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1 Introduction

In the past year, a new kind of generalized global symmetries, the non-invertible symmetry,
has been realized in a variety of quantum systems in diverse spacetime dimensions. See [1–
36] for a partial list of references for these recent advances, [37–41] for earlier discussions of
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non-invertible symmetries in higher dimensions, and [42, 43] for reviews on generalized global
symmetries [44]. The non-invertible symmetry is implemented by a topological operator
without an inverse, which is in particular, not unitary. Such examples are ubiquitous in
1+1d systems [45–74], such as the Kramers-Wannier duality line in the Ising conformal
field theory.

In this paper, we uncover non-invertible global symmetries in the 3+1d axion-Maxwell
theory, whose Lagrangian in Euclidean signature is

f2

2 dθ ∧ ?dθ + 1
2e2F ∧ ?F −

iK

8π2 θF ∧ F . (1.1)

Here θ is the dynamical axion scalar field with periodicity θ ∼ θ + 2π, f is the axion decay
constant, and F = dA is the field strength of the dynamical U(1) gauge field A. Without
the axion-photon coupling (i.e., K = 0), the decoupled theory of the dynamical axion field
θ and photon gauge field A has a shift (0-form) symmetry and a (1-form) electric center
symmetry, which act as

K = 0 : θ(x)→ θ(x) + α ,

A(x)→ A(x) + λ(x) , dλ = 0 ,
(1.2)

respectively. For K > 1, these two symmetries are broken to their ZK subgroups, which
form a higher-group symmetry with the other invertible higher-form symmetries [75–77].
(See [78] for a higher dimensional generalization.) However, at K = 1, there does not appear
to be any invertible symmetries left.

In this paper, we find that the axion-Maxwell theory at K = 1 already hosts a rich
variety of generalized global symmetries. In particular, the shift and center symmetries (1.2)
are resurrected as non-invertible 0- and 1-form global symmetries.1

1Recall that a (invertible or non-invertible) q-form global symmetry is generated by a codimension-(q+ 1)
topological operator/defect in spacetime. Throughout this paper, we will only work with relativistic quantum
field theory in Euclidean signature, in which case the distinction between an “operator” and a “defect” is
usually not essential, and are sometimes related by a Wick rotation. We will therefore use these two terms
interchangeably. However, more generally, defects (topological or not) obey more conditions compared to
operators. This is because a well-defined defect should be associated with a Hilbert space when we use it to
implement a twist in space. Therefore, a defect has a preferred normalization, and cannot be arbitrarily
rescaled by a c-number. Furthermore, we can add defects, but we cannot consider general linear combination
of defects with complex coefficients. In contrast, we are allowed to consider arbitrary linear combinations of
operators with complex coefficients.

These non-negative integrality conditions on defects are similar to those for the boundary conditions [79].
In the special case of p-dimensional topological defects, they can be multiplied by a decoupled p-dimensional
topological quantum field theory (TQFT). We can also consider linear combinations of topological defects
with TQFT coefficients [6, 10]. One may view these decoupled TQFTs for p > 1 as generalization of
non-negative integers that can be multiplied to topological line defects. Indeed, for p = 1, a 1-dimensional
(bosonic) topological quantum mechanics is completely characterized by the dimension of its Hilbert space,
i.e., a non-negative integer.

By a non-invertible symmetry, we mean that the symmetry generator is not invertible as a defect, not just
as an operator. For example, the Fibonacci line, which obeys the fusion rule W ×W = 1 +W is invertible
as an operator since W × (W − 1) = 1. But W is not invertible as a defect, since W − 1, being formally the
difference between two defects, is not a well-defined defect associated with a Hilbert space.
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The new non-invertible 1-form symmetry is related to the Page charge [80, 81]. The
equations of motion in axion-Maxwell theory (with K = 1) imply

− i

e2d ? F = 1
4π2dθ ∧ F . (1.3)

Since the righthand side is nonzero, the Gauss law is anomalous. One can attempt to
define a formally conserved charge QPage =

∮
Σ(2)(− i

e2 ? F −
1

4π2 θ ∧ F ), known as the Page
charge [80, 81], but it is not invariant under the periodicity of the axion field θ ∼ θ + 2π.
Hence, there is no gauge-invariant, conserved, and quantized electric charge. Indeed, the
lack of an ordinary electric charge can be understood from the Witten effect [82]: a magnetic
monopole gains an electric charge by going around an axion string.

While the operator “ exp(iαQPage)” is not gauge-invariant, at any rational angle α =
2πp/N , it has a close cousin that is well-defined.2 This new surface operator is

D(1)
p/N (Σ(2)) =

∫
[DφDc]Σ(2) exp

[
i

∮
Σ(2)

(
− i

e2
2πp
N

? F + N

2πφdc+ p

2πθdc+ 1
2πφdA

)]
,

(1.4)
where φ and c are auxiliary 0- and 1-form fields living only on Σ(2). Intuitively, it is a
composition of the naive Gauss law operator and a 1+1d ZN gauge theory coupled to the
bulk fields. This construction is similar to how a fractional quantum Hall state cures the
ABJ anomaly in massless QED [12, 13].3 This new operator is gauge-invariant, topological
(and in particular conserved under time evolution), and can be defined on any closed
2-manifold. However, it is not invertible, and in particular, is not a unitary operator, i.e.,
D(1)
p/N × (D(1)

p/N )† 6= 1. Since D(1)
p/N is supported on a codimension-2 surface Σ(2) in spacetime,

we call it a non-invertible 1-form symmetry defect.
To see the non-invertible nature of D(1)

p/N , we can wrap it around an S2 enclosing a heavy
electron W of minimal electric charge (which is represented by a Wilson line localized at a
point in space). The symmetry operator D(1)

p/N acts onW invertibly by a phase exp(2πip/N),
measuring its electric charge as in the ordinary Gauss law. However, a heavy monopole
(which is represented by an ’t Hooft line H) of minimal magnetic charge is annihilated by
D(1)
p/N . This shows that the operator D(1)

p/N has a kernel and is non-invertible in the presence
of a magnetic monopole.4 See figure 1. Just like the ordinary Gauss law is associated with
a U(1) 1-form global symmetry [44], here we derive a non-invertible Gauss law associated
with a non-invertible 1-form symmetry.

These generalized global symmetries are typically emergent symmetries in a renormal-
ization group flow to the axion-Maxwell theory. Interestingly, some of these symmetries
cannot exist without another. This leads to universal constraints on the energy scales
where these symmetries become emergent. Such constraints were known in the context of

2Throughout the paper, by a “rational” angle α, we actually mean that α/2π is a rational number. We
hope this will not cause too much confusions.

3See [33, 36] for an alternative non-invertible topological operator labeled by a U(1) angle arising from
the ABJ anomaly.

4In the language of [83], we can view D(1)
p/N

as a time-like global symmetry operator and it acts on the
line defects by linking.
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= × exp
(
2πip
N

)

D(1)
p/N

W =

D(1)
p/N

H 0

Figure 1. Non-invertible Gauss law implemented by the non-invertible 1-form symmetry surface
operator D(1)

p/N labeled by p/N ∈ Q/Z. Here W and H stand for the minimally charged Wilson and
’t Hooft lines, located at a point in the 3-dimensional space and extended in the time direction (the
time direction is not shown in the figure). The non-invertible 1-form symmetry D(1)

p/N measures the
electric charge of the Wilson line invertibly by a phase e2πip/N , much as an ordinary Gauss law
operator eiαQ (with α = 2πp/N) does. However, it annihilates the ’t Hooft line, and is therefore a
non-invertible operator.

higher-group symmetries [77, 84], and here we further generalize them to non-invertible
symmetries. Specifically, we show

Eshift . Emagnetic,

Eelectric . min{Emagnetic, Ewinding} .
(1.5)

Here Eshift is the scale where the (non-invertible) shift symmetry is broken, which is related
to the scale of the axion potential. Emagnetic is the scale of a dynamical monopole, and
Eelectric is the scale where the non-invertible 1-form symmetry is broken, which is related
to the scale of an electrically charged particle. Finally, Ewinding is related to the scale
of the tension of the axion string. It would be interesting to explore phenomenological
consequences of these inequalities.

The rest of the paper is organized as follows. In section 2 we review the higher-form
symmetries in the axion-Maxwell theory and construct new non-invertible 0- and 1-form
global symmetries even in theK = 1 case. In section 3 we provide an alternative construction
for the non-invertible 1-form symmetry via half higher gauging. In section 4, we show
that the non-invertible symmetries act invertibly on the axion fields and Wilson lines, but
non-invertibly on the ’t Hooft lines and axion string worldsheets. We discuss the non-
invertible Gauss law in section 4.3. We then discuss various junctions between the symmetry
defects and the charged objects in section 5.2, and derive crossing relations and consistency
conditions in section 5.3. We also derive selection rules on correlation functions involving
monopoles and axion strings that are related to the Witten effect and charge teleportation
(see section 5.4). In section 6, we find the emission of a lower-dimensional defect at the
junction between higher-dimensional defects, suggesting a non-invertible generalization of
higher-group symmetries. Finally, in section 7, we derive universal inequalities on the scales
where various global symmetries become emergent in any renormalization group flows to
the axion-Maxwell theory, and find applications of the non-invertible symmetries to the
Weak Gravity Conjecture and the Completeness Hypothesis in quantum gravity. Section 8
summarizes the results of this paper. In appendix A we review the higher-group symmetry
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in axion-Maxwell theory with K > 1 and discuss the junctions of the symmetry defects.
Appendix B discusses the 1+1d ZN gauge theory.

For first-time readers, we recommend sections 2, 4.3, 5.4, and 7 for the main results of
this paper. See also section 8 for a summary.

Note added. After this paper appeared on arXiv, we received [85] which contains
overlapping results.

2 Non-invertible symmetries of the axion-Maxwell theory

We first review the quantization of the axion-photon coupling K in the axion-Maxwell
Lagrangian (1.1). Throughout this paper, we assume every manifold to be spin and in
particular oriented. On a closed spin four-manifold X(4), 1

8π2
∮
X(4) F ∧ F ∈ Z. Therefore,

for the θF ∧ F term to be compatible with the periodicity of the axion field θ ∼ θ + 2π, we
need K ∈ Z.

There are four current operators of interest to us (here the superscripts denote the
form degrees of the currents):5

J
(1)
shift = if2dθ , d ? J

(1)
shift = K

8π2F ∧ F ,

J
(3)
winding = 1

2π ? dθ , d ? J
(3)
winding = 0 ,

J
(2)
electric = − i

e2F , d ? J
(2)
electric = K

4π2dθ ∧ F ,

J
(2)
magnetic = 1

2π ? F , d ? J
(2)
magnetic = 0 .

(2.1)

Let us explain these currents and their associated higher-form global symmetries in the
case when the axion-photon coupling vanishes, i.e., K = 0. (See [44] for a more detailed
discussion of these symmetries.)

In K = 0 case, the axion field, which is a free compact scalar field, has a U(1)(0)
shift shift

0-form global symmetry, θ → θ+α with α ∈ [0, 2π), as well as a U(1)(2)
winding winding 2-form

global symmetry which measures the winding number of the axion field. The charged object
of U(1)(0)

shift is the axion field eiθ. The charged object of U(1)(2)
winding is the axion string, which

sweeps out a 2-dimensional worldsheet in spacetime. The defining property of an axion
string of winding charge w is ∮

γ
dθ = 2πw , (2.2)

where γ is a loop that links nontrivially with the string worldsheet in spacetime (with
linking number 1). In other words, θ → θ + 2πw as the axion field goes around the string.

The free Maxwell gauge theory has an electric center U(1)(1)
electric 1-form global symmetry

that shifts the dynamical 1-form gauge field A by a flat connection. Dually, there is a
magnetic U(1)(1)

magnetic 1-form global symmetry that shifts the dual 1-form gauge field. The

5A q-form U(1)(q) global symmetry is associated with a conserved (q+ 1)-form current J(q+1) obeying the
conservation equation d ? J (q+1) = 0. Note that the closed current in [44] is the Hodge dual of our J(q+1).
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charged objects of U(1)(1)
electric,U(1)(1)

magnetic are the Wilson line ei
∮
A, and the monopole

worldline (a.k.a., the ’t Hooft line).
There is a mixed ’t Hooft anomaly between U(1)(0)

shift and U(1)(2)
winding, and similarly

between U(1)(1)
electric and U(1)(1)

magnetic.
A nonzero axion-photon coupling K violates the conservation equations for the U(1)(0)

shift
symmetry and the U(1)(1)

electric symmetry. Naively, the axion-photon coupling breaks shift and
center symmetries to their ZK subgroups. More precisely, these invertible global symmetries
combine into a 3-group [75–77].6 The U(1)(1)

magnetic magnetic 1-form symmetry and the
U(1)(2)

winding winding 2-form symmetry are subgroups and are generated by a topological
surface operator/defect

η(m)
α (Σ(2)) ≡ exp

(
iα

∮
Σ(2)

F

2π

)
, (2.3)

and a topological line operator/defect

η(w)
α (Σ(1)) ≡ exp

(
iα

∮
Σ(1)

dθ

2π

)
, (2.4)

respectively.
In this paper, we focus on the case of minimal axion-photon coupling K = 1, where

the U(1)(0)
shift and U(1)(1)

electric symmetries appear to be completely broken and the higher
group structure trivializes. Surprisingly, even at K = 1, we will show that the U(1)(0)

shift
and U(1)(1)

electric symmetries actually turn into a non-invertible 0-form and 1-form global
symmetries, respectively, each labeled by the rational numbers Q/Z. Furthermore, these
non-invertible 0-form and 1-form symmetries mix with the invertible winding 2-form and
magnetic 1-form symmetries in a way similar to the mixing in the higher group symmetry.
For example, the intersection of two non-invertible 1-form symmetry operators emits a
winding 2-form symmetry operator and so on (see section 6).

For a generic level K > 1, the non-invertible symmetries combine with the higher group
symmetry of [75–77] to form a larger symmetry. For simplicity, we set K = 1 from now on
and focus on the non-invertible symmetries.

2.1 Non-invertible 0-form symmetry

Here we review the construction in [12, 13] of non-invertible 0-form symmetry and apply it
to the axion-Maxwell theory.

The shift current J (1)
shift obeys

d ? J
(1)
shift = 1

8π2F ∧ F = 1
2 ? J

(2)
magnetic ∧ ?J

(2)
magnetic , (2.5)

which takes the same form as the anomalous conservation equation in the case of the
Adler-Bell-Jackiw (ABJ) anomaly. Even though the naive charge operator

∮
?J

(1)
shit is not

conserved, it was recently realized that there is a conserved operator implementing the shift
6There is also a 3-group symmetry in the axion-Yang-Mills theory [77, 86, 87].
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θ → θ + 2π/N for every positive integer N . Following the same construction in [12, 13] for
massless QED, we define this conserved operator as7

D(0)
1/N (M (3)) =

∫
[Da]M(3) exp

[
i

∮
M(3)

(2π
N

? J
(1)
shift + N

4πa ∧ da+ 1
2πa ∧ dA

)]
, (2.6)

where a is a dynamical 1-form gauge field that only lives on the operator M (3).8 D(0)
1/N can

be defined on a general closed 3-manifold in 4-dimensional Euclidean spacetime. When
M (3) is the whole space at a fixed time, D(0)

1/N (M (3)) is an operator acting on the Hilbert
space. When M (3) extends in the time direction, D(0)

1/N (M (3)) is a defect that modifies
the Hamiltonian.

The heuristic way to understand that D(0)
1/N is a conserved operator is the following.

Naively, one can integrate out a on M (3), and obtain a = −A/N . Substituting this back to
D(0)

1/N (M (3)) leads to exp
[
i
∮
M(3)

(
2π
N ? J

(1)
shift −

1
4πNA ∧ dA

)]
, which is formally conserved

because the integrand is a closed form (see (2.5)). However, this manipulation is not
precise and only serves as a heuristic argument because both a and A are properly nor-
malized gauge fields, and cannot be divided by a factor of N . The more rigorous proof
of the topological/conserved property of D(0)

1/N follows from the half gauging construction
presented in [12].

For a more general rational shift, i.e., θ → θ + 2πp/N with gcd(p,N) = 1, there is an
associated conserved operator:

D(0)
p/N (M (3)) = exp

[∮
M(3)

(2πip
N

? J
(1)
shift +AN,p[dA/N ]

)]
, (2.7)

where AN,p[B] is the 2+1d minimal ZN TQFT of [88] that couples to a 2-form background
gauge field B (see appendix A of [12] for a review) and here we activate the 2-form backgroud
B using dA/N . It is the low energy field theory for a ν = p/N fractional quantum Hall
state. (Here we suppress the path integral over the fields for the minimal ZN TQFT AN,p.)

To summarize, the violation of the conservation equation (2.5) can be “cured” by a
2+1d fractional quantum Hall state for every rational shift θ → θ + 2πp/N . It leads to
an infinite set of gauge-invariant, conserved (and more generally, topological) operators
D(0)
p/N (M (3)) labeled by p/N ∈ Q/Z. (See [89] for an interesting recent discussion on QFT

with a Q/Z symmetry.) These operators can be defined on any closed 3-manifold M (3).
As demonstrated in [12], the novelty of these new topological operators is that they are
non-invertible and do not obey a group multiplication law. In particular, they are not

7Here we have the option of adding a properly quantized gravitational Chern-Simons term on M (3).
8The superscript (0) is to remind us that D(0)

1/N is a non-invertible 0-form symmetry, i.e., it is supported
on a codimension-1 manifold M (3) in spacetime. Similarly, the superscript (1) for D(1)

p/N
defined below means

that it is a non-invertible 1-form symmetry supported on a codimension-2 manifold. The subscript M (3)

in the path integral of a means that this field only lives on the 3-manifold M (3) where the operator is
supported on.

– 7 –
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unitary. For example, the product of D(0)
1/N with its conjugate is

D(0)
1/N (M (3))×D(0)

1/N (M (3))†

=
∫

[DaDā]M(3) exp
[
i

∮
M(3)

(
N

4πa ∧ da−
N

4π ā ∧ dā+ 1
2π (a− ā) ∧ dA

)]
6= 1 ,

(2.8)

where the righthand side is a condensation defect from 1-gauging the Z(1)
N ⊂ U(1)(1)

magnetic
subgroup of the magnetic 1-form global symmetry [12] (see also [6, 10]).9

2.2 Non-invertible 1-form symmetry

Having resurrected the shift 0-form symmetry as a non-invertible symmetry D(0)
p/N labeled

by the rational numbers, we next proceed to study the fate of the electric 1-form symmetry.
The 2-form current for the electric 1-form symmetry obeys an anomalous conservation
equation:

d ? J
(2)
electric = 1

4π2dθ ∧ F = ?J
(3)
winding ∧ ?J

(2)
magnetic , (2.10)

where J (2)
electric = − i

e2F . It appears that the U(1)(1)
electric symmetry in the absence of the

axion-photon coupling is broken, and there is no way to define a topological operator of
codimension-2. In other words, the Gauss law is anomalous [90]. Interestingly, as we will
see, the electric 1-form symmetry survives as a non-invertible symmetry labeled by elements
in Q/Z.

Naively, we might attempt to define the electric 1-form symmetry operator as

Uα(Σ(2)) = exp
[
iα

∮
Σ(2)

?J
(2)
electric

]
. (2.11)

While this is gauge invariant, it is not conserved. Next, we might attempt to define [38]

Ûα(Σ(2)) = exp(iαQPage) ≡ exp
[
iα

∮
Σ(2)

(
?J

(2)
electric −

1
4π2 θdA

)]
, (2.12)

which is formally conserved according to (2.10). However, the θdA term does not respect the
2π periodicity of the axion field, and thus Ûα and QPage are not valid operators.10 In the con-
text of supergravity, the charge QPage, which is not gauge invariant but formally topological
(and in particular conserved), is known as the Page charge [80, 81] (see also [91, 92]).

9More specifically, the condensation defect on the righthand side of (2.8) can be written explicitly as a
sum over η(m)

2π/N (Σ(2)) in (2.3) on M (3):

1
|H0(M (3);ZN )|

∑
Σ(2)∈H2(M(3);ZN )

eiπQ(PD
M(3) (Σ(2)))η(m)

2π/N (Σ(2)) , (2.9)

where PDM(3) (Σ(2)) is the Poincaré dual of Σ(2) on M (3) and

Q(a) =

{
a ∪ β(a) , even N
0 , odd N

.

Here, β(a) is the Bockstein homomorphism associated to the short exact sequence 1→ ZN → ZN2 → ZN → 1.
10One might try to preserve the 2π periodicity of the axion by replacing the θdA term with Adθ. The

integral of the latter is then not gauge invariant under the gauge symmetry of A because the coefficient α
4π2

is not properly quantized. We can shuffle the gauge non-invariance around, but we cannot completely get
rid of it.

– 8 –
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Let us be less ambitious and try to construct a topological operator when α = 2πp/N
with gcd(p,N) = 1. Then there is a close cousin of Û2πp/N that is gauge invariant and
topological (and in particular conserved under time evolution). This new operator is
defined as

D(1)
p/N (Σ(2)) =

∫
[DφDc]Σ(2) exp

[∮
Σ(2)

(2πip
N

? J
(2)
electric + iN

2π φdc+ ip

2πθdc+ i

2πφdA
)]

.

(2.13)
Here φ ∼ φ+ 2π is a compact scalar field and c is a U(1) 1-form gauge field, both living
only on Σ(2). Since all the coefficients are properly quantized, it is clear that D(1)

p/N is
gauge-invariant. The last three terms from (2.13) define a 1+1d ZN gauge theory living on
Σ(2), where the background gauge fields for its Z(0)

N × Z(1)
N symmetry are activated by p

N dθ

and 1
N dA, respectively.
We now discuss the relation between D(1)

p/N and Û2πp/N . If we integrate out φ in (2.13),
we get Ndc = −dA. If we further substitute c = −A/N into (2.13), then we retrieve
Û2πp/N (2.12). However, this substitution is not allowed because both φ and c are compact
fields and cannot be divided by N . Nonetheless, this gives a heuristic argument why the
operator (2.13) should be topological. In this sense D(0)

p/N is a close cousin of Û2πp/N , but
they are different.

More rigorously, we can verify the topological nature of the operator D(1)
p/N by introducing

the notion of half higher gauging. This will be discussed in section 3.
Since D(1)

p/N involves a non-invertible topological phase, i.e., the 1+1d ZN gauge theory
iN
2π φdc, on its worldsheet Σ(2), it is not an invertible operator. In particular, it is not unitary.
Let us demonstrate this by explicitly computing the product:

D(1)
p/N (Σ(2))×D(1)

p/N (Σ(2))† =
∫

[DφDφ̄DcDc̄]Σ(2)

exp
[
i

∮
Σ(2)

(
N

2πφdc−
N

2π φ̄dc̄+ p

2πθd(c− c̄) + 1
2π (φ− φ̄)dA

)]
6= 1 .

(2.14)

The righthand side is a condensation defect from 2-gauging a Z(1)
N × Z(2)

N ⊂ U(1)(1)
magnetic ×

U(1)(2)
winding symmetry along Σ(2), which is not a trivial operator. We can further simplify

this condensation defect by defining c′ = c− c̄ and φ′ = φ− φ̄ and rewriting it as∫
[DφDc′]Σ(2) exp

[
i

∮
Σ(2)

(
N

2πφdc
′ + p

2πθdc
′
)]

×
∫

[Dφ′Dc̄]Σ(2) exp
[
i

∮
Σ(2)

(
N

2πφ
′dc̄+ 1

2πφ
′dA

)]
,

(2.15)

where the first line is the condensation defect from 2-gauging the Z(2)
N ⊂ U(1)(2)

winding

symmetry, while the second line is a sum of the Z(1)
N ⊂ U(1)(1)

magnetic magnetic 1-form
symmetry operators.11

11Explicitly, the first line is a sum over winding Z(2)
N 2-form symmetry defect (2.4) around the 1-cycles on

Σ(2)
1

|H0(Σ(2);ZN )|
∑

Σ(1)∈H1(Σ(2);ZN )

η
(w)
2πp/N (Σ(1)) , (2.16)

while the second line is a sum over magnetic Z(1)
N 1-form symmetry defect (2.3),

∑N

n=1

[
η

(m)
2π/N (Σ(2))

]n
.
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To summarize, we have constructed a gauge-invariant and topological operator D(1)
p/N

that can be defined on any closed 2-manifold Σ(2). The price we pay is that it is a non-
invertible operator generating a non-invertible 1-form symmetry. Intuitively, the 1+1d
ZN gauge theory on D(1)

p/N “cures” the anomalous conservation equation (2.10). The non-
invertible symmetry D(1)

p/N is a gauge-invariant cousin of Û2πp/N = exp(2πipQPage/N), but
they are not the same. Our construction is similar to that in [24] for IIB supergravity.

Finally, we comment on the possible topological counterterms one can add to the
non-invertible surface defect D(1)

p/N . Given a topological surface defect supported on Σ(2),
one can always dress it with an Euler counterterm exp(λ

∮
Σ(2) R) with λ ∈ R. Therefore, the

“quantum dimension” of a surface defect on a general 2-manifold is subject to the ambiguity
from this counterterm. In particular, we can always choose a counterterm such that the
expectation value of D(1)

p/N on S2 (with no other operator insertions) is 1, i.e.,

〈D(1)
p/N 〉S2 = 1 . (2.17)

See [6] for related discussions on this counterterm.

3 Half higher gauging

The non-invertible 0-form symmetry defect D(0)
p/N in the axion-Maxwell theory can also be

obtained by gauging a discrete subgroup of the magnetic 1-form symmetry in half of the
spacetime while imposing the Dirichlet boundary condition for the corresponding discrete
gauge field [2, 3, 10], a procedure known as half gauging. We refer the readers to [12] for
more details.

In this section, we will generalize this procedure to construct topological defects of
codimension greater than 1. We will first explain the procedure of half higher gauging [17, 28]
in general, and then apply it to the axion-Maxwell theory to rederive the non-invertible
1-form symmetry D(1)

p/N . This alternative construction of D(1)
p/N provides a rigorous proof of

its topological nature as well as a way of determining its action on other operators/defects.
The half higher gauging has been previously used in [17] to produce a non-invertible 1-form
symmetry defect in the 5-dimensional Maxwell-Chern-Simons theory.

3.1 Self-duality under higher gauging

In general, half gauging of a discrete symmetry produces a topological interface between
two different QFTs. However, when a given QFT is self-dual under gauging the discrete
symmetry, the half gauging generates a codimension-1 topological defect in a single theory,
which implements a non-invertible 0-form symmetry [2, 3, 10]. We now generalize this
construction to produce topological defects of codimension greater than 1. To this end, we
first define the notion of self-duality under higher gauging, or higher self-duality for short.

Higher gauging [6] of a discrete higher-form symmetry generates a topological defect,
known as the condensation defect [6, 10, 93–96]. More specifically, p-gauging of a q-form
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global symmetry is defined by inserting a network of the q-form symmetry defects along a
codimension-p manifold in spacetime.12

We will be interested in the case where the higher gauging leads to a “trivial” condensa-
tion defect. More precisely, by a trivial condensation defect, we mean that its insertion on
any closed manifold can be removed by topological local counterterms on the worldvolume of
the defect.13 In particular, this implies that the quantum dimension of a trivial condensation
defect can also be chosen to be 1 by an appropriate topological local counterterm. In this
case, we will say that the theory is self-dual under the corresponding higher gauging. This
generalizes the self-duality of a QFT under the ordinary gauging, in which case we mean
that the QFTs before and after gauging are isomorphic up to a classical counterterm [2].

A simple example is the 2+1d Ising TQFT, which has a fermion line ψ generating a
Z(1)

2 1-form symmetry and a non-invertible line σ. They obey the fusion rule

ψ × ψ = 1 , σ × σ = 1 + ψ , ψ × σ = σ × ψ = σ . (3.1)

The condensation defect from 1-gauging the Z(1)
2 symmetry generated by the fermion line

is trivial [6]. Thus, the 2+1d Ising TQFT is self-dual under the 1-gauging of the Z(1)
2

1-form symmetry.
Next, we discuss the quantum symmetry under gauging. Recall that (0-)gauging a

discrete q-form symmetry in a d-dimensional QFT leads to a dual (d−q−2)-form symmetry,
sometimes referred to as a quantum symmetry [44, 55, 102].14 When a QFT is self-dual
under gauging a discrete q-form symmetry, the (d− q − 2)-form quantum symmetry in the
gauged theory and the q-form symmetry in the original theory are identified [2, 10]. This is
possible only if q = d− q − 2⇔ q = (d− 2)/2, which in particular requires d to be even.
Alternatively, regardless of whether d is even or odd, it is possible to have a theory which
is self-dual under gauging a discrete q-form× (d− q − 2)-form symmetry for any integer
0 ≤ q ≤ d − 2. For instance, see [3, appendix D] for examples of such QFTs with d = 3
and q = 0.15

Similarly, upon higher gauging a discrete higher-form symmetry, one obtains higher
quantum symmetry defects which are topological defects supported on the condensation

12In 2+1d TQFT, 0-gauging a 1-form symmetry is known as “condensation,” while 1-gauging a 1-form
symmetry is known as “condensation confined to a line” [93].

13There can still be nontrivial contact terms when a trivial condensation defect intersects with other
operators. Determining such contact terms requires more data such as a choice of a symmetry fractionalization
class. See, for instance, [97–99], and also [100, 101] for recent discussions. There are also other notions of
trivial condensation defects that we do not explore here.

14For a more complete description of quantum symmetries, see [20, 21].
15There is a cheap way to obtain rather trivial examples of QFTs which are self-dual under this kind of

gauging. Consider a QFT Q with a non-anomalous, finite, abelian, q-form symmetry G(q) with 0 ≤ q ≤ d−2.
The theory Q/G(q) obtained by gauging G(q) then has a quantum (d−q−2)-form symmetry described by the
Pontryagin dual group Ĝ(d−q−2). Now, consider taking the product of these two theories, Q′ ≡ Q×Q/G(q).
The theory Q′ is then self-dual under gauging the G(q) × Ĝ(d−q−2) symmetry, since such a gauging simply
swaps the two factors Q and Q/G(q). When q = 0, the duality defect in Q′ obtained from half gauging
the G(q) × Ĝ(d−q−2) symmetry gives a simple example of a non-invertible symmetry defect. The latter acts
non-invertibly on local operators, and maps the charged local operators from Q to non-local operators
attached to the G(q=0) Wilson lines in Q/G(q=0).
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defect [6]. For instance, if we p-gauge a discrete q-form symmetry in a d-dimensional QFT,
then the corresponding higher quantum symmetry defects are of dimension q+ 1− p.16 The
symmetry defect for the original q-form symmetry is of dimension d− q − 1. If the theory
is self-dual under such a higher gauging, the higher quantum symmetry has to be identified
with the original q-form symmetry, which is possible only if d− q − 1 = q + 1− p, that is,

q = (d+ p− 2)/2 . (3.2)

In particular, this is possible only if d+ p is even. In the example of the 2+1d Ising TQFT
which is self-dual under 1-gauging the Z(1)

2 1-form symmetry, we have d = 3, p = 1 and
q = 1, which indeed satisfies the condition (3.2).

Alternatively, similar to the ordinary 0-gauging case, it is possible to have a d-
dimensional theory which is self-dual under p-gauging a discrete q-form×(d+p−q−2)-form
symmetry for any integer 0 ≤ q ≤ d−1.17 As we will see, the axion-Maxwell theory provides
such an example with d = 4, p = 1 and q = 1.

3.2 Topological defects from half higher gauging

Having introduced the higher gauging and higher self-duality, we next use it to generate
topological defects.

Condensation defects always admit a topological boundary condition, because one can
impose the topological Dirichlet boundary condition for the discrete gauge field living on
the defect [28]. If one views the higher gauging as a summation over insertions of symmetry
defects along a submanifold, the Dirichlet boundary condition means that the symmetry
defects cannot end on the boundary of the submanifold. This leads to a boundary condition
that is manifestly topological. We refer to the procedure of higher gauging with the Dirichlet
boundary condition as half higher gauging.

Half higher gauging generates a topological defect living at the boundary of a higher
dimensional condensation defect. As common in the literature, we refer to such an n-
dimensional defect (which is generally not necessarily topological) living at the boundary of
an n+ 1-dimensional topological defect as a twist defect, or a monodromy defect. A twist
defect is to be contrasted with a genuinely n-dimensional defect that is not attached to
anything else.

If the theory is self-dual under a p-gauging, i.e., the corresponding codimension-p
condensation defect is trivial, then the half p-gauging generates a genuine codimension-
(p+1) topological defect.18 When p = 0, this is the construction of codimension-1 topological
defect from half gauging [2, 3, 10]. Some p = 1 examples were discussed in [3, appendix D].

16We assume p ≤ q + 1, otherwise higher gauging is not well-defined.
17For p = 0, we require 0 ≤ q ≤ d − 2 to avoid (−1)-form symmetries, although one may still draw

the same conclusion even when p = 0 and q = d − 1 by defining the “gauging” of a discrete (−1)-form
symmetry as taking the direct sum of copies of the QFT with different values of discsrete parameters that
are responsible for the (−1)-form symmetry.

18This is to be contrasted with the discussions in [28], where the twist defect becomes a genuine topological
operator upon gauging the corresponding condensation defect. Here, we do not need to gauge the condensation
defect, since we assume the theory is self-dual under the corresponding higher gauging and the condensation
defect of interest is already trivial.
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Higher Gauging Half Higher Gauging

Generic
QFTs

QFTs with
Higher

Self-duality

Condensation
Defect

Trivial
Defect

Dirichlet
Boundary

Condition

Topological

Twist
Defect

Dirichlet
Boundary

Condition

Genuine
Topological

Defect

Figure 2. In a general QFT, higher gauging of a higher-form symmetry on a closed submanifold
generates a nontrivial condensation defect. Half higher gauging corresponds to higher gauging
the symmetry on a submanifold with a topological Dirichlet boundary condition imposed on the
boundary. This generates a topological twist defect which lives on the boundary of the condensation
defect. If the theory is self-dual under the higher gauging, then the resulting condensation defect is
trivial, and the half higher gauging generates a genuine topological defect not attached to anything.

Later, we will see that the non-invertible 1-form symmetry defect D(1)
p/N in the axion-Maxwell

theory also arises from half 1-gauging. See figure 2 for a summary of this discussion.
We end this subsection with a simple example of a topological defect obtained from half

higher gauging. Since the 2+1d Ising TQFT is self-dual under 1-gauging the Z(1)
2 1-form

symmetry, half 1-gauging it generates a genuine line defect. The latter is nothing but the
non-invertible σ line.

3.3 Higher self-duality of axion-Maxwell theory

We now return to the axion-Maxwell theory which is of our main interest. We claim
that the axion-Maxwell theory is self-dual under 1-gauging of a discrete subgroup of the
U(1)(1)

magnetic × U(1)(2)
winding symmetry with an appropriate choice of the discrete torsion.

Specifically, for any positive integer N , consider a Z(1)
N × Z(2)

N ⊂ U(1)(1)
magnetic ×U(1)(2)

winding
subgroup generated by the symmetry defects19

η
(m)
2π/N (Σ(2)) = exp

(2πi
N

∮
Σ(2)

F

2π

)
, η

(w)
−2πp/N (Σ(1)) = exp

(
−2πip

N

∮
Σ(1)

dθ

2π

)
. (3.3)

Here, Σ(n) is a closed n-dimensional submanifold in spacetime. p is an integer coprime to
N , and we have (η(m)

2π/N )N = (η(w)
−2πp/N )N = 1.

Next, we construct the condensation defect obtained by 1-gauging the Z(1)
N × Z(2)

N

symmetry with a particular choice of a discrete torsion, supported on a codimension-1
19The minus sign in η

(w)
−2πp/N is chosen such that the non-invertible 1-form symmetry D(1)

p/N acts on a
Wilson line of electric charge q by a phase e2πipq/N (rather than e−2πipq/N ).
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closed submanifold Σ(3):

C(Σ(3)) = 1
|H0|

|H0|
|H1|

∑
Σ(2)∈H2
Σ(1)∈H1

exp
(2πi
N

#(Σ(2),Σ(1))
)
η

(m)
2π/N (Σ(2))η(w)

−2πp/N (Σ(1))

= 1
|H1|

∑
b(1)∈H1

b(2)∈H2

exp
[2πi
N

∮
Σ(3)

(
b(1) ∪ b(2) + b(1) ∪ F

2π − p b
(2) ∪ dθ2π

)]
.

(3.4)

Here, H i, Hi are abbreviations for H i(Σ(3);ZN ) and Hi(Σ(3);ZN ), respectively. We will use
this notation throughout this section. #(Σ(2),Σ(1)) denotes the intersection number of Σ(2)

and Σ(1) mod N inside Σ(3). We assume that Σ(3) is oriented, and b(1) and b(2) are discrete
ZN 1-form and 2-form gauge fields living on the condensation defect, which are Poincaré
dual to Σ(2) and Σ(1) inside Σ(3), respectively. When we take a cup product between either
F/2π or dθ/2π with a discrete gauge field, we are effectively treating the former as ZN
cocycles by taking their values modulo N .

We now show that this is actually a trivial condensation defect on any closed 3-manifold.
By performing a field redefinition, b̃(1) ≡ b(1) − pdθ/2π, b̃(2) ≡ b(2) + F/2π, we rewrite (3.4)
as

C(Σ(3)) =

 1
|H1|

∑
b̃(1)∈H1

b̃(2)∈H2

exp
(2πi
N

∮
Σ(3)

b̃(1) ∪ b̃(2)
)× exp

(2πip
N

∮
Σ(3)

dθ

2π ∧
F

2π

)
. (3.5)

The factor in the first pair of parentheses is the partition function of a decoupled 2+1d
invertible field theory, whose value evaluates to 1 on every closed 3-manifold Σ(3). Next,
using (2.10), we can rewrite the condensation defect as

C(Σ(3)) = exp
(2πip

N

∮
Σ(3)

dθ

2π ∧
F

2π

)
= exp

(2πip
N

∮
Σ(3)

d ? J
(2)
electric

)
= 1 , (3.6)

where in the last equality we have used the fact that Σ(3) is closed and J (2)
electric is a well-defined

operator. We conclude that the axion-Maxwell theory is self-dual under this particular
1-gauging.

Recall that if a QFT is self-dual under a higher gauging, then we expect the higher
quantum symmetry defects living on the trivial condensation defect to be identified with
the original symmetry defects from the bulk. We now verify this for the axion-Maxwell
theory. The higher quantum symmetry defects in this case are the Wilson lines/surfaces for
the discrete gauge fields b(1) and b(2) living on C(Σ3). Using the equations of motion of b(2)

and b(1) on the trivial condensation defect (3.4), we identify the insertion of the Wilson line
exp(i

∮
Σ(1) b(1)) with the Z(2)

N 2-form symmetry operator η(w)
2πp/N (Σ(1)), and the insertion of

the Wilson surface exp(i
∮

Σ(2) b(2)) with the Z(1)
N 1-form symmetry operator η(m)

−2π/N (Σ(2)).
This is consistent with the expectation.
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3.4 Half higher gauging in axion-Maxwell theory

As the axion-Maxwell theory is self-dual under the 1-gauging of the Z(1)
N × Z(2)

N symmetry
in (3.3), we can proceed to construct the non-invertible 1-form symmetry D(1)

p/N from half
higher gauging. Since half higher gauging is a topological manipulation, this alternative
construction rigorously proves that D(1)

p/N is topological.
For this purpose, we place the condensation defect on a 3-manifold Σ(3) with a boundary,

∂Σ(3) = Σ(2). We impose the Dirichlet boundary conditions for the discrete ZN gauge fields
b(1) and b(2) living on the defect. The condensation defect is now

C(Σ(3), ∂Σ(3)) ≡ 1
|H1

∂ |
∑

b(1)∈H1
∂

b(2)∈H2
∂

exp
[2πi
N

∫
Σ(3)

(
b(1) ∪ b(2) + b(1) ∪ F

2π − p b
(2) ∪ dθ2π

)]
,
(3.7)

where H i
∂ is an abbreviation for the relative cohomology group H i(Σ(3), ∂Σ(3);ZN ) of the

pair (Σ(3), ∂Σ(3)). The elements of this cohomology group are gauge inequivalent classes of
ZN i-cocycles that vanish on the boundary ∂Σ(3), i.e., discrete gauge field configurations
satisfying the Dirichlet boundary condition. The expression (3.7) is manifestly topological.

Even though C is trivial on a closed 3-manifold, we will see that it is nontrivial on a
3-manifold with boundary. Similar to before, we rewrite (3.7) as

C(Σ(3), ∂Σ(3)) = exp
(2πip

N

∫
Σ(3)

dθ

2π ∧
F

2π

)
× 1
|H1

∂ |
∑

b(1)∈H1
∂

b(2)∈H2
∂

exp
[2πi
N

∫
Σ(3)

(
b(1) − p dθ2π

)
∪
(
b(2) + F

2π

)]
. (3.8)

Using (2.10) and Stokes’ theorem, the first line in (3.8) becomes

exp
(2πip

N

∫
Σ(3)

dθ

2π ∧
F

2π

)
= exp

(2πip
N

∮
Σ(2)

?J
(2)
electric

)
. (3.9)

Next, as discussed in the previous subsection, the second line in (3.8) is the partition
function of a 2+1d invertible theory, which evaluates to 1 on any closed 3-manifold.
However, when ∂Σ(3) 6= ∅, this reduces to (the partition function of) a 1+1d QFT living on
Σ(2) = ∂Σ(3), coupled to the bulk axion and U(1) gauge fields. In appendix B, we show
that with the Dirichlet boundary conditions imposed on b(1) and b(2), the invertible field
theory on Σ(3) reduces to a 1+1d ZN gauge theory on the boundary Σ(2). In particular,
there we derive

1
|H1

∂ |
∑

b(1)∈H1
∂

b(2)∈H2
∂

exp
[2πi
N

∫
Σ(3)

(
b(1) − p dθ2π

)
∪
(
b(2) + F

2π

)]

=
∫

[DφDc]Σ(2) exp
[∮

Σ(2)

(
iN

2π φdc+ ip

2πθdc+ i

2πφF
)] (3.10)

where φ ∼ φ+ 2π is a periodic scalar and c is a U(1) 1-form gauge field, both living only
on Σ(2) = ∂Σ(3).
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Combining (3.9) and (3.10), we obtain

C(Σ(3), ∂Σ(3) = Σ(2))

=
∫

[DφDc]Σ(2) exp
[
i

∮
Σ(2)

(2πp
N

? J
(2)
electric + N

2πφdc+ p

2πθdc+ 1
2πφF

)]
= D(1)

p/N (Σ(2)) .

(3.11)

The half 1-gauging on Σ(3) precisely reproduces the non-invertible 1-form symmetry defect
D(1)
p/N (2.13) on the boundary Σ(2) = ∂Σ(3) of the trivial condensation defect as claimed.

We conclude that the non-invertible 1-form symmetry D(1)
p/N in the axion-Maxwell theory

can be constructed from half higher gauging of the Z(1)
N × Z(2)

N global symmetry. Since
half higher gauging with the Dirichlet boundary condition always produces a manifestly
topological defect, this proves that D(1)

p/N is topological.

4 Action of non-invertible symmetries

In this section, we analyze the action of non-invertible symmetries in the axion-Maxwell
theory on other operators and defects. In particular, we will see that the non-invertible
1-form symmetry D(1)

p/N acts non-invertibly on the worldline of monopoles (a.k.a., the ’t
Hooft line) and the worldsheet of axion strings.

Let us introduce some notations. For the Wilson line, we define W q ≡ exp (iq
∮
A).

Next, we use Hm to stand for any ’t Hooft line with magnetic charge m under U(1)(1)
magnetic.

Note that the choice of Hm is far from unique, but most of our conclusions below hold
universally true. (For example, one can always stack a decoupled quantum mechanics
with the worldline of Hm to produce another line defect with the same quantum number.)
Similarly, we use Sw to stand for any axion string worldsheet with winding charge w
under U(1)(2)

winding.
We denote the charge 1 Wilson line, charge 1 ’t Hooft line, and charge 1 axion string

worldsheet by W ≡ exp(i
∮
A), H ≡ H1, and S ≡ S1, respectively. We will sometimes

refer to these defects W,H,S as the minimal Wilson, ’t Hooft, and axion string defects,
respectively. For H and S, we emphasize again that the choice is not unique, and by
“minimal” we only mean that their quantum numbers take the smallest possible values.

The quantum numbers q, m and w are all integers. While m of the ’t Hooft line
and w of the axion string are respectively the charges of the U(1)(1)

magnetic and U(1)(2)
winding

global symmetries, the role of the “electric charge” q for the Wilson line is more obscure.
We will see below that q is related to the eigenvalue of the non-invertible 1-form global
symmetry D(1)

p/N .
Generally for a non-invertible symmetry, there are two related but different ways

to define its action on other operators and defects [56]. For the non-invertible 1-form
symmetry, they are discussed respectively in sections 4.2 and 4.3, with the latter leading to
a non-invertible Gauss law.
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4.1 Action of non-invertible 0-form symmetry

The non-invertible 0-form symmetry defect D(0)
p/N acts on the operator eiθ as well as on

the ’t Hooft line, which can be understood from the half gauging construction. This was
discussed in [12], and we briefly review it here.

The axion field θ is shifted by 2πp/N under the action of D(0)
p/N due to the ?J (1)

shift term
in (2.7). That is, as we sweep D(0)

p/N past eiθ, we have

D(0)
p/N : exp (iθ) 7→ exp

(2πip
N

)
exp (iθ) . (4.1)

So D(0)
p/N acts invertibly on eiθ as a Z(0)

N symmetry.
In contrast, D(0)

p/N acts non-invertibly on ’t Hooft lines. Let H(γ) be the minimal ’t
Hooft line on a loop γ. For simplicity, we assume γ to be contractible, and γ = ∂Σ(2) for
some 2-dimensional surface Σ(2). Then, as we sweep D(0)

p/N past the ’t Hooft line H(γ), we
have

D(0)
p/N : H(γ) 7→ H(γ) exp

(2πip
N

∫
Σ(2)

F

2π

)
. (4.2)

For the derivation of this result and for the case of non-contractible γ, see [12, 13]. In
particular, the minimal ’t Hooft line is annihilated when surrounded by the D(0)

p/N defect,
demonstrating the non-invertible nature of the latter. More generally, when D(0)

p/N surrounds
a non-minimal ’t Hooft line Hm, the line is annihilated if m 6= 0 mod N , and turns into
HmW

pm/N if m = 0 mod N .

4.2 Action of non-invertible 1-form symmetry

We move on to discuss the action of the non-invertible 1-form symmetry D(1)
p/N . Since D(1)

p/N

is a codimension-2 topological operator, it can act on extended operators of dimension 1
or higher. On the other hand, it necessarily acts trivially on all local operators as we can
always shrink D(1)

p/N without crossing the local operator insertions. Indeed, below we will
show that D(1)

p/N acts invertibly on the Wilson lines, but non-invertibly on the ’t Hooft lines
and axion string worldsheets. The results are summarized in figure 3.

To begin with, the non-invertible 1-form symmetry acts on Wilson lines invertibly, just
like an ordinary electric 1-form symmetry. As we move D(1)

p/N past the Wilson line as in
figure 3, we get a phase exp

(
2πipq
N

)
:

D(1)
p/N : W q 7→W q × exp

(2πipq
N

)
. (4.3)

This follows from the first term ?J
(2)
electric in (2.13), which implements an invertible 1-form

symmetry action.
The non-invertible 1-form symmetry D(1)

p/N acts on the ’t Hooft lines and the axion
string worldsheets as well. The action is more intricate in these cases, and in particular,
it will be non-invertible. To determine the action of D(1)

p/N on the ’t Hooft lines and the
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x1 x2 x3 x4

D(1)
p/N

H

S

η
(m)
2πp/N

η
(w)
2πp/N

W

× ×
×
×
××

×
× ×

x1

x2
x3

× exp
(
2πip
N

)W W

D(1)
p/N D(1)

p/N

H H

D(1)
p/N D(1)

p/N

η
(w)
2πp/N = e

ip
N

∫
dθ

D(1)
p/N D(1)

p/NS S

η
(m)
2πp/N = e

ip
N

∫
F

Figure 3. The action of the non-invertible 1-form symmetry defect D(1)
p/N on extended opera-

tors/defects. W , H, S are the minimal Wilson line, ’t Hooft line, and axion string worldsheet,
respectively. For simplicity, we assume that the spacetime manifold is locally R4. The directions
along which various operators extend are summarized in the table, and the x4-direction is suppressed
in the drawing. The non-invertible 1-form symmetry D(1)

p/N acts on the Wilson line W invertibly by
a phase, but it acts on the ’t Hooft line H and the axion string worldsheet S non-invertibly.

axion string worldsheets, it is convenient to utilize the half higher gauging construction in
section 3.

The action can be determined by considering an effective theory on the 2+1d worldvol-
ume Σ(3) of the trivial condensation defect C(Σ(3)). The non-invertible symmetry defect
D(1)
p/N is realized at the boundary of C(Σ(3)) supported on Σ(3). From the Σ(3) point of view,
D(1)
p/N is a non-invertible 0-form symmetry from half gauging a Z(0)

N ×Z(1)
N symmetry.20 The

’t Hooft line H and axion string worldsheet S are the charged objects under this effective
Z(0)
N × Z(1)

N symmetry. They are 0d and 1d objects from the Σ(3) point of view. See figure 3
for the configuration of these operators and defects, with Σ(3) defined by x3 ≥ 0 and x4 = 0.

Therefore, as we bring D(1)
p/N past the ’t Hooft line Hm, the latter becomes not gauge

invariant and is attached to a Wilson line associated with the effective Z(0)
N gauge symmetry

from the Σ(3) point of view. As discussed in the paragraph below (3.6), this Wilson line

20Recall that the quantum symmetry of a discrete 0-form symmetry is a 1-form symmetry in 2+1d,
and vice versa [44, 55]. Therefore, there are 2+1d QFTs invariant under gauging the product of a 0-form
symmetry and a 1-form symmetry. The simplest example is to take any QFT Q with a Z(0)

N global symmetry,
and consider the product QFT Q × Q/Z(0)

N . This product QFT is invariant under gauging Z(0)
N × Z(1)

N .
Examples of non-invertible duality defects from the invariance of gauging a product of a 0-form and a 1-form
symmetries have been discussed in [3]. See footnote 15.
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= × exp
(
2πipq
N

)

D(1)
p/N

W q
=

D(1)
p/N

Hm,q

0

Sw

D(1)
p/N =

0
x1 x2 x3 x4

Hm,q

Sw

W q ×
×
××

x1

x2
x3

if m 6= 0 mod N

× exp
(
2πipq
N

)Hm,q

W q

if m = 0 mod N

L̂2πp/NSw

if w 6= 0 mod N

if w = 0 mod N

L̂2πp/N ×

Figure 4. The non-invertible Gauss law. The non-invertible operator D(1)
p/N measures the electric

charge invertibly on the Wilson line W q. On the other hand, the dyonic line Hm,q is annihilated
when measured by D(1)

p/N if m 6= 0 mod N . Physically, it means that the electric charge q of a dyon
Hm,q with magnetic charge m is only well-defined modulo m, i.e., q ∼ q +m. Similarly, the axion
string worldsheet Sw is annihilated by D(1)

p/N if w 6= 0 mod N .

exp
(
im
∫
b(1)

)
is identified with η(w)

2πpm/N in the 3+1d bulk. We thus obtain the following
action on the ’t Hooft line Hm:

D(1)
p/N : Hm 7→ Hm × exp

(
ipm

N

∫
dθ

)
, (4.4)

where the exp
(
ipm
N

∫
dθ
)
line is stretched between the ’t Hooft line and D(1)

p/N . Any potential
phase on the righthand side of (4.4) can be absorbed by redefining the 0-dimensional junction
between the winding symmetry line and the ’t Hooft line. The action is non-invertible if
m 6= 0 mod N in the sense the action creates a topological line defect exp

(
ipm
N

∫
dθ
)
. In

section 4.3 we give a complimentary interpretation of the non-invertible action and discuss
the m = 0 mod N case there.

Similarly, as we bring D(1)
p/N past the axion string Sw, the latter is no longer gauge

invariant because it carries charge −pw under the Z(2)
N symmetry in (3.3). From the Σ(3)

point of view, the axion string is attached to a charge −pw Wilson surface associated with
the effective Z(1)

N gauge symmetry. As discussed in the paragraph below (3.6), this Wilson
surface exp

(
−ipw

∫
b(2)

)
is identified with η(m)

2πpw/N in the 3+1d bulk. We thus obtain the
following action on the axion string worldsheet Sw:

D(1)
p/N : Sw 7→ Sw × exp

(
ipw

N

∫
F

)
, (4.5)

where the surface exp
(
ipw
N

∫
F
)
is stretched between the axion string worldsheet and the
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defect D(1)
p/N . The action is non-invertible if w 6= 0 mod N , in the sense that the action

creates a topological surface defect exp
(
ipw
N

∫
F
)
.

4.3 Non-invertible Gauss law

In ordinary electromagnetism, Gauss law states that the total electric charge can be
measured by a closed surface integral QMaxwell =

∮
Σ(2) ?F . The electric charge is quantized

and topological — Gauss law d ? F = 0 implies that QMaxwell depends topologically on the
choice of the surface Σ(2).

In axion-Maxwell theory, the Gauss law is anomalous (2.10) [90], and hence QMaxwell
is not topological. That is, there is no conserved, gauge-invariant, and quantized electric
charge. This point was emphasized, for example, in [81] (see also [103, 104]). Instead, what
we have is the non-invertible 1-form symmetry D(1)

p/N (Σ(2)), which is both topological (and
in particular conserved) and gauge-invariant.21

We can surround D(1)
p/N (S2) around a Wilson line, which is a point in space. See figure 4

for this configuration, which can be deformed from figure 3. Denote this action by ·, we
have22

D(1)
p/N ·W

q = e2πipq/NW q (4.6)

In this sense, D(1)
α behaves as “ exp(iαQPage)” on the Wilson lines (see (2.12)). However,

QPage =
∮

Σ(2)(?J (2)
electric −

1
4π2 θdA) is not a well-defined operator, but the non-invertible

1-form symmetry is.
Next, from (4.4), it follows that D(1)

p/N (S2) annihilates the ’t Hooft line Hm with m 6= 0
mod N . This can be derived by closing the non-invertible 1-form symmetry defect to the
left in figure 3 on the righthand side, creating an empty bubble at which the winding
symmetry line η(w)

2πp/N terminates. However, by shrinking the bubble, it gives a topological
endpoint of the winding symmetry line, which cannot exist because the latter acts faithfully.
It means that any such configuration gives zero correlation function, which is analogous
to the “vanishing tadpole” condition discussed in [56]. This is why equating D(1)

α with
“ exp(iαQPage)” (with α = 2πp/N) is only true for Wilson lines, but not for ’t Hooft lines.
D(1)
p/N (S2) is a non-invertible operator since it has a kernel. See figure 5(a) for the illustration.

If m = 0 mod N , the line exp( ipmN
∫
dθ) becomes trivial, leaving behind a topological

point operator on Hm. If we assume Hm to be a simple line, i.e., it cannot be decomposed
into a direct sum of other line defects, then there is a unique topological point operator on
Hm (see, for example, [56]). Then D(1)

p/N acts invertibly on Hm, with a possible phase factor
e2πipq/N reflecting a nontrivial electric charge q. To keep track of this quantum number, we
use a more refined notation and denote such a simple, dyonic line of magnetic charge m
and electric charge q by Hm,q. From this point on, we define Hm = Hm,0. Importantly, the

21The “Maxwell charge” discussed in [81] is conserved and gauge-invariant, but it is only defined at infinity
with a specific fall-off condition on the fields, and is therefore not topological. In contrast, our D(1)

p/N
is

gauge-invariant and topological. It can be defined on any closed 2-manifold.
22Here we choose an Euler counterterm such that the expectation value of D(1)

p/N
on S2 with no other

operator insertions is 1. See (2.17).
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D(1)
p/N

Hm

=

η
(w)
2πpm/N

= = 0 if m 6= 0 mod N

Sw

D(1)
p/N

= = = 0 if w 6= 0 mod N

η
(m)
2πpw/N

(a)

(b)

Figure 5. (a) Non-invertible action of D(1)
p/N on the ’t Hooft line Hm for m 6= 0 mod N . We first

pull D(1)
p/N past Hm, and then shrink the former to a point. This generates a putative topological

endpoint for the topological line η(w)
2πpm/N . However, the line η(w)

2πpm/N does not admit any topological
endpoint, since it acts faithfully on the other operators [56]. Therefore, such a configuration results
in a vanishing correlation function. (b) Non-invertible action of D(1)

p/N on the axion string worldsheet
Sw for w 6= 0 mod N . Similar to before, we first pull D(1)

p/N past Sw, and then shrink the former
to a line. This generates a putative topological boundary line for the topological surface η(m)

2πpw/N ,
which does not exist. Therefore, such a configuration leads to a vanishing correlation function. Both
the ’t Hooft line and the axion string worldsheet are extended in time, and they are point and line
in space as shown in the figure, respectively.

electric charge q is only defined modulo m, i.e.,

q ∼ q +m. (4.7)

To conclude, the non-invertible 1-form symmetry acts on the dyonic line Hm,q as

D(1)
p/N ·Hm,q =

0 if m 6= 0 mod N
e2πipq/NHm,q if m = 0 mod N

(4.8)

We dub (4.6) and (4.8) as the non-invertible Gauss law.
There is a simple physical interpretation of the non-invertible Gauss law. A monopole

with magnetic charge m can gain m units of electric charge by going around an axion string,
which implements the Witten effect. Therefore, the electric charge is conserved only modulo
m in the presence of a charge m ’t Hooft line. This conservation law is exactly captured by
the non-invertible Gauss law measured by the non-invertible 1-form symmetry. (See [31] for
an analogous conservation law in a different context.)

– 21 –



J
H
E
P
0
9
(
2
0
2
3
)
0
6
7

Consider a configuration of multiple dyonic lines Hmi,qi in a region in space and extended
in time. Unlike an ordinary invertible symmetry, the action of the non-invertible 1-form
symmetry on this region does not generally reduce to the product of the individual actions,
i.e., D(1)

p/N · (
∏
iHmi,qi) 6=

∏
iD

(1)
p/N ·Hmi,qi . This is because as we break D(1)

p/N into smaller
spheres encircling individual dyons, we need to perform a nontrivial crossing move. The
crossing relation between the non-invertible 1-form symmetry defects generally produces
other defects connecting them. This is analogous to the move in figure 20 of [1] in 3+1d and
to that in figure 30 of [56] in the Ising CFT. We leave the study of the crossing between
D(1)
p/N for the future.

Similarly, we can define an action of the non-invertible 1-form symmetry on the axion
string worldsheet as in figure 4. This action is non-invertible

D(1)
p/N · Sw =

0 if w 6= 0 mod N
L̂2πp/N (γ)Sw if w = 0 mod N ,

(4.9)

where γ is the 1d curve that D(1)
p/N shrinks towards on Sw. Here L̂2πp/N is a topological line

that only lives on the axion string worldsheet, which we will discuss in section 5.2. The
case of w 6= 0 mod N can be derived by closing the D(1)

p/N defect to the left in figure 3 on
the righthand side and using the fact that the magnetic symmetry surface η(m)

α does not
admit a topological boundary condition. See figure 5(b) for the illustration.

5 Selection rules of monopoles and strings

The action of D(1)
p/N discussed in section 4 implies the existence of various topological

junctions between the defects. For instance, the action on the ’t Hooft lines implies that
the winding symmetry defect η(w)

α can end topologically on an ’t Hooft line. Similarly, the
action on the axion string worldsheets implies that the magnetic symmetry defect η(m)

α can
end topologically on an axion string worldsheet.

In this section, we will explain why such topological junctions exist, and also discuss
the existence of non-topological junction configurations where a Wilson line end on either
an ’t Hooft line or an axion string worldsheet. This will be based on the anomaly inflow
arguments on the ’t Hooft lines and the axion string worldsheets. The fact that a Wilson
line is endable [37, 38] on other extended operators is another manifestation of the absence
of an ordinary, invertible electric 1-form symmetry in the axion-Maxwell theory.

We will further derive crossing relations between various defects. These crossing
relations obey certain consistency conditions, reminiscent of the pentagon identity in fusion
category. (However, the participating defects are not all topological.)

Finally, we will derive selection rules for correlation functions involving monopoles and
axion strings. In particular, these selection rules give a global symmetry interpretation of
the Witten effect [82] in the presence of dynamical axions.

5.1 Worldvolume actions and anomaly inflow

We first review the electrically charged degrees of freedom on the monopoles and axion
strings via anomaly inflow. This will be crucial later in understanding the allowed junction
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configurations. The materials in this subsection are standard and can be found in, for
example, [105–109].

Monopole worldline. The Witten effect states that as θ → θ + 2π, the ’t Hooft line
acquires an electric charge. This can be understood as the inflow of a mixed anomaly
between the S1 space parameterized by θ and the U(1) gauge group [87, 107, 110]. For an
’t Hooft line Hm of magnetic charge m, the anomaly polynomial 3-form for this worldline
anomaly is

Imonopole
3 = − m

(2π)2dθ ∧ F . (5.1)

Since the axion field θ is dynamical (as well as the photon field A), the worldline anomaly (5.1)
must be canceled by additional degrees of freedom living on the monopole worldline [107, 108].

A natural choice of a quantum mechanical system which carries an anomaly that is
opposite to (5.1) is that of the particle on a circle quantum mechanics [110] (see also [111,
112]). Let γ be a closed loop where the ’t Hooft line Hm(γ) is supported on. The worldline
action of Hm contains the quantum mechanical degrees of freedom of a dynamical compact
scalar field σ ∼ σ + 2π [113],∫

[Dσ]γ exp
[
−
∮
γ
dτ

(
lσ
2 (σ̇ −mAτ )2 − i

2πθ(σ̇ −mAτ )
)]

, (5.2)

where τ is the coordinate along γ, σ̇ ≡ dσ/dτ , and lσ is a parameter with the dimension
of length. Under the bulk gauge transformation A → A + dλ, the σ field transforms as
σ → σ +mλ. Thus, (5.2) is invariant under the bulk gauge transformation. On the other
hand, under θ → θ + 2π, (5.2) acquires an anomalous phase

exp
(
im

∮
γ
A

)
, (5.3)

which precisely cancels the anomaly inflow (5.1). Thus, Hm is a well-defined, gauge-invariant
line defect.

We emphasize that the choice of the quantum mechanical degrees of freedom on the
worldline of a monopole is far from unique, and the choice in (5.2) is only one example.23

The only requirement is that the added degrees of freedom should properly cancel the
worldline anomaly (5.1). Independent of a particular choice, we will use Hm to denote any
such line defect with magnetic charge m and trivial electric charge (in the sense that it is
left invariant by the action of D(1)

p/m, see section 4.3).
23For instance, we can define another ’t Hooft line H ′m by replacing (5.2) with∫

[Dσ]γ exp
[
−
∮
γ

dτ
(
lσ
2 (σ̇ −Aτ )2 − im

2π θ(σ̇ −Aτ )
)]

with gauge transformation σ → σ + λ,A → A + dλ. This alternative quantum mechanics carries the
same anomaly as (5.2). Let Q = i`σσ̇ be the conserved charge of the U(1) symmetry of the worldline
quantum mechanics on H ′m. In H ′m, we have ∂τQ = − m

2π∂τθ, leading to m topological point operators on
the worldline:

exp
(2πik

m
Q+ ikθ

)
, k = 0, 1, · · · ,m− 1 .

Therefore, H ′m is not simple in the sense that it can be decomposed into sums of other lines. In contrast,
the line Hm using (5.2) is a simple line.
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Axion string worldsheet. Consider an axion string worldsheet Sw with winding sym-
metry charge w supported on a closed 2-manifold Σ(2). Near the string, the axion field θ
becomes singular and we have (see (2.2))

d (dθ) = 2πwδ(Σ(2)) , (5.4)

where δ(Σ(2)) is the delta function 2-form localized on Σ(2). However, such a singular
configuration of θ is not gauge invariant. To see this, we first integrate by parts the
axion-photon coupling term to write it as

i

8π2

∮
X(4)

A ∧ dθ ∧ F (5.5)

where X(4) is the 4-dimensional closed spacetime manifold. Under the U(1) gauge transfor-
mation A→ A+ dλ, the axion-photon coupling term transforms as

δ

(
i

8π2

∮
X(4)

A ∧ dθ ∧ F
)

= i

8π2

∮
X(4)

dλ ∧ dθ ∧ F = − iw4π

∮
Σ(2)

λF . (5.6)

(Here we assume the absence of monopoles.) The anomalous variation (5.6) shows that
there is an anomaly inflow from the 3+1d bulk to the axion string worldsheet. Through
the descent procedure, the worldsheet anomaly is characterized by the anomaly polynomial
4-form,

Istring
4 = − w

2(2π)2F ∧ F . (5.7)

The same result can also be derived by dualizing the axion field, see, for example, [109,
appendix B].

To have a well-defined, gauge-invariant 2-dimensional extended defect, we therefore
need to dress the worldsheet with additional charged degrees of freedom coupled to the
bulk eletromagnetic gauge field, which carry the anomaly that is opposite to (5.7). For
instance, we can have w flavors of 1+1d left-moving complex Weyl fermions ψi of gauge
charge 1, where i = 1, · · ·w. In this case, the wolrdsheet action of axion string includes

∫ [
Dψ̄iDψi

]
Σ(2)

exp
[
i

∮
Σ(2)

√
hd2x

w∑
i=1

ψ̄i
(
/∂ − i /A

)
ψi

]
, (5.8)

where
√
hd2x is the worldsheet volume form and A is the bulk electromagnetic gauge field.

Again, the choice of the worldsheet degrees of freedom is not unique, and (5.8) is only
one possible choice. Independent of any particular choice, Sw will denote any such surface
defect with winding symmetry charge w.

5.2 Junctions involving monopoles and strings

Below we discuss four different junctions involving either an ’t Hooft line or an axion string
worldsheet. Two of them are topological junctions, and the other two are not. They are
summarized in figure 6.
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Vα

η
(w)
α

Hm

η
(m)
α

Sw

Lα/w

(a) (b)

Oq/m

W q

Hm

(c)
W q

Sw

Φq

(d)

Figure 6. Junctions between extended operators in the axion-Maxwell theory. (a) A winding 2-form
symmetry line ending on an ’t Hooft line. (b) A magnetic 1-form symmetry surface ending on an
axion string worldsheet. (c) A Wilson line ending on an ’t Hooft line with q = 0 mod m. (d) A
Wilson line ending on an axion string worldsheet with q = 0 mod w. The junctions (a) and (b) are
topological, whereas the junctions (c) and (d) are non-topological.

Topological junction between η(w)
α and Hm. The winding symmetry line defect η(w)

α

can topologically end on an ’t Hooft line Hm for any values of α and m, as shown in
figure 6(a). For rational value of α, such a topological junction is required to exist from the
action of the non-invertible 1-form symmetry defect D(1)

p/N on Hm, which was discussed in
section 4.

More generally, this topological junction can be understood as follows. Recall that the ’t
Hooft line Hm supports quantum mechanical degrees of freedom to cancel the anomaly (5.1).
To be concrete, we will choose to dress Hm with the particle on a circle quantum mechanics
as in (5.2), but the conclusion will be the same for any abstract worldline quantum mechanics
which properly cancels the anomaly.

The quantum mechanics has a global U(1)(0) symmetry, whose charge operator is given
by

Q = ilσ ? dσ , (5.9)

with integer eigenvalues. When θ is a constant, the charge is conserved, that is, dQ = 0, due
to the equation of motion. The U(1)(0) symmetry is generated by the topological operator
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which we will denote as
Vα ≡ exp(iαQ) (5.10)

where α ∈ [0, 2π) labels a U(1)(0) group element.
When θ is dynamical or is not a constant, we have

dQ = d (ilσ ? dσ) = dθ

2π . (5.11)

This anomalous conservation of the U(1)(0) symmetry charge in the presence of varying
θ is a general consequence of the anomaly in the space of coupling constant. By Stokes’
theorem, (5.11) implies that the winding symmetry line η(w)

α = exp(iα
∫ dθ

2π ) from the bulk
can terminate topologically at the point operator (5.10) on Hm. The existence of such
a topological junction also implies that the ’t Hooft line can freely absorb the winding
symmetry operator.

Topological junction between η(m)
α and Sw. The magnetic symmetry surface defect

η
(m)
α can end topologically on an axion string worldsheet Sw for any values of α and w

as shown in figure 6(b). For rational values of α, this is implied by the action of the
non-invertible 1-form symmetry defect D(1)

p/N on Sw discussed in section 4.
Recall that on the axion string worldsheet Sw, there is a 1+1d QFT which cancels the

anomaly inflow from the bulk given in (5.7). For concreteness, we will choose w copies of
left-moving Weyl fermions as the 1+1 worldsheet QFT on Sw, as in (5.8). However, the
conclusion holds independent of the choice of the worldsheet QFT as long as it cancels the
anomaly inflow.

Before coupling to the bulk axion-Maxwell theory, the 1+1d theory of w left-moving
Weyl fermions has a global U(1)(0) chiral symmetry. Denote the corresponding current
as J (1)

chiral, which is conserved, d ? J (1)
chiral = 0. The U(1)(0) symmetry is generated by the

topological line operator
Lα′ ≡ exp(iα′

∮
?J

(1)
chiral) (5.12)

with α′ ∈ [0, 2π).
On the axion string worldsheet Sw, this U(1)(0) symmetry is coupled to the bulk

electromagnetic gauge field A. The anomaly carried by the Weyl fermions implies the
anomalous conservation equation for the current J (1)

chiral,24

d ? J
(1)
chiral = w

2πF . (5.13)

24The partition function of w left-moving Weyl fermions satisfies

Z[A+ dλ] = Z[A] exp
(
iw

4π

∫
λF

)
.

If one defines the current for the U(1)(0) symmetry as J̃(1)
chiral[A] ≡ i δlogZ[A]

δA
, then the anomalous variation of

the partition function implies d ? J̃(1)
chiral = w

4πF (see, for instance, [114]). However, the current J̃(1)
chiral is not

gauge-invariant. Instead, it transforms as ?J̃(1)
chiral[A+ dλ] = ?J̃

(1)
chiral[A]− w

4πdλ, which directly follows from
the definition of J̃(1)

chiral and the anomalous variation of the partition function. We define the gauge-invariant
current as ?J (1)

chiral ≡ ?J̃
(1)
chiral + w

4πA. This gauge-invariant current then satisfies (5.13).
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Using Stokes’ theorem, we deduce from (5.13) that the magnetic symmetry surface defect
η

(m)
α = exp(iα

∫ F
2π ) from the bulk can end topologically along the line operator Lα/w =

exp
(
iαw
∮
?J

(1)
chiral

)
on Sw. The existence of this 1-dimensional topological junction implies

that the axion string worldsheet can freely absorb the magnetic symmetry defect.
We note that when |w| > 1, there is a Z|w| subgroup of the U(1)(0) symmetry of the

worldsheet QFT which is free of anomaly. Correspondingly, there are topological line
operators living on the axion string worldsheet Sw,

L̂2πn/w ≡ exp
[
i

∮ (2πn
w

? J
(1)
chiral − nA

)]
, (5.14)

for n = 0, 1, · · · , |w| − 1 mod |w|. This is the topological line operator on Sw that appears
in (4.9).25

Junction betweenW q and Hm. Consider the configuration of a Wilson lineW q ending
on an ’t Hooft line Hm at a 0-dimensional junction. For such a configuration to be gauge-
invariant, one needs to insert an operator at the junction which has charge q under the
gauge group. This may or may not be possible for arbitrary values of q and m, depending
on the choice of the quantum mechanical degrees of freedom that we put on Hm. We claim
that for any choice of the worldline quantum mechanics, as long as it properly cancels the
anomaly inflow (5.1), the Wilson lines with charge q = 0 mod m can always end on an ’t
Hooft line Hm.

For instance, if we choose the particle on a circle quantum mechanics in (5.2) as the
worldline quantum mechanics, then the operator

Ok ≡ exp(ikσ) (5.15)

on the ’t Hooft line, with k being an arbitrary integer, has charge km under the gauge
group, and thus the Wilson line with charge q = km can end on this operator to form a
gauge-invariant 0-dimensional junction with Hm. This is shown in figure 6(c).

More abstractly, the claim is that any quantum mechanics with an anomaly opposite
to (5.1) should have an operator with charge m under its U(1)(0) symmetry. This can be
easily proven as follows. Assume that the charge of every operator is a multiple of some
integer m′ > 0. This implies that the Zm′ subgroup of the U(1)(0) symmetry does not act
faithfully in the quantum mechanics. We can then couple the faithfully acting symmetry
U(1)(0)/Zm′ to a (properly quantized) background U(1) gauge field A′. The background
gauge field A for the original U(1)(0) and A′ are related by A′ = m′A. However, this then
implies that the anomaly polynomial is

m

(2π)2dθ ∧ dA = m/m′

(2π)2 dθ ∧ dA
′ , (5.16)

which is properly quantized only if m = 0 mod m′. This proves that the Wilson line W q

with q = 0 mod m can always end on Hm.
Independent of the choice of the specific worldline quantum mechanics on Hm, we will

denote this non-topological junction between the Wilson line with charge q = km and the
’t Hooft line Hm as Ok.

25In (4.9), we have w = Nk for some integer k, and L̂2πp/N is obtained by setting n = pk in (5.14).
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Junction between W q and Sw. Similarly, we claim that the Wilson line W q can end
on an axion string worldsheet Sw if q = 0 mod w, at a 0-dimensional junction with Sw.
This junction exists independent of the choice of the worldsheet QFT as long as it has a
U(1)(0) global symmetry with an anomaly that is opposite to (5.7).26 That is, the claim is
that any such 1+1d QFT has a local operator with charge w.

The proof is similar to the ’t Hooft line case. Let w′ be the minimal charge under the
U(1)(0) symmetry of the worldsheet QFT. Then, turning on the background U(1) gauge
field A′ for the faithfully acting symmetry group U(1)(0)/Zw′ , we find that the anomaly
polynomial for A′ is given by

w

2(2π)2dA ∧ dA = w/w′2

2(2π)2dA
′ ∧ dA′ . (5.17)

The coefficient of the anomaly polynomial w/w′2 must be an integer, which implies w = 0
mod w′. Thus, there are local operators with charge w under the U(1)(0) symmetry. This
proves that the Wilson line with charge q = 0 mod w can end on Sw.

In general, we will denote any local operator on Sw with charge q under the U(1)(0)

symmetry as Φq, which gives a non-topological junction where the bulk Wilson line W q can
end. The allowed values of q depend on w and also on the choice of the worldsheet QFT,
but as we explained above, Φq with q = 0 mod w always exist. See figure 6(d).

5.3 Crossing relations

We now derive two crossing relations involving the junctions that we discussed above, and
show that they are consistent with the action of the non-invertible 1-form symmetry D(1)

p/N

discussed in section 4. These are shown in figures 7 and 8.

Crossing on Hm. There are two kinds of junctions on Hm: the bulk η(w)
α line can end

topologically on Vα, and the bulk Wilson line W q can end on Oq/m with q = mk and k
some integer. Since Ok carries charge k under the U(1)(0) symmetry generated by Vα, we
have the following crossing relation:

VαOk = eikαOkVα . (5.18)

This is depicted in figure 7(a). Recall that Ok is the (non-topological) junction between the
Wilson line W q and Hm with q = mk.

For rational α, the crossing relation obeys a consistency condition with the action of
the non-invertible 1-form symmetry D(1)

p/N . This is shown in figure 7(b).

26Depending on the choice of the worldsheet QFT on Sw, there will in general be more allowed values of q
for which W q is allowed to end on Sw. For instance, if we choose the w copies of left-moving Weyl fermions
as the worldsheet QFT as in (5.8), then Wilson lines of any charge can end on Sw as we have charge 1 Weyl
fermions on the worldsheet. However, this is not necessarily the case for an arbitrary choice of a worldsheet
QFT that cancels the anomaly inflow (5.7).
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= × exp(iqα/m)W q

Hm

η
(w)
α

Oq/m

Vα

Hm

W q η
(w)
α

Oq/m

Vα

× exp(2πipq/N )

× exp(2πipq/N )D(1)
p/N

W q

Hm Oq/m

η
(w)
2πpm/N

V2πpm/N V −1
2πpm/N

(b)

(a)

Figure 7. (a) Local crossing relation of junctions on an ’t Hooft line Hm. Here q is an integer
multiple of m. (b) The nontrivial crossing relation is necessary for the action of the non-invertible
1-form symmetry to be consistent. In the leftmost picture, the D(1)

p/N defect shown in red is supported
on a 2-sphere which links with the Wilson line W q. We choose the Euler counterterm to set the
expectation value of D(1)

p/N on a 2-sphere to be 1.
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=

× exp(iqα/w)

W q

Sw

η
(m)
α

Φq

Lα/w

× exp(2πipq/N )

× exp(2πipq/N )
D(1)
p/N

W q

Sw

Φq

η
(m)
2πpw/N

L2πp/N

(b)

(a)

W q

Sw

η
(m)
α

Φq

Lα/w

Figure 8. (a) Local crossing relation of junctions on an axion string worldsheet Sw. Here q is
an integer multiple of w. (b) The nontrivial crossing relation is necessary for the action of the
non-invertible 1-form symmetry to be consistent. Again, we choose the Euler counterterm to set the
expectation value of D(1)

p/N on a 2-sphere to be 1.
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Hm

W q

W q

Sw = 0 unless q = mw

Figure 9. Selection rule from the non-invertible symmetry. The ’t Hooft line Hm is supported on
a closed loop and the axion string worldsheet Sw is supported on a closed 2-dimensional surface.
The two are linked in the 4d spacetime. The selection rule states that any correlation function,
independent of other operator insertions, including this configuration in a local region must vanish
unless q = mw.

Crossing on Sw. There are two kinds of junctions on Sw: the bulk η
(m)
α can end

topologically on Lα′ with α′ = α/w, and the bulk Wilson line W q can end on Φq. Since
Φq carries charge q under the U(1)(0) symmetry generated by Lα′ , they obey the following
crossing relation

Lα′Φq = eiqα
′ΦqLα′ . (5.19)

This is shown in figure 8(a).
For rational α, the crossing relation obeys a consistency condition with the action of

the non-invertible 1-form symmetry D(1)
p/N . This is shown in figure 8(b).

5.4 Selection rules and the Witten effect

First let us recall the Witten effect [82] in the ordinary free Maxwell theory without axions.
It states that a magnetic monopole carries an electric charge proportional to the θ angle.
In particular, when θ → θ + 2π, the bulk Maxwell theory does not change, but there is
a nontrivial spectral flow among the line operators, with an ’t Hooft line mapped to a
dyonic line.

Now, let us promote the constant θ angle to a dynamical axion field that couples to
a U(1) gauge field. As discussed in section 4.3, there is no conserved and gauge-invariant
electric charge in axion-Maxwell theory. Then what does the Witten effect mean?

We claim that the Witten effect should be interpreted as an exact selection rule involving
the ’t Hooft line Hm, axion string worldsheet Sw, and Wilson lines W q as shown in figure 9.
The selection rule states that any correlation function containing this local configuration
vanishes unless

q = mw . (5.20)

This holds true independent of how the Wilson lines are extended outside this local
configuration, and also independent of the other operator insertions.

This selection rule follows from the non-invertible 1-form symmetry. We demonstrate
the proof in figure 10. The various phase factors are only consistent if q ≡ q1 = q2 = mw.
One can also derive the selection rule using either one of the crossing relations that we
discussed previously.
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Hm

W q1

W q2

Sw
D(1)
p/N

× exp(2πipq1/N) × exp(2πipq2/N)

× exp(2πipmw/N )

× exp(2πipmw/N )

η
(w)
2πpm/N

Figure 10. Derivation of the selection rule in figure 9. We link the configuration of the ’t Hooft
line Hm, axion string Sw, Wilson lines W qi with a non-invertible 1-form symmetry defect D(1)

p/N .
There are various ways to shrink the D(1)

p/N defect, and comparing them implies that any correlation
function involving this local configuration vanishes unless q1 = q2 = mw mod N . By using D(1)

p/N

with different coprime pairs p,N , we further demand q1 = q2 = mw as integers. We choose the
Euler counterterm on D(1)

p/N so that its expectation value on a 2-sphere is 1.

We can translate the Euclidean selection rule of figure 9 into a real time process in
Lorentzian signature in figure 11. First, near an axion string Sw, we pair create a monopole-
antimonopole pair of magnetic charge ±m. Next, we bring the monopole and anti-monopole
around the axion string clockwise and couterclockwise, respectively, and then pair annihilate
them. The selection rule implies that such a process is forbidden, unless during the process
there is an electrically charged particle of charge q = mw coming out, as dictated by the
Witten effect.27 The net effect is that we gain a particle of charge q = mw out of the
vacuum. This is consistent with the non-invertible Gauss law in section 4.3, where we found
that, in the presence of a charge m monopole, the electric charge is conserved modulo m.

Related processes have been discussed [107, 115], which are sometimes called “charge
teleportation.” Here we provide a new interpretation of these phenomena in terms of a
non-invertible global symmetry and its selection rules.

27Unlike in the Euclidean configuration, here the axion string extends in the time direction indefinitely,
and the worldsheet therefore is noncompact. In this case, the selection rule does not require another Wilson
line attached to the axion string worldsheet.
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time
Sw

monopole-antimonopole pair ±m

electric charge q = mw

Figure 11. A real time process constrained by the selection rule. The axion string worldsheet
Sw extends along the time direction, and it forms a closed loop along a spatial direction that is
suppressed in the figure. We create a monopole-antimonopole pair of magnetic charges ±m, let
them travel around the axion string worldsheet, and then pair annihilate them. After the pair
annihiliation, there is an electrically charged particle with charge q = mw created.

6 Non-invertible generalizations of higher groups

In this section, we discuss the topological junctions of the symmetry defects.28 In particular,
we show that symmetries of different form degrees mix in a way reminiscent of a higher-group
symmetry for invertible symmetries. For higher-group symmetries, when the symmetry
defects intersect, their junctions emit symmetry defects of higher form degrees (see, for
example, [99] for the case of a 2-group). In [75–77], it was pointed out that there exists a
higher-group symmetry in the axion-Maxwell theory when the axion-photon coupling is
greater than 1, i.e., K > 1 (see the review in appendix A). In this section, we show that
the mixing of symmetries of different form degrees exist even at K = 1, except that the
symmetries of interest are now non-invertible.

6.1 Junctions between non-invertible defects

Junction between D(1)
p/N and D(1)

p′/N ′. Two non-invertible 1-form symmetry defects
D(1)
p/N , D(1)

p′/N ′ can intersect topologically at a 0-dimensional junction from which an invertible
winding 2-form symmetry line defect η(w)

−2πpp′/NN ′ is emitted as shown in figure 12(a). The
emission of the winding symmetry line is related to the topological property of the junction.
Suppose we move D(1)

p/N from Σ(2) to Σ̃(2) as depicted in figure 12(b). This sweeps out a
3-dimensional volume N (3) bounded by Σ(2) and Σ̃(2), and implements a transformation

A→ A+ 2πp
N

δ(N (3)) , (6.1)

28This is to be contrasted with the junctions discussed in section 5.2 which always involve at least one
non-topological defect (either the monopole or the axion string).
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where δ(N (3)) is the delta function 1-form localized on N (3). Locally, let y be a normal
coordinate such that N (3) is at y = 0, then δ(N (3)) = δ(y)dy. Different choices of N (3)’s
bounded by the same Σ(2) and Σ̃(2) are related by gauge transformations. From the
worldsheet action (2.13) of D(1)

p′/N ′(Σ
′(2)), we see that this transformation generates a line

defect

η
(w)
−2πpp′/NN ′(M

(1)) = exp
(
ip

N

∫
M(1)

dφ

)
= exp

(
− ipp′

NN ′

∫
M(1)

dθ

)
(6.2)

where M (1) = N (3) ∩ Σ′(2) is a line interval on Σ′(2) that connects the initial and final
intersections. In the second equality, we used the equation of motion of c to relate
dφ = −p′dθ/N ′. The line defect (6.2) moves the endpoint of the winding symmetry line
η

(w)
−2πpp′/NN ′ from the initial junction to the finial junction. Therefore, such a junction
between two non-invertible 1-form symmetry defects is topological.

Junction between D(0)
p/N and D(1)

p′/N ′. The non-invertible 0-form symmetry defect
D(0)
p/N (Σ(3)) and the non-invertible 1-form symmetry defect D(1)

p′/N ′(Σ
′(2)) intersect topolog-

ically at a 1-dimensional junction from which an invertible magnetic 1-form symmetry
surface defect η(m)

−2πpp′/NN ′ is emitted. The emission of the magnetic symmetry surface is
related to the topological property of the junction. Suppose we move D(0)

p/N from Σ(3) to
Σ̃(3). It implements a transformation

θ → θ + 2πp
N

(6.3)

in the region bounded by Σ(3) and Σ̃(3). From the worldsheet action (2.13) of D(1)
p′/N ′(Σ

′(2)),
we see that the transformation generates a surface defect

η
(m)
−2πpp′/NN ′(M

(2)) = exp
(
ipp′

N

∫
M(2)

dc

)
= exp

(
− ipp′

NN ′

∫
M(2)

dA

)
, (6.4)

where M (2) is the region on Σ′(2) bounded by Σ′(2) ∩ Σ(3) and Σ′(2) ∩ Σ̃(3). We have used
the equation of motion of φ to relate dc = −dA/N ′ in the second equality. The surface
defect (6.4) moves the end of the magnetic symmetry surface η(m)

−2πpp′/NN ′ from the initial
1-dimensional junction to the final one. Hence, such a junction between D(0)

p/N and D(1)
p′/N ′

is topological.
This junction and deformation are similar to the ones in figure 12, with D(0)

p/N and
D(1)
p′/N ′ shown as lines and surfaces there, respectively. Note that two out of the three

dimensions of D(0)
p/N are suppressed in that figure.

The emission of a lower dimensional topological defects at the above two kinds of
junctions is reminiscent of the higher-group symmetry. It would be interesting to understand
the precise mathematical structure of this non-invertible generalization of the higher-
group symmetry.

For completeness, below we discuss other junctions between topological defects.
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D(1)

D(1)

η(w)

Σ′
Σ

MΣ̃
(a) (b)

Figure 12. (a) The 0-dimensional junction between D(1)
p/N (Σ(2)) and D(1)

p′/N ′(Σ′(2)) emits a winding
symmetry line η(w)

−2πpp′/NN ′ . This is reminiscent of the junction between the invertible defects in a
higher-group symmetry. For the D(1)

p/N on Σ(2), we suppress one of its dimensions and draw it as a
line in the figure. (b) A topological deformation of the junction. We omit various super/subscripts
in the figure but they can be found in this caption.

D(0)
(a) (b)

η(m)

L

D(1) η(m)

U η(w)

V
Figure 13. (a) The 1-dimensional topological junction L−p−1` between the non-invertible 0-form
symmetry defect D(0)

p/N and the magnetic symmetry surface η(m)
2π`/N . Here L denotes the Wilson line

in the 2+1d minimal TQFT AN,p living on D(0)
p/N . (b) Top: 1-dimensional topological junction U`

between the non-invertible 1-form symmetry defect D(1)
p/N and η(m)

2π`/N . Bottom: The 0-dimensional
topological junction Vp−1` between D(1)

p/N and the winding symmetry line η(w)
2π`/N . Here U and V are

the ZN topological line and point operators of the 1+1d ZN gauge theory living on D(1)
p/N . We omit

various super/subscripts and powers in the figure but they can be found in this caption.

6.2 Junctions between invertible and non-invertible defects

Junction between η(m)
2π`/N and D(0)

p/N . The non-invertible 0-form symmetry defect D(0)
p/N

and the magnetic symmetry surface η(m)
2π`/N = exp( i`N

∮
F ) (with ` = 0, · · · , N − 1 mod N)

meet at a 1-dimensional topological junction as shown in figure 13(a). The existence of
such a junction follows from the half gauging construction of D(0)

p/N [2, 10, 12].
To understand this junction in more detail, recall that the worldvolume action of D(0)

p/N

in (2.7) supports the 2+1 minimal ZN TQFT AN,p. The minimal TQFT AN,p has N
topological lines, which we denote as Ls for s = 0, · · · , N − 1 mod N , generating a Z(1)

N

1-form symmetry. The lines themselves are charged under the Z(1)
N symmetry. In particualr,

the line Ls has charge −ps mod N under the Z(1)
N symmetry [88].

This means that when we couple the minimal TQFT AN,p[B] to a background 2-form
gauge field B for the Z(1)

N symmetry, the line operator Ls must be attached to the boundary
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of the surface exp(−ips
∫
B), for it to remain gauge-invariant.29 In the definition of the

defect D(0)
p/N , we couple the minimal TQFT AN,p to the bulk electromagnetic gauge field by

setting
B = 1

N
F . (6.5)

Therefore, we learn that the magnetic 1-form symmetry surface defect η(m)
2π`/N ends on the

topological line L−p−1`. This defines the 1-dimensional topological junction between D(0)
p/N

and η(m)
2π`/N . Recall that gcd(p,N) = 1, so −p−1` is a well-defined integer mod N .

Junction between η
(w)/(m)
2π`/N and D(1)

p/N . The winding symmetry lines η
(w)
2π`/N =

exp( i`N
∮
dθ) and the magnetic symmetry surfaces η(m)

2π`/N = exp( i`N
∮
F ) meet with the

non-invertible 1-form symmetry defect D(1)
p/N at a topological 0- and 1-dimensional junction,

respectively. This is shown in 13(b). Similar to before, this can be understood from the
1+1d ZN gauge theory on the worldsheet of D(1)

p/N in (2.13).
The 1+1d ZN gauge theory is characterized by topological point operators Vs and line

operators Us, with s = 0, · · · , N − 1 mod N , see appendix B. These topological operators
generate a Z(1)

N ×Z(0)
N symmetry. The topological point operators are charged under the Z(0)

N

0-form symmetry. Specifically, the Z(0)
N charge of Vs is s mod N . Similarly, the topological

line operators are charged under the Z(1)
N 1-form symmetry, and Us carries charge s mod N

under Z(1)
N .

Therefore, when we turn on the background 1-form and 2-form gauge fields B(1) and
B(2) for the Z(0)

N × Z(1)
N symmetry, the topological point operator Vs now lives on the

boundary of the line exp(is
∫
B(1)), whereas the topological line operator Us lives on the

boundary of the surface exp(is
∫
B(2)). The non-invertible 1-form symmetry defect D(1)

p/N is
obtained by coupling the 1+1d ZN gauge theory to the bulk by setting

B(1) = p

N
dθ , B(2) = 1

N
F . (6.6)

Thus, the winding symmetry line η(w)
2π`/N from the bulk can end on Vp−1`. Similarly, the

magnetic symmetry surface η(m)
2π`/N from the bulk can end on U `. These give the topological

junctions in figure 13(b).

7 Applications

7.1 Constraints on symmetry breaking scales

The generalized global symmetries discussed so far are typically emergent in a renormaliza-
tion group flow to the axion-Maxwell theory in the low energy limit. Not all symmetries are
on the same footing: some of them are subordinate to others in the sense that they cannot
exist if the others are broken. This structure leads to constraints on the energy scales where

29Our normalization convention here is such that the ZN 2-form gauge field B satisfies
∮
B ∈ 2π

N
Z on

2-cycles. Similar conventions apply to B(1) and B(2) below.
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these symmetries are broken as we go up in energy. Such constraints have been derived for
the higher-group symmetry in the K > 1 theory in [77]. Below, we will focus on the K = 1
case and show that the non-invertible global symmetry lead to similar universal constraints.

We define the following E’s to be the approximate symmetry breaking scales of the
corresponding generalized global symmetries:

Eshift : non-invertible 0-form symmetry D(0)
p/N ,

Eelectric : non-invertible 1-form symmetry D(1)
p/N ,

Emagnetic : magnetic 1-form symmetry U(1)(1)
magnetic ,

Ewinding : winding 2-form symmetry U(1)(2)
winding .

(7.1)

That is, the symmetry becomes emergent below the corresponding energy scale E.
The constraints on the symmetry breaking scales can be understood from the non-

invertible fusion rules. In (2.8), two non-invertible 0-form symmetry defects fuse to a
condensation defect. Next, using (2.9), we see that wrapping the condensation defect
around an S2 × S1 yields a magnetic 1-form symmetry defect on the S2. Therefore the
condensation defect in turn cannot exist without the magnetic 1-form symmetry.30 Following
this chain of reasoning, it follows that the non-invertible 0-form symmetry cannot exist
without the magnetic 1-form symmetry.31 Equivalently, since the non-invertible 0-form
symmetry is realized from half gauging the magnetic 1-form symmetry [12], it cannot exist
on its own without the latter. Hence we derive the inequality

Eshift . Emagnetic . (7.2)

The inequality is not strict because the symmetry breaking scale is only approximately
defined.

Similarly, the fusion rule (2.14) implies that the non-invertible 1-form symmetry cannot
exist without the condensation defects in (2.15). Using (2.9) and (2.16), these condensation
defects in turn rely on the existence of the magnetic 1-form and winding 2-form symmetries.
Equivalently, since the non-invertible 1-form symmetry is realized from half higher gauging
the magnetic and winding symmetries (see section 3), it cannot exist on its own without
the latter two invertible symmetries. Hence we obtain the inequality

Eelectric . min{Emagnetic, Ewinding} . (7.3)
30More generally, it is possible to break a higher-form symmetry while preserving its condensation defect.

Here is one such example in 2+1d. The charge conjugation symmetry in the 2+1d U(1)4 Chern-Simons
theory is a condensation defect of the Z(1)

2 1-form symmetry generated by the fermion line [6]. Consider a
renormalization group flow from a U(1) gauge theory with a charge 1, massive scalar field and a bare Chern-
Simons level 4 in the UV, to U(1)4 in the IR. The charge conjugation symmetry is preserved along the flow,
but the 1-form symmetry is only emergent in the IR. For the condensation defects discussed in this paper,
however, the explicit expressions (2.9) and (2.16) make it clear that an appropriately wrapped condensation
defect yields the underlying higher-form symmetry defect, and therefore they cannot exist independently.

31This is analogous to the non-invertible symmetry in the 1+1d Ising CFT, where the Kramers-Wannier
duality line D obeys D ×D = 1 + η with η being the Z2 line. Hence, the Kramers-Wannier line D cannot
exist on its own without the Z2 symmetry.
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We comment that these inequalities are consistent with the topological junctions in
section 6. The intersection between the non-invertible 0- and 1-form symmetry defects emits
a magnetic 1-form symmetry defect. Therefore, such a topological junction cannot exist
without the magnetic symmetry, implying that min{Eshift, Eelectric} . Emagnetic. Indeed,
this inequality is implied by (7.2). Similarly, the intersection of two non-invertible 1-form
symmetry defects emits a winding symmetry defect. Since this topological junction cannot
exist without the winding symmetry, we have Eelectric . Ewinding. Indeed, this is implied
by (7.3).

We now give some physical interpretations to these inequalities. We start with the
inequality (7.2) involving the non-invertible shift symmetry. Since the magnetic 1-form
symmetry can be broken by the dynamical magnetic monopoles, the symmetry breaking
scale Emagnetic is naturally associated with the mass mmagnetic of the lightest magnetic
monopoles, i.e., Emagnetic ≈ mmagnetic.32 On the other hand, Eshift is associated with the
scale of the axion potential term. Our inequality (7.2) is then consistent with the calculation
in [108]. The authors of that paper show that virtual monopoles running in the loops
generate a potential for the axion. Therefore, as we go up in energy, an axion potential is
generated before we reach the energy scale of a dynamical monopole, i.e., Eshift . mmagnetic.
See also [13] for related discussions.

Next, we consider the inequality (7.3) involving the non-invertible 1-form symmetry.
The latter is explicitly broken when there are dynamical electrically charged particles.
Therefore, the symmetry breaking scale Eelectric is naturally associated to the mass melectric
of the lightest electrically charged particles, i.e., Eelectric ≈ melectric. As for the winding
2-form symmetry, it is broken by the dynamical axion strings. Therefore, we expect the
2-form symmetry is broken at a scale Ewinding no larger than the scale set by the axion
string tension

√
T (see [77] for a concrete example)

Ewinding .
√
T . (7.4)

The inequality (7.3) now translates into an inequality of the mass scales associated to these
dynamical objects

melectric . min{mmagnetic,
√
T} . (7.5)

It means that there exists electrically charged particles that are (approximately) lighter
than the lightest magnetic monopoles and the mass scale set by the axion string tension.

This hierarchy of mass scales can be understood more directly by the excitations of the
magnetic monopoles and the axion strings. Because of the anomaly inflow, the magnetic
monopole worldline contains a nontrivial quantum mechanics (5.2). The excitations of the
magnetic monopoles are dyons that carry electric charges under the U(1) gauge group [113].
Hence, the mass melectric of the lightest electrically charged particles cannot be significantly

32We assume that the various generalized global symmetries can only be broken by their canonically
charged objects. For example, we assume a q-form global symmetry is broken by a dynamical (q − 1)-
dimensional charged object (whose worldvolume is a q-dimensional manifold in spacetime). For a 0-form
symmetry, we assume it’s explicitly broken by a symmetry violating term in the Lagrangian. We do not
explore more general possibilities here.

– 38 –



J
H
E
P
0
9
(
2
0
2
3
)
0
6
7

larger than the mass of these dyons. The latter is of order of mmagnetic since the energy gap
of these excitations are small compared to the mass of the magnetic monopoles, therefore
melectric . mmonopole. Similarly, because of anomaly inflow, the axion string worldsheet
supports a nontrivial 1+1d degrees of freedom (5.8), whose excitations carry electric charges
under the U(1) gauge group. Hence, we have melectric .

√
T .33

7.2 Weak gravity conjecture mixing

Next, we discuss applications of non-invertible symmetries to the Weak Gravity Conjecture
Mixing.

The Weak Gravity Conjecture (WGC) states that in a consistent theory of quantum
gravity, there must exist some particles whose electric charges are greater than their mass
in Planck units [116]. In 3+1d, this means

melectric . eMPl , (7.6)

where we are schematic about the order one coefficients. Below, we will focus on 3+1d.
The WGC also applies to magnetic monopoles with the electric charges e replaced by the
magnetic charges em ≈ 1/e

mmagnetic . emMPl ≈
MPl
e

. (7.7)

The WGC has also been generalized to p-form gauge symmetries. The conjecture states
that there exists a (p− 1)-brane whose tension Tp obeys

Tp . epMPl , (7.8)

where ep is the gauge coupling of the p-form gauge field. Viewing the axion as a 0-form
gauge field, it is natural to generalize the WGC further to the axion WGC, which states
that there must exist an instanton with action Sinst satisfying

Sinst .
MPl
f

. (7.9)

See, for example, [117] for a recent review of these WGC’s.
In the axion-Maxwell theory, there is a mixing between different WGC’s. More

specifically, the axion WGC together with the WGC for strings implies the standard WGC
in the axion-Maxwell theory [109, 118]. When K > 1, this mixing can be argued using the
higher-group symmetry [118]. But the argument is not applicable to the K = 1 theory
because of the absence of the higher-group symmetry. Below, we will use the non-invertible
symmetries to argue that the mixing of WGC continues to hold in the K = 1 theory.

Starting from the axion-Maxwell theory, we can dualize the axion field to a 2-form
gauge field with gauge coupling e2 ≈ f . The WGC for strings states that there exists an
axion string whose tension T satisfies

T . fMPl . (7.10)
33We thank M. Reece for discussions on this point.
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In the case of an abelian gauge group, the instanton arises from monopoles running in the
loop, whose action is of order [108]

Sinst ≈
1
e2 . (7.11)

Together with the axion WGC, it implies that

f . e2MPl . (7.12)

Combining the inequalities (7.10), (7.12) and the inequalities (7.5) deduced from the non-
invertible symmetries, we have

melectric .
√
T .

√
fMPl . eMPl . (7.13)

This recovers the standard WGC for particles. We conclude that using the non-invertible
1-form symmetry, the WGC’s for axions and strings together imply the WGC for particles
even at minimal axion-photon coupling K = 1.

7.3 Completeness hypothesis

There are two pieces of lore about symmetries in quantum gravity: (1) there is no global
symmetry [119–122], and (2) when there is a gauge symmetry, the spectrum of gauge charges
has to be complete — the Completeness Hypothesis [120, 122, 123]. The two statements
are not unrelated. For example, for an ordinary U(1) gauge theory, the absence of the
electric 1-form global symmetry is equivalent to complete spectrum of U(1) gauge charges.
The complete spectrum means that all the Wilson lines can terminate on the fields for
the electrically charged particles. The endable Wilson lines then imply that it cannot link
topologically with the electric 1-form global symmetry defect, and the latter therefore has
to be broken. See [37] for more details on this argument in terms of the topological defects.

However, this equivalence breaks down if one considers more general gauge theories,
such as non-abelian finite group gauge theory [122]. This tension was then resolved by
extending the no global symmetry conjecture to include not only the invertible symmetries,
but also the non-invertible global symmetries [37, 38] (see also [8, 124]). It follows that the
absence of invertible and non-invertible global symmetries is equivalent to the completeness
hypothesis in diverse setups. This more generalized notion of global symmetries consolidate
different conjectures in quantum gravity and provide a coherent picture for symmetries in
field theory and gravity.

Here we illustrate the connection between these two statements for axions in quantum
gravity.34 Consider the axion-Maxwell theory (1.1) as a low-energy sector of a full-fledged
quantum gravity theory, such as string theory. In the absence of matter fields, even though
the spectrum of electrically charged particles is not complete (i.e., all the Wilson lines
are not endable), there is no associated invertible electric 1-form global symmetry. This
signals the breakdown of the equivalence between the no global symmetry conjecture and
the completeness hypothesis. This question was raised in [38], and the authors argued that
the presence of the magnetic 1-form global symmetry is related to the incompleteness of

34We thank I. Valenzuela for insightful discussions on this point.
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the spectrum. However, the magnetic symmetry does not act on the Wilson lines, so it is
not entirely clear how the two statements are tied together.

This is where the non-invertible 1-form global symmetry (2.13) comes to rescue. The
non-invertible 1-form global symmetry acts on the Wilson lines by topological linking (see
section 4.3). As we go up in energy, we include electrically charged particles into the effective
field theory, and the Wilson lines can terminate on these fields. The inclusion of these electric
particles then breaks the non-invertible 1-form global symmetry by the same argument as
in [37, 38]. Conversely, in order to break the non-invertible 1-form global symmetry, one
needs to introduces a complete spectrum of gauge charges. Other than explicitly breaking
the non-invertible 1-form symmetry by electrically charged particles, the symmetry can
also be broken by including dynamical magnetic monopoles or dynamical axion strings. As
discussed in section 5, because of anomaly inflow, these dynamical objects necessarily carry
electrically charged states that generate a complete spectrum of gauge charges.

As emphasized before, the existence of the non-invertible 1-form global symmetry is
tied to its invertible parents: the magnetic 1-form and the winding 2-form symmetries. This
clarifies the observation in [38] on the relation between the magnetic 1-form symmetry and
the completeness of the gauge spectrum.

We therefore conclude that the absence of the non-invertible 1-form global symmetry is
equivalent to the completeness of the spectrum for the U(1) gauge group in axion-Maxwell
theory. Again, we see that the no generalized global symmetry conjecture is equivalent to
the completeness hypothesis.

8 Summary and outlook

In this paper we explore generalized global symmetries of axion-Maxwell theory at the
minimal level K = 1, in which case the previously discovered higher group [75–77] trivializes.
In addition to the invertible U(1)(1)

magnetic winding 1-form symmetry and the U(1)(2)
winding

2-form symmetry, we find non-invertible 0- and 1-form global symmetries. We summarize
these symmetries and their charged objects in table 1.

The non-invertible 0- and 1-form symmetries are constructed by coupling a TQFT to
the naive shift and center symmetry operators, respectively (see section 2). More rigorously,
they can be realized by half higher gauging a higher form global symmetry. Specifically,
the non-invertible 0-form symmetry is realized via half 0-gauging Z(1)

N ⊂ U(1)(1)
magnetic,

while the non-invertible 1-form symmetry is realized by half 1-gauging Z(1)
N × Z(2)

N ⊂
U(1)(1)

magnetic ×U(1)(2)
winding (see section 3).

Because of (2.10), it is well known that there is no gauge-invariant, conserved, and
quantized electric charge in axion-Maxwell theory. In particular, the Page charge QPage =∮

Σ(2)(?J (2)
electric −

1
4π2 θdA) is conserved, quantized, but not gauge-invariant. Instead, we

define a new operator D(1)
p/N with properties itemized below:

• It can be placed on any closed 2-manifold and is gauge-invariant.

• It is topological, and in particular, conserved under time evolution.
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Non-inv. Non-inv.
0-form sym. 1-form sym. U(1)(1)

magnetic U(1)(2)
winding

D(0)
p
N

D(1)
p
N

η
(m)
α η

(w)
α

Axion field
eiθ e

2πip
N eiθ − − −

Wilson line
W − e

2πip
N W − −

’t Hooft line
H 0 0 eiαH −

Axion string surface
S − 0 − eiα S

Table 1. Action of the generalized global symmetries (non-invertible 0- and 1-form symmetries,
magnetic 1-form symmetry, winding 2-form symmetry) on the charged objects (axion field, Wilson
line, ’t Hooft line, and axion string worldsheet) with minimal charges. The symbol − means that
the global symmetry acts trivially on that charged object. For the diagonal entries, the symmetry
defects act on the charged objects by canonical linking in spacetime. The action of the non-invertible
1-form symmetry on H and S are shown in figure 4. The non-invertible 0-form symmetry acts on
H by wrapping D(0)

p
N

around a S2 × S1 with the S2 linked with H and the S1 extended along H.
The 0 entries mean that the symmetries annihilate the charged object, which is the hallmark of the
non-invertible symmetries.

• It does not obey a group multiplication law.

• It leads to the non-invertible Gauss law: it measures invertibly the ordinary electric
charge of a Wilson line, but annihilates the minimal ’t Hooft line (see section 4.3).

Our non-invertible 1-form symmetry D(1)
α can be loosely viewed as a gauge-invariant fix of

“ exp(iαQPage)”, with α = 2πp/N . However, one should not equate the two since D(1)
p/N has

a kernel — it is non-invertible.
Looking forward, we discuss interesting targets for future work:

• The full categorical structure of the generalized global symmetries in axion-Maxwell
contains many other junctions and crossing relations. In this paper we have only
explored the tip of the iceberg. Furthermore, at non-minimal axion-photon coupling
K > 1, the non-invertible symmetries mix in an intricate way with the higher-group
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symmetries. It would be interesting to understand these categorical symmetries
more completely.

• Can we interpret the massless photon as the Goldstone boson for the non-invertible
1-form global symmetry? See [36] for discussions on the Goldstone theorem for
non-invertible 0-form symmetries.

• Anomalous conservation equations similar to (2.10) are ubiquitous in string and
M-theory. For example, the Chern-Weil symmetries are of this type [125]. It would
be interesting to generalize the discussion in this paper and in [23–25, 30, 126] to
understand the emergent non-invertible global symmetries in the low-energy limit of
string/M-theory, and to incorporate earlier works such as [91, 92] into this framework.
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A Higher groups of the axion-Maxwell theory with K > 1

In this appendix, we review the higher-group symmetry in the axion-Maxwell theory when
K > 1 following [75–77] and then rephrase it using symmetry operators. We consider only
the invertible symmetries. They include:

• A Z(0)
K zero-form shift symmetry generated by

Û
(0)
2πp/K(Σ(3)) = exp

[2πip
K

∮
Σ(3)

(
?J

(1)
shift −

K

8π2A ∧ dA
)]

(A.1)

where J (1)
shift is defined in (2.1). The background gauge field for this symmetry is a

ZK 1-form gauge field. We represent it by a U(1) 1-form gauge field C(1) obeying a
constraint KC(1) = dΓ(0).

• A Z(1)
K electric 1-form symmetry generated by

Û
(1)
2πp/K(Σ(2)) = exp

[2πip
K

∮
Σ(2)

(
?J

(2)
electric −

K

4π2 θdA

)]
(A.2)

where J (2)
electric is defined in (2.1). The background gauge field for this symmetry is a

ZK 2-form background gauge field. We represent it by a U(1) 2-form gauge field C(2)
e

obeying a constraint KC(2)
e = dΓ(1)

e .
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• A U(1)(1)
magnetic magnetic 1-form symmetry generated by the symmetry operator

η(m)
α (Σ(2)) ≡ exp

(
iα

∮
Σ(2)

F

2π

)
. (A.3)

The background gauge field for this symmetry is a U(1) 2-form background gauge
field, which we denote by C(2)

m .

• A U(1)(2)
winding winding 2-form symmetry generated by the symmetry operator

η(w)
α (Σ(1)) ≡ exp

(
iα

∮
Σ(1)

dθ

2π

)
. (A.4)

The background gauge field for this symmetry is a U(1) 3-form background gauge
field, which we denote by C(3).

Turning on all the background gauge fields modifies the Lagrangian (1.1) to

f2

2
(
dθ − C(1)

)
∧ ?

(
dθ − C(1)

)
+ 1

2e2

(
F − C(2)

e

)
∧ ?

(
F − C(2)

e

)
− iK

8π2

[
θF ∧ F −A ∧ F ∧ C(1) − 2θF ∧ C(2)

e

]
+ i

2πA ∧ dC
(2)
m + i

2πθdC
(3) .

(A.5)

The gauge symmetry is

C(1) → C(1) + dγ(0) , θ → θ + γ(0)

C(2)
e → C(2)

e + dγ(1)
e , A→ A+ γ(1)

e

C(2)
m → C(2)

m + dγ(1)
m −

K

2π
(
γ(1)
e ∧ dγ(0) + γ(0)C(2)

e + γ(1)
e ∧ C(1)

)
,

C(3) → C(3) + dγ(2) − K

2π

(
γ(1)
e ∧ C(2)

e + 1
2γ

(1)
e ∧ dγ(1)

e

)
.

(A.6)

C
(2)
m transforms under the gauge symmetry of γ(0) and γ(1)

e , and C(3) transforms under the
gauge symmetry of γ(1)

2 . This is the signature of a higher-group symmetry. The gauge
invariant field strength is

G(3)
m = dC(2)

m + K

2πC
(2)
e ∧ C(1) ,

G(4) = dC(3) + K

4πC
(2)
e ∧ C(2)

e .

(A.7)

There is an ’t Hooft anomaly which can be canceled by a 4+1d invertible field theory
described by the Euclidean Lagrangian

− i

2πC
(1) ∧ dC(3) − i

2πC
(2)
e ∧ dC(2)

m −
iK

4π2C
(1) ∧ C(2)

e ∧ C(2)
e . (A.8)

It is easy to check the anomaly cancellation by lifting the Lagrangian (A.5) from the
boundary to the bulk. The second line of (A.5) combines with (A.8) into a gauge invariant
term in 4+1d

− iK

8π2 (dθ−C(1))∧(F −C(2)
e )∧(F −C(2)

e )

+ i

2π (F −C(2)
e )∧

(
dC(2)

m + K

2πC
(2)
e ∧C(1)

)
+ i

2π (dθ−C(1))∧
(
dC(3) + K

4πC
(2)
e ∧C(2)

e

)
.

(A.9)
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We now rephrase the higher-group symmetry using the symmetry operators. Recall
that turning on a flat background with G

(3)
m = G(4) = 0 is equivalent to inserting the

symmetry operators into the partition function. The first equation of (A.7) implies that
the one-dimensional intersection of Û (0)

2π/K and Û (1)
2π/K emits η(m)

−2π/K . This is the signature
of a higher-group symmetry (see [99] for the case of a 2-group symmetry). The emission of
η

(m)
−2π/K is crucial for the junction to be topological. Consider a deformation of Û (0)

2π/K from
Σ(3) to Σ̃(3). This implements a transformation

θ → θ + 2π
K

(A.10)

in the region between Σ(3) and Σ̃(3). Because of the worldvolume action (A.2) of Û (1)
2π/K(Σ(2)),

this transformation generates an operator exp
(
−2πi

K

∫
M(2)

F
2π

)
on Σ(2) whereM (2) is a region

on Σ(2) bounded by Σ(2) ∩ Σ(3) and Σ(2) ∩ Σ̃(3). This operator moves the boundary of
η

(m)
−2π/K from Σ(2) ∩ Σ(3) to Σ(2) ∩ Σ̃(3) and therefore preserves the topological property of
the intersection.

This junction and deformation are similar to the one in figure 12, with Û (0)
2π/K(Σ(3))

and Û (1)
2π/K(Σ(2)) shown as lines and surfaces there, respectively. Note that two out of the

three dimensions of Û (0)
2π/K(Σ(3)) are suppressed in that figure.

Similarly, the second equation of (A.7) implies that the zero-dimensional intersection
of two Û (1)

2π/K emits η(w)
−2π/K(M (1)) similar to figure 12, and the emission of η(w)

−2π/K(M (1))
preserves the topological property of the intersection.

B 1+1d ZN gauge theory

In this appendix, we will show that the 1+1d ZN gauge theory can be realized on the
boundary of a 2+1d invertible field theory, and derive (3.10).

The action for the 1+1d ZN gauge theory is given by [44, 120, 127, 128]

S1+1d = − iN2π

∫
Σ(2)

φdc , (B.1)

where φ ∼ φ+2π is a periodic scalar and c is a U(1) gauge field. The sign of the action (B.1)
is conventional since it can be absorbed by a field redifintion φ→ −φ. Upon integrating
out φ, c becomes a ZN 1-form gauge field.

The theory has a Z(0)
N × Z(1)

N global symmetry, generated by the topological operators

U(γ) = e
i
∮
γ
c
, V(P ) = eiφ(P ) . (B.2)

Here, γ ⊂ Σ(2) is a closed curve and P ∈ Σ(2) is a point, and we have UN = VN = 1. The
point operator V carries charge 1 under the Z(0)

N 0-form symmetry generated by the line
operator U . Similarly, U carries charge 1 under the Z(1)

N 1-form symmetry generated by V.
When quantized on a circle, these two operators generate a clock-and-shift algebra,

UV = e
2πi
N VU . (B.3)
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The fact that the 0-form symmetry generator carries a nonzero 1-form symmetry charge
and vice versa implies that there is a mixed ’t Hooft anomaly between the two symmetries.
To see this, we can couple (B.1) to the background gauge fields B(1) and B(2) for the Z(0)

N

and Z(1)
N symmetries, respectively. The background gauge fields are normalized such that∮

B(1) and
∮
B(2) are valued in 2π

N Z on 1-cycles and 2-cycles, respectively. The action
becomes

S1+1d[B(1), B(2)] = − iN2π

∫
Σ(2)

(
φdc+ cB(1) + φB(2)

)
. (B.4)

The partition function of the 1+1d ZN gauge theory in the presence of both background
gauge fields B(1) and B(2) is not invariant under the background gauge transformations
due to the mixed ’t Hooft anomaly. The inflow action, that is, the classical action for the
corresponding 2+1d Z(0)

N ×Z(1)
N symmetry protected topological (SPT) phase for this mixed

’t Hooft anomaly is
− iN

2π

∫
Σ(3)

B(1)B(2) , (B.5)

where Σ(3) is a 3-manifold with the boundary ∂Σ(3) = Σ(2).
The combined system

S1+1d[B(1), B(2)]− iN

2π

∫
Σ(3)

B(1)B(2) (B.6)

is invariant under the gauge transformations of both B(1) and B(2).
Now, we claim that (B.6) can be realized as a 2+1d twisted gauge theory of dynamical

ZN 1-form and 2-form gauge fields, with a suitable choice of the boundary condition. To
see this, consider a 2+1d gauge theory given by the action

S2+1d[B(1), B(2)] = − iN2π

∫
Σ(3)

(
u(1)dv(1) + u(2)dv(0) + u(1)u(2) + u(1)B(2) − u(2)B(1)

)
.

(B.7)
Here, u(1) and u(2) are U(1) 1-form and 2-form gauge fields, respectively. v(1) is a U(1)
1-form gauge field, and v(0) ∼ v(0) + 2π is a periodic scalar. Upon integrating out v(0) and
v(1), u(1) and u(2) become discrete ZN gauge fields, and the u(1)u(2) term corresponds to a
twist (or equivalently, a discrete torsion). The gauge transformations of dynamical gauge
fields are given by

u(1) → u(1) + dΛ(0) ,

u(2) → u(2) + dΛ(1) ,

v(0) → v(0) − Λ(0) ,

v(1) → v(1) + dλ(0) − Λ(1) .

(B.8)

For simplicity, first consider the case where ∂Σ(3) = Σ(2) = ∅, that is, Σ(3) is a closed
manifold without boundary. In this case, it is easy to see that integrating out all the
dynamical fields v(0), v(1), u(1) and u(2) in (B.7) leaves behind the classical action for the
SPT (B.5). Thus, the 2+1d gauge theory (B.7) is an invertible theory and there is no
nontrivial operator in the theory, in the absence of the boundary.
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When ∂Σ(3) = Σ(2) 6= ∅, we impose the Dirichlet boundary condition for u(1) and u(2),

u(1)| = 0 , u(2)| = 0 , (B.9)

where the notation | means the restriction of a field to the boundary. In this case, the
boundary operators

U ≡ exp
(
i

∮
v(1)|

)
, V ≡ exp

(
iv(0)|

)
, (B.10)

become gauge-invariant as the Dirichlet boundary condition (B.9) sets the gauge parameters
Λ(0) and Λ(1) to be zero at the boundary.

The boundary operators (B.10) have nontrivial correlation functions, and in particular,
they generate the clock-and-shift algebra (B.3) of the 1+1d ZN gauge theory. One way
to show this is to identify the U ≡ exp

(
i
∮
v(1)|

)
and V ≡ exp

(
iv(0)|

)
operators on the

boundary as trivial surface and line operators
(
i
∫
u(2)

)
and

(
i
∫
u(1)

)
in the bulk ending

on the boundary, respectively, which is justified due to the equations of motion in the
bulk. When we commute the U and V operators on the boundary, the intersection number
between the corrsponding trivial surface and line operators in the bulk change by 1. To
such an intersection point, a phase factor of exp(2πi/N) is assigned, due to the discrete
torsion. This corresponds to the clock-and-shift algebra (B.3) generated by U and V.

We see that on the boundary of the 2+1d invertible theory (B.7), with the boundary
condition (B.9), lives a 1+1d ZN gauge theory. In particular, we can identify

v(1)| = c , v(0)| = φ , (B.11)

where c and φ are the fields of the 1+1d ZN gauge theory (B.1). Inside the bulk we simply
have the classical SPT (B.5). Therefore, we have∫

[Dv(0)Dv(1)Du(1)Du(2)]Σ(3),u(1)|=0,u(2)|=0 exp
(
−S2+1d[B(1), B(2)]

)
= exp

(
iN

2π

∫
Σ(3)

B(1)B(2)
)
×
∫

[DφDc]Σ(2) exp
(
−S1+1d[B(1), B(2)]

)
.

(B.12)

On the lefthand side of (B.12), we can integrate out v(0) and v(1). This makes u(1) and u(2)

to become ZN gauge fields,

u(1) → 2π
N
b(1) , u(2) → 2π

N
b(2) . (B.13)

The remaining path integral becomes a summation over b(1) ∈ H1
∂ and b(2) ∈ H2

∂ , divided
by the volume of the gauge group |H1

∂ |. By multiplying exp
(
− iN

2π
∫

Σ(3) B(1)B(2)
)
on both

sides, we obtain
1
|H1

∂ |
∑

b(1)∈H1
∂

b(2)∈H2
∂

exp
[2πi
N

∫
Σ(3)

(
b(1) − N

2πB
(1)
)
∪
(
b(2) + N

2πB
(2)
)]

=
∫

[DφDc]Σ(2) exp
[∮

Σ(2)

(
iN

2π φdc+ iN

2π cB
(1) + iN

2π φB
(2)
)] (B.14)

Setting B(1) = pdθ/N and B(2) = F/N gives us (3.10) as desired.
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