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Abstract: We investigate cosmological phase transitions in various composite Higgs models
consisting of four-dimensional asymptotically-free gauge field theories. Each model may
lead to a confinement-deconfinement transition and a phase transition associated with the
spontaneous breaking of a global symmetry that realizes the Standard Model Higgs field as
a pseudo-Nambu-Goldstone boson. Based on the argument of universality, we discuss the
order of the phase transition associated with the global symmetry breaking by studying the
renormalization group flow of the corresponding linear sigma model at finite temperature,
which is calculated by utilizing the ϵ-expansion technique at the one-loop order. Our
analysis indicates that some composite Higgs models accommodate phenomenologically
interesting first-order phase transitions. We also explore the confinement-deconfinement
transition in a UV-completed composite Higgs model based on a Sp(2Nc) gauge theory. It is
found that the first-order phase transition is favored when the number of degrees of freedom
for the Sp(2Nc) gauge field is much larger than that of matter fields in the fundamental
representation of Sp(2Nc). We comment on the gravitational wave signal generated by
the confinement-deconfinement transition and its detectability at future observations. Our
discussions motivate further studies on phase transitions in composite Higgs models with
the use of lattice simulations.
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1 Introduction

To unveil the nature of the observed Higgs particle is a key to understand our Universe.
Especially, it is a critical issue to answer the question of whether the Higgs boson is made
of more fundamental constituents or not. The study of a composite Higgs boson has been
initiated by Georgi and Kaplan [1–4], where the Higgs boson is identified as a pseudo-
Nambu-Goldstone boson (pNGB) arising from the spontaneous breaking of a continuous
global symmetry triggered by the dynamics of a new confining gauge field theory, just like
the pion as a pNGB associated with the chiral symmetry breaking in the ordinary QCD
(for reviews, see e.g. refs. [5, 6]). An unbroken subgroup of global symmetry is gauged
and identified as the SU(2)L × U(1)Y symmetry of the Standard Model (SM). Thanks to
the pNGB nature, the SM-like Higgs boson can be naturally lighter than other composite
states. If the new gauge theory contains only fermions and no scalars, it can provide a
solution to the naturalness problem of the electroweak scale and also explain its smallness
by dimensional transmutation. Various composite Higgs models with different patterns of
global symmetry breaking have been proposed so far, as summarized in table 1 of ref. [6],
while the authors of refs. [7, 8] discussed four-dimensional UV descriptions based on purely
fermionic gauge theories.

If a composite Higgs model consisting of a new confining gauge field theory is realized in
nature, it may show two (distinct) phase transitions in the early Universe: (i) a confinement-
deconfinement transition and (ii) a phase transition associated with the spontaneous breaking
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of a global symmetry. The ordinary electroweak phase transition may follow from those phase
transitions or simultaneously take place. Although the effect of a new strongly-interacting
sector in the model on the electroweak phase transition has been extensively investigated in
literature [9–12], including the application to electroweak baryogenesis [13–18], the dynamics
of the phase transitions (i), (ii) has been largely unexplored in the context of a composite
Higgs model, while its understanding is essential to clarify the evolution of our Universe
and possibly brings about a new application to a cosmological issue as well as a further
prediction of the model that is experimentally tested.1 In particular, if either of the phase
transitions (i), (ii) is of the first-order, it proceeds through the nucleation and expansion of
true vacuum bubbles, which provides a significant departure from the thermal equilibrium,
where the bubble collision [37–40], sound wave [41–44] and plasma turbulence [45–50] may
generate an observable stochastic gravitational wave (GW) background. In addition, if there
exists a conserved global charge such as a dark baryon number with its finite density, i.e. a
non-vanishing chemical potential, a macroscopic compact object, called a dark quark nugget,
can be formed and become a suitable dark matter candidate [51] (see also refs. [52, 53] for
another production mechanism of dark matter utilizing a first-order phase transition). In a
general context, dark confinement and chiral phase transitions in QCD-like theories have
been studied in refs. [54–57].

The strongly-interacting system of a composite Higgs model does not admit the first-
principle analytical calculation to explore the phase transitions (i), (ii).2 The only possible
direct approach is a numerical lattice simulation, as performed for the electroweak and QCD
phase transitions, revealing that they are likely to be smooth crossover transitions [60–63].3

However, various theoretical approaches have been discussed to clarify the nature of phase
transitions for ordinary QCD and QCD-like gauge theories. The most famous attempt is to
use the argument of universality (see ref. [65] for a detailed discussion, but we will review it
in the next section). This approach assumes that long-wavelength fluctuations are dominant
during a phase transition, which is presumably realized when the phase transition is of the
second-order or weakly first-order. Under this assumption, the phase transition may be
insensitive to the microscopic physics, which enables us to determine the order of the phase
transition by studying the effective linear sigma model that respects the symmetries of the
system. The advantage of this approach is that it can be applied to a wide range of systems,
including the ferromagnetic system in condensed matter physics, and the result is largely
model-independent because the analysis only depends on the space dimension as well as
the underlying symmetries. There are attempts based on the argument of universality for
the ordinary QCD [66, 67] and QCD-like theories [68, 69]. In the present paper, we discuss

1If a composite Higgs model respects an approximate conformal symmetry, the confinement-deconfinement
phase transition can be described by the dilaton effective theory [19–22]. Such a scenario is realized in the
five-dimensional dual description of the Randall-Sundrum model with an appropriate radion stabilization
mechanism [23–34] (see also refs. [35, 36] for holographic composite Higgs models). Here, we focus on the
case where the conformal symmetry is broken by the gauge field theory dynamics, similar to the case of the
ordinary QCD.

2The dynamics of a phase transition in a weakly-interacting system can be directly studied by means of
the equilibrium thermal field theory with the imaginary time formalism [58] unless the phase transition is of
the second-order or weakly first-order (see ref. [59] for an excellent review).

3There remains a possibility of the first-order QCD phase transition [64].
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the order of the phase transition associated with the global symmetry breaking in each of
various composite Higgs models by studying the renormalization group (RG) flow of the
corresponding linear sigma model at finite temperature, which is calculated by using the
so-called ϵ-expansion technique at the one-loop order. It turns out that several composite
Higgs models favor the first-order phase transitions within the framework of the argument
of universality.

To study a confinement-deconfinement phase transition in a composite Higgs model,
one needs to specify its UV description. Here, our benchmark model is given by a four-
dimensional asymptotically-free Sp(2Nc) gauge field theory presented in ref. [7]. Unfortu-
nately, it is difficult to analyze the confinement-deconfinement transition for such a Sp(2Nc)
gauge field theory with dynamical matter fields by using a method other than a lattice
simulation. Then, our approach is to take the large Nc limit with a fixed number of flavors
and assume that the system is well-described by the pure Sp(2Nc) gauge theory at finite
temperature. In this case, the first-order confinement-deconfinement phase transition is
favored from direct lattice calculations [70, 71], and the dynamics of the phase transition
may be described by a phenomenological effective theory, called the Polyakov loop model,
that is constructed in terms of the Polyakov loop as an appropriate order parameter of the
phase transition [72, 73]. By utilizing the result of lattice simulations for the pure SU(Nc)
gauge theory, which is justified at least in the large Nc and zero-temperature limit, one can
quantitatively analyze the first-order confinement-deconfinement phase transition by the
Polyakov loop model. In particular, the use of the Polyakov loop model enables us to derive
the gravitational wave spectrum generated by the first-order confinement-deconfinement
transition. We will discuss its detectability at future observations.

The rest of the present paper is organized as follows. In section 2, we determine the
order of the phase transition associated with the global symmetry breaking in each of
different composite Higgs models by assuming the argument of universality and considering
the corresponding linear sigma model. In section 3, we focus on a Sp(2Nc) gauge theory
with the large Nc limit and study the confinement-deconfinement transition by utilizing the
Polyakov loop model. The gravitational wave spectrum generated by the first-order phase
transition is calculated. Section 4 is devoted to conclusions and discussions. In appendix A,
we perform the analysis of the phase transition associated with global symmetry breaking
U(4) (SU(4)) → Sp(4) by utilizing the Nambu-Jona-Lasinio model.

2 Global symmetry breaking

To discuss the order of the phase transition associated with the spontaneous breaking of a
global symmetry G to its subgroup H in a composite Higgs model, we assume the argument
of universality. Despite strong interactions, the dynamics of the phase transition is then
described by the corresponding linear sigma model whose form is solely determined by the
symmetry breaking pattern G → H, and as reviewed here, we can investigate the order of
the phase transition by studying the RG flow of the linear sigma model at finite temperature,
calculated by the ϵ-expansion technique. Since most of proposed composite Higgs models
have global symmetry breaking patterns whose associated phase transitions have been
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G → H PT dynamics Model Order

SO(N) → SO(N − 1) [75, 76] N = 5 [77] 2’nd
N = 9 [78] 2’nd

SO(9) → SO(5) × SO(4) This work [74] 1’st

SU(2N) (U(2N)) → Sp(2N) [68] N = 2 [7, 79–81] anomaly
N = 3 [79, 82] 1’st

SU(N) (U(N)) → SO(N) [69] N = 5 [79, 83, 84] 1’st

Table 1. The order of a phase transition associated with spontaneous breaking of a global symmetry.
The first column denotes the symmetry breaking pattern, G → H. The second column gives a
reference performing the analysis based on the argument of universality, while the third column
summarizes the corresponding composite Higgs models. The fourth column shows the order of the
phase transition, and “anomaly” indicates that the order of the phase transition depends on the
restoration of the axial anomaly. See the main text for detailed discussions.

already explored by using the same technique in literature, their results will be summarized
(see table 1). We will also present a new analysis of the order of the phase transition in a
composite Higgs model with global symmetry breaking SO(N) → SO(M) × SO(N − M)
proposed for N = 9 and M = 4 in ref. [74].

2.1 SO(N) → SO(N − 1)

We begin with the most familiar symmetry breaking pattern, SO(N) → SO(N −1), which is
realized for N = 5 in the minimal composite Higgs model [77] and for N = 9 in the composite
two Higgs doublet model [78], to describe the outline of the analysis of the phase transition
based on the argument of universality. The symmetry breaking SO(N) → SO(N − 1) can
be described by introducing an order parameter Φa (a = 1, 2, · · · , N) in the fundamental
representation of SO(N). We now assume that the phase transition dynamics is dominated
by the order parameter and its thermal fluctuation. In this theory, the temporal direction
is compactified with period, β = 1/T , where T is the ambient temperature. The phase
transition dynamics is assumed to be dominated by the long-distance physics whose length
scale is longer than β. In this case, the temporal direction can be integrated out, and
one obtains the three-dimensional effective action for the order parameter.4 Under these
assumptions, the phase transition dynamics may be described by the following three-
dimensional effective Lagrangian:

LE = 1
2∂iΦa∂iΦa + 1

2m2(T )ΦaΦa + λ3
4 (ΦaΦa)2

+ O(ΦaΦa)3. (2.1)

Here, i = 1, 2, 3 denotes the space index, while we truncate operators of O(ΦaΦa)3. m2(T )
and λ3 represent the temperature dependent mass and coupling whose precise values

4If the underlying theory is weakly-coupled, one can perturbatively derive the three-dimensional thermal
effective theory from the original short-distance physics. See e.g. refs. [76, 85–88] for the detailed procedure
of dimensional reduction in the equilibrium finite-temperature field theory.
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and expressions generically depend on the short-distance physics. In a strongly-coupled
system, we cannot perturbatively calculate these quantities from the underlying theory,
and hence, we treat m2(T ) and λ3 as free parameters. However, λ3 > 0 is required for the
stability of the potential.5 The SO(N) symmetry is spontaneously broken to SO(N − 1)
at zero temperature, m2(T = 0) < 0 (⟨Φa⟩ ̸= 0), while it is restored at high temperature,
m2(T ) > 0 (⟨Φa⟩ = 0).

Let us first neglect the fluctuation of the order parameter and discuss the order of
the phase transition in terms of the so-called mean field analysis. In this case, the phase
transition is not of the first order since ⟨Φa⟩ continuously vanishes at the critical temperature
TC defined by m2(TC) = 0 as long as m2(T ) is an analytic function of T . However, near the
critical temperature T = TC , the IR fluctuation of Φa is in general non-perturbatively large.
In particular, the coupling constant λ3 has mass dimension one in three dimensions, and the
effect of the IR fluctuation scales by some power of the dimensionless ratio, λ3/m(T ), using
the standard power counting [89, 90] (for N ≃ 1), where the mass of the order parameter
m(T ) plays the role of an IR cutoff. As it comes close to the critical temperature, the effect
is obviously unsuppressed, leading to the IR divergence. Note that the appearance of the IR
divergence is a generic feature of the critical phenomena in three dimensions as indicated in
ref. [91]. Therefore, the mean field analysis cannot be justified near the critical temperature,
and one needs a more sophisticated analysis which can deal with the IR fluctuation to
determine the order of the phase transition.

When the second-order phase transition takes place in a simple system such as the
Ising model, it has been experimentally known that the correlation length diverges, and
consequently, the system exhibits self-similarity at the critical temperature in the long-
distance limit [65]. Self-similarity at long-distance scales implies that the system experiences
the scale invariance at the IR, which may correspond to the existence of an attractive IR
fixed point of coupling constants in the effective theory. Then, we may argue that if there
exists a stable IR fixed point in the effective theory, the system shows the second-order
phase transition at the critical temperature (critical point). In order to find the presence
of an IR fixed point including the effect of the IR fluctuation, one needs the RG analysis.
Interestingly, as originally found by Wilson [92], the analysis could successfully reproduce
singular behaviors of thermodynamical quantities at the second-order phase transition,
which are described in terms of critical exponents. Following this argument, we here
assume that the existence of an attractive IR fixed point corresponds to the occurrence
of the second-order phase transition. On the other hand, if there is no stable IR fixed
point, one expects that the second-order phase transition does not take place. Indeed, if
coupling constants in the effective theory flow to an unstable region of the potential, it is
conceivable that the fluctuation-induced first order phase transition takes place as examined
in refs. [76, 93] for generic scalar models. Here, the terminology of fluctuation-induced is
added since the fluctuation drives the first-order phase transition, which cannot be seen in
the mean field analysis. We will encounter this situation in the next subsection.

5One cannot exclude the possibility of λ3 < 0. In this case, one needs to include higher order terms of
O(ΦaΦa)3 and the mean field analysis indicates the first-order phase transition.
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For N > 2, the effective Lagrangian of eq. (2.1) is known as the Heisenberg model
which describes the phase transition of the Heisenberg ferromagnetic system in condensed
matter physics. The RG analysis has been carried out by utilizing the ϵ-expansion technique
at the one-loop level in refs. [76, 92]. In the ϵ-expansion, one calculates loop corrections to
λ3 in 4 − ϵ dimensions instead of directly working in three dimensions. Using the standard
MS subtraction, the RG equation at m2(T = TC) = 0 is given by [94]

βλ3 ≡ µ
∂λ3
∂µ

= −ϵλ3 + (N + 8) λ2
3

8π2 , (2.2)

where µ is the renormalization scale. It can be seen that there exists a stable fixed point at
λ∗

3 = 8π2ϵ/(N + 8), which is called the Wilson-Fisher fixed point [95]. We finally obtain the
result in three dimensions by the extrapolation of ϵ → 1. Since the attractive IR fixed point
exists, the phase transition associated with the symmetry breaking SO(N) → SO(N − 1) is
expected to be of the second-order, and its property is characterized by the fixed point. For
this symmetry breaking pattern, the presence of the IR fixed point has been also reported
by the analysis of 1/N expansion [96].

2.2 SU(2N) (U(2N)) → Sp(2N)

We next consider phase transitions in composite Higgs models whose symmetry breaking
patterns are given by SU(2N) → Sp(2N) with N = 2 [7, 79–81] and N = 3 [79, 82]. Such
a global symmetry breaking is realized in a QCD-like theory with 2N flavors of quarks
belonging to the pseudo-real representation under a given gauge group [97]. For N = 2,
ref. [7] has presented a UV completed composite Higgs model that contains the top partner
and satisfies the requirement of anomaly matching. In this case, one can discuss the chiral
phase transition by using the Nambu-Jona-Lasinio (NJL) model as well as the argument
of universality. We will describe the discussion of the phase transition based on the NJL
model in appendix A.

The spontaneous breaking SU(2N) → Sp(2N) can be described by an order parameter
which belongs to the second-rank anti-symmetric tensor representation of SU(2N), Φab =
−Φba (a, b = 1, 2, · · · , 2N). This field transforms as Φ → UΦUT under the SU(2N), where
U denotes a SU(2N) matrix. If Φab gets a vacuum expectation value (VEV) of the form
Φab ∝ Jab where Jab is the invariant tensor of Sp(2N), the SU(2N) symmetry is broken to
Sp(2N). As in the case of the previous subsection, one can write down the three-dimensional
effective theory of the current system as

LE = Tr
(
∂iΦ†∂iΦ

)
+m2(T )Tr

(
Φ†Φ

)
+ u

4
(
Tr
[
Φ†Φ

])2
+ v

4Tr
[
Φ†Φ

]2
+c(T )(Pf(Φ)+h.c.) ,

(2.3)
where we have neglected higher-dimensional operators of O(Φ†Φ)3, and Pf(Φ) denotes
pfaffian of Φab leading to the U(1) breaking by the axial anomaly. If c (TC) = 0, the flavor
symmetry is enhanced to G = U(2N). Therefore, the universality class of the system
is affected by the (non-)presence of the axial anomaly. At zero temperature, the VEV
Φab ∝ Jab is realized for m2(T = 0) < 0 [98, 99]. The stability of the potential requires
u > 0 and u + v/N > 0.
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The phase transition has been investigated in ref. [68] by using the ϵ-expansion technique
at the one-loop order in the context of a SU(2) gauge theory with 2N flavors of quarks
belonging to the fundamental representation. Let us first discuss the case without the axial
anomaly, i.e. c(TC) = 0, where the symmetry breaking pattern is U(2N) → Sp(2N). The
RG equations of the effective Lagrangian (2.3) are given by [68]

βu ≡ µ
∂u

∂µ
= −ϵu + 2N2 − N + 4

π2 u2 + 4N − 2
π2 uv + 3

2π2 v2 ,

βv ≡ µ
∂v

∂µ
= −ϵv + 4N − 5

2π2 v2 + 6
π2 uv .

(2.4)

In this case, there is no stable IR fixed point for N > 1, and the RG flow drives v

into the unstable region. This instability indicates that the phase transition is of the
fluctuation-induced first-order.

We next discuss the case with c(TC) ̸= 0, where the symmetry breaking pattern is
SU(2N) → Sp(2N). In the effective Lagrangian, the most relevant operators (except for
the mass term) are considered to give the dominant effect on the phase transition dynamics.
For N > 4, the Pf (Φ) term becomes less relevant compared to the u and v operators and
thus we can neglect it. Therefore, the fluctuation-induced first-order phase transition takes
place for N > 4. For N = 3, the anomaly term is relevant and behaves as a cubic term of
Φ leading to the first-order phase transition. On the other hand, the order of the phase
transition for N = 2 strongly depends on the effect of the anomaly. Since SU(4) and Sp(4)
are locally isomorphic to SO(6) and SO(5), it is speculated in ref. [68] that the linear sigma
model of eq. (2.3) falls into the SO(6) universality class which shows the second-order phase
transition as discussed in the previous subsection. In summary, the phase transition is of
the first order for N > 2, while it can be of the first-order or the second-order for N = 2
depending on the effect of the anomaly.

2.3 SU(N) (U(N)) → SO(N)

The littlest Higgs model [79, 83, 84] shows a symmetry breaking pattern, SU(N) → SO(N)
with N = 5. This breaking pattern is realized in a QCD-like theory with N quarks
belonging to the real representation under a given gauge group [97]. The symmetry breaking
SU(N) → SO(N) can be described by an order parameter which belongs to the second-
rank symmetric tensor representation of SU(N), Φab = Φba (a, b = 1, 2, · · · , N). The
three-dimensional effective Lagrangian is given by

LE = Tr
(
∂iΦ†∂iΦ

)
+m2(T )Tr

(
Φ†Φ

)
+ u

4
(
Tr
[
Φ†Φ

])2
+ v

4Tr
[
Φ†Φ

]2
+c(T )(det(Φ)+h.c.) ,

(2.5)
A diagonal VEV, Φab ∝ δab, drives SU(N) → SO(N) (or U(N) → SO(N) if the t’Hooft
operator is absent). For N > 4, the determinant operator becomes less relevant compared
to the u and v operators. Since we are mostly interested in the case of N = 5, we neglect
the t’Hooft term in the following analysis.

The RG analysis with the ϵ-expansion technique at the one-loop order leads to

βu = −ϵu + N2 + N + 8
24π2 u2 + N + 1

6π2 uv + 1
8π2 v2 ,

βv = −ϵv + 1
2π2 uv + 2N + 5

24π2 v2 , (2.6)
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Figure 1. The RG flow of the u and v couplings in the effective Lagrangian (2.7). The potential is not
bounded from below in the gray colored region. Unstable IR fixed points exist at (u, v) = (3π2/13, 0)
and (u, v) = (0, 0) (Gaussian fixed point).

which indicate that there is no stable IR fixed point, and the RG flow drives the u and v

couplings into the unstable region. This signals the fluctuation-induced first order phase
transition. This result is in agreement with that of ref. [69].

2.4 SO(N) → SO(M) × SO(N − M)

A composite Higgs model with global symmetry breaking SO(N) → SO(M) × SO(N − M)
with M = ⌊N/2⌋ has been proposed for N = 9 in ref. [74]. Such a symmetry breaking
pattern is realized by introducing the real bi-fundamental scalar field Φab, which satisfies
the symmetric and traceless conditions, Φab = Φba and TrΦ = 0. The effective Lagrangian is

LE = 1
2Tr (∂iΦ)2 + 1

2m2(T )Tr (Φ2) + u

4!
(
TrΦ2

)2
+ v

4!Tr (Φ4) . (2.7)

One may introduce the determinant operator, det Φ, but it is irrelevant for N = 9. Hence
we omit this term to analyze the phase transition dynamics. The potential is bounded from
below when v > 0 and u + v/N > 0 are satisfied.

Let us now discuss the order of the phase transition, which is new to the best of our
knowledge. By using the ϵ-expansion technique, RG equations for N > 6 at the one-loop
order are

βu = −ϵu+ 1
16π2

[2
3
(
N2+N +14

)
u2+

(8
3N +4− 8

N

)
uv+

(
2+ 12

N2

)
v2
]
,

βv = −ϵv+ 1
16π2

[
16uv+

(4
3N +6− 24

N

)
v2
]

.

(2.8)

Figure 1 shows RG evolutions of the u and v couplings for the case of N = 9. We can see
that there exist unstable IR fixed points at u = 3π2/13, v = 0 and u = v = 0 (Gaussian
fixed point). The figure indicates that the RG flow drives u and v into the unstable region
of the potential, unless bare couplings are tuned to be the values at unstable fixed points.
Therefore, the symmetry breaking SO(N) → SO(M) × SO(N − M) with N = 9, M = 4 is
expected to accommodate the fluctuation-induced first-order phase transition.
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2.5 Comments on the universality argument

Our analysis to find the order of the phase transition associated with the spontaneous
breaking of a global symmetry is based on two important assumptions: (i) the effect of an
explicit breaking of the global symmetry on the phase transition dynamics is negligible,
and (ii) the most important excitation is the order parameter during the thermal phase
transition. In reality, it is unclear that both of the assumptions are justified. Indeed, the
explicit breaking is required to give the observed SM-like Higgs boson mass. Moreover, the
SU(2)W × U(1)Y gauge fields always couple to the order parameter. It is usually challenging
to take account of these effects in the universality argument.

Ref. [100] has proposed the use of gauge moose [101] to realize desired global symmetry
breaking patterns in composite Higgs models. In this construction, a global symmetry
breaking is realized by gauging a subgroup of an enlarged global symmetry. In such a case,
the effect of gauge fields is clearly essential, and one may not justify our assumption (i).
We do not consider this construction in the present discussion.

Finally, let us comment on an issue of the ϵ-expansion technique. We have obtained our
results by the extrapolation of ϵ → 1, which is not fully justified in general. For example,
the inclusion of higher order corrections may change our conclusion. One of the powerful
methods to overcome this difficulty is to utilize the conformal bootstrap technique [102]
because it does not rely on the perturbative calculation. The use of the conformal bootstrap
approach is beyond the scope of the present paper and left for a future study.

3 Confinement transition

We now take a benchmark model proposed in ref. [7] where the strong dynamics of a Sp(2Nc)
gauge theory induces the spontaneous breaking of its flavor symmetry to realize the pNGB
Higgs, and investigate the confinement-deconfinement phase transition. By taking the large
Nc limit with a fixed number of flavors, the system is assumed to be well-described by the
pure Sp(2Nc) gauge theory at finite temperature. Then, we discuss that the dynamics of the
phase transition can be described by the Polyakov loop model which is constructed in terms
of the Polyakov loop identified as an order parameter of the phase transition [72, 73]. By
using the result of lattice simulations, one can quantitatively analyze the phase transition.
We can derive a GW spectrum generated by the first-order confinement-deconfinement
transition and discuss its discovery prospect.

3.1 Polyakov loop

In a pure Yang-Mills theory with a unitary gauge group G, such as SU(Nc) and Sp(2Nc),
we can define a gauge invariant operator called Polyakov loop [103],

lP ≡ 1
dim(G)Trc [LP ] , (3.1)

where Trc and dim(G) denote the trace taken over the color space and the number of
dimensions of the gauge group G in the fundamental representation, respectively. For
example, dim(Sp(2Nc)) = 2Nc and dim(SU(Nc)) = Nc. The thermal Wilson line LP is
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defined as

LP ≡ P exp
[∫ β

0
dτ T aAa

4(τ, x)
]

. (3.2)

Here, x, τ, β ≡ 1/T are three spatial coordinates, the Euclidean time and the inverse of
the ambient temperature, respectively. A dim(G) × dim(G) matrix T a is a generator of the
color gauge group G in the fundamental representation, and Aa

4 is the Euclidean temporal
component of the gauge field. P denotes the path-ordering along the temporal direction. In
the current normalization, the Euclidean temporal component of the covariant derivative of
a matter field transformed under the fundamental representation is given by D4 ≡ ∂4 − A4.

The thermal average of the Polyakov loop lP behaves as ⟨lP ⟩ ∝ e−β∆F where ∆F

represents the free energy of an isolated test quark relative to the energy without the quark
(see refs. [104, 105] for the path-integral derivation of this behavior in the finite temperature
field theory). Then, if the expectation value of the Polyakov loop vanishes, ⟨lP ⟩ = 0, the
free energy of an isolated test quark costs an infinite energy, which is identified with the
confinement phase. On the other hand, if ⟨lP ⟩ ̸= 0, the free energy of an isolated test quark
is finite, and hence, the system is identified with the deconfinement phase. Therefore, lP can
be regarded as a good order parameter for the confinement-deconfinement phase transition.

There exists a global symmetry to distinguish the confinement and deconfinement phases.
In the equilibrium thermal field theory (with the imaginary time formalism), the gauge field
satisfies a periodic boundary condition for the Euclidean time, Aµ(τ, x) = Aµ(τ + β, x).
The gauge transformation is

Aµ(τ, x) → U(τ, x)(Aµ(τ, x) + i∂µ)U †(τ, x) , (3.3)

with U(τ, x) ∈ G. A remarkable feature is that the periodicity of the gauge field does
not necessarily result in the periodicity of U(τ, x). The periodicity of the gauge field only
requires that U(τ, x) satisfy the following twisted boundary condition [106]:

U(τ + β, x) = zU(τ, x) . (3.4)

Here, z is the center of the group G such that z commutes with every element of G. We can
explicitly write is as z = ei2πk/Nc (k = 1, 2, · · · , Nc −1) for G = SU(Nc) and z = −1 for G =
Sp(2Nc), in addition to the trivial transformation, z = 1. The gauge transformation (3.3)
with the condition (3.4) is conventionally called the center transformation. The non-trivial
center transformation acts on the Polyakov loop as lP → z lP with z ̸= 1, which tells that
lP is charged under the center transformation.6 Hence, the confinement phase ⟨lP ⟩ = 0 is
regarded as the center symmetric phase, while the deconfinement phase ⟨lP ⟩ ̸= 0 is identified
as the broken phase.

When we introduce massless dynamical matter fields, the center symmetry is explicitly
broken or preserved depending on their representations under the gauge group G. For
example, a scalar (or fermion) field in the fundamental representation ϕ(τ, x) transforms

6From a modern perspective of generalized symmetries, the center symmetry can be understood as a
one-form symmetry [107].
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as ϕ(τ, x) → U(τ, x)ϕ(τ, x). The boundary condition of ϕ(τ, x) in the equilibrium finite
temperature field theory is given by ϕ(τ +β, x) = ±ϕ(τ, x) where + and − correspond to the
cases of the scalar and fermion, respectively. This is incompatible with the twisted boundary
condition (3.4) so that the center symmetry is explicitly broken. Thus, when massless
dynamical matter fields in the fundamental representation are introduced, lP is no longer a
good order parameter for the confinement-deconfinement phase transition. With a sizable
effect of explicit breaking, lP acquires a non-vanishing value at any non-zero temperature
which usually makes the transition a smooth crossover, where thermodynamical quantities
are smooth functions of the temperature, rather than a phase transition.7 In practice,
by performing the path integral with respect to dynamical matter fields, one obtains a
contribution to the Polyakov loop potential which explicitly breaks the center symmetry. A
good example is the ordinary QCD. As we will discuss later, the SU(3) pure Yang-Mills
theory leads to the first-order confinement-deconfinement transition. However, the lattice
simulation of QCD including (highly improved staggered) light quarks indicates that the
confinement-deconfinement transition is of the crossover rather than the first-order phase
transition [109]. On the other hand, dynamical matter fields in the adjoint representation
do not break the center symmetry because the gauge transformation is the same as that of
the gauge field which is compatible with the twisted boundary condition (3.4). Thus, in
this case, lP remains a good order parameter for the phase transition.

Since our benchmark composite Higgs model [7] contains Nf = 4 Weyl fermions in
the fundamental representation of the gauge group G = Sp(2Nc), the center symmetry is
explicitly broken. Another source of explicit breaking arises when the model accommodates
top partners by introducing vector-like colored and hypercharged fermions in the two (or
higher) index representation under Sp(2Nc).8 Therefore, in the benchmark model, the
Polyakov loop lP is not a good order parameter in general.

3.2 Large Nc limit

The analysis of the confinement-deconfinement transition in our benchmark composite
Higgs model is generically challenging due to non-perturbative effects. One of successful
ideas to overcome this difficulty is to make the color number Nc large and perform the
large Nc expansion, as originally proposed by t’Hooft [111]. The large Nc limit is defined
as Nc → ∞ with a fixed t’Hooft coupling λ ≡ g2Nc, where g is the gauge coupling. At a
large Nc, t’Hooft showed that Feynman diagrammatic calculations are available, and the
Nc dependence is determined by the topology of a diagram (see e.g. ref. [112] for the basic
argument of the large Nc expansion at zero temperature).

Let us now consider Nf flavors of quarks in the fundamental representation of the
gauge group, and take the large Nc limit with a fixed Nf . The contribution to the vacuum
energy from those quarks scales as O(NcNf ), while that of the gauge field is given by
O(N2

c ) [112]. Hence, the quark contribution is sub-dominant and suppressed by a factor
7This situation is very similar to the crossover in a ferromagnetic system with an external magnetic field,

as argued in ref. [108].
8Fermion matter contents in generic composite Higgs models accommodating top partners are summarized

in ref. [110] by considering the requirement of the t’Hooft anomaly matching condition.
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of Nf /Nc compared to the gauge field contribution as least in the zero-temperature field
theory. This feature may be preserved for the deconfinement phase even in the finite-
temperature field theory since the number of degrees of freedom is the same as that of the
zero-temperature field theory. Thus, the Polyakov loop potential may be dominated by the
gauge field and scale as O(N2

c ), while the matter contribution is given by O(NcNf ) and
negligible for Nf /Nc ≪ 1.

Since Weyl fermions introduced to accommodate top partners are in the two-index
anti-symmetric (or higher) representation under the gauge group G and in the fundamental
representation under the ordinary SU(3)C , their number of degrees of freedom is larger than
that of the gauge field. Thus, such fermions give unsuppressed effects on the center symmetry
at a large Nc, and we cannot discuss the dynamics of the confinement-deconfinement phase
transition since there has been no available information from the lattice simulation or
first-principle approach. For this reason, we concentrate on the large Nc analysis of the
confinement-deconfinement transition in a composite Higgs model without top partners.

We have argued that the Polyakov loop potential may be dominated by the gauge
field contribution at a large Nc. It enables us to construct the effective field theory of the
confinement-deconfinement phase transition in terms of the Polyakov loop with the input
of lattice simulations for a pure Yang-Mills theory. The first attempt has been made by
Pisarski in refs. [72, 73] for the confinement-deconfinement transition in the SU(Nc) pure
Yang-Mills theory (see also ref. [106] for the analysis of confinement-deconfinement phase
transitions for general gauge theories based on the argument of universality). Let us apply
this effective approach to the case of G = Sp(2Nc). The center symmetry is Z2 whose
transformation is defined by lP → −lP , and hence, the potential of lP must be symmetric
under the Z2 transformation. Following ref. [72], we postulate the simplest polynomial
Polyakov loop potential as

Vpure(lP )
T 4 = −a(T )

2 l2P + b(T )l4P + c(T )l6P + d(T )l8P , (3.5)

where a(T ), b(T ) and c(T ) denote temperature dependent couplings that are undetermined
within the effective theory and requires the input of lattice simulations or the first-principle
approach. At a critical temperature T = TC , when b(TC) > 0 and a(TC) = 0 are satisfied
for an arbitrary c(TC), the above potential takes the same form as that of the Ising model,
and the phase transition is of the second order as long as the argument of universality and
the form of the Polyakov loop potential (3.5) are valid (see section 2.1 for the discussion of
the argument of universality). On the other hand, the first-order phase transition is realized
when b(TC) < 0 and c(TC) > 0.9 Hence, the actual order of the phase transition depends
on microscopic physics. In this discussion, the last term of the potential is irrelevant, but it
might be needed to reproduce the result of lattice simulations.

For a small number of colors, there exist lattice simulations for the confinement-
deconfinement transition in the Sp(2Nc) pure Yang-Mills theory [70, 71]. It has been
found that the phase transition is of the second-order for Nc = 1, while it is of the first
order for Nc = 2, 3. There is also interesting theoretical progress to clarify the order of

9a(TC) = b(TC) = 0 corresponds to the phase boundary of the first and second-order phase transitions,
called tricritical point.
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the confinement-deconfinement phase transition in the Sp(2Nc) pure Yang-Mills theory.
The functional RG approach reveals that the phase transition is of the first order [71] for
Nc = 2. Ref. [113] showed that the first-order confinement-deconfinement phase transition
is confirmed for Nc > 1 by studying the quantum phase transition in supersymmetric gauge
theories under the conjecture that the thermal confinement-deconfinement transition is
smoothly connected by the quantum phase transition against gluino mass deformation.
The similar behavior has been found in the SU(Nc) pure Yang-Mills theory. A lattice
simulation has reported that the confinement-deconfinement phase transition in the SU(2)
pure Yang-Mills theory is of the second-order, and its universality class is in good agreement
with that of the three-dimensional Ising model [114] (note that SU(2) = Sp(2) in our
notation). On the other hand, the phase transition becomes the first order when the number
of colors is sufficiently large, Nc > 2 [115–119]. Some theoretical approaches also indicate
the first-order phase transition [120, 121].

It is conceivable that pure Yang-Mills theories with large color degrees of freedom
generally lead to the first order phase transitions, and the nature of the phase transitions
is adequately captured by the large Nc expansion, independent of the detail structure of
G. In fact, at zero temperature, the large Nc behaviors of pure Yang-Mills theories with
G = SU(Nc), SO(Nc), Sp(2Nc) are equivalent in the sense that the expectation value of the
Wilson loop is the same, as explicitly demonstrated in ref. [122]. Although there is no direct
proof of this similarity in the finite-temperature field theory, we assume that it is maintained
at finite temperature. That is, thermodynamical properties of confinement-deconfinement
transitions in pure Yang-Mills theories are independent of G in the large Nc limit. We
utilize this assumption and the input of lattice simulations for the SU(Nc) pure Yang-Mills
theory to determine the parameters in eq. (3.5) for G = Sp(2Nc).

Let us fit the Polyakov loop potential under the assumption that the potential for the
Sp(2Nc) pure Yang-Mills theory has the same form as that of SU(Nc) at a large Nc except for
the center symmetry.10 Refs. [57, 123] have argued that the result of lattice simulations for
the first-order confinement-deconfinement transition can be phenomenologically described
by the four and six-dimensional Polyakov loop potential in eq. (3.5) at a large Nc (see also
ref. [124]). Following ref. [123], the Polyakov loop potential for the SU(8) pure Yang-Mills
theory is fitted by the following parameterization,

a8(T ) = a80 + a81

(
Tcon
T

)
+ a82

(
Tcon
T

)2
+ a83

(
Tcon
T

)3
+ a84

(
Tcon
T

)4
, (3.6)

a80 = 28.7, a81 = −69.8, a82 = 134, a83 = −180, (3.7)

a84 = 56.1, b8 = −90.5, c8 = 157, d8 = −68.9, (3.8)

where Tcon is the critical temperature of the confinement-deconfinement phase transition at
which two free energy minima of ⟨lP ⟩ = 0 and ⟨lP ⟩ ̸= 0 separated by a potential barrier
are degenerate. In order to translate the above fitting into the case of the Sp(2Nc) pure

10Since the center symmetries of the Sp(2Nc) and SU(Nc) pure Yang-Mills theories are Z2 and ZNc ,
respectively, a replacement l2

P → |lP |2 is required. However, this replacement does not affect the following
analysis because thermodynamical quantities do not change.
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Yang-Mills theory, it is needed to take account of the change of color degrees of freedom.
Since the number of degrees of freedom for Sp(2Nc) is Nc(2Nc + 1) while that of SU(Nc) is
N2

c − 1, the Polyakov loop potential for Sp(2Nc) in eq. (3.5) may be fitted by

a(T ) = a0 + a1

(
Tcon
T

)
+ a2

(
Tcon
T

)2
+ a3

(
Tcon
T

)3
+ a4

(
Tcon
T

)4
,

ai(T ) = Nc(2Nc + 1)
63 a8i(T ) (i = 0, · · · , 4),

b = Nc(2Nc + 1)
63 b8, (3.9)

c = Nc(2Nc + 1)
63 c8, d = Nc(2Nc + 1)

63 d8.

Here, we have assumed the color dependence of the potential as Vpure ∝ N2
c − 1 for SU(Nc)

and Vpure ∝ Nc(2Nc + 1) for Sp(2Nc), which is justified at least for the SU(Nc) pure
Yang-Mills theory with a large Nc [57].

The total Polyakov loop potential is schematically decomposed as

VP (lP , T ) = Vpure(lP , T, Nc) + Vmatter(lP , T, Nc, Nf ) , (3.10)

where Vpure and Vmatter represent contributions from the gauge field in eq. (3.5) and from
dynamical matter fields in the fundamental representation, respectively. The first term
in the potential preserves the center symmetry, while the second term breaks it explicitly.
It is clear that Vpure(lP , T, Nc) ∝ 2N2

c at a large Nc. We assume that the second term is
proportional to Nf Nc in the large Nc limit with a fixed Nf .

3.3 Gravitational wave signals

We now discuss GW signals generated from the cosmological first-order phase transition
associated with the confinement of the Sp(2Nc) gauge theory in the large Nc limit (see
refs. [125–128] and references therein for reviews of GW signals generated by the first-order
phase transition). Since new fields introduced in the composite Higgs model possess SM
gauge quantum numbers, we assume that they share the same temperature as that of the
SM thermal plasma. Figure 2 shows the Polyakov loop potential for various temperatures
with the normalization defined by V P ≡ Vpure/(Nc(2Nc + 1)/63), where Vpure is defined
by eq. (3.5) with the fitting eq. (3.9). When the cosmic temperature is high enough
T > Tcon, the Polyakov loop potential has the center symmetry breaking minimum at
⟨lP ⟩ ̸= 0 corresponding to the deconfinement phase. As the temperature cools down due
to the cosmic expansion, a metastable local minimum appears at ⟨lP ⟩ = 0. At T = Tcon,
two minima are degenerate and separated by a potential barrier. For a lower temperature
T < Tcon, the center symmetry preserving minimum ⟨lP ⟩ = 0 becomes energetically favorable.
Bubbles then nucleate at some nucleation temperature Tn when tunneling takes place.

The nucleation temperature can be roughly estimated in the following way. The
tunneling probability per unit time and per unit volume is expressed as

Γ = Ae−SE , (3.11)
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Figure 2. Polyakov loop potentials V P (lP , T ) for T = 1.04Tcon (the red colored dotted line),
T = Tcon (the black colored solid line), T = 0.96Tcon (the blue colored dashed line) and T = 0.94Tcon
(the magenta colored dot-dashed line) are shown.

where SE is the classical configuration called bounce, and A is the fluctuation around
the bounce configuration. When the temperature is high enough, SE is obtained by the
O(3)-symmetric bounce configuration [129],

SE = S3
T

, S3 =
∫

dr̄ 4πr̄2

1
2

(
dlBP
dr̄

)2

+ VP (lBP , T )

 . (3.12)

Here, the length scale is normalized by the temperature, r̄ ≡ rT , where r is the length
in three-dimensional polar coordinates. In the above expression, lBP is the solution of the
following differential equation:

d2lBP
dr̄2 + 2

r̄

dlBP
dr̄

+ ∂VP (lBP , T )
∂lBP

= 0 , (3.13)

under the boundary conditions,

dlBP
dr̄

∣∣∣∣∣
r̄=0

= 0 , lBP (r̄ → ∞) = lP F . (3.14)

Here, lP F ̸= 0 is the position of the local minimum of VP . By the dimensional analysis, we
set A ∼ T 4. The Hubble parameter during the radiation domination era is

H2(T ) = ρrad
3M2

Pl
, ρrad = π2

30g∗(T )T 4 , (3.15)

where MPl ≃ 2.4 × 1018 GeV denotes the reduced Planck mass, and g∗(T ) = gSM∗(T ) +
gnew∗(T ) is the effective number of relativistic species of the thermal plasma before the
confinement-deconfinement transition. Here, gSM∗ ≃ 106.75 [130] is the one for the SM
sector, while gnew∗ is that of a new sector introduced in the composite Higgs model. In
the large Nc limit, gnew∗ ≃ 4N2

c + O(NcNf ), where factor 2 comes from the polarization
degrees of freedom of the gauge field. The nucleation temperature can be roughly estimated
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by Γ(Tn) = H4(Tn). Assuming that S3(T )/T is a monotonic function around T = Tn, the
condition leads to

S3
T

∣∣∣∣
T =Tn

= 137 − 2 log
(

g∗(Tn)
100

)
− 4 log

(
Tn

1 TeV

)
. (3.16)

As the right hand side only depends on the cosmic temperature logarithmically, we find
Tn ≃ Tcon. The critical temperature Tcon is around the confinement scale which is set to be
Tcon = 1 TeV. The condition is less sensitive to the precise values of Tcon and g∗ due to the
logarithmic dependence.

In order to compute GW signals, one needs to estimate the amount of the released
energy of the first-order phase transition transferred into the bulk kinetic energy of the
fluid and the mean separation of bubbles. The ratio of the amount of the released energy
to the energy density of the fluid is parameterized as

α ≡

∆VP − 1
4T

∂∆VP

∂T
ρrad


T =Tn

. (3.17)

Here, ∆VP ≡ VP (lP F ) − VP (lP t) with lP t ≡ lBP (r̄ → 0) being the tunneling point obtained
by solving the bounce equation. The mean bubble separation normalized by the Hubble
parameter is roughly estimated by the rate of the bubble nucleation probability,

β̃ ≡ − 1
H(tn)

d
dt

(
S3
T

)
t=tn

, (3.18)

where t is the cosmic time and tn is the time when bubbles are nucleated. Using the relation
dT/dt = −TH(T ), eq. (3.18) can be rewritten as

β̃ = T
d

dT

(
S3
T

)∣∣∣∣
T =Tn

. (3.19)

The other important quantity is the terminal bubble wall velocity vw. In weakly-coupled
theories, the terminal bubble wall velocity can be estimated by computing the friction
from the thermal plasma [131–134]. On the other hand, in strongly-coupled theories, it is
challenging to explicitly compute the friction. For this reason, we here simply assume that
Jouguet detonation bubbles, where vw > cs = 1/

√
3 with cs being the sound speed, are

realized. Then the bubble wall velocity is determined by the following relation [135]:

vw =
√

2α/3 + α2 +
√

1/3
1 + α

. (3.20)

Note that if the actual wall velocity is slower than cs, the resultant GW signals are suppressed.
The total amplitude of GW signals can be schematically decomposed as

ΩGW = Ωcoll + Ωsound + Ωtur, (3.21)

where Ωcoll, Ωsound and Ωtur are contributions from bubble collisions, the sound wave and
turbulence of the thermal plasma, respectively. In our analysis, we simply assume that
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most of the released energy is converted into the hot thermal plasma by frictions acting
on the wall. Then, the dominant contribution comes from sound waves or turbulence of
the thermal plasma. In this case, numerical calculations [125] reveal that the contribution
of sound waves is considerably larger than that of turbulence. Hence, we focus on the
contribution of sound waves in our analysis.

The contribution to Ωsound is estimated by numerical calculations [43] and given by

Ωsoundh2 = Ωpeakh2
(

f

fsound

)3 ( 7
4 + 3(f/fsound)2

) 7
2

,

Ωpeakh2 = 2.65 × 10−16
(

105

β̃

)(
κ2

sound
10−5

)(
α

1 + α

)2 (100
g∗

) 1
3

, (3.22)

fsound = 1.9 × 101 Hz
(

β̃

105

)( 1
vw

)(
Tn

1 TeV

)(
g∗

100

) 1
6

.

Here, h, κsound and f are the dimensionless Hubble parameter at present time, the fraction
of the released energy injected into the energy of GW signals and the frequency of GW
signals, respectively. The fraction κsound can be further decomposed as

κsound = √
τsound κ , (3.23)

where τsound and κ are the sound-wave period normalized by the inverse of the Hubble
parameter and the efficiency coefficient, respectively. Ref. [136] have pointed out that
a suppression factor arises if the sound-wave period is shorter than the inverse of the
Hubble parameter during the phase transition. The sound-wave period τsound is expressed
as [136–138] (see also [139])

τsound = min
{

1,
(8π)

1
3 Max{vw, cs}

β̃Ūf

}
, (3.24)

with Ūf being the root-mean-square four velocity of the thermal plasma [43] which is
approximately given by

Ū2
f ≃ 3

4
α

1 + α
κ . (3.25)

For the Jouguet detonation bubble, the efficiency coefficient can be fitted by [135]

κ =
√

α

0.135 +
√

0.98 + α
. (3.26)

Let us discuss the detectability of GW signals generated by the first-order confinement-
deconfinement phase transition in our benchmark composite Higgs model at a large Nc. By
calculating the bounce action (3.12) and evaluating the nucleation temperature (3.16), we
find α and β̃. Since the latent heat is proportional to 4N2

c for the Sp(2Nc) pure Yang-Mills
theory, α = O(0.1) is realized. We also find that the Polyakov loop potential given
by eq. (3.5) with the fitting eq. (3.9) is strongly sensitive to the temperature at around
T = Tcon ≃ Tn as can be seen from the figure 2. Consequently, the bounce action rapidly
grows at T = Tn which results very large β ≳ O(104) for any value of Nc. Our numerical
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study reveals that the duration of the phase transition is maximized at Nc = 9 which leads to
β̃ = 4.3×104. Note that the parameters in Polyakov loop potential are strongly restricted by
results of lattice simulations eqs. (3.7) and (3.8) that only allow large values of β̃. With this
optimized parameter set, the peak amplitude of GW signals is Ωpeakh2 ≃ 1.4 × 10−15 which
receives a strong suppression due to a large β̃, while the peak frequency is fsound ∼ 10 Hz.
Unfortunately, such GW signals are too weak to be detected by future-planned experiments.

4 Discussion

In the present paper, we have discussed cosmological phase transitions in various composite
Higgs models, each of which may show a confinement-deconfinement transition and a phase
transition associated with the spontaneous breaking of a global symmetry that realizes the
SM Higgs field as a pNGB. To determine the order of the phase transition for a global
symmetry breaking, we have assumed the argument of universality and studied the effective
linear sigma model. The effect of infrared fluctuations on the phase transition dynamics
was taken into account by the RG analysis with ϵ-expansion at the one-loop order. For a
confinement-deconfinement phase transition, we took the UV-completed model proposed in
ref. [7] as a benchmark. The model consists of a strongly-coupled Sp(2Nc) gauge theory.
Although the presence of dynamical matter fields in the fundamental representation makes
it difficult to investigate the phase transition, taking a large number of color degrees of
freedom with a fixed number of flavors, we have argued that the effect of dynamical matter
fields is subdominant, and the first-order confinement-deconfinement phase transition takes
place, as it is favored in the Sp(2Nc) pure Yang-Mills theory for Nc > 1. The amplitude
of GW signals generated by the first-order phase transition is not within the reach of
future-planned experiments.

So far, we have separately discussed the phase transition associated with a global
symmetry breaking and the confinement-deconfinement transition. If the size of a gauge
group is sufficiently small, it is possible to construct the effective theory which simultaneously
describes those phase transitions in terms of the Polyakov loop and the quark condensate,
assuming that the global symmetry breaking is realized by the NJL mechanism. This
Polyakov-Nambu-Jona-Lasinio (PNJL) model has been applied to the chiral and confinement
phase transitions in the ordinary QCD [140] and QCD-like theories [56] (see also ref. [141]
for an excellent review). The usage of the PNJL model is promising to simultaneously
analyze both phase transitions in a UV-completed composite Higgs model. One cannot
apply this approach with a single Polyakov loop lP alone in contrast to the Polyakov loop
model when the number of color degrees of freedom is large, as argued in ref. [56]. Then,
the analysis of two phase transitions requires an extension of the PNJL model such as the
matrix model approach [142–145].
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A NJL analysis of SU(4) (U(4)) → Sp(4)

We here consider a UV completed model proposed in ref. [7] and discuss the phase transition
associated with global symmetry breaking, SU(4) (U(4)) → Sp(4). As discussed in ref. [7],
the phase transition is induced by four-Fermi interactions. We extend their analysis by
including the effect of thermal fluctuations of new quarks to determine the order of the
phase transition.

The gauge group is G = Sp(2Nc), and the model contains four Weyl fermions Qi

(i = 1, · · · , 4) in the fundamental representation. Since the number of flavors is even and
the fundamental representation of Sp(2Nc) is pseudo-real, the theory does not suffer from
both Witten and chiral anomalies. We introduce the following four-Fermi interactions of
the NJL model:

LQ = G1
2Nc

(
Qa

i QjaQ̄b
jQ̄ib

)
+ G2

8Nc

(
Qa

i QjaQb
kQlbϵ

ijkl + h.c.
)

. (A.1)

Here, ϵijkl is the Levi-Civita symbol, and Q̄ denotes the complex conjugate of Q. The
contraction with respect to a, b is taken by the Sp(2Nc) invariant metric tensor Jab whose
matrix form is defined by

J =
(

0 1Nc×Nc

−1Nc×Nc 0

)
, (A.2)

where 1Nc×Nc denotes the Nc × Nc unit matrix. The interactions (A.1) possess the SU(4)
flavor symmetry whose transformation is defined as Qi → U

(4)
ij Qj where U

(4)
ij is a SU(4)

matrix. For G2 = 0, the flavor symmetry is enhanced to U(4).
We evaluate the mean-field values of chiral condensate parameterized by auxiliary fields

Mij ≡ −⟨Qa
i Qja⟩/Nc. At the tree level, the potential for Mij is

V NJL
tree (Mij) = G1Nc

2 Tr
[
MM †

]
+ G2Nc

8
(
ϵijklMijMkl + h.c.

)
. (A.3)

Following the original analysis of the NJL model, we decompose Qa
i Qja into mean-field

values and fluctuations, Qa
i Qja → Mij + Qa

i Qja. Then, the effective interactions of Q with
M are described by

Lint = −V NJL
tree + G1

2
{

Tr
[
QaQaM †

]
+ h.c.

}
+ G2

4
(
ϵijklQiQjMkl + h.c.

)
. (A.4)

Since Mij is a 4 × 4 complex anti-symmetric matrix, using the SU(4) symmetry, one can
parametrize the matrix as

M =


0 M1 0 0

−M1 0 0 0
0 0 0 M2
0 0 −M2 0

 , (A.5)
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where M1 and M2 are generally complex. By integrating out the Q fields, one obtains the
zero-temperature effective potential up to the one-loop order,

V NJL
zero = V NJL

tree + V NJL
one−loop ,

V NJL
tree = NcG1

(
|M1|2 + |M2|2

)
+ NcG2(M1M2 + h.c.) ,

V NJL
one−loop = −4Nc

∫ d3k

(2π)3

∑
i=1,2

√
k2 + |mi|2 ,

m1 ≡ eiϕ1 |G1M∗
1 + G2M2| ,

m2 ≡ eiϕ2 |G1M∗
2 + G2M1| .

(A.6)

Here, eiϕ1,2 are arbitrary phases. The one-loop effective potential is UV divergent and
requires renormalization. Following ref. [56], we regularize the UV divergence by inserting
a sharp three-dimensional momentum cut-off Λ3D. Such a regularization scheme is different
from that of ref. [7] where a four-dimensional momentum cutoff is introduced. With our
regularization scheme, the one-loop effective potential in eq. (A.6) is evaluated as

V NJL
one−loop = −

∑
i=1,2

NcΛ4
3D

4π2

(2+ξ2
i )
√

1+ξ2
i + ξ4

i

2 log


√

1+ξ2
i −1√

1+ξ2
i +1

 , ξ2
i ≡ |mi|2

Λ2
3D

.

(A.7)
It is useful to rewrite V NJL

tree in terms of m1,2,

V NJL
tree = Nc

G2
1 − G2

2

[
G1
(
|m1|2 + |m2|2

)
− G2 (m1m2 + h.c.)

]
. (A.8)

Since m1 and m2 are complex variables, V NJL
zero depends on three real fields, |m1,2| and a

relative phase of m1,2.
A potential for the relative phase comes from the second term of eq. (A.8), and is

minimized for m1m2 = ±|m1||m2| for G2/(G2
1 − G2

2) ≷ 0, respectively. Focusing on the
minimum of the relative phase of m1,2, V NJL

tree can be reexpressed as

V NJL
tree = NcG1Λ2

3D
G2

1 − G2
2

(
ξ2

1 + ξ2
2

)
−
∣∣∣∣∣2NcG2Λ2

3D
G2

1 − G2
2

∣∣∣∣∣ ξ1ξ2 . (A.9)

Therefore, we effectively need to consider two fields |m1,2| in our analysis. This discussion
is applicable when we include the thermal effect since the thermal potential of m1,2 only
depends on |m1,2| (see the concrete expression (A.11)). To investigate the parameter region
where the chiral symmetry breaking, ξ1 = ξ2 ̸= 0, is realized, we numerically evaluate
the zero-temperature potential, V̄ NJL

zero (Ḡ1, Ḡ2, ξ1, ξ2) ≡ V NJL
zero /NcΛ4

3D with Ḡ1 ≡ G1Λ2
3D and

Ḡ2 ≡ G2Λ2
3D. Figure 3 displays the phase diagram in terms of Ḡ1 and Ḡ2. We can see from

the figure that the chiral symmetry breaking, SU(4) → Sp(4), takes place for sufficiently
large four-Fermi interactions, while it does not for small interactions. In fact, the chiral
symmetry breaking takes place when the following conditions are satisfied:

Ḡ1 > |Ḡ2| , 2π2
(

Ḡ1 − |Ḡ2|
Ḡ2

1 − Ḡ2
2

)
< 1 . (A.10)
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Figure 3. The phase diagram in terms of Ḡ1 and Ḡ2. Symmetries of the ground state are SU(4)
and Sp(4) for the white and blue colored regions, respectively. In the red colored region, the
zero-temperature effective potential is not bounded from below.

The first condition is required for the stability. We focus on the parameter region to satisfy
the conditions (A.10) in the following analysis.

We shall discuss the chiral phase transition dynamics by including the effect of thermal
fluctuations. Thermal corrections can be calculated by using the standard imaginary time
formulation of the thermal field theory (see e.g. refs. [59, 146] for reviews). The thermal
effective potential is given by

V NJL
th = −8NcT

∫ d3k

(2π)3

∑
i=1,2

log
(

1 + exp
[
−Ei

k

T

])
,

Ei
k ≡

√
k2 + Θ(Λ3D − k)Λ2

3Dξ2
i , (A.11)

where k denotes the magnitude of the three-dimensional momentum, and Θ(x) is the
Heaviside step function. In the above expression of the thermal potential, we introduce a
3D momentum cutoff scale, following refs. [55, 56]. Although the thermal potential is UV
finite due to the Boltzmann suppression, this cutoff treatment may be required because we
introduce it for the zero-temperature potential.11 However, we stress that the first-order
chiral phase transition takes place for sufficiently large Fermi constants if we do not impose
this cutoff treatment for the finite-temperature effective potential. This conclusion is also
found in ref. [56].

In the numerical analysis, it is convenient to parameterize the total effective potential,
V NJL

tot = V NJL
zero + V NJL

th , as

V̄ NJL
tot (Ḡ1, Ḡ2, T̃ , ξ1, ξ2) ≡ V NJL

tot
NcΛ4

3D
(A.12)

= T̃ 4V̄ NJL
th + V̄ NJL

zero (Ḡ1, Ḡ2, ξ1, ξ2) ,

11For example, in a SU(3) gauge theory with fermions in the adjoint representation, it is found in ref. [55]
that this treatment is required to obtain a clear distinction between the confinement-deconfinement and
chiral phase transitions.
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where

V̄ NJL
th = − 4

π2

∫ ∞

0
dt t2

∑
i=1,2

log

1 + exp

−

√
t2 + Θ

(
1/T̃ − t

) ξ2
i

T̃ 2

 , (A.13)

with T̃ ≡ T/Λ3D. We numerically evaluate V̄ NJL
tot within the range of −50 ≤ Ḡi ≤ 50

(i = 1, 2), and investigate the temperature dependence of potential minima. We find that
there is no parameter region that leads to the first-order phase transition.

Let us comment on the result of the current NJL analysis by comparing that of the
analysis based on the argument of universality. In section 2.2, we have seen that the
fluctuation-induced first-order phase transition is expected to take place for the symmetry
breaking pattern U(2N) → Sp(2N) for N ≥ 2. For Ḡ2 = 0, the Lagrangian of the NJL
model (A.1) possesses the enlarged U(4) symmetry, but the order of the chiral phase
transition based on this model is not of the first order, which is in tension with the result
based on the universality argument. In the NJL analysis, one takes account of the effect of
thermal fluctuations of quarks on the chiral condensate as we have explicitly performed
here, while thermal fluctuations of the chiral condensate itself have not been considered
because the mean-field approximation is assumed. Indeed, the second-order phase transition
takes place in the analysis based on the argument of universality if we neglect fluctuations
of the chiral condensate. Therefore, in the NJL model, one may not capture the important
effect originated from fluctuations of the chiral condensate which plays a central role to
determine the order of the phase transition. It may be interesting to study the chiral phase
transition by using the quark-meson model [147, 148] because thermal fluctuations of the
chiral condensate, as well as fluctuations of quarks coupled to the chiral condensate, may
be adequately included by the functional RG method.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B
136 (1984) 183 [INSPIRE].

[2] D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136
(1984) 187 [INSPIRE].

[3] H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett. B 145 (1984)
216 [INSPIRE].

[4] M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys.
B 254 (1985) 299 [INSPIRE].

[5] R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in the proceedings of the
Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large
and the Small, Boulder U.S.A., June 1–26 (2009), p. 235–306
[DOI:10.1142/9789814327183_0005] [arXiv:1005.4269] [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(84)91177-8
https://doi.org/10.1016/0370-2693(84)91177-8
https://inspirehep.net/literature/192986
https://doi.org/10.1016/0370-2693(84)91178-X
https://doi.org/10.1016/0370-2693(84)91178-X
https://inspirehep.net/literature/193935
https://doi.org/10.1016/0370-2693(84)90341-1
https://doi.org/10.1016/0370-2693(84)90341-1
https://inspirehep.net/literature/203277
https://doi.org/10.1016/0550-3213(85)90221-4
https://doi.org/10.1016/0550-3213(85)90221-4
https://inspirehep.net/literature/205792
https://doi.org/10.1142/9789814327183_0005
https://arxiv.org/abs/1005.4269
https://inspirehep.net/literature/856065


J
H
E
P
0
9
(
2
0
2
3
)
0
5
3

[6] B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766
[arXiv:1401.2457] [INSPIRE].

[7] J. Barnard, T. Gherghetta and T.S. Ray, UV descriptions of composite Higgs models without
elementary scalars, JHEP 02 (2014) 002 [arXiv:1311.6562] [INSPIRE].

[8] G. Ferretti and D. Karateev, Fermionic UV completions of Composite Higgs models, JHEP
03 (2014) 077 [arXiv:1312.5330] [INSPIRE].

[9] M. Chala, G. Nardini and I. Sobolev, Unified explanation for dark matter and electroweak
baryogenesis with direct detection and gravitational wave signatures, Phys. Rev. D 94 (2016)
055006 [arXiv:1605.08663] [INSPIRE].

[10] M. Chala, M. Ramos and M. Spannowsky, Gravitational wave and collider probes of a triplet
Higgs sector with a low cutoff, Eur. Phys. J. C 79 (2019) 156 [arXiv:1812.01901] [INSPIRE].

[11] L. Bian, Y. Wu and K.-P. Xie, Electroweak phase transition with composite Higgs models:
calculability, gravitational waves and collider searches, JHEP 12 (2019) 028
[arXiv:1909.02014] [INSPIRE].

[12] M.T. Frandsen et al., Gravitational waves from SU(N)/Sp(N) composite Higgs models,
arXiv:2302.09104 [INSPIRE].

[13] T. Konstandin and G. Servant, Natural Cold Baryogenesis from Strongly Interacting
Electroweak Symmetry Breaking, JCAP 07 (2011) 024 [arXiv:1104.4793] [INSPIRE].

[14] J.R. Espinosa, B. Gripaios, T. Konstandin and F. Riva, Electroweak Baryogenesis in
Non-minimal Composite Higgs Models, JCAP 01 (2012) 012 [arXiv:1110.2876] [INSPIRE].

[15] S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Baryon Asymmetry from a
Composite Higgs Boson, Phys. Rev. Lett. 121 (2018) 131801 [arXiv:1803.08546] [INSPIRE].

[16] S. Bruggisser, B. Von Harling, O. Matsedonskyi and G. Servant, Electroweak Phase
Transition and Baryogenesis in Composite Higgs Models, JHEP 12 (2018) 099
[arXiv:1804.07314] [INSPIRE].

[17] K.-P. Xie, L. Bian and Y. Wu, Electroweak baryogenesis and gravitational waves in a
composite Higgs model with high dimensional fermion representations, JHEP 12 (2020) 047
[arXiv:2005.13552] [INSPIRE].

[18] S. Bruggisser, B. von Harling, O. Matsedonskyi and G. Servant, Status of electroweak
baryogenesis in minimal composite Higgs, JHEP 08 (2023) 012 [arXiv:2212.11953]
[INSPIRE].

[19] F. Coradeschi et al., A naturally light dilaton, JHEP 11 (2013) 057 [arXiv:1306.4601]
[INSPIRE].

[20] P. Baratella, A. Pomarol and F. Rompineve, The Supercooled Universe, JHEP 03 (2019) 100
[arXiv:1812.06996] [INSPIRE].

[21] K. Agashe et al., Cosmological Phase Transition of Spontaneous Confinement, JHEP 05
(2020) 086 [arXiv:1910.06238] [INSPIRE].

[22] C. Csáki, M. Geller, Z. Heller-Algazi and A. Ismail, Relevant dilaton stabilization, JHEP 06
(2023) 202 [arXiv:2301.10247] [INSPIRE].

[23] P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition,
JHEP 03 (2002) 051 [hep-th/0107141] [INSPIRE].

– 23 –

https://doi.org/10.1140/epjc/s10052-014-2766-x
https://arxiv.org/abs/1401.2457
https://inspirehep.net/literature/1276832
https://doi.org/10.1007/JHEP02(2014)002
https://arxiv.org/abs/1311.6562
https://inspirehep.net/literature/1266277
https://doi.org/10.1007/JHEP03(2014)077
https://doi.org/10.1007/JHEP03(2014)077
https://arxiv.org/abs/1312.5330
https://inspirehep.net/literature/1272866
https://doi.org/10.1103/PhysRevD.94.055006
https://doi.org/10.1103/PhysRevD.94.055006
https://arxiv.org/abs/1605.08663
https://inspirehep.net/literature/1466139
https://doi.org/10.1140/epjc/s10052-019-6655-1
https://arxiv.org/abs/1812.01901
https://inspirehep.net/literature/1707048
https://doi.org/10.1007/JHEP12(2019)028
https://arxiv.org/abs/1909.02014
https://inspirehep.net/literature/1752748
https://arxiv.org/abs/2302.09104
https://inspirehep.net/literature/2634753
https://doi.org/10.1088/1475-7516/2011/07/024
https://arxiv.org/abs/1104.4793
https://inspirehep.net/literature/897215
https://doi.org/10.1088/1475-7516/2012/01/012
https://arxiv.org/abs/1110.2876
https://inspirehep.net/literature/939635
https://doi.org/10.1103/PhysRevLett.121.131801
https://arxiv.org/abs/1803.08546
https://inspirehep.net/literature/1663962
https://doi.org/10.1007/JHEP12(2018)099
https://arxiv.org/abs/1804.07314
https://inspirehep.net/literature/1669277
https://doi.org/10.1007/JHEP12(2020)047
https://arxiv.org/abs/2005.13552
https://inspirehep.net/literature/1798342
https://doi.org/10.1007/JHEP08(2023)012
https://arxiv.org/abs/2212.11953
https://inspirehep.net/literature/2617482
https://doi.org/10.1007/JHEP11(2013)057
https://arxiv.org/abs/1306.4601
https://inspirehep.net/literature/1239192
https://doi.org/10.1007/JHEP03(2019)100
https://arxiv.org/abs/1812.06996
https://inspirehep.net/literature/1709797
https://doi.org/10.1007/JHEP05(2020)086
https://doi.org/10.1007/JHEP05(2020)086
https://arxiv.org/abs/1910.06238
https://inspirehep.net/literature/1758852
https://doi.org/10.1007/JHEP06(2023)202
https://doi.org/10.1007/JHEP06(2023)202
https://arxiv.org/abs/2301.10247
https://inspirehep.net/literature/2626419
https://doi.org/10.1088/1126-6708/2002/03/051
https://arxiv.org/abs/hep-th/0107141
https://inspirehep.net/literature/560107


J
H
E
P
0
9
(
2
0
2
3
)
0
5
3

[24] L. Randall and G. Servant, Gravitational waves from warped spacetime, JHEP 05 (2007) 054
[hep-ph/0607158] [INSPIRE].

[25] G. Nardini, M. Quiros and A. Wulzer, A Confining Strong First-Order Electroweak Phase
Transition, JHEP 09 (2007) 077 [arXiv:0706.3388] [INSPIRE].

[26] B. Hassanain, J. March-Russell and M. Schvellinger, Warped Deformed Throats have Faster
(Electroweak) Phase Transitions, JHEP 10 (2007) 089 [arXiv:0708.2060] [INSPIRE].

[27] T. Konstandin and G. Servant, Cosmological Consequences of Nearly Conformal Dynamics at
the TeV scale, JCAP 12 (2011) 009 [arXiv:1104.4791] [INSPIRE].

[28] D. Bunk, J. Hubisz and B. Jain, A Perturbative RS I Cosmological Phase Transition, Eur.
Phys. J. C 78 (2018) 78 [arXiv:1705.00001] [INSPIRE].

[29] T. Konstandin, G. Nardini and M. Quiros, Gravitational Backreaction Effects on the
Holographic Phase Transition, Phys. Rev. D 82 (2010) 083513 [arXiv:1007.1468] [INSPIRE].

[30] B.M. Dillon, B.K. El-Menoufi, S.J. Huber and J.P. Manuel, Rapid holographic phase
transition with brane-localized curvature, Phys. Rev. D 98 (2018) 086005
[arXiv:1708.02953] [INSPIRE].

[31] B. von Harling and G. Servant, QCD-induced Electroweak Phase Transition, JHEP 01 (2018)
159 [arXiv:1711.11554] [INSPIRE].

[32] K. Fujikura, Y. Nakai and M. Yamada, A more attractive scheme for radion stabilization and
supercooled phase transition, JHEP 02 (2020) 111 [arXiv:1910.07546] [INSPIRE].

[33] K. Agashe et al., Phase Transitions from the Fifth Dimension, JHEP 02 (2021) 051
[arXiv:2010.04083] [INSPIRE].

[34] C. Eröncel et al., New Horizons in the Holographic Conformal Phase Transition,
arXiv:2305.03773 [INSPIRE].

[35] J. Erdmenger, N. Evans, W. Porod and K.S. Rigatos, Gauge/gravity dynamics for composite
Higgs models and the top mass, Phys. Rev. Lett. 126 (2021) 071602 [arXiv:2009.10737]
[INSPIRE].

[36] J. Erdmenger, N. Evans, W. Porod and K.S. Rigatos, Gauge/gravity dual dynamics for the
strongly coupled sector of composite Higgs models, JHEP 02 (2021) 058 [arXiv:2010.10279]
[INSPIRE].

[37] M.S. Turner and F. Wilczek, Relic gravitational waves and extended inflation, Phys. Rev.
Lett. 65 (1990) 3080 [INSPIRE].

[38] M.S. Turner, E.J. Weinberg and L.M. Widrow, Bubble nucleation in first order inflation and
other cosmological phase transitions, Phys. Rev. D 46 (1992) 2384 [INSPIRE].

[39] A. Kosowsky, M.S. Turner and R. Watkins, Gravitational waves from first order cosmological
phase transitions, Phys. Rev. Lett. 69 (1992) 2026 [INSPIRE].

[40] A. Kosowsky and M.S. Turner, Gravitational radiation from colliding vacuum bubbles:
envelope approximation to many bubble collisions, Phys. Rev. D 47 (1993) 4372
[astro-ph/9211004] [INSPIRE].

[41] M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the
sound of a first order phase transition, Phys. Rev. Lett. 112 (2014) 041301
[arXiv:1304.2433] [INSPIRE].

– 24 –

https://doi.org/10.1088/1126-6708/2007/05/054
https://arxiv.org/abs/hep-ph/0607158
https://inspirehep.net/literature/721602
https://doi.org/10.1088/1126-6708/2007/09/077
https://arxiv.org/abs/0706.3388
https://inspirehep.net/literature/753925
https://doi.org/10.1088/1126-6708/2007/10/089
https://arxiv.org/abs/0708.2060
https://inspirehep.net/literature/758396
https://doi.org/10.1088/1475-7516/2011/12/009
https://arxiv.org/abs/1104.4791
https://inspirehep.net/literature/897216
https://doi.org/10.1140/epjc/s10052-018-5529-2
https://doi.org/10.1140/epjc/s10052-018-5529-2
https://arxiv.org/abs/1705.00001
https://inspirehep.net/literature/1597361
https://doi.org/10.1103/PhysRevD.82.083513
https://arxiv.org/abs/1007.1468
https://inspirehep.net/literature/861078
https://doi.org/10.1103/PhysRevD.98.086005
https://arxiv.org/abs/1708.02953
https://inspirehep.net/literature/1615476
https://doi.org/10.1007/JHEP01(2018)159
https://doi.org/10.1007/JHEP01(2018)159
https://arxiv.org/abs/1711.11554
https://inspirehep.net/literature/1639887
https://doi.org/10.1007/JHEP02(2020)111
https://arxiv.org/abs/1910.07546
https://inspirehep.net/literature/1759521
https://doi.org/10.1007/JHEP02(2021)051
https://arxiv.org/abs/2010.04083
https://inspirehep.net/literature/1821985
https://arxiv.org/abs/2305.03773
https://inspirehep.net/literature/2657699
https://doi.org/10.1103/PhysRevLett.126.071602
https://arxiv.org/abs/2009.10737
https://inspirehep.net/literature/1818674
https://doi.org/10.1007/JHEP02(2021)058
https://arxiv.org/abs/2010.10279
https://inspirehep.net/literature/1824042
https://doi.org/10.1103/PhysRevLett.65.3080
https://doi.org/10.1103/PhysRevLett.65.3080
https://inspirehep.net/literature/299255
https://doi.org/10.1103/PhysRevD.46.2384
https://inspirehep.net/literature/336371
https://doi.org/10.1103/PhysRevLett.69.2026
https://inspirehep.net/literature/336327
https://doi.org/10.1103/PhysRevD.47.4372
https://arxiv.org/abs/astro-ph/9211004
https://inspirehep.net/literature/340560
https://doi.org/10.1103/PhysRevLett.112.041301
https://arxiv.org/abs/1304.2433
https://inspirehep.net/literature/1227613


J
H
E
P
0
9
(
2
0
2
3
)
0
5
3

[42] J.T. Giblin and J.B. Mertens, Gravitional radiation from first-order phase transitions in the
presence of a fluid, Phys. Rev. D 90 (2014) 023532 [arXiv:1405.4005] [INSPIRE].

[43] M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Numerical simulations of
acoustically generated gravitational waves at a first order phase transition, Phys. Rev. D 92
(2015) 123009 [arXiv:1504.03291] [INSPIRE].

[44] M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Shape of the acoustic
gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96 (2017)
103520 [Erratum ibid. 101 (2020) 089902] [arXiv:1704.05871] [INSPIRE].

[45] M. Kamionkowski, A. Kosowsky and M.S. Turner, Gravitational radiation from first order
phase transitions, Phys. Rev. D 49 (1994) 2837 [astro-ph/9310044] [INSPIRE].

[46] A. Kosowsky, A. Mack and T. Kahniashvili, Gravitational radiation from cosmological
turbulence, Phys. Rev. D 66 (2002) 024030 [astro-ph/0111483] [INSPIRE].

[47] C. Caprini and R. Durrer, Gravitational waves from stochastic relativistic sources: Primordial
turbulence and magnetic fields, Phys. Rev. D 74 (2006) 063521 [astro-ph/0603476]
[INSPIRE].

[48] C. Caprini, R. Durrer and G. Servant, The stochastic gravitational wave background from
turbulence and magnetic fields generated by a first-order phase transition, JCAP 12 (2009)
024 [arXiv:0909.0622] [INSPIRE].

[49] G. Gogoberidze, T. Kahniashvili and A. Kosowsky, The Spectrum of Gravitational Radiation
from Primordial Turbulence, Phys. Rev. D 76 (2007) 083002 [arXiv:0705.1733] [INSPIRE].

[50] P. Niksa, M. Schlederer and G. Sigl, Gravitational Waves produced by Compressible MHD
Turbulence from Cosmological Phase Transitions, Class. Quant. Grav. 35 (2018) 144001
[arXiv:1803.02271] [INSPIRE].

[51] Y. Bai, A.J. Long and S. Lu, Dark Quark Nuggets, Phys. Rev. D 99 (2019) 055047
[arXiv:1810.04360] [INSPIRE].

[52] L. Heurtier and H. Partouche, Spontaneous Freeze Out of Dark Matter From an Early
Thermal Phase Transition, Phys. Rev. D 101 (2020) 043527 [arXiv:1912.02828] [INSPIRE].

[53] M.J. Baker, J. Kopp and A.J. Long, Filtered Dark Matter at a First Order Phase Transition,
Phys. Rev. Lett. 125 (2020) 151102 [arXiv:1912.02830] [INSPIRE].

[54] P. Schwaller, Gravitational Waves from a Dark Phase Transition, Phys. Rev. Lett. 115 (2015)
181101 [arXiv:1504.07263] [INSPIRE].

[55] T. Kahara, M. Ruggieri and K. Tuominen, Deconfinement vs. chiral symmetry and higher
representation matter, Phys. Rev. D 85 (2012) 094020 [arXiv:1202.1769] [INSPIRE].

[56] M. Reichert, F. Sannino, Z.-W. Wang and C. Zhang, Dark confinement and chiral phase
transitions: gravitational waves vs matter representations, JHEP 01 (2022) 003
[arXiv:2109.11552] [INSPIRE].

[57] Z. Kang, J. Zhu and S. Matsuzaki, Dark confinement-deconfinement phase transition: a
roadmap from Polyakov loop models to gravitational waves, JHEP 09 (2021) 060
[arXiv:2101.03795] [INSPIRE].

[58] L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9 (1974)
3320 [INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevD.90.023532
https://arxiv.org/abs/1405.4005
https://inspirehep.net/literature/1296792
https://doi.org/10.1103/PhysRevD.92.123009
https://doi.org/10.1103/PhysRevD.92.123009
https://arxiv.org/abs/1504.03291
https://inspirehep.net/literature/1359270
https://doi.org/10.1103/PhysRevD.96.103520
https://doi.org/10.1103/PhysRevD.96.103520
https://arxiv.org/abs/1704.05871
https://inspirehep.net/literature/1593719
https://doi.org/10.1103/PhysRevD.49.2837
https://arxiv.org/abs/astro-ph/9310044
https://inspirehep.net/literature/359538
https://doi.org/10.1103/PhysRevD.66.024030
https://arxiv.org/abs/astro-ph/0111483
https://inspirehep.net/literature/567173
https://doi.org/10.1103/PhysRevD.74.063521
https://arxiv.org/abs/astro-ph/0603476
https://inspirehep.net/literature/712624
https://doi.org/10.1088/1475-7516/2009/12/024
https://doi.org/10.1088/1475-7516/2009/12/024
https://arxiv.org/abs/0909.0622
https://inspirehep.net/literature/830261
https://doi.org/10.1103/PhysRevD.76.083002
https://arxiv.org/abs/0705.1733
https://inspirehep.net/literature/750435
https://doi.org/10.1088/1361-6382/aac89c
https://arxiv.org/abs/1803.02271
https://inspirehep.net/literature/1658800
https://doi.org/10.1103/PhysRevD.99.055047
https://arxiv.org/abs/1810.04360
https://inspirehep.net/literature/1697698
https://doi.org/10.1103/PhysRevD.101.043527
https://arxiv.org/abs/1912.02828
https://inspirehep.net/literature/1768930
https://doi.org/10.1103/PhysRevLett.125.151102
https://arxiv.org/abs/1912.02830
https://inspirehep.net/literature/1768919
https://doi.org/10.1103/PhysRevLett.115.181101
https://doi.org/10.1103/PhysRevLett.115.181101
https://arxiv.org/abs/1504.07263
https://inspirehep.net/literature/1365097
https://doi.org/10.1103/PhysRevD.85.094020
https://arxiv.org/abs/1202.1769
https://inspirehep.net/literature/1088407
https://doi.org/10.1007/JHEP01(2022)003
https://arxiv.org/abs/2109.11552
https://inspirehep.net/literature/1927655
https://doi.org/10.1007/JHEP09(2021)060
https://arxiv.org/abs/2101.03795
https://inspirehep.net/literature/1840237
https://doi.org/10.1103/PhysRevD.9.3320
https://doi.org/10.1103/PhysRevD.9.3320
https://inspirehep.net/literature/868


J
H
E
P
0
9
(
2
0
2
3
)
0
5
3

[59] M. Quiros, Finite temperature field theory and phase transitions, in the proceedings of the
ICTP Summer School in High-Energy Physics and Cosmology, Trieste Italy, June 29–July 17
(1998), p. 187–259 [hep-ph/9901312] [INSPIRE].

[60] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, The Electroweak phase
transition: A Nonperturbative analysis, Nucl. Phys. B 466 (1996) 189 [hep-lat/9510020]
[INSPIRE].

[61] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, A Nonperturbative
analysis of the finite T phase transition in SU(2) × U(1) electroweak theory, Nucl. Phys. B
493 (1997) 413 [hep-lat/9612006] [INSPIRE].

[62] K. Rummukainen et al., The Universality class of the electroweak theory, Nucl. Phys. B 532
(1998) 283 [hep-lat/9805013] [INSPIRE].

[63] Y. Aoki et al., The Order of the quantum chromodynamics transition predicted by the
standard model of particle physics, Nature 443 (2006) 675 [hep-lat/0611014] [INSPIRE].

[64] K. Yonekura, Anomaly matching in QCD thermal phase transition, JHEP 05 (2019) 062
[arXiv:1901.08188] [INSPIRE].

[65] J.L. Cardy, Scaling and renormalization in statistical physics, Cambridge Univeristy Press
(1996) [INSPIRE] [DOI:10.1017/cbo9781316036440].

[66] R.D. Pisarski and F. Wilczek, Remarks on the Chiral Phase Transition in Chromodynamics,
Phys. Rev. D 29 (1984) 338 [INSPIRE].

[67] Y. Nakayama and T. Ohtsuki, Bootstrapping phase transitions in QCD and frustrated spin
systems, Phys. Rev. D 91 (2015) 021901 [arXiv:1407.6195] [INSPIRE].

[68] J. Wirstam, Chiral symmetry in two color QCD at finite temperature, Phys. Rev. D 62 (2000)
045012 [hep-ph/9912446] [INSPIRE].

[69] F. Basile, A. Pelissetto and E. Vicari, The Finite-temperature chiral transition in QCD with
adjoint fermions, JHEP 02 (2005) 044 [hep-th/0412026] [INSPIRE].

[70] K. Holland, M. Pepe and U.J. Wiese, The Deconfinement phase transition of Sp(2) and Sp(3)
Yang-Mills theories in (2 + 1)-dimensions and (3 + 1)-dimensions, Nucl. Phys. B 694 (2004)
35 [hep-lat/0312022] [INSPIRE].

[71] J. Braun, A. Eichhorn, H. Gies and J.M. Pawlowski, On the Nature of the Phase Transition
in SU(N), Sp(2) and E(7) Yang-Mills theory, Eur. Phys. J. C 70 (2010) 689
[arXiv:1007.2619] [INSPIRE].

[72] R.D. Pisarski, Quark gluon plasma as a condensate of SU(3) Wilson lines, Phys. Rev. D 62
(2000) 111501 [hep-ph/0006205] [INSPIRE].

[73] R.D. Pisarski, Tests of the Polyakov loops model, Nucl. Phys. A 702 (2002) 151
[hep-ph/0112037] [INSPIRE].

[74] S. Chang, A ‘Littlest Higgs’ model with custodial SU(2) symmetry, JHEP 12 (2003) 057
[hep-ph/0306034] [INSPIRE].

[75] E. Brezin, D.J. Wallace and K. Wilson, Feynman-Graph Expansion for the Equation of State
near the Critical Point, Phys. Rev. B 7 (1973) 232 [INSPIRE].

[76] P.H. Ginsparg, First Order and Second Order Phase Transitions in Gauge Theories at Finite
Temperature, Nucl. Phys. B 170 (1980) 388 [INSPIRE].

– 26 –

https://arxiv.org/abs/hep-ph/9901312
https://inspirehep.net/literature/494058
https://doi.org/10.1016/0550-3213(96)00052-1
https://arxiv.org/abs/hep-lat/9510020
https://inspirehep.net/literature/400614
https://doi.org/10.1016/S0550-3213(97)00164-8
https://doi.org/10.1016/S0550-3213(97)00164-8
https://arxiv.org/abs/hep-lat/9612006
https://inspirehep.net/literature/427042
https://doi.org/10.1016/S0550-3213(98)00494-5
https://doi.org/10.1016/S0550-3213(98)00494-5
https://arxiv.org/abs/hep-lat/9805013
https://inspirehep.net/literature/470422
https://doi.org/10.1038/nature05120
https://arxiv.org/abs/hep-lat/0611014
https://inspirehep.net/literature/731401
https://doi.org/10.1007/JHEP05(2019)062
https://arxiv.org/abs/1901.08188
https://inspirehep.net/literature/1716550
https://inspirehep.net/literature/429658
https://doi.org/10.1017/cbo9781316036440
https://doi.org/10.1103/PhysRevD.29.338
https://inspirehep.net/literature/14255
https://doi.org/10.1103/PhysRevD.91.021901
https://arxiv.org/abs/1407.6195
https://inspirehep.net/literature/1307428
https://doi.org/10.1103/PhysRevD.62.045012
https://doi.org/10.1103/PhysRevD.62.045012
https://arxiv.org/abs/hep-ph/9912446
https://inspirehep.net/literature/512287
https://doi.org/10.1088/1126-6708/2005/02/044
https://arxiv.org/abs/hep-th/0412026
https://inspirehep.net/literature/665907
https://doi.org/10.1016/j.nuclphysb.2004.06.026
https://doi.org/10.1016/j.nuclphysb.2004.06.026
https://arxiv.org/abs/hep-lat/0312022
https://inspirehep.net/literature/635545
https://doi.org/10.1140/epjc/s10052-010-1485-1
https://arxiv.org/abs/1007.2619
https://inspirehep.net/literature/861349
https://doi.org/10.1103/PhysRevD.62.111501
https://doi.org/10.1103/PhysRevD.62.111501
https://arxiv.org/abs/hep-ph/0006205
https://inspirehep.net/literature/528916
https://doi.org/10.1016/S0375-9474(02)00699-1
https://arxiv.org/abs/hep-ph/0112037
https://inspirehep.net/literature/567720
https://doi.org/10.1088/1126-6708/2003/12/057
https://arxiv.org/abs/hep-ph/0306034
https://inspirehep.net/literature/620287
https://doi.org/10.1103/PhysRevB.7.232
https://inspirehep.net/literature/76373
https://doi.org/10.1016/0550-3213(80)90418-6
https://inspirehep.net/literature/152583


J
H
E
P
0
9
(
2
0
2
3
)
0
5
3

[77] K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B
719 (2005) 165 [hep-ph/0412089] [INSPIRE].

[78] E. Bertuzzo, T.S. Ray, H. de Sandes and C.A. Savoy, On Composite Two Higgs Doublet
Models, JHEP 05 (2013) 153 [arXiv:1206.2623] [INSPIRE].

[79] E. Katz, A.E. Nelson and D.G.E. Walker, The Intermediate Higgs, JHEP 08 (2005) 074
[hep-ph/0504252] [INSPIRE].

[80] B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model,
JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].

[81] J. Galloway, J.A. Evans, M.A. Luty and R.A. Tacchi, Minimal Conformal Technicolor and
Precision Electroweak Tests, JHEP 10 (2010) 086 [arXiv:1001.1361] [INSPIRE].

[82] I. Low, W. Skiba and D. Tucker-Smith, Little Higgses from an antisymmetric condensate,
Phys. Rev. D 66 (2002) 072001 [hep-ph/0207243] [INSPIRE].

[83] N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The Littlest Higgs, JHEP 07
(2002) 034 [hep-ph/0206021] [INSPIRE].

[84] L. Vecchi, The Natural Composite Higgs, arXiv:1304.4579 [INSPIRE].

[85] K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3-D physics and the
electroweak phase transition: Perturbation theory, Nucl. Phys. B 425 (1994) 67
[hep-ph/9404201] [INSPIRE].

[86] S.-Z. Huang and M. Lissia, Dimensional reduction at high temperature for fermions, Phys.
Lett. B 349 (1995) 484 [hep-ph/9503304] [INSPIRE].

[87] K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Generic rules for high
temperature dimensional reduction and their application to the standard model, Nucl. Phys. B
458 (1996) 90 [hep-ph/9508379] [INSPIRE].

[88] L. Niemi et al., Electroweak phase transition in the real triplet extension of the SM:
Dimensional reduction, Phys. Rev. D 100 (2019) 035002 [arXiv:1802.10500] [INSPIRE].

[89] P.B. Arnold and O. Espinosa, The Effective potential and first order phase transitions:
Beyond leading-order, Phys. Rev. D 47 (1993) 3546 [Erratum ibid. 50 (1994) 6662]
[hep-ph/9212235] [INSPIRE].

[90] P.B. Arnold, The Electroweak phase transition: Part 1. Review of perturbative methods, in
the proceedings of the 8th International Seminar on High-energy Physics, Vladimir Russian
Federation, May 11–18 (1994) [hep-ph/9410294] [INSPIRE].

[91] S. Weinberg, Gauge and Global Symmetries at High Temperature, Phys. Rev. D 9 (1974) 3357
[INSPIRE].

[92] K.G. Wilson, Feynman graph expansion for critical exponents, Phys. Rev. Lett. 28 (1972) 548
[INSPIRE].

[93] H.H. Iacobson and D.J. Amit, First Order Transitions Induced by Fluctuations in General ϕ4

Theories, Annals Phys. 133 (1981) 57 [INSPIRE].

[94] M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley,
Reading, U.S.A. (1995) [INSPIRE].

[95] K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28
(1972) 240 [INSPIRE].

– 27 –

https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://arxiv.org/abs/hep-ph/0412089
https://inspirehep.net/literature/666275
https://doi.org/10.1007/JHEP05(2013)153
https://arxiv.org/abs/1206.2623
https://inspirehep.net/literature/1118064
https://doi.org/10.1088/1126-6708/2005/08/074
https://arxiv.org/abs/hep-ph/0504252
https://inspirehep.net/literature/681532
https://doi.org/10.1088/1126-6708/2009/04/070
https://arxiv.org/abs/0902.1483
https://inspirehep.net/literature/812891
https://doi.org/10.1007/JHEP10(2010)086
https://arxiv.org/abs/1001.1361
https://inspirehep.net/literature/842453
https://doi.org/10.1103/PhysRevD.66.072001
https://arxiv.org/abs/hep-ph/0207243
https://inspirehep.net/literature/590938
https://doi.org/10.1088/1126-6708/2002/07/034
https://doi.org/10.1088/1126-6708/2002/07/034
https://arxiv.org/abs/hep-ph/0206021
https://inspirehep.net/literature/587851
https://arxiv.org/abs/1304.4579
https://inspirehep.net/literature/1228527
https://doi.org/10.1016/0550-3213(94)90173-2
https://arxiv.org/abs/hep-ph/9404201
https://inspirehep.net/literature/372499
https://doi.org/10.1016/0370-2693(95)00296-W
https://doi.org/10.1016/0370-2693(95)00296-W
https://arxiv.org/abs/hep-ph/9503304
https://inspirehep.net/literature/393387
https://doi.org/10.1016/0550-3213(95)00549-8
https://doi.org/10.1016/0550-3213(95)00549-8
https://arxiv.org/abs/hep-ph/9508379
https://inspirehep.net/literature/398724
https://doi.org/10.1103/PhysRevD.100.035002
https://arxiv.org/abs/1802.10500
https://inspirehep.net/literature/1657949
https://doi.org/10.1103/PhysRevD.47.3546
https://arxiv.org/abs/hep-ph/9212235
https://inspirehep.net/literature/342114
https://arxiv.org/abs/hep-ph/9410294
https://inspirehep.net/literature/378346
https://doi.org/10.1103/PhysRevD.9.3357
https://inspirehep.net/literature/827
https://doi.org/10.1103/PhysRevLett.28.548
https://inspirehep.net/literature/67307
https://doi.org/10.1016/0003-4916(81)90241-4
https://inspirehep.net/literature/171194
https://inspirehep.net/literature/407703
https://doi.org/10.1103/PhysRevLett.28.240
https://doi.org/10.1103/PhysRevLett.28.240
https://inspirehep.net/literature/67609


J
H
E
P
0
9
(
2
0
2
3
)
0
5
3

[96] E. Brezin and D.J. Wallace, Critical Behavior of a Classical Heisenberg Ferromagnet with
Many Degrees of Freedom, Phys. Rev. B 7 (1973) 1967 [INSPIRE].

[97] M.E. Peskin, The Alignment of the Vacuum in Theories of Technicolor, Nucl. Phys. B 175
(1980) 197 [INSPIRE].

[98] L.-F. Li, Group Theory of the Spontaneously Broken Gauge Symmetries, Phys. Rev. D 9
(1974) 1723 [INSPIRE].

[99] V. Elias, S. Eliezer and A.R. Swift, Comment on ‘Group Theory of the Spontaneously Broken
Gauge Symmetries’, Phys. Rev. D 12 (1975) 3356 [INSPIRE].

[100] J. Thaler, Little technicolor, JHEP 07 (2005) 024 [hep-ph/0502175] [INSPIRE].

[101] H. Georgi, A Tool Kit for Builders of Composite Models, Nucl. Phys. B 266 (1986) 274
[INSPIRE].

[102] S. El-Showk et al., Solving the 3D Ising Model with the Conformal Bootstrap, Phys. Rev. D
86 (2012) 025022 [arXiv:1203.6064] [INSPIRE].

[103] A.M. Polyakov, Thermal Properties of Gauge Fields and Quark Liberation, Phys. Lett. B 72
(1978) 477 [INSPIRE].

[104] L.D. McLerran and B. Svetitsky, A Monte Carlo Study of SU(2) Yang-Mills Theory at Finite
Temperature, Phys. Lett. B 98 (1981) 195 [INSPIRE].

[105] L.D. McLerran and B. Svetitsky, Quark Liberation at High Temperature: A Monte Carlo
Study of SU(2) Gauge Theory, Phys. Rev. D 24 (1981) 450 [INSPIRE].

[106] B. Svetitsky and L.G. Yaffe, Critical Behavior at Finite Temperature Confinement
Transitions, Nucl. Phys. B 210 (1982) 423 [INSPIRE].

[107] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP
02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

[108] R.V. Gavai, A. Gocksch and M. Ogilvie, The Effective Action in Monte Carlo Calculations
With Dynamical Fermions, Phys. Rev. Lett. 56 (1986) 815 [INSPIRE].

[109] A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D
85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

[110] G. Cacciapaglia and A. Parolini, Light ’t Hooft top partners, Phys. Rev. D 93 (2016) 071701
[arXiv:1511.05163] [INSPIRE].

[111] G. ’t Hooft, A Two-Dimensional Model for Mesons, Nucl. Phys. B 75 (1974) 461 [INSPIRE].

[112] S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press,
Cambridge, U.K. (1985) [DOI:10.1017/CBO9780511565045] [INSPIRE].

[113] M.M. Anber, E. Poppitz and B. Teeple, Deconfinement and continuity between thermal and
(super) Yang-Mills theory for all gauge groups, JHEP 09 (2014) 040 [arXiv:1406.1199]
[INSPIRE].

[114] J. Fingberg, U.M. Heller and F. Karsch, Scaling and asymptotic scaling in the SU(2) gauge
theory, Nucl. Phys. B 392 (1993) 493 [hep-lat/9208012] [INSPIRE].

[115] B. Lucini, M. Teper and U. Wenger, The Deconfining phase transition in SU(Nc) gauge
theories, Nucl. Phys. B Proc. Suppl. 119 (2003) 532 [hep-lat/0208080] [INSPIRE].

[116] B. Lucini, M. Teper and U. Wenger, The High temperature phase transition in SU(N) gauge
theories, JHEP 01 (2004) 061 [hep-lat/0307017] [INSPIRE].

– 28 –

https://doi.org/10.1103/PhysRevB.7.1967
https://inspirehep.net/literature/76450
https://doi.org/10.1016/0550-3213(80)90051-6
https://doi.org/10.1016/0550-3213(80)90051-6
https://inspirehep.net/literature/153619
https://doi.org/10.1103/PhysRevD.9.1723
https://doi.org/10.1103/PhysRevD.9.1723
https://inspirehep.net/literature/81109
https://doi.org/10.1103/PhysRevD.12.3356
https://inspirehep.net/literature/105013
https://doi.org/10.1088/1126-6708/2005/07/024
https://arxiv.org/abs/hep-ph/0502175
https://inspirehep.net/literature/677086
https://doi.org/10.1016/0550-3213(86)90092-1
https://inspirehep.net/literature/216843
https://doi.org/10.1103/PhysRevD.86.025022
https://doi.org/10.1103/PhysRevD.86.025022
https://arxiv.org/abs/1203.6064
https://inspirehep.net/literature/1095260
https://doi.org/10.1016/0370-2693(78)90737-2
https://doi.org/10.1016/0370-2693(78)90737-2
https://inspirehep.net/literature/134110
https://doi.org/10.1016/0370-2693(81)90986-2
https://inspirehep.net/literature/154100
https://doi.org/10.1103/PhysRevD.24.450
https://inspirehep.net/literature/164428
https://doi.org/10.1016/0550-3213(82)90172-9
https://inspirehep.net/literature/177233
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://arxiv.org/abs/1412.5148
https://inspirehep.net/literature/1334564
https://doi.org/10.1103/PhysRevLett.56.815
https://inspirehep.net/literature/17618
https://doi.org/10.1103/PhysRevD.85.054503
https://doi.org/10.1103/PhysRevD.85.054503
https://arxiv.org/abs/1111.1710
https://inspirehep.net/literature/944699
https://doi.org/10.1103/PhysRevD.93.071701
https://arxiv.org/abs/1511.05163
https://inspirehep.net/literature/1405104
https://doi.org/10.1016/0550-3213(74)90088-1
https://inspirehep.net/literature/89056
https://doi.org/10.1017/CBO9780511565045
https://inspirehep.net/literature/1681171
https://doi.org/10.1007/JHEP09(2014)040
https://arxiv.org/abs/1406.1199
https://inspirehep.net/literature/1299309
https://doi.org/10.1016/0550-3213(93)90682-F
https://arxiv.org/abs/hep-lat/9208012
https://inspirehep.net/literature/337368
https://doi.org/10.1016/S0920-5632(03)01605-0
https://arxiv.org/abs/hep-lat/0208080
https://inspirehep.net/literature/594009
https://doi.org/10.1088/1126-6708/2004/01/061
https://arxiv.org/abs/hep-lat/0307017
https://inspirehep.net/literature/623106


J
H
E
P
0
9
(
2
0
2
3
)
0
5
3

[117] M. Panero, Thermodynamics of the QCD plasma and the large-N limit, Phys. Rev. Lett. 103
(2009) 232001 [arXiv:0907.3719] [INSPIRE].

[118] S. Datta and S. Gupta, Continuum Thermodynamics of the SU(Nc) gluon plasma, Phys. Rev.
D 82 (2010) 114505 [arXiv:1006.0938] [INSPIRE].

[119] B. Lucini, A. Rago and E. Rinaldi, SU(Nc) gauge theories at deconfinement, Phys. Lett. B
712 (2012) 279 [arXiv:1202.6684] [INSPIRE].

[120] O. Aharony et al., A First order deconfinement transition in large N Yang-Mills theory on a
small S3, Phys. Rev. D 71 (2005) 125018 [hep-th/0502149] [INSPIRE].

[121] E. Poppitz, T. Schäfer and M. Ünsal, Universal mechanism of (semi-classical) deconfinement
and theta-dependence for all simple groups, JHEP 03 (2013) 087 [arXiv:1212.1238]
[INSPIRE].

[122] C. Lovelace, Universality at Large N, Nucl. Phys. B 201 (1982) 333 [INSPIRE].

[123] W.-C. Huang, M. Reichert, F. Sannino and Z.-W. Wang, Testing the dark SU(N) Yang-Mills
theory confined landscape: From the lattice to gravitational waves, Phys. Rev. D 104 (2021)
035005 [arXiv:2012.11614] [INSPIRE].

[124] E. Morgante, N. Ramberg and P. Schwaller, Gravitational waves from dark SU(3) Yang-Mills
theory, Phys. Rev. D 107 (2023) 036010 [arXiv:2210.11821] [INSPIRE].

[125] C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves
from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].

[126] C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with
LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].

[127] M.B. Hindmarsh, M. Lüben, J. Lumma and M. Pauly, Phase transitions in the early universe,
SciPost Phys. Lect. Notes 24 (2021) 1 [arXiv:2008.09136] [INSPIRE].

[128] P. Athron et al., Cosmological phase transitions: from perturbative particle physics to
gravitational waves, arXiv:2305.02357 [INSPIRE].

[129] A.D. Linde, Fate of the False Vacuum at Finite Temperature: Theory and Applications, Phys.
Lett. B 100 (1981) 37 [INSPIRE].

[130] L. Husdal, On Effective Degrees of Freedom in the Early Universe, Galaxies 4 (2016) 78
[arXiv:1609.04979] [INSPIRE].

[131] D. Bodeker and G.D. Moore, Can electroweak bubble walls run away?, JCAP 05 (2009) 009
[arXiv:0903.4099] [INSPIRE].

[132] D. Bodeker and G.D. Moore, Electroweak Bubble Wall Speed Limit, JCAP 05 (2017) 025
[arXiv:1703.08215] [INSPIRE].

[133] S. Höche et al., Towards an all-orders calculation of the electroweak bubble wall velocity,
JCAP 03 (2021) 009 [arXiv:2007.10343] [INSPIRE].

[134] Y. Gouttenoire, R. Jinno and F. Sala, Friction pressure on relativistic bubble walls, JHEP 05
(2022) 004 [arXiv:2112.07686] [INSPIRE].

[135] J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy Budget of Cosmological
First-order Phase Transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].

[136] J. Ellis, M. Lewicki and J.M. No, On the Maximal Strength of a First-Order Electroweak
Phase Transition and its Gravitational Wave Signal, JCAP 04 (2019) 003
[arXiv:1809.08242] [INSPIRE].

– 29 –

https://doi.org/10.1103/PhysRevLett.103.232001
https://doi.org/10.1103/PhysRevLett.103.232001
https://arxiv.org/abs/0907.3719
https://inspirehep.net/literature/826337
https://doi.org/10.1103/PhysRevD.82.114505
https://doi.org/10.1103/PhysRevD.82.114505
https://arxiv.org/abs/1006.0938
https://inspirehep.net/literature/857113
https://doi.org/10.1016/j.physletb.2012.04.070
https://doi.org/10.1016/j.physletb.2012.04.070
https://arxiv.org/abs/1202.6684
https://inspirehep.net/literature/1091085
https://doi.org/10.1103/PhysRevD.71.125018
https://arxiv.org/abs/hep-th/0502149
https://inspirehep.net/literature/676951
https://doi.org/10.1007/JHEP03(2013)087
https://arxiv.org/abs/1212.1238
https://inspirehep.net/literature/1205890
https://doi.org/10.1016/0550-3213(82)90435-7
https://inspirehep.net/literature/176454
https://doi.org/10.1103/PhysRevD.104.035005
https://doi.org/10.1103/PhysRevD.104.035005
https://arxiv.org/abs/2012.11614
https://inspirehep.net/literature/1901341
https://doi.org/10.1103/PhysRevD.107.036010
https://arxiv.org/abs/2210.11821
https://inspirehep.net/literature/2168965
https://doi.org/10.1088/1475-7516/2016/04/001
https://arxiv.org/abs/1512.06239
https://inspirehep.net/literature/1410769
https://doi.org/10.1088/1475-7516/2020/03/024
https://arxiv.org/abs/1910.13125
https://inspirehep.net/literature/1762047
https://doi.org/10.21468/SciPostPhysLectNotes.24
https://arxiv.org/abs/2008.09136
https://inspirehep.net/literature/1812767
https://arxiv.org/abs/2305.02357
https://inspirehep.net/literature/2656620
https://doi.org/10.1016/0370-2693(81)90281-1
https://doi.org/10.1016/0370-2693(81)90281-1
https://inspirehep.net/literature/154779
https://doi.org/10.3390/galaxies4040078
https://arxiv.org/abs/1609.04979
https://inspirehep.net/literature/1486857
https://doi.org/10.1088/1475-7516/2009/05/009
https://arxiv.org/abs/0903.4099
https://inspirehep.net/literature/816137
https://doi.org/10.1088/1475-7516/2017/05/025
https://arxiv.org/abs/1703.08215
https://inspirehep.net/literature/1519171
https://doi.org/10.1088/1475-7516/2021/03/009
https://arxiv.org/abs/2007.10343
https://inspirehep.net/literature/1808095
https://doi.org/10.1007/JHEP05(2022)004
https://doi.org/10.1007/JHEP05(2022)004
https://arxiv.org/abs/2112.07686
https://inspirehep.net/literature/1991154
https://doi.org/10.1088/1475-7516/2010/06/028
https://arxiv.org/abs/1004.4187
https://inspirehep.net/literature/852891
https://doi.org/10.1088/1475-7516/2019/04/003
https://arxiv.org/abs/1809.08242
https://inspirehep.net/literature/1695199


J
H
E
P
0
9
(
2
0
2
3
)
0
5
3

[137] J. Ellis, M. Lewicki, J.M. No and V. Vaskonen, Gravitational wave energy budget in strongly
supercooled phase transitions, JCAP 06 (2019) 024 [arXiv:1903.09642] [INSPIRE].

[138] J. Ellis, M. Lewicki and J.M. No, Gravitational waves from first-order cosmological phase
transitions: lifetime of the sound wave source, JCAP 07 (2020) 050 [arXiv:2003.07360]
[INSPIRE].

[139] H.-K. Guo, K. Sinha, D. Vagie and G. White, Phase Transitions in an Expanding Universe:
Stochastic Gravitational Waves in Standard and Non-Standard Histories, JCAP 01 (2021)
001 [arXiv:2007.08537] [INSPIRE].

[140] K. Fukushima, Chiral effective model with the Polyakov loop, Phys. Lett. B 591 (2004) 277
[hep-ph/0310121] [INSPIRE].

[141] K. Fukushima and V. Skokov, Polyakov loop modeling for hot QCD, Prog. Part. Nucl. Phys.
96 (2017) 154 [arXiv:1705.00718] [INSPIRE].

[142] J. Halverson et al., Gravitational waves from dark Yang-Mills sectors, JHEP 05 (2021) 154
[arXiv:2012.04071] [INSPIRE].

[143] P.N. Meisinger, T.R. Miller and M.C. Ogilvie, Phenomenological equations of state for the
quark gluon plasma, Phys. Rev. D 65 (2002) 034009 [hep-ph/0108009] [INSPIRE].

[144] A. Dumitru et al., How Wide is the Transition to Deconfinement?, Phys. Rev. D 83 (2011)
034022 [arXiv:1011.3820] [INSPIRE].

[145] A. Dumitru et al., Effective Matrix Model for Deconfinement in Pure Gauge Theories, Phys.
Rev. D 86 (2012) 105017 [arXiv:1205.0137] [INSPIRE].

[146] J.I. Kapusta and C. Gale, Finite-temperature field theory: Principles and applications,
Cambridge University Press (2011) [DOI:10.1017/CBO9780511535130] [INSPIRE].

[147] U. Ellwanger and C. Wetterich, Evolution equations for the quark-meson transition, Nucl.
Phys. B 423 (1994) 137 [hep-ph/9402221] [INSPIRE].

[148] D.U. Jungnickel and C. Wetterich, Effective action for the chiral quark-meson model, Phys.
Rev. D 53 (1996) 5142 [hep-ph/9505267] [INSPIRE].

– 30 –

https://doi.org/10.1088/1475-7516/2019/06/024
https://arxiv.org/abs/1903.09642
https://inspirehep.net/literature/1726493
https://doi.org/10.1088/1475-7516/2020/07/050
https://arxiv.org/abs/2003.07360
https://inspirehep.net/literature/1785826
https://doi.org/10.1088/1475-7516/2021/01/001
https://doi.org/10.1088/1475-7516/2021/01/001
https://arxiv.org/abs/2007.08537
https://inspirehep.net/literature/1807734
https://doi.org/10.1016/j.physletb.2004.04.027
https://arxiv.org/abs/hep-ph/0310121
https://inspirehep.net/literature/630257
https://doi.org/10.1016/j.ppnp.2017.05.002
https://doi.org/10.1016/j.ppnp.2017.05.002
https://arxiv.org/abs/1705.00718
https://inspirehep.net/literature/1597568
https://doi.org/10.1007/JHEP05(2021)154
https://arxiv.org/abs/2012.04071
https://inspirehep.net/literature/1835342
https://doi.org/10.1103/PhysRevD.65.034009
https://arxiv.org/abs/hep-ph/0108009
https://inspirehep.net/literature/560935
https://doi.org/10.1103/PhysRevD.83.034022
https://doi.org/10.1103/PhysRevD.83.034022
https://arxiv.org/abs/1011.3820
https://inspirehep.net/literature/877861
https://doi.org/10.1103/PhysRevD.86.105017
https://doi.org/10.1103/PhysRevD.86.105017
https://arxiv.org/abs/1205.0137
https://inspirehep.net/literature/1112988
https://doi.org/10.1017/CBO9780511535130
https://inspirehep.net/literature/738588
https://doi.org/10.1016/0550-3213(94)90568-1
https://doi.org/10.1016/0550-3213(94)90568-1
https://arxiv.org/abs/hep-ph/9402221
https://inspirehep.net/literature/37377
https://doi.org/10.1103/PhysRevD.53.5142
https://doi.org/10.1103/PhysRevD.53.5142
https://arxiv.org/abs/hep-ph/9505267
https://inspirehep.net/literature/394925

	Introduction
	Global symmetry breaking 
	SO(N) –> SO(N - 1)
	SU(2N) (U(2N)) –> Sp(2N)
	SU(N) (U(N)) –> SO(N)
	SO(N) –> SO(M) x SO(N - M)
	Comments on the universality argument

	Confinement transition
	Polyakov loop
	Large N(c) limit
	Gravitational wave signals

	Discussion
	NJL analysis of SU(4) (U(4)) –> Sp(4)

