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1 Introduction

For hard, exclusive processes, which are dominated by light-like distances, the hadronic
physics is described by light-cone distribution amplitudes (LCDAs), defined as hadron-to-
vacuum matrix elements of non-local operators spread along the light-cone. The leading-
twist QCD LCDA for light mesons has been widely investigated and constrained by non-
perturbative techniques such as lattice QCD and sum rules as well as by experimental data.

In the present paper, we envisage the production of a heavy pseudoscalar meson H

from a generic hard process with characteristic scale Q ≫ mQ, with mQ denoting the
heavy-quark mass. The relevant leading-twist QCD LCDA ϕ(u;µ) is defined as [1]

⟨H(pH)|Q̄(0)/n+γ5[0, tn+]q(tn+)|0⟩ = −ifHn+ · pH

∫ 1

0
du eiutn+·pH ϕ(u;µ) , (1.1)

where n+ is a light-like vector, and [0, tn+] denotes a finite-distance Wilson line. The
variable u can be interpreted as the light-cone momentum fraction of the light anti-quark
in the meson. The above definition is identical to the one for the LCDA of a light meson.
However, for a heavy meson, the LCDA describes the hadronic physics at two distinct
scales, mQ and ΛQCD, of which the former should be amenable by perturbative methods.
The LCDA does not depend on the hard scale Q due to boost invariance.

The LCDAs for heavy mesons are commonly defined in the framework of heavy quark
effective theory (HQET), that is, in the infinite-quark mass limit [2, 3]. This LCDA is
directly relevant to exclusive B decays into energetic particles at leading power in the
expansion ΛQCD/mQ, when mQ is the only short-distance scale. However, due to the prior
limit mQ →∞, it does not describe the physics between the scales Q and mQ, when the
heavy meson is produced in a hard process with Q≫ mQ.

Our goal is therefore to establish a factorization formula for the QCD LCDA (1.1) of a
heavy meson in order to separate the perturbative physics at energies of order mQ from the
non-perturbative hadronic effects at the QCD scale. Once the scale mQ is integrated out,
the infinite-quark mass limit can be taken. We then expect the long-distance physics to be
described by the quark-mass independent, universal, leading-twist HQET LCDA φ+(ω;µ),
which definition reads

⟨Hv|h̄v(0)/n+γ5[0, tn+]qs(tn+)|0⟩ = −iFstat(µ)n+ · v
∫ ∞

0
dω eiωtn+·vφ+(ω;µ) , (1.2)

where hv denotes the effective heavy quark field with four-velocity v, |Hv⟩ is the mQ-
independent heavy meson state and Fstat(µ) the static HQET decay constant.

Because the meson is highly boosted, we will work within soft-collinear effective theory
(SCET), which will be then matched to boosted HQET (bHQET) [4, 5] by integrating out
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the heavy-quark mass scale. Intuitively, one expects the LCDA at the matching scale of order
mQ to be highly asymmetric with the light anti-quark carrying typical light-cone momentum
fraction u ∼ ΛQCD/mQ. It is therefore necessary to consider separately the matching of the
QCD LCDA ϕ(u) for the case u ∼ ΛQCD/mQ, corresponding to the parametric location of
the “peak” of the LCDA at the matching scale of order mQ, and the case u ∼ 1, which we
refer to as the “tail”. The factorization formula will take the form

ϕ(u) =

 Jp(u, ω)⊗ φ+(ω) , u ∼ ΛQCD/mQ ,

Jtail(u) , u ∼ 1 ,
(1.3)

to leading order in ΛQCD/mQ, where ⊗ denotes a convolution in the variable ω, the light-
cone component of the momentum of the light spectator anti-quark. The full LCDA is
obtained by merging the two regions in the intermediate region ΛQCD/mQ ≪ u≪ 1, where
both expressions hold. All dependence on the mass of the heavy quark is contained in
the perturbative functions Jp, Jtail, while the non-perturbative information is encoded in
the HQET LCDA φ+(ω). This implies that the QCD LCDAs of any heavy pseudoscalar
mesons can be expressed in terms of a single LCDA, the universal HQET LCDA, making
manifest the heavy-quark flavour symmetry of low-energy QCD. Eq. (1.3) is to be viewed
as the initial condition at µ ∼ mQ for the evolution of the QCD LCDA (1.1) to µ ∼ Q,
which is computed as usual in terms of the Efremov-Radyushkin-Brodsky-Lepage (ERBL)
renormalization kernel [6–8].

The paper is organized as follows: we proceed by reviewing the construction of bHQET
in section 2. The matching of the LCDA in the two regions mentioned above and their
merging is performed in sections 3, 4 and 5. In section 6 we verify that the obtained LCDA
satisfies the required properties of the QCD LCDA and compare our result to previous,
significantly different ones [9, 10]. Section 7 contains a numerical study of the QCD LCDA
of the B̄ and D mesons, which is then employed in section 8 to obtain new, fully resummed
predictions for the W± → B±γ rate. We conclude in section 9. Several appendices collect
technical details and supplementary results.

2 Theoretical framework

We consider a heavy meson produced in a hard process with large energy of order Q≫ mQ in
the center-of-mass frame of the hard collision. Since a heavy quark is involved in the process,
HQET would naturally be the appropriate effective theory to separate the perturbative
scale mQ from the non-perturbative hadronic physics in an expansion in the parameter

λ = ΛQCD
mQ

≪ 1 . (2.1)

However, the large boost of the meson suggests a treatment in SCET [11–14], governed by
the small expansion parameter

b = mH

Q
≪ 1 , (2.2)

where mH ∼ O(mQ) is the heavy meson mass. The merging of these two frameworks
is bHQET [4, 5]. To set up bHQET, we consider a generic pseudoscalar heavy meson
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H = (Qq̄) containing the heavy quark Q and massless anti-quark q̄ in a boosted frame S,
such that its four-momentum

pµ
H = mHvµ = Q

nµ
−
2 + m2

H

Q

nµ
+
2 , (2.3)

has large n+pH = Q while n−pH ≪ n+pH . Here n− and n+ are two light-like reference vec-
tors, satisfying n− · n+ = 2 and n2

− = n2
+ = 0. We employ the convention p = (n+p, p⊥, n−p)

for the components of momenta. The direction of nµ
− is called the “collinear” direction.

The rest frame S∗ of the heavy meson is related to the frame S by a boost into the
collinear direction with parameter

b =
√

n−pH

n+pH
= mH

Q
. (2.4)

The components of a generic vector V µ transform as

n−V ∗ = 1
b

n−V , V ∗
⊥

µ = V µ
⊥ , n+V ∗ = b n+V . (2.5)

The scaling of the momenta of the heavy and light quark constituents of H in S∗ is

p∗Q ∼ (mQ,ΛQCD, mQ) ∼ (b, λb, b)Q , p∗q ∼ (ΛQCD,ΛQCD,ΛQCD) ∼ (b, b, b)λQ . (2.6)

The presence of mQ in p∗Q introduces virtual mQ-hard modes

p∗h ∼ (mQ, mQ, mQ) ∼ (b, b, b)Q , (2.7)

which scale in the boosted frame S as

ph ∼ (1, b, b2)Q “hard-collinear” , pq ∼ (1, b, b2)λQ “soft-collinear” . (2.8)

These two modes with virtuality m2
Q and Λ2

QCD, respectively, will be the relevant modes for
the subsequent analysis.

2.1 Construction of bHQET

In HQET, the heavy quark is close to its mass-shell, consequently it only interacts with
soft gluons. When changing the reference frame the soft modes will acquire a preferred
direction, giving rise to soft-collinear modes, as seen for the spectator quark in (2.8). In
the boosted frame, the heavy quark momentum can be parametrized as

pµ
Q = mQvµ + kµ , (2.9)

where v ∼ (1/b, 1, b) and k ∼ (1/b, 1, b)ΛQCD is soft-collinear. This scaling differs from
HQET which is usually defined in a frame “close” to the heavy-meson rest frame, implicitly
assuming v ∼ (1, 1, 1) and b ∼ 1.
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We derive the bHQET Lagrangian starting from the HQET one. In appendix A
following [15], we give the equivalent derivation starting from massive SCET. The leading-
power (in λ) HQET Lagrangian [16, 17] reads

LHQET = h̄v(x)iv ·Dhv(x) , (2.10)

with field hv defined as
hv(x) = eimQv·x 1 + /v

2 Q(x) , (2.11)

while Q(x) is the heavy-quark field defined in full QCD. We define the bHQET field hn

as [15]

hn(x) ≡
√

2
n+v

eimQv·x /n−/n+
4 Q(x) , (2.12)

which projects Q(x) onto its large component ξ(x) = /n−/n+
4 Q(x), defined as in SCET, and

then subtracts the rapid phase variations from the large momentum piece mQv through
the exponential factor as in HQET, leaving the residual momentum k. The normalization
factor in (2.12) is chosen such that the hn field will have a scaling independent of the boost
as shown below.

Starting from the definition of hv in (2.11), employing the definition of the bHQET field
hn in (2.12), as well as the known relations between SCET spinors (given in appendix A),
we find

hv(x) =
√

n+v

2
1 + /v

2

(
1−

/n+
2

i /D⊥ + mQ/v⊥ −mQ

in+D + mQn+v

)
hn(x) , (2.13)

which is an exact relation. We note that the covariant derivative Dµ scales as kµ, i.e. like a
soft-collinear momentum.

Making explicit use of the scaling of the velocity, it is instructive to expand this result
in powers of b and λ:

hv(x) =
√

n+v

2

[
1 +

(1 + /v⊥
n+v

/n+
2 −

i /D⊥
2mQ

−
1− /v⊥

2
in+D

mQn+v

)
+O(λ2, λb)

]
hn(x)

=
√

n+v

2

[
1 +

∞∑
k=1
O(λk) +

/n+
2 O(b)

∞∑
k=0
O(λk)

]
hn(x) . (2.14)

This relation between the HQET field and the bHQET field, both in the boosted frame S,
shows that both are equal at leading power in b and λ up to a rescaling factor

√
n+v/2. We

observe that, to all orders in the expansion, only power corrections linear in b arise. This
is due to the fact that the relative scaling between in+D and mQn+v in the denominator
of (2.13) is of order λ, therefore no corrections of order b other than those present from the
numerator are generated. The same holds for the relation between the QCD spinor and the
collinear SCET spinor.

To obtain the bHQET Lagrangian from the HQET Lagrangian requires the subleading
power terms in (2.14) as well, because the leading order terms vanish due to the projection
properties of hn, i.e.

/n−/n+
4 hn = hn , /n−hn = 0 . (2.15)
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Employing (2.14), we find

LHQET = h̄v(x)iv ·Dhv(x) =
n+v

2 h̄n(x)
(
1 +

1− /v⊥
n+v

/n+
2

)
iv ·D

(
1 +

1 + /v⊥
n+v

/n+
2

)
hn(x)

= h̄n(x)iv ·D
/n+
2 hn(x)

(
1 +O(λ)

)
= LbHQET

(
1 +O(λ)

)
, (2.16)

in agreement with [15].
We remark that the Lagrangian has no corrections of O(b), in analogy with the

derivation of the SCET collinear Lagrangian from the QCD one. Furthermore, we note
that the corrections of order O(λ) arise only because of the definition of the bHQET field
hn adopted in (2.12). This definition is practical because it is directly connected to SCET,
making matching computations simpler. However, because there is no projector (1 + /v)/2
acting on Q(x), it fails to completely eliminate the small component of the QCD spinor,
giving rise to the series of corrections in λ in the relation (2.14).

Alternatively, one could choose to define hn as

hnew
n (x) ≡

√
2

n+v

/n−/n+
4 hv(x) =

√
2

n+v
eimQv·x /n−/n+

4
1 + /v

2 Q(x) , (2.17)

instead of (2.12), which would lead to

/n+/n−
4 hv(x) =

√
n+v

2
1 + /v⊥

n+v

/n+
2 hnew

n (x) . (2.18)

Then one obtains only the linear corrections of O(b) in the analogue of (2.14),

hv(x) =
(

/n−/n+
4 +

/n+/n−
4

)
hv(x) =

√
n+v

2

[
1 +

1 + /v⊥
n+v

/n+
2

]
hnew

n (x) , (2.19)

and the Lagrangians are identical, LHQET = LbHQET. The difference in the definition of
the boosted HQET field would not affect the leading-power theory, but would result in a
reshuffle of the power corrections.

It is then clear that, depending on the definition chosen for hn, the relation between the
leading-power Lagrangians (2.16) could suffer from power corrections, but that including
all the power corrections in (2.10), and correspondingly in (2.16), would render the two
theories equivalent, as required by boost invariance. In fact, one could avoid building
the bHQET Lagrangian with the new field hn, by simply using standard HQET with its
Feynman rules [4, 5]. This would lead to the correct result, but at the price of having an
inhomogeneous power counting in the parameter b, because the field hv contains both, the
large and the small SCET spinors.

2.2 Systematics of the bHQET expansion

The scaling of the bHQET field (2.12) can be easily derived from requiring that the kinetic
term in the action (2.16) ∫

d4x h̄n(x)iv · ∂
/n+
2 hn(x) ∼ 1 . (2.20)
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Since hn has soft-collinear space-time variations, the derivative scales like a soft-collinear
momentum, hence iv ·D ∼ ΛQCD. Together with d4x ∼ Λ−4

QCD we find

hn ∼ Λ3/2
QCD , (2.21)

which is independent on the boost b. Some care needs to be taken in applying the same
reasoning to the HQET Lagrangian in the boosted frame. Due to the projection properties
of hv we need to take into account that the boost suppresses the combination /n−hv,

/n−
2 hv = 1

n+v

(
1− /v⊥ +O(b)

)
hv ∼ O(b)hv , (2.22)

resulting in the Lagrangian

h̄v(x)iv · ∂hv(x) = h̄v(x)
(

/n−/n+
4 +

/n+/n−
4

)
iv · ∂hv(x) =

2
n+v

h̄v(x)iv · ∂
/n+
2 hv(x) , (2.23)

which gives the following scaling for the field

hv ∼
√

n+vΛ3/2
QCD . (2.24)

The scaling of the bHQET field agrees with the scaling of the HQET field in the rest frame,
but differs from the scaling of the HQET field in a general frame, consistent with (2.14). In
the usual HQET frame, n+v ∼ 1, such that the heavy-quark field has the known soft scaling.

To describe the light anti-quark in the boosted frame we have to introduce the soft-
collinear field ξsc, with the same projection properties as the standard collinear spinors in
SCET. It is hence natural to split the QCD field q(x) into large and small components ξsc

and ηsc,

ξsc(x) =
/n−/n+
4 q(x) , ηsc(x) =

/n+/n−
4 q(x) = i /D⊥

in+D

/n+
2 ξsc(x) , (2.25)

and integrate out the ηsc field from the Lagrangian in order to have an homogeneous theory
in b. The result is the usual collinear SCET Lagrangian, but with the soft-collinear spinor
ξsc. The scaling of the soft-collinear field can also be obtained from any of the kinetic terms
in the action by requiring, for example,∫

d4x ξ̄sc(x)in−D
/n+
2 ξsc(x) ∼ 1 . (2.26)

With in−D ∼ bΛQCD from the scaling of the soft-collinear momentum and d4x ∼ Λ−4
QCD,

this results in
ξsc(x) ∼

√
1
b
Λ3/2

QCD , ηsc(x) ∼
√

bΛ3/2
QCD . (2.27)

Before concluding this section we want to briefly emphasize the fact that, due to the
presence of the reference vectors n±, bHQET is reparametrization invariant (RPI) under
the same set of transformations as SCET [18]. This is crucial in building a complete set of
operators at a given power in b, because bHQET contains the large parameter n+v and one
must control the way it can appear in operators to all orders. In the following we want to
systematically derive a basis for two-particle operators at order Λ3

QCD.
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Transformations of type-III are the most relevant ones here since they control how n+
and n− can enter the operators. The type-III transformations

n− → α n− , n+ →
1
α

n+ (α real) , (2.28)

correspond to boosts which leave the perpendicular components of Lorentz vectors as (2.5)
unchanged, so that we can safely set v⊥ = 0 from now on. It follows from v2 = 1 that
n−v = 1/n+v. The ξ fields are invariant under this transformation, whereas, due to the
prefactor in (2.12), the bHQET field transforms as

hn →
√

α hn . (2.29)

It is therefore advantageous to employ the type-III reparametrization-invariant building
blocks √

n+v

2 hn ∼ b−1/2Λ3/2
QCD , ξsc ∼ b−1/2Λ3/2

QCD , (2.30)

to build the most general two-particle operator with power counting O(Λ3
QCD). Without

loss of generality such operators can be written as

Ô = 1
n+v

√
n+v

2 h̄n/n+f(Dµ, vν ,Γ⊥)γ5ξsc ∼ Λ3
QCD × f(Dµ, vν ,Γ⊥) , (2.31)

where f(Dµ, vν ,Γ⊥) is a dimensionless function of covariant-derivative components, n±v

and a Dirac structure Γ⊥. We used the fact that the only possible Dirac structure must
contain one /n+ for the projection properties of the spinors, and further explicitly factored
out a γ5 to ensure non-zero overlap with pseudoscalar mesons. It follows that the remaining
matrix Γ⊥ cannot contain /n+ or /n−. With the chosen prefactor, the leading-power operators
require that f(Dµ, vν ,Γ⊥) is type-III reparametrization-invariant and scales as O(1).

Since f(Dµ, vν ,Γ⊥) must also be a Lorentz scalar, we are left with the two dimensionless
and reparametrization-invariant building blocks

n+v
i /D⊥

in+D
∼ 1 ,

n+v

n−v

in−D

in+D
∼ 1 , (2.32)

where we consider only derivatives on the light-quark field due to integration by parts, and
neglect commutators of covariant derivatives since they generate three-particle operators.
However, the second building block in (2.32) is not independent, since it is related to two
insertions of the first one by the equation of motion of the light-quark field,

/n+i /D⊥
1

in+D
i /D⊥ξsc = −/n+in−Dξsc . (2.33)

Hence, the general f(Dµ, vν ,Γ⊥) is an arbitrary power of the first structure in (2.32),
resulting in the infinite tower of operators1

Ôk = 1
n+v

√
n+v

2 h̄n/n+

(
n+v

i /D⊥
in+D

)k

γ5ξsc ∼ Λ3
QCD . (2.34)

1Allowing for v⊥ ̸= 0, type-I RPI transformations constrain the function f to be f(Dµ, vν ,Γ⊥) =
(/v⊥ − n+v i /D⊥

in+D
)k.
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Now we analyze the operator Ô2 and we apply the equation of motion (2.33) and the one
for the heavy quark in the form

n+v h̄n/n+in−
←−
D = − 1

n+v
h̄n/n+in+

←−
D , (2.35)

so that, by using integration by parts, we get

Ô2 =
√

n+v

2 h̄n /n+
n+v

in+D
i /D⊥

1
in+D

i /D⊥γ5 ξsc

= −
√

n+v

2 h̄n /n+
n+v

in+D
in−Dγ5 ξsc = Ô0 . (2.36)

Hence, the operator basis closes on Ô0, Ô1. The second operator Ô1 is related to the
structure h̄nηsc. Both are leading-power operators, which can be understood from the
fact that in the rest frame they account for the two independent Dirac structures h̄v /n+qs

and h̄v /n−qs.

2.3 Matching preliminaries

This section serves as the starting point for the core of our computation: the matching of
the LCDA, described in sections 3 and 4. Before starting we need to properly define our
objects within the framework of SCET.

The two-particle operator that defines the QCD LCDA, is represented in massive SCET
by the operator

OC(u) =
∫

dt

2π
e−iutn+pχ̄

(Q)
C (0) /n+γ5 χC(tn+) . (2.37)

We have taken the Fourier transform, and p, once a matrix element is taken, will be the
heavy meson momentum pH , or the sum of the parton momenta in partonic computations.
We denoted the massive field with the Q superscript. In SCET it is customary to work
with collinear gauge-invariant building blocks for (hard-)collinear quark fields,

χC(x) = W †
C(x)ξC(x) , (2.38)

where WC is a hard-collinear Wilson line (analogous definition for soft-collinear fields). The
two Wilson lines in the fields in (2.37) combine to the standard finite-distance Wilson line
[0, tn+] entering (1.1).

The LCDA is defined such that when taking the matrix element between the heavy
meson and vacuum states we get2

⟨H(pH)|OC(u)|0⟩ = −ifHϕ(u;µ) . (2.39)

The shape of ϕ(u;µ) depends on the renormalization scale µ at which the matrix element is
evaluated. For very large scales µ≫ mQ the LCDA will tend to its asymptotic form, which

2We define the QCD LCDA such that the light anti-quark carries the light-cone momentum fraction u,
while the usual definition assigns u to the quark. We do this in order to establish a more intuitive relation
with HQET where the light anti-quark carries momentum ω.

– 9 –



J
H
E
P
0
9
(
2
0
2
3
)
0
6
6

is symmetric under the exchange of u and 1 − u. On the other hand for scales µ ≲ mQ

it will develop an asymmetric peak due to the mass difference of its constituent quarks,
and from now on we will focus on this situation, with the matching scale set at µ ∼ mQ,
dropping it from the arguments of ϕ(u). It is important to note that in the heavy meson the
light anti-quark carries only a small fraction ΛQCD/mH of the total light-cone momentum
at the matching scale. This means that values of u of O(1) must be suppressed in the
LCDA. Therefore we expect the function to assume different scalings in the peak (u ∼ λ)
and in the tail (u ∼ 1) regions, implying an inhomogeneous function in the power counting
parameter λ [19]

ϕ(u) ∼

λ−1 , for u ∼ λ (“peak”)

1 , for u ∼ 1 (“tail”)
(2.40)

where the scalings are fixed by the normalization condition. Hence, in order to perform a
consistent calculation at leading power in λ, we match the two regions (peak and tail) of
the function separately (sections 3 and 4) and only at the end combine them in section 5.

It is instructive to look at the Feynman rules for the insertion of OC(u),

Q

qu

= /n+γ
5δ(n+pq − un+pH) ,

pQ

pq

(2.41)

Q

qu

µ, a = gsT
a/n+γ

5 nµ
+

n+k+iη
δ(n+pq − un+pH) ,

pQ

pq

k
(2.42)

Q

qu

µ, a = −gsT
a/n+γ

5 nµ
+

n+k+iη
δ(n+pq + n+k − un+pH) .

pQ

pq

k
(2.43)

The gluon lines attached to the edges of the graph arise from the Wilson lines WC in (2.38)
associated with the heavy quark field χ̄

(Q)
C (0) and the light anti-quark field χC(tn+),

respectively — attachments of more than one gluon from the expansion of the Wilson line
do not contribute to the one-loop matrix elements calculated below. The insertion of the
non-local operator OC(u) is represented with the dashed line, and the momentum fraction
u is injected at the vertex denoted by a dot. The delta functions enforce the n− component
of the sum of momenta flowing out from that vertex to take the value un+pH .
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3 Matching: Peak region

The peak region is characterized by small momentum fractions of the light anti-quark in
SCET, namely u ∼ λ, and this scaling will be assumed for the rest of this section. The
matching equation will take the form of a convolution

OC(u) =
∫ ∞

0
dω Jp(u, ω)Oh(ω) , (3.1)

with the bHQET non-local operator defined as

Oh(ω) ≡
1

mH

∫
dt

2π
e−iωtn+v

√
n+v

2 h̄n(0)Wsc(0) /n+γ5 χsc(tn+) ∼
Λ2

QCD
mH

. (3.2)

Here ω ∼ ΛQCD is the light-cone component of the spectator anti-quark momentum in the
H rest frame. We note that this is simply the boosted version of the Fourier transform of the
HQET operator in (1.2). The Feynman rules for this operator are analogous to (2.41)–(2.43)
with the replacement un+pH → ωn+v. The matrix element of Oh(ω) is related to the
leading twist HQET LCDA φ+(ω) at leading power3 in λ due to the relation (2.14)

⟨H(pH)|Oh(ω)|0⟩ = −if̃Hφ+(ω) , (3.3)

where f̃H denotes the scale-dependent bHQET decay constant given by the local limit of the
Fourier transform of (3.2), which will be studied in section 4.1. For external states defined
in bHQET we use the standard QCD (as opposed to HQET) normalization convention.

It is important to mention that, in the peak region, there is only one bHQET operator
contributing to the matching at leading power. Comparing with the bottom-up approach
of section 2.2 the operator Oh(ω) corresponds to the non-local version of Ô0, while the
second operator Ô1 would correspond to a non-local operator related to the subleading-twist
HQET LCDA φ−(ω) which is expected to contribute only through power corrections. This
will be confirmed explicitly at the one-loop order through the following calculation.

Taking the hadronic matrix element of the matching equation (3.1) gives the QCD
LCDA in the peak region u ∼ λ,

ϕ(u) = f̃H

fH

∫ ∞

0
dω Jp(u, ω)φ+(ω) . (3.4)

The long-distance physics described by the HQET LCDA is the same as in QCD, since
the effective theory is built such that it reproduces the IR behaviour of the full theory.
On the contrary, the ultraviolet (UV) physics is different, as one can easily notice from
their different renormalization group equations (RGE). Both LCDAs are renormalization-
scale dependent functions, however the QCD LCDA, which arises from a hard process,
depends on a scale µh ≳ mQ (because the evolution is computed setting mQ = 0), while
the HQET LCDA, describing the pure non-perturbative physics, should be evaluated at the
scale µs > O(ΛQCD) and µs ≲ mQ. We perform the matching at the hard-collinear scale

3There are power corrections to this relation which are generated by our use of hn rather than hnew
n (see

discussion at the end of section 2.1), which therefore pose no problem.
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WQ =

Q

q

Wq =

Q

q

V =

Q

q

Figure 1. Contributions to the matching: the operator insertion are represented with ⊗. WQ and
Wq stand for interactions between the Wilson lines and the heavy and light quark, respectively. The
vertex diagram V represents the gluon exchange between the two constituent quarks. The external
field renormalization diagrams are not shown.

µ ∼ O(mQ) such that no large logarithms lnµ/mQ appear in the perturbative expansion of
the hard-collinear matching function Jp. The well-known evolution equations for the two
LCDAs [6, 20] can then be used to relate the HQET LCDA at the low scale µs to the QCD
LCDA at the scale µh, thereby summing the large logarithms lnµs/mQ and lnmQ/µh.

We compute the perturbative jet function Jp(u, ω) at one-loop order by taking the
matrix element of the matching equation (3.1) between on-shell partonic states, namely

⟨Q(pQ)q̄(pq)|OC(u)|0⟩SCET =
∫ ∞

0
dω Jp(u, ω)⟨Q(pQ)q̄(pq)|Oh(ω)|0⟩bHQET , (3.5)

and evaluating the matrix elements on both sides in the one-loop approximation. The three
relevant diagrams are shown in figure 1, where ⊗ denotes the operator insertion, summing
up the two Wilson lines contributions from (2.42) and (2.43) in the first two diagrams.
Defining the momentum fraction s = n+pq/n+(pq + pQ) ≡ n+pq/n+pH , the support of the
SCET matrix element on the left-hand side implies that 0 ≤ s ≤ 1.

We begin with the SCET matrix element on the left. Tree-level evidently implies u = s,
hence we write to the one-loop order

⟨Q(pQ)q̄(pq)|OC(u)|0⟩SCET

= 1
n+pH

ū(pQ)/n+γ5v(pq)
{

δ(u− s) + αsCF

4π
M (1)(u, s)

}
+ 1

n−pH
ū(pQ)/n−γ5v(pq) – term , (3.6)

where the superscript denotes the coefficient of αsCF /(4π) in the loop expansion. In
order to make the notation more compact, after performing the SCET computation we
re-expressed the result in terms of full QCD spinors by using ξ̄n−(pQ) = ū(pQ)

/n+/n−
4 and

ξn−(pq) =
/n−/n+

4 v(pq), in which case

1
n+pH

ξ̄n−(pQ)/n+γ5ξn−(pq) =
1

n+pH
ū(pQ)/n+γ5v(pq) ,

1
mH

ξ̄n−(pQ)/n+
/pq⊥

n+pq
γ5ξn−(pq) =

1
mH

ū(pQ)/n+
/pq⊥

n+pq
γ5v(pq) =

(−1)
n−pH

ū(pQ)/n−γ5v(pq).

(3.7)
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In the second line we also used the equations of motion of both quarks to simplify the Dirac
structure (see further discussion in appendix B.1)

ū(pQ)/n+
/pq⊥

n+pq
γ5v(pq) = −

1
n−v

ū(pQ)/n−γ5v(pq) . (3.8)

We focus on the ū(pQ)/n+γ5v(pq) structure first. We regulate both UV and infrared
(IR) divergences dimensionally in space-time dimension d = 4−2ϵ. In this case, the diagram
Wq is scaleless and vanishes. The renormalized one-loop on-shell matrix element is then the
sum

M (1)(u, s) = V (u, s) + WQ(u, s) + 1
2Z

OS(1)
ξ δ(u− s) + Z

(1)
OC

(u, s) , (3.9)

of the remaining two diagrams, the heavy quark on-shell field-strength renormalization
constant

Z
OS(1)
ξ = −3

ϵ
− 3 ln µ2

m2
Q

− 4 , (3.10)

and the contribution from the SCET operator renormalization kernel (in the MS scheme),

Z
(1)
OC

(u, s) =− 2
ϵ

[
θ(s− u)u

s

(
1 + 1

s− u

)
+ θ(u− s) ū

s̄

(
1 + 1

u− s

)]
s+

− 1
ϵ

δ(s− u)
(
3 + 2s̄ ln s + 2s ln s̄

)
, (3.11)

where we use the standard notation x̄ ≡ 1− x for momentum fraction variables. The plus
distribution is defined as

∫ 1

0
du f(u)

[
g(u, s)

]
u+

=
∫ 1

0
du
(
f(u)− f(s)

)
g(u, s) ,∫ 1

0
ds f(s)

[
g(u, s)

]
s+

=
∫ 1

0
ds
(
f(s)− f(u)

)
g(u, s) , (3.12)

where we indicate with a subscript the variable in which the integration is intended. The
renormalization function ZOC

(u, s) is the ERBL renormalization kernel [6–8] but written
here as plus distributions with respect to the second argument s instead of the more
conventional first one,4 u.

By computing the diagrams with a non-dimensional IR regulator, we checked that
the above renormalization factors remove all UV divergences, as they should, such that

4The kernel in terms of a plus distribution in u is provided in appendix B.1.
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M (1)(u, s) contains only IR divergences. We find

M (1)(u, s) = 2
[
θ(s− u)u

s

(( 1
s− u

+ 1
)(

ln s̄µ2

u(s− u)m2
Q

+ iπ

)
− 1

)]
s+

+ 2
[
θ(u− s) ū

s̄(u− s)

(
2 ln s̄µ

(u− s)mQ
+ u

s
ln us̄

u− s

)]
s+

+ δ(u− s)
{
− 1

ϵ2 −
1
ϵ

(
2 ln s̄µ

smQ
+ 2πi + 5

2

)
− 2 ln2 µ

smQ
+ 2 ln s ln µ2

sm2
Q

+ ln µ

mQ
− 4πi ln µ

smQ
+ 11

12π2 + 2

− s

(
ln2 s + 2

(
1− 2 ln µ

smQ

)
ln s̄

s
+ 2πi ln s + π2

3

)

− 2 ln s̄

(
2 ln µ

smQ
− 1

)
+ 2(2− s)Li2(s)

}

+ 2
[
θ(u− s)

(
ū

s̄

(
2 ln s̄µ

(u− s)mQ
− 1

)
+ u

s̄
ln us̄

u− s

)]
s+

. (3.13)

While the above result holds for u and s in the interval [0, 1], the matching equation (3.5)
in the peak region is valid when the external momentum pq is soft-collinear, which implies
that s ∼ λ≪ 1. Expanding (3.13) for u, s ∼ λ, M (1)(u, s) simplifies to

M (1)(u,s)
∣∣
u,s≪1 = 2

[
θ(s−u)

s−u

u

s

(
ln µ2

u(s−u)m2
Q

+ iπ

)]
s+

+2
[

θ(u−s)
u−s

(
2 ln µ

(u−s)mQ
+ u

s
ln u

u−s

)]
s+

+δ(u−s)
{
− 1

ϵ2 −
1
ϵ

(
2 ln µ

smQ
+2πi+ 5

2

)
−2 ln2 µ

smQ
+2lns ln µ2

sm2
Q

+ln µ

mQ
−4πi ln µ

smQ
+ 11
12π2+2

}
. (3.14)

The expanded result could have been obtained directly by noting that when u, s≪ 1 are
assumed from the start, the expansion of the loop integral in λ is obtained from the sum
of a hard-collinear and soft-collinear region in the sense of the region expansion [21]. The
region analysis is given in appendix B, including the ū(pQ)/n−γ5v(pq) structure in (3.6),
which turns out to be of higher order in λ. This substantiates our earlier statement that
the non-local version of Ô1 is suppressed in the peak region.

Turning to the bHQET matrix element on the right-hand side of the matching equation
in bHQET (3.5), we write it in the form

⟨Q(pQ)q̄(pq)|Oh(ω)|0⟩bHQET

= 1
n+pH

ū(pQ)/n+γ5v(pq)
{

δ

(
n+pq

n+v
− ω

)
+ αsCF

4π
N (1)

(
ω,

n+pq

n+v

)}
. (3.15)
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The renormalized one-loop on-shell amplitude

N (1)(ω, ν) = VbHQET(ω, ν) + WQbHQET(ω, ν) + Z
(1)
Oh

(ω, ν) , (3.16)

is again expressed in terms of the diagrams from figure 1 and UV renormalization factors.
The one-loop HQET on-shell field renormalization constant is scaleless, and the MS operator
renormalization kernel

Z
(1)
Oh

(ω, ν) = −2
ϵ

[
θ(ω − ν)

ω − ν
+ ω

ν

θ(ν − ω)
ν − ω

]
ν+

+ δ(ω − ν)
( 1

ϵ2 + 2
ϵ
ln µ

ν
− 5

2ϵ

)
, (3.17)

coincides with the one for the HQET leading-twist LCDA φ+(ω) [20], as expected from
boost invariance. We find

N (1)(ω, ν) = 2
[

θ(ν − ω)
ν − ω

ω

ν

(
ln µ2

ω(ν − ω) + iπ

)]
ν+

+ 2
[

θ(ω − ν)
ω − ν

(
2 ln µ

ω − ν
+ ω

ν
ln ω

ω − ν

)]
ν+

+ δ(ω − ν)
(
− 1

ϵ2 −
1
ϵ

(
2 ln µ

ν
+ 2πi + 5

2

)
− 4 ln2 µ

ν
− 4πi ln µ

ν
+ 5π2

6

)
.

(3.18)

Details on the individual diagrams with the full ϵ dependence are provided in appendix B.4,
as well as the renormalization kernels with plus distributions with respect to ω.

To extract the matching function Jp(u, ω), we expand (3.5) in αs. At tree level, (3.5)
reduces to

δ

(
n+pq

n+pH
− u

)
=
∫ ∞

0
dω J (0)

p (u, ω)δ
(

n+pq

n+v
− ω

)
. (3.19)

Identifying pH = pQ + pq with mHv, which is legitimate up to power corrections, we obtain

J (0)
p (u, ω) = δ

(
u− ω

mH

)
θ(mH − ω) , (3.20)

where the theta-function arises from the constraint u ≤ 1 on the left-hand side. At the
one-loop order, we then find

J (1)
p (u, ω) = θ(mH − ω)

{
M (1)

(
u,

ω

mH

)
−mHN (1)(umH , ω)

}
. (3.21)

Comparing (3.18) and (3.14), we note that their IR poles coincides, hence the matching
coefficient is indeed short-distance. Moreover, since the simple replacement [. . .]ω/mH+ →
[. . .]ω+ holds, the plus-distribution terms also coincide and cancel in the difference (3.21),
leaving

M (1)
(

u,
ω

mH

)
−mHN (1)(umH , ω) = δ

(
u− ω

mH

)(
L2

2 + L

2 + π2

12 + 2
)

, (3.22)

where we defined
L ≡ ln µ2

m2
H

, (3.23)
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identifying the quark mass mQ with the meson mass mH since the difference is formally
a power correction. The result for the one loop jet function in the peak region can be
therefore written in the remarkably simple local (in momentum fraction) form

Jp(u, ω) = θ(mH − ω)δ
(

u− ω

mH

)(
1 + αsCF

4π
J (1)

peak +O(α2
s)
)

, (3.24)

with
J (1)

peak ≡
L2

2 + L

2 + π2

12 + 2 . (3.25)

The fact that the non-local terms drop out can be understood in terms of the region
analysis. The matrix element N (1) accounts precisely for the soft-collinear region of M (1),
such that only the hard-collinear region contributes to the matching function J (1)

p (u, ω).
Most of the terms will therefore cancel in (3.21), since only logarithms of the hard-collinear
scale m2

H can appear in the jet function. We find in fact that only one diagram, WQ,
contributes to the matching in the peak region, namely when the heavy quark couples
to its own Wilson line, giving rise to a simple function proportional to the tree-level jet
function (3.20). The role of the delta functions in the Feynman rules (2.41)–(2.43) and
the fact that u and s are small in the peak region is crucial, because as soon as the loop
momentum k enters the delta function, it is forced to assume the same scaling as un+pH

and n+pq, resulting in a soft-collinear contribution. Therefore the only contributions to the
jet function will come from diagrams where the hard-collinear loop momentum is not in the
delta function argument, which happens only in the case of the diagram WQ.

We argue that the hard-collinear matching function is local in momentum fractions to
all orders in the perturbative expansion, i.e. that it can be expressed as

Jp(u, ω) = Jpeak δ

(
u− ω

mH

)
θ(mH − ω) , (3.26)

where Jpeak is independent of u and ω. In the peak region u ∼ λ, the only hard-collinear
contributions that can arise are those related to diagrams where the spectator quark is
not involved (so that k is not in the argument of the delta functions), as shown in the left
panel of figure 2. These contributions are given by gluons emitted and absorbed by the
heavy quark field and its local Wilson line, forcing u to match the external momentum
fraction ω/mH through the delta function (2.41). This makes it clear that Jpeak is in fact
the quark-mass dependent short-distance coefficient in matching the massive SCET collinear
quark field to the bHQET field by integrating out the hard-collinear modes:

χ
(Q)
C = W †

Cξ
(Q)
C → Jpeak(mQ)

√
n+v

2 W †
schn . (3.27)

This results in the following all-order form for the QCD LCDA in the peak region,

ϕp(u) =
f̃H

fH
JpeakmHφ+(umH) , for u ∼ λ , (3.28)

where the subscript p means that this expression for ϕ(u) holds in the peak region only.
We emphasize that Jpeak is a momentum-fraction independent matching coefficient, i.e. a
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Q

qu
(a) Peak matching

Q

qu
(b) Tail matching

Figure 2. Schematic diagrams for the all orders contributions to the jet function (only hard-collinear
gluons), divided into the peak (left) and tail (right) part.

pure series in αs free of large logarithms at the hard-collinear scale µ ∼ mQ, as is f̃H/fH .
Consistency requires that both sides of (3.28) have the same scale dependence. We further
discuss this in section 6.3, where we also derive the RGE for Jpeak.

4 Matching: Tail region

We continue with the matching of the tail region of the LCDA, characterized by momentum
fractions u ∼ 1, which implies a different counting as compared to the peak region. As seen
from (2.40) the tail is power suppressed, and of the same order as the LCDA normalization.
Therefore, the matrix element of OC(u) will be of the same order of magnitude as the
decay constant, which in QCD factorization of exclusive B meson decays indeed contributes
only through power corrections, the leading power involving the first inverse moment, λB.
Momentum fractions u ∼ 1 correspond to large values ω ≫ ΛQCD, in which case the tail of
the HQET LCDA can be determined from an operator product expansion (OPE) [22] and
depends only on local non-perturbative inputs. This amounts to an expansion in ΛQCD/ω

with a tower of local operators in HQET. In terms of the matching of OC(u), this translates
into a fully perturbative determination of the u dependence, with the decay constant f̃H

as the only non-perturbative input at leading power. For this reason, it is instructive to
first look at the simpler case of matching the local SCET operator instead of OC(u), and
to resume the non-local matching in section 4.2.

4.1 Local matching: the decay constant

As a starting point to understand some of the features present in the matching of the LCDA
in the tail region, we proceed by matching the local SCET operator onto bHQET. We first
recall the main points of matching the QCD decay constant onto the HQET one in the
heavy-meson rest frame. The QCD and HQET decay constants are defined through the
matrix elements

⟨H(pH)|Q̄γαγ5q|0⟩ = −ifHpα
H ,

⟨H(pH)|h̄vγαγ5qs|0⟩ = −ifHQET
H (µ)mHvα , (4.1)

where we are using pH = mHv and the standard QCD normalization for the states, so that
Fstat(µ) =

√
mHfHQET

H (µ) for the mass-independent static decay constant.5 In HQET, the
5Since fields are at x = 0, we omit the position argument in this section.
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matching computation gives

Q̄γαγ5q = CV (µ) h̄vγαγ5qs + CS(µ) vαh̄vγ5qs , (4.2)

with

CV (µ) = 1− αsCF

4π

(3
2 ln µ2

m2
Q

+ 4
)
+O(α2

s) ,

CS(µ) = 2αsCF

4π
+O(α2

s) . (4.3)

Multiplying (4.2) by vα and taking the matrix element of (4.2) between vacuum and H

meson states, we obtain the relation between the decay constants in QCD and HQET.
Using

⟨H(pH)|h̄vγ5qs|0⟩ = ⟨H(pH)|h̄v/vγ5qs|0⟩ = −ifHQET
H (µ)mH , (4.4)

gives the well known result [23]

fH = fHQET
H (µ)

(
CV (µ) + CS(µ)

)
= fHQET

H (µ)
[
1− αsCF

4π

(3
2 ln µ2

m2
Q

+ 2
)
+O(α2

s)
]

. (4.5)

We next consider the boosted frame, with pH⊥ = 0, and the matching relation for the
bHQET decay constant, f̃H . By contracting (4.1) with n+α and n−α, respectively, the QCD
decay constant can be expressed in two equivalent ways, as the matrix element of collinear
currents in SCET [24]. This leads to the definition of the following two SCET operators,

OC
+ = 1

n+pH
ξ̄

(Q)
C /n+γ5ξC ,

OC
− = − 1

n−pH
ξ̄

(Q)
C /n+

mQ − i
←−
/D⊥

−in+
←−
D

i /D⊥
in+D

γ5ξC , (4.6)

where we have used the expression for the suppressed ηC spinor-field component given in
appendix A. By construction their hadronic matrix elements are

⟨H(pH)|OC
±|0⟩ = −ifH . (4.7)

The SCET currents OC
± are matched to the two dimensional bilinear-operator basis in

bHQET, as derived in section 2.2, conveniently chosen as

O+ = 1
mHn+v

√
n+v

2 h̄n /n+γ5ξsc ,

O− = − 1
mH

√
n+v

2 h̄n /n+
i /D⊥

in+D
γ5ξsc , (4.8)

such that the tree level matching is diagonal(
OC

+
OC

−

)
=
[
1 + αsCF

4π

(
C

(1)
++ C

(1)
+−

C
(1)
−+ C

(1)
−−

)
+O(α2

s)
](O+
O−

)
. (4.9)
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In analogy with HQET, we choose to define the bHQET decay constant f̃H(µ) as the matrix
element of

⟨H(pH)|O+|0⟩ = −if̃H(µ) . (4.10)

At tree level6 the matrix element ⟨H(pH)|O−|0⟩ also equals −if̃H since

⟨H(pH)|O−|0⟩ = (1 +O(αs))⟨H(pH)|OC
−|0⟩ = (1 +O(αs))⟨H(pH)|OC

+|0⟩
= (1 +O(αs))⟨H(pH)|O+|0⟩ = −if̃H(µ)(1 +O(αs)) . (4.11)

To determine the relation between fH and f̃H(µ) at the one-loop order, it is sufficient to
match only one of the SCET operators, and we choose the simpler case OC

+. We obtain

OC
+ =

(
1− αsCF

4π

(3
2 ln µ2

m2
Q

+ 3
))
O+ + αsCF

4π
O− . (4.12)

The one-loop coefficients are different from the ones in the rest frame (4.3) because we
choose a different, more convenient basis for the boosted frame. Taking the hadronic matrix
element of (4.12) leads to the relation between the decay constants

fH = f̃H(µ)
[
1− αsCF

4π

(3
2 ln µ2

m2
Q

+ 2
)
+O(α2

s)
]

, (4.13)

which implies f̃H(µ) = fHQET
H (µ), as was to be expected as a natural consequence of boost

invariance. For later use, we define the ratio between the HQET and QCD decay constants
as

d(µ) ≡ f̃H(µ)
fH

= 1 + αsCF

4π

(3
2L + 2

)
+O(α2

s) , (4.14)

again identifying mH and mQ.

4.2 Non-local matching: the LCDA tail

In matching the non-local operator OC(u) we will use the same operator basis (4.8) that
we used for the decay constant matching, yielding to the matching equation

OC(u) = J+(u)O+ + J−(u)O− . (4.15)

The analysis of section 2.2 ensures that there cannot be other two-particle operators at
this order in b. Eq. (4.15) holds to all orders in αs, since the hard-collinear contributions
in the tail region are independent on the light anti-quark soft-collinear momentum pq,
which would contribute only through power corrections. The right panel in figure 2
shows this diagrammatically. When a hard-collinear gluon is emitted from the spectator
quark field χC(tn+), the momentum fraction u is forced by (2.41) or (2.43) to scale as
u ∼ 1, and the internal lines of the diagram would become insensitive to the external
soft-collinear momentum.

6In the following we only need the tree-level matrix element, however, the relation should hold to all
orders due to RPI, as well as the link with the corresponding operator in the rest frame.
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At tree level the partonic matrix elements of the local operators read

⟨Q(pQ)q̄(pq)|O±|0⟩bHQET = 1
n±pH

ū(pQ)/n±γ5v(pq) . (4.16)

The SCET renormalized matrix element in the tail region does not contain any soft-collinear
physics (explicitly checked in appendix B.3) and starts at the one-loop level

⟨Q(pQ)q̄(pq)|OC(u)|0⟩SCET = αsCF

4π

∑
±

M
(1)
± (u)⟨Q(pQ)q̄(pq)|O±|0⟩ . (4.17)

In the tail region M
(1)
± (u) is obtained by expanding the left-hand side for small s but not u.

In this case, we obtain from (3.13) the s-independent expression

M
(1)
+ (u ∼ 1, s ∼ λ) = 2ū

u

(
2(1 + u) ln µ

umQ
− 2u + 1

)
, (4.18)

where we used that the delta function δ(u− s) never contributes when s≪ u and the theta
functions become trivial.

Alternatively, the renormalized one-loop amplitude, when u ∼ 1 and pq ≪ pQ (that is,
s ∼ λ), is given by the hard-collinear (hc) region of the full result. The leading-power term
is obtained by setting pq to zero. We find

M
(1)
+ (u) = V+(u)

∣∣∣
hc
+WQ(u)

∣∣∣
hc
+Z

(1)
OC

(u)
∣∣∣
hc

,

M
(1)
− (u) = V−(u)

∣∣∣
hc

, (4.19)

where the contribution proportional to the Dirac structure (3.8) comes only from the V

diagram in figure 1. It is UV and IR finite, hence there are also no counterterms. Results
for individual diagrams are provided in appendix B.3.

Taking the matrix element between on-shell partonic states of the matching equa-
tion (4.15) and including now O− leads to

J±(u) =
αsCF

4π
M

(1)
± (u) +O(α2

s) , (4.20)

with

J (1)
+ (u) = 2ū

u

(
(1 + u) [L− 2 ln u]− 2u + 1

)
,

J (1)
− (u) = 2ū . (4.21)

The expression for J (1)
+ (u) agrees with (4.18) as it should.

Because of (4.11), when taking the matrix element of (4.15) between the heavy meson
and vacuum states, J (1)

+ and J (1)
− will be summed, we can hence write

ϕt(u) =
f̃H

fH
Jtail(u) , for u ∼ 1 , (4.22)
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where

Jtail(u) ≡ J+(u) + J−(u) =
αsCF

4π

2ū

u

(
(1 + u)[L− 2 ln u]− u + 1

)
+O(α2

s) . (4.23)

The subscript t is a reminder that this expression for ϕ(u) holds in the tail region only.
We emphasize that ϕ(u) in the tail region needs no information from the HQET LCDA
φ+(ω), since it is related to the leading local term in the OPE, which involves only the
decay constant, which is factored out in the definition of ϕ(u).

At this point it is worth remarking that the LCDAs are boost invariant quantities.
Therefore the matching can be carried out in the heavy meson rest frame, from QCD to
standard HQET. However, in a physical process involving the production of an energetic
heavy meson, the hard matching is naturally performed in the boosted frame, yielding a
Q-dependent hard function and a SCET operator. Therefore we performed the matching in
the boosted frame using bHQET. As a consistency check, we also performed the matching
calculation in the rest frame finding complete agreement with the one in the boosted frame.

5 Merging of the peak and tail

From the peak and the tail matching we obtained

ϕ(u) =


ϕp(u) =

f̃H

fH
JpeakmHφ+(umH) , for u ∼ λ ,

ϕt(u) =
f̃H

fH
Jtail(u) , for u ∼ 1 .

(5.1)

Since ϕ(u) should be a continuous function on [0, 1], the two approximations must be equal
in the overlap region λ≪ u≪ 1, which requires

JpeakmHφasy
+ (umH) != Jtail(u)

∣∣∣
u≪1

. (5.2)

Here φasy
+ (ω) is the asymptotic form of φ+(ω) for ω ≫ ΛQCD, which is independent of

hadronic parameters at leading power in ΛQCD/ω (which is implied here by the term
“asymptotic form”), and can be computed perturbatively [22]. This is a crucial property
without which (5.2) could never hold.

Let us check that (5.2) is satisfied at order αs. At this order [22],

φasy
+ (ω) ≡ αsCF

2πω

(
ln µ2

ω2 + 1
)

, (5.3)

hence we can use Jpeak = 1 +O(αs) in (5.2) to obtain for the left-hand side

mHφasy
+ (umH) = αsCF

2πu
(L− 2 ln u + 1) , (5.4)

which indeed coincides with Jtail(u)
∣∣∣
u≪1

from (4.23).
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This shows that ϕ(u) is parametrically continuous in the overlap region. It is therefore
consistent to make it technically continuous by applying a “merging function” ϑ(u; δ, σ)
satisfying

ϑ(u; δ, σ)
∣∣∣
u≪δ

= 1 , ϑ(u; δ, σ)
∣∣∣
u≫δ

= 0 , (5.5)

and to add both expressions as

ϕ(u) = ϑ(u; δ, σ)ϕp(u) +
(
1− ϑ(u; δ, σ)

)
ϕt(u) , (5.6)

where the parameter δ defines the centre of the overlap region (λ≪ δ ≪ 1), and σ its width.
We adopt the form

ϑ(u; δ, σ) = 1
1 + e

u−δ
σ

, (5.7)

allowing us to choose the limiting case

ϑ(u; δ, 0) = θ(δ − u) , (5.8)

in analytic computations. We set σ ∼ O(10−2) in the numerical analysis of section 7.

6 QCD LCDA and its properties

We now check that the peak-tail merged expression (5.6) for the QCD LCDA is consistent
with the endpoint behaviour, normalization and evolution equation of the QCD LCDA.

6.1 Endpoint behaviour

The QCD LCDA is expected to vanish linearly at the endpoints u = 0, 1. The limit u→ 0
is evident from (5.6) as Jpeak is independent of u, while φ+(ω) is proportional to ω for
small ω [2]. For u→ 1, we find from (4.23)

ϕ(u) −→
u→1

αsCF

π
ūL→ 0 , (6.1)

proving (at O(αs)) that the LCDA vanishes linearly at u = 1 as it should.

6.2 Normalization

We next verify that the integral of (5.6) on [0, 1] is correctly normalized to 1. For this
purpose, we use the merging function (5.8).7

To calculate the normalization integral, we first recall the expression for the zeroth
cut-off moment of the HQET LCDA [22],

M0(ΛUV) =
∫ ΛUV

0
dω φ+(ω) = 1− αsCF

4π

(
2 ln2 µ

ΛUV
+2 ln µ

ΛUV
+ π2

12

)
+O

(
αs

ΛQCD
ΛUV

, α2
s

)
,

(6.2)
7In this case, ϕ(u) is not technically continuous, but the discontinuity is power-suppressed in the expansion

parameters, and hence parametrically absent.
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valid for ΛUV ≫ ΛQCD. Since mHδ ≫ ΛQCD, we can write∫ 1

0
du ϕ(u) =

∫ δ

0
du ϕp(u) +

∫ 1

δ
du ϕt(u)

= f̃H

fH
JpeakM0(mHδ) + f̃H

fH

∫ 1

δ
duJtail(u)

= 1 + αsCF

4π

[
M

(1)
0 (mHδ) + J (1)

peak + d(1) +
∫ 1

δ
duJ (1)

tail(u)
]
+O(α2

s)

= 1 +O
(

δ,
λ

δ

)
+O(α2

s) , (6.3)

where d(1) is the coefficient of αsCF /(4π) in (4.14). This shows that the LCDA is indeed
properly normalized at leading power in δ and λ/δ, which constitutes a non-trivial check of
our matching procedure.

6.3 Evolution equation

We check that ϕ(u) from (5.6) satisfies the correct ERBL evolution equation [6–8] of the
full QCD LCDA at O(αs), that is

µ
dϕ(u)

dµ
= −αsCF

π

∫ 1

0
dv VERBL(u, v)ϕ(v) ≡ αsCF

π
R(u) , (6.4)

with the kernel easily derived from (3.11) as

VERBL(u, v) = ϵ

2Z
(1)
OC

(u, v) . (6.5)

Due to the overall coupling constant, the integral R(u) on the right-hand side is needed
only at O(α0

s), giving

R(u) = −
∫ δ

0
dv mHVERBL(u, v)φ+(mHv) , (6.6)

with no contribution from the tail at this order. Therefore v ∼ λ, but u can still be small
or of order 1. We therefore multiply the kernel by 1 = θ(δ − u) + θ(u− δ) and approximate
it accordingly in the two regions:

VERBL(u, v) ≈ θ(δ − u)
{
−u

[
θ(v − u)
v(v − u) +

θ(u− v)
u(u− v)

]
v+
− δ(u− v)

(
ln u + 3

2

)}
− θ(u− δ)

[
ū

(
1 + 1

u

)]
v+

. (6.7)

The convolution of the u > δ term is simple and results in

θ(u− δ)ū1 + u

u

∫ δ

0
dvmH (φ+(vmH)− φ+(umH))

≈ θ(u− δ)ū1 + u

u
M0(mHδ) ≈ θ(u− δ)ū1 + u

u
, (6.8)
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where we used the fact that λ ≪ δ ≪ 1, allowing us to use the tree-level expression of
M0(mHδ) (which equals 1), as well as neglecting φ+(umH)≪ φ+(vmH) (since u≫ v).

To compute the u < δ contribution to R(u), we recall the evolution equation for the
HQET LCDA [20]

µ
dφ+(ω)

dµ
= −αsCF

π

∫ ∞

0
dν ΓLN(ω, ν)φ+(ν) , (6.9)

with
ΓLN(ω, ν) = −ω

[
θ(ν − ω)
ν(ν − ω) +

θ(ω − ν)
ω(ω − ν)

]
ν+

+ δ(ω − ν)
(
ln µ

ω
− 1

2

)
. (6.10)

Comparing to (6.8), we see that the low-u part of the ERBL kernel can be expressed as

θ(δ − u)VERBL(u, s) = θ(δ − u)
[
mHΓLN(umH , vmH)− δ(u− v)

(
ln µ

mH
+ 1

)]
. (6.11)

Putting both regions together, we find

R(u) = θ(δ − u)mH

[
−
∫ δmH

0
dν ΓLN(umH , ν)φ+(ν) + φ+(umH)

(
ln µ

mH
+ 1

)]
+ θ(u− δ)ū1 + u

u
. (6.12)

Now we study the left-hand side of (6.4). Keeping in mind that the derivative of the coupling
constant with respect to µ counts as O(α2

s) and therefore can be neglected, we obtain

π

αsCF

dϕ(u)
d lnµ

= θ(δ − u)mH

[
−
∫ ∞

0
dν ΓLN(umH , ν)φ+(ν)

+ φ+(umH)
4

(dJ (1)
peak

d lnµ
+ d

d lnµ
d(1)

)]
+ 1

4θ(u− δ)dJ (1)
tail(u)

d lnµ

= θ(δ − u)mH

[
−
∫ ∞

0
dν ΓLN(umH , ν)φ+(ν) + φ+(umH)

(
ln µ

mH
+ 1

)]
+ θ(u− δ) ū

1 + u

u
, (6.13)

which agrees with the right-hand side of (6.4), provided the upper limit of the ν-integral
in (6.12) can be extended up to infinity. This is indeed allowed, because mHδ ≫ ΛQCD and
including the tail adds only a suppressed contribution.

The relation (6.11) shows that in the peak region the evolution of the QCD LCDA is
the same as the evolution equation in HQET, except by a local term, as was already noted
in [25]. This turns out to be useful in deriving the RGE for Jpeak from (3.28)

d

d lnµ
Jpeak =

( 1
ϕp(u)

dϕp(u)
d lnµ

− 1
φ+(umH)

dφ+(umH)
d lnµ

− 1
d(µ)

d

d lnµ
d(µ)

)
Jpeak , (6.14)

since the u-dependence cancels between the first two terms. The RGE for the matching
function in the peak region is indeed local,

d

d lnµ
Jpeak = αsCF

4π

[
4 ln µ

mH
+ 1

]
Jpeak +O(α2

s) , (6.15)

as required by consistency.
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6.4 Comparison with previous works

At this point we compare our result for the QCD LCDA with the previous work [9], which
also relates it to the universal HQET LCDA, but obtained a substantially different and
more complicated expression for the analogue of the matching function, called Jpeak and
Jtail here.

A major difference of the set-up in [9] is that the matching is not split into a peak and
tail region, where the LCDA at the matching scale has different power counting. Instead,
the intervals u ∈ [0, 1] → ω ∈ [0,∞] are smoothly mapped by assigning the tree-level
matching function

J (0)(u, ω) = δ

(
u− ω

ω + mQ

)
. (6.16)

The difficulty with this expression is that the HQET variable ω does not know about mQ,
hence the combination ω + mQ has inevitably inhomogeneous power counting, making
a systematic scale separation difficult. The inhomogeneity is inherited by the one-loop
matching function, Z(1) in eq. (15) of [9]. The benefits of strict scale separations become
evident when comparing (3.24) and (4.23) to Z(1).

The interpretation of Z(1) in terms of the results of the present work is made more
difficult, since Z(1) appears to include the evolution of the HQET LCDA from the soft
scale µH . Furthermore, unlike the present approach, which allows us to construct the
QCD LCDA itself, as shown in the subsequent section, the distributions in Z(1) require
integration in both variables u and ω, and hence allow only the computation of moments
rather than ϕ(u) itself.

Similar remarks apply to the QCD to HQET LCDA matching in position space presented
in [10]. The inhomogeneity of the one-loop matching coefficient C(1)(α, β, t, M, µ, µ̃) in (18)
is not as evident as in the momentum space calculation. However, when performing the
Fourier transform, the terms e−iβMt combine with exponentials of the form eiβtω, giving
rise to unexpanded combinations of the type M −ω in the matching coefficient, with similar
consequences as for [9].

7 QCD LCDA of the B̄ and D meson

In this section, we determine the QCD LCDA of B̄ and D mesons from (5.6) in terms of
the universal HQET LCDA at the soft scale, and evolve it to scales µ≫ mH . This involves
three steps: 1) specifying the HQET LCDA input at the soft scale µs = 1 GeV, and evolving
it to the matching scale of order mH . 2) Matching the QCD LCDA to the HQET one at
the scale mH , which is the main result of this work. c) Evolving the QCD LCDA from mH

to the scale Q of the hard scattering process with the standard evolution equation.

7.1 Evolution of φ+ from µs to mQ

For the non-perturbative function φ+(ω), at the soft scale µs = 1 GeV, we employ different
models which need to satisfy the known properties of the HQET LCDA. Of particular im-
portance for our analysis are the cut-off zeroth moment (6.2), the asymptotic behaviour (5.3)
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and the inverse moment λB(µs):∫ ΛUV

0
dω φ+(ω;µs) = M0(ΛUV) ,

φ+(ω;µs) −→
ω≫ΛQCD

φasy
+ (ω;µs) ,∫ ∞

0

dω

ω
φ+(ω;µs) = λ−1

B (µs) . (7.1)

These properties are satisfied by gluing continuously a radiative tail φasy
+ [22] onto normalized

models φmod
+ as

φ+(ω;µs) =
(
1 + αs(µs)CF

4π

[1
2 −

π2

12

])
φmod

+ (ω;µs) + θ
(
ω −
√

eµs
)

φasy
+ (ω;µs) , (7.2)

with the following properties ∫ ∞

0
dω φmod

+ (ω;µs) = 1 ,

ωφmod
+ (ω;µs) −→

ω→∞
0 ,∫ ∞

0

dω

ω
φmod

+ (ω;µs) =
1
ω0

, (7.3)

where the relation between λB(µs) and the parameter ω0 can be derived from (7.2)

ω0 = λB

(
1 + αs(µs)CF

4π

(1
2 −

π2

12 −
4√
e

λB

µs

))
. (7.4)

We adopt by default the exponential model [2] for φmod
+ ,

φexp
+ (ω, ω0;µs) =

ω

ω2
0

e−ω/ω0 . (7.5)

We emphasize that adding the tail to the models at the low scale µs is required, because
the asymptotic form (5.3) must hold at any scale. The exponential model (7.5) without the
radiative tail is unphysical and not suitable for our purpose.

In order to estimate the systematic uncertainties due to the model dependence in
section 8 below, we employ the three two-parameter models [26]8

φ
(I)
+ (ω;µs) =

[
1− β + β

2− β

ω

ω0

]
φexp

+
(
ω, (1− β/2)ω0;µs

)
, for 0 ≤ β ≤ 1 ,

φ
(II)
+ (ω;µs) =

(1 + β)β

Γ(2 + β)

(
ω

ω0

)β

φexp
+

(
ω,

ω0
1 + β

;µs

)
, for −1

2 < β < 1 ,

φ
(III)
+ (ω;µs) =

√
π

2Γ(3/2 + β)U

(
−β,

3
2 − β, (1 + 2β) ω

ω0

)
× φexp

+

(
ω,

ω0
1 + 2β

;µs

)
, for 0 ≤ β <

1
2 , (7.6)

8The definition (7.4) of ω0 here differs from the one in [26]. In the absence of the αs correction in (7.4),
the present ω0 coincides with λB .
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where U(a, b, z) is the confluent hypergeometric function of the second kind. The three
models are generalizations of the exponential model and reduce to it for β = 0.

The exponential model is then evolved with leading-logarithmic (LL) evolution9 to the
matching scale µ, with analytic solution [26, 27]

φexp−LL
+ (ω;µ) = eV +2aγEΓ(2 + a)

(
µs

ω0

)a ω

ω2
0

1F1

(
2 + a, 2,− ω

ω0

)
, (7.7)

with [22]

a ≡ a(µ, µs) = −
∫ αs(µ)

αs(µs)

dα

β(α)Γcusp(α) =
Γ0
2β0

ln r +O(αs) ,

V ≡ V (µ, µs) = −
∫ αs(µ)

αs(µs)

dα

β(α)

[
Γcusp(α)

∫ α

αs(µs)

dα′

β(α′) + γ+(α)
]

= Γ0
4β2

0

[ 4π

αs(µs)

(
− ln r + 1− 1

r

)
+ β1

2β0
ln2 r + 2γ0

Γ0
β0 ln r

+
(Γ1
Γ0
− β1

β0

)
(ln r − r + 1)

]
+O(αs) , (7.8)

where r = αs(µ)/αs(µs) and γ+(αs) = γ0αsCF /(4π) +O(α2
s) with γ0 = −2CF , while the

QCD beta function and the cusp anomalous dimensions are defined as

β(αs) = µ
dαs

dµ
= −2αs

∞∑
n=0

βn

(
αs

4π

)n+1
, Γcusp(αs) =

∞∑
n=0

Γn

(
αs

4π

)n+1
, (7.9)

with β0 = 11− 2
3nf , β1 = 102− 38

3 nf and Γ0 = 4CF , Γ1 = 4CF (67
3 − π2 − 10

9 nf ).
Analogous analytical solutions can be found for the three models in (7.6) [26, 27]. We

do not evolve the radiative tail φasy
+ (ω;µs) (as well as the O(αs) term) in (7.2), since this

would be formally an NLL effect.10 In figure 3 we show for the limiting values of the
parameter β that the resulting functions φ+(ω;µb) at the matching scale µb = 4.8 GeV
have the correct asymptotic behaviour (5.3). Here and below the inverse moment λB(µs),
which sets the scale-dependent parameter ω0 of the HQET LCDA, is taken to be in the
conservative range (350± 150) MeV [28]. Eq. (7.4) then yields ω0 = 329.5± 134.8 MeV.

7.2 Initial condition of the QCD LCDA at µ = mQ

The main result of this work consists of constructing the initial condition of the QCD LCDA
at the matching scale of order of the heavy meson mass from (5.1) and (5.6) in terms of
the HQET model (7.2) evolved to this scale as discussed in the previous subsection. The
numerical illustrations in this and the following subsection refer to the simple exponential
model, β = 0.

For our numerical studies, we use the meson mass values mB = 5.279 GeV and
mD = 1.870 GeV [29], and fix the matching scales µ to µb = 4.8 GeV and µc = 1.6 GeV

9Strictly speaking, one-loop matching should be combined with NLL evolution. The implementation of
NLL evolution is beyond the scope of this work, since the largest uncertainty is anyway from initial condition
for the HQET LCDA.

10Evolving the tail would result in an asymptotic behaviour for φ+(ω;µ) that does not match φasy
+ (ω;µ).
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Figure 3. The solid (dashed) curves show three models of φ+(ω;µb) (7.6) at the lower (upper) β

value. The dotted curve is the asymptotic form of the HQET LCDA (5.3).

for the B̄ and the D meson, respectively. The required values for the strong coupling
constant are α

(nf =5)
s (µb) = 0.215 and α

(nf =4)
s (µc) = 0.334, where three-loop running (from

RunDec [30]) is used for the evolution from αs(mZ) = 0.1179. We use the meson masses in
the matching functions instead of the heavy quark masses for simplicity, since the difference
is a power correction beyond the leading-power accuracy of the treatment. In QCD, we
decouple the charm and bottom quarks in the running of αs at µdec,c = 1.279 GeV and
µdec,b = 4.163 GeV, respectively. In HQET, always nf = 3 and nf = 4 is employed for the
D and B̄ meson, respectively. We consider the cases of a B̄ meson, a D meson and for
illustration a hypothetical meson M15 with mass of 15 GeV, for which we use the matching
scale µ15 = 15GeV. The value of δ entering the merging function (5.6) must be chosen such
that it satisfies ΛQCD/mQ ≪ δ ≪ 1,

δ(B̄) = 0.45 , δ(D) = 0.65 , δ(M15) = 0.30 . (7.10)

In the following we will vary δ by ±15% to obtain a systematic uncertainty on the shape
of ϕ(u). The smoothing parameter σ ∼ O(10−2) is chosen such that it gives a reasonable
shape of the function ϑ(u; δ, σ). Our default values are

σ(B̄) = 0.05 , σ(D) = 0.05 , σ(M15) = 0.02 . (7.11)

The quality of merging the peak and tail for the QCD LCDA at the matching scale is
shown in figure 4. We notice that for the B̄ meson, the two peak and tail functions ϕp(u)
and ϕt(u), respectively, do not overlap perfectly, which we attribute to the effect of power
corrections and higher order terms in the perturbative expansion.11 This interpretation is
corroborated by the lower panel, which displays the LCDA of the hypothetical 15 GeV mass
meson with a smaller gap between the two functions around u ∼ 0.3 due to smaller power
corrections. However the overlap is not perfect due to unknown higher-order corrections in
the αs expansion, as expected. The merging does not work well for the D meson, which is
not surprising, since the heavy-quark expansion is known to receive large corrections for

11Although the discontinuity is strongly model dependent, as shown in figure 3.
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Figure 4. The QCD LCDA ϕ(u) obtained from (5.6) with σ ̸= 0 (dashed) and σ = 0 (dotted) for
the cases of the B̄, D and 15 GeV meson. The peak (red) and tail (green) functions are shown as
a reference.

charmed mesons. In the figure, we also display the LCDAs obtained with σ = 0 to better
visualize the jump between the two curves at the point δ.

We recall that the constructed QCD LCDA is normalized to unity parametrically.
However, due to power corrections, the actual normalization of the function obtained
from (5.6) falls short of 1 by about 10 − 15%. We therefore rescale ϕ(u) such that its
normalization is exactly 1, and will always use this rescaled version of the LCDA in the
following. While this procedure is adequate for the cases of the B̄ and D mesons, there is a
subtle complication in the formal large meson-mass limit. In order to take this limit, one
needs to control a series of corrections to M0 in powers of O(αs ln µs

ΛUV
) arising from the

evolution of the HQET LCDA from the low scale µs, which are not summed by the standard
RGE (which deals with logarithms of µ/µs only). This issue has been already studied
in [31] in dual space. In appendix D, we show that when evolving the HQET LCDA with
the procedure described in [31] (i.e. resumming both logarithms ln µ

µs
and ln µs

ΛUV
), we find

numerical agreement with the fixed-order result (6.2) for M0(ΛUV) within a few percent,
and the QCD LCDA normalization approaches 1 in the heavy-quark limit as required. For
the B̄ and D mesons the improved resummation gives essentially the same result as the one
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used in this section, since the power corrections are larger than the unresummed ln µs

ΛUV
terms (see appendix).

A useful and common way of parametrizing the QCD LCDA expresses ϕ(u) as a series
in Gegenbauer polynomials,

ϕ(u) = 6u(1− u)
[
1 +

∞∑
n=1

an(µ)C(3/2)
n (2u− 1)

]
, (7.12)

which automatically ensures that the LCDA is normalized to 1. The Gegenbauer moments
an(µ) are defined through

an(µ) =
2(2n + 3)

3(n + 1)(n + 2)

∫ 1

0
du C(3/2)

n (2u− 1)ϕ(u) , (7.13)

and they are expected to decrease for increasing n such that the series can be truncated.
We use the merging function with values (7.11) and keep the first 20 Gegenbauer

moments for both B̄ and D meson (and all HQET models).12 For the B̄ meson, we find for
n = 1, . . .

aB̄
n (µb) = {−1.082, 0.826,−0.513, 0.288,−0.157, 0.078,−0.030, 0.008, . . . } , (7.14)

which exhibits a good convergence. The dots stand for the higher moments, which have
modulus smaller than 0.005. In the case of the D meson,

aD
n (µc) = {−0.659, 0.206,−0.057, 0.036,−0.004,−0.007, . . . } . (7.15)

The Gegenbauer series for the D meson converges faster than the one for the B̄, as it should,
because ϕD(u) is “closer” to the asymptotic form 6uū than ϕB̄(u). The final results for the
QCD LCDA for the B̄ and D mesons at the heavy quark scale are shown in figure 5.13

The shaded band is the systematic uncertainty obtained by varying δ by ±15%. The figure
shows that both methods of expressing ϕ(u) — with the merging function ϑ(u; δ, σ) or
by expanding it in Gegenbauer polynomials — yield indistinguishable results, justifying
the truncation of the Gegenbauer expansion. The figure also demonstrates that the NLO
matching correction is important in the peak region.14

7.3 Evolution to the hard scale

Lastly, in order to evolve the QCD LCDA to higher scales, it is convenient to express
it in terms of Gegenbauer polynomials as in (7.12). The one-loop kernel relevant to LL

12We checked that in evaluating numerically the integrals in (7.13) the effects of varying σ ∈ [0, 0.05] are
negligible with respect to the variation of δ. However for σ ≃ 0 the expansion needs to be truncated before
it starts to resolve the discontinuity of the LCDA for σ = 0, which happens at different orders for different
models and mesons. For this reason, we use the values (7.11).

13To show the difference between NLO and LO, we normalize to 1 the NLO LCDA and use the same
normalization factor for the LO approximation.

14We recall that in the tail region NLO is technically the leading term, to which the correction is
not available.
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Figure 5. QCD LCDA ϕ(u) at the heavy quark scale for a B̄ (blue) and a D (orange) meson at
tree level (dashed) and including NLO corrections (solid). The “transverse-dashed” curves are the
results for the Gegenbauer expansion and the shaded areas is the uncertainty obtained by varying δ

by ±15%.

evolution is diagonal for the Gegenbauer moments an with anomalous dimension γn, hence
the evolution from the matching scale µ to the high scale µh takes the simple form

an(µh)
an(µ)

=
(

αs(µh)
αs(µ)

) γn
2β0

, (7.16)

where the anomalous dimension is

γn = 2CF

(
4

n+1∑
k=1

1
k
− 2

(n + 1)(n + 2) − 3
)

. (7.17)

We evolve the LCDA up to the hard scale µh = mW = 80.377± 0.012 GeV, finding

aB̄
n (mW ) = {−0.826, 0.542,−0.302, 0.156,−0.079, 0.037,−0.014, . . . } ,

aD
n (mW ) = {−0.416, 0.100,−0.023, 0.013, . . . } . (7.18)

In figure 6 we show all functions appearing in the three steps discussed in this section,
starting with the HQET LCDA at the soft scale µs = 1GeV (red, solid), evolved in HQET
to the matching scale µ (red, dotted). This is matched to ϕ(u) (green, solid) and then
evolved in QCD to the hard scale mW (blue, solid). For the D meson, we also show the
LCDA at the B̄ mass scale (green, dashed).

8 Branching fraction of the W − → B−γ decay

The QCD LCDA of a heavy meson is the relevant hadronic matrix element for the decay
W− → B−γ, in which a highly boosted B̄ meson is produced with typical energy of order
Q = mW ≫ mb. In computing the decay amplitude in QCD factorization the LCDA should
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Figure 6. Evolution of the LCDA from the initial HQET condition (red) to the hard scale mW

(blue) and the LCDA at the matching scale for the B̄ (left) and D meson (right).

W−

b

γ

ū

B−

(a) 1/x contribution

W−

ū

γ

b

B−

(b) 1/x̄ contribution

W−

γ

ū

b
B−

(c) Local contribution

Figure 7. Tree-level diagrams contributing to the process W − → B̄−γ.

be evaluated at this scale. The results of this work allow us to derive a factorization formula
that reduces the hadronic input to the universal leading-twist HQET LCDA and resums
large logarithms between ΛQCD and mW , by matching the HQET LCDA to the QCD one
at the intermediate scale µb ∼ O(mb).

A previous study of this process within QCD factorization was undertaken in [32]. The
authors used for the B̄ meson QCD LCDA at the low scale µs = 1 GeV a model inspired by
the HQET exponential model, and evolved it up to the W mass employing the light meson
LCDA evolution equation. This approach correctly resums the large logarithms between
the scales mb and mW , but misses the b-quark mass effects in the evolution between the
hadronic scale ΛQCD and mb. Our strategy is to follow the work of ref. [32] in performing
the hard matching at the scale mW at leading power15 in mb/mW , but then we shall employ
the QCD LCDA at the matching scale µb of order mb derived earlier in the present work,
which sums correctly the logarithms from the evolution from 1 GeV to µb.

The tree-level contributions to this decay originate from the three diagrams in figure 7,
where x denotes the momentum fraction of the ū anti-quark and x̄ = 1− x the one of the b

15In practice this corresponds to considering a massless meson.
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quark. The first two diagrams are symmetric under x↔ x̄ except for the electric charges of
the quarks. Including the hard-scale one-loop QCD corrections, they lead to the following
convolutions with the B̄ meson LCDA,

IB
± =

∫ 1

0
dx H±(x, µh)ϕB(x;µh) , ĪB

± =
∫ 1

0
dx H±(x̄, µh)ϕB(x;µh) , (8.1)

where H± are two hard-scattering kernels computed in ref. [32] and listed for completeness
in appendix C. At tree level, H

(0)
± (x) = 1/x. In figure 7c the meson is produced from a

local interaction, which adds a constant term to the decay amplitude. Following [32], the
amplitude is parametrized in terms of two form factors as

iA(W− → B̄−γ) = eg2fB

4
√
2

V ∗
ub

(
iϵµναβ

pµ
Bqνεα

W ε∗β
γ

pB · q
F B

1 − ε⊥W · ε⊥∗
γ F B

2

)
, (8.2)

where e is the positron charge, g2 the SU(2) coupling constant, εW (εγ) the polarization
vector of the W boson (photon), and pB (q) the momentum of the B̄ meson (photon) in
the final state. We use the short hand notation

ε⊥W · ε⊥∗
γ = εW · ε∗γ −

q · εW pB · ε∗γ
pB · q

. (8.3)

The form factors F B
1,2 in (8.2) are expressed in terms of the convolutions integrals in (8.1) as

F B
1 = QuIB

+ + QdĪB
+ ,

F B
2 = 2(Qu −Qd)−QuIB

− + QdĪB
− , (8.4)

and the constant term 2(Qu−Qd) = 2 in F B
2 comes from the local contribution of figure 7c.

Qu = 2/3 and Qd = −1/3 are the quark electric charges in units of the positron charge.
The form factors are thus perturbative series in αs, and contain the Gegenbauer moments
of the B̄ meson LCDA.

Squaring the amplitude (8.2) and dividing by the total W -boson decay width ΓW gives
the branching ratio

Br(W → Bγ) = Γ(W → Bγ)
ΓW

= αemmW f2
B

48v2ΓW
|Vub|2

(
|F B

1 |2 + |F B
2 |2

)
, (8.5)

which also holds for the CP-conjugated W + → B+γ decay. As numerical inputs we use
v = 246.22 GeV [29] for the Higgs vacuum expectation value, fB = 190.0± 1.3 MeV [33] for
the B meson decay constant, ΓW = 2.085± 0.042 GeV [29] for the W boson total width and
αem = 1/137.036 for the fine-structure constant, evaluated at q2 = 0. We use the exclusive
determination of |Vub| from [34], |Vub| = (3.77± 0.15) · 10−3. To evaluate the form factors
F B

1,2, we employ the QCD LCDA from the matching with HQET evolved to the hard scale
µh = mW , as derived in the previous section. The convolutions (8.1) can be found in closed
form as functions of the Gegenbauer moments aB̄

n (µh) [32]. Using the first 20 Gegenbauer
moments at µh from (7.18) our result for the branching ratio reads

Br(W → Bγ) = (2.58± 0.21in
+0.05
−0.08 µh

+0.05
−0.08 µb

+0.18
−0.13 δ

+0.61
−0.34 β

+2.95
−0.98 λB

) · 10−12 . (8.6)
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Figure 8. Branching ratio as a function of the parameters in the HQET LCDA models (7.6).

Since the factorization holds at the level of the amplitude (8.2), we kept the O(α2
s) terms

from the square of the form factors to obtain the above numbers. If we instead truncate
the expansion at first order the central value would be Brtrunc = 2.54 · 10−12 with similar
uncertainties. We divided the uncertainty budget into the different sources: 1) input
uncertainties (fB, ΓW , mW , mainly |Vub|), 2) hard-scale variation in the range µh ∈
[mW /2, 2mW ], 3) matching scale variation in the range µ ∈ [µb/2, 2µb], 4) variation of the
peak-tail merging point δ by ±15%, 5) HQET LCDA model-shape dependence by varying β

for the three models within its respective domain, 6) varying λB = (350± 150)MeV within
its uncertainty.

The numerical result highlights the present large uncertainty arising from the HQET
LCDA at the low scale. Therefore, we show the dependence of the branching ratio on the
parameters ω0 and β of (7.6) in figure 8. The branching ratio is particularly sensitive to
the lower bound on λB, as can be seen in the left panel, since smaller values of λB shift
the peak of the LCDA to smaller values of x, where the tree-level hard-scattering kernel is
enhanced by the 1/x-behaviour.

We can now compare with the approach of [32]. Updating their result for our numerical
inputs gives

Br(W → Bγ)
∣∣∣
exp. model

= (1.99± 0.17in
+0.03
−0.06 µh

+2.48
−0.80 λB

) · 10−12 , (8.7)

which again is close to its truncated expansion Brtrunc|exp. model = 1.96 · 10−12.
Comparing with our new result (8.6), we notice that correctly resumming the logarithms

lnmb/ΛQCD within HQET instead of using the ERBL evolution between µs and mb as
was done to obtain (8.7), enhances the branching ratio by almost 30%, while the relative
uncertainties are roughly the same.

Another approach to the W → Bγ decay rate has been adopted in [35], where the hard
process was computed at fixed order and evaluated at µb ∼ O(mb) in terms of a convolution
with the HQET LCDA at this scale. This approach consistently takes into account the heavy
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meson LCDA evolution from ΛQCD to µb, but treats mW ∼ O(mb), and therefore does not
resum the large collinear logarithms lnmb/mW . In the framework of HQET factorization
at leading power in ΛQCD/mb only the first diagram in figure 7 contributes, as indeed the
convolutions IB

+ ≃ IB
− ∼ mb/ΛQCD are the dominant ones. Neglecting the ĪB

± and local
terms in (8.4), the form factors |F B

1,2| are equal, and given by

F B
1,2

∣∣∣
HQET

= ±Qu
f̃B(µb)

fB

∫ ∞

0
dω T (ω, mb, mW , µb)φ+(ω;µb) , (8.8)

where T (ω, mb, mW , µb) is the HQET hard-scattering kernel, and the upper (lower) sign
refers to F B

1 (F B
2 ). We show in appendix C that expanding to fixed-order one-loop the

convolutions (8.1) of the QCD hard scattering kernels with the matched and evolved LCDA
reproduces the HQET factorization result [35] expanded at leading power in mb/mW .
Using the matching functions Jpeak and Jtail and the evolution kernel fERBL introduced in
appendix C, this can be schematically written as

T (ω, mb, mW , µb)
∣∣∣
mb≪mW

= H(x, mW , µh)⊗x fERBL(x, u, µh, µb)⊗uJp(u, ω, mb, µb) , (8.9)

which is a strong check of our factorization theorem for the QCD LCDA.
Equation (8.8) allows us to compute the branching fraction with the fixed-order HQET

result and to estimate the effect of resumming the logarithms lnmb/mW . We find

Br(W → Bγ)
∣∣∣
HQET

= (2.61± 0.22in
+0.19
−0.71 µb

+0.50
−0.42 β

+3.09
−1.03 λB

) · 10−12 , (8.10)

where the second uncertainty was obtained by varying µb/2 < µ < 2µb. The difference in
the central value with respect to the resummed result (8.6) is not sizeable, but the poor
convergence of the fixed-order result is reflected into the large uncertainty from the scale
variation. Indeed, truncating the expansion of the form factors squared after the O(αs)
term, one would get Brtrunc|HQET = 2.11 · 10−12 with a negative uncertainty deriving from
the scale variation of more than 100%. This is due to a negative one-loop correction of about
50% with respect to the tree-level result, making manifest the importance of resumming
the logarithms of mb/mW .

9 Conclusion

HQET is a well-known tool to factorize the heavy-quark mass scale from the strong
interaction scale and exploit the flavour and spin-symmetry of heavy-quark interactions
in the infrared. The vacuum-to-heavy-meson matrix elements of local heavy-light quark
current, defining the heavy-meson decay constant, have been among the first applications
of HQET. Surprisingly, the matrix elements of the corresponding non-local operators
at light-like separation, the so-called light-cone distribution amplitudes have never been
studied, with the exception of [9, 10]. The heavy-meson LCDA in QCD is the relevant
hadronic quantity whenever a heavy meson is produced ultra-relativistically in a hard
process.
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In this work, we established a relation between the leading-twist QCD LCDA of a heavy
meson and the leading-twist, heavy-quark mass independent, universal HQET LCDA in the
form of a convolution of the latter with a perturbative, quark-mass dependent matching
function, which takes a rather simple form at the one-loop order considered here. The
expression allows one to express the LCDA for heavy mesons of different masses in terms of
the universal HQET function φ+(ω). Although not discussed here, the LCDA of vector
mesons H∗ can also be matched to the same φ+(ω) due to the spin-symmetry.

We constructed explicitly the QCD LCDAs for the B̄- and D-meson. For the latter
case, power corrections of ΛQCD/mc are sizeable. In the case of the B̄-meson, the present
poor knowledge of the HQET LCDA are inherited by the QCD LCDA. Nevertheless, the
improved evaluation of the W− → B−γ decay rate shows an increase of about 50% relative
to previous calculations, related to the consistent summation of logarithms of the various
scales involved.

While the rates for the exclusive production of B mesons at high energies are very
small, although not immeasurable, another potential application of the framework presented
here constitutes factorization theorems for charmed D mesons, when the charm mass is
considered as an intermediate scale. We leave this investigation to future work.
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A bHQET from SCET

In the main text we derived the bHQET Lagrangian starting from HQET, see (2.16). In this
appendix, we derive the same Lagrangian, but starting from the massive SCET Lagrangian.
The full theory collinear field Q(x)

Q(x) = ξ(x) + η(x) , (A.1)

is written in terms of its large and small components

ξ(x) =
/n−/n+
4 Q(x) , η(x) =

/n+/n−
4 Q(x) , (A.2)

respectively. The small spinor η is integrated out, giving the relation

η(x) = i /D⊥ + mQ

in+D

/n+
2 ξ(x) ∼ O(b)ξ(x) . (A.3)
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Using the definition of the bHQET field,

ξ(x) =
√

n+v

2 e−imQv·xhn(x) , (A.4)

we can find the inverse relation of (2.12)

Q(x) =
√

n+v

2 e−imQv·x
(
1 +

mQ + mQ/v⊥ + i /D⊥
mQn+v + in+D

/n+
2

)
hn(x) , (A.5)

which is used in order to obtain (2.13) in the main text.16 Inserting the relation (A.4) into
the collinear part of the massive SCET Lagrangian,

LSCET = ξ̄(x)
[
in−D + (i /D⊥ −mQ)

1
in+D

(i /D⊥ + mQ)
]

/n+
2 ξ(x) , (A.6)

and expanding in powers of λ, we find

LSCET = n+v

2 h̄n(x)
[
mQn−v + in−D

+ (mQ(/v⊥ − 1)) + i /D⊥)
1

mQn+v + in+D
(mQ(/v⊥ + 1) + i /D⊥)

]
/n+
2 hn(x)

= h̄n(x)
[
mQ

n+vn−v

2 + in−D
n+v

2

− mQn+vn−v

2

(
1− in+D

mQn+v

)
+ iv⊥ ·D⊥ +O(bλ2Q)

]
/n+
2 hn(x)

= h̄n(x)iv ·D
/n+
2 hn(x)

(
1 +O(λ)

)
, (A.7)

leading to the same Lagrangian as in (2.16).

B Details of the calculation

B.1 SCET matrix element computation

We provide more details on the SCET computation of ⟨Q(pQ)q̄(pq)|OC(u)|0⟩. The external
state momenta are

pµ
Q = mQvµ = s̄n+pH

nµ
−
2 +

m2
Q

s̄n+pH

nµ
+
2 , pµ

q = n+pq
nµ
−
2 = s n+pH

nµ
−
2 , (B.1)

where n+pH = mQn+v + n+pq and s̄ ≡ 1− s. We do not (yet) assign any scaling to n+pq

(hence s) nor u. For this reason we refer to the results as “full” in the sense that they
contain simultaneously the peak and the tail regions. In this section we identify mH with
mQ which can be done at leading power.

16If instead the alternative definition (2.17) of the boosted HQET field was used, the relation would read

Q(x) = e−imQv·x
[
1+

i /D − /viv · D

2mQ + iv · D

]
hv(x) =

√
n+v

2 e−imQv·x
[
1+

i /D − /viv · D

2mQ + iv · D

][
1+

1 + /v⊥
n+v

/n+

2

]
hnew

n (x) .
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There is a technical subtlety in the computation of the diagram V of figure 1 in SCET:
there are two Dirac structures contributing, but the second one does not vanish only
if we keep pq⊥ ̸= 0 due to the equation of motion of the suppressed spinor η in SCET
(see (A.3)). We deal with this by keeping pq⊥ ̸= 0 at an early stage of the computation,
then substitute the pq⊥ dependent Dirac structure with (3.8) and afterwards remove all the
left-over power-suppressed terms (such as pq⊥/n+pQ) by sending pq⊥ → 0. In this way we
can write for diagram V

⟨Q(pQ)q̄(pq)|OC(u)|0⟩
∣∣∣
V
= αsCF

4π

∑
±

V±(u, s) 1
n±pH

ū(pQ)/n±γ5v(pq) . (B.2)

The results of the three diagrams of figure 1 computed in dimensional regularization
(d = 4− 2ϵ) are

WQ(u, s) =
(

µ2

m2
Q

)ϵ

2eϵγEΓ(ϵ)
{

δ(u− s)
2ϵ(1− 2ϵ) +

ū

s̄1−2ϵ

θ(u− s)
(u− s)1+2ϵ

}
, (B.3)

Wq(u, s) = 0 , (B.4)

V+(u, s) =
(

µ2

m2
Q

)ϵ

2eϵγEΓ(ϵ)
{

θ(s− u) eiπϵ u

s

(
s̄

u(s− u)

)ϵ(
1− ϵ + 1

s− u

)

+ θ(u− s)
(
1− ū

s̄

)−2ϵ [
(1− ϵ) ū

s̄
− u

s

(
1− ϵ + 1

s− u

)(
1−

(
u− s

us̄

)ϵ)]}
, (B.5)

V−(u, s) = −
(

µ2

m2
Q

)ϵ

2eϵγEΓ(ϵ)(1− ϵ) u1−ϵ

ss̄1−ϵ

{
eiπϵ θ(s− u)

(s− u)ϵ
+ θ(u− s)

(u− s)ϵ

(
1−

(
s̄u

u− s

)ϵ)}
.

(B.6)

The W -diagrams contribute only to the + term.
In order to extract the UV poles we need to perform the expansion in ϵ, which requires

the introduction of the plus distribution defined as in (3.12). By keeping a small off-shellness
to regulate the IR divergences we find

W UV
Q (u, s) = 2

ϵ

[
ū

s̄

θ(u− s)
u− s

]
u+

, (B.7)

W UV
q (u, s) = 2

ϵ

[
u

s

θ(s− u)
s− u

]
u+

, (B.8)

V UV
+ (u, s) = 2

ϵ

(
u

s
θ(s− u) + ū

s̄
θ(u− s)

)
, (B.9)

V UV
− (u, s) = 0 . (B.10)

Adding the MS field strength renormalization, we get

Z
(1)
OC

(u, s) = −2
ϵ

[
θ(s− u)u

s

(
1 + 1

s− u

)
+ θ(u− s) ū

s̄

(
1 + 1

u− s

)]
u+

, (B.11)

which agrees with the standard ERBL evolution kernel [6–8], as it should be.
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B.2 Peak region

In this section, we provide the peak region (u ∼ λ and s ∼ λ) expressions for the individual
diagrams and then compare them to the full results presented in appendix B.1. In the
peak region the leading-power contribution scales as 1/λ, hence V− from (B.6) is a power
correction, and the operator basis reduces to a single operator (3.2). Diagram V contains
only the soft-collinear region k ∼ λ(1, b, b2)Q and reduces to

V+(u, s)
∣∣∣
sc
=
(

µ2

m2
Q

)ϵ

2eϵγEΓ(ϵ)u

s

{
eiπϵu−ϵ θ(s− u)

(s− u)1+ϵ
+ θ(u− s)

(u− s)1+ϵ

(
(u− s)−ϵ − u−ϵ

)}
,

(B.12)
which coincides with the bHQET result mQVbHQET(ω, ν) in (B.25) of appendix B.4 with
ω = umQ and ν = smQ. In diagram WQ both the hard- and soft-collinear regions contribute,
giving, respectively

WQ(u, s)
∣∣∣
hc

=
(

µ2

m2
Q

)ϵ

2eϵγEΓ(ϵ) δ(u− s)
2ϵ(1− 2ϵ) , (B.13)

WQ(u, s)
∣∣∣
sc

=
(

µ2

m2
Q

)ϵ

2eϵγEΓ(ϵ) θ(u− s)
(u− s)1+2ϵ

. (B.14)

The soft-collinear region coincides with the bHQET result mQWQbHQET(ω, ν) in (B.23) of
appendix B.4 with ω = umQ and ν = smQ.

These are the only two regions that contribute since expanding to leading power the
full expressions for V+(u, s) and WQ(u, s) given in (B.5) and (B.3) of appendix B.1 we find

V+(u, s) −→
u∼λ

V+(u, s)
∣∣∣
sc

,

WQ(u, s) −→
u∼λ

WQ(u, s)
∣∣∣
sc
+WQ(u, s)

∣∣∣
hc

. (B.15)

This shows that in the peak region the one-loop SCET amplitude is not entirely dominated
by soft-collinear modes, but still contains perturbative information from the hard-collinear
scale. These hard-collinear contributions will be part of the matching function Jp(u, ω)
defined in (3.1).

B.3 Tail region

In the tail region (u ∼ 1 and s ∼ λ) the leading-power contribution scales as 1, thus
suppressed by one order of λ with respect to the peak region B.2, as expected from (2.40).
The results for the diagram V are

V+(u)
∣∣∣
hc

=
(

µ2

u2m2
Q

)ϵ

2eϵγEΓ(1 + ϵ)ū
((1− ϵ)2

ϵ
+ 1

u

)
,

V−(u)
∣∣∣
hc

=
(

µ2

u2m2
Q

)ϵ

2eϵγEΓ(1 + ϵ)ū(1− ϵ) , (B.16)

with UV poles

V UV
+ (u)

∣∣∣
hc

= 2ū

ϵ
,

V UV
− (u)

∣∣∣
hc

= 0 . (B.17)
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The corresponding results for the diagram WQ are

WQ(u)
∣∣∣
hc

=
(

µ2

m2
Q

)ϵ

2eϵγEΓ(ϵ) ū

u1+2ϵ
, (B.18)

W UV
Q (u)

∣∣∣
hc

= 2
ϵ

ū

u
. (B.19)

The renormalization kernel can then be inferred from the UV poles to be

Z
(1)
OC

(u)
∣∣∣
hc
= −2

ϵ
ū

(
1 + 1

u

)
. (B.20)

Again, expanding the full result for V and WQ in (B.5), (B.6) and (B.3) to leading power
we find the above computed regions

V+(u, s) −→
u∼1

V+(u)
∣∣∣
hc

,

V−(u, s) −→
u∼1

V−(u)
∣∣∣
hc

,

WQ(u, s) −→
u∼1

WQ(u)
∣∣∣
hc

,

Z
(1)
OC

(u, s) −→
u∼1

Z
(1)
OC

(u)
∣∣∣
hc

, (B.21)

showing that in the tail region only the hard-collinear modes contribute, and verifying
explicitly that the result is independent on the power-suppressed external momentum
fraction s≪ u.

B.4 bHQET matrix element computation

The bHQET matrix element ⟨Q(pQ)q̄(pq)|Oh(ω)|0⟩ is computed with external momenta
parameterized as

pµ
Q = mQvµ , vµ = n+v

nµ
−
2 + 1

n+v

nµ
+
2 , pµ

q = νn+v
nµ
−
2 , (B.22)

where we have rescaled ν and ω by n+v such that they correspond to the variables in the H

rest frame. The results for the bare, dimensionally regulated bHQET diagrams are given by

WQ,bHQET(ω, ν) = µ2ϵ 2eϵγEΓ(ϵ) θ(ω − ν)
(ω − ν)1+2ϵ

, (B.23)

Wq,bHQET(ω, ν) = 0 , (B.24)

VbHQET(ω, ν) = µ2ϵ2eϵγEΓ(ϵ)ω

ν

{
eiπϵω−ϵ θ(ν − ω)

(ν − ω)1+ϵ

+ θ(ω − ν)
(ω − ν)1+ϵ

(
(ω − ν)−ϵ − ω−ϵ)} . (B.25)
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Their UV poles are obtained by regulating the IR divergences by an off-shellness p2
q ̸= 0

and found to be

W UV
Q,bHQET(ω, ν) = 2ω

ϵ

[
θ(ω − ν)
ω(ω − ν)

]
ω+
− δ(ω − ν)

( 1
ϵ2 + 2

ϵ
ln µ

ν

)
, (B.26)

W UV
q,bHQET(ω, ν) = 2ω

ϵ

[
θ(ν − ω)
ν(ν − ω)

]
ω+

+ 2
ϵ

δ(ω − ν) , (B.27)

V UV
bHQET(ω, ν) = 0 . (B.28)

The plus distribution is defined in analogy to (3.12) as∫ ∞

0
dω f(ω)

[
g(ω, ν)

]
ω+

=
∫ ∞

0
dω
(
f(ω)− f(ν)

)
g(ω, ν) ,∫ ∞

0
dν f(ν)

[
g(ω, ν)

]
ν+

=
∫ ∞

0
dν
(
f(ν)− f(ω)

)
g(ω, ν) . (B.29)

The renormalization kernel of the bHQET matrix element when expressed as distribution
in the first argument ω is then obtained as

Z
(1)
Oh

(ω, ν) = −W UV
Q,bHQET(ω, ν)−W UV

q,bHQET(ω, ν)− δ(ω − ν)
2

(
Z

(1)
ξ + Z

(1)
hn

)
, (B.30)

which leads to [20]

Z
(1)
Oh

(ω, ν) = −2ω

ϵ

[
θ(ω − ν)
ω(ω − ν) +

θ(ν − ω)
ν(ν − ω)

]
ω+

+ δ(ω − ν)
( 1

ϵ2 + 1
ϵ

[
2 ln µ

ν
− 5

2

])
, (B.31)

where we added the MS renormalization constants of the fields Z
(1)
hn

= 2/ϵ and Z
(1)
ξ = −1/ϵ.

C Cross-check with HQET factorization

The running of ϕ(u) can be also expressed in the form of a convolution of the LCDA at a
lower scale with an evolution kernel

ϕ(x;µh) =
∫ 1

0
du fERBL(x, u, µh, µ)ϕ(u;µ) , (C.1)

which turns out useful in order to compute analytically the fixed order large collinear logs
lnQ/mQ from our factorization of the LCDA at the scale µ as done for the W → Bγ

decay in section 8. Using (7.12), (7.13) and (7.16), we obtain the evolution function
fERBL(x, u, µh, µ) as an expansion in Gegenbauer polynomials

fERBL(x, u, µh, µ) = 6xx̄
∞∑

n=0
Nn

(
αs(µh)
αs(µ)

) γn
2β0

C(3/2)
n (2x− 1)C(3/2)

n (2u− 1) , (C.2)

where
Nn ≡

2(2n + 3)
3(n + 1)(n + 2) . (C.3)
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This evolution function has the following properties

fERBL(x, u, µh, µ) −→
µh→∞

6xx̄ , fERBL(x, u, µ, µ) = δ(x− u) . (C.4)

Re-expanding in αs, we find(
αs(µh)
αs(µ)

) γn
2β0

= 1 + γn
αs(µ)
8π

ln µ2

µ2
h

+O
(
αs(µ)2

)
, (C.5)

and by inserting (C.5) into (C.2) we find the logarithmic term in the evolution function
at O(αs),

fERBL(x, u, µh, µ) = δ(x−u)+αs(µ)
8π

ln µ2

µ2
h

6xx̄
∞∑

n=0
γnNnC(3/2)

n (2x−1)C(3/2)
n (2u−1) . (C.6)

Finally, this results in the evolved LCDA in terms of the LCDA at the scale µ given by

ϕ(x;µh) = ϕ(x;µ) + αs(µ)
8π

ln µ2

µ2
h

6xx̄
∞∑

n=0
γnNnC(3/2)

n (2x− 1)
∫ 1

0
du C(3/2)

n (2u− 1)ϕ(u;µ) .

(C.7)
We can expand at fixed-order in αs the convolutions (8.1) to recover the “HQET

factorization” [35] result. This leads to the LCDA (C.7) with µ = µb, which has to be
inserted into the convolutions (8.1). The hard-scattering kernels take the form

H±(x, µh) =
1
x

(
1 + αs(µh)CF

4π
h±(x, Q, µh) +O(α2

s)
)

, (C.8)

with the perturbative functions [32]

h±(x, Q, µh) = −(2 ln x + 3)
(
ln µ2

h

Q2 + iπ

)
+ ln2 x− 9 + (±1− 2)x ln x

1− x
. (C.9)

The convolution of H±(x̄, µh) with the LCDA of a heavy meson gives a subleading contribu-
tion, as do O(x) terms in h±, since the LCDA is concentrated at small x. Neglecting these
suppressed terms, the two hard scattering kernels are the same, H+(x, µh) = H−(x, µh) ≡
H(x, µh) (analogous definition for h(x, Q, µh)).

We will extract the HQET hard-scattering kernel T (ω, µb) by requiring that the QCD
and HQET factorization give the same amplitude, namely

fHQET
B (µb)

∫ ∞

0
dω T (ω, µb)φ+(ω;µb) = fB

∫ 1

0
dx H(x, µh)ϕB(x;µh) , (C.10)

when expanded to fixed order. We then take the convolution of the hard-scattering
kernel (C.8) at the scale µh with the LCDA (C.7), and apply (5.6) to ϕB(u;µb) with σ = 0:∫ ∞

0
dω T (ω, µb)φ+(ω;µb) =

fB

fHQET
B (µb)

∫ 1

0
dx H(x, µh)ϕB(x;µh)

=
∫ δmb

0
dω

mb

ω
φ+(ω;µb)

[
1 + αsCF

4π

(
h

(
ω

mb
, Q, µh

)
+ J (1)

peak(mb, µb)
)]

(C.11)

+ αs

8π
ln µ2

b

µ2
h

∫ δmb

0
dω φ+(ω;µb)

∞∑
n=0

[
γnNn

∫ 1

0
dx 6x̄ C(3/2)

n (2x− 1)
]

C(3/2)
n

(
2 ω

mb
− 1

)
,

– 42 –



J
H
E
P
0
9
(
2
0
2
3
)
0
6
6

where we neglected the subleading contribution from the tail

αsCF

4π

∫ 1

δ
dx

1
x
J (1)

tail(x) ∝
1
δ
≪ mb

ΛQCD
. (C.12)

The last line of (C.11) can be simplified with the help of∫ 1

0
dx 6x̄ C(3/2)

n (2x− 1) = 3(−1)n , (C.13)

which follows from the relation between Gegenbauer polynomials and Legendre polynomials
Pn(x)

C(3/2)
n (z) = d

dz
Pn+1(z) . (C.14)

Then the Gegenbauer series can be summed to
∞∑

n=0
(−1)n3 γn

2CF
NnC(3/2)

n

(
2 ω

mb
− 1

)
= −mb

ω

(
2 ln ω

mb
+ 3

)
, (C.15)

which follows from expanding the right-hand side in Gegenbauer moments and employing
the generating function of the Gegenbauer polynomials

1
(1− 2zt + t2)

3
2
=

∞∑
n=0

C(3/2)
n (z)tn . (C.16)

Putting these results into (C.11), we can write∫ ∞

0
dω T (ω, µb)φ+(ω;µb) =

∫ δmb

0
dω

mb

ω
φ+(ω;µb)

×
[
1 + αsCF

4π

(
h

(
ω

mb
, Q, µh

)
+ J (1)

peak(mb, µb)− ln µ2
b

µ2
h

(
2 ln ω

mb
+ 3

))]
. (C.17)

Thus, we identify the HQET hard-scattering kernel with

T (0)(ω) = mb

ω
,

T (1)(ω, mb, µb) =
(

h

(
ω

mb
, Q, µh

)
+ J (1)

peak(mb, µb)− ln µ2
b

µ2
h

(
2 ln ω

mb
+ 3

))
T (0)(ω) .

(C.18)

The µh dependence of h cancels with the last term from the LCDA evolution, as required,
and the final result is

T (1)(ω, mb, µb) =
[
1
2 ln2 µ2

b

m2
b

− 2 ln µ2
b

m2
b

ln ω

mb
+ ln2 ω

mb
− 5

2 ln µ2
b

m2
b

−
(
ln m2

b

Q2 + iπ

)(
2 ln ω

mb
+ 3

)
+ π2

12 − 7
]
T (0)(ω) , (C.19)

in agreement with eq. (39) of [35].
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D On the normalization of the QCD LCDA

In section 6.2 of the main text we proved that the QCD LCDA resulting from the matching
to HQET is properly normalized to 1 at the one-loop order up to power corrections in
the parameters δ and λ/δ. For the D and B̄ mesons, we observed a negative deviation of
∼ 10− 15% from unity, which can naturally be attributed to power corrections. However,
increasing the meson mass has the unexpected effect of enlarging the normalization deficit,
implying that the procedure of section 7 does not yield a well-defined heavy-quark limit.
In this appendix, we identify the origin of this effect and explain the solution. While
of conceptual importance for the construction of the QCD LCDA, we also find that the
modified procedure discussed in this appendix is not required for the relevant cases of the
D and B̄ mesons.

D.1 Log analysis of the cut-off moment

Inspecting the fixed-order result (6.3) for the QCD LCDA normalization, we notice that the
only quantity which is computed differently between the analytical evaluation (6.3) and the
numerical analysis in section 7 is the HQET LCDA cut-off moment M0(ΛUV, µ). Indeed,
using the OPE prediction

MOPE
0 (ΛUV, µ) = 1− αs(µ)CF

4π

(
2 ln2 µ

ΛUV
+ 2 ln µ

ΛUV
+ π2

12

)
, (D.1)

for M0 in (6.3) implies that the QCD LCDA normalization is affected only by power
corrections in δ = ΛUV/mH and λ/δ, which decrease with increasing meson mass. Therefore
it is clear that the problem with the heavy-quark limit of the numerical evaluation after
evolving the HQET LCDA from the initial scale µs to the matching scale µ = O(mQ) must
arise from ∫ ΛUV

0
dω φ+(ω;µ) ̸= MOPE

0 (ΛUV, µ) . (D.2)

For the exponential model examined in the main text, the LL-evolved HQET LCDA
can be written in closed form as

φ+(ω;µ) = φexp−LL
+ (ω;µ) + αs(µs)CF

4π

[1
2 −

π2

12

]
φexp

+ (ω;µs) + θ
(
ω −
√

eµs
)

φasy
+ (ω;µs) ,

(D.3)
with φexp−LL

+ (ω;µ) given in (7.7). The left-hand side of (D.2) can therefore be computed
analytically, resulting in

N∫ (ΛUV, µ) ≡
∫ ΛUV

0
dω φ+(ω;µ) = N exp−LL∫ (ΛUV, ω0, µ, µs)

− αs(µs)CF

4π

(
2 ln2 µs

ΛUV
+ 2 ln µs

ΛUV
+ π2

12 +O
(

e
−ΛUV

ω0

))
. (D.4)

The exponentially small corrections in the O(αs) term can be safely neglected. N exp−LL∫
denotes the analytical integral of the evolved exponential model, which therefore depends
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Figure 9. Numerical comparison of MOPE
0 , MLL−µs

0 and MLL
0 , as functions of the low scale µs

(left) and the matching scale µ (right). The cut-off ΛUV is set to Λµ. The solid lines correspond to
the default values for the B̄ meson.

on the cut-off ΛUV, µ and µs, as well as the hadronic LCDA parameter ω0. The explicit
expression reads

N exp−LL∫ (ΛUV, ω0, µ, µs) = eV +2γEaΓ(a + 2)
(

µs

ΛUV

)a 1
2x2+a 1F1

(
2 + a, 3,−1

x

)
= eV +2γEaΓ(a + 2)

Γ(1− a)

(
µs

ΛUV

)a

+O(x) , (D.5)

where x ≡ ω0/ΛUV ∼ λ/δ and a is defined in (7.8). The second line of (D.4) originates
from the second and third terms in (D.3).

The leading power in the expansion of (D.4) in x is model-independent, i.e. independent
of the initial condition for the LCDA, and free of power corrections, and can be compared
to MOPE

0 :17

MLL−µs
0 (ΛUV, µ) = eV +2γEaΓ(a + 2)

Γ(1− a)

(
µs

ΛUV

)a

− αs(µs)CF

4π

[
2 ln2 µs

ΛUV
+ 2 ln µs

ΛUV
+ π2

12

]
= MOPE

0 (ΛUV, µ) +O
(

α2
s ln2 µs

ΛUV
ln2 µs

µ

)
. (D.6)

We note that re-expanding this result in αs, the one-loop order reproduces the fixed-order
result (D.1) and the µs-dependence drops out. However MLL−µs

0 suffers from higher-order
corrections with large logarithms lnµs/ΛUV which are not resummed by evolving φ+ from
µs to µ.

We show the numerical difference between MOPE
0 and MLL−µs

0 from these higher-
order corrections in figure 9. When taking the heavy-quark limit we require the hierarchy
µs ∼ ΛQCD ≪ ΛUV ≪ µ ∼ mQ, and increase ΛUV with µ as much as possible in order to
decrease the power corrections. We adopt

ΛUV =
√
0.01µ2 + µ · 1GeV ≡ Λµ . (D.7)

17The superscript LL−µs on the left-hand side indicates that the cut-off moment has been computed from
the HQET LCDA evolved from the low scale µs.
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With this choice18 ΛUV approaches µ/10 for large values of µ. The left panel shows, for fixed
µ = µb = 4.8GeV, the residual µs-dependence of MLL−µs

0 (dashed red), which indicates the
effects of the higher-order corrections, against MOPE

0 (solid black), which is µs-independent.
The right panel shows, for the default value µs = 1 GeV, the µ-dependence of the different
evaluations of M0. Since µ ∼ mQ, large values of µ correspond to the heavy-meson limit.
It is apparent that the evaluation of the zeroth moment MLL−µs

0 from the evolved HQET
LCDA deviates significantly from the OPE prediction, has a sizeable residual µs dependence,
and, importantly, the wrong heavy-quark limit, as the difference to MOPE

0 increases with µ.
To exclude the possibility that the model-independent OPE evaluation (D.1) is inac-

curate due to large logarithms of µ/ΛUV, we consider a third determination of M0, by
resumming the logarithms lnµ/ΛUV in (D.1) to LL accuracy. The RGE of M0 follows from

dM0
d lnµ

=
∫ ΛUV

0
dω

dφ+(ω;µ)
d lnµ

= −
[
Γcusp ln

µ

ΛUV
+ αs

4π
(Γ0 + γ0) +O(α2

s)
]
M0(ΛUV, µ) ,

(D.8)

where we employed the RGE for φ+ (6.9) and the knowledge of its asymptotic form. The
solution of (D.8) reads

MLL
0 (ΛUV, µ) = eVM (µ,ΛUV)MOPE

0 (ΛUV,ΛUV) , (D.9)

with

VM (µ,ΛUV) = −
∫ αs(µ)

αs(ΛUV)

dα

β(α)

[
Γcusp(α)

∫ α

αs(ΛUV)

dα′

β(α′) +
α

4π
(γ0 + Γ0) +O(α2)

]
. (D.10)

MLL
0 is shown in black-dotted in figure 9, which demonstrates that the higher-order

logarithms are numerically not important. This corroborates that the problem with MLL−µs
0

arises from the uncancelled logarithms of µs/ΛUV in higher-orders, as suggested by the µs

dependence in the left panel of figure 9.

D.2 Improved evolution

This points to a problem with the standard evolution of the HQET LCDA for the cut-off
moments. Its origin is that the LCDA is secretly a two-scale object, with logarithms of the
form

ln µ

ΛQCD
, ln µ

ω
, (D.11)

where ΛQCD is represented by the low scale µs at which the initial condition is set, while ω

can be much larger than ΛQCD in the asymptotic region. When computing the convergent
inverse moment, which does not need to be cut off at ΛUV, the integration in ω covers the
whole domain from 0 to ∞, making lnµ/ω effectively scaleless. On the other hand, when

18In this way the QCD LCDA normalization (6.3) would still suffer in the heavy-quark limit from
corrections O(αsδ/(4π)) ≲ 1% that survive in this limit. The natural way of eliminating them would be
to chose ΛUV =

√
µ · 1GeV. This, however, generates power corrections to M0 decreasing with the inverse

square root of the heavy meson mass (once setting µ = mH). Since the focus of this section is on M0 (while
δ is an artificial parameter) we defined Λµ such that the power corrections in HQET are still linear.
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computing moments with a ω-cut-off ΛUV ≫ ΛQCD, a UV scale is introduced, and new
logarithms from lnµ/ω → lnµ/ΛUV develop, which are not summed by the standard RGE
that deals with the collinear logarithms lnµ/µs.

The authors (FLW) of [31] proposed an “improved evolution”, the idea of which is to
modify the natural initial scale of the LCDA evolution in order to capture the different
logarithms in different regions of ω. These are better distinguished in “dual space” [36],
where the evolution is diagonal in the dual space variable. We briefly review the essential
definitions and relations in dual space that will be needed in the following to implement
the improved evolution.

The dual function ρ+(η;µ) is defined as the Bessel-function transformation

ρ+(η;µ) =
∫ ∞

0

dω

ω

√
ω

η
J1

(
2
√

ω

η

)
φ+(ω;µ) (D.12)

of φ+, which diagonalizes the one-loop evolution kernel such that

dρ+(η;µ)
d lnµ

= −
[
Γcusp ln

µ

η̂
+ γ+

]
ρ+(η;µ) , (D.13)

where η̂ = e−2γE η and the anomalous dimensions are given in (7.9) and below (7.8). This
equation is solved by

ρ+(η;µ) = eV (µ,µs)
(

µs

η̂

)a(µ,µs)
ρ+(η;µs) . (D.14)

The zeroth cut-off moment can be conveniently converted to an integral over η [31]

M0(ΛUV, µ) =
∫ ∞

0
dη

ΛUV
η

J2

(
2
√

ΛUV
η

)
ρ+(η;µ) . (D.15)

The fixed-order result MOPE
0 (ΛUV, µ) can be reproduced by using the perturbative-partonic

expression for ρ+(η;µ) [31] (in analogy with the derivation of MOPE
0 in momentum space [22])

ρ+(η;µ)pert =
C0(η, µ)

ω0
J2

(
2
√

2ω0
η

)
,

C0(η, µ) = 1 + αs(µ)CF

4π

(
−2 ln2 µ

η̂
+ 2 ln µ

η̂
− π2

12 − 2
)
+O(α2

s) , (D.16)

where ω0 ∼ ΛQCD drops out after expanding the cut-off moment in x = ω0/ΛUV.
In order to implement the “improved running” in dual space the initial scale of the

LCDA evolution is set to
µsη =

√
µ2

s + η̂2 , (D.17)

leading to the evolved

ρFLW
+ (η;µ) = eV (µ,µsη)

(
µsη

η̂

)a(µ,µsη)
ρ+(η;µsη) , (D.18)
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with initial condition

ρ+(η, µsη) =
1
η

e
−ω0

η

(
1 + αs(µsη)CF

4π

(1
2 −

π2

12

))
(D.19)

− αs(µsη)CF

4πη

(
2 ln2 µsη

η̂
− 2 ln µsη

η̂
− 2
√

e
µsη

η
3F4

(
1, 1, 1; 2, 2, 2, 3;−

√
e

µsη

η

)
+ 5

2

)
.

The important difference to standard evolution is that when η̂ ≫ µs ∼ ΛQCD, the evolution
does not start at the low scale but at η̂. The initial condition ρ+(η;µsη) is obtained from
the transformation (D.12) applied to our model (7.2) evaluated at µs = µsη. From the
evolved ρFLW

+ (η;µ) we compute numerically the zeroth moment through (D.15)

NFLW∫ (ΛUV, µ) ≡
∫ ∞

0
dη

ΛUV
η

J2

(
2
√

ΛUV
η

)
ρFLW

+ (η;µ) . (D.20)

D.3 Numerical comparisons of M0

Since in the following we want to compare the model-independent predictions with the
model-dependent numerical calculations N∫ (ΛUV, µ), NFLW∫ (ΛUV, µ) of M0, we need to
keep in mind that the predictions are only valid in the limit ΛUV ≫ ΛQCD, and therefore
the comparison is affected by power corrections in x = ω0/ΛUV.

The model (7.2) is constructed in order to have the correct asymptotic behaviour, and
to match the fixed order MOPE

0 at the low scale µs up to corrections of order O(e−ΛUV/ω0),
which are completely negligible for ΛUV ≥ 3 GeV. However after evolution, the power
corrections are turned into linear as can be seen from (D.5). It suffices to expand (D.5) to
linear order to obtain

N∫ (ΛUV, µ)−MLL−µs
0 ≈ eV +2γEa aΓ(a + 3)

Γ(1− a)

(
µs

ΛUV

)a ω0
ΛUV

+O(x2) , (D.21)

which evaluates to −0.06 for ΛUV = 2 GeV and µ = 4.8 GeV. (For the B̄ meson ΛUV =
δmB = 2.38 GeV is used in section 7.) We note that the power correction is negative and
depends on µ only mildly through a.

We can now compare the five different evaluation of M0 that have been defined. We
wish to demonstrate that with the improved evolution [31], the numerical integration of the
evolved HQET LCDA agrees well with the OPE prediction. In figure 10, 1) MOPE

0 (solid
black) is the fixed-order OPE result, which serves as the reference. 2) MLL

0 (dotted black)
has the logarithms lnµ/ΛUV correctly resummed to LL, improving the convergence of the
perturbative series of MOPE

0 . 3) MLL−µs
0 (dashed red) is the model-independent prediction

(free from power corrections) obtained from integrating the LCDA evolved from µs. 4)
N∫ (dashed blue) is the integration of the model φ+(ω;µ) evolved from µs including the
power corrections, while 5) NFLW∫ (solid blue) is the integration of φ+(ω;µ) (in dual space)
evolved from µsη, called “improved evolution”.

From the above we already know that the dashed blue and dashed red curves differ only
by the power correction (D.21). At the same time, the dashed red curve differs from the solid
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Figure 10. Comparison of the five different determinations of M0 at two values of the renormalization
scale, µb and µ15.
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Figure 11. As left panel of figure 9 with N∫ (dashed blue) and NFLW∫ (blue) added. The scale µ

has been set to 100 GeV in order to reduce the effect of power corrections (ΛUV = Λµ = 14.1 GeV).

black one by higher-order lnµs/ΛUV terms. Due to the improved evolution, the solid blue
curve should sum these corrections and be closer to the dotted black curve. These features
are indeed visible in figure 10 for the two values of µ ∼ mQ. In particular, the improved
NFLW∫ is much closer to the OPE result for µs ≪ ΛUV ≲ µ than the problematic N∫ used
in the main text. Furthermore it can be seen from figure 11 that the µs-dependence is
nearly absent after improved evolution, solving the main deficiency of the standard running.

However, for the ΛUV values of interest for the B̄ and D meson (2.38 GeV and 1.22 GeV,
respectively), the difference between N∫ and NFLW∫ is small (see figure 10, left panel for

the case of B̄), proving that the −10% deviation in the normalization of the QCD LCDA
mentioned in the main text can be attributed only to the power corrections, and not the
higher-order lnµs/ΛUV terms.
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Figure 12. Upper panel: µ-dependence of the five evaluations of the cut-off moment discussed in
the text. Lower panel: QCD LCDA normalization as a function of the meson mass.

D.4 Large meson-mass limit

We now address the heavy-quark limit of the cut-off moment evaluations and QCD LCDA
normalization. The HQET LCDA is of course independent on the heavy mass, however
when fixing the matching scale µ = mH , the large-mass limit corresponds to the evolution
to very high scales. The upper panel of figure 12 shows the five evaluations of M0 for large
scales, setting ΛUV = Λµ. We observe that the improved resummation tends to MLL

0 for
values of ΛUV large enough while standard resummation (dashed red and blue) deviates
more and more for increasing values of µ due to the unresummed lnµs/ΛUV terms. This
demonstrates that it is mandatory to use the FLW prescription (D.17) for the initial scale
to ensure a consistent heavy-quark limit.

Finally, we turn to the quantity of importance, the normalization of the QCD LCDA
constructed from the matching to the universal HQET LCDA. We set µ = mH and the
peak-tail separation parameter δ to Λµ/mH , so that for high meson masses it will tend to
the constant 0.1. The lower panel of figure 12 demonstrates that for increasing meson mass
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the normalization correctly tends to 1 when the improved RGE is employed (solid blue),
which is an important conceptual check of our result, while the standard RGE fails (dashed
blue). The grey vertical lines mark the D and B̄ meson mass. For these, the difference is
small, justifying the neglect of improvement for the numerical results in the main text.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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