ωij and ωa

b

respectively, which have been defined in section 2. The parameters of the remaining trans-
formations that appear on the right-hand side of (5.56) are given by

λab =
(1

2εijklε̄
i
1ε
j
2λ̄

k
aγabλ

al + 2IΛΣΠΛ
MαVαLMij ε̄

i
1ε
j
2e
µ
ae
ν
b ĤΣ+

µν + c.c.
)

+ 1
2
(
ε̄1iγabcε

j
2 − ε̄2iγabcε

j
1

)
χ̄jγ

cχi − 1
4
(
ε̄1iγabcε

i
2 − ε̄2iγabcεi1

)
χ̄jγ

cχj

+
(
ε̄1iγabcε

j
2 − ε̄2iγabcε

j
1

)
λ̄
a
jγ

cλia −
1
2
(
ε̄1iγabcε

i
2 − ε̄2iγabcεi1

)
λ̄
a
jγ

cλja (5.59)

+
(
−2

3gĀ1ij ε̄
i
1γabε

j
2 + c.c.

)
,

ε3i = εijklχ
j ε̄k1ε

l
2 , (5.60)

Λ =− i

2
(
ε̄1iγµε

j
2 − ε̄2iγµε

j
1

)
χ̄jγ

µχi , (5.61)

Λij =
(
ε̄2iγµε

j
1λ̄

a
kγ

µλka + ε̄2kγµε
k
1λ̄

a
i γ

µλja −
1
2δ

j
i ε̄2kγµε

k
1λ̄

a
l γ

µλla

− ε̄2kγµεj1λ̄
a
i γ

µλka − ε̄2iγµεk1λ̄
a
kγ

µλja + 1
2δ

j
i ε̄2kγµε

l
1λ̄

a
l γ

µλka − (1↔ 2)
)

+ εiklmε̄
k
1ε
l
2λ̄

j
aλ

am + 1
4εiklmε̄

(j
1 γµνε

k)
2 λ̄

l
aγ

µνλam (5.62)

− εjklmε̄1kε2lλ̄aiλam −
1
4ε

jklmε̄1(i|γµνε2|k)λ̄
a
l γ

µνλam ,
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Λab = 2ε̄i1λja
(
2ε̄2[iλ

b
j] + εijklε̄

k
2λ

bl
)
− (1↔ 2) + c.c. , (5.63)

ζMα =− 2(Vα)∗LMij ε̄1iε2j + c.c. , (5.64)

ΞMNµ = 4iL[M
ikLN ]jk

(
ε̄1iγµε

j
2 − ε̄2iγµε

j
1

)
, (5.65)

Ξαβµ =Mαβ

(
ε̄1iγµε

i
2 − ε̄2iγµεi1

)
. (5.66)

In particular, for the vector gauge fields AMα
µ we have

[δQ(ε1), δQ(ε2)]AMα
µ =− ξνGMα

µν − δQ(ξνψiν)AMα
µ + δQ(ε3)AMα

µ + δgauge(ζNβ)AMα
µ

+ δtensor(ΞNPν ,Ξβγν )AMα
µ (5.67)

and, since

−ξνHMα
µν = δgct(ξν)AMα

µ − δgauge(ξνANβν )AMα
µ

− δtensor
(
ξρBNP

ρν + εβγξ
ρA[N |β

ρ A|P ]γ
ν , ξρBβγ

ρν − ηNP ξρAN(β|
ρ AP |γ)

ν

)
AMα
µ (5.68)

and GΛ
µν ≡ HΛ

µν , the commutator of two supersymmetry transformations closes on the
electric vectors AΛ

µ . It also closes on the linear combinations ΠΛ
MαΘαM

NPAΛµ and
ΠΛ

M(αξ
M
β)AΛµ of the magnetic vector fields, if the equations of motion (5.44) and (5.45)

respectively hold.
Furthermore, for the two-form gauge fields BMα

µν we find

[δQ(ε1), δQ(ε2)]BMα
µν = δQ(ε3)BMα

µν + δgauge(ζNβ)BMα
µν + δtensor(ΞNPρ ,Ξβγρ )BMα

µν

+ εµνρσξ
ρ
[
ΘαM

NP

(
LNaL

P
ijP̂

aijσ + 2LNaLPbλ̄aiγσλib

+ LNikL
Pjkχ̄jγ

σχi + 2LNikLPjkλ̄
a
jγ

σλia

)
+ iξMβ

(1
2V

αVβ(P̂ σ)∗ − 1
2(Vα)∗(Vβ)∗P̂ σ (5.69)

+ 3
4M

αβχ̄iγ
σχi + 1

2M
αβλ̄

a
i γ

σλia

)]
+ ΘαM

NP εβγξ
ρANβ[µ G

Pγ
ν]ρ + δα(βξ

M
γ) ηNP ξ

ρANβ[µ G
Pγ
ν]ρ ,

up to terms that contain the gravitini. If the equations of motion (5.49) hold, the ac-
tion of the commutator [δQ(ε1), δQ(ε2)] on the antisymmetric tensor fields ΠΛ

MαB
Mα
µν

is given by (5.56) with an additional term that corresponds to a transformation of the
form (5.35) with

∆ΛΣ
µν = −1

2ΠΛ
MαΠΣN

βΘαM
NP ξµA

Pβ
ν + 1

2ΠΛ
MαΠΣ (α|

N ξMβ ξµA
N |β)
ν . (5.70)

In addition, the commutator [δQ(ε1), δQ(ε2)] closes on the fermionic fields, provided
the equations of motion for the fermions hold.
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5.5 Comments

Equations (5.44) and (5.45) relate the field strengths of the magnetic vector fields HΛµν
to the dual field strengths GΛµν , at least as far as those components projected by the
embedding tensor are concerned, allowing to express the former in terms of HΛ

µν and the
matter fields via (5.28). On the other hand, equation (5.49) is a duality equation between
the two-form gauge fields and the scalars that relates the field strengths of the former to the
gauge and the matter fields. Therefore, equations (5.44), (5.45) and (5.49) determine the
field strengths of the magnetic vectors and the two-form gauge fields in terms of the other
fields. As pointed out in [36], altogether these equations are not dynamical, but, together
with the vector and tensor gauge invariances, they ensure that the number of propagating
degrees of freedom has not changed upon the introduction of magnetic vector and two-form
gauge fields in the gauged theory. In fact, this gauge fixing can be implemented in various
ways, thus determining different descriptions of the propagating degrees of freedom in terms
of the fields of the theory. For instance, one can always dispose of the antisymmetric tensor
fields by fixing the tensor-gauge transformations and solving equations (5.44), (5.45) in the
tensor fields as functions of the other fields. The result is a theory in the electric frame
of the embedding tensor, with no tensor fields and magnetic vectors [36]. Alternatively,
in certain cases, the gauge invariance associated with the magnetic vector fields AΛµ can
be fixed in order to eliminate a number of scalar fields. Then equation (5.49) is solved in
AΛµ as functions of the remaining fields including the tensor ones. Upon inserting these
expressions for AΛµ in the Lagrangian, the net result is a gauged supergravity, in the
original symplectic frame, in which a number of scalar fields have been dualized to tensor
ones, which now encode propagating degrees of freedom.

As is often the case in string/M-theory compactifications, the low-energy degrees of
freedom in the resulting four-dimensional consistent truncation are represented by dynam-
ical tensor fields rather than the corresponding dual scalars. Half-maximal gauged models
of this kind are obtained, within the general setting described here, by partly fixing the
gauge freedom and solving equation (5.49) along the lines explained above.

Let us end this section by expanding on the notion of the electric frame of the em-
bedding tensor. The general formulation of the gauging procedure discussed here, along
the lines of [36], features a characteristic redundancy in the description of the propagating
degrees of freedom, due to the presence of antisymmetric tensor fields and magnetic vector
potentials. Yhese extra ingredients are needed since the gauging is performed starting from
an ungauged model which is formulated in a generic symplectic frame that does not nec-
essarily coincide with the electric frame of the embedding tensor. The latter is defined as
the frame in which the gauging only involves electric vector fields and thus the embedding
tensor has only electric components. As a characteristic feature of the embedding tensor,
this frame can be defined in a G-invariant fashion as follows. The embedding tensor is
described by the rectangular matrix ΘMA, where A = 1, . . . , dim(G) is the index of the ad-
joint representation of G: A = ((αβ), [MN ]). If r is its rank, this matrix can be rewritten
using the rank-factorization, in the following form [29]:

ΘMA =
r∑
I=1

ϑM
IWI

A , (5.71)
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where ϑI ≡ (ϑMI) are r independent vectors in the 2(6 +n)-dimensional symplectic vector
space Vv of the electric and magnetic vector fields, while WI ≡ (WI

A) are r independent
vectors in the vector space of the Lie algebra of G. The locality constraint (4.16) then
implies:

CMN ϑM
IϑN

J = 0 , ∀I, J = 1, . . . , r , (5.72)

that is ϑI generate an isotropic subspace of the symplectic vector space Vv and thus r ≤
6 + n. We can complete Span(ϑI) to a Lagrangian (i.e. maximal isotropic) subspace of Vv
by adding 6 + n − r vectors ϑi, i = 1, . . . , 6 + n − r, to define a system of 6 + n vectors
ϑΛ̂ ≡ {ϑI , ϑi} satisfying the property:

CMN ϑM
Λ̂ϑN

Σ̂ = 0 , ∀Λ̂, Σ̂ = 1, . . . , 6 + n . (5.73)

The choice of ϑi is not unique and we will choose them such that ϑΛ i = 0. Given the
Lagrangian subspace Span(ϑΛ̂) of Vv we can find another Lagrangian subspace Span(ϑΛ̂),
disjoint from the former, and choose their bases such that the following condition is satisfied:

CMN ϑM
Λ̂ϑN Σ̂ = δΛ̂

Σ̂ , ∀Λ̂, Σ̂ . (5.74)

The matrix
EM

N̂ ≡ (ϑMΛ̂, ϑM Λ̂) (5.75)

is then symplectic and maps the original frame to the new one labeled by the index M̂:
V M̂ = (V Λ̂, VΛ̂). The latter is the electric frame of the embedding tensor. To see this we
first write the inverse matrix (E−1)M̂

M:

(E−1)Λ̂
M = CMN ϑN Λ̂ , (E−1)Λ̂M = −CMN ϑN

Λ̂ , (5.76)

and then the embedding tensor in the new frame:

ΘM̂
A = (E−1)M̂

MΘMA . (5.77)

We find
ΘI

A =WI
A , Θi

A = ΘI A = Θi A = 0 . (5.78)

Since the electric frame is a characteristic feature of Θ, its definition is G-invariant, being
based on the factorization (5.71) in which the index I is G-invariant.

Of the tensor fields BAµν , only the combinations

ΘΛABAµν = ϑΛ IWI
ABAµν ,

namely the r independent tensor fields

BI µν ≡ WI
ABAµν ,

enter the Lagrangian. This formulation allows us to intrinsically distinguish those vector
fields AIµ which enter the gauge connection (and whose field strengths are covariantly
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closed) from those AIµ which are Stückelberg-coupled to the tensor fields. This is done by
writing the vector potentials in the electric frame:

AM̂µ = EM
M̂AMµ = (AIµ, Aiµ, AIµ, Aiµ) ,

so that the symplectic-invariant gauge connection takes the form

g AMµ XM = g AM̂µ XM̂ = g AIµXI ,

whereXI ≡ WI
A tA are the independent gauge generators. The components of the modified

field strengths HM̂µν , defined in (4.25), in the electric frame are (in form-notation)

HI = F̂ I , H i = F̂ i , HI = F̂I −
g

2 BI , Hi = F̂i . (5.79)

From (5.39) it follows that D̂[µF̂
I
νρ] = D̂[µF̂

i
νρ] = D̂[µF̂i νρ] = 0, while F̂I µν are the only

components of the field strengths for which D̂[µF̂I νρ] 6= 0. We also see that only the vectors
AIµ, which are magnetic in the electric frame, are Stückelberg-coupled to the tensor fields
and transform, under a tensor-gauge transformation (4.29), as

δΞAIµ = g

2 ΞI µ , (5.80)

where ΞI µ ≡ WI
A ΞAµ. All other components of AM̂ are inert under the transforma-

tions (4.29). Choosing g ΞI µ = −2AI µ we can dispose of AI µ. As explained above,
equations (5.44), (5.45) can then be solved in the transformed tensor fields B′I as func-
tions of the other fields. Replacing then the resulting expressions for B′I in the Lagrangian
amounts to effectively performing the rotation to the electric frame.

The rotation to the electric frame can also be done directly at the level of the field
equations and Bianchi identities, which are formally symplectic covariant, by means of
the matrix E. This amounts to replacing everywhere the index M by M̂. In particular,
the twisted self-duality condition implies that GΛ̂ can be expressed as the variation, with
respect to GΛ̂, of a new Lagrangian, in which the kinetic terms of the vector fields are
written in terms of IΛ̂Σ̂, RΛ̂Σ̂, G

Λ̂ and ∗GΛ̂. The fact that GΛ̂ = H Λ̂ follows directly from
equations (5.44), (5.45) and from having chosen ϑΛ i = 0.4

6 Vacua, masses, gradient flow and supertrace relations

6.1 Gradient flow relations

It is known that in gauged supergravities the scalar potential is related to the fermion shifts
of the supersymmetry transformations [30]. As noted in [50] and reviewed in [30], super-
gravity actually provides a structure of gradient flow relations between the fermion shifts
and the fermion mass matrices that are needed in establishing supersymmetry invariance,
though they are largely due to the properties and structure of the scalar σ-model. Since

4Indeed HI−GI = ϑM
I(HM−GM) = 0, by virtue of (5.44), (5.45), while Hi−Gi = ϑM

i(HM−GM) =
ϑΛ

i(HΛ − GΛ) = 0, since ϑΛ i = 0 and GΛ = HΛ in the original frame.
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this type of relations played a rather important role in establishing and understanding
properties of various vacua, black hole and domain-wall solutions, we give here the relevant
expressions:

D̂Aij1 =A
(ij)
2 P̂ ∗ + 3Ā2

a(i
kP̂a

j)k, (6.1)

D̂Aij2 =− 3A2
a
k

(iP̂a
j)k − 3

2A2
a
k
kP̂a

ij + 1
2ε

ijklĀ2klP̂ +Aij1 P̂ , (6.2)

D̂A2
a
j
i =− Ā2

ai
jP̂ + 1

2δ
i
jĀ2

ak
kP̂ + 2AabikP̂bjk −

1
2δ

i
jA

abklP̂bkl

− 1
6δ

i
jA

kl
2 P̂

a
kl −

2
3Ā1jkP̂

aik + 2
3A

(ik)
2 P̂ ajk , (6.3)

D̂Aab
ij =1

2ε
ijklĀabklP̂ − 4A2[a|k

[iP̂|b]
j]k −A2[a|k

kP̂|b]
ij +AabcP̂

cij , (6.4)

where

Aabc ≡ fαMNPVαLMaL
N
bL

P
c. (6.5)

The derivation follows straightforwardly from (4.42), (4.51), (4.52) and the definition of
the various A tensors.

6.2 Vacua

The same relations can be used as a guide to compute derivatives of the scalar potential

V = −e−1Lpot = g2
(
−1

3A
ij
1 Ā1ij + 1

9A
ij
2 Ā2ij + 1

2A2ai
jĀ2

ai
j

)
. (6.6)

In particular, the critical points of (6.6) will provide us with the vacua of the gauged
N = 4 supergravity models. In order to derive the conditions satisfied by these vacua,
we follow [51] and compute the variation of the scalar potential that is induced by the
action of an infinitesimal rigid SL(2,R) × SO(6,n) transformation that is orthogonal to the
isotropy group SO(2) × SU(4) × SO(n) on the coset representatives Vα and LMM . Such a
transformation can be written as

δVα = ΣV∗α, δLM
ij = Σa

ijLM
a, δLM

a = Σa
ijLM

ij , (6.7)

where Σ denotes the complex SL(2,R)/SO(2) scalar fluctuation and Σaij = (Σa
ij)∗ =

1
2εijklΣa

kl are the SO(6,n)/[SO(6) × SO(n)] scalar fluctuations. The variations of the A
tensors (5.12)–(5.15) under (6.7) are given by the gradient flow relations (6.1)–(6.4) with
the replacements D̂ → δ, P̂ → Σ and P̂aij → Σaij . Then, it follows that the variation of
the scalar potential is given by

δV = g2
(
XΣ +X∗Σ∗ +XaijΣaij

)
, (6.8)
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where

X = − 2
9A

ij
1 Ā2ij + 1

18ε
ijklĀ2ijĀ2kl −

1
2Ā2a

i
jĀ2

aj
i + 1

4Ā2a
i
iĀ2

aj
j , (6.9)

Xaij = − 2
3A

[i|k
1 A2

a
k
|j] − 1

3A
[i|k
2 Ā2

a|j]
k −

1
3A

k[i|
2 Ā2

a|j]
k −

1
4A

[ij]
2 Ā2

ak
k

−Aab[i|kĀ2b
|j]
k + 1

4A
abijĀ2b

k
k + εijlm

(
− 1

3Ā1klĀ2
ak
m −

1
3Ā2(kl)A2

a
m
k (6.10)

− 1
8Ā2lmA2

a
k
k + 1

2Ā
ab
klA2bm

k + 1
8Ā

ab
lmA2bk

k
)
.

Note that, by construction, Xa
ij ≡ (Xaij)∗ = 1

2εijklX
akl. The stationary points of the

scalar potential correspond to solutions of the following system of 6n+ 2 real equations

X = 0 , Xaij = 0 . (6.11)

6.3 Masses

When analyzing supergravity vacua, one important element is the resulting spectrum of
the fluctuations. We therefore focus now on the computation of the mass matrices of all
the fields in our theory, assuming a Minkowski vacuum. While most of the formulae for the
mass matrices do not depend on the value of the cosmological constant, the supersymmetry
breaking pattern depends heavily on the vacuum energy, because of the super-Higgs mech-
anism by which some or all gravitini acquire a mass, which eventually affects the correct
definition of the spin-1/2 mass matrix.

6.3.1 Scalar masses

We can compute the mass spectrum of the scalar fields by taking the second variation of the
scalar potential under (6.7), using (6.8)–(6.10) and the gradient flow equations (6.1)–(6.4).
The result however does not describe proper masses unless the scalar fluctuations are
canonically normalized. For this reason we introduce the real scalar fluctuations

Σ1 =
√

2ReΣ, Σ2 =
√

2 ImΣ, Σam = −ΓmijΣa
ij , (6.12)

and substitute the expansions of the coset representatives around their vacuum expectation
values 〈Vα〉, 〈LMij〉 and 〈LMa〉, namely

Vα = 〈Vα〉+ 〈V∗α〉Σ +O(Σ2) , (6.13)

LM
ij = 〈LMij〉+ 〈LMa〉Σa

ij +O(Σ2
aij) , (6.14)

LM
a = 〈LMa〉+ 〈LMij〉Σa

ij +O(Σ2
aij) , (6.15)

into the kinetic terms for the scalars,

e−1Lscalar kin =− P̂ ∗µ P̂µ −
1
2 P̂aijµP̂

aijµ

⊃− 1
4(Vα)∗Vβ∂µV∗α∂µVβ −

1
2L

MaLNa∂µLMij∂
µLNij (6.16)
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so that the kinetic and mass terms for the scalar fluctuations take the following form:

e−1L ⊃− 1
2(∂µΣ1)(∂µΣ1)− 1

2(∂µΣ2)(∂µΣ2)− 1
2δ

abδmn(∂µΣam)(∂µΣbn)

− 1
2(M2

0)1,1Σ2
1 −

1
2(M2

0)2,2Σ2
2 − (M2

0)1,amΣ1Σam − (M2
0)2,amΣ2Σam (6.17)

− 1
2(M2

0)am,bnΣamΣbn ,

which is the appropriate one for canonically normalized fluctuations. The explicit expres-
sion for the squared mass matrix of the scalarsM2

0 is then given by

(M2
0)1,1 = (M2

0)2,2 = g2
(
−2

9A
ij
1 Ā1ij −

2
9A

(ij)
2 Ā2ij + 2

9A
[ij]
2 Ā2ij +A2ai

jĀ2
ai
j

)
, (6.18)

(M2
0)1,am = (M2

0)am,1 =
√

2
4 g2

(
−Ā2ijĀ2

ak
k + 4ĀabikĀ2b

k
j − ĀabijĀ2b

k
k

)
Γmij + c.c. ,

(6.19)

(M2
0)2,am = (M2

0)am,2 = i
√

2
4 g2

(
−Ā2ijĀ2

ak
k + 4ĀabikĀ2b

k
j − ĀabijĀ2b

k
k

)
Γmij + c.c. ,

(6.20)

(M2
0)am,bn = 1

2g
2
(
2Ā2

aj
kA2

b
l
i −AacijĀbckl

)
ΓmijΓnkl

+ 1
2g

2
(
− 2A2

a
k
jĀ2

bk
l + 2Ā2

aj
kA2

b
l
k − 2A2

a
l
kĀ2

bj
k +A2

a
k
kĀ2

bj
l

+A2
a
l
jĀ2

bk
k −

1
3εklmnA

jk
1 A

abmn − 1
3ε

jkmnĀ1klĀ
ab
mn + 2A(jk)

2 Āabkl

+ 2Ā2(kl)A
abjk +AabcĀ2c

j
l − ĀabcA2cl

j − 4AacjkĀbckl
)
ΓmijΓnil

+ 1
4g

2A2
b
k
kĀ2

al
lΓmijΓnij (6.21)

+ 1
2g

2
(1

3A
ij
2 Ā2kl − 2A2cl

iĀ2
cj
k

)
δabΓmijΓnkl

+ 1
2g

2
(
− 8

9A
jk
1 Ā1kl + 2A2cl

kĀ2
cj
k −A2ck

kĀ2
cj
l −A2cl

jĀ2
ck
k

+ 8
9A

(jk)
2 Ā2(kl)

)
δabΓmijΓnil + 1

8g
2A2ck

kĀ2
cl
lδ
abΓmijΓnij

+ (a↔ b,m↔ n).

6.3.2 Vector masses

In order to identify the squared mass matrix for the vector gauge fields AMα
µ , we recall

from subsection (5.3) that the equations of motion for the electric and the magnetic vectors
are given by

εµνρσ∂νGMα
ρσ = ig ξMβ

(
VαVβ(P̂µ)∗ − (Vα)∗(Vβ)∗P̂µ

)
+ 2gΘαM

NPL
N
aL

P
ijP̂

aijµ + . . . ,

(6.22)
where the ellipses represent terms of higher order in the fields that are not relevant for the
present analysis. Using the duality relation (5.32) and that GMα

µν is on-shell identified with
HMα
µν , we can write (6.22) as

e−1∂ν(eHMανµ) = (M2
1)Mα

NβA
Nβµ + . . . , (6.23)
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where

(M2
1)Mα

Nβ = i

4g
2MMP ξγP ξ

δ
N

(
(Vα)∗(Vγ)∗VβVδ − VαVγV∗βV∗δ

)
+ g2ΘγPQRΘβNSTM

MPMαγLQaL
SaLRijL

T ij (6.24)

is the squared mass matrix of the vector fields.
The matrix (6.24) is a (12 + 2n)× (12 + 2n) matrix. However, the locality constraint

on the embedding tensor implies that 6 + n vector fields are not physical. Therefore, at
least half of the eigenvalues of this matrix are zero at any vacuum.

6.3.3 Fermion masses

For the computation of the fermion mass matrices one has to focus on the subsector of the
Lagrangian reported here

e−1L ⊃ 1
2R(e) +

(
iεµνρσψ̄iµγνDρψiσ −

1
2 χ̄

iγµDµχi − λ̄iaγµDµλ
a
i

− 2gĀ2
aj
iχ̄
iλaj + 2gĀ2

ai
iχ̄
jλaj + 2gAabij λ̄aiλbj + 2

3gA
ij
2 λ̄aiλ

a
j (6.25)

− gψ̄iµγµGi −
2
3gĀ1ijψ̄

i
µγ

µνψjν + c.c.
)
,

where R(e) is the Ricci scalar associated with the torsion-free spin connection ωµab(e),

Dµψiν ≡ ∂µψiν + 1
4ωµab(e)γ

abψiν (6.26)

and similarly for the spin-1/2 fermions and the mixing terms between the gravitini and the
spin-1/2 fields single out the combination

Gi ≡
2
3Ā2jiχ

j + 2A2ai
jλ
a
j , (6.27)

which provides the goldstini of the broken supersymmetries, and the coset representatives
are understood to be replaced by their vacuum expectation values.

In order to disentangle the spin-3/2 and the spin-1/2 fields we need to fix the vacuum
and describe the super-Higgs mechanism. From now on, we therefore assume that we are
at a critical point of the scalar potential where

V = 0 ⇐⇒ 2
3A

ij
1 Ā1ij −

2
9A

ij
2 Ā2ij −A2ai

jĀ2
ai
j = 0 . (6.28)

At such points, the goldstini transform linearly under supersymmetry as

δεGi = 4
3gĀ1ijA

jk
1 εk , (6.29)

where we have used that the Ward identity (5.16) and the vanishing cosmological constant
implies

2
3A

jk
1 Ā1ik = 2

9A
kj
2 Ā2ki +A2ai

kĀ2
aj
k . (6.30)
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The number of unbroken supersymmetries is equal to the number of linearly independent
SU(4) vectors εi that are solutions of the equation δεGi = 0, which is the number of
zero eigenvalues of the matrix in SU(4) space Ā1ijA

jk
1 . For computational simplicity, we

consider Minkowski vacua that completely break N = 4 supersymmetry, which means
that the matrix Ā1ijA

jk
1 has no zero eigenvalue and thus is invertible, but the final results

can be easily applied to vacua with partially broken supersymmetry with the appropriate
modifications. In any case, from now on we assume that the symmetric matrix in SU(4)
space Aij1 is invertible and we denote its inverse by (A−1

1 )ij .
In order to eliminate the mass mixing terms between the gravitini and the spin-1/2

fermions,
e−1Lmix = −gψ̄iµγµGi + c.c. , (6.31)

we follow [52] and we perform the following redefinition of the gravitini

ψiµ → ψiµ + 3
4g (A−1

1 )ij(Ā−1
1 )jkDµGk −

1
4(A−1

1 )ijγµGj , (6.32)

followed by a shift of the vielbein

eaµ → eaµ + 3
4g
(
(Ā−1

1 )ij(A−1
1 )jkḠkγaψiµ + c.c.

)
, (6.33)

and a further redefinition of the vielbein as

eaµ → eaµ +
[ 3

32g2 (Ā−1
1 )ij(A−1

1 )jk(A−1
1 )ilḠk

(
3(Ā−1

1 )lmγaDµGm − geaµGl
)

+ c.c.
]
. (6.34)

After all these steps (6.25) becomes (up to terms at least quartic in the fermions)

e−1L ⊃ 1
2R(e) +

(
iεµνρσψ̄iµγνDρψiσ −

1
2 χ̄

iγµDµχi − λ̄iaγµDµλ
a
i

+ 3
8(Ā−1

1 )ij(A−1
1 )ikḠjγµDµGk − 2gĀ2

aj
iχ̄
iλaj + 2gĀ2

ai
iχ̄
jλaj (6.35)

+ 2gAabij λ̄aiλbj + 2
3gA

ij
2 λ̄aiλ

a
j −

1
2g(Ā−1

1 )ijḠiGj −
2
3gĀ1ijψ̄

i
µγ

µνψjν + c.c.
)
.

In particular, the kinetic terms for the spin-1/2 fermions are

e−1L 1
2 ,kin =− 1

2 χ̄iγ
µDµχi − λ̄iaγµDµλ

a
i + 3

8(A−1
1 )ij(Ā−1

1 )ikḠjγµDµGk + c.c.

=− 1
2
(
χ̄i
√

2λ̄ai
)
K 1

2
γµDµ

(
χj√
2λbj

)
+ c.c. , (6.36)

where

K 1
2

=

 (K 1
2
)ij (K 1

2
)i,bj

(K 1
2
)ai,j (K 1

2
)ai,bj



≡

δij − 1
3(Ā−1

1 )kl(A−1
1 )lmAim2 Ā2jk −

√
2

2 (Ā−1
1 )kl(A−1

1 )lmAim2 A2bk
j

−
√

2
2 (Ā−1

1 )kl(A−1
1 )lmĀ2a

m
iĀ2jk δabδ

j
i − 3

2(Ā−1
1 )kl(A−1

1 )lmĀ2a
m
iA2bk

j

 (6.37)
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is the kinetic matrix of the spin-1/2 fermions, while the mass terms for these fermions are
given by

e−1L 1
2 ,mass =− 2gĀ2

aj
iχ̄
iλaj + 2gĀ2

ai
iχ̄
jλaj + 2gAabij λ̄aiλbj (6.38)

+ 2
3gA

ij
2 λ̄aiλ

a
j −

1
2g(Ā−1

1 )ijḠiGj + c.c.

= 1
2
(
χ̄i
√

2λ̄ai
)
M 1

2

(
χj√
2λbj

)
+ c.c. , (6.39)

where

M 1
2

=

 (M 1
2
)ij (M 1

2
)ibj

(M 1
2
)aij (M 1

2
)ai,bj



≡ g

 0 −
√

2Ā2
bj
i +
√

2δji Ā2
bk
k

−
√

2Ā2
ai
j +
√

2δijĀ2
ak
k 2Aabij + 2

3δ
abA

(ij)
2

 (6.40)

+ g

 −4
9(Ā−1

1 )klĀ2ikĀ2jl −2
√

2
3 (Ā−1

1 )klĀ2ikA2
b
l
j

−2
√

2
3 (Ā−1

1 )klĀ2jkA2
a
l
i −2(Ā−1

1 )klA2
a
k
iA2

b
l
j


is the mass matrix for the spin-1/2 fermions. In the (χj ,

√
2λaj) basis, the goldstini Gi =

2
3A

ji
2 χj + 2Ā2a

i
jλ
aj are represented by the column vectors

Gi =

Gij

Giaj

 ≡
 2

3A
ji
2

√
2Ā2a

i
j

 (6.41)

and they are null eigenvectors of the kinetic matrix (6.37). This can be verified using (6.30),
which implies

(K 1
2
)ijGkj + (K 1

2
)i,ajGkaj = 0, (6.42)

(K 1
2
)ai,jGkj + (K 1

2
)aibjGkbj = 0 . (6.43)

Therefore, the goldstini have disappeared from the kinetic Lagrangian. Furthermore, us-
ing (6.30), the quadratic constraints on the embedding tensor expressed in terms of the A
tensors (D.25), (D.27) and (D.34) and the critical point condition X = 0, we obtain

(M 1
2
)ijGkj + (M 1

2
)iajGkaj = 0 . (6.44)

On the other hand, by making use of (6.30), the constraints (D.31), (D.38), (D.47), (D.54)
and (D.55), as well as the vacuum conditions Xaij = 0, one finds

(M 1
2
)aijGkj + (M 1

2
)ai,bjGkbj = 0 . (6.45)

These equations show that the goldstini are also null eigenvectors of the mass matrixM 1
2
.

Thus, the goldstini have been removed from the fermionic mass terms as well. This is
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the super-Higgs mechanism, in which the goldstini are “eaten” by the gravitini, which
become massive.

The same redefinitions (6.32)–(6.34) also diagonalize the equations of motion for the
gravitini, which now become

γµνρDνψiρ = −2
3gĀ1ijγ

µνψjν + . . . , (6.46)

so the mass matrix of the gravitini is given by

(M 3
2
)ij = −2

3gĀ1ij . (6.47)

6.4 Supertrace relations

Having computed the mass matrices for all the fields of the theory at any supersymmetry
breaking Minkowski vacuum, it is natural to ask ourselves what is the expression of the
supertrace of the squared mass matrices

STr(M2) ≡
∑

spins J
(−1)2J(2J + 1)Tr(M2

J)

=Tr
(
M2

0

)
− 2Tr

(
M†1

2
M 1

2

)
+ 3Tr

(
M2

1

)
− 4Tr

(
M†3

2
M 3

2

)
. (6.48)

This supertrace (and the analogous ones STr(M2k) for k > 1) can be used as a phe-
nomenological guide on the possible mass splittings of the vacuum, but it also gives us
some interesting information on the ultraviolet behaviour of the theory. For instance, it is
known [53, 54] that STr(M2) controls the quadratic divergences of the one-loop potential
and in N = 1 supergravity it is in general non vanishing, while the quartic supertrace
STr(M4) controls the logarithmic divergences of the one-loop effective potential. Very lit-
tle is known on the properties of the quadratic and higher supertraces in gauged extended
supergravities. In the case of maximal (N = 8) supergravity in four spacetime dimen-
sions, it has been recently shown [39], by using the vacuum conditions and the quadratic
constraints on the embedding tensor, that STr(M2) = STr(M4) = 0 for all Minkowski
vacua that completely break N = 8 supersymmetry in general and even STr(M6) = 0
at such vacua for special classes of gaugings. Here we make the first step in half-maximal
supergravity, proving that STr(M2) = 0 at any Minkowski vacuum with completely broken
supersymmetry.

The first step is to compute the traces of the squared mass matrices for all the fields and
then simplify them by using the constraints on the A tensors following from the quadratic
constraints on the embedding tensor (see appendix D), the critical point conditions as well
as the vanishing of the vacuum energy.

For the gravitini we have a very simple expression:

Tr
(
M†3

2
M 3

2

)
=
(
M̄ 3

2

)ij (
M 3

2

)
ij

= 4
9g

2Aij1 Ā1ij . (6.49)

For the vector fields we find

Tr(M2
1) = (M2

1)Mα
Mα =

(4
3 + 1

9n
)
g2A

[ij]
2 Ā2ij + 2g2A2ai

jĀ2
ai
j + g2AabijĀabij , (6.50)

where we have used the definition of MMN and the quadratic constraint (D.26).
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For the spin-1/2 fields we have

Tr
(
M†1

2
M 1

2

)
=
(
M̄ 1

2

)ij (
M 1

2

)
ij

+ 2
(
M̄ 1

2

)
ai

j
(
M 1

2

)
j

ai +
(
M̄ 1

2

)
ai,bj

(
M 1

2

)ai,bj
=− 16

9 g
2Aij1 Ā1ij + 4g2A2ai

jĀ2
ai
j + 4

9ng
2A

(ij)
2 Ā2ij (6.51)

+ 4g2AabijĀabij + 32
9 g

2A
[ij]
2 Ā2ij ,

which can be shown by using the conditions (6.11), (6.28) and (6.30) satisfied by Minkowski
vacua and the quadratic constraints (D.25)–(D.27), (D.31), (D.34), (D.38), (D.47), (D.54)
and (D.55) on the A tensors.

Finally, for the scalar fields we find

Tr(M2
0) = (M2

0)1,1 + (M2
0)2,2 + δabδmn(M2

0)am,bn

=− 4
9(3n+ 1)g2Aij1 Ā1ij + 4

9(3n− 1)g2A
(ij)
2 Ā2ij + 1

9 (n+ 24) g2A
[ij]
2 Ā2ij (6.52)

+ 2ng2A2ai
jĀ2

ai
j + 5g2AabijĀabij ,

where we have used the quadratic constraint (D.26).
Altogether, we have that the supertrace of the squared mass eigenvalues is

STr(M2) = 4(n− 1)V = 0 (6.53)

for any number of vector multiplets and for any gauging.

7 Conclusions and discussion

We have constructed the complete Lagrangian that incorporates all gauged N = 4 matter-
coupled supergravities in four spacetime dimensions. The choice of the symplectic frame
has been conveniently parametrized by means of projectors ΠΛ

M and ΠΛM that extract the
electric and magnetic components of a symplectic vector VM = (V Λ, VΛ). These projectors
must satisfy certain properties following from the decomposition of the symplectic form
CMN in any symplectic frame. We have also proven that the supertrace of the squared mass
eigenvalues vanishes for Minkowski vacua that completely break N = 4 supersymmetry
irrespective of the number of vector multiplets and the choice of the gauge group. This
implies that the one-loop effective potential at such vacua has no quadratic divergence.

An interesting but quite involved computation would be that of the quartic supertrace
of the mass matrices for the same class of vacua of N = 4 supergravity. As mentioned in
the previous section, it has been shown in [39] that STr(M4) = 0 for all Minkowski vacua
of any gauged four-dimensional N = 8 supergravity that completely break supersymmetry.
Therefore, this should also hold for the gauged D = 4, N = 4 supergravities with six vector
multiplets that can be obtained by a truncation of a gauged D = 4, N = 8 supergravity,
and, combined with STr(M0) = STr(M2) = 0, it implies that the one-loop effective
potential is finite at all classical Minkowski vacua with completely broken supersymmetry of
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this particular class of N = 4 supergravities. It has been proven in [55] that the irreducible
components fαMNP of the embedding tensor that parametrizes this class of N = 4 gaugings
satisfy two additional quadratic constraints:

fαMNP fβ
MNP = 0 and εαβfα[MNP |fβ|QRS]

∣∣
SD = 0 , (7.1)

where the second condition picks out the self-dual part of the SO(6,6) six-form εαβfα[MNP |
fβ|QRS]. However, we have no reason to expect the quartic supertrace to vanish for all
Minkowski vacua of any gauged D = 4, N = 4 supergravity that completely break super-
symmetry, unless an explicit calculation like the one presented in this work shows it.
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A Conventions

Index conventions:

µ, ν, . . . = 0, . . . , 3 : spacetime indices
a, b, . . . = 0, . . . , 3 : Lorentz indices
α, β, . . . = +,− : SL(2,R) indices
M,N, . . . = 1, . . . , n+ 6 : SO(6,n) indices
α, β, . . . = 1, 2 : SO(2) indices
m,n, . . . = 1, . . . , 6 : SO(6) indices
i, j, . . . = 1, . . . , 4 : SU(4) indices
a, b, . . . = 1, . . . , n : SO(n) indices

We also use underlined capital Latin letters M , N , . . . for SO(6) × SO(n) indices, which
we decompose as M = (m, a).

We use the gamma matrix, spinor and duality conventions of [30]. The Minkowski
metric is given by

ηab = diag(−1, 1, 1, 1). (A.1)
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The gamma matrices, γa, obey the following basic relations

{γa, γb} = 2 ηab 14, (A.2)

γ†0 = −γ0, γ†i = +γi, γTa = ±γa, (A.3)
γa1...ap ≡ γ[a1γa2 . . . γap], (A.4)

γ5 ≡ γ5 ≡ −iγ0γ1γ2γ3 = +iγ0γ1γ2γ3, (A.5)
(γ5)2 = 14, {γ5, γa} = 0, (A.6)

where the last of equations (A.3) means that each gamma matrix is either symmetric or
antisymmetric, as well as the duality relations

γabc = i εabcdγdγ5, i γaγ5 = 1
3!εabcdγ

bcd,

γabcd = −i εabcdγ5, i γ5 = 1
4!εabcdγ

abcd,

γab = i

2ε
abcdγcdγ5,

(A.7)

where εabcd is the totally antisymmetric epsilon tensor with

ε0123 = 1. (A.8)

We define εµνρσ as a totally antisymmetric tensor rather than a tensor density,

εµνρσ ≡ εabcdeaµebνecρedσ . (A.9)

We also introduce the charge conjugation matrix C, satisfying

CT = −C = C−1 = C†, (A.10)
γTa = −CγaC−1, (A.11)

which imply the following symmetry properties

CT = −C, (Cγa)T = (Cγa), (Cγab)T = (Cγab),
(Cγabc)T = −(Cγabc), (Cγabcd)T = −(Cγabcd).

(A.12)

In terms of C, the charge conjugate spinor of a four-component spinor ψ is defined as

ψc = Cψ
T = iCγ0Tψ∗, (A.13)

where
ψ ≡ iψ†γ0 (A.14)

is the Dirac conjugate of ψ. A Majorana spinor is then a spinor that equals its own charge
conjugate,

ψc = ψ , (Majorana condition) (A.15)

and for such a spinor the Dirac conjugate can also be written as

ψ = ψTC . (A.16)
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We therefore find that, for anti-commuting Majorana spinors, the following symmetry
properties hold

ψ1Mψ2 =


+ψ2Mψ1 for M = 14, γabc, γabcd ,

−ψ2Mψ1 for M = γa, γab .
(A.17)

We also introduce chirality projectors

PL ≡
1
2 (14 + γ5) , PR ≡

1
2 (14 − γ5) . (A.18)

Left- and right-handed Weyl spinors ψL,R satisfy the conditions

PL,RψL,R = ψL,R ⇐⇒ γ5ψL,R = ±ψL,R, (A.19)

where the upper sign is for left-handed spinors and the lower for right-handed spinors.
We will often use chirality projections also for Majorana spinors ψ, in which case one

has the relations
(ψL)c = ψR, (ψR)c = ψL, (A.20)

where ψL,R ≡ PL,Rψ, which make manifest the Majorana nature of the field. We also define

ψL ≡ ψR = ψPL = (ψL)TC, ψR ≡ ψL = ψPR = (ψR)TC . (A.21)

We will often need to rewrite 3 or 4-fermion terms and hence Fierz identities will be
extremely useful. We list here the main ones for two spinors:

ψRχR = −1
2χRψR PR + 1

8χRγabψR γ
ab PR, (A.22)

ψRχL = −1
2χLγ

aψR γa PL, (A.23)

where, for the sake of clarity, we explicitly left the projectors on the right-hand side.
The components of a spacetime p-form ω(p) are normalized as

ω(p) = 1
p!ωµ1...µpdx

µ1 ∧ · · · ∧ dxµp (A.24)

and we assume that the exterior derivative d acts from the left as

dω(p) = 1
p!∂µωµ1...µpdx

µ ∧ dxµ1 ∧ · · · ∧ dxµp . (A.25)

SU(4) indices are raised and lowered by complex or charge conjugation. For an SU(4)
vector vi that is a scalar in spinor space, we have

(vi)∗ = v̄i . (A.26)

On the other hand, for a chirally projected spinor φi in the fundamental representation of
SU(4), we have

(φi)c = iCγ0T (φi)∗ = φi (A.27)
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and we define

φ̄i ≡ φi ≡ i(φi)†γ0 = (φi)TC, φ̄i ≡ φi ≡ i(φi)†γ0 = (φi)TC , (A.28)

so that
φ̄iφj = φ̄jφi, φ̄iγaφj = −φ̄jγaφi, φ̄iγabφj = −φ̄jγabφi,

φ̄iγabcφj = φ̄jγ
abcφi, φ̄iγabcdφj = φ̄jγabcdφi

(A.29)

and for example
(φ̄iφj)∗ = φ̄iφj , (φ̄iγaφj)∗ = φ̄iγ

aφj . (A.30)
SO(6,n) and SO(6) × SO(n) indices are raised and lowered with the η metrics

vM = ηMNvN , vM = ηMNv
N , vM = ηMNvN , vM = ηMNv

N , (A.31)

where ηMN = ηMN = ηMN = ηMN = diag(−1,−1,−1,−1,−1,−1, 1, . . . , 1).
SL(2,R) indices are raised and lowered as

Vα = Vβεβα, Vα = εαβVβ , (A.32)

where εαβ = −εβα, εαβ = −εβα and ε+− = ε+− = 1.
A real SO(6) vector vm can alternatively be described by an antisymmetric SU(4)

tensor vij = −vji subject to the pseudo-reality constraint

vij = (vij)∗ = 1
2εijklv

kl, (A.33)

by introducing the map vm → vij defined by

vij = Γmijvm , (A.34)

where Γmij are intertwiners between the two representations, which satisfy

Γmij = (Γmij)∗ = 1
2εijklΓ

mkl , (A.35)

Γ(m|ikΓ|n)
jk = −1

4η
mnδij , (A.36)

ΓmijΓmkl = −δ[i
k δ

j]
l . (A.37)

A possible explicit choice is given by the following antisymmetric 4×4 matrices:

Γ1ij = 1
2


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , Γ2ij = 1
2


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 ,

Γ3ij = 1
2


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 , Γ4ij = 1
2


0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0

 ,

Γ5ij = 1
2


0 0 i 0
0 0 0 i

−i 0 0 0
0 −i 0 0

 , Γ6ij = 1
2


0 0 0 i

0 0 −i 0
0 i 0 0
−i 0 0 0

 .
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From the definition (A.34) and equation (A.36), it also follows that

vm = −Γmijvij = −Γmijvij , (A.38)

and using the completeness relation (A.37) we find

vmwm = −1
2εijklv

ijwkl = −vijwij = −vijwij . (A.39)

The exterior derivative D is covariant with respect to local Lorentz, SO(2), SU(4) and
SO(n) transformations, while the exterior derivative D̂ is covariant with respect to local
Lorentz, SO(2), SU(4), SO(n) and gauge transformations.

The Lie derivative of a p-form Ap along the flow of a vector field V is defined as

`VAp = lim
t→0

1
t

(σ∗tAp(σt(x))−Ap(x)) , (A.40)

where σ∗t is the pull back of the differential form along the flow generated by the vector
field V . When applied to a scalar valued p-form this reduces to

`VAp = (ıV d+ dıV )Ap. (A.41)

For an antisymmetric tensor Tµν we define the self-dual combination T+
µν and the anti-

self-dual combination T−µν by

T±µν ≡
1
2

(
Tµν ∓

i

2εµνρσT
ρσ
)
, (A.42)

which satisfy
1
2εµνρσT

±ρσ = ±iT±µν . (A.43)

The generators of SO(6,n) and SL(2,R) in the fundamental representation can be cho-
sen as (tMN )PQ = δQ[MηN ]P and (tαβ)γδ = δδ(αεβ)γ respectively and there exists a 2(n+ 6)-
dimensional symplectic representation of SL(2,R) × SO(6,n) with generators

(tMN )PQ = (tMN )PγQδ = δQ[MηN ]P δ
δ
γ , (tαβ)PQ = (tαβ)PγQδ = δδ(αεβ)γδ

Q
P , (A.44)

which satisfy

(tMN )PRCQR = (tMN )QRCPR, (tαβ)PRCQR = (tαβ)QRCPR. (A.45)

This representation is identified with the fundamental representation of SL(2,R) × SO(6,n).
An infinitesimal global SL(2,R) × SO(6,n) transformation acts on a symplectic vector
VMα as

δΛVMα = ΛNP (tNP )Mα
QδVQδ + Λβγ(tβγ)Mα

QδVQδ = −ΛMNVNα − ΛαβVMβ , (A.46)

where ΛMN = Λ[MN ] and Λαβ = Λ(αβ) are constant parameters.
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B Comparison with previous articles

When comparing our results concerning the supersymmetry transformation rules with the
ones in [26], we find a crucial difference regarding the fermion shifts of the dilatini. More
precisely, in [26] the shifts of the dilatini supersymmetry transformations are

δε,gχ
i = −4i

3 g Aji2 εj , (B.1)

while in the present work
δε,gχ

i = 2
3 g A

ij
2 εj . (B.2)

Furthermore, equation (2.41) of [26], which expresses the scalar potential V in terms of the
fermion shifts, takes the form

1
3A

ik
1 Ā1jk −

1
9A

ik
2 Ā2jk −

1
2A2aj

kĀ2
ai
k = − 1

4g2 δ
i
jV, (B.3)

where we have rescaled g2V → V , while our expression for the supersymmetric Ward-
identity is

1
3A

ik
1 Ā1jk −

1
9A

ki
2 Ā2kj −

1
2A2aj

kĀ2
ai
k = − 1

4g2 δ
i
jV. (B.4)

It is therefore clear that in the expansion of the second term we find a crucial sign difference
with respect to [26], which however disappears when tracing the expression, because of the
symmetry properties of the various terms.

For the ungauged theory, it is also useful to list a dictionary between the conventions
used in the paper by Perret [14] and ours.

Perret Our conventions

A,B = 1, . . . , 4 i, j = 1, . . . , 4

γa −iγa

γa +iγa
Σmn = γmn

2 −γab
2

ψA ψi

P −P ∗

Φ −V−
PiAB

√
2Paij

V [AWB] = V AWB − V BWA 2V [AWB]

A iV+
V−

χiA
1√
2λai

λA −1
2χi
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C The solution of the Bianchi identities and the construction of the
superspace Lagrangian

In this appendix, we provide the full derivation of the local supersymmetry transformations
and of the Lagrangian for the ungauged and the gauged D = 4, N = 4 matter-coupled
Poincaré supergravities in an arbitrary symplectic frame, using the geometric or rheonomic
approach (for a review see [56]).

The first step is to extend the spacetime fields of the ungauged theory to superfields
in N = 4 superspace: this means that the spacetime one-forms ea = eaµdx

µ, ψi = ψiµdx
µ,

ψi = ψiµdx
µ, AMα = AMα

µ dxµ and ωab = ωµabdx
µ, where ωµab is the spin connection,

and the spacetime zero-forms χi, χi, λai, λai , Vα, V∗α, LMij and LM
a are promoted to

super-one-forms and super-zero-forms in N = 4 superspace respectively. These superforms
depend on the superspace coordinates (xµ, θiα, θiα) (where θiα and θiα, i, α = 1, 2, 3, 4, are
anticommuting fermionic coordinates and are the components of left-handed Weyl spinors
θi and their charge conjugates θi respectively) in such a way that their projections on the
spacetime submanifold, i.e. the θi = dθi = 0 hypersurface, are equal to the corresponding
spacetime quantities.

A basis of one-forms in N = 4 superspace is given by the supervielbein {ea, ψiα, ψiα},
where ea is the bosonic vielbein, while ψiα and ψiα, which are the spinor components of
the left-handed gravitino super-one-forms ψi and their charge conjugates ψi respectively,
constitute the fermionic vielbein.

We start by defining the supercurvatures of the various super-p-forms in N = 4 super-
space as follows

Rab = dωab + ωac ∧ ωcb, (C.1)

T a = dea + ωab ∧ eb − ψ̄i ∧ γaψi = Dea − ψ̄i ∧ γaψi, (C.2)

ρi = Dψi = dψi + 1
4ω

ab ∧ γabψi −
i

2A ∧ ψi − ωi
j ∧ ψj , (C.3)

Vi = Dχi = dχi + 1
4ω

abγabχi + 3i
2 Aχi − ωi

jχj , (C.4)

Λai = Dλai = dλai + 1
4ω

abγabλai + i

2Aλai − ωi
jλaj + ωa

bλbi, (C.5)

FMα = dAMα − (Vα)∗LMijψ̄i ∧ ψj − VαLMijψ̄
i ∧ ψj , (C.6)

P = i

2ε
αβVαdVβ , (C.7)

Paij = La
MdLMij , (C.8)

where A, ωij and ωab are super-one-forms, whose projections on spacetime are the space-
time SO(2), SU(4) and SO(n) connections respectively, which have been defined in the
description of the scalar manifold in section 2 and D is the exterior derivative that is
covariant with respect to local Lorentz, SO(2), SU(4) and SO(n) transformations. The su-
percurvatures Rab, T a and ρi have been defined in such a way that by setting them to zero
and deleting the composite connections A and ωij we obtain the Maurer-Cartan equations
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of the N = 4 super-Poincaré algebra

[Mab,Mcd] = −ηacMbd + ηadMbc + ηbcMad − ηbdMac , (C.9)

[Pa,Mbc] = ηabPc − ηacPb , (C.10)

[Mab, Q
i
α] = −1

2(γab)α
βQiβ , (C.11)

[Mab, Qiα] = −1
2(γab)α

βQiβ , (C.12)

{Qiα, Q̄
β
j } = −δij(PRγa)α

βPa , (C.13)

{Qiα, Q̄jβ} = −δji (PLγ
a)αβPa , (C.14)

where α, β = 1, 2, 3, 4 are spinor indices, γ5Qi = Qi, γ5Q
i = −Qi and the one-forms ωab,

ea, ψi and ψi are dual to the generators Mab, P a, Qi and Qi respectively.
By acting on the supercurvatures with the exterior derivative d and using the fact that

d2 = 0, we obtain the following Bianchi identities

DRab = 0, (C.15)

DT a =Rab ∧ eb + ψ̄i ∧ γaρi + ψ̄i ∧ γaρi, (C.16)

Dρi = 1
4R

ab ∧ γabψi −
i

2F ∧ ψi −Ri
j ∧ ψj , (C.17)

DVi = 1
4R

abγabχi + 3i
2 Fχi −Ri

jχj , (C.18)

DΛai = 1
4R

abγabλai + i

2Fλai −Ri
jλaj +Ra

bλbi, (C.19)

DFMα = − VαLMijP ∗ ∧ ψ̄i ∧ ψj − (Vα)∗LMaPa
ij ∧ ψ̄i ∧ ψj + 2(Vα)∗LMijψ̄i ∧ ρj

− (Vα)∗LMijP ∧ ψ̄i ∧ ψj − VαLMaPaij ∧ ψ̄i ∧ ψj + 2VαLMijψ̄
i ∧ ρj , (C.20)

DP = 0, (C.21)

DPaij = 0 , (C.22)

where F , Rij and Ra
b are the superspace SO(2), SU(4) and SO(n) curvatures given by

equations (2.14), (2.34) and (2.35) respectively, which are now to be viewed as superspace
equations.

The solution of the Bianchi identities can be obtained as follows: first, one notes that
the one-form supercurvatures can be expanded along the supervielbein basis {ea, ψiα, ψiα},
while the two-form supercurvatures can be expanded along the intrinsic basis of two-forms
{ea∧eb, ψiα∧ea, ψiα∧ea, ψiα∧ψ

j
β , ψ

i
α∧ψjβ , ψiα∧ψjβ} inN = 4 superspace. Then, one requires

that all the components of the supercurvatures along the basis elements that involve at least
one of ψiα, ψiα (outer components) be expressed in terms of the supercurvature components
along the basis elements ea and ea∧eb (inner components) and the physical superfields. This
requirement is known as the rheonomy principle and ensures that no new degrees of freedom
are introduced in the theory. Furthermore, the expansions of the supercurvatures along
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the intrinsic bases of one- and two-forms in superspace are referred to as the rheonomic
parametrizations of the supercurvatures.

The next step is to write down these expansions in a form that is compatible with
all the symmetries of the theory, that is: covariance under local SO(2), SU(4), SO(n)
and Lorentz transformations. It is also very useful to take into account the invariance
of the scalar σ-model equations (2.15), (2.36) and (2.37) extended to N = 4 superspace
and the Bianchi identities (C.15)–(C.22) under the following rigid rescalings of the various
super-p-forms (and the corresponding supercurvatures)

(ωab,Vα, LMij , LM
a)→ (ωab,Vα, LMij , LM

a), (C.23)

(ea, AMα)→ λ(ea, AMα), (C.24)

ψi → λ
1
2ψi . (C.25)

Furthermore, the spin-1/2 fermions scale as

(χi, λai)→ λ−
1
2 (χi, λai) , (C.26)

because they must appear contracted with the gravitino super-one-forms in the rheonomic
parametrizations of the supercurvatures P and Paij , which are taken to be

P =Paea + ψ̄iχ
i, (C.27)

Paij =Paijaea + 2ψ̄[i|λa|j] + εijklψ̄
kλla. (C.28)

The most general rheonomic parametrizations of the other supercurvatures that are
compatible with the symmetries of the theory and have the correct scaling behaviours are

Vi = Viae
a + b1LMijV∗αFMα

ab γabψj + b2(λ̄aiλaj )ψ
j + b3γ

aP ∗aψi, (C.29)

Λai = Λaiaea + c1Paijaγ
aψj + c2LMaV∗αFMα

ab γabψi + c3(χ̄iλja)ψj + c4(χ̄jλja)ψi, (C.30)

FMα = 1
2F

Mα
ab ea ∧ eb +

(
d3VαLMij λ̄aiγabλ

a
j e

a ∧ eb + d4VαLMaχ̄iγabλ
i
a e

a ∧ eb

+ d1(Vα)∗LMijχ̄
iγaψ

j ∧ ea + d2(Vα)∗LMaλ̄iaγaψi ∧ ea + c.c.
)
, (C.31)

ρi = 1
2ρiabe

a ∧ eb + f1LMijVαFMα
ab γbψj ∧ ea + f2LMijVαεabcdFMαcdγbψj ∧ ea

+ f3εijkl(λ̄jaγabλak)γaψl ∧ eb + f4(χ̄iγaχj)ψj ∧ ea + f5(χ̄jγaχj)ψi ∧ ea

+ f6(χ̄iγaχj)γabψj ∧ eb + f7(χ̄jγaχj)γabψi ∧ eb (C.32)

+ g1(λ̄ai γaλ
j
a)ψj ∧ ea + g2(λ̄ajγaλ

j
a)ψi ∧ ea + g3(λ̄ai γ

aλja)γabψj ∧ eb

+ g4(λ̄ajγ
aλja)γabψi ∧ eb + g5εijklχ

j(ψ̄k ∧ ψl),

where b1, b2, b3, c1, c2, c3, c4, d1, d2, d3, d4, f1, f2, f3, f4, f5, f6, f7, g1, g2, g3, g4 and g5 are con-
stant coefficients. We also impose the kinematic constraint

T a = 0 , (C.33)
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which amounts to the vanishing of the supertorsion and relates the spin connection to
the vielbein and the gravitini, reducing the gravitational degrees of freedom to the correct
ones. By substituting the parametrizations (C.27)–(C.32) and the constraint (C.33) into
the Bianchi identities, one can determine the values of the coefficients, which are

b1 = − i4 , b2 = −1, b3 = 1,

c1 = −1, c2 = i

8 , c3 = 1, c4 = −1
2 ,

d1 = 1, d2 = 1, d3 = −1
4 , d4 = 1

4 ,

f1 = i

4 , f2 = 1
8 , f3 = 1

4 , f4 = 1
4 , f5 = −1

4 , f6 = 1
4 , f7 = −1

8 ,

g1 = 1
2 , g2 = 0, g3 = 1

2 , g4 = −1
4 , g5 = −1

2 ,

and find that FMα
ab must satisfy

εabcdFMαcd = −2MM
NM

α
βFNβab , (C.34)

which is a twisted self-duality constraint implying that only 6 + n vectors are physical.
Furthermore, from the Bianchi identity (C.16) one obtains the rheonomic parametrization
of the supercurvature Rab:

Rab = 1
2Rcdabe

c ∧ ed + θ̄iabcψi ∧ ec + θ̄iabcψ
i ∧ ec

+ i

4VαLMijFMα
ab ψ̄i ∧ ψj + 1

8VαLMijεabcdFMαcdψ̄i ∧ ψj

− i

4V
∗
αLM

ijFMα
ab ψ̄i ∧ ψj + 1

8V
∗
αLM

ijεabcdFMαcdψ̄i ∧ ψj

− 1
4εijkl(λ̄

i
aγabλ

aj)ψ̄k ∧ ψl − 1
4ε

ijkl(λ̄ai γabλaj)ψ̄k ∧ ψl (C.35)

+ 1
2(χ̄iγcχj)ψ̄i ∧ γabcψj −

1
4(χ̄jγcχj)ψ̄i ∧ γabcψi

+ (λ̄ai γ
cλja)ψ̄i ∧ γabcψj −

1
2(λ̄ajγ

cλja)ψ̄i ∧ γabcψi ,

where
θiabc = γ[aρ

i
b]c −

1
2γcρ

i
ab . (C.36)

In addition, the Bianchi identities impose differential constraints on the inner com-
ponents of the supercurvatures, whose projections on spacetime are identified with the
equations of motion of the theory. Indeed, the closure of the Bianchi identities is equiv-
alent to the closure of the N = 4 supersymmetry algebra on the spacetime fields modulo
local symmetry transformations, which happens only when the equations of motion are
satisfied. In particular, the ψ̄i ∧ γaψi sector of the Bianchi identity (C.18) implies the
following superspace equations of motion for the dilatini

γaVia = i

4V
∗
αLMaFMα

ab γabλ
a
i + 3

4χ
j χ̄iχj −

1
2λ

a
j λ̄

j
aχi − λ

a
i λ̄

j
aχj , (C.37)
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while the corresponding sector of the Bianchi identity (C.19) gives the following superspace
equations of motion for the gaugini

γaΛaia = i

4V
∗
αLMijFMα

ab γabλja + i

8VαLMaFMα
ab γabχi

− 1
2λ

j
b λ̄

b
jλai − λ

j
a λ̄biλ

b
j + 2λjb λ̄

b
iλaj −

1
4χj χ̄

jλai −
1
2 χi χ̄

jλaj . (C.38)

Furthermore, by considering the ψ̄i ∧ γaψi ∧ eb sector of the Bianchi identity (C.17), one
can specify the superspace equations of motion for the gravitini

γbρiba = i

2 VαLMaFMα
ab γbλ

a
i −

i

2 V
∗
αLMijFMα

ab γbχj

− 1
2γaλaj λ̄

a
i χ

j + Paχi + 2P aijaλja . (C.39)

Let us now study the implications of the constraint (C.34). We first define the sym-
metric 2(n+ 6)× 2(n+ 6) matrix

MMN =MMαNβ = MMNMαβ , (C.40)

which satisfies
MMNCNPMPQ = CMQ. (C.41)

By equating the right-hand sides of (C.6), which gives the definition of the supercurvature
FMα, and (C.31), which gives its rheonomic parametrization, and considering the θi =
dθi = 0 projection of the resulting relation we obtain

eaµe
b
νFMα

ab |θi=0 =FMα
µν +

[
− 2(Vα)∗LMijψ̄iµψjν + 1

2V
αLMij λ̄aiγµνλ

a
j

− 1
2(Vα)∗LMaχ̄iγµνλai + 2(Vα)∗LMijχ̄

iγ[µψ
j
ν] (C.42)

+ 2VαLMaλ̄aiγ[µψ
i
ν] + c.c.

]
≡ F̂Mα

µν ,

where FMα
µν = 2∂[µA

Mα
ν] , which decomposes in an arbitrary symplectic frame as

FMα
µν = (FΛ

µν , FΛµν) = 2(∂[µA
Λ
ν], ∂[µ|AΛ|ν]). (C.43)

The quantities F̂Mα
µν are referred to as the supercovariant field strengths of the vector fields

AMα
µ . Then, restricting the superspace equation (C.34) to spacetime, by setting θi = 0,

we find

(∗FMα)µν = CMαNMNPFPµν +
(
− 2i(Vα)∗LMijψ̄iµψjν + εµνρσ(Vα)∗LMijψ̄ρi ψ

σ
j

− iVαLMij λ̄aiγµνλ
a
j − iV

αLMaχ̄iγµνλ
i
a + 2i(Vα)∗LMijχ̄

iγ[µψ
j
ν]

− εµνρσ(Vα)∗LMijχ̄
iγρψjσ + 2iVαLMaλ̄aiγ[µψ

i
ν] (C.44)

− εµνρσVαLMaλ̄aiγ
ρψiσ + c.c.

)
.
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The Hodge duals of the electric field strengths can be obtained by multiplying the above
equation by the projectors ΠΛ

Mα,

(∗FΛ)µν =MΛ
ΣF

Σ
µν +MΛΣFΣµν + ΠΛ

Mα

(
− 2i(Vα)∗LMijψ̄iµψjν

+ εµνρσ(Vα)∗LMijψ̄ρi ψ
σ
j − iVαLMij λ̄aiγµνλ

a
j − iV

αLMaχ̄iγµνλ
i
a

+ 2i(Vα)∗LMijχ̄
iγ[µψ

j
ν] − εµνρσ(Vα)∗LMijχ̄

iγρψjσ (C.45)

+ 2iVαLMaλ̄aiγ[µψ
i
ν] − εµνρσV

αLMaλ̄aiγ
ρψiσ + c.c.

)
,

while multiplying (C.44) by ΠΛMα we get the Hodge duals of the magnetic field strengths

(∗FΛ)µν =−MΛΣF
Σ
µν −MΛ

ΣFΣµν + ΠΛMα

(
− 2i(Vα)∗LMijψ̄iµψjν

+ εµνρσ(Vα)∗LMijψ̄ρi ψ
σ
j − iVαLMij λ̄aiγµνλ

a
j − iV

αLMaχ̄iγµνλ
i
a

+ 2i(Vα)∗LMijχ̄
iγ[µψ

j
ν] − εµνρσ(Vα)∗LMijχ̄

iγρψjσ (C.46)

+ 2iVαLMaλ̄aiγ[µψ
i
ν] − εµνρσV

αLMaλ̄aiγ
ρψiσ + c.c.

)
.

From equations (C.45) and (C.46) one can determine the symmetric matrices IΛΣ, RΛΣ and
the antisymmetric tensor OΛµν that appear in the parametrization (3.1) of the ungauged
Lagrangian. Indeed, from the expression (3.2) for the magnetic duals GΛµν of the field
strengths FΛ

µν of the electric vectors it follows that

(
(∗FΛ)µν
(∗GΛ)µν

)
=

 (I−1R)Λ
Σ −(I−1)ΛΣ

(I +RI−1R)ΛΣ −(RI−1)Λ
Σ

( FΣ
µν

GΣµν

)

+

 −(I−1)ΛΣ(∗OΣ)µν
OΛµν − (RI−1)Λ

Σ(∗OΣ)µν

 .
(C.47)

On-shell, GΛµν are identified with the field strengths FΛµν of the magnetic vector fields AΛµ.
Therefore, by comparing the above matrix equation with the relations (C.45) and (C.46),
we find that the matrixMMN decomposes as

MMN =
(
MΛΣ MΛ

Σ

MΛ
Σ MΛΣ

)
=
(
−(I +RI−1R)ΛΣ (RI−1)Λ

Σ

(I−1R)Λ
Σ −(I−1)ΛΣ

)
, (C.48)

implying

(I−1)ΛΣ = −ΠΛ
MΠΣ

NMMN , (C.49)

(RI−1)Λ
Σ = −ΠΛMΠΣ

NMMN , (C.50)

(I−1R)Λ
Σ = −ΠΛ

MΠΣNMMN , (C.51)

(I +RI−1R)ΛΣ = −ΠΛMΠΣNMMN . (C.52)
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Furthermore, we have that

OΛµν = IΛΣΠΣ
Mα

(
− 2(Vα)∗LMijψ̄iµψjν − iεµνρσ(Vα)∗LMijψ̄ρi ψ

σ
j

+ VαLMij λ̄aiγµνλ
a
j − V

αLMaχ̄iγµνλ
i
a + 2(Vα)∗LMijχ̄

iγ[µψ
j
ν]

+ iεµνρσ(Vα)∗LMijχ̄
iγρψjσ + 2VαLMaλ̄aiγ[µψ

i
ν] (C.53)

+ iεµνρσVαLMaλ̄aiγ
ρψiσ + c.c.

)
and

OΛµν − (RI−1)Λ
Σ(∗OΣ)µν = ΠΛMα

(
− 2i(Vα)∗LMijψ̄iµψjν + εµνρσ(Vα)∗LMijψ̄ρi ψ

σ
j

− iVαLMij λ̄aiγµνλ
a
j − iV

αLMaχ̄iγµνλ
i
a + 2i(Vα)∗LMijχ̄

iγ[µψ
j
ν]

− εµνρσ(Vα)∗LMijχ̄
iγρψjσ+2iVαLMaλ̄aiγ[µψ

i
ν] (C.54)

− εµνρσVαLMaλ̄aiγ
ρψiσ + c.c.

)
.

Consistency of (C.54) with (C.53) requires the complex kinetic matrix NΛΣ to satisfy

NΛΣΠΣ
MαVαLMij = ΠΛMαVαLMij , (C.55)

NΛΣΠΣ
Mα(Vα)∗LMa = ΠΛMα(Vα)∗LMa. (C.56)

In addition, by multiplying equation (C.34) by ΠΛ
Mα and using (C.48), we can express

the inner components FΛab = ΠΛMαFMα
ab of the supercurvatures FΛ = ΠΛMαFMα of

the magnetic super-one-forms AΛ = ΠΛMαA
Mα in terms of the inner components FΛ

ab =
ΠΛ

MαFMα
ab of the supercurvatures FΛ = ΠΛ

MαFMα of the electric super-one-forms AΛ =
ΠΛ

MαA
Mα. The result is

FΛab = −1
2εabcdIΛΣFΣcd +RΛΣFΣ

ab . (C.57)

Using the above equation and (3.16), we can express all the terms in the rheonomic
parametrizations of the fermionic supercurvatures and the superspace equations of mo-
tion for the fermions that contain FMα

ab solely in terms of FΛ
ab. We find that those terms

can be written as

Vi ⊃−
i

4LMijV∗αFMα
ab γabψj

=− i

4ΠΛMαL
M
ij(Vα)∗FΛ

abγ
abψj + i

4NΛΣΠΛ
MαL

M
ij(Vα)∗FΣ

abγ
abψj , (C.58)

Λai ⊃
i

8LMaV∗αFMα
ab γabψi

= i

8ΠΛMαL
M
a(Vα)∗FΛ

abγ
abψi −

i

8N̄ΛΣΠΛ
MαL

M
a(Vα)∗FΣ

abγ
abψi, (C.59)

ρi ⊃−
i

8LMijVαFMα
bc γbcγaψ

j ∧ ea

= − i

8ΠΛMαL
M
ijVαFΛ

bcγ
bcγaψ

j ∧ ea (C.60)

+ i

8N̄ΛΣΠΛ
MαL

M
ijVαFΣ

bcγ
bcγaψ

j ∧ ea,
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γaVia ⊃
i

4V
∗
αLMaFMα

ab γabλ
a
i

= i

4ΠΛMαL
M
a(Vα)∗FΛ

abγ
abλ

a
i −

i

4N̄ΛΣΠΛ
MαL

M
a(Vα)∗FΣ

abγ
abλ

a
i , (C.61)

γaΛaia ⊃
i

4V
∗
αLMijFMα

ab γabλja + i

8VαLMaFMα
ab γabχi

= i

4ΠΛMαL
M
ij(Vα)∗FΛ

abγ
abλja −

i

4NΛΣΠΛ
MαL

M
ij(Vα)∗FΣ

abγ
abλja (C.62)

+ i

8ΠΛMαL
M
aVαFΛ

abγ
abχi −

i

8NΛΣΠΛ
MαL

M
aVαFΣ

abγ
abχi,

γbρiba ⊃−
i

8VαLMaFMα
bc γbcγaλ

a
i + i

8V
∗
αLMijFMα

bc γbcγaχ
j

=− i

8ΠΛMαVαLMaFΛ
bcγ

bcγaλ
a
i + i

8NΛΣΠΛ
MαVαLMaFΣ

bcγ
bcγaλ

a
i (C.63)

+ i

8ΠΛMαL
M
ij(Vα)∗FΛ

bcγ
bcγaχ

j − i

8NΛΣΠΛ
MαL

M
ij(Vα)∗FΣ

bcγ
bcγaχ

j .

From the rheonomic parametrizations of the supercurvatures, we can also determine
the N = 4 local supersymmetry transformation laws for the spacetime fields of the un-
gauged theory. We recall that, from the superspace point of view, a local supersymmetry
transformation parametrized by left-handed Weyl spinors εi and their charge conjugates εi
is a Lie derivative `ε along the tangent vector

ε = ε̄iDi + ε̄iD
i, (C.64)

where the basis tangent vectors Di, D
i are dual to the gravitino super-one-forms:

Diα

(
ψ̄jβ

)
= Dj

α

(
ψ̄βi

)
= δji δ

β
α , (C.65)

where α, β are spinor indices. The above equation implies that iεψi = εi and iεψi = εi.
For the super-one-forms ea, ψi and AMα we have

`εe
a = iεT

a + ε̄iγaψi + ε̄iγ
aψi, (C.66)

`εψi = Dεi + iερi, (C.67)

`εA
Mα = iεFMα + 2(Vα)∗LMij ε̄iψj + 2VαLMij ε̄

iψj , (C.68)

where we have used the definitions of the supercurvatures T a, ρi and FMα and

Dεi ≡ dεi + 1
4ωabγ

abεi −
i

2Aεi − ωi
jεj . (C.69)

For the super-zero-forms, which we denote for short by νI ≡ (Vα,V∗α, LMij , LMa, χ
i, χi,

λia, λai), we have the simpler result

`εν
I = (iεd+ diε)νI = iεDν

I . (C.70)

Using the parametrizations given for the supercurvatures and identifying the local su-
persymmetry transformation δε of each spacetime p-form with the restriction of the Lie
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derivative `ε of the corresponding super-p-form to spacetime, it is now straightforward to
derive the N = 4 local supersymmetry transformations of all the spacetime fields. The
corresponding formulae are

δεVα =V∗αε̄iχi , (C.71)

δεLMij =LMa(2ε̄[iλ
a
j] + εijklε̄

kλal) , (C.72)

δεLM
a = 2LMij ε̄iλ

a
j + c.c. , (C.73)

δεχi =− 1
2IΛΣΠΛ

Mα(Vα)∗LMijF̂Σ
µνγ

µνεj

+ γµεi(P ∗µ − χ̄jψjµ)− (λ̄aiλaj )ε
j , (C.74)

δελai =− 1
4IΛΣΠΛ

Mα(Vα)∗LMaF̂Σ
µνγ

µνεi

− γµεj(Paijµ + 2λ̄a[iψj]µ + εijklλ̄
k
aψ

l
µ) (C.75)

+ (χ̄iλja)εj −
1
2(χ̄jλja)εi ,

δεe
a
µ = ε̄iγaψiµ + ε̄iγ

aψiµ , (C.76)

δεA
Mα
µ = (Vα)∗LMij ε̄

iγµχ
j − VαLMaε̄iγµλai + 2VαLMij ε̄

iψjµ + c.c. , (C.77)

δεψiµ =Dµεi + 1
4IΛΣΠΛ

MαVαLMijF̂Σ
νργ

νργµε
j − 1

4εijkl(λ̄
j
aγµνλ

ak)γνεl

+ 1
4(χ̄iγµχj)εj −

1
4(χ̄jγµχj)εi −

1
4(χ̄iγνχj)γµνεj

+ 1
8(χ̄jγνχj)γµνεi + 1

2(λ̄ai γµλ
j
a)εj −

1
2(λ̄ai γ

νλja)γµνεj (C.78)

+ 1
4(λ̄ajγ

νλja)γµνεi − εijklχj ε̄kψlµ ,

where Pµ and Paijµ are the components of the spacetime one-forms P and Paij respectively,
i.e. P = Pµdx

µ and Paij = Paijµdx
µ, F̂Λ

µν = ΠΛ
MαF̂Mα

µν and

Dµεi ≡ ∂µεi + 1
4ωµab(e, ψ)γabεi −

i

2Aµεi − ω
j
i µεj , (C.79)

where

ωµ
ab(e, ψ) = 2eν[a∂[µe

b]
ν] − e

ν[aeb]ρecµ∂νe
c
ρ

+ ψ̄iµγ
[aψ

b]
i + ψ̄i[aγb]ψiµ + ψ̄i[aγµψ

b]
i (C.80)

is the solution for the spin connection ωµ
ab of the restriction of the constraint T a = 0 to

spacetime.
The terms in the local supersymmetry transformations of the fermions that contain

F̂Λ
µν can also be written in a manifestly SL(2,R) × SO(6,n)-covariant form as

δεχi ⊃−
1
2IΛΣΠΛ

Mα(Vα)∗LMijF̂Σ
µνγ

µνεj

=− i

4V
∗
αLMijG

Mα
µν γ

µνεj + γµνε
jχ̄[iγ

µψνj] −
1
2εijklγ

µνεjψ̄kµψ
l
ν , (C.81)
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δελai ⊃−
1
4IΛΣΠΛ

Mα(Vα)∗LMaF̂Σ
µνγ

µνεi

= i

8V
∗
αLMaG

Mα
µν γ

µνεi + 1
2γ

µνεiλ̄ajγµψ
j
ν , (C.82)

δεψiµ ⊃
1
4IΛΣΠΛ

MαVαLMijF̂Σ
νργ

νργµε
j

=− i

8VαLMijG
Mα
νρ γ

νργµε
j + 1

2γ
νργµε

jψ̄iνψjρ −
1
4εijklγ

νργµε
jχ̄kγνψ

l
ρ , (C.83)

where we have introduced the symplectic vector GMα
µν = (FΛ

µν , GΛµν).
Using the rheonomic approach, one can also derive the ungauged Lagrangian for the

D = 4, N = 4 Poincaré supergravity, coupled to n vector multiplets. In this formalism, the
action is obtained by integrating a Lagrangian L that is a four-form in N = 4 superspace
on a four-dimensional bosonic hypersurfaceM4 embedded in superspace,

S =
∫
M4⊂SM

L , (C.84)

where SM is the N = 4 superspace manifold. The super-four-form Lagrangian has to be
constructed using only differential super-p-forms, wedge products among them and their
exterior d derivatives, while it must not contain the Hodge duality operator. These re-
quirements ensure that L is independent of the choice of hypersurface M4 and invariant
under general coordinate transformations in superspace (superdiffeomorphisms). The ac-
tion (C.84) is a functional both of the super-p-forms appearing in L and of the hypersurface
M4 on which the integration is performed and one must in principle vary the action with
respect to both of them to derive the equations of motion implied by the variational princi-
ple δS = 0. However, the variation ofM4 can be ignored, because any deformation ofM4

can be compensated by a superdiffeomorphism, which leaves L invariant. As a result, the
hypersurface M4 can be chosen arbitrarily and the complete set of variational equations
associated with the action (C.84) is given by the usual equations of motion obtained by
varying S with respect to the various super-p-forms on which L depends, while keeping the
hypersurface M4 fixed. These super-(4 − p)-form equations hold not only on M4 but on
the whole N = 4 superspace.

The aforementioned superspace equations can be analyzed along the intrinsic bases
of (4 − p)-forms in superspace, where p = 0, 1, built out of the supervielbein {ea, ψi, ψi}
by means of the wedge product. It turns out that the analysis of these equations of mo-
tion along the basis elements that contain only the bosonic vielbein ea gives dynamical
equations for the inner components of the supercurvatures, which must coincide with the
corresponding equations implied by the Bianchi identities (equations (C.37)–(C.39)). The
projections of these equations on spacetime are the ordinary spacetime equations of mo-
tion of the theory. On the other hand, the analysis of the variational equations associated
with (C.84) along the basis elements featuring at least one of ψi, ψi gives algebraic re-
lations that express the outer components of the supercurvatures in terms of their inner
components and the physical superfields (rheonomy principle). The outer components of
the supercurvatures obtained from the variational principle must be the same as those
determined by requiring closure of the Bianchi identities.
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In order to construct the superspace four-form Lagrangian for the ungauged D = 4,
N = 4 matter-coupled supergravity in an arbitrary symplectic frame, we follow the building
rules given in volume 2 of [56]. We first write down an ansatz for the super-four-form
Lagrangian in the form of a sum of terms with undetermined coefficients. Each of these
terms must be invariant under local Lorentz, SO(2), SU(4) and SO(n) transformations and
must have the same scaling behaviour as the Einstein-Hilbert term,

L ⊃ 1
4εabcdR

ab ∧ ec ∧ ed, (C.85)

which scales as λ2. Also, from the super-one-forms AMα = (AΛ, AΛ), only the electric
ones AΛ must appear in the superspace Lagrangian. The most general expression for the
superspace four-form Lagrangian has the form

L = Lkin + LPauli + Ltorsion + L4fermi , (C.86)

where

Lkin = 1
4εabcdR

ab ∧ ec ∧ ed + (k1ψ̄i ∧ γaρi + k∗1ψ̄
i ∧ γaρi) ∧ ea

+ εabcd(k2χ̄iγ
aV i + k∗2χ̄

iγaVi + k3λ̄
a
i γ

aΛia + k∗3λ̄
i
aγ

aΛai ) ∧ e
b ∧ ec ∧ ed

+ k4εabcdS
∗
eS

eea ∧ eb ∧ ec ∧ ed

− 4k4εabcd
[
(Sa)∗(P − χ̄iψi) + Sa(P ∗ − χ̄iψi)

]
∧ eb ∧ ec ∧ ed

+ k5εabcdRaijeR
aijeea ∧ eb ∧ ec ∧ ed

− 8k5εabcdRaij
a(P aij − 2ψ̄iλaj − εijklψ̄kλ

a
l ) ∧ e

b ∧ ec ∧ ed (C.87)

+ εabcd(k6N̄ΛΣJ Λ+
ef J

Σ+ef + k∗6NΛΣJ Λ−
ef J

Σ−ef )ea ∧ eb ∧ ec ∧ ed

− 48i(k6N̄ΛΣJ Λ+
ab − k

∗
6NΛΣJ Λ−

ab )
(
FΣ + 1

4ΠΣ
Mα(Vα)∗LMij λ̄

i
aγcdλ

ajec ∧ ed

+ 1
4ΠΣ

MαVαLMij λ̄aiγcdλ
a
j e
c ∧ ed − 1

4ΠΣ
MαVαLMaχ̄iγcdλ

i
ae
c ∧ ed

− 1
4ΠΣ

Mα(Vα)∗LMaχ̄iγcdλaie
c ∧ ed −ΠΣ

Mα(Vα)∗LMijχ̄
iγcψ

j ∧ ec

−ΠΣ
MαVαLMijχ̄iγcψj ∧ ec −ΠΣ

Mα(Vα)∗LMaλ̄iaγcψi ∧ ec

−ΠΣ
MαVαLMaλ̄aiγcψ

i ∧ ec
)
∧ ea ∧ eb,

LPauli = p1P
∗ ∧ χ̄iγabψi ∧ ea ∧ eb + p2Pa

ij ∧ λ̄ai γabψj ∧ e
a ∧ eb

+ p3ΠΛMα(Vα)∗LMaFΛχ̄iγabλai ∧ ea ∧ eb

+ p4ΠΛMαVαLMijFΛλ̄aiγabλ
a
j ∧ e

a ∧ eb

+ p5ΠΛMα(Vα)∗LMijFΛ ∧ χ̄iγaψj ∧ ea (C.88)

+ p6ΠΛMα(Vα)∗LMaFΛ ∧ λ̄iaγaψi ∧ ea

+ p7ΠΛMαVαLMijFΛ ∧ ψ̄i ∧ ψj + c.c.,
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Ltorsion = t1χ̄iγaχ
iTb ∧ ea ∧ eb + t2εabcdχ̄iγ

aχiT b ∧ ec ∧ ed

+ t3λ̄
a
i γaλ

i
aTb ∧ ea ∧ eb + t4εabcdλ̄

a
i γ

aλiaT
b ∧ ec ∧ ed (C.89)

+ t5ψ̄
i ∧ γaψi ∧ T a,

L4fermi = εabcd(q1χ̄
iχjχ̄iχj + q2χ̄

iλ
a
j χ̄iλ

j
a + q3χ̄

iλ
a
i χ̄jλ

j
a

+ q4λ̄
a
i λ

b
j λ̄
i
aλ

j
b + q5λ̄

a
i λaj λ̄

i
bλ
bj + q6λ̄

a
i λ

b
j λ̄
i
bλ
j
a)ea ∧ eb ∧ ec ∧ ed

+ (q7λ̄aiγabλ
a
j χ̄

iγcψ
j + q8εabcdλ̄aiλ

a
j χ̄

iγdψj + c.c.) ∧ ea ∧ eb ∧ ec

+ (q9εijklλ̄
aiγabλ

j
aψ̄

k ∧ ψl + c.c.) ∧ ea ∧ eb

+ (r1χ̄iγaχ
jψ̄i ∧ γbψj + r2χ̄iγaχ

iψ̄j ∧ γbψj
+ r3εabcdχ̄iγ

cχjψ̄i ∧ γdψj + r4εabcdχ̄iγ
cχiψ̄j ∧ γdψj

+ r5λ̄
a
i γaλ

j
aψ̄

i ∧ γbψj + r6λ̄
a
i γaλ

i
aψ̄

j ∧ γbψj

+ r7εabcdλ̄
a
i γ

cλjaψ̄
i ∧ γdψj + r8εabcdλ̄

a
i γ

cλiaψ̄
j ∧ γdψj) ∧ ea ∧ eb

+
[
εabcdΠΛMαΠΛ

Nβ

(
r9(Vα)∗VβLMaL

Njkχ̄iγefλ
a
i λ̄bjγ

efλ
b
k

+ s1(Vα)∗(Vβ)∗LMaL
N
bχ̄
iγefλ

a
i χ̄

jγefλ
b
j

+ s2VαVβLMijLNklλ̄aiγefλ
a
j λ̄bkγ

efλ
b
l

)
ea ∧ eb ∧ ec ∧ ed

+ ΠΛMαΠΛ
Nβ

(
s3(Vα)∗VβLMaL

Njkχ̄iγabλ
a
i χ̄jγcψk

+ s4(Vα)∗(Vβ)∗LMaL
Nbχ̄iγabλ

a
i λ̄

j
bγcψj

+ s5(Vα)∗(Vβ)∗LMijL
N
klλ̄

k
aγabλ

alχ̄iγcψ
j

+ s6(Vα)∗(Vβ)∗LMaL
N
jkχ̄

iγabλ
a
i χ̄

jγcψ
k

+ s7(Vα)∗VβLMaL
N
bεabcdλ̄

a
i λ

b
jχ̄

iγdψj

+ s8(Vα)∗VβLMaL
N
bλ̄
a
i γabλ

b
jχ̄

iγcψ
j

+ s9(Vα)∗VβLMijL
Nklλ̄akγabλ

a
l χ̄

iγcψ
j

+ w1Vα(Vβ)∗LMijLNbλ̄
a
i γabλaj λ̄

k
bγcψk

+ w2VαVβLMijLNbλ̄aiγabλ
a
j λ̄bkγcψ

k) ∧ ea ∧ eb ∧ ec
+ ΠΛMαΠΛ

Nβ

(
w3(Vα)∗(Vβ)∗LMijL

Naχ̄iγaψ
j ∧ λ̄kaγbψk

+ w4(Vα)∗VβLMijL
Nklεabcdχ̄

iγcχkψ̄
j ∧ γdψl

+ w5(Vα)∗(Vβ)∗LMijL
N
klχ̄

iγaψ
j ∧ χ̄kγbψl

+ w6(Vα)∗VβLMijL
N
aχ̄

iγaψ
j ∧ λ̄akγbψ

k

+ w7VαVβLMaL
N
bλ̄
a
i γaψ

i ∧ λ̄bjγbψ
j

+ w8Vα(Vβ)∗LMaL
Nbεabcdλ̄

a
i γ

cλjbψ̄
i ∧ γdψj

)
∧ ea ∧ eb

+ ΠΛMαΠΛ
Nβ

(
z1VαVβLMijL

N
klψ̄

i ∧ ψj ∧ ψ̄k ∧ ψl

+ z2(Vα)∗VβLMijLNklψ̄i ∧ ψj ∧ ψ̄k ∧ ψl
)

+ c.c.
]
, (C.90)
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where Sa, Raija = (Raija)∗ = 1
2εijklRa

kl
a and J Λ

ab = (J Λ
ab)∗ are auxiliary super-zero-forms

which are identified, through their equations of motion, with the inner components Pa, Paija
and FΛ

ab of the supercurvatures P , Paij and FΛ respectively. They provide a first-order
description of the kinetic terms of the bosonic superfields, which avoids the use of the Hodge
duality operator, whose presence would imply a dependence of the superspace Lagrangian
and the equations of motion associated with the action (C.84) on the hypersurface of
integrationM4 and its metric.

We then fix the coefficients by requiring that the equations of motion that arise from
the variation of the action with respect to the super-zero-forms Sa, Raija, J Λ

ab, χi, λai

and the super-one-forms ωab and ψi be solved by the constraint (C.33), the rheonomic
equations (C.27)–(C.32) and the superspace equations of motion (C.37)–(C.39) (expressed
in terms of FΛ

ab only), which are obtained from the Bianchi identities. The results are

Imk1 = 1, Rek2 = − 1
12 , Rek3 = −1

6 , k4 = 1
24 , k5 = 1

48 , k6 = − i

96 ,

p1 = − i2 , p2 = i, p3 = −1
4 , p4 = 1

4 , p5 = −1, p6 = −1, p7 = −1,

t1 = i

4 , t2 = 3iImk2, t3 = − i2 , t4 = 3iImk3, t5 = −Rek1,

q1 = 1
64 , q2 = − 1

48 , q3 = − 1
24 , q4 = − 1

48 ,

q5 = − 1
24 , q6 = 1

12 , q7 = 0, q8 = 1
6 , q9 = i

4 ,

r1 = i

2 , r2 = 0, r3 =−iRew4, r4 = i(Rew4 + 3Imk2),

r5 = i, r6 = −i, r7 =−2iRew8, r8 = 3iImk3, r9 = i

192 ,

s1 = − i

384 , s2 = − i

384 , s3 = 1
4 , s4 = 1

4 ,

s5 = −1
4 , s6 = 1

4 , s7 = − i8 , s8 = −1
8 , s9 = −1

4 ,

w1 = −1
4 , w2 = −1

4 , w3 = −1, Imw4 = 1
4 ,

w5 = −1
2 , w6 = −1, w7 = −1

2 , Imw8 = 1
4 ,

z1 = −1
2 , Rez2 = −1

2 , Imz2 = −Rek1 .

The terms that involve the undetermined Rek1, Imk2 and Imk3 combine to a total derivative
and thus do not contribute to the action (C.84), while those that contain Rew4 and Rew8
cancel.

The spacetime Lagrangian then follows from restricting the superspace four-form La-
grangian to spacetime, that is the θi = dθi = 0 hypersurface. In practice, one first goes to
the second-order formalism by identifying the auxiliary super-zero-forms Sa, Raija and J Λ

ab

with Pa, Paija and FΛ
ab respectively and setting T a = 0. Then, one expands all the forms

along the dxµ differentials and restricts the superfields to their lowest (θi = 0) components.
Using the fact that

dxµ ∧ dxν ∧ dxρ ∧ dxσ = −eεµνρσd4x , (C.91)
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we find that the spacetime Lagrangian for the ungauged theory takes the form

L = Lkin + LPauli + L4fermi , (C.92)

where

e−1Lkin = 1
2R+ i

2ε
µνρσ

(
ψ̄iµγνρiρσ − ψ̄iµγνρiρσ

)
− 1

2
(
χ̄iγµDµχi + χ̄iγ

µDµχ
i
)
−
(
λ̄
a
i γ

µDµλ
i
a + λ̄iaγ

µDµλ
a
i

)
(C.93)

− P ∗µPµ −
1
2PaijµP

aijµ + 1
4IΛΣF

Λ
µνF

Σµν + 1
8ε

µνρσRΛΣF
Λ
µνF

Σ
ρσ ,

e−1LPauli =P ∗µ

(
χ̄iψµi − χ̄

iγµνψiν
)

+ Pµ
(
χ̄iψ

iµ − χ̄iγµνψiν
)

− 2Paijµ
(
λ̄aiψjµ − λ̄aiγµνψjν

)
− 2P aijµ

(
λ̄aiψjµ − λ̄aiγµνψνj

)
(C.94)

+ 1
2F

Λ
µνO

µν
Λ ,

L4fermi is given by (5.7) and we have defined

ρiµν ≡ 2∂[µ|ψi|ν] + 1
2ω[µ|

ab(e, ψ)γabψi|ν] − iA[µ|ψi|ν] − 2ω j
i [µ|ψj|ν], (C.95)

Dµχi ≡ ∂µχi + 1
4ωµ

ab(e, ψ)γabχi + 3i
2 Aµχi − ω

j
i µχj , (C.96)

Dµλai ≡ ∂µλai + 1
4ωµ

ab(e, ψ)γabλai + i

2Aµλai − ω
j
i µλaj + ω b

a µλbi . (C.97)

The Lagrangian (C.92) is invariant up to a total derivative under the local supersymmetry
transformations (C.71)–(C.78).

The introduction of a gauging requires the modification of the supercurvatures by
promoting the exterior differentials to gauge covariant differentials and the connections to
their gauged counterparts, as described in section 4, as well as the introduction of new
super-two-forms BMN = B[MN ] and Bαβ = B(αβ).

The appropriate definitions for the gauged supercurvatures are the following

Rab = dωab + ωac ∧ ωcb, (C.98)

T a = dea + ωab ∧ eb − ψ̄i ∧ γaψi = D̂ea − ψ̄i ∧ γaψi, (C.99)

ρ̂i = D̂ψi = dψi + 1
4ω

ab ∧ γabψi −
i

2Â ∧ ψi − ω̂i
j ∧ ψj , (C.100)

V̂i = D̂χi = dχi + 1
4ω

abγabχi + 3i
2 Âχi − ω̂i

jχj , (C.101)

Λ̂ai = D̂λai = dλai + 1
4ω

abγabλai + i

2Âλai − ω̂i
jλaj + ω̂a

bλbi, (C.102)

HMα = dAMα − g

2 f̂βNP
MANβ ∧APα − g

2ΘαM
NPB

NP + g

2ξ
M
β B

αβ

− (Vα)∗LMijψ̄i ∧ ψj − VαLMijψ̄
i ∧ ψj , (C.103)

– 62 –



J
H
E
P
0
9
(
2
0
2
3
)
0
7
1

H(3)MN = d̂BMN + εαβA
[M |α ∧

(
dA|N ]β + g

3XPγQδ
|N ]βAPγ ∧AQδ

)
, (C.104)

H(3)αβ = d̂Bαβ − ηMNA
M(α| ∧

(
dAN |β) + g

3XPγQδ
N |β)APγ ∧AQδ

)
, (C.105)

P̂ = i

2ε
αβVαd̂Vβ , (C.106)

P̂aij =La
M d̂LMij , (C.107)

where Â, ω̂ij and ω̂ab are the extensions of the gauged SO(2), SU(4) and SO(n) connections
to N = 4 superspace respectively and D̂ is the exterior derivative that is covariant with
respect to local Lorentz, SO(2), SU(4), SO(n) and gauge transformations. The definitions
of the super-field strengths H(3)MN and H(3)αβ of the super-two-forms BMN and Bαβ

respectively are constructed according to the rules in [45].
By acting on the gauged supercurvatures with the exterior derivative d and using the

fact that d2 = 0, we obtain the following Bianchi identities

D̂Rab = 0, (C.108)

D̂T a =Rab ∧ eb + ψ̄i ∧ γaρ̂i + ψ̄i ∧ γaρ̂i, (C.109)

D̂ρ̂i = 1
4R

ab ∧ γabψi −
i

2 F̂ ∧ ψi − R̂i
j ∧ ψj , (C.110)

D̂V̂i = 1
4R

abγabχi + 3i
2 F̂χi − R̂i

jχj , (C.111)

D̂Λ̂ai = 1
4R

abγabλai + i

2 F̂ λai − R̂i
jλaj + R̂a

bλbi, (C.112)

D̂HMα =− VαLMijP̂ ∗ ∧ ψ̄i ∧ ψj − (Vα)∗LMaP̂ ij
a ∧ ψ̄i ∧ ψj + 2(Vα)∗LMijψ̄i ∧ ρ̂j

− (Vα)∗LMijP̂ ∧ ψ̄i ∧ ψj − VαLMaP̂aij ∧ ψ̄i ∧ ψj + 2VαLMijψ̄
i ∧ ρ̂j (C.113)

− g

2ΘαM
NPH(3)NP + g

2ξ
M
β H(3)αβ ,

−1
2ΘαM

NP D̂H(3)NP + 1
2ξ

M
β D̂H(3)αβ = XNβPγ

Mα
[
HNβ + (Vβ)∗LNijψ̄i ∧ ψj

+ VβLNijψ̄i ∧ ψj
]
∧
[
HPγ + (Vγ)∗LPklψ̄k ∧ ψl + VγLP klψ̄k ∧ ψl

]
, (C.114)

D̂P̂ = i

2gξαMV
αVβHMβ − gξαMVαLMijψ̄i ∧ ψj , (C.115)

D̂P̂aij = gΘαM
NPLNaLPij

[
HMα + (Vα)∗LMklψ̄k ∧ ψl + VαLMklψ̄

k ∧ ψl
]
, (C.116)

where F̂ , R̂ij and R̂a
b are the superspace gauged SO(2), SU(4) and SO(n) curvatures

respectively, given by equations (4.41), (4.49) and (4.50), which are now to be viewed as
superspace equations.

In the same way as in the ungauged theory, the Bianchi identities (C.108)–(C.116)
can be solved by providing suitable rheonomic parametrizations of the supercurvatures.
These can be found by starting from the corresponding results for the ungauged theory
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and focusing on the terms proportional to the gauge coupling g. The result is the following:

P̂ =P̂aea + ψ̄iχ
i, (C.117)

P̂aij =P̂aijaea + 2ψ̄[i|λa|j] + εijklψ̄
kλla, (C.118)

V̂i =V̂iaea −
i

4LMijV∗αHMα
ab γabψj − (λ̄aiλaj )ψ

j + γaP̂ ∗aψi + 2
3gĀ2ijψ

j , (C.119)

Λ̂ai =Λ̂aiaea − P̂aijaγaψj + i

8LMaV∗αHMα
ab γabψi + (χ̄iλja)ψj −

1
2(χ̄jλja)ψi

+ gĀ2a
j
iψj , (C.120)

HMα =1
2H

Mα
ab ea ∧ eb +

(
− 1

4V
αLMij λ̄aiγabλ

a
j e

a ∧ eb + 1
4V

αLMaχ̄iγabλ
i
a e

a ∧ eb

+ (Vα)∗LMijχ̄
iγaψ

j ∧ ea + (Vα)∗LMaλ̄iaγaψi ∧ ea + c.c.
)
, (C.121)

ρ̂i =1
2 ρ̂iabe

a ∧ eb − i

8LMijVαHMα
bc γbcγaψ

j ∧ ea

+ 1
4εijkl(λ̄

j
aγabλ

ak)γaψl ∧ eb + 1
4(χ̄iγaχj)ψj ∧ ea −

1
4(χ̄jγaχj)ψi ∧ ea

+ 1
4(χ̄iγaχj)γabψj ∧ eb −

1
8(χ̄jγaχj)γabψi ∧ eb (C.122)

+ 1
2(λ̄ai γaλ

j
a)ψj ∧ ea + 1

2(λ̄ai γ
aλja)γabψj ∧ eb

− 1
4(λ̄ajγ

aλja)γabψi ∧ eb −
1
2εijklχ

j(ψ̄k ∧ ψl)− 1
3gĀ1ijγaψ

j ∧ ea,

Rab =1
2Rcdabe

c ∧ ed + ¯̂
θ
i

abcψi ∧ ec + ¯̂
θiabcψ

i ∧ ec

+ i

4VαLMijHMα
ab ψ̄i ∧ ψj + 1

8VαLMijεabcdHMαcdψ̄i ∧ ψj

− i

4V
∗
αLM

ijHMα
ab ψ̄i ∧ ψj + 1

8V
∗
αLM

ijεabcdHMαcdψ̄i ∧ ψj

− 1
4εijkl(λ̄

i
aγabλ

aj)ψ̄k ∧ ψl − 1
4ε

ijkl(λ̄ai γabλaj)ψ̄k ∧ ψl (C.123)

+ 1
2(χ̄iγcχj)ψ̄i ∧ γabcψj −

1
4(χ̄jγcχj)ψ̄i ∧ γabcψi

+ (λ̄ai γ
cλja)ψ̄i ∧ γabcψj −

1
2(λ̄ajγ

cλja)ψ̄i ∧ γabcψi

+ 1
3gĀ1ijψ̄

i ∧ γabψj + 1
3gA

ij
1 ψ̄i ∧ γabψj ,

H(3)Mα ≡− 1
2ΘαM

NPH(3)NP + 1
2ξ

M
β H(3)αβ = 1

6H
(3)Mα
abc ea ∧ eb ∧ ec

+ iΘαMNPLN
aLP

ij λ̄aiγabψj ∧ ea ∧ eb

− 1
4ξ

M
β (Vα)∗(Vβ)∗χ̄iγabψi ∧ ea ∧ eb
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− iΘαMNPLN
aLPij λ̄

i
aγabψ

j ∧ ea ∧ eb (C.124)

− 1
4ξ

M
β VαVβχ̄iγabψi ∧ ea ∧ eb

+ 2iΘαMNPLN
ikLPjkψ̄

j ∧ γaψi ∧ ea

− 1
2ξ

M
β M

αβψ̄i ∧ γaψi ∧ ea,

supplemented with the constraint T a = 0. Here HMα
ab satisfy

εabcdHMαcd = −2MM
NM

α
βHNβab , (C.125)

θ̂iabc equals
θ̂iabc = γ[aρ̂

i
b]c −

1
2γcρ̂

i
ab (C.126)

and the fermion shift matrices are given by [26]

Aij2 = fαMNPVαLMklL
NikLPjl + 3

2ξαMV
αLMij , (C.127)

A2ai
j = fαMNPVαLaMLNikLPjk −

1
4δ

j
i ξαMV

αLa
M , (C.128)

Aij1 = fαMNP (Vα)∗LMklL
NikLPjl. (C.129)

Furthermore, the ψ̄i∧γaψi sector of the Bianchi identity (C.111) implies the following
superspace equations of motion for the dilatini

γaV̂ia = i

4V
∗
αLMaHMα

ab γabλ
a
i + 3

4χ
jχ̄iχj −

1
2λ

a
j λ̄

j
aχi − λ

a
i λ̄

j
aχj

− 2gĀ2
aj
iλaj + 2gĀ2

aj
jλai, (C.130)

while the corresponding sector of the Bianchi identity (C.112) gives the following superspace
equations of motion for the gaugini

γaΛ̂aia = i

4V
∗
αLMijHMα

ab γabλja + i

8VαLMaHMα
ab γabχi

− 1
2λ

j
bλ̄
b
jλai − λ

j
aλ̄biλ

b
j + 2λjbλ̄

b
iλaj −

1
4χjχ̄

jλai −
1
2χiχ̄

jλaj (C.131)

− gA2ai
jχj + gA2aj

jχi + 2gĀabijλbj + 2
3gĀ2(ij)λ

j
a,

where
Aab

ij ≡ fαMNPVαLMaL
N
bL

Pij . (C.132)

Moreover, by considering the ψ̄i ∧ γaψi ∧ eb sector of the Bianchi identity (C.110), one can
specify the superspace equations of motion for the gravitini in the gauged theory

γbρ̂iba = i

2VαLMaHMα
ab γbλ

a
i −

i

2V
∗
αLMijHMα

ab γbχj

+ P̂aχi + 2P̂aijaλaj −
1
2γaλaj λ̄

a
i χ

j (C.133)

+ 1
3gĀ2jiγaχ

j + gA2ai
jγaλ

a
j .
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By taking the covariant derivative D̂ of the above equation and considering the ψi sector
of the resulting one-form equation in N = 4 superspace we obtain the superspace Einstein
equation

Rab−
1
2 χ̄iγ(aV̂

i
b) −

1
2 χ̄

iγ(a|V̂i|b) − λ̄iaγ(a|Λ̂
a
i|b) − λ̄

a
i γ(a|Λ̂ia|b) =

P̂ ∗a P̂b + P̂aP̂
∗
b + P̂ aijaP̂aijb + 1

2MMNMαβHMα
ac HNβb

c

− 1
2 χ̄

iγacλ
a
i χ̄jγb

cλja −
1
2 λ̄aiγacλ

a
j λ̄

i
bγb

cλbj (C.134)

− gηab
(
−Ā2

aj
iχ̄
iλaj + Ā2

ai
iχ̄
jλaj +Aab

ij λ̄
a
i λ

b
j + 1

3A
ij
2 λ̄

a
i λaj + c.c.

)
− g2ηab

(1
3A

ij
1 Ā1ij −

1
9A

ij
2 Ā2ij −

1
2A2ai

jĀ2
ai
j

)
,

where Rab ≡ Racbc = Rba and we have used (5.16).
Also, the Bianchi identity (C.114) constrains the inner components of H(3)Mα to be

equal to

H(3)Mα
abc = εabcdΘαMNP

(
LNaLPijP̂

aijd − LNikLPjkχ̄iγdχj

− 2LNikLPjkλ̄
a
i γ

dλja + 2LNaLPbλ̄
a
i γ

dλbi
)

+ εabcdξ
M
β

[
i

2V
αVβ(P̂ d)∗ − i

2(Vα)∗(Vβ)∗P̂ d (C.135)

+ 2Mαβ
(3i

8 χ̄iγ
dχi + i

4 λ̄
a
i γ

dλia

)]
.

In addition, equations (C.125) and (C.48) imply the following expression for the
inner components HΛab = ΠΛMαHMα

ab of the super-field strengths HΛ = ΠΛMαHMα

of the magnetic super-one-forms AΛ = ΠΛMαA
Mα in terms of the inner components

HΛ
ab = ΠΛ

MαHMα
ab of the super-field strengths HΛ = ΠΛ

MαHMα of the electric super-
one-forms AΛ = ΠΛ

MαA
Mα

HΛab = −1
2εabcdIΛΣHΣcd +RΛΣHΣ

ab. (C.136)

Using the above equation and (3.16), we can express the terms in the rheonomic para-
metrizations of the fermionic gauged supercurvatures and the superspace equations of
motion (C.130), (C.131) and (C.133) that involve HMα

ab solely in terms of HΛ
ab. Those

expressions are similar to the corresponding ones in the ungauged theory and are given
by equations (C.58)–(C.63) with Vi, Λai, ρi, Via, Λaia, ρiba and FΛ

ab replaced by V̂i, Λ̂ai,
ρ̂i, V̂ia, Λ̂aia, ρ̂iba and HΛ

ab respectively. Furthermore, using equations (3.16), (3.19)–(3.22)
and (C.136) we can write the fourth term on the right-hand side of (C.134) as

1
2MMNMαβHMα

ac HNβb
c = −2IΛΣHΛ+

ac HΣ−
b
c
. (C.137)
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From the rheonomic parametrizations of the gauged supercurvatures, we can derive
the local supersymmetry transformations of the spacetime fields in the gauged D = 4,
N = 4 Poincaré supergravity, as we specified the corresponding transformations in the
ungauged theory. The Lie derivatives of the super-one-forms ea, ψi and AMα along the
tangent vector (C.64) are given by

`εe
a = (iεd+ diε)ea = iεT

a + ε̄iγaψi + ε̄iγ
aψi , (C.138)

`εψi = (iεd+ diε)ψi = D̂εi + iερ̂i , (C.139)

`εA
Mα = (iεd+ diε)AMα = iεHMα + 2(Vα)∗LMij ε̄iψj + 2VαLMij ε̄

iψj , (C.140)

where we have used the definitions of the superspace curvatures T a, ρ̂i and HMα and

D̂εi ≡ dεi + 1
4ωabγ

abεi −
i

2Âεi − ω̂
j
i εj . (C.141)

For the super-zero-forms νI ≡ (Vα,V∗α, LMij , LMa, χ
i, χi, λ

i
a, λai) we have the simpler result

`εν
I = (iεd+ diε)νI = iεD̂ν

I . (C.142)

Furthermore, for the super-two-forms BMα ≡ −1
2ΘαM

NPB
NP + 1

2ξ
M
β B

αβ we find

`εB
Mα = (iεd+ diε)BMα = iεH(3)Mα − 1

2ΘαM
NP εβγA

Nβ ∧ `εAPγ

− 1
2ξ

M
β ηNPA

N(α| ∧ `εAP |β). (C.143)

Using the parametrizations given for the gauged supercurvatures and identifying the local
supersymmetry transformation δε of each spacetime p-form with the projection of the
Lie derivative `ε of the corresponding super-p-form on spacetime it is straightforward to
determine the N = 4 local supersymmetry transformations of all the spacetime fields in
the gauged theory. The results have been presented in section 5.

Using the rheonomic approach, one can also construct the spacetime Lagrangian for
the gauged D = 4, N = 4 matter-coupled Poincaré supergravity in an arbitrary symplectic
frame. As we have already mentioned, in this approach the gauged action is given by the
integral of a superspace four-form Lagrangian L on a four-dimensional bosonic hypersurface
M4 immersed in N = 4 superspace,

S =
∫
M4⊂SM

L . (C.144)

The superspace Lagrangian L for the gauged theory contains the corresponding Lagrangian
for the ungauged theory, which is given by equations (C.86)–(C.90) (with the coefficients
replaced by their specified values), with the supercurvatures ρi, Vi, Λai, P , Paij and FΛ

replaced by their gauged counterparts ρ̂i, V̂i, Λ̂ai, P̂ , P̂aij and HΛ respectively, i.e.

L ⊃ Lkin + LPauli + Ltorsion + L4fermi , (C.145)
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where

Lkin = 1
4εabcdR

ab ∧ ec ∧ ed + i(ψ̄i ∧ γaρ̂i − ψ̄i ∧ γaρ̂i) ∧ ea

− 1
12εabcd(χ̄iγ

aV̂ i + χ̄iγaV̂i + 2λ̄ai γ
aΛ̂ia + 2λ̄iaγaΛ̂

a
i ) ∧ e

b ∧ ec ∧ ed

+ 1
24εabcdŜ

∗
e Ŝ

eea ∧ eb ∧ ec ∧ ed

− 1
6εabcd

[
(Ŝa)∗(P̂ − χ̄iψi) + Ŝa(P̂ ∗ − χ̄iψi)

]
∧ eb ∧ ec ∧ ed

+ 1
48εabcdR̂aijeR̂

aijeea ∧ eb ∧ ec ∧ ed

− 1
6εabcdR̂aij

a(P̂ aij − 2ψ̄iλaj − εijklψ̄kλ
a
l ) ∧ e

b ∧ ec ∧ ed (C.146)

− i

96εabcd(N̄ΛΣKΛ+
ef K

Σ+ef −NΛΣKΛ−
ef K

Σ−ef )ea ∧ eb ∧ ec ∧ ed

− 1
2(N̄ΛΣKΛ+

ab +NΛΣKΛ−
ab )

(
HΣ + 1

4ΠΣ
Mα(Vα)∗LMij λ̄

i
aγcdλ

ajec ∧ ed

+ 1
4ΠΣ

MαVαLMij λ̄aiγcdλ
a
j e
c ∧ ed − 1

4ΠΣ
MαVαLMaχ̄iγcdλ

i
ae
c ∧ ed

− 1
4ΠΣ

Mα(Vα)∗LMaχ̄iγcdλaie
c ∧ ed −ΠΣ

Mα(Vα)∗LMijχ̄
iγcψ

j ∧ ec

−ΠΣ
MαVαLMijχ̄iγcψj ∧ ec −ΠΣ

Mα(Vα)∗LMaλ̄iaγcψi ∧ ec

−ΠΣ
MαVαLMaλ̄aiγcψ

i ∧ ec
)
∧ ea ∧ eb,

LPauli =− i

2 P̂
∗ ∧ χ̄iγabψi ∧ ea ∧ eb + iP̂a

ij ∧ λ̄ai γabψj ∧ e
a ∧ eb

− 1
4ΠΛMα(Vα)∗LMaHΛχ̄iγabλai ∧ ea ∧ eb

+ 1
4ΠΛMαVαLMijHΛλ̄aiγabλ

a
j ∧ e

a ∧ eb

−ΠΛMα(Vα)∗LMijHΛ ∧ χ̄iγaψj ∧ ea (C.147)

−ΠΛMα(Vα)∗LMaHΛ ∧ λ̄iaγaψi ∧ ea

−ΠΛMαVαLMijHΛ ∧ ψ̄i ∧ ψj + c.c.,

Ltorsion = i

4 χ̄iγaχ
iRb ∧ ea ∧ eb −

i

2 λ̄
a
i γaλ

i
aRb ∧ ea ∧ eb, (C.148)

L4fermi = εabcd

( 1
64 χ̄

iχjχ̄iχj −
1
48 χ̄

iλ
a
j χ̄iλ

j
a −

1
24 χ̄

iλ
a
i χ̄jλ

j
a

− 1
48 λ̄

a
i λ

b
j λ̄
i
aλ

j
b −

1
24 λ̄

a
i λaj λ̄

i
bλ
bj + 1

12 λ̄
a
i λ

b
j λ̄
i
bλ
j
a

)
ea ∧ eb ∧ ec ∧ ed

+
(1

6εabcdλ̄aiλ
a
j χ̄

iγdψj + c.c.
)
∧ ea ∧ eb ∧ ec

+
(
i

4εijklλ̄
aiγabλ

j
aψ̄

k ∧ ψl + c.c.
)
∧ ea ∧ eb
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+
(
i

2 χ̄iγaχ
jψ̄i ∧ γbψj + iλ̄

a
i γaλ

j
aψ̄

i ∧ γbψj − iλ̄
a
i γaλ

i
aψ̄

j ∧ γbψj
)
∧ ea ∧ eb

+
[
εabcdΠΛMαΠΛ

Nβ

(
i

192(Vα)∗VβLMaL
Njkχ̄iγefλ

a
i λ̄bjγ

efλ
b
k

− i

384(Vα)∗(Vβ)∗LMaL
N
bχ̄
iγefλ

a
i χ̄

jγefλ
b
j

− i

384V
αVβLMijLNklλ̄aiγefλ

a
j λ̄bkγ

efλ
b
l

)
ea ∧ eb ∧ ec ∧ ed

+ ΠΛMαΠΛ
Nβ

(1
4(Vα)∗VβLMaL

Njkχ̄iγabλ
a
i χ̄jγcψk

+ 1
4(Vα)∗(Vβ)∗LMaL

Nbχ̄iγabλ
a
i λ̄

j
bγcψj

− 1
4(Vα)∗(Vβ)∗LMijL

N
klλ̄

k
aγabλ

alχ̄iγcψ
j

+ 1
4(Vα)∗(Vβ)∗LMaL

N
jkχ̄

iγabλ
a
i χ̄

jγcψ
k

− i

8(Vα)∗VβLMaL
N
bεabcdλ̄

a
i λ

b
jχ̄

iγdψj

− 1
8(Vα)∗VβLMaL

N
bλ̄
a
i γabλ

b
jχ̄

iγcψ
j

− 1
4(Vα)∗VβLMijL

Nklλ̄akγabλ
a
l χ̄

iγcψ
j

− 1
4V

α(Vβ)∗LMijLNbλ̄
a
i γabλaj λ̄

k
bγcψk

− 1
4V

αVβLMijLNbλ̄aiγabλ
a
j λ̄bkγcψ

k
)
∧ ea ∧ eb ∧ ec

+ ΠΛMαΠΛ
Nβ

(
− (Vα)∗(Vβ)∗LMijL

Naχ̄iγaψ
j ∧ λ̄kaγbψk

+ i

4(Vα)∗VβLMijL
Nklεabcdχ̄

iγcχkψ̄
j ∧ γdψl

− 1
2(Vα)∗(Vβ)∗LMijL

N
klχ̄

iγaψ
j ∧ χ̄kγbψl

− (Vα)∗VβLMijL
N
aχ̄

iγaψ
j ∧ λ̄akγbψ

k

− 1
2V

αVβLMaL
N
bλ̄
a
i γaψ

i ∧ λ̄bjγbψ
j

+ i

4V
α(Vβ)∗LMaL

Nbεabcdλ̄
a
i γ

cλjbψ̄
i ∧ γdψj

)
∧ ea ∧ eb

+ ΠΛMαΠΛ
Nβ

(
− 1

2V
αVβLMijL

N
klψ̄

i ∧ ψj ∧ ψ̄k ∧ ψl

− 1
2(Vα)∗VβLMijLNklψ̄i ∧ ψj ∧ ψ̄k ∧ ψl

)
+ c.c.

]
, (C.149)
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where we have dropped a total derivative and Ŝa, R̂aija = (R̂aija)∗ = 1
2εijklR̂a

kl
a and

KΛ
ab = (KΛ

ab)∗ are auxiliary super-zero-forms that are identified, through their equations of
motions, with the inner components P̂a, P̂aija and HΛ

ab of the supercurvatures P̂ , P̂aij and
HΛ respectively. They provide a first-order description of the kinetic terms of the bosonic
superfields which avoids the use of the Hodge duality operator.

The equations of motion that arise from the variation of the gauged action with respect
to the superforms χi, λai and ψi must be solved by the constraint T a = 0, the rheonomic
equations (C.117)–(C.122) and the equations of motion (C.130), (C.131) and (C.133) (ex-
pressed in terms of HΛ

ab only), which are obtained by requiring closure of the Bianchi
identities. In order for this condition to be satisfied, the following fermionic mass terms
have to be added to the superspace Lagrangian for the gauged theory

Lfermion mass = 1
12gεabcd

(
−Ā2

aj
iχ̄
iλaj + Ā2

ai
iχ̄
jλaj +Aab

ij λ̄
a
i λ

b
j + 1

3A
ij
2 λ̄aiλ

a
j

)
ea ∧ eb ∧ ec ∧ ed + 1

3gεabcd
(1

3Ā2ijχ̄
iγaψj +A2aj

iλ̄
a
i γ

aψj
)
∧ eb ∧ ec ∧ ed

+ i

3gĀ1ijψ̄
i ∧ γabψj ∧ ea ∧ eb + c.c. . (C.150)

We also require that the superspace Einstein equation obtained from the analysis of
the super-three-form equation of motion for the bosonic vielbein ea following from the
variational principle along the elements ea ∧ eb ∧ ec of the intrinsic basis of three-forms in
N = 4 superspace be the same as (C.134), which follows from the Bianchi identities. This
is achieved if we add the following scalar potential term to the superspace Lagrangian

Lpotential = 1
72g

2
(
Aij1 Ā1ij −

1
3A

ij
2 Ā2ij −

3
2A2ai

jĀ2
ai
j

)
εabcde

a ∧ eb ∧ ec ∧ ed. (C.151)

Finally, the superspace four-form Lagrangian for the gauged D = 4, N = 4 Poincaré
supergravity must contain the topological term [36]

Ltop =− 1
2gΠΛ

MαΠΛNβ
(
ΘαM

PQB
PQ − ξMγ Bαγ

)
∧(

HNβ + g

4ΘβN
RSB

RS − g

4ξ
N
δ B

βδ + (Vβ)∗LNijψ̄i ∧ ψj + VβLNijψ̄i ∧ ψj
)

+ 1
6g
(
ΠΛ

RεΠΛSζ + 2ΠΛRεΠΛ
Sζ

)
XMαNβ

RεAMα ∧ANβ∧ (C.152)(
dASζ + 1

4gXPγQδ
SζAPγ ∧AQδ

)
.

This term ensures that the superspace equations of motion arising from the variation
of the gauged action with respect to BMN , Bαβ and AΛ are solved by the rheonomic
equations (C.121) and (C.124) and the constraints (C.135) and (C.136).

In summary, the superspace Lagrangian for the gauged D = 4, N = 4 matter-coupled
supergravity in an arbitrary symplectic frame is given by

L =Lkin + LPauli + Ltorsion + Lfermion mass

+ Lpotential + Ltop + L4fermi , (C.153)

where the various terms on the right-hand side are given by equations (C.146)–(C.152).
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In order to obtain the gauged spacetime Lagrangian, we restrict the superspace four-
form Lagrangian (C.153) to spacetime (θi = dθi = 0 hypersurface). As we did for the
ungauged theory, we first go to the second-order formalism by identifying the auxiliary
super-zero-forms Ŝa, R̂aija and KΛ

ab with P̂a, P̂aija and HΛ
ab respectively and setting T a = 0.

Then, we expand all the forms along the dxµ differentials and restrict the superfields to
their lowest (θi = 0) components. The result is given in section 5.

D T-tensor identities

In this appendix we derive the quadratic constraints satisfied by the T-tensor by appropri-
ately dressing the quadratric constraints on the embedding tensor (4.11)–(4.15) with the
representatives of the coset spaces SL(2,R)/SO(2) and SO(6,n)/SO(6) × SO(n). Many
of these constraints have been used for the derivation of the results of section 6 and
their form and structure can be analyzed by classifying them according to their H =
SO(2) × SO(6) × SO(n) representation.

D.1 The T-tensor

Let us join the coset representatives of SL(2,R) and SO(6,n) into a single object

L(R) = S ⊗ L =⇒ (L(R))MM = (L(R))Mα
Mα = SααLMM . (D.1)

We introduce a complex representative L of the coset space SL(2,R)
SO(2) ×

SO(6,n)
SO(6)×SO(n) defined by

L = L(R)A† , (D.2)

where
A† = A† ⊗ 1n+6 , (D.3)

where 1n+6 is the (n+ 6)× (n+ 6) identity matrix and A is the unitary 2× 2 matrix with
entries

A = 1√
2

(
1 i

1 −i

)
. (D.4)

The elements of the complex matrix L are given by

LM
M = LMα

Mα = LM
MSα

β(A)†β
α =

(
LMα

M1,LMα
M2
)

(D.5)

=
( 1√

2
V∗αLMM ,

1√
2
VαLMM

)
. (D.6)

The inverse matrix is obtained from the relation LT(R)CL(R) = C, where CMN = εαβηMN

(the subscript (R) indicates that we are referring to the matrix with real entries). The
inverse of the real coset representative is L−1

(R) = −CLT(R)C, while the inverse of the complex
one is

L−1 = (L(R)A†)−1 = (A†)−1L−1
(R) = −(A†)−1CLT(R)C

= −ACLT(R)C = −ACA†ALT(R)C = −$L†C, (D.7)
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where we have defined $ ≡ ACA† = −iσ3 ⊗ η. With indices, we have

(L−1)MN = $MLLM
LCNM , (D.8)

or equivalently
(L−1)Mα

Mα = i(σ3)αβηMNLNβ
NβηMN εβα (D.9)

Therefore, the various elements of L−1 are

(L−1)ij1Mα = i√
2
VαLMij (D.10)

(L−1)a1
Mα = i√

2
VαLMa (D.11)

(L−1)ij2Mα = − i√
2

(Vα)∗LMij (D.12)

(L−1)a2
Mα = − i√

2
(Vα)∗LMa. (D.13)

The T -tensor is obtained from the “dressing” of the structure constants (4.8) with the
above defined coset representatives and its explicit expression is

TMN
P = (L−1)MM(L−1)NNXMNPLP

P . (D.14)

The T -tensor contains the expressions for all the fermion shifts that have to be added to
the rheonomic parametrizations during the gauging procedure, that is (C.127)–(C.129). To
help ourselves in the quest of extracting these expressions out of all the components of the
T -tensor, let us recall the U(1) charges of the fermion shifts:

Field U(1) charge
Ā1ij 1
Ā2a

i
j −1

Ā2ij −1

Let us then consider the following component of the T -tensor with charge +1:

Tij1kl1
mn1 = − 1

2
√

2
Vα
(

2ifαMN
PLMijL

N
klLP

mn − iLMijδ
[m
k δ

n]
l ξαM

+ iLMklδ
[m
i δ

n]
j ξαM −

i

2εijklLM
mnξMα

)
. (D.15)

This component is an element of the SU(4) algebra and, as such, can be expressed as

Tij1kl1
mn1 = 4Tij[k [mδ

n]
l] . (D.16)

By contracting the above equation first with δln and then with δkm, one can find the expres-
sion for Tijkm:

Tijk
m = 1

2

(
Tij1kl1

ml1 − 1
6δ

m
k Tij1sl1

sl1
)

= − i

2
√

2
Vα
(
fαMN

PLMijL
N
klLP

ml + δm[i L
M
k|j]ξαM −

1
2δ

m
k L

M
ijξαM

)
. (D.17)
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By contracting (D.17) with εijkp, we precisely get

Apm2 = i
√

2Tijkmεijkp. (D.18)

Moreover, by contracting (D.17) with δim, we obtain

Tijk
i = − i

2
√

2
Vα
(
fαMN

PLMijL
N
klLP

il + δi[iL
M
k|j]ξαM −

1
2L

M
kjξαM

)
(D.19)

and by further symmetrising in (jk), we get the following relation

Ā1jk = −2i
√

2Ti(jk)
i. (D.20)

Therefore, the tensor Tijkm can be written as

Tijk
m = − i

6
√

2
εijkpA

pm
2 + i

3
√

2
δm[i Ā1j]k. (D.21)

To derive the expression for Ā2a
i
j in terms of the T -tensor, we instead need to consider

the following component of the T -tensor, with U(1) charge −1:

Ta2ij1
kl1 = i√

2
(Vα)∗LMa

(
LNijLP

klfαMN
P + 1

2δ
[k
i δ

l]
j ξMα

)
≡ 4Ta[i

[kδ
l]
j], (D.22)

where Taik is given by

Tai
k = 1

2

(
Ta2ij1

kj1 − 1
6δ

k
i Ta2jl1

jl1
)
. (D.23)

The explicit expression of the above tensor leads to a relation with Ā2a
k
i given by (5.13):

Ā2a
k
i = 2

√
2iTaik. (D.24)

D.2 Quadratic identities

The quadratic constraints (4.11)–(4.15) sit in definite irreducible representations of
SL(2,R) × SO(6, n) and their contraction with the coset representatives leads to tensorial
structures in definite irreducible representations of the isotropy group H. The resulting
expressions are quadratic constraints in terms of the scalar tensors A used for the fermion
shifts and the fermion mass matrices. We list them here according to their origin and their
representations, using the notation (RSU(4),RSO(n))qU(1) , where RSU(4) and RSO(n) denote
the SU(4) and SO(n) representations respectively and qU(1) the U(1) charge.

D.2.1 From (4.11)

Irreps (1,1)+2:
2
9εijklA

ij
2 A

kl
2 = A2ai

iA2
a
j
j . (D.25)

Irreps (1,1)0:
4
9A

[ij]
2 Ā2ij = A2ai

iĀ2
aj
j . (D.26)
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D.2.2 From (4.12)

Irreps (15,1)+2:

2
9εiklmA

(jk)
2 Alm2 −

4
9A

[jk]
2 Ā1ik = −A2ai

jA2
a
k
k + 1

4δ
j
iA2ak

kA2
a
l
l . (D.27)

Irreps (15,1)0:

2
9εiklmA

jk
1 A

lm
2 −

2
9ε

jklmĀ1ikĀ2lm + 4
9A

(jk)
2 Ā2[ik] −

4
9A

[jk]
2 Ā2(ik) = A2ak

kĀ2
aj
i −A2ai

jĀ2
ak
k.

(D.28)
Irreps (6,n)+2:

εijlmAab
lmA2

b
k
k = 4

3A
lm
2 A2a[j

kεi]klm −
1
3εijlmA

lm
2 A2ak

k . (D.29)

Irreps (6,n)−2

ĀabijĀ2
bk
k = −2

3Ā2[ik]Ā2a
k
j + 2

3Ā2[jk]Ā2a
k
i + 1

3Ā2[ij]Ā2a
k
k . (D.30)

Irreps (6,n)0:

ĀabijA2
b
k
k + 1

2εijklAab
klĀ2

bm
m = 2

3A
lm
2 Ā2a

k
[iεj]klm + 2

3Ā2[ik]A2aj
k − 2

3Ā2[jk]A2ai
k

+ 1
6εijklA

kl
2 Ā2a

m
m −

1
3Ā2[ij]A2ak

k . (D.31)

Irreps (1,n(n− 1)/2)+2:

AabcA2
c
i
i = −1

3εijklA
ij
2 Aab

kl . (D.32)

Irreps (1,n(n− 1)/2)0:

ĀabcA2
c
i
i +AabcĀ2

ci
i = −2

3ĀabijA
ij
2 −

2
3Aab

ijĀ2ij . (D.33)

D.2.3 From (4.13)

Irreps (15,1)−2:

4
3A

jk
1 Ā2(ik) + 3

(
Ā2

aj
kĀ2a

k
i −

1
2Ā2

aj
iĀ2a

k
k

)
+ 2

3A
jk
1 Ā2[ik] + 1

3ε
jklmĀ2(ik)Ā2lm =

= 1
3δ

j
iA

kl
1 Ā2kl + 3

4δ
j
i

(
Ā2

ak
lĀ2a

l
k −

1
2Ā2

ak
kĀ2a

l
l

)
. (D.34)

Irreps (15,1)0:

2
3A

jk
1 Ā1ik + 2

3A
(jk)
2 Ā2(ik) + 1

3A
[jk]
2 Ā2(ik) + 1

3A
(jk)
2 Ā2[ik] + 1

6ε
jklmĀ1ikĀ2lm

+ 1
6εiklmA

jk
1 A

lm
2 −

3
2A2ak

jĀ2
ak
i −

3
2A2ai

kĀ2
aj
k + 3

4A2ai
jĀ2

ak
k + 3

4A2ak
kĀ2

aj
i = (D.35)

= 1
6δ

j
iA

kl
1 Ā1kl + 1

6δ
j
iA

(kl)
2 Ā2kl −

3
4δ

j
i

(
A2ak

lĀ2
ak
l −

1
2A2ak

kĀ2
al
l

)
.

– 74 –



J
H
E
P
0
9
(
2
0
2
3
)
0
7
1

Irreps (10,n)+2:
1
3A

lm
2 A2a(i

kεj)klm + 4
3A2a(i

kĀ1j)k +Aab
lmA2

b
(i
kεj)klm = 0 . (D.36)

Irreps (10,n)−2:

2Ā2(ij)Ā2a
k
k = Ā2[ik]Ā2a

k
j + Ā2[jk]Ā2a

k
i + 2Ā2(ik)Ā2a

k
j + 2Ā2(jk)Ā2a

k
i + 6Āab(i|kĀ2

bk
|j).

(D.37)
Irreps (10,n)0:

−2Ā1ijĀ2a
k
k = 2Ā2(ik)A2aj

k + 2Ā2(jk)A2ai
k + Ā2[ik]A2aj

k + Ā2[jk]A2ai
k (D.38)

− 4Ā2a
k

(iĀ1j)k + 6Āab(i|kA2
b
|j)
k −Alm2 Ā2a

k
(iεj)klm − 3AablmĀ2

bk
(iεj)klm .

Irreps (15,n(n− 1)/2)−2:

− 4Ā2[a|
k
iĀ2|b]

j
k − 2Ā2[a|

j
iĀ2|b]

k
k −

4
3A

jk
1 Āabik

+ 1
3ε

jklm
(
2Ā2(ik)Āablm + Ā2[ik]Āablm − Ā2lmĀabik

)
(D.39)

− 2εjklmĀ[a|cikĀ|b]
c
lm − 2Āabc

(
Ā2

cj
i −

1
4δ

j
i Ā2

ck
k

)
= 0 .

Irreps (15,n(n− 1)/2)0:

− 1
3εiklmA

jk
1 Aab

lm + 1
3ε

jklmĀ1ikĀablm

+ 2
3Ā2ikAab

jk − 2
3A

jk
2 Āabik −

1
6δ

j
i

(
Ā2klAab

kl −Akl2 Āabkl
)

+ 2A2[a|i
kĀ2|b]

j
k − 2A2[a|k

jĀ2|b]
k
i +A2[a|k

kĀ2|b]
j
i +A2[a|i

jĀ2|b]
k
k −

1
2δ

j
iA2[a|k

kĀ2|b]
l
l

−Aabc
(
Ā2

cj
i −

1
4δ

j
i Ā2

ck
k

)
+ Āabc

(
A2

c
i
j − 1

4δ
j
iA2

c
k
k
)

(D.40)

+ 4A[a
cjkĀb]cik − δ

j
iA[a

cklĀb]ckl = 0.

Irreps (6,n(n− 1)(n− 2)/6)+2:

εijkl

(1
3A

kl
2 Aabc + 3A[ab|dA|c]

dkl
)

= −6A[ab
lmA2c][j

kεi]klm . (D.41)

Irreps (6,n(n− 1)(n− 2)/6)−2:
1
3Ā2[ij]Āabc + 3Ā[ab|dĀ|c]

d
ij = −3Ā2[a|

k
kĀ|bc]ij − 6Ā2[a|

k
[i|Ā|bc]j]k . (D.42)

Irreps (6,n(n− 1)(n− 2)/6)0:
1
3εijklA

kl
2 Āabc + 2

3Ā2[ij]Aabc + 6A[ab|dĀ|c]
d
ij + 3εijklĀ[ab|dA|c]

dkl =

= −3εijklA[ab
klĀ2c]

m
m + 12A2[a|[i|

kĀ|bc]j]k + 6A[bc
lmĀ2a]

k
[jεi]klm . (D.43)

Irreps (1,n(n− 1)(n− 2)(n− 3)/24)+2:

3Ae[abAcd]
e + 2A[abcA2d]i

i = 3
2εijklA[ab

ijAcd]
kl. (D.44)

Irreps (1,n(n− 1)(n− 2)(n− 3)/24)0:

3Ae[abĀcd]
e + Ā[abcA2d]i

i +A[abcĀ2d]
i
i = 3A[ab

ijĀcd]ij . (D.45)
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D.2.4 From (4.14)

Irreps (15,1)0:
2
9εiklmA

jk
1 A

lm
2 + 2

9ε
jklmĀ1ikĀ2lm =A2ak

kĀ2
aj
i +A2ai

jĀ2
ak
k −

1
2δ

j
iA2ak

kĀ2
al
l

+ 4
9A

(jk)
2 Ā2[ik] + 4

9A
[jk]
2 Ā2(ik) −

8
9A

[jk]
2 Ā2[ik] (D.46)

+ 2
9δ

j
iA

[kl]
2 Ā2kl .

Irreps (6,n)0:

ĀabijA2
b
k
k − 1

2εijklAab
klĀ2

bm
m =− 2

3Ā2[ik]A2aj
k + 2

3Ā2[jk]A2ai
k + Ā2[ij]A2ak

k

− 2
3A

lm
2 Ā2a

k
[jεi]klm −

1
6εijlmA

lm
2 Ā2a

k
k . (D.47)

Irreps (1,n(n− 1)/2)0:

AabcĀ2
ci
i − ĀabcA2

c
i
i + 2A2[a|i

iĀ2|b]
j
j = 2

3ĀabijA
ij
2 −

2
3Aab

ijĀ2ij . (D.48)

D.2.5 From (4.15)

Irreps ((15× 15)A,1)0:

− 2
9δ

j
iA

lm
1 Ā1km + 2

9δ
l
kA

jm
1 Ā1im + 2

9δ
j
iA

(lm)
2 Ā2(km) −

2
9δ

l
kA

(jm)
2 Ā2(im)

− 2
9εikmn

(
Ajm1 A

(ln)
2 −A(jm)

2 Aln1

)
− 2

9ε
jlmn

(
Ā1imĀ2(kn) − Ā2(im)Ā1kn

)
− 4

9A
(jl)
2 Ā2[ik] −

4
9A

[jl]
2 Ā2(ik) −

1
9δ

j
i

(
A

(lm)
2 Ā2[km] +A

[lm]
2 Ā2(km)

)
+ 1

9δ
j
k

(
A

(lm)
2 Ā2[im] −A

[lm]
2 Ā2(im)

)
+ 1

9δ
l
k

(
A

(jm)
2 Ā2[im] +A

[jm]
2 Ā2(im)

)
− 1

9δ
l
i

(
A

(jm)
2 Ā2[km] −A

[jm]
2 Ā2(km)

)
+ 1

9εikmn
(
Ajl1 A

mn
2 +Ajm1 A

[ln]
2 −A[jm]

2 Aln1

)
(D.49)

+ 1
9ε

jlmn
(
Ā1ikĀ2mn + Ā1imĀ2[kn] − Ā2[im]Ā1kn

)
+A2ak

jĀ2
al
i −A2ai

lĀ2
aj
k

+ 1
4δ

j
i

(
A2am

mĀ2
al
k +A2ak

lĀ2
am

m

)
− 1

4δ
j
k

(
A2am

mĀ2
al
i −A2ai

lĀ2
am

m

)
− 1

4δ
l
k

(
A2am

mĀ2
aj
i +A2ai

jĀ2
am

m

)
+ 1

4δ
l
i

(
A2am

mĀ2
aj
k −A2ak

jĀ2
am

m

)
= 0 .,

The tensor product (15× 15)A of SU(4) decomposes as

(15× 15)A = 15 + 45 + 45 . (D.50)

The component of the quadratic constraint (D.49) that transforms in the 15 of SU(4)
follows from contracting (D.49) with δkl , which yields

(15,1)0 : 8
9
(
Ajk1 Ā1ik −A

(jk)
2 Ā2(ik)

)
− 2

9δ
j
i

(
Akl1 Ā1kl −A

(kl)
2 Ā2kl

)
+A2ak

jĀ2
ak
i −A2ai

kĀ2
aj
k −A2ai

jĀ2
ak
k −A2ak

kĀ2
aj
i (D.51)

+ 1
2δ

j
iA2ak

kĀ2
al
l = 0 .
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Irreps (15× 6,n)0:

2
3Ā2a

l
[iĀ1j]k −

2
3Ā1kmĀ2a

m
[iδ
l
j] + 2

3A
lm
1 A2a[i

nεj]kmn + 1
3εijkmA

lm
1 A2an

n

− 1
3Ā2(ik)A2aj

l + 1
3Ā2(jk)A2ai

l − 2
3Ā2(km)A2a[i

mδlj] −
1
3δ

l
iĀ2(jk)A2am

m + 1
3δ

l
jĀ2(ik)A2am

m

+ 2
3A

(lm)
2 Ā2a

n
[iεj]kmn −

1
3Ā2[ij]A2ak

l − 1
3Ā2[ik]A2aj

l + 1
3Ā2[jk]A2ai

l − 1
4δ

l
iĀ2[jm]A2ak

m

+ 1
4δ

l
jĀ2[im]A2ak

m + 1
3Ā2[km]A2a[i

mδlj] + 1
6Ā2[jm]A2a[k

mδli] + 1
6Ā2[im]A2a[j

mδlk]

− 1
12δ

l
iĀ2[jk]A2am

m + 1
12δ

l
jĀ2[ik]A2am

m + 1
24δ

l
kĀ2[ij]A2am

m

− 1
12εijkm

(
A

[ln]
2 Ā2a

m
n +A

[mn]
2 Ā2a

l
n

)
+ 1

6Ā2a
l
[iεj]kmnA

mn
2 + 1

6εijmn
(
A

[lm]
2 Ā2a

n
k −Amn2 Ā2a

l
k

)
+ 1

24εijkmA
[lm]
2 Ā2a

n
n (D.52)

− 1
12δ

l
[iεj]mnpA

np
2 Ā2a

m
k + 1

12εkmnpA
np
2 Ā2a

m
[iδ
l
j] + 1

24δ
l
kεijmnA

mn
2 Ā2a

p
p

− 1
24δ

l
[iεj]kmnA

mn
2 Ā2a

p
p + ĀabijA2

b
k
l − 3

8δ
l
kĀabijA2

b
m
m − 1

2δ
l
[i|Āab|j]kA2
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We have the decomposition

15× 6 = 6 + 10 + 10 + 64 . (D.53)

In order to specify the components of (D.52) in the 10 and 6 representations of SU(4), we
first contract (D.52) with δjl . To obtain the 10 component, we symmetrize the resulting
identity in i and k, whereas to get the 6 component, we antisymmetrize in i and k. The
results are

(10,n)0 : 2
3Ā2a

j
(iĀ1k)j + 1

3Ā1ikĀ2a
j
j −

2
3Ā2(ik)A2aj

j + 1
3Ā2(jk)A2ai

j

+ 1
3Ā2(ij)A2ak

j − 1
6Ā2[ij]A2ak

j + 1
6Ā2[jk]A2ai

j (D.54)

− Āab(i|jA2
b
|k)
j − 1

6Ā2a
l
(kεi)lmnA

mn
2 − 1

2Ā2
bl

(kεi)lmnAab
mn = 0 .

(6,n)0 : − 2
3Ā2a

j
[iĀ1k]j + 1

3Ā2(ij)A2ak
j − 1

3Ā2(jk)A2ai
j

+ 1
12Ā2[ij]A2ak

j + 1
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j

+ Āab[i|jA2
b
|k]
j + 3

8ĀabikA2
b
m
m − 1

3εiklmA
ln
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m (D.55)

+ 1
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l
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Irreps (((6,n)× (6,n))A)0:
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mĀ2b
[k
mδ

l]
|j] + 2Ā2a
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+ 2Ā2(a|
m
mA2|b)[i

[kδ
l]
j] + 2A2(a|m
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cklĀb]cij − 4δ[k

[i|Aac
l]mĀb
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The tensor product ((6,n)× (6,n))A of SU(4)×SO(n) decomposes as

((6,n)× (6,n))A = (1,n(n− 1)/2) +
(
20′ ,n(n− 1)/2

)
+ (15,n(n + 1)/2− 1) + (15,1) . (D.57)

In order to specify the component of (D.56) transforming in the (reducible) (15,n(n+1)/2)
representation of SU(4)×SO(n), we contract (D.56) with δjl and we then symmetrize the
resulting equation in a and b. We find

(15,n(n + 1)/2)0 : −A2(a|i
jĀ2|b)

k
j +A2(a|j

kĀ2|b)
j
i +A2(a|i
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c
ij (D.58)

+ 1
2δ

k
i A(a|c

jlĀ|b)
c
jl + 1

18δabεilmnA
kl
1 A

mn
2

+ 1
18δabε

klmnĀ1ilĀ2mn −
1
9δab

(
A

(kj)
2 Ā2[ij] +A

[kj]
2 Ā2(ij)

)
= 0 .

On the other hand, the (1,n(n− 1)/2)0 component of the quadratic constraint (D.56)
follows from contracting (D.56) with δikδ

j
l and then antisymmetrizing the resulting identity

in a and b, which gives

(1,n(n− 1)/2)0 : − 4A2[a|i
jĀ2|b]
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(D.59)
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(D.60)

−A2[a|k
kĀ2|b]
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Irreps (6,n(n− 1)/2× n)0:
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kĀabij − Ā2c
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−AabdĀcdij + 1
2εijklĀab

dAcd
kl = 0 .

Irreps (1, (n(n− 1)/2× n(n− 1)/2)A)0:

−AabijĀcdij + ĀabijAcd
ij +AabeĀcd

e − ĀabeAcde

− δ[a[c

(2
3Ād]b]ijA

ij
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(D.62)

+A2[a|i
iĀ|b]cd −A2[c|i

iĀ|d]ab − Ā2[a|
i
iA|b]cd + Ā2[c|

i
iA|d]ab = 0 .
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