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1 Introduction

Symmetries play a crucial role in modern physics, in that they govern the behaviour of
observables and greatly restrict the theoretical models that describe physical phenomena.

In this context, it has been known from a long time that Lorentz invariance is a
distinctive trait in the description of electromagnetism, whose theoretical formulation is
encoded by Maxwell’s theory. While this model describes several physical phenomena with
striking precision, it is still relevant to study its non-relativistic limit [1–3]. One of the reasons
is that the investigation of this corner of electromagnetism could teach us lessons on the
relativistic case itself. Indeed, it is sometimes not clear whether certain phenomena, not only
the ones involving the electromagnetic interaction, are consequences of the Lorentz invariance
of the theory, or if they would manifest even when Galilean symmetry is present. For
example, time dilatation effects and a strong gravitational description of the Schwarzschild
black hole can be obtained in a purely non-relativistic setting, using a torsionful connection
and a vanishing Newtonian potential, without resorting to full general relativity [4, 5].

From a theoretical perspective, the Galilean version of electromagnetism provides
a non-trivial example of non-relativistic QFT with massless degrees of freedom, which
can be coupled in a covariant way to a curved background described by Newton-Cartan
geometry [6, 7]. The renormalization properties of this theory, which was called Galilean
Electrodynamics (GED), were studied in [8]. GED also arises as the linearized action on
D-branes in non-relativistic open string theory [9]. Other investigations of Galilean-invariant
gauge theories were considered in [10–12].

From a condensed matter perspective, there are several reasons to consider non-
relativistic limits. Emergent symmetries arising in the infrared are often different from the
invariances of the microscopic description, and in particular the Lorentz group may not
be present. Non-relativistic symmetries govern the realm of cold atoms [13], fermions at
unitarity [14], quantum Hall effect [15], strange metallic phases [16] and quantum mechanical
problems like the Efimov effect [17].

Supersymmetry (SUSY) has been studied for several years as a candidate to uncover
physics beyond the Standard Model. In concrete condensed matter applications, SUSY
may arise as an emergent symmetry, e.g., in the tricritical Ising model [18], in topological
superconductors [19], optical lattices [20] or other settings. From a theoretical point of
view, supersymmetry strongly constrains the analytic structure of the effective action, and
controls the running of physical couplings along the RG flow, leading to exact results
and non-renormalization theorems [21, 22]. Furthermore, even if supersymmetry plays an
indirect role in holography, most of the examples where the AdS/CFT correspondence is
explicitly tested are supersymmetric.

Therefore, it does not appear surprising that several investigations of theories which
are both supersymmetric and non-relativistic had a great revival in recent years. Starting
from the first investigations involving the SUSY generalization of the Galilean algebra
and limits of the relativistic models [23–25], there have been studies of superconformal
anyons [26], spontaneous SUSY breaking [27], the analysis of the renormalization properties
of supersymmetric Galilean or Lifshitz-invariant models [28, 29], supergravity [30, 31] and
the study of non-relativistic corners of N = 4 super Yang-Mills (SYM) theory [32–36].
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In this work, we study the renormalization properties of 2+1 dimensional, N = 2
Supersymmetric Galilean Electrodynamics (SGED), i.e., the supersymmetric generalization
of GED obtained from the null reduction of Abelian N = 1 SUSY QED in 3+1 dimensions.
Classically, the theory is both supersymmetric and Schrödinger-invariant, and the two
symmetries combine into the non-relativistic version of superconformal invariance [37, 38].
Given the peculiar behaviour of both the Galilean invariance and supersymmetry at quantum
level, it is interesting to study the interplay between them in this framework. Indeed, the
global U(1) particle number symmetry typical of non-relativistic theories, together with the
retarded nature of their propagator, are usually responsible for cancellations at quantum
level, first observed in [39, 40]. This tendency is also present and enhanced in supersymmetric
settings, leading to the one-loop exactness of the Galilean version of the 2+1 dimensional
N = 2 Wess-Zumino model [28], and to similar non-renormalization theorems in the Lifshitz
case [29]. On the contrary, GED presents an intricate renormalization structure: the theory
is non-renormalizable and an infinite number of marginal deformations with non-trivial β
functions need to be added to the action. After deforming the theory with a set of marginal
deformations closed at quantum level, one can find the existence of conformal manifolds,
where Schrödinger symmetry is preserved. Still, the model admits a non-renormalization
theorem, in that the electric charge is protected and does not run at quantum level [8].

Quite surprisingly, we find that supersymmetry does not significantly improve the
renormalization properties observed in the GED case. First of all, we derive a non-
renormalization theorem which protects the coupling constant g of the theory at quantum
level, providing a SUSY generalization of the analogous result for the electric charge in
GED. We then find that the model still admits an infinite number of marginal deformations,
that are generated by one-loop radiative corrections to the effective action. This forces us to
deform the original SGED interactions into a non-linear sigma model governed by a single
analytic function F . In a full superspace set-up, the SGED action which is quantistically
meaninful is

SSGED =
∫
d3xd2θW 2 +

∫
d3xd4θ Φ̄egV ΦF(D̄2D2V ) (1.1)

where the first term resembles the ordinary, relativistic pure gauge action in superspace,
whereas the second term describes the coupling between the gauge sector and matter degrees
of freedom encoded into (anti)chiral Φ, Φ̄ superfields. It is interesting to observe that in
the Galilean framework the gauge-matter coupling is driven not only by the usual minimal
coupling Φ̄egV Φ, but also by an infinite number of couplings of the form Φ̄Φ(D̄2D2V )n
coming from the expansion of F . This is due to the anysotropic assignment of dimensions in
Galilean superspace that allows to construct the dimensionless and gauge-invariant superfield
D̄2D2V , in terms of the gauge prepotential V and dimensionless SUSY covariant derivatives.

Equation (1.1) is our proposal for a consistent theory of non-relativistic, supersymmetric
electrodynamics. We prove that this theory is one-loop renormalizable and compute the
one-loop beta functions for the infinite sigma model couplings. We prove that the theory
admits an interacting superconformal manifold of fixed points, where the minimal coupling
is turned off and the gauge-matter interaction is driven only by the F couplings.
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The paper is organized as follows. In section 2 we briefly review the preliminaries on
non-relativistic QFTs, focusing on the null reduction method and its application to theories
with either supersymmetry or gauge invariance. Then, in section 3 we combine the two
symmetries together in a Galilean-invariant setting to define the classical SGED action as
obtained by null reduction of the relativistic four dimensional parent. In section 4 we study
the corresponding quantum theory and compute the one-loop corrections to the effective
action using the superfield formalism. This procedure generates an infinite series of new UV
divergent terms, whose renormalization requires to generalize the original null reduced model
to a non-linear sigma model. The expert reader may want to jump directly to section 5,
where we use a covariant approach to compute one-loop quantum corrections to the new
theory, including the original contributions. We collect some conclusions and a discussion
on future developments in section 6. Technical details are reported in a few appendices.
Appendix A contains the conventions on spinors, superspace and covariant derivatives. The
anisotropic dimensional counting of Galilean-invariant theories is summarized in appendix B.
We collect in appendix C the relevant mathematical tools used to compute the integrals
entering one-loop corrections. Appendix D is devoted to prove that a certain class of vertices
is not generated at quantum level. Finally, in appendix E we introduce the essential data
for the covariant formalism, where we also list the properties of covariant derivatives needed
to compute the diagrams presented in the main text.

2 Non-relativistic QFT: a short review

In this section we introduce the basic ingredients necessary to investigate Galilean-invariant
supersymmetric gauge theories. We first review the null reduction method, which allows to
construct non-relativistic theories starting from a relativistic parent in one higher dimension.
We introduce the resulting non-relativistic superconformal algebra and the prescription to
define the non-relativistic superspace. We then use this method to build non-relativistic
actions. In particular, we review two relevant applications of this technique, the Galilean
Wess-Zumino model and the Galilean Electrodynamics.

2.1 Null reduction and supersymmetry algebra

We start from a d+ 2-dimensional Lorentzian manifold described by spacetime coordinates
(here i ∈ {1, 2, . . . , d})

xN = (x−, x+, xi) ≡ (x−, xµ) , where x± = xd ± x0
√

2
(2.1)

with metric ηMNdx
MdxN = 2dx+dx− + dxidxi. Null reduction consists in the dimensional

reduction of a relativistic theory obtained by compactifying the x− direction along a small
circle [41–44]. This procedure gives a natural embedding of the Schrödinger group Sch(d) in
d spatial dimensions inside the conformal group O(d, 2) in d+ 2 spacetime dimensions [14].
In the following, we will refer specifically to the d = 2 case.

– 3 –
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The algebra of Schrodinger generators is given by

[Pj ,Kk] = iδjkM , [H,Kj ] = iPj ,

[Pj , J ] = −iεjkPk , [Kj , J ] = −iεjkKk , (j, k = 1, 2) (2.2)

[D,Pj ] = −iPj , [D,Kj ] = iKj , [D,H ] = −2iH ,

[D,C] = 2iC , [H,C] = iD (2.3)

where Pj are the spatial components of the momentum, H is the Hamiltonian, Kj are the
generators of Galilean boosts, J is the planar angular momentum, D the dilatation operator
and C the generator of special conformal transformations. The algebra has a U(1) central
extension with central charge M corresponding to the mass or particle number conservation.

The supersymmetric extension of the Schrödinger algebra can be obtained by performing
null reduction of the four dimensional N = 1 supersymmetry algebra. In particular, the
fermionic part of the algebra is mapped into [25]

[J,Q1] = 1
2Q1 , [J,Q2] = −1

2Q2 , [Q1,K1 − iK2] = −iQ2 ,

{Q1, Q
†
1} =

√
2H , {Q2, Q

†
2} =

√
2M ,

{Q1, Q
†
2} = −(P1 − iP2) , {Q2, Q

†
1} = −(P1 + iP2)

(2.4)

where Qα with α ∈ {1, 2} are two complex supercharges. Since null reduction does not affect
the number of fermionic generators, it follows that starting from the N = 1 superalgebra in
four dimensions we obtain the non-relativistic N = 2 superalgebra in three dimensions.

More generally, one can perform null reduction starting from the superconformal algebra
SU(2, 2|1). In this case there is an additional complex fermionic generator S, which is
the superpartner of the bosonic generator C of special conformal transformations. The
commutation relations (2.2), (2.3) and (2.4) are supplemented by the following rules, which
also include the bosonic generator R of U(1) R-symmetry [26, 37, 38]

{S,S†}=C , {S,Q†2}=−(K1+iK2) ,

[H,S†] = iQ†1 , [J,S] =−1
2S , [D,S] =−iS , [C,Q2] =−iS

{S,Q†1}= i

2

(
iD−J+ 3

2R
)
, [R,Qα] =−Qα , [R,S] =−S (2.5)

Supersymmetric theories are naturally formulated in superspace, where representations
of the SUSY algebra (supermultiplets) are realized in terms of superfields. In the non-
relativistic case, the N = 2 Galilean three-dimensional superspace [28] is obtained as the
null reduction of the four dimensional N = 1 relativistic superspace described by bosonic
coordinates xN , supplemented by spinorial coordinates (θα, θ̄α̇), α ∈ {1, 2}, α̇ ∈ {1̇, 2̇}. Null
reduction fixes the coordinate dependence of any local superfield Ψ to be

Ψ(xN , θα, θ̄α̇) = eiMx−Ψ̃(x+ ≡ t, xi, θα, (θα)† ≡ θ̄α) (2.6)

– 4 –
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where M is the dimensionless eigenvalue of the U(1) mass operator.1 Therefore, in 2 + 1
dimensions we identify

∂− → iM , ∂+ → ∂t (2.7)

We note that prescription (2.6) is SUSY preserving, as it assigns the same U(1) charge
(or mass) to all the components. The details of the representations on chiral and vector
superfields are collected in appendix A.

2.2 Review of the Galilean Wess-Zumino model

Null reduction not only allows to derive the Galilean algebra and its representations
on fields, but it can also be used to build actions invariant under the non-relativistic
symmetries, starting from a relativistic parent theory. This method was used in [28] to find
a Galilean-invariant Wess-Zumino (WZ) model, whose action reads

S =
∫
d3xd4θ

(
Φ̄1Φ1 + Φ̄2Φ2

)
+ g

∫
d3xd2θΦ2

1Φ2 + h.c. (2.8)

with Berezin integration defined in (A.22).
The main feature of this action, compared to its relativistic counterpart, is that the

integrand must be uncharged with respect to the global U(1) symmetry associated to the
central extension of the Bargmann algebra. For this reason, a non-vanishing superpotential
exists only when at least two species of (anti)chiral superfields are chosen. Eq. (2.8) implies
that the masses of the two matter superfields are M1 = m and M2 = −2m.

On general grounds, supersymmetry poses strong constraints on the dynamics of a
theory, and often allows to obtain exact results. In the relativistic WZ model, the existence
of a non-renormalization theorem which states that the superpotential is quantum exact,
forces all its loop corrections to vanish [21, 22] and perturbative corrections are allowed
only for the Kähler potential. The non-renormalization theorem for the superpotential
remains true also in the non-relativistic version of the model [28]. However, in this case
there are additional constraints which are due to the retarded nature of the (anti)chiral
propagator, contrarily to the causal Feynman propagator of the relativistic model. In fact,
the particular structure of its poles forces the Kähler potential to be one-loop exact. We
can then conclude that the Galilean WZ model is one-loop exact and the β-function of the
theory is fully determined by [28]

βg = dg

d logµ = g3

4πm (2.9)

Its non-vanishing value signals the breaking of the original scale invariance, due to quantum
effects.

2.3 Review of Galilean Electrodynamics

Null reduction can be also applied to gauge-invariant theories, e.g. to obtain the Galilean
Electrodynamics (GED) [3]. The reduction of the ordinary relativistic gauge field AM is

1We note that choosing m to be dimensionless requires having rescaled x− by an energy dimension-one
parameter to make it dimensionless, as well. This then implies that x+ acquires scale dimension 2.

– 5 –
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performed by requiring it to be x−-independent2 and decomposing it as AM = (ϕ,Aµ),
where ϕ is a real spacetime scalar and Aµ = (At, Ai) are the 3D components. The gauge
field defines an electric and a magnetic field, according to

Ei = ∂tAi − ∂iAt , fij = ∂iAj − ∂jAi (2.10)

Once reduced, the relativistic Maxwell action reads

SU(1) =
∫
d3x

[1
2 (∂tϕ)2 + Ei∂iϕ−

1
4fijf

ij
]

(2.11)

The non-relativistic electrodynamics has no propagating degrees of freedom, since the
speed of light is sent to infinity and the mediation becomes istantaneous. It is possible to
introduce propagating modes by coupling the system to matter fields, e.g., to a Schrödinger
scalar φ. The minimal coupling term reads

Smin =
∫
d3x

[
i

2
(
φ̄∇tφ− φ∇tφ̄

)
− 1

2M∇iφ̄∇
iφ

]
(2.12)

where we have introduced covariant derivatives acting on φ (φ̄) as

∇t ≡ ∂t ∓ ieAt , ∇i ≡ ∂i ∓ ieAi (2.13)

and we have defined a covariantized mass M ≡ m − eϕ. It is possible to build such a
combination due to the fact that the field ϕ arising from the null component of the parent
relativistic connection is a scalar under gauge transformations, and in the anisotropic
counting of dimensions it is dimensionless (see appendix B for the precise counting).

The sum of terms (2.11) and (2.12) gives the minimal realization of the scalar Galilean
Electrodynamics, SGED = SU(1) + Smin.

Based on the previous discussion, one could expect the renormalization properties of
this theory to be simpler than its relativistic parent. Surprisingly, this is not the case [8].
The existence of the covariantized massM is responsible for making the theory a σ-model,
since it is necessary to series-expand the kinetic term in order to build standard Feynman
rules and compute loop corrections. It turns out that such a theory is non-renormalizable,
instead an infinite number of marginal deformations dependent on the dimensionless scalar
ϕ need to be added to make the theory renormalizable. Therefore, the general structure of
the renormalizable scalar GED action is SGED + ∆SGED, where [8]

∆SGED =
∫
dt d2x

(
J [M] ∂iM∂iM φ̄φ−λ4V[M] (φ̄φ)2−E [M] (∂i∂iM−e2φ̄φ) φ̄φ

)
(2.14)

While there are still powerful non-renormalization theorems which protect the electric charge
e from running, the functionals J [M],V[M] and E [M] renormalize non-trivially [8]. An
interesting feature of scalar GED is that the freedom governed by these functionals allows
to find conformal manifolds of fixed points where the Schrödinger symmetry is preserved.

In section 3 we are going to consider a supersymmetric generalization of GED and
investigate if supersymmetry improves the renormalization properties of the model.

2According to the general decomposition (2.6) applied to fields rather than superfields, this corresponds
to assigning it a vanishing mass.
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3 SGED from null reduction

The N = 2 supersymmetric generalization of GED can be obtained by performing the
null reduction of a 4D N = 1 supersymmetric gauge theory, directly in superspace. For
simplicity, in section 3.1 we will consider the action for an Abelian gauge superfield coupled
to matter described by one chiral superfield charged under the U(1) gauge group and with
charge m with respect to the U(1) central extension. We will then project the action in
components in section 3.2.

3.1 Action in superfield formulation

Exploiting the definitions in appendix A, the simplest action for electrodynamics in Galilean
superspace is the one obtained by null reduction of its relativistic counterpart. It reads

SnSGED = 1
g2

∫
d3xd2θ W 2 +

∫
d3xd4θ Φ̄eVΦ (3.1)

where W 2 = 1
2W

αWα with Wα = iD̄2DαV , being V a real scalar prepotential. The
Berezin integration is defined in (A.22). Formally, this action has the same expression
of supersymmetric electrodynamics in relativistic superspace. Differences are hidden in
the superspace integrations that are here defined in terms of non-relativistic covariant
derivatives (A.15). We will refer to eq. (3.1) as the null SGED action, as it is what one
obtains applying null reduction.

This action is manifestly invariant under supersymmetry. Moreover, it is invariant
under the Schrödinger group, as it arises from null reduction. According to the anisotropic
dimensional scaling of Galilean theories, which we discuss in appendix B, the coupling
constant g is dimensionless, as it happens in the relativistic counterpart of the model.
Indeed, all the previous symmetries combine into the invariance under the full Galilean
superconformal group with generators satisfying the algebra presented in eqs. (2.2)–(2.5).

The invariance of the integrand under the action of the U(1) mass generator requires to
assign a vanishing mass to V . This is equivalent to the statement that under null reduction
the prepotential satisfies V (xM , θα, θ̄α̇) = V (xµ, θα, θ̄β), i.e., it originates from a 4D vector
superfield that does not depend on the null direction x−. Taking into account that its
θθ̄ component is the gauge field Aαβ (see expansion (A.26)), this is the supersymmetric
generalization of the requirement that the gauge field of the parent theory is ∂−-invariant
and splits into AM = (ϕ,Aµ), as reviewed in section 2.3. From a physical point of view,
this is equivalent to say that it acts as an instantaneous mediator of interactions between
the matter (super)fields.

In addition, action (3.1) enjoys local invariance under the supergauge transformations

V → V ′ = V + i(Λ̄− Λ)
Φ→ Φ′ = eiΛΦ

Φ̄→ Φ̄′ = Φ̄e−iΛ̄
(3.2)

driven by chiral and antichiral parameters, D̄αΛ = DαΛ̄ = 0.

– 7 –
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Dimensional analysis in eq. (B.3) shows that the vector superfield V and the covariant
derivatives D2, D̄2 are dimensionless. Therefore, it is possible to build infinitely many
marginal deformations of the action in (3.1), in analogy with what happens in the non-
supersymmetric case (see eq. (2.14)). Requiring these deformations to be invariant under
gauge transformations (3.2), it turns out that an infinite set of deformations of the SGED
action consistent with both supersymmetry and gauge invariance can be written in the form

∆SnSGED =
∫
d4θ Φ̄eVΦF [D̄2D2V ] (3.3)

where F is an analytic function (i.e., it can be expanded in Taylor series) of the gauge-
invariant combination D̄2D2V . We will see in section 4 that a specific set of these corrections
is indeed generated at quantum level.

3.2 Action in components

Applying the prescription in (A.22) for the Berezin integration, we obtain the action (3.1)
in components.3 The result reads

SnSGED = Sgauge + Smatter + Sint (3.4)

with

Sgauge = 1
g2

∫
d3x

[
D̃2 +

√
2iλ̄2 ∂tλ2 − iλ̄1(∂1 − i∂2)λ2 − iλ̄2(∂1 + i∂2)λ1

+1
2(∂tϕ)2 + Ei∂iϕ−

1
4f

ijfij

] (3.5)

Smatter =
∫
d3x

[
F̄F + φ̄(2im∂t + ∂2

i )φ+
√

2mψ̄1ψ1 + 2imψ̄2∂tψ2

−21/4i
√
mψ̄1(∂1 − i∂2)ψ2 − 21/4i

√
mψ̄2(∂1 + i∂2)ψ1

]
(3.6)

Sint =
∫
d3x

[
φ̄D̃φ− 2iϕ φ̄∂tφ+ 2iAi φ̄∂iφ+ 2φ̄(m− ϕ)Atφ+ φ̄AiAiφ

−
√

2ϕ ψ̄1ψ1 + 2mψ̄2Atψ2 − 21/4√mψ̄1(A1 − iA2)ψ2 − 21/4√mψ̄2(A1 + iA2)ψ1

+φ̄λ1ψ1 + ψ̄1λ̄1φ+ 21/4√mφ̄λ2ψ2 + 21/4√mψ̄2λ̄2φ
]

(3.7)

For convenience, we summarize here the field content of the theory:

• The gauge action in (3.5) contains a dynamical real scalar field ϕ, an auxiliary real
scalar field D̃, a dynamical complex Grassmann field λ2 and an auxiliary one λ1, and
a real gauge field Aµ hidden in the Ei and fij fields defined in (2.10). This is the
supersymmetric generalization of the U(1) action (2.11).

• The matter action (3.6) contains a complex scalar field φ, an auxiliary scalar F , a
dynamical complex Grassmann field ψ2 and an auxiliary one ψ1.

• The term (3.7) contains the interactions between the gauge and matter fields, and
defines the Feynman rules for the vertices of the theory.

3The relevant definitions required to perform the explicit expansion are collected in appendix A, specifically
the covariant derivatives in eq. (A.15) and the superfield expansions (A.23) and (A.26) in the Wess-Zumino
gauge (A.32).
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The action in (3.4) is invariant under SUSY transformations generated by fermionic
parameters εα, ε̄β , which on the component fields read

δλα = εαD̃ + i

2ε
β∂βγA

γ
α , δAαβ = −εαλ̄β + ε̄βλα ,

δD̃ = i

2∂αβ
(
εαλ̄β + ε̄βλα

)
, δϕ = −δA22 ,

δφ = −εαψα , δψα = iε̄β∂αβφ+ εαF , δF = −iε̄β∂αβψα

(3.8)

Auxiliary fields can be integrated out using their algebraic equations of motion, thus
reducing the action only to terms involving dynamical degrees of freedom. As an example,
we restrict to the purely gauge sector and neglect the interactions from Sint. In this case,
the integration of the auxiliary fields D̃, λ1, in (3.5) leads to the U(1) action (2.11), plus an
additional quadratic term for the dynamical fermion λ2

Sgauge = 1
g2

∫
d3x

[1
2(∂tϕ)2 + Ei∂iϕ−

1
4f

ijfij +
√

2iλ̄2 ∂tλ2

]
(3.9)

Now we restore the interactions and the auxiliary fields, whose constraints are non-trivial.
We can combine the matter and interaction actions as follows

Smatter + Sint =
∫
d3x

[
2i(m− ϕ)φ̄∇tφ− (∇iφ) (∇iφ) + F̄F +

√
2(m− ϕ)ψ̄1ψ1

+2imψ̄2∇tψ2 − 21/4i
√
mψ̄1(∇1 − i∇2)ψ2 − 21/4i

√
mψ̄2(∇1 + i∇2)ψ1

+φ̄D̃φ+ φ̄λ1ψ1 + ψ̄1λ̄1φ+ 21/4√mφ̄λ2ψ2 + 21/4√mψ̄2λ̄2φ
]

(3.10)

where we have introduced covariant derivatives ∇µ = ∂µ − iAµ.
In the gauge sector, the complete equations of motion that we have to use for eliminating

the auxiliary fields are


D̃ = −g2φ̄φ(
∂1 + i∂2

)
λ1 = 21/4i

√
mg2 ψ̄2φ(

∂1 − i∂2
)
λ̄1 = −21/4i

√
mg2 φ̄ψ2

(3.11)

Similarly, in the matter sector we can get rid of ψ1, ψ̄1 matter fermions and the complex
scalar F using 

(m− ϕ)ψ1 = i
√
m

21/4 (∇1 − i∇2)ψ2 + 1√
2 λ̄1φ

(m− ϕ)ψ̄1 = −i
√
m

21/4 (∇1 + i∇2)ψ̄2 + 1√
2 φ̄λ1

F = F̄ = 0

(3.12)

The final expression for the resulting action appears quite cumbersome and does not add
any further useful information. Therefore, we avoid reporting it here.
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4 One-loop radiative corrections

We study the renormalization properties of the null SGED action (3.1), working directly
in superspace formalism. In this section we approach the problem by using ordinary
supergraphs and ordinary D-algebra, whereas the more efficient approach of covariant
supergraphs [45] is used in section 5 to establish renormalizability of the actual SGED
sigma-model. The expert reader can go directly to section 5.

Here we first review the application of the Faddeev-Popov procedure adapting it to the
non-relativistic superspace. This leads to the gauge-fixed action (4.6) whose Feynman rules
are listed in section 4.2. The particular structure of the non-relativistic propagator gives rise
to selection rules which forbid certain configurations of diagrams. As a consequence, they
imply a non-renormalization theorem for the wavefunction of the prepotential V and the
coupling constant g of the theory, that we discuss in section 4.3. We then compute one-loop
corrections to the self-energy and to the vertices in sections 4.4 and 4.5, respectively. We
find that the wavefunction renormalization of the chiral superfield is not sufficient to get
rid of all the UV divergences of the theory, instead infinite new terms are generated at
quantum level. In section 4.6 we discuss the consequences on the renormalizability of the
model, and in section 4.7 we introduce the renormalizable SGED non-linear sigma model.

4.1 Faddeev-Popov procedure and gauge fixing

The kinetic term of gauge-invariant theories is not invertible due to the redundancy of gauge
symmetry. This statement also holds for the SGED action in eq. (3.1), whose quadratic
part in the prepotential can be written, after integration by parts, as

Svec = − 1
2g2

∫
d3x

∫
d4θ V

(
�0 Π 1

2
V
)

(4.1)

where �0 ≡ 2iM∂t+∂2
i is the flat Schrödinger operator, and we have defined the combination

Π1/2 ≡ −�−1
0 DαD̄2Dα. The non-invertibility of �0 Π 1

2
follows from the fact that it

annihilates the non-vanishing combination �−1
0 {D2, D̄2}V .

According to the Faddeev-Popov procedure, invertibility is recovered by performing
the functional integral only over the set of gauge inequivalent fields. In supersymmetric
theories, this method leads to the following functional integral [46]

Z[V ] =
∫

[DVDcDc′Dc̄Dc̄′] ei(Svec+Sg.f.+SFP) (4.2)

where the total action includes a gauge-fixing term (with real parameter ζ)

Sg.f. = − 1
ζg2

∫
d3xd4θ (D2V )(D̄2V ) (4.3)

and a ghost action, which in the Abelian case is simply the free action for a pair of
anticommuting chiral ghost superfields

SFP =
∫
d3x d4θ

(
c̄′c− c′c̄

)
(4.4)
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Since the ghosts can be integrated separately and decouple from the rest of the action, we
will simply ignore them.

The gauge-fixing term makes the vector kinetic operator

Svec + Sg.f. = −1
2

∫
d3x d4θ V �0

[
1 +

(1
ζ
− 1

)
Π0

]
V (4.5)

invertible. In conclusion, reinserting the matter part of the action and the interactions
from eq. (3.1), rescaling for convenience the vector superfield as V → gV , and choosing
the Feynman supergauge ζ = 1, the total gauge-fixed null SGED action arising from null
reduction reads

SnSGED =
∫
d3x d2θW 2 −

∫
d3x d4θ (D2V )(D̄2V ) +

∫
d3x d4θ Φ̄egV Φ (4.6)

This is the action from which we read Feynman rules to perform loop calculations.

4.2 Feynman rules

At quantum level, we consider the generating functional

Z[J, J̄ ,JV ] =
∫

[DΦDΦ̄DV ] exp
[
iSnSGED+i

∫
d3x

(∫
d2θJΦ+

∫
d2θ̄J̄Φ̄+

∫
d4θJV V

)]
(4.7)

where SnSGED is given in (4.6), J, J̄ are (anti)chiral superfields and JV is a vector superfield,
all of them acting as sources. Correlation functions are obtained from this expression by
repeated application of the functional derivatives defined as4

δJ(z)
δJ(z′) = D̄2δ(7)(z − z′) , δJ̄(z)

δJ̄(z′)
= D2δ(7)(z − z′) , δJV (z)

δJV (z′) = δ(7)(z − z′) (4.8)

The additional SUSY covariant derivatives acting on delta functions arise due to the
constrained nature of Φ, Φ̄.

Starting from the gauge-fixed action (4.6), we read the following Feynman rules in
N = 2 momentum superspace and in terms of renormalized quantities.

• Chiral propagator

(ω, ~p)

Φ̄ Φ
= 〈Φ(ω, ~p, θ, θ̄)Φ̄(−ω,−~p, θ′, θ̄′)〉 = iδ(4)(θ′ − θ)

2mω − ~p2 + iε
(4.9)

• Vector propagator

(ω, ~p)

V V
= 〈V (ω, ~p, θ, θ̄)V (−ω,−~p, θ′, θ̄′)〉 = − iδ

(4)(θ′ − θ)
−~p2 + iε

(4.10)

In Feynman gauge (ζ = 1) the vector superpropagator does not depend on the energy
ω. This is the supersymmetric generalization of the statement that the mediation of
the gauge field is instantaneous, as a consequence of the c→∞ limit which features
the non-relativistic theory.

4We collectively denote z ≡ (xµ, θα, θ̄β) and δ(7)(z − z′) = δ(3)(x− x′)δ(2)(θ − θ′)δ(2)(θ̄ − θ̄′).
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Φ

Φ̄

V

(a)

V

V

Φ

Φ̄

(b)

Figure 1. Vertices with three and four external lines arising from the interacting term in eq. (4.6).
The vertex (a) has coupling g, while the vertex (b) has coupling g2/2.

• Vertices: from the series expansion of the exponential in the last term of action (4.6),
we read ∞∑

n=1

gn

n!

∫
d3x

∫
d4θ Φ̄V nΦ ≡ Sint (4.11)

These are an infinite number of (n+ 2)-point vertices with one chiral, one antichiral
and n vector superfields. In figure 1 we draw the three and four-point vertices. The
higher order ones are built in a similar way. We note that particle number conservation
is satisfied, as the numbers of entering and exiting arrows trivially match.

• Due to identities (4.8), we assign one factor of D̄2(D2) to any chiral (anti-chiral)
internal line exiting from a vertex.

These Feynman rules can be used to generate supergraphs. Precisely, we build all the
topologically inequivalent diagrams involving supervertices, superpropagators and SUSY
covariant derivatives acting on them, and impose energy and momentum conservation at
each vertex. We include combinatorial factors arising from the expansion of the interaction
lagrangian and we integrate over loop momenta.

After manipulating covariant derivatives in such a way to perform explicitly the
integrations along the Grassmannian coordinates (D-algebra [46]), using in particular
identities like (A.18) and (A.20), we are left with standard Feynman diagrams in ordinary
spacetime, whose corresponding integrals can be evaluated by exploiting standard techniques.

We will use dimensional regularization in d = 2−2ε to regularize the spatial momentum
integrals. Therefore, we define renormalized parameters as

gB = µε Zg g , mB = Zmm, VB = ZV V (4.12)

ΦB = Z
1/2
Φ Φ ≡

(
1 + 1

2δΦ

)
Φ , Φ̄B = Z

1/2
Φ̄ Φ̄B ≡

(
1 + 1

2δΦ̄

)
Φ̄B (4.13)

where µ is the mass scale of dimensional regularization.
Although a priori we require a renormalization also for the mass parameter m, the mass

does not even enter the SGED superfield action explicitly. Therefore, a mass counterterm
is not necessary to renormalize the effective action. As it is customary for non-relativistic
theories, we then set Zm = 1 and identify mB = m [39].
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Notational remark. In the rest of this section we denote the dimensionless components
of the covariant derivatives as

D ≡ D2 , D̄ ≡ D̄2 (4.14)

The notation D2, D̄2 will be used only to denote the square of the covariant derivatives
according to definitions (A.19).

4.3 Selection rules and non-renormalization theorems

The main distinctive features of non-relativistic theories, compared to relativistic ones,
consist in the constraint on particle number conservation related to the U(1) central
extension symmetry, and the retarded nature of the propagators in eqs. (4.9) and (4.10).

The first feature strongly constrains the superpotential [28], but in the present case
it does not play a crucial role since the interactions between the (anti)chiral superfields
and the prepotential are invariant under a global U(1) symmetry already in the relativistic
parent theory.

The second characteristic is responsible for restrictions on the orientation of arrows
inside a loop, and gives rise to non-renormalization theorems or powerful resummations [39,
40]. We explain the main idea as follows. In configuration space, the iε prescription
translates into a retarded prescription for the propagators. In fact, the Fourier transforms
of superpropagators (4.9) and (4.10) collectively read

G(~x, t) =
∫
d2p dω

(2π)3
iδ(4)(θ1 − θ2)

2M ω − ~p2 + iε
e−i(ωt−~p·~x) = − iΘ(t)

4π t e
iM~x2

2t δ(4)(θ1 − θ2) (4.15)

where Θ is the Heaviside function and M the mass generator (M = m for the chiral
propagator, M = 0 for the vector one). This feature leads the following result.

Selection rule 4.1. Any 1P-irreducible Feynman diagram with negative superficial degree
of divergence in the ω variable, vanishes identically.

The superficial degree of divergence ∆ω, defined as the number of ω powers at the numerator
minus ω powers at the denominator, features the UV behaviour of the integrand along the ω
variable. Its counting has to be performed after D-algebra has been carried out completely,
leaving a regular QFT diagram with integrations over momentum variables only.

The prototypical example of Feynman diagram satisfying the hypothesis of Selection
rule 4.1 is ∫

dω d2k

(2π)3
1

[2mω − ~k2 + iε][2m(ω − Ω)− (~k − ~p)2 + iε]
(4.16)

with ∆ω = −1. Such a contribution arises for instance in the evaluation of the one-loop
correction to the self-energy of the prepotential (see eq. (4.19) below). To prove that this
integral vanishes, we perform the ω integration first. Since the poles in ω sit on the same
complex half-plane, a simple application of Jordan’s lemma allows to close the contour
of integration in the half-plane with no poles, and the use of the residue theorem leads
to the expected result. In configuration space, the same result follows by observing that
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(Ω, ~p)

(ω,~k)

(Ω, ~p)

V V

(a)

(Ω, ~p)

(ω − Ω, ~k − ~p)

(ω, ~k)

(Ω, ~p)

V V

(b)

Figure 2. One-loop contributions to the self-energy of the vector superfield.

expression (4.15) for the propagators leads to the product of two Heaviside functions with
opposite arguments. Since this has support in a single point, it vanishes by normal ordering.

The generalization of this proof to a generic loop integral relies on the observation that
the request for a meromorphic function to satisfy Jordan’s lemma corresponds precisely
to the condition ∆ω < 0. Since the retarded nature of the propagators implies that the
poles are always in the same half ω-plane, it is straightforward to conclude that closing the
contour in the complementary half-plane the integral evaluates to zero.

Selection rule 4.1 was originally derived for scalar fields in [39, 40]. It was later used
in the supersymmetric case to show the one-loop exactness of the Galilean Wess-Zumino
model [28], and applied in the context of supersymmetric Lifshitz theories [29] to show
similar non-renormalization theorems. In the case of GED, arguments based on selection
rule 4.1 were used in [8] to show that at quantum level the electric charge does not run. Here
we show that this statement has a natural supersymmetric generalization, which leads to

Selection rule 4.2. All loop corrections to the effective action with purely vector external
lines vanish

Γ(n)(V ) = 0 (4.17)

We prove it by starting from the one-loop self-energy correction to the vector superfield and
then inferring the general result for diagrams with an arbitrary number of external fields.

The relevant one-loop Feynman supergraphs contributing to the vector self-energy are
depicted in figure 2. Contribution 2(a) is a tadpole that vanishes in spatial dimensional
regularization by using the integrals I in eq. (C.3) and J0 in eq. (C.9). Precisely,

iΓ(2)
2(a)(V ) = −g

2

2

∫
d4θ V (Ω, ~p, θ)V (Ω, ~p, θ)

∫
dω d2k

(2π)3
1

2mω − ~k2 + iε
= 0 (4.18)

After evaluating the corresponding D-algebra, diagram 2(b) reduces to the following space-
time integral

iΓ(2)
2(b)(V ) = g2

2

∫
d4θ

∫
dω d2k

(2π)3
V (Ω, ~p, θ)N(ω − Ω, ~k − ~p)V (Ω, ~p, θ)[

2mω − ~k2 + iε
][

2m(ω − Ω)− (~k − ~p)2 + iε
] (4.19)
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V2

V3

Vn−1

Vn

V1
k

p2

p3

pn−1

pn

p1

Figure 3. Chiral loop with multiple vector insertions. Here we use the compact notation k ≡ (ω,~k)
and pi ≡ (Ωi, ~pi), i ∈ {1, . . . , n}.

where5

N(ω,~k) =
(
2Mω − ~k2

)
+ kαβD̄αDβ + D̄2D2 , kαβ ≡ −

√
2Mδα1 δ

β
1 + (σ̄µ)αβkµ (4.20)

Potentially non-trivial contributions may only come from terms with ∆ω ≥ 0. However, the
first contribution in (4.20) is a tadpole similar to (4.18), which then vanishes. The only
other contribution with non-negative ∆ω comes from the second term in (4.20) when we
take k22 = −

√
2ω (see the definition of derivatives in eq. (A.10)). However, one can easily

show that∫
dω d2k

(2π)3
2mω[

2mω − ~k2 + iε
][

2m(ω − Ω)− (~k − ~p)2 + iε
] =

∫
dω d2k

(2π)3
1

2mω − ~k2 + iε
= 0

(4.21)
where we have discarded a term with ∆ω = −1, and used again the result (4.18).

In conclusion, there are no one-loop corrections to the vector self-energy

Γ(2)(V ) = Γ(2)
2(a)(V ) + Γ(2)

2(b)(V ) = 0 (4.22)

Now we generalize the proof to one-loop diagrams with an arbitrary number of external V
legs. Neglecting vanishing tadpole contributions, they have the form depicted in figure 3.
Defining �k ≡ 2mω − ~k2 and δij ≡ δ(4)(θi − θj), in momentum space the contributions of
such diagrams read

iΓ(n)(V ) = (ig)n
n

∫
d4θ1 . . . d

4θn

∫
dω d2k

(2π)3 V1 . . . Vn

× iD2D̄2δ12
�k + iε

iD2D̄2δ23
�k+p2 + iε

. . .
iD2D̄2δn1

�k+p2+···+pn + iε
(4.23)

5The conventions for the generalized Pauli matrices in light-cone coordinates are given in eq. (A.2).
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Since the denominator of the integrand behaves as ωn at large energies, thanks to selection
rule 4.1 the integral vanishes, provided that the numerator goes to infinity at most as
ωn−2. To check whether this is the case, we determine the highest powers of ω that can be
produced by applying D-algebra to the numerator of (4.23). Integrating by parts at vertex
2 (where a vector superfield enters with momentum p2) we obtain(
D2D̄2δ12

)(
D2D̄2δ23

)
V2 = δ23

[
(�kD̄

2D2δ21)V2+(�kD̄αD
2δ21)D̄αV2

+(�kD
2δ21)D̄2V +(kαβD̄2D2δ21)D̄αDβV2+(D̄2D2δ21)D̄2D2V2

]
(4.24)

This operation produces terms at most linear in ω, coming from the kinetic operators �k and
from k22 = −

√
2ω. We can iterate this procedure for each vertex, until only one fermionic

δ-function out of the original n delta’s in the loop is killed by D̄2D2. Performing the spinorial
integrations by means of the surviving delta’s we obtain a local expression of the form

(2mω)n−1
(
V1 . . . Vn + V1

n−1∑
i=1

1
(
√

2m)i
D(i) (V2 . . . Vn)

)
+ . . . (4.25)

where dots stand for terms containing lower powers of ω that integrate to zero, according to
selection rule 4.1. The D(i) operator acting on the product V2 . . . Vn represents formally the
sum over all possible ways to distribute i covariant derivatives D̄’s and i D’s on the string
V2 . . . Vn, each term being multiplied by the corresponding combinatorial factor, including
relative signs coming from the fermionic nature of the derivatives. The precise value of
these coefficients is not important for the present derivation. For clarification, the explicit
expression for i = 3 and n = 5 is6

D(3) (V2 . . . V5) = c1 (DD̄V2)V3V4V5 + c2 (DV2) (D̄V3)V4V5 + . . .

+ c3 V2(D̄V3)V4 (DV5) + · · ·+ c4 V2V3V4 (DD̄V5) (4.26)

Plugging the resulting expression in (4.23) and performing manipulations similar to the
ones in eq. (4.21), the final contribution to the effective action takes the form

iΓ(n)(V ) = (−g)n
n

∫
d4θ

(
V1 . . . Vn + V1

n−1∑
i=1

1
(
√

2m)i
D(i) V2 . . . Vn

)

×
∫
dω d2k

(2π)3
1

2mω − ~k2 + iε
= 0 (4.27)

where use has been made of the integrals I, J0 in eq. (C.3) and (C.9).
This concludes the proof of selection rule 4.2 at one loop. The generalization to higher

loops is easily obtained if we manage to argue that the insertion of extra propagators and
extra vertices in a diagram cannot increase its superficial degree of divergence, both in the
energy and spatial momentum integrations. This can be understood by taking into account
the following observations:

6We remind the reader that D, D̄ refer to the two-components of the covariant SUSY derivatives.
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• The insertion of additional chiral loop propagators improves the superficial degree of
divergence in ω or at most leaves it unchanged. In fact, their denominator is linear in
ω and at numerator they contribute with a factor D̄2D2, which in the worst scenario
provides terms of the form �k and k22 that are at most linear in ω. Therefore, a
chiral propagator contributes to ∆ω at most with ∆ω = 0.

Additional vector propagators do not carry any covariant derivative nor factors of
momenta, see eq. (4.10). Therefore, they have superficial degree of divergence ∆ω = 0.

• Concerning the spatial momentum integrations, there is a similar argument. Any
additional chiral loop propagator brings a quadratic contribution in ~k at the denom-
inator, and in the worst case the covariant derivatives D̄2D2 at numerator bring a
factor of ~k2, too. This contributes to the superficial degree of divergence at most with
∆~k

= 0.

The inclusion of additional vector propagators is beneficial for the UV convergence of
the diagram, since it brings a factor of ~k2 at the denominator, while no other factors
appear at the numerator. Therefore, it always contributes with a superficial degree of
divergence ∆~k

= −2.

In conclusion, we have shown that

Γ(n)(V ) = 0 , ∀n ≥ 1 (4.28)

This result entails strong consequences on the renormalization properties of the theory. First
of all, it implies that there is no wavefunction renormalization for the prepotential. Since
the renormalization of the gauge coupling g is related to the wavefunction renormalization
of V by standard arguments valid for supergauge-invariant theories, we conclude that also
g does not renormalize at any loop order. This generalizes to the supersymmetric scenario
the result found in [8] regarding the electric charge in GED.

4.4 One-loop corrections to the chiral self-energy

The existence of powerful selection rules does not prevent UV divergences from appearing
in diagrams with external (anti)chiral superfields. Here we study these contributions for
the null SGED theory in (4.6), by computing one-loop diagrams with one chiral and one
antichiral external superfields.

As already mentioned, we compute the loop integrals by performing the integration over
the ω variable first, and then using dimensional regularization in d = 2− 2ε to regularize
the spatial momentum integrals. We subtract UV divergences by defining renormalized
quantities (4.13). According to the assignments in (4.13), the total Lagrangian must be
supplemented by counterterms of the form

LnSGED +
∫
d4θ δΦ Φ̄egV Φ (4.29)

where we have set ZΦ = ZΦ̄.
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(Ω, ~p)

(ω,~k)

(Ω, ~p)

Φ Φ̄

Figure 4. Supergraph contributing to the one-loop corrections to the self-energy of the chiral
superfield.

We adopt the minimal subtraction scheme, which gets rid of the UV divergences
without including any finite part. For this reason, we focus only on the evaluation of the
UV divergent part of a given graph, which we denote with the symbol '.

We start with one-loop corrections to the self-energy of the chiral superfield. Neglecting
vanishing tadpoles, the only relevant diagram is the one depicted in figure 4. The corre-
sponding D-algebra is trivial, since the covariant derivatives D̄2D2 are entirely used to get
rid of one of the two delta functions over the grassmannian coordinates, while the remaining
delta is used to perform one spinorial integration, so obtaining an expression which is local
in the θ-variables. The rest reduces to an ordinary momentum integral which reads

iΓ(2)
4 = −g2

∫
d4θ

∫
dω d2k

(2π)3
Φ̄(Ω, ~p, θ) Φ(Ω, ~p, θ)[

−~k2 + iε
][

2m(Ω− ω)− (~p− ~k)2 + iε
] =

= −g2 I J1

∫
d4θ Φ̄(Ω, ~p, θ) Φ(Ω, ~p, θ)

(4.30)

where we have performed the change of variable ω −→ Ω− ω − (~p− ~k)2/2m+ ~k2/2m to
recognize the appearance of the I, J1 integrals in eqs. (C.3) and (C.10). Inserting their
explicit values, we finally obtain the following UV divergent contribution

Γ(2)(Φ, Φ̄) ' − g2

16πmε

∫
d4θ Φ̄Φ (4.31)

In minimal subtraction scheme, this requires choosing the following one-loop counterterm
in (4.29)

δ
(1)
Φ = g2

16πm
1
ε

(4.32)

4.5 One-loop corrections to the vertices

We proceed with the computation of one-loop corrections to the vertices in (4.11).

Three-point vertex. We consider one-loop corrections to the three-point vertex 〈Φ̄V Φ〉
depicted in figure 1(a). Omitting vanishing tadpole diagrams, the relevant Feynman
supergraphs are collected in figure 5. We analyze them case by case.

The first two graphs are mapped one into the other by reversing the orientation of the
arrows in the chiral path. It is then easy to see that they give the same contribution. For
these diagrams the D-algebra is trivial, since the covariant derivatives coming from the
chiral propagator are directly used to kill one grassmannian delta function, so obtaining a
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Φ

Φ̄

V

(Ω1, ~p1)

(Ω2, ~p2)

(ω,~k)

(Ω, ~p)

(a)

Φ

Φ̄

V

(Ω1, ~p1)

(Ω2, ~p2)

(ω,~k)
(Ω, ~p)

(b)

(Ω1, ~p1)

(Ω2, ~p2)

(ω,~k)

(Ω, ~p)

Φ

Φ̄

V

(c)

Figure 5. One-loop diagrams contributing to the quantum corrections of the three-point vertex
〈Φ̄V Φ〉. The graphs (a) and (b) are mapped into each other by reversing the arrows along the chiral
propagators.

local expression in θ. The momentum integral gives

iΓ(3)
5(a) = iΓ(3)

5(b) = −g3
∫
d4θ

∫
dω d2k

(2π)3
Φ̄(Ω2, ~p2, θ)V (Ω, ~p, θ) Φ(Ω1, ~p1, θ)[

−~k2 + iε
][

2m(Ω1 − ω)− (~p1 − ~k)2 + iε
]

' − ig3

16πmε

∫
d4θ Φ̄V Φ

(4.33)

where we have performed the change of variable ω −→ Ω1 − ω − (~p1 − ~k)2/2m+ ~k2/2m to
recognize the appearance of the I, J1 integrals in eqs. (C.3) and (C.10).

The last contribution comes from diagram 5(c), whose D-algebra is less trivial. A series
of integration by parts on spinorial derivatives leads to

iΓ(3)
5(c) = g3

∫
d4θ

∫
dω d2k

(2π)3

× Φ̄(Ω2, ~p2, θ) Φ(Ω1, ~p1, θ)N(Ω1 − ω, ~p1 − ~k)V (Ω, ~p, θ)[
−~k2 + iε

][
2m(Ω1 − ω)− (~p1 − ~k)2 + iε

][
2m(Ω2 − ω)− (~p2 − ~k)2 + iε

] (4.34)

where N(ω, ~p) is given in eq. (4.20). Using its explicit expression and discarding terms with
∆ω < 0, in agreement with selection rule 4.1, we eventually obtain

iΓ(3)
5(c) '

ig3

16πmε

∫
d4θ Φ̄Φ

(
1− 1√

2m
D̄D

)
V (4.35)

Therefore, summing all the results, we are left with the following divergent contributions to
the effective action

Γ(3)(Φ, Φ̄, V ) ' − g3

16πmε

∫
d4θ Φ̄Φ

(
1 + 1√

2m
D̄D

)
V (4.36)

While the first term gets cancelled by wavefunction renormalization (4.32) of the chiral
superfield, the second term is a new contribution which is not present in the original
action (4.6).
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(Ω2, ~p2)
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Φ

Φ̄

V

V

(a)

Φ

Φ̄

V

V

(Ω1, ~p1)

(Ω2, ~p2)

(ω,~k)

(Ω3, ~p3)

(Ω4, ~p4)

(b)

Φ

Φ̄

V

V

(Ω1, ~p1)

(Ω2, ~p2)

(ω,~k)

(Ω3, ~p3)

(Ω4, ~p4)

(c)

(Ω1, ~p1)

(Ω2, ~p2)

(ω,~k)

(Ω4, ~p4)

(Ω3, ~p3)

Φ

Φ̄

V

V

(d)

Φ

Φ̄

V

V

(Ω1, ~p1)

(Ω2, ~p2)

(ω,~k)
(Ω3, ~p3)

(Ω4, ~p4)

(e)

Φ̄

Φ

V

V

(Ω2, ~p2)

(Ω1, ~p1)

(ω,~k)
(Ω4, ~p4)

(Ω3, ~p3)

(f)

(Ω1, ~p1)

(Ω2, ~p2)

(ω,~k)

(Ω3, ~p3)

(Ω4, ~p4)

Φ

Φ̄

V

V

(g)

Figure 6. One-loop diagrams contributing to the quantum corrections of the four-point vertex
〈Φ̄V 2Φ〉. The graphs (b), (c) and the graphs (e), (f) are mapped into each other by reversing the
arrows along the chiral propagators.

Four-point vertex. We proceed the study of one-loop corrections to the vertices in the
null SGED model by considering the four-point function 〈Φ̄V 2Φ〉. The relevant supergraphs
are collected in figure 6. We briefly go through the computation of these diagrams.

Contributions 6(a), 6(b) and 6(c) have trivial D-algebra, and can be directly evaluated
using the elementary integrals (C.3) and (C.10). The explicit results are

iΓ(4)
6(a) ' −

ig4

16πmε

∫
d4θ Φ̄V 2Φ (4.37)

iΓ(4)
6(b) = iΓ(4)

6(c) ' −
ig4

32πmε

∫
d4θ Φ̄V 2Φ (4.38)

The next category of Feynman diagrams are triangle diagrams 6(d), 6(e) and 6(f),
which are obtained from the three-point vertex 5(c) by adding one external vector superfield
in all possible ways. Consequently, their D-algebra gives the term (4.20) at numerator.
Using selection rule 4.1 to get rid of several terms and performing steps similar to the ones
used in the previous computations, we find

iΓ(4)
6(d) '

ig4

32πmε

∫
d4θ Φ̄Φ

(
1− 1√

2m
D̄D

)
V 2 (4.39)

iΓ(4)
6(e) = iΓ(4)

6(f) '
ig4

16πmε

∫
d4θ Φ̄ΦV

(
1− 1√

2m
D̄D

)
V (4.40)
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The square diagram in figure 6(g) corresponds to a new topology that appears for the first
time in the four-point function. The D-algebra in this case is more involved, since the
number of covariant derivatives along the internal propagators increases. After manipulating
them by integrating by parts at the vertices and using their algebra, we obtain the following
factor at numerator

N
(
V3, V4

)
= �2

l V3V4 + �l l
αβ V3 D̄αDβV4 −�l l

αβ DβV3 D̄αV4

−�l l
αβ DβD̄αV3 V4 − lαβlγδDβD̄αV3 D̄γDδV4 + . . .

(4.41)

where lµ = pµ1 + pµ3 − kµ. The subscripts for the prepotentials refer to the assignment of
external momenta given in figure 6(g), Vj ≡ V (Ωj , ~pj). The ellipsis denote several other
terms that have ∆ω < 0, and therefore give vanishing contributions. The full calculation of
the surviving terms gives

iΓ(4)
6(g)'−

ig4

16πmε

∫
d4θ Φ̄

[
V 2− 1√

2m

(
2V (D̄DV )−(DV )(D̄V )

)
− 1

2m2 (DD̄V )2
]
Φ (4.42)

Summing all the results of the diagrams in figure 6, we obtain the following contribution to
the effective action

Γ(4)(Φ, Φ̄,V )'− g4

16πmε

∫
d3x

∫
d4θ Φ̄

[
V 2+ 1√

2m
V (D̄DV )+ 1

2m2 (D̄DV )2
]
Φ (4.43)

The first term gets cancelled by the wavefunction renormalization in eq. (4.32). However, we
find two new terms which were not included in the original SGED action (4.6), confirming
the pattern that we observed for the three-point vertex.

4.6 Non-renormalizability of the theory

The results obtained in eqs. (4.36) and (4.43) pose serious doubts about the renormalizability
of the theory. Indeed, we now show that the action (4.6) is non-renormalizable, as an infinite
number of new counteterms need to be added in order to cancel UV divergences at one loop.

First of all, as we argue in appendix D, new vertices containing more than two (anti)chiral
superfields are not generated at quantum level (no UV divergences come from diagrams
with more than two (anti)chiral external legs). Therefore, the problematic terms for the
renormalizability of the theory only come from diagrams with exactly one chiral and one
antichiral superfield, and any number of external vector superfields.

We then consider a generic supergraph with one chiral, one antichiral and n vector
external legs, i.e., we consider one-loop contributions to the correlator 〈Φ̄V nΦ〉, with n > 2.
The corresponding diagram is depicted in figure 7.

Its contribution to the effective action reads

iΓ(n+2)(Φ, Φ̄, V ) = (ig)n+2
∫
d4θΦ d

4θΦ̄ d
4θ1 . . . d

4θn

∫
dω d2k

(2π)3 Φ̄V1 . . . VnΦ

× −i δΦ̄Φ
−~k2 + iε

iD2D̄2δΦ1
�k+p + iε

iD2D̄2δ12
�k+p+p1 + iε

. . .
iD2D̄2δnΦ̄

�k+p+p1+···+pn + iε
(4.44)
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V1

V2

Vn

Φ̄

Φ

k

p1

p2

pn

p̄

p

Figure 7. One-loop Feynman supergraph contributing to the vertex with one external chiral, one
antichiral and n vector superfields. Here pj ≡ (Ωj , ~pj) and k ≡ (ω,~k).

where �k ≡ 2mω − ~k2 and δij ≡ δ(4)(θi − θj). The denominator of the integrand goes to
infinity as ωn+1, while the numerator is dominated by terms whose UV divergences scale as
ωn. Therefore, its superficial degree of divergence is ∆ω = 0, and selection rule 4.1 cannot
be applied. Instead, working in a way similar to the one used in section 4.3, we find that
D-algebra manipulations give

iΓ(n+2)(Φ, Φ̄, V ) = −(−g)n+2
∫
d4θ Φ̄

(
n∑
i=0

1
(
√

2m)i
D(i) V1 . . . Vn

)
Φ

×
∫
dω d2k

(2π)3
1[

−~k2 + iε
][

2mω − ~k2 + iε
] (4.45)

where the differential operator D(i) was formally defined in eq. (4.25). This time the
spacetime integral we are left with is divergent, and it evaluates to

Γ(n+2)(Φ, Φ̄, V ) ' −(−g)n+2

16πmε

∫
d4θ Φ̄

(
n∑
i=0

1
(
√

2m)i
D(i) V1 . . . Vn

)
Φ (4.46)

This means that quantum corrections generate novel non-renormalizable terms where
covariant derivatives D and D̄ act on external vector legs. For a Feynman supergraph with
n external prepotentials, one chiral and one antichiral superfields, the maximum number of
covariant derivatives acting on the external vector superfields is n D’s plus n D̄’s.

Working out the general combinatorial factors and signs in D(i) would require a
systematic development of the D-algebra with an increasing number of covariant derivatives
acting on the internal lines, therefore with an increasing level of difficulty. Nonetheless, we
can infer the general pattern of (4.46) by means of the following reasoning.

First of all, gauge invariance greatly restricts the spectrum of possible D-structures in
D(i) V1 . . . Vn. In fact, all the combinations of the form∫

d4θ Φ̄V a(DV )b(D̄V )c(D̄DV )dΦ ∀ a, d ≥ 0 ∧ b, c > 0 (4.47)
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with one single covariant derivative D or D̄ acting on the prepotential are ruled out since
they are not invariant under gauge transformations (3.2). On the contrary, the block D̄DV
is dimensionless (see dimensional counting in appendix B) and gauge-invariant, therefore it
can enter any new non-renormalizable combination at an arbitrary power. Furthermore,
powers of V without derivatives must reorganize in a gauge-invariant structure, precisely
they need to resum to the exponential factor egV . The three- and four-point correlators
that we have computed in eqs. (4.31), (4.36) and (4.43) indeed satisfy these requirements.

Restricting the evaluation of the combinatorial factors only to the expected structures
makes the development of D-algebra much easier. We eventually find that the Feynman
supergraph in figure 7 for generic n produces the following contribution

Γ(n+2)(Φ̄,Φ, V n) ' − gn+2

16πmε

∫
d4θ Φ̄

(
D̄DV√

2m

)n
Φ (4.48)

and no other one-loop diagram modifies this factor.
Combining all these results, one can infer that the total one-loop divergent correction

to the effective action sums into a geometric series as

Γ = − g2

16πmε

∫
d4θ Φ̄egV Φ 1

1− g√
2mD̄DV

(4.49)

Since this does not reproduce the structure of the original action (4.6), the null SGED
model is not renormalizable.

4.7 Non-linear sigma model

The appearance of the UV divergent term (4.49) at one loop suggests that the interacting
part of the original action (4.6) has to be promoted to a non-linear sigma model of the form∫

d3xd4θ Φ̄egV ΦF
(
D̄DV

)
(4.50)

where F is a generic smooth function of its argument. Upon Taylor expansion of F ,7 this
action exhibits an infinite number of new couplings weighted by the F derivatives

F (n) ≡ dnF(x)
dxn

∣∣∣
x=0

(4.51)

As anticipated in eq. (3.3), this marginal deformation is allowed by symmetries and di-
mensional analysis. It represents the supersymmetric version of the arbitrary functions
J ,V, E that enter the GED action at quantum level (see eq. (2.14)). In fact, our finding is
the supersymmetric version of what already emerges in the GED case [8]. The simplest
non-relativistic version of (super)electrodynamics fails to be renormalizable, leading to the
necessity to replace it with a more general non-linear sigma model. However, while in the
GED case three arbitrary functions are required, in the present case supersymmetry forces
only one function to appear.

7By suitably rescaling the (anti)chiral superfields, we choose the normalization F(0) = 1 to reproduce
the ordinary kinetic term for the scalars.
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To make a better comparison with the non-SUSY case, it is worth reducing (4.50) to
components. By using the prescription for Berezin integration (A.22) and the component
projections of the vector superfield (A.34), and taking into account that F is killed by D, D̄,
we find∫

d3x

[
F(−ϕ) D̄2D2

(
Φ̄egV Φ

) ∣∣∣− λ2F ′(−ϕ)D1D̄D(Φ̄egV Φ)
∣∣∣+ λ̄2F ′(−ϕ)D̄1(Φ̄egV Φ)

∣∣∣
+ F ′(−ϕ)

(
D̃ + i

2
(√

2∂t + ∂11
)
ϕ

)
(Φ̄egV Φ)

∣∣∣− λ2λ̄2F ′′(−ϕ)(Φ̄egV Φ)
∣∣∣ ] (4.52)

where F ′,F ′′ denote the first and second derivatives respect to (D̄DV ), respectively, and
the symbol | means the function evaluated at θ = θ̄ = 0. In order to derive the previous
expressions, use has been made of the identities (A.34), together with the non-vanishing
projections of F that explicitly read

F| = F (−ϕ) , D1F| = −λ̄2F ′ (−ϕ) ,

D̄1F| = λ2F ′ (−ϕ) , [D̄1, D1]F| =
(
2D̃ +

√
2i∂tϕ

)
F ′ (−ϕ)

(4.53)

These identities show that the non-linear sigma model (4.50) corresponds to the original
component action (3.4) multiplied by the overall function F(−ϕ) (first term in the above
expansion) plus additional terms proportional to higher components of the gauge multiplet.
Consequently, the equations of motion (3.11) and (3.12) for the auxiliary fields get modified,
now containing contributions proportional to F and its derivatives. The function F(−ϕ)
generalizes the covariantized mass M = (m − ϕ) appearing in the GED action [8] (see
also (3.10)).

5 A renormalizable SGED

The previous analysis reveals that at quantum level new infinite typologies of UV divergences
arise, which combine into the geometric series (4.49). This forces us to modify the original
SGED action and consider the new model

SSGED =
∫
d3xd2θW 2 +

∫
d3xd4θ Φ̄egV ΦF(D̄DV ) (5.1)

To make sense to this new action, we need to investigate its renormalizability properties.
In principle, we could approach the problem using the same supergraph techniques

adopted in section 4. The disadvantage of such a method is that in order to compute
contributions to the effective action we need to Taylor expand the exponential factor egV ,
so temporarily breaking gauge invariance of the sigma-model action. Restoring gauge
invariance would require computing infinitely many correlators with an increasing number
of external V legs, or rely on the structure of the first few correlation functions, typically
three- and four-point correlation functions, and infer the general one-loop result advocating
gauge invariance. In the present situation, this procedure would be further complicated by
the need to expand the sigma-model function F , too.

– 24 –



J
H
E
P
0
9
(
2
0
2
2
)
2
3
7

A more convenient, and eventually more compact way to organize the computation is
to use a formalism where both supersymmetry and gauge invariance are manifest at each
step. The natural framework to achieve this task is the background field formalism [45, 46].
We review this formalism in section 5.1 by adapting it to the Galilean superspace, and
introduce the deformed SGED action with the inclusion of the new vertices, see eq. (5.17).
We collect the corresponding Feynman rules in section 5.2. This formulation allows first
to quickly re-derive the results obtained in section 4. Then, in section 5.4 it is used to
evaluate one-loop corrections to the effective action of the new sigma-model (5.1), whereas
its renormalization is discussed in section 5.5.

5.1 Covariant approach and background field method

We begin by briefly introducing the background field method in non-relativistic N = 2
superspace. This is just an adaptation of the well-known method of N = 1 relativistic
superspace in four dimensions [46].

Supergauge covariant derivatives are defined, in gauge chiral representation as8 [46]

∇A = (∇α, ∇̄β ,∇αβ) = (e−VDα e
V , D̄β , i{∇α, ∇̄β}) (5.2)

and in vector representation as

∇A = (∇α, ∇̄β ,∇αβ) = (e−V/2Dα e
V/2, eV/2D̄β e

−V/2, i{∇α, ∇̄β}) (5.3)

Background-quantum splitting in covariant formalism is realised by replacing

eV → eΩeV eΩ̄ (5.4)

where for the Abelian theory under consideration, we choose Ω = Ω̄ = V0/2. This
corresponds to a linear splitting

V → V0 + V (5.5)

between the background prepotential V0 and its quantum fluctuation V .
By inserting the splitting (5.4) inside the definitions (5.2), and applying a similarity

transformation, that is we multiply all the expressions by eΩ̄ on the left and e−Ω̄ on the
right, we obtain the background-quantum splitting of the covariant derivatives. They read

∇α = e−V ∇αe
V , ∇̄β = ∇̄β , ∇αβ = i{∇α, ∇̄β} (5.6)

where we have defined background covariant derivatives in background-vector representation
as

∇α = e−V0/2Dα e
V0/2 , ∇̄β = eV0/2D̄β e

−V0/2 (5.7)

8See appendix E for more details on the definition and properties of gauge covariant derivatives in
superspace.
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The ∇ derivatives transform covariantly under:

• Quantum transformations parametrized by covariantly (anti)chiral superfields Λ, Λ̄
(∇̄αΛ = ∇αΛ̄ = 0)

eV → eiΛ̄eV e−iΛ , ∇A →∇A (5.8)

• Background transformations parametrized by real K = K̄

eV → eiKeV e−iK , ∇A → eiK∇Ae
−iK (5.9)

In terms of the background covariant derivatives (5.7), we define covariantly (anti)chiral
superfields

Φ̃ = eV0/2Φ , ¯̃Φ = Φ̄eV0/2 (5.10)

that satisfy
∇̄βΦ̃ = 0 , ¯̃Φ

←
∇α = 0 (5.11)

In addition, we perform the linear background-quantum splitting

Φ̃→ Φ̃0 + Φ̃ , ¯̃Φ→ ¯̃Φ0 + ¯̃Φ (5.12)

Equations (5.4), (5.6) and (5.12) collect the necessary ingredients to perform the background
field expansion of action (5.1), in the covariant formalism. To fit the previous calculations
we shift V0 → gV0 and V → gV in all these identities.

5.2 Covariant Feynman rules

We start writing the full SGED action (4.50) in terms of background and quantum super-
fields. This amounts to first re-writing it in terms of supergauge covariant derivatives and
covariantly (anti)chiral superfields, and performing the background-quantum splitting as
described above.

Starting with the gauge sector, the splitting of the gauge superfield strength reads

Wα ≡ igD̄2DαV = iD̄2(e−gVDαe
gV ) → i∇̄2(e−gV ∇αe

gV ) (5.13)

Concerning the F argument, for the Abelian theory we can first of all write

D̄βDα(gV ) = D̄β

(
e−gVDαe

gV
)

= ∇̄β∇αI (5.14)

Performing the quantum splitting (5.4) and the similarity transformation, we obtain

∇̄β∇αI→ ∇̄β(e−gV ∇αe
gV ) = ∇̄β∇α(gV ) (5.15)

Finally, the gauge-fixing procedure can be easily covariantized and leads to the covariantized
version of the action (4.3) [46].

Regarding the matter sector, we perform the splitting in (5.4) and write

Φ̄ egV Φ→ Φ̄ egV0/2egV egV0/2Φ = ¯̃Φ egV Φ̃ (5.16)

and then split the superfields according to prescription (5.12).
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Collecting all the terms, the gauge-fixed action we start from, reads

SSGED = 1
2

∫
d3xd4θ

[(
e−gV ∇αegV

)
∇̄2(

e−gV ∇αe
gV
)

+ 1
ζ
V
(
∇2∇̄2+∇̄2∇2

)
V

]
+
∫
d3xd4θ

( ¯̃Φ+ ¯̃Φ0
)
egV

(
Φ̃+Φ̃0

)
F
(
∇̄2∇2V

) (5.17)

At quantum level, the generating functional (4.7) gets replaced by its covariant version

Z[J̃ , ¯̃J, JV ] =
∫

[DΦ̃D ¯̃ΦDV ] exp
[
iSSGED + i

∫
d3x

(∫
d2θJ̃Φ̃ +

∫
d2θ̄ ¯̃J ¯̃Φ +

∫
d4θJV V

)]
(5.18)

where J̃ , ¯̃J are covariantly (anti)chiral superfields and JV is a vector superfield, all of them
acting as sources. The corresponding functional derivatives bring factors of background
covariant derivatives

δJ̃(z)
δJ̃(z′)

= ∇̄2
δ(7)(z − z′) , δ ¯̃J(z)

δ ¯̃J(z′)
= ∇2δ(7)(z − z′) , δJV (z)

δJV (z′) = δ(7)(z − z′) (5.19)

Starting from the gauge-fixed action (5.17), we can extract covariant Feynman rules. Here
we simply list the results, while details on the differential operators and the derivatives
introduced in the covariant formalism are collected in appendix E. In particular, the kinetic
differential operators for the covariant superfields can be compactly written in terms of
operators �± and �̂ defined in eqs. (E.9) and (E.10), respectively.

• Chiral propagator

〈Φ̃(ω, ~p, θ, θ̄) ¯̃Φ(−ω,−~p, θ′, θ̄′)〉 = 1
�+

δ(4)(θ′ − θ) (5.20)

• Vector propagator (in Feynman gauge, ζ = 1)

〈V (ω, ~p, θ, θ̄)V (−ω,−~p, θ, θ̄)〉 = − 1
�̂
δ(4)(θ′ − θ) (5.21)

• Vertices: they arise from the series expansion of the exponential and the F function
in the interacting term in eq. (5.17), which reads

Sint =
∞∑

m,n=0
m+n>0

gm

m!n! F
(n)

∫
d3x

∫
d4θ

( ¯̃Φ + ¯̃Φ0
)
V m

(
Φ̃ + Φ̃0

) (
∇̄2∇2V

)n
(5.22)

where the F (n) couplings have been defined in (4.51).
There are in principle vertices with one chiral, one antichiral and an arbitrary number
of vector superfields. However, at one loop only the three-point vertices depicted in
figure 8 are needed. The right vertex is a new contribution proportional the coupling
F (1), while the left vertex is proportional to g and resembles the one already present in
the original SGED action (4.6). However, since the legs correspond to covariant super-
fields, it comprises all the vertices of the form Φ̄V n

0 Φ in the formulation of section 4.

• Due to the identities (5.19), we assign one factor of ∇̄2(∇2) to any chiral (anti-chiral)
internal line exiting from a vertex.

In addition, we include the usual combinatorial factors coming from the expansion of the
interacting action, and we impose energy and momentum conservation at each vertex.
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V

Φ̃(Φ̃0)

¯̃Φ( ¯̃Φ0)

∇̄2∇2V

Φ̃(Φ̃0)

¯̃Φ( ¯̃Φ0)

Figure 8. Three-point vertices arising from the interaction terms of the SGED action, eq. (5.22).
While the left vertex is the covariantized version of the original one, the right one is genuinely new.

In order to reduce supergraphs contributions to ordinary Feynman integrals, we perform
∇-algebra manipulations until we are left with a single grassmannian integral of a local
function in superspace. Explicitly, this is realized by first moving all the covariant ∇, ∇̄
derivatives distributed on the diagram to act on a single vertex, then integrating by parts
at that vertex. Moving covariant derivatives requires commuting them with 1/�± and 1/�̂
operators using identities in (E.11). The procedure stops when we reach a configuration
where exactly two ∇’s and two ∇̄’s survive in each loop. Whenever we end up with a lower
number of covariant derivatives in a loop, the corresponding diagram vanishes due to the
fermionic nature of the Berezin integration.

After ∇-algebra, the original integral reduces to a linear combination of standard
Feynman integrals in configuration space, and ordinary QFT methods can be applied to
compute them. A novelty of this approach, compared to the non-covariant superspace
formalism, is that the differential operators �±, �̂ defined in eqs. (E.9) and (E.10) have
a non-trivial dependence on the background fields. This turns out to be crucial when
evaluating covariant supergraphs, as we are going to discuss.

We proceed with the one-loop renormalization of the SGED action defined in eq. (5.17).
To this end, we consider renormalized quantities as defined in eq. (4.13), complemented by
the renormalization of the function F given by

FB = F + δF = F +
∞∑
l=1

δFl (5.23)

where δFl is the counterterm at loop order l. It is important to observe that while the bare
sigma-model function depends on D̄DV , the functional dependence of the renormalized F
and its counterterm δF is on µεD̄DV , since this is the correct dimensionless quantity in
d = 2− 2ε. Requiring that all the coupling constants F (n) induced by its Taylor expansion
remain dimensionless after the regularization implies that they acquire a dimensional deficit
as follows

F (n)
B = µnε

(
F (n) +

∞∑
l=1

δF (n)
l

)
= µnεZF(n)F (n) (5.24)

where we have defined ZF(n) ≡ 1 +∑∞
l=1 δF

(n)
l /F (n).
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(ω,~k)

Figure 9. One-loop vacuum diagram.

5.3 Original covariant one-loop radiative corrections

As a warming-up, we begin by discussing how the covariant formalism allows to rederive in
a very efficient and compact way the results of section 4 regarding the one-loop behavior
of the original action (4.6). The main advantages of the present formalism are twofold.
On the one hand, external covariantly (anti)chiral superfields are dressed with factors
egV0 , therefore a single Feynman diagram with external (anti)chiral legs encodes infinitively
many terms arising from the series expansion of the exponential. On the other hand, all
the dependence on the background gauge sector is encoded, in a gauge covariant way, in
the covariant propagators (5.20) and (5.21). Therefore, expanding them in powers of the
external gauge superfields, produces infinitely many diagrams with an increasing number of
external gauge legs (see expansions (E.14) and (E.18)). Moreover, gauge invariance respect
to background gauge transformations (5.9) is manifest at each step.

The nice consequence is that at one loop we have to consider only two diagrams: a
vacuum diagram made by closing a covariant chiral superpropagator, which after expansion
would give rise to pure vector contributions, and a self-energy diagram 〈 ¯̃ΦΦ̃〉 which encodes
the infinite sum of terms of the form 〈Φ̄V n

0 Φ〉.

Vacuum diagram. We first consider the vacuum diagram given by a single chiral super-
propagator, whose edges are identified (see figure 9).

Since there is a single propagator, the ∇-algebra is trivial. We only need to use the
identity

∇2 1
�+

∇̄2 = 1
�−

∇2∇̄2 (5.25)

to make the covariant derivatives act on the δ function of the Grassmann variables. We are
then left with a spacetime integral with propagator �−1

− .
Using expansion (E.16), at lowest order this differential operator gives an ordinary

scalar propagator 1/�0, which in spatial dimensional regularization integrates to zero
(see appendix C). We then consider higher-other terms in the expansion. At each order
the number of propagators increases, leading to non-tadpole, potentially non-vanishing
contributions. Setting to zero the momenta of the external fields, at order n in the expansion
of 1/�− the worst UV behavior corresponds to a contribution of the form

∫
dωd2k

(2π)3
ωn

(2mω − ~k2 + iε)n+1
(5.26)
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where powers of ω at numerator come from the term

iΓαβ∂αβ → iΓ11∂11 =
√

2g(D̄DV0)ω (5.27)

appearing in the expansion of the covariant propagator 1/� (see expansion (E.17)). However,
using Sokhotski-Plemelj formula and spatial dimensional regularization, it is easy to see
that this contribution vanishes. In fact, upon substituting ωn → (2mω−~k2)n at numerator
(all the extra terms vanish, having ∆ω < 0) we can simplify n propagators, thus obtaining
a tadpole of the form (4.18).

Any other configuration of external fields coming from the expansion of 1/�− leads
to integrals with less powers of ω at numerator, thus having ∆ω < 0. Therefore, they all
vanish, thanks to selection rule 4.1. This is nothing but an alternative proof of selection
rule 4.2.

Self-energy corrections. We now evaluate the one-loop self-energy corresponding to
the diagram in figure 4 but this time with (anti)chiral ¯̃Φ, Φ̃ superfields on the external legs
and internal lines corresponding to covariant superpropagators.

After using identity (5.25), ∇-algebra is completely solved and we are left with internal
1/�− and 1/�̂ propagators. As discussed in appendix E, expanding these differential
operators produces all possible insertions of the background gauge field.

The lowest order term in these expansions corresponds to replacing the covariant
propagators with flat Schrödinger operators. The corresponding contribution to the effective
action evaluates to

− g2
∫
d4θ

∫
dωd2k

(2π)3
Φ̃0(Ω, ~p, θ) ¯̃Φ0(Ω, ~p, θ̄)

(−~k2 + iε)[2m(Ω− ω)− (~p− ~k)2 + iε]
' − ig2

16πmε

∫
d4θ Φ̄0e

gV0Φ0

(5.28)
Further potentially divergent contributions come from higher order terms in the propa-

gators expansions, as long as the corresponding integral has ∆ω ≥ 0. Since in general the
insertion of external legs increases the number of propagators, then improving the degree of
convergence of the integral, the only possibility to obtain non-trivial UV divergent contri-
butions is when extra powers of ω get produced at numerator, which exactly compensate
for the additional propagators.

Considering first higher order terms in the expansion of the �−1
− propagator, this

happens only for insertions of type (5.27). The integral corresponding to the expansion at
order n reads

−g2
∫
d4θ

∫
dωd2k

(2π)3

¯̃Φ0(Ω, ~p, θ̄)Φ̃0(Ω, ~p,θ)
(−~k2+iε)

[
2m(Ω−ω)−(~p−~k)2+iε

]
×

√
2g(D̄DV0)ω

2m(Ω+Ω1−ω)−(~p+~p1−~k)2+iε

√
2g(D̄DV0)ω

2m(Ω+Ω1+Ω2−ω)−(~p+~p1+~p2−~k)2+iε

×·· ·×
√

2g(D̄DV0)ω
2m(Ω+Ω1+· · ·+Ωn−ω)−(~p+~p1+· · ·+~pn−~k)2+iε

(5.29)
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Φ̃0
θ ∇2 ∇̄2

θ′
1

�+

¯̃Φ0

∇∇̄

1

�̂

(a)

Φ̃0

θ ∇2 ∇̄2 θ′1
�+

¯̃Φ0

∇̄∇

1

�̂

(b)

Φ̃0

θ ∇2 ∇̄2
θ′

1
�+

¯̃Φ0

∇∇̄∇̄∇

1

�̂

(c)

Figure 10. Novel one-loop self-energy diagrams containing three-point vertices originating from
the expansion of the geometric series (5.22). The assignment of momenta is the same as in figure 4.

To extract the UV divergence we set all the external momenta to zero, i.e., Ω1 = Ω2 = · · · = 0
and ~p1 = ~p2 = · · · = 0. The integrals can be the evaluated by performing the integration
over ω first, and then using dimensional regularization along the remaining spatial directions.
Summing the contributions at any order in the expansion, the final result reads

− ig2

16πmε

∞∑
n=0

∫
d4θ ¯̃Φ0Φ̃0

(
g√
2m

D̄DV0

)n
= − ig2

16πmε

∫
d4θ

Φ̄0e
gV0Φ0

1− g√
2mD̄DV0

(5.30)

and corresponds precisely to the geometric series obtained in eq. (4.49).
In order to complete the calculation, we need to consider contributions from the

expansion of the vector superpropagator 1/�̂. However, as shown in appendix E.3, none of
these terms give rise to divergent integrals. Therefore, we have found confirmation that the
one-loop self-energy counterterm is (4.49).

5.4 New covariant self-energy corrections

For the non-linear sigma model (5.17), the result in (5.30) needs to be completed with extra
corrections corresponding to supergraphs in figure 10 that involve at least one new vertex
carrying coupling F (1) (right vertex in figure 8).

We begin by computing diagrams 10(a) and 10(b) that can be easily seen to give the
same contribution. Therefore, we simply double the result of the first one.

In diagram 10(a) ∇-algebra is made more complicated by the presence of an additional
pair of background covariant derivatives ∇̄∇ inserted at the right vertex.9 Integrating by
parts at the right vertex to move derivatives from the vector to the chiral propagator, the

9To avoid confusion, we denote ∇ ≡ ∇2, ∇̄ ≡ ∇̄2 while ∇2, ∇̄2 denote the square of the covariant
derivatives, according to the definitions in (E.5).
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resulting string of manipulations goes as follows[
∇̄∇δ(4)(θ′ − θ)

] [
∇̄2∇2δ(4)(θ′ − θ)

] ¯̃Φ0 =

= −δ(4)(θ′ − θ)
[(

∇∇̄2∇2δ(4)(θ′ − θ)
)

∇̄ ¯̃Φ0 +
(
∇̄2∇2δ(4)(θ′ − θ)

)
{∇, ∇̄} ¯̃Φ0

] (5.31)

The first term vanishes due to ∇-algebra. The second one can be further manipulated using

{∇, ∇̄} ¯̃Φ0 = i∇22
¯̃Φ0 =

√
2m

(
1− g√

2m
D̄DV0

)
¯̃Φ0 (5.32)

Except for this additional factor multiplying the external antichiral superfield, the rest of
the integral is exactly the same that led to result (5.30). Therefore, we obtain

iΓ10(a)+10(b) '
g

16πmε 2
√

2mF (1)
(

1− g√
2m

D̄DV0

)∫
d4θ

¯̃Φ0Φ̃0

1− g√
2mD̄DV0

= g

16πmε 2
√

2mF (1)
∫
d4θ Φ̄0e

gV0Φ0 (5.33)

We then consider diagram 10(c). To perform ∇-algebra we first bring all the covariant
derivatives at the left (or equivalently at the right) of the propagators. On the chiral line this
is trivial since [ 1

�+
, ∇̄2] = 0. On the vector propagator, we can exchange derivatives with

1/�̂ up to an extra term proportional to their commutator. However, due to the identity[
∇̄∇,

1
�̂

]
= O

( 1
�̂

)2
(5.34)

one can show that the contributions arising from the commutator are convergent. At
this point we can simply apply the transfer rule to the derivatives on the upper vector
propagator, and obtain

∇̄(θ)∇(θ)∇̄(θ′)∇(θ′)δ(θ − θ′) = −∇̄(θ′)∇(θ′)∇(θ′)∇̄(θ′)δ(θ − θ′) = 0 (5.35)

Therefore, diagram 10(c) does not contribute due to the fermionic nature of the covariant
derivatives.

In conclusion, summing contribution (5.33) coming from the new F (1)-vertex to the
old contribution (5.30), we obtain the following one-loop correction to the chiral self-energy
(from now on, we remove the subscript from background fields)

Γ(2)(Φ̃, ¯̃Φ) ' − g

16πmε

∫
d4θ Φ̄egV Φ

 g

1− g√
2mD̄DV

− 2
√

2mF (1)

 (5.36)

5.5 Renormalization of the action

The structure of the counterterm action which arises from the assignments (4.13) and (5.23) is

LSGED +
∫
d4θ δΦ Φ̄egV Φ +

∫
d4θ δΦ Φ̄egV Φ (F − 1) +

∫
d4θ (1 + δΦ)Φ̄egV Φ δF

−→
1 loop

LSGED +
∫
d4θ δ1L

Φ Φ̄egV Φ +
∫
d4θ Φ̄egV Φ δF1L (5.37)
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On the other hand, the one-loop divergences collected in eq. (5.36) can be rewritten as

Γ(2)(Φ̃, ¯̃Φ) ' − g

16πmε(g − 2
√

2mF (1))
∫
d4θ Φ̄egV Φ

+ g2

16πmε

∫
d4θ Φ̄egV Φ

1− 1
1− g√

2mD̄DV

 (5.38)

where we have added and subtracted the term − g2

16πmε
∫
d4θΦ̄egV Φ. Therefore, summing

these two expressions, we find that renormalization at one loop requires to fix

δ1L
Φ = g

16πm
(
g − 2

√
2mF (1)

) 1
ε

+ finite terms (5.39)

δF1L = − g2

16πm

1− 1
1− g√

2mD̄DV

 1
ε

+ finite terms (5.40)

It can be easily seen that the second identity implies the following one-loop renormalization
for the n-coupling

δF (n)
1L = gn+2 n!

16πm(
√

2m)n
1
ε

+ finite terms (5.41)

The beta function for the n-th coupling can be easily evaluated by deriving eq. (5.24)
respect to logµ,10

0 = dF (n)
B

d logµ = µnεZF(n)F (n)
[
nε+ µ

ZF(n)

dZF(n)

dµ
+ µ

F (n)
dF (n)

dµ

]
(5.42)

At lowest order we simply approximate ZF(n) = 1, then obtaining

dF (n)

d logµ = −nεF (n) (5.43)

At the next order, we plug this identity into eq. (5.42) and we use result (5.40). After
performing the ε→ 0 limit, we obtain the beta-functions of the SGED theory at one-loop

βF(n) = dF (n)

d logµ = −gn+2 n! n
16πm(

√
2m)nF (n) (5.44)

supplemented by βg = 0. Thanks to the g independence on the mass scale, this equation
can be easily integrated, leading to the following behavior for the square of the running
F (n) coupling

(F (n))2(µ)− (F̄ (n))2 = −gn+2 n! n
8πm(

√
2m)n

log
(
µ

Λ

)
(5.45)

where F̄ (n) is the value of the coupling at the substraction scale Λ. We depict the difference
in the left-hand side of eq. (5.45) in figure 11, as a function of µ and at fixed g > 0.

Finally, the anomalous dimension of the (anti)chiral superfield is easily obtained from
the definition

γΦ ≡
1
2
d logZΦ
d logµ = 1

2
∂ logZΦ
∂F (1)

dF (1)

d logµ = g

8π
√

2
F (1) (5.46)

10From now on we omit the subscript specifying the loop order, so avoiding unnecessary clutter.
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Figure 11. Plot of the left-hand side of eq. (5.45) as a function of µ, for fixed g = 0.8,m = 1 and
various choices of n.

where in the last step we used eqs. (5.39) and (5.43), together with the non-renormalization
of the mass and the coupling g.

A priori, the above results are valid for generic values of g, since we derived them using
the background field method that automatically accounts for contributions to all orders
in this coupling. However, in order to make corrections (5.39) and (5.40) perturbatively
meaningful, as well as the beta function in (5.44), we need to require

g � 1 , gF (1) � 1 , gn+2/F (n) � 1 (5.47)

The beta function of any coupling constant F (n) entering the non-linear sigma model
vanishes when g = 0, where also the wavefunction renormalization vanishes, see eq. (5.46).
At this value of the coupling, the gauge transformations of matter fields become trivial
and the minimal coupling egV disappears, while a V dependence survives in the analytic
function F . At g = 0 the theory exhibits a non-trivial infrared fixed point where it enjoys
the full non-relativistic superconformal invariance and corresponds to an interacting field
theory with action

Sfixed =
∫
d3xd2θW 2 +

∫
d3xd4θ Φ̄ΦF(D̄DV ) (5.48)

The analysis of the infinite-dimensional matrix ∂IβJ with I, J ∈ {g,F (1),F (2), . . . } reveals
that its eigenvalues are given by the set

1
16πm

{
0, 1√

2m
g3

(F (1))2 , . . . ,
n!n

(
√

2m)n
gn+2

(F (n))2

}
(5.49)

When evaluated at the fixed point g = 0, we clearly find a vanishing matrix, which corre-
sponds to stating that there is an infinite-dimensional superconformal manifold parametrized
by arbitrary values of the couplings F (n).

The RG flow of the F (n) couplings depicted in figure 11 and the topology of the
conformal manifold that we have found are peculiar of the one-loop approximation. At
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higher orders, we expect different couplings to mix at different orders, possibly leading to a
richer spectrum of fixed points. In that case, the existence of a conformal manifold would
constrain the functional form of the F function non-trivially.

6 Conclusions

In this paper we have studied a non-relativistic version of three dimensional quantum
electrodynamics with N = 2 supersymmetry. We have found that the retarded nature of
the non-relativistic propagator entails the existence of a non-renormalization theorem which
protects the coupling constant g from acquiring quantum corrections. This result generalizes
to the supersymmetric setting what has been observed for the electric charge in GED [8].
However, despite this partial quantum protection, an infinite set of marginal deformations,
consistent with supersymmetry and gauge invariance, are generated at quantum level.
These quantum corrections deform the simplest action, obtained by null reduction from
four dimensions, into a non-linear sigma model of the form (1.1), which contains infinite
new couplings. The one-loop analysis of the deformed action reveals that the beta functions
of these new couplings vanish when g = 0, see eq. (5.44). This case identifies an interacting
non-trivial superconformal manifold where the minimal coupling term in the SGED action
is turned off, but infinite marginal deformations parametrized by the Taylor series of the
analytic function F survive.

The SGED provides a first example of a theory where supersymmetry does not signifi-
cantly improve the renormalization properties of its purely scalar counterpart (GED). While
it restricts the class of marginal deformations to a single analytic function, its functional
expression is not fixed at one loop level.

The approach and the results derived in this work open the possibility for several future
directions. First of all, it would be interesting to exploit the background field method
described in section 5 to study higher-loop corrections. It is clear that the fixed point g = 0
will survive, because all the counterterms and the beta functions are proportional to the
coupling constant g. However, it is non-trivial to understand if higher loops will allow
for other fixed points, characterized by choosing specific values of the couplings F (n) in
eq. (4.51). Furthermore, we expect that higher loops should impose further constraints on the
functional form of the sigma model, thus restricting the choice of the marginal deformations.

Another possible future direction is the study of renormalization properties of non-
Abelian Galilean-invariant gauge theories, which were considered at classical level in [11, 47].
Their supersymmetric generalization would also provide a non-relativistic version of SYM
theories, which play a fundamental role in high energy physics. In particular, N = 4 SYM is
superconformal invariant at the full quantum level and it allows to perform precise matchings
of the AdS/CFT correspondence. In recent years, it has been shown that decoupling limits of
N = 4 SYM lead to quantum mechanical models, called Spin Matrix Theories (SMT), which
have non-relativistic symmetries and are closed under the action of the one-loop dilatation
operator [48]. The effective Hamiltonian of these sectors in the near-BPS limit have been de-
rived in [33–36], leading in some cases to field theory and superfield formulations. It would be
interesting to find a link between these decoupling limits of N = 4 SYM and a null reduction
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procedure, and study the quantum properties of both theories. In holography, SMTs provide
a simpler setting where precise matching of the AdS/CFT duality can be performed even at
finite number N of colours. The dual gravitational models are described by non-relativistic
string theories [49–55], and the properties of worldvolume actions in this framework were
studied in [9, 56]. These investigations aim at deepening our understanding of non-relativistic
holography. Another approach in this direction has been recently carried out in [57], where
a non-relativistic limiting procedure of the AdS/CFT correspondence is proposed.

It would be interesting to consider other gauge-invariant actions, in particular Chern-
Simons theories. Since they are topological, one could couple them to non-relativistic matter
without changing the form of the gauge action. Investigations of these models have been
performed in [15, 58–61]. Supersymmetric N = 2 Chern-Simons models were considered
in [25, 26]. It would be interesting to derive these models from null reduction, couple them
to supersymmetric non-relativistic matter and study their quantum properties.

While in the present work we focused on the renormalization properties of field theories
in flat space, it is possible to couple GED to Newton-Cartan geometry [3]. It would be
therefore natural to extend the present investigation to the case of SGED coupled to
non-relativistic supergravity [30, 31, 62]. Finally, it would be interesting to study the
general structure of terms that must be added to the flat space theory in order to preserve
supersymmetry in a non-relativistic and curved setting, along the lines of what has been
done for relativistic theories [63].
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A Galilean N = 2 superspace

In this appendix we collect the conventions on spinors, superspace and the Berezin integra-
tion, following strictly the notations used in [28].

In four-dimensions, the N = 1 relativistic superspace is parametrized by coordinates
(xM , θα, θ̄α̇), whereM ∈ {0, 1, 2, 3}, α ∈ {1, 2} and α̇ ∈ {1̇, 2̇}. We work with mostly positive
Lorentzian metric ηMN = diag (−1, 1, . . . , 1). By means of the null reduction prescription
described in section 2.1, we obtain a non-relativistic three-dimensional N = 2 superspace,
whose spacetime and spinor coordinates are denoted by xµ ≡ (x+, xi) with i = 1, 2 and
θα, θ̄α ≡ (θα)†, α = 1, 2, respectively.
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Double spinor notation. Before performing null reduction, it is convenient to trade the
components of a generic four-dimensional one-form field AM with its components in double
spinor notation, defined as

√
2Vαα̇ ≡ (σ−)αα̇ ϕ+ (σ+)αα̇ Vt + (σ1)αα̇ V1 + (σ2)αα̇ V2√
2Vαα̇ ≡ (σ̄−)α̇α ϕ+ (σ̄+)α̇α Vt + (σ̄1)α̇α V1 + (σ̄2)α̇α V2

(A.1)

where in light-cone coordinates ϕ ≡ A−, Vt ≡ A+ and Vi ≡ Ai. The Pauli matrices
σM = (σ−, σ+, σi) are given by

σ± = 1√
2

(σ3 ± I) , σ̄± = 1√
2

(−σ3 ± I) , σ̄i = −σi

σ− = −σ̄+ =
√

2
(

0 0
0 −1

)
, σ+ = −σ̄− =

√
2
(

1 0
0 0

) (A.2)

Under null reduction, definitions (A.1) give rise to analogous identities in 2 + 1 dimensions.
Relabelling the Pauli matrix components as (σM )αβ and (σ̄M )αβ , with M ∈ {+,−, 1, 2}, in
2 + 1 dimensions we define

√
2Vαβ ≡ (σ−)αβ ϕ+ (σ+)αβ Vt + (σ1)αβ V1 + (σ2)αβ V2√
2Vαβ ≡ (σ̄−)αβ ϕ+ (σ̄+)αβ Vt + (σ̄1)αβ V1 + (σ̄2)αβ V2

(A.3)

Similarly, in double spinor notation spacetime coordinates are given by

xαβ = −1
2(σ̄M )βαxM , xM = (σM )αβxαβ (A.4)

Fermions. Complex non-relativistic fermions in 2 + 1 dimensional Galilean geometry are
given in terms of two complex Grassmann scalars ψα = (ψ1, ψ2). They can be obtained from
null reduction of the relativistic four-dimensional Weyl spinors, according to the prescription
in (2.6). Spinorial indices are raised and lowered as

ψα = εαβψβ , ψα = εαβψ
β (A.5)

where the Levi-Civita symbol is

εαβ = −εαβ =
(

0 1
−1 0

)
(A.6)

The same rules apply to complex conjugate fermions ψ̄, where the prescription for complex
conjugation is

(ψα)† = ψ̄α , (ψα)† = ψ̄α , (ψ̄α)† = ψα , (ψ̄α)† = ψα (A.7)

We contract fermionic quantities according to the convention

χ · ψ ≡ χαψα = ψ · χ , χ̄ · ψ̄ ≡ χ̄αψ̄α = ψ̄ · χ̄ (A.8)
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Superspace derivatives. In the Galilean setting, spacetime derivatives in double spinor
notation are defined as

∂αβ = (σM )αβ∂M , ∂M = −1
2(σ̄M )βα∂αβ (A.9)

and are subject to rules (A.5) for raising and lowering spinorial indices. Therefore, we can
explicitly write

∂αβ =
( √

2∂t ∂1 − i∂2
∂1 + i∂2 −i

√
2M

)
, ∂αβ =

(
−i
√

2M −(∂1 − i∂2)
−(∂1 + i∂2)

√
2∂t

)
(A.10)

where M denotes the central charge in the Bargmann algebra associated with the U(1)
mass eigenvalue.

We define the action of spinorial derivatives on the Grassmann variables as

∂αθ
β = δ β

α , ∂βθα = −δ β
α , ∂̄αθ̄

β = δ β
α , ∂̄β θ̄α = −δαβ (A.11)

While spacetime derivatives are anti-hermitian ((∂M )† = −∂M ), the spinorial ones are
hermitian, i.e., (∂α)† = ∂̄α.

Supercharges and SUSY covariant derivatives in Galilean superspace can be obtained
by null-reducing their relativistic counterparts in four dimensions. Starting from 4D
supercharges

Qα = i

(
∂α + i

2 θ̄
α̇∂αα̇

)
, Q̄α̇ = −i

(
∂̄α̇ + i

2θ
α∂αα̇

)
(A.12)

and covariant derivatives

Dα = ∂

∂θα
− i

2 θ̄
β̇∂αβ̇ , D̄α̇ = ∂

∂θ̄α̇
− i

2θ
β∂βα̇ (A.13)

in three dimensions we obtain

Q1 = i
∂

∂θ1−
1
2 θ̄

2(∂1−i∂2)− 1√
2
θ̄1∂t Q̄1 =−i ∂

∂θ̄1 + 1
2θ

2(∂1+i∂2)+ 1√
2
θ1∂t

Q2 = i
∂

∂θ2−
1
2 θ̄

1(∂1+i∂2)− i√
2
θ̄2M Q̄2 =−i ∂

∂θ̄2 + 1
2θ

1(∂1−i∂2)− i√
2
θ2M (A.14)

D1 = ∂

∂θ1−
i

2 θ̄
2(∂1−i∂2)− i√

2
θ̄1∂t , D̄1 = ∂

∂θ̄1−
i

2θ
2(∂1+i∂2)− i√

2
θ1∂t

D2 = ∂

∂θ2−
i

2 θ̄
1(∂1+i∂2)− 1√

2
θ̄2M , D̄2 = ∂

∂θ̄2−
i

2θ
1(∂1−i∂2)− 1√

2
θ2M (A.15)

For a generic superfield Φ we define SUSY transformations as

δΦ = [i
(
εαQα + ε̄αQ̄

α
)
,Φ] (A.16)

Covariant derivatives satisfy the following algebra

{Dα, D̄β} = −i∂αβ , {Dα, D̄β} = −i∂βα (A.17)
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whereas {Dα, Dβ} = {D̄α, D̄β} = 0. We list here further identities which turn out to be
useful when doing D-algebra computations on supergraphs

[Dα, D̄2] = i∂βαD̄β , [D̄α, D2] = −i∂αβDβ

{D2, D̄2} = (2iM∂t + ∂2
i ) +DαD̄2Dα = (2iM∂t + ∂2

i ) + D̄αD
2D̄α

(A.18)

Here we have used

�0 ≡ −1
2∂

αβ∂αβ = 2iM∂t + ∂2
i , D2 ≡ 1

2D
αDα = D2D1 , D̄2 ≡ 1

2D̄αD̄
α = D̄1D̄2

(A.19)
When acting on a Grassmannian delta function δij ≡ δ(2)(θi − θj) δ(2)(θ̄i − θ̄j), the

covariant derivatives give

δijδij = 0 , δijD
αδij = 0 , δijD

2δij = 0 , δijD
αD̄α̇δij = 0 , δijD

αD̄2δij = 0 ,

δijD
αD̄2Dβδij = −εαβδij , δijD

2D̄2δij = δijD̄
2D2δij = δij

DαD̄2Dα

2 δij = δij (A.20)

Berezin integration. Manifestly supersymmetric actions can be constructed by using the
Berezin integral on spinorial coordinates. In relativistic superspace, for a generic superfield
Ψ we define ∫

d4xd4θΨ =
∫
d4xD2D̄2Ψ

∣∣∣
θ=θ̄=0

(A.21)

with covariant derivatives given in eq. (A.13). Performing null reduction and extracting the
x− dependence of the superfield as in eq. (2.6), we obtain the prescription for the Berezin
integrals in Galilean superspace∫

d4xd4θΨ =
∫
d4xD2D̄2Ψ

∣∣∣
θ=θ̄=0

−→∫
d3xD2D̄2Ψ̃

∣∣∣
θ=θ̄=0

× 1
2π

∫ 2π

0
dx− eiMx− ≡

∫
d3xd4θ Ψ̃× 1

2π

∫ 2π

0
dx− eiMx−

(A.22)

where spinorial derivatives are now the ones introduced in eq. (A.15).
It is immediate to observe that if M 6= 0 we obtain a trivial reduction due to the

vanishing of the x− integral. Therefore, non-vanishing expressions arise only if the super-
integrand Ψ is uncharged with respect to the mass generator, or in other words if it is
invariant under the global U(1) symmetry [24].

Superfield expansion. The null reduction prescription (2.6) of four-dimensional rela-
tivistic superfields leads to a natural definition of superfields in Galilean superspace. A
chiral superfield Φ satisfying the constraint D̄αΦ = 0 with spinorial derivatives given in
eq. (A.15) has an expansion of the form

Φ(x,θ, θ̄) =φ(xL)+θ1ψ1(xL)+θ2 21/4√mψ2(xL)−θ2F (xL) , xαβL =xαβ− i2θ
αθ̄β (A.23)

where ψα is a non-relativistic fermion, whereas φ and F are complex scalars, the latter
being an auxiliary field. Similarly, an antichiral superfield satisfiying DαΦ̄ = 0 reads

Φ̄(x,θ, θ̄) = φ̄(xR)+θ̄1ψ̄
1(xR)+θ̄2 21/4√mψ̄2(xR)−θ̄2F (xR) , xαβR =xαβ+ i

2θ
αθ̄β (A.24)
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In both cases we have suitably normalized the fermions, in order to obtain a standard
kinetic term in the action in components (see eq. (3.10)).

The single components are given by (we denote with | the evaluation of a quantity at
θα = θ̄α = 0)

ϕ = Φ| , ψ1 = D1Φ| , ψ2 = 1
21/4√m

D2Φ| , F = D2Φ|

ϕ̄ = Φ̄| , ψ̄1 = −D̄1Φ̄| , ψ̄2 = − 1
21/4√m

D̄2Φ̄| , F̄ = D̄2Φ̄|
(A.25)

A real vector superfield in non-relativistic superspace has the following expansion

V = C + θαχα + θ̄αχ̄
α − θ2N − θ̄2N̄ + θαθ̄βAαβ

− θ̄2θα
(
λα + i

2∂αβχ̄
β
)
− θ2θ̄α

(
λ̄α + i

2∂
βαχβ

)
+ θ2θ̄2

(
D̃ + 1

2�0C

)
, (A.26)

where N, N̄ are complex scalars, C, D̃ are real scalars, χα, λα and their hermitian conjugates
are non-relativistic fermions, while Aαβ is a 2 + 1 vector potential written in double spinor
notation (see definition in eq. (A.3))

√
2Aαβ =

( √
2At A1 − iA2

A1 + iA2 −
√

2ϕ

)
,

√
2Aαβ =

(
−
√

2ϕ −(A1 − iA2)
−(A1 + iA2)

√
2At

)
(A.27)

The entries of these matrices can be explicitly obtained by projecting the prepotential as
follows

ϕ = −1
2[D̄2, D2]V | At = 1

2[D̄1, D1]V |

A1 − iA2 = 1√
2

[D̄2, D1]V | A1 + iA2 = 1√
2

[D̄1, D2]V | (A.28)

These can be compactly written as Aαβ = 1
2 [D̄β , Dα]V | and Aαβ = 1

2 [D̄α, Dβ ]V |.
The remaining V components read

C = V | , χα = DαV | , χ̄α = −D̄αV | , N = D2V | , N̄ = D̄2V |

λα = D̄2DαV | , λ̄α = −D2D̄αV | , D̃ = 1
2D

αD̄2DαV | (A.29)

We normalize the fermionic components as

χα = (χ1, 21/4√mχ2) , χ̄α = (χ̄1, 21/4√mχ̄2) (A.30)
λα = (λ1, λ2) , λ̄α = (λ̄1, λ̄2) (A.31)

The absence of the rescaling factor 21/4√m in the second line is due to the fact that the
gaugino field λα is massless.

The Wess-Zumino gauge used to reduce superspace actions to components is defined
by the following conditions

V |=DαV |=D̄αV |=D2V |=D̄2V |=0 (A.32)
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Non-relativistic supersymmetric Abelian gauge theories are described in terms of a couple
of chiral and antichiral superfield strengths, Wα = iD̄2DαV and W̄α = −iD2D̄αV , whose
expansion in the Wess-Zumino gauge reads

Wα = iλα+θβ(fαβ− iεαβD̃)−θ2∂αβλ̄
β , W̄α̇ = iλ̄α̇− θ̄β(f̄αβ + iεαβD̄)+ θ̄2∂βαλ

β (A.33)

with the U(1) field strength given by Fαβ,γδ = ∂αβAγδ − ∂γδAαβ = εαγ f̄βδ + εβδfαγ , while
λα is the gaugino.

As discussed in the main text, the D̄2D2V superfield plays a relevant role in the SGED
construction. Its non-vanishing components read

(D̄2D2V )| = −ϕ , D1(D̄2D2V )| = −λ̄2 , D̄1(D̄2D2V )| = λ2 ,

[D̄1, D1](D̄2D2V )| = 2D̃ +
√

2i∂tϕ
(A.34)

Projecting SUSY transformation (A.16) on the D2D̄2V components, we obtain their super-
symmetry trasformations

δϕ = −
(
ε2λ̄2 − ε̄2λ2

)
, δλ2 = −ε2D̃ , δλ̄2 = −ε̄2D̃ , δD̃ = 0 (A.35)

B Dimensional analysis

In this appendix we perform dimensional analysis in non-relativistic frameworks, where the
scalings of time and space coordinates differ by the dynamical exponent z defined by scale
transformations

t→ ezσt , xi → eσxi (B.1)

The relativistic case corresponds to z = 1, while in the Galilean setting under investigation,
z = 2. Since the speed of light is formally sent to infinity, in this context we do not associate
to mass and length opposite dimensions, rather we perform a counting of dimensions
consistent with the anisotropic scaling (B.1). Equivalently, from null reduction (2.6) we
observe that we can choose the mass M to be dimensionless.

In the resulting N = 2 superspace we count energy dimensions as follows

[t] = −2 ⇒ [∂t] = 2 , [xi] = −1 ⇒ [∂i] = 1 i = 1, 2 (B.2)

From the ordinary definition of gauge covariant derivatives, Dµ = ∂µ − iAµ, it follows that
gauge connections have the same dimensions as derivatives. Consistency of these dimensions
with the requirement [V ] = 0 implies that superspace spinorial coordinates have different
dimensions. Precisely,

[θ1] = [θ̄1] = −1 ⇒ [D1] = [D̄1] = 1
[θ2] = [θ̄2] = 0 ⇒ [D2] = [D̄2] = 0

(B.3)

The appearance of dimensionless derivatives has very important consequences in our
construction. In fact, it allows to build a series of infinite marginal deformations using the
dimensionless superfield D̄2D2V .
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Consistently with the previous assignments, we obtain that the xL,R components defined
in eq. (A.23) have dimensions

[x11
L,R] = −2, [x12

L,R] = [x21
L,R] = −1, [x22

L,R] = 0 (B.4)

Moreover, it follows that the measure of the Berezin integration satisfies

[d2θ] = [D2] = 1 [d2θ̄2] = [D̄2] = 1 [d4θ] = [D2D̄2] = 2 (B.5)

We list explicitly the energy dimensions of the relevant component fields entering the SGED
action.

• Gauge fields

From the previous dimensional analysis it follows that the dimensions of the Aαβ
matrix summarize as

[At] = 2 , [A1] = [A2] = 1 , [ϕ] = 0 (B.6)

whereas for the superfield strengths we obtain

[W1] = [D̄2D1V ] = 2 , [W2] = [D̄2D2V ] = 1 (B.7)

It follows that [W 2] = [ 1
2(W2W1 −W1W2)] = 3. Therefore, from the gauge action in

eq. (3.1) we obtain [g] = 0.

• Matter fields

Since [d3x d4θ] = −2, the matter Lagrangian in eq. (3.1) needs to have dimension 2.
This implies that [Φ] = 1. From its expansion (A.23) we then read the dimensions of
the field components and their complex conjugates

[φ] = [φ̄] = 1 , [ψ1] = [ψ̄1] = 2 , [ψ2] = [ψ̄2] = 1 [F ] = [F̄ ] = 2 (B.8)

C Mathematical tools

In this appendix we compute the relevant momentum integrals entering the evaluation of
one-loop radiative corrections.

When dealing with three-dimensional Galilean theories, the typical integration over
momentum space is of the form ∫

dω d2k

(2π)3 f(ω,~k) (C.1)

The strategy that we are going to adopt is the following: we perform the ω integration first,
and then use dimensional regularization in d = 2− 2ε to evaluate the spatial d2k integral.
This method has the advantage that it is not necessary to move to Euclidean space and
there are no ambiguities in taking the ε→ 0 limit.11 In the following, we will denote with
' the evaluation of expressions discarding finite terms in the UV cutoff.

11For an alternative approach which introduces a dimensional deficit both along temporal and spatial
coordinates, the reader can look at the dimensional splitting techinique described in [64].
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Standard integral over ω. The main mathematical tool that we need for the evaluation
of the integrals along ω is the Sokhotski-Plemelj formula [65]. In the theory of distributions,
it states that

lim
ε→0+

∫ b

a
dω

f(ω)
ω ± iε

= ∓iπf(0) + P
∫ b

a
dω

f(ω)
ω

(C.2)

where f ∈ S(R,C) is a test function in the Schwartz space, a < 0 < b are real-valued
constants and P denotes the Cauchy principal value.

All the ω integrations that we encounter in this paper can be written as

I ≡
∫ ∞
−∞

dω

2π
1

2mω − ~k2 + iε
= 1

4πm

∫ ∞
−∞

dω
1

ω + iε
(C.3)

where we used the change of variables ω −→ ω + ~k2/2m to bring the integral into a
convenient form to apply the formula (C.2). We interpret the integrand in distributional
sense with f(ω) = 1 and a→ −∞, b→ +∞. Since the principal value of this expression
vanishes, we simply obtain

I = − i

4m (C.4)

As a further check of the correctness of this result, we observe that the integrand in eq. (C.3)
is precisely the Galilean propagator. Its general expression in configuration space reads

G(t, ~x) =
∫
dω d2k

(2π)3
i

2mω − ~k2 + iε
e−i(ωt−

~k·~x) = θ(t)
4πite

i im~x
2

2t (C.5)

If we take a step back in the computation and we consider the expression of the propagator
after the computation of the ω-integral, but before that of the ~k-integral, we can write

∫
d2k

(2π)2 e
i~k·~x
(∫ ∞
−∞

dω

2π
ie−iωt

2mω − ~k2 + iε
− θ(t)

2m e−i
~k2
2m t

)
= 0 (C.6)

which implies ∫ ∞
−∞

dω

2π
ie−iωt

2mω − ~k2 + iε
= θ(t)

2m e−i
~k2
2m t (C.7)

This expression, evaluated at t = 0, precisely gives12

∫ ∞
−∞

dω

2π
1

2mω − ~k2 + iε
= − i

4m (C.8)

which is in agreement with the previous result in eq. (C.3).

Integrals over the spatial momenta. We now deal with the integrals along the spatial
momenta ~k using dimensional regularization in the two-dimensional Euclidean space that
is left after the integration along the temporal direction. Although we focus on the UV
divergences, in some cases we also need to regularize the integrals in the IR.

12Note that we interpreted θ(0) = 1/2, which is the standard choice in the theory of distributions. One
can interpret this result as the average between the t→ 0± limits.
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Integral J0. The simplest integral corresponds to

J0 ≡
∫

d2k

(2π)2 = 0 (C.9)

which is well known to vanish in dimensional regularization [66].

Integral J1. The next integral that we consider is

J1 ≡
∫

d2k

(2π)2
1

−~k2 + iε
(C.10)

Using dimensional regularization, we introduce the energy scale µ, which compensates
the dimensional deficit of the integral analytically continued to d dimensions. Since the
integral is IR divergent, we also introduce a mass scale κ2 at the denominator. The integral
evaluates to

J1 = −µ2−d
∫

ddk

(2π)d
1

~k2 + κ2
= − 1

2dπd/2
(
κ

µ

)d−2
Γ
(

1− d

2

)
(C.11)

where we have used the result for the volume of the unit d-dimensional sphere Ωd = 2πd/2

Γ(d/2) ,
and we have applied standard integration techniques to express the result in terms of the
Euler Γ function.

Setting d = 2−2ε, the Laurent series expansion for the Γ function around ε = 0 leads to

J1 = − 1
4π

[1
ε

+ log
(4πµ2

κ2

)
− γ +O(ε)

]
' − 1

4πε (C.12)

where in the last step we have kept only the term relevant for the minimal subtraction scheme.
En passant, we note that an alternative but equivalent way to regularize the IR

divergence of the massless vector superfield in eq. (C.10) is to subtract it via a shift∫
ddk

(2π)d f(k)
( 1
~k2
− a δ(2)(k)

)
(C.13)

where k ≡ |~k|. This integral is finite for any test function f(k) which vanishes at infinity.
Choosing a particular functional form for f(k), it is possible to determine the value of a
and correctly regularize the IR divergence [67].

Integral J2. We define the integral

J2(~p)≡
∫

d2k

(2π)2
1[

−~k2+iε
][
−(~p−~k)2+iε

] −→ ∫
d2k

(2π)2
1[~k2+κ2][(~p−~k)2+κ2] (C.14)

This integral is UV finite by power counting, but we need to introduce an IR regulator. Using
the Feynman parametrization formula and performing the change of variables ~k → ~k + x~p,
we obtain

J2(~p) =
∫ 1

0
dx

∫
d2k

(2π)2
1(~k2 +A

)2 (C.15)

where A ≡ x(1− x)~p 2 + κ2. Neglecting constant terms not relevant in MS scheme, a direct
evaluation gives

J2(~p) = 1
4πA ' 0 (C.16)
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Φ
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Φ̄

Φ

(d)

Figure 12. Feynman supergraphs contributing to the computation of the four-point vertex with
only (anti)chiral external lines.

Integral J3. We consider

J3(Ω, ~p,~p1, ~p2)≡
∫

d2k

(2π)2
1[

−1
2(~p1−~k)2− 1

2(~p2−~k)2+mΩ+iε
][
−~k2+iε

][
−(~p−~k)2+iε

]
−→−

∫
d2k

(2π)2
1[1

2(~p1−~k)2+ 1
2(~p2−~k)2−mΩ+κ2][~k2+κ2][(~p−~k)2+κ2]

(C.17)
where we have introduced a unique IR regulator κ in the second line.

Using again the Feynman parametrization for the cubic denominator, we bring the
integral to the following form

J3(Ω, ~p, ~p1, ~p2) = −2
∫ 1

0
dx

∫ 1−x

0
dy

∫
d2k

(2π)2
1(~k2 + B

)3 (C.18)

with

B ≡ x(1− x)~p 2 + y

2
(
~p 2

1 + ~p 2
2 − 2mΩ

)
− y2

4
(
~p1 + ~p2

)2 − xy ~p · (~p1 + ~p2
)

+ κ2 (C.19)

We eventually find

J3(Ω, ~p, ~p1, ~p2) = − 1
4π

∫ 1

0
dx

∫ 1−x

0
dy

1
B2 ' 0 (C.20)

that is, the result is UV finite.

D Additional one-loop computations for the SGED action

In this appendix, we collect additional details about the one-loop radiative corrections to
the SGED model (4.6). In particular, we show that vertices containing more than two
(anti)chiral superfields are not generated at quantum level.

The first non-trivial case corresponds to the four-point vertex 〈Φ̄2Φ2〉, whose one-loop
Feynman supergraphs are collected in figure 12.

After performing the D-algebra, several contributions vanish by application of selection
rule 4.1. The integration over the energy ω of the remaining ones can be shown to be
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proportional to the quantity I defined in eq. (C.3), while the integration along the spatial
momenta are proportional to either J2, defined in eq. (C.14), or J3, defined in eq. (C.17).
The crucial observation is that all these results are finite, therefore no UV divergences arise,
and the corresponding vertices are not generated at quantum level.

One can show that this pattern is preserved for an arbitrary number of external
(anti)chiral lines. In fact:

• Any additional chiral superpropagator (4.9) brings a factor of covariant derivatives
D̄2D2. In the worst scenario for the UV behaviour of the integral, the contribution
to the superficial degree of divergence from this insertion is ∆ω = 0 for the frequency
ω, and ∆~p = 0 for the spatial momenta ~p. In both cases, it is sufficient to repeat the
computation performed for the four-point function to obtain a UV convergent integral.

• Any additional vector superpropagator brings superficial degree of divergence ∆ω = 0
and ∆~p = −2, since it does not carry any factor of covariant derivatives. Therefore, it
can only improve the UV behaviour of the integral, and by repeating the computation
of the four-point vertex, we obtain a finite result.

The previous arguments also apply in the presence of higher loops, since the discussion on
the insertion of internal superpropagators (without changing the number of external lines)
follow the same reasoning. This shows that no vertices with only (anti)chiral superfields
are generated at quantum level, at any loop order.

Finally, using the same arguments listed above, it is easy to show that the addition
of any number of external vector superfields does not affect the convergence properties of
these diagrams. Therefore, we conclude that no quantum corrections involving more than
one chiral and one antichiral superfields are generated by perturbative computations, no
matter the number of external prepotentials is.

E Details on the covariant approach

As discussed in section 5, background field method together with gauge covariant ∇- algebra
on background field supergraphs provides a very efficient way to perform perturbation
theory in supersymmetric gauge theories [45]. In this appendix we collect several details on
the covariant approach, suitably adapted to the non-relativistic superspace.

E.1 Gauge-covariant derivatives

In the covariant approach, we introduce derivatives defined by the requirement that under
a supergauge transformation (3.2) they transform as

∇A → eiΛ∇Ae−iΛ (E.1)

The corresponding covariant derivatives in vector representation read

∇A ≡ DA − iΓA = (∇α, ∇̄β ,∇αβ) = (e−
V
2 Dαe

V
2 , e

V
2 D̄βe

−V2 , i{∇α, ∇̄β}) (E.2)

where ΓA are the connection superfields.
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When we perform background-quantum splitting, definition (E.2) refers to background
covariant derivatives with V being the background prepotential. In this case, covariant
derivatives, superconnections and superfield strengths that we introduce throughout refer
to background fields.

In the Abelian case, the superconnections are linear in the prepotential. Precisely,
from (E.2) we read

Γα = i

2DαV , Γ̄α = − i2D̄αV (E.3)

Γαβ = iDαΓ̄β + iD̄βΓα = −D̄βDαV −
i

2∂αβV (E.4)

We contract covariant derivatives according to the following conventions

∇2 ≡ 1
2∇

α∇α , ∇̄2 ≡ 1
2∇̄α∇̄

α , � ≡ −1
2∇

αβ∇αβ (E.5)

These are the covariant generalization of the differential operators defined in eq. (A.19) for
the SUSY derivatives. In particular, the covariant Schrödinger operator can be expanded
in terms of the ordinary flat Schrödinger operator �0, as

� = �0 + iΓαβ∂αβ + i

2(∂αβΓαβ) + 1
2ΓαβΓαβ (E.6)

Since the action for gauge theories is gauge-invariant, prescription (A.22) for performing
Berezin integrations turns conveniently to∫

d3xd4θ Ψ̃ =
∫
d3xD2D̄2Ψ̃

∣∣∣
θ=θ̄=0

=
∫
d3x∇2∇̄2Ψ̃

∣∣∣
θ=θ̄=0

(E.7)

This has the advantage that covariant combinations (E.5) naturally arise.

E.2 Covariant superpropagators

In the covariant approach, an important role in the evaluation of quantum corrections
is played by the expansion of covariant superpropagators in terms of the standard scalar
one, 1/�0.

Covariant propagators for (anti)chiral superfields are expressed in terms of the differen-
tial operators �± defined as

{∇2, ∇̄2} = �− +∇α∇̄2∇α = �+ + ∇̄α∇2∇̄α (E.8)

They can be explicitly written as

�+ = �− iWα∇α −
i

2(∇αWα) , �− = �− iW̄α∇̄α −
i

2(∇̄αW̄α) (E.9)

where Wα = iD̄2DαV is the (background) field strength.
In the Fermi-Feynman gauge ζ = 1, the vector propagator is the inverse of the quadratic

differential operator
�̂ = �− iWα∇α − iW̄α∇̄α (E.10)
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The differential operators introduced in eqs. (E.9) and (E.10) can be further expanded in
terms of the flat Schrödinger operator by means of eq. (E.6).

A set of useful identities that allow to efficiently perform ∇-algebra is

{∇α, ∇̄β} = −i∇αβ , ∇̄2∇2∇̄2 = ∇̄2�+ , ∇2∇̄2∇2 = ∇2�− ,

[∇2,�−] = 0 , [∇̄2,�+] = 0 , (E.11)
�−∇2∇̄2 = ∇2∇̄2�+ , �+∇̄2∇2 = ∇̄2∇2�−

1
�−
∇2∇̄2 = ∇2∇̄2 1

�+
,

1
�+
∇̄2∇2 = ∇̄2∇2 1

�−[
∇α,

1
�

]
= − 1

�
[∇α,�] 1

�
= − 1

�

(
W̄ β∇αβ + 1

2∇αβW̄
β
) 1
�

(E.12)

In the background field method, ∇-algebra on Feynman supergraphs requires first to
expand the covariant propagators in powers of the background connections and superfield
strengths appearing in eqs. (E.9) and (E.10).

The expansion of the vector propagator 1/�̂ reads
1
�̂

= 1
�

+ 1
�

(
iWα∇α + iW̄α∇̄α

) 1
�̂

=

= 1
�

+ 1
�
iWα 1

�̂
∇α + 1

�
iW̄α

1
�̂
∇̄α + 1

�
iWα

[
∇α,

1
�̂

]
+ 1

�
iW̄α

[
∇̄α, 1

�̂

]
=

= 1
�

+ 1
�
iWα 1

�
∇α + 1

�
iW̄α

1
�
∇̄α +O

( 1
�

)3

(E.13)

We note that the commutators in the second line include higher-order insertions, by virtue
of identity (E.12).

Pictorially, the expansion in eq. (E.13) can be depicted as follows

1

�̂ =
1
� +

iWα∇α + iW̄α∇̄α

1
�

1
� +O

( 1
�

)3

(E.14)

Using this expansion, a single covariant supergraph with an internal vector propagator
gives rise to an infinite sum of supergraphs on which one still needs to perform ∇-algebra.
However, it is clear that starting from the second term, new insertions of background fields
get generated, each of them leading to the addition of one extra covariant propagator 1/�.
In general, as discussed in the main text and in appendix E.3, this increasingly improves
the degree of convergence of the corresponding momentum integral. Therefore, as long as
we are interested only in divergent diagrams, this expansion typically stops at a given order.

Similar manipulations of the (anti)chiral propagators give

1
�+

= 1
�

+ 1
�
iW̄α

1
�
∇̄α + 1

�
i

2(∇̄αW̄α) 1
�

+O
( 1
�

)3
(E.15)

1
�−

= 1
�

+ 1
�
iWα 1

�
∇α + 1

�
i

2(∇αWα) 1
�

+O
( 1
�

)3
(E.16)
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At graphic level, these expansions can be represented in the same way as in eq. (E.14), the
only difference being the precise superfield configurations appearing on the external legs.
According to eqs. (E.15) and (E.16), now the insertions bring factors iW̄α∇̄α + i

2(∇̄αW̄α)
and iWα∇α + i

2(∇αWα), respectively.
After completion of ∇-algebra we are left with a set of supergraphs with internal lines

corresponding to 1/�. As a last step, we need to further expand the covariant propagator
in terms of the flat Schrödinger one, using

1
�

= 1
�0
− 1

�0

(
iΓαβ∂αβ + i

2(∂αβΓαβ) + 1
2ΓαβΓαβ

) 1
�0

+O
( 1
�0

)3
(E.17)

Pictorially, this can be represented by

1
� =

1
�0 +

−iΓαβ∂αβ − i
2 (∂αβΓ

αβ)− 1
2Γ

αβΓαβ

1
�0

1
�0 +O

( 1
�0

)3

(E.18)

As a result, we obtain a set of Feynman diagrams with ordinary propagators that give rise
to ordinary Feynman integrals, either in configuration or momentum space.

E.3 Convergence of vector insertions for the self-energy computation

We apply the techniques developed in appendix E.2 to show that the expansion of the
covariant vector propagator 1/�̂ in eq. (E.13) produces only convergent one-loop corrections
to the self-energy of the (anti)chiral superfields studied in section 5.3.

Let’s start with the power counting of the momenta for each propagator insertion
from eq. (E.17). Since the vector has vanishing mass, M = 0, its propagator is purely
spatial. It follows that any additional propagator insertion adds two factors of spatial
momenta at denominator, and none along the temporal direction ω. On the other hand, any
additional factor of the connection brings factors of momenta at numerator, which depend
on the specific component, according to eq. (E.4). The worst scenario for the convergence
corresponds to the case where we select the component Γ11∂11, which in momentum space
carries one factor of ω at numerator, according to eq. (A.10). Putting all the external
momenta to zero (they do not affect the UV behaviour), these contributions read

−g2
∫
d4θ

∫
dω d2k

(2π)3
Φ̃(Ω, ~p, θ) ¯̃Φ(Ω, ~p, θ̄)

(−~k2 + iε)
[
2m(Ω− ω)− (~p− ~k)2 + iε

] ∞∑
n=0

(√
2gωD̄2D2V0

−~k2 + iε

)n
(E.19)

In this case it is not possible to apply immediately the residue theorem or Sokhotski-Plemelj
formula, as done for the other Feynman diagrams considered in this work. Instead, we
perform the integration over spatial momenta first, applying Feynman parametrization

1
ABn+1 =

∫ 1

0
dx

(n+ 1)(1− x)n
[xA+ (1− x)B]n+2 (E.20)
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and we define

A≡ 2m(Ω−ω)−(~p−~k)2+iε , B≡−~k2+iε , (E.21)
xA+(1−x)B=−(~k−x~p)2+∆̃ , ∆̃≡ 2mx(Ω−ω)+x(1−x)~p2+iε (E.22)

Using polar coordinates along the two-dimensional spatial momenta, we compute∫ 1

0
dx (n+ 1)(1− x)n

∫ ∞
0

2πkdk
(2π)2

(−1)n+2

(~k2 − ∆̃)n+2
=
∫ 1

0
dx

(1− x)n
2π

1
∆̃n+1

(E.23)

There is one ω integration left, which is of the form∫ 1

0
dx (1− x)n

∫ ∞
−∞

dω

2π
(
√

2gω)n

[2m(Ω− ω)− (~p− ~k)2 + iε][2mx(Ω− ω) + x(1− x)~p2 + iε]n+1

(E.24)
This contribution is vanishing, thanks to Jordan’s lemma and residua theorem. This shows
that the inclusion of insertions on the vector propagator always improves the convergence
properties of the diagram, and the only divergent terms arise from the expansion of the
chiral superpropagators, computed in section 5.4.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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