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of 40%. Following two recent state-of-the-art strong coupling determination analyses at
O(α5

s), we show that using the renormalon-free GC scheme successfully reconciles the re-
sults for αs(m2

τ ) based on CIPT and FOPT. The uncertainties due to variations of R and
the uncertainty of Ng only lead to a small or moderate increase of the final uncertainty of
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τ ), and affect mainly the CIPT expansion method. The FOPT and CIPT results ob-
tained in the RF GC scheme may be consistently averaged. The RF GC scheme thus consti-
tutes a powerful new ingredient for future analyses of τ hadronic spectral function moments.
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1 Introduction

The determination of the QCD strong coupling αs from the inclusive hadronic τ decay spec-
tral functions, obtained through the analysis of finite energy sum rules (FESRs) for spectral
function moments, represents one of the most precise methods to extract this fundamen-
tal quantity of quantum chromodynamics (QCD) from experimental data [1]. For a long
time, however, a systematic theoretical uncertainty associated with the renormalization
scale setting has persisted. The values of αs obtained with a strict fixed-order expansion,
which goes under the name fixed-order perturbation theory (FOPT) (see ref. [2]), have been
systematically lower than the values obtained using the so-called contour-improved pertur-
bation theory (CIPT) [3, 4], which resums a certain set of logarithmic phase corrections
with the use of the QCD β-function.

In a recent paper [5], to which we will refer often as ‘Part I’, we laid the foundations
of a method to eliminate the CIPT-FOPT discrepancy. The method was motiviated from
the work of Hoang and Regner [6, 7] where it was shown that the discrepancy can be of
infra-red (IR) origin and caused by contributions in the CIPT expansion terms that are
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incompatible with the standard form commonly adopted for the higher dimensional correc-
tions in the operator product expansion (OPE). Any IR renormalon contributes a certain
amount to the discrepancy, which was termed ‘asymptotic separation’. But numerically the
asymptotic separation is strongly dominated by the renormalon associated with the gluon
condensate (GC) contribution in the operator product expansion (OPE). The basic idea
of the method proposed in ref. [5], consists in a redefinition of the GC matrix element in
order to remove (or subtract) the associated renormalon from the perturbative expansion
of the Adler function. This redefinition was called the renormalon-free gluon condensate
(RF GC) scheme and involves perturbative subtractions that allow for a straightforward
and transparent implementation in the context of the computations involved for the FOPT
and CIPT expansions of the spectral function moments. This perturbative and observable-
independent subtraction approach is very common in many areas of particle physics phe-
nomenology where the removal of renormalon divergences are important, most prominently
in the context of using short-distance mass schemes in heavy-quark physics [8, 9]. In ref. [5]
such a subtraction scheme was for the first time applied to the τ hadronic spectral function
moment. The essential conceptual aspect of this seemingly trivial scheme change, which
reaches beyond the well established use of short-distance quark masses, is that it substan-
tially modifies the CIPT series coefficients even for spectral function moments where the
GC OPE correction is strongly suppressed or even vanishes.1 This fact signifies the incon-
sistency of the CIPT expansion when the MS GC scheme is employed [6, 7]. The work of
Hoang and Regner laid out the conceptual basis to understand this paradoxical behavior
by showing that the Borel representation of the CIPT expansion has a structure that is
incompatible with the standard Borel calculus.2

A particularly useful property of the RF GC scheme we have proposed in Part I is that
it is scale-invariant, but at the same time has a freely adaptable IR factorization scale R,
which should be chosen to be close to the dynamical scale of the observable. This freedom
of scale choice is controlled by a renormalization group evolution (called ‘R-evolution’)
that is known exactly to all orders and makes the RF GC scheme also suitable for other
processes where the gluon condensate contributes. The implementation of the scheme
depends on knowledge about the GC renormalon norm, Ng, which must be supplemented
independently.

In Part I, we have demonstrated that in the RF GC scheme with the correct value
of Ng, the CIPT-FOPT discrepancy can indeed be resolved and, moreover, is already
significantly reduced at O(α4

s) and O(α5
s), which are the perturbative orders for which

QCD corrections are available. While the CIPT-FOPT discrepancy and its reduction in
our RF GC scheme take place for GCS spectral function moments, the new scheme is also
capable of significantly improving the perturbative behaviour of moments for which the

1We call such spectral function moments gluon condensate suppressed (GCS). For GCS spectral function
moments, when switching to the RF GC scheme, the changes of the FOPT series terms are tiny and
comparable to the GC OPE corrections.

2Based on plausibility arguments in the context of Borel model studies, it was stated already in refs. [2, 10]
that the CIPT expansion is disfavored. However the inconsistency of the CIPT expansion with the standard
form of the OPE in the presence of IR renormalons was not known prior to the work by Hoang and Regner.
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GC OPE correction is sizeable, i.e. for so-called GC enhanced (GCE) moments. In Part I,
this was shown in specific realizations of the perturbative series at higher orders, namely
the large-β0 limit and using all-order renormalon models for the Adler function, where the
gluon condensate renormalon norm Ng was exactly known. An application of the RF GC
scheme in the context of a fully consistent phenomenological determination of the strong
coupling and a study on the impact of the uncertainty of Ng was missing.

In the present work, which is Part II in this series of papers, we address these two
issues: we carry out a thorough analysis to determine the GC renormalon norm Ng using
three different methods, and we conduct consistent phenomenological determinations of αs
following two state-of-the-art approaches from the recent literature [11, 12], accounting for
the uncertainty of the norm Ng and variations of the IR factorization scale R. We emphasize
that the main aim of our αs determinations is to demonstrate the effectiveness of the RF
GC scheme to resolve the CIPT-FOPT discrepancy in the context of accounting for all
perturbative uncertainties in a realistic manner. In particular, our analyses are not intended
to provide a discussion on the merits of the different ways the nonperturbative corrections in
refs. [11, 12] have been accounted for. We emphasize that our two analyses are not identical
copies of the complete set of analyses carried out in refs. [11, 12] as this would go way beyond
the scope of this article. The main aim of them is to demonstrate the practical use of the RF
GC scheme in achieving precise strong coupling determinations that are not affected by the
CIPT-FOPT discrepancy problem. The essential message is that in the RF GC scheme
the CIPT results closely approach the FOPT results and that the additional sources of
theoretical uncertainties in the RF GC scheme (related to R and Ng) are relatively small.

The basis of our analysis is the proposition that the GC renormalon gives a sizeable
contribution to the known QCD corrections of the Adler function at O(α4

s) (including the
state-of-the-art estimates for the O(α5

s) coefficient [13–16]), such that Ng is sizeable as well
and can be determined with reliable uncertainties from the O(α4

s) (or O(α5
s)) perturbative

coefficients. This proposition has been advocated as being natural in ref. [2]. We have fur-
thermore shown in Part I through a dedicated analysis, that the perturbative behavior of
the spectral function moments is fully consistent with this proposition. It should be men-
tioned, however, that it is in principle not excluded that this behavior may be mimicked
at O(α4

s) through an interplay of other renormalons and sizeable lower-order convergent
QCD corrections in the presence of an extremely small (and practically negligible) value of
Ng [17]. However, as shown in ref. [10] such a scenario would correspond to an unnatural
and implausible fine-tuned renormalon structure of the Adler function. More light could
potentially be shed on this matter through the actual calculation of the QCD corrections at
O(α5

s) and beyond, which, however, may appear unlikely in the near future. Our analysis
therefore relies on the proposition that the observed consistency of the known QCD cor-
rections with a sizeable GC norm Ng is not caused by some fine-tuned renormalon scenario
with a negligible value for Ng or some purely accidental behavior of the O(α4

s) QCD cor-
rections. The same proposition is in principle also applied when short-distance quark mass
renormalization schemes employed in order to achieve an improved perturbative behavior
for heavy quark mass sensitive observables [8, 9].

We note that, the RF GC scheme is formulated using the C-scheme for the strong
coupling [18] for the concrete value C = 0, see section 2.2 of Part I [5]. This scheme,
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which we just refer to as the C-scheme, has the special feature that the QCD β-function
depends only on the universal one- and two-loop coefficients β0 and β1 and can be written
down in closed form. Furthermore, the QCD hadronization scale ΛQCD is identical to the
one in the usual MS scheme. The simple form of the β-function in the C-scheme has the
important property that the GC renormalon and the associated asymptotic series behavior
used in the subtration definition can be written down in a closed and compact form without
any truncation concerning subleading asymptotic contributions. This makes the C scheme
special and particularly useful for conceptual renormalon studies in full QCD. Our actual
numerical studies are, however, still carried out in the usual MS strong coupling scheme and
are obtained from the C-scheme expressions by a finite-order re-expansion. The relevant
formulae can be found in the appendix of ref. [5]. For the numerical evaluations of the
strong coupling in the complex plane we used the quasi-exact routine from the REvolver
library package [19]. Throughout this work we employ the strong coupling for nf = 3
active flavors unless stated otherwise.

The content of this paper is as follows: in section 2 we set up our notations and briefly
review the theoretical ingredients relevant to the phenomenological analysis of τ hadronic
spectral function moments as well as the basics of implementing the RF GC scheme. Sec-
tion 3 is dedicated to the determination of the GC renormalon norm Ng using three different
methods. Two of the methods are already known from the literature, and the third one is
new. The constructive elements of the new method are the improvements in the perturba-
tive behavior for the CIPT and FOPT expansions for GCS and GCE spectral function mo-
ments, and we demonstrate that it constitutes a very powerful and reliable method. In sec-
tion 4 we finally put the RF GC to a practical test by applying it in the context of two realis-
tic phenomenological strong coupling determinations following the analyses of refs. [11, 12].
Here we only rely on the perturbative input that is commonly used in such phenomenologi-
cal analyses, and we in particular account for the uncertainty in the norm Ng and variations
of the IR factorization scale R. In section 5 we conclude. There are a number of appendices.
In appendix A we review the different main conventions concerning the definitions used for
the renormalon calculus in the literature. The information provided there allows for an easy
conversion of our convention for the GC renormalon norm Ng to other conventions used in
the literature. While the main focus of our work lies on the phenomenologically relevant
case of nf = 3 active quark flavors, our analyses on the determination of the GC renormalon
norm Ng can also be applied for the quenched approximation nf = 0, for which a number
of dedicated analyses are available in the literature. In appendix B we compare our results
to these previous determinations. We find a particularly large discrepancy to the results
from ref. [20] based on lattice perturbation theory, which we comment on in appendix C.

2 Notation, strong coupling and renormalon calculus

2.1 Theoretical setup

The total hadronic τ decay rate can be separated into three different components. The
contributions from the light-quark (ūd) current, which can be split into a vector and an
axial-vector part, Rτ,V and Rτ,A, respectively, and a contribution with net strangeness,
Rτ,S . In studies aimed at the extraction of the strong coupling, one commonly focuses
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on the light-quark contributions, which receive only tiny quark-mass corrections in the
theoretical descriptions that can be neglected for all practical purposes. Here we follow
this strategy and focus only on the light-quark components.

On the theory side, the description of the τ hadronic decay spectral function moments
receives contributions from the four two-point qq̄ correlators: vector, axial-vector, scalar,
and pseudo-scalar. The contributions of the latter two are suppressed by at least two powers
of the light-quark masses and are very small. Because of chiral symmetry, the perturbative
contributions for the vector (V ) and axial-vector (A) currents, which are obtained in the
chiral limit, are the same. Nonperturbative contributions, on the other hand, are different
for the two currents.

The V and A correlation functions Πµν
V/A(p) are defined as

Πµν
V/A(p) ≡ i

ˆ
dx eipx 〈Ω|T{jµV/A(x) jνV/A(0)†}|Ω〉 , (2.1)

where |Ω〉 is the physical QCD vacuum and the currents are jµV/(A)(x) =: ū(x)γµ(γ5)d(x) :.
The correlators Πµν

V/A(p) admit the usual decomposition into transversal, Π(1)
V/A, and longi-

tudinal, Π(0)
V/A, components. The longitudinal components in V and A are related to the

scalar and pseudoscalar correlators, respectively. We will often work with the combination
ΠV/A(p2) ≡ Π(1+0)

V/A (p2) = Π(1)
V/A(p2) + Π(0)

V/A(p2) and we frequently drop the subscripts V /A
when suitable. These correlators are not physical quantities because they are ultra-violet
(UV) divergent and require a scale and scheme dependent subtraction. Therefore, one
often works with the spectral function, ρ(s), or the (reduced) Adler function, D(s), which
are UV finite and physical. We use the definitions

ρ(s) ≡ 1
π

Im Π(s+ i0), 1
4π2

[
1 +D(s)

]
≡ − s d

ds Π(s) . (2.2)

In the analysis of hadronic τ spectral function moments the experimental spectral
functions are integrated over weight functions. They can be written, in general, as

R
(w)
V/A(s0) = 12π2 Sew |Vud|2

s0ˆ

0

ds
s0
w

(
s

s0

)[
ρV/A(s)− 2s/s0

1 + 2s/s0
ρ

(0)
V/A(s)

]
, (2.3)

where the weight function w(s) can be any analytic function; in practice one most often
chooses polynomials. To obtain the physical decay rate, one must set s0 = m2

τ and use the
weight function determined by the kinematics of the hadronic τ decay [2, 5]. Smaller values
of the upper limit in the integration, s0 < m2

τ , are also frequently used in the literature as
a means to further constrain the theoretical description [12, 21–23], but it is important to
keep s0 within the perturbative regime.

The different contributions to the theoretical counterpart of eq. (2.3) can be decom-
posed in the following way

R
(w)
V/A(s0) = Nc

2 Sew |Vud|2
[
δtree
w + δ(0)

w (s0) +
∑
d≥4

δ
(d)
w,V/A(s0) + δ

(DV)
w,V/A(s0)

]
, (2.4)
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where Nc = 3, Sew = 1.0201(3) are factorizable electroweak corrections [24–26] (which is
the value used in refs. [11, 12]), and Vud is the CKM matrix element. The tree-level con-
tribution is represented by δtree

w . The perturbative QCD corrections, exactly known up to
5 loops, O(α4

s), are encoded in δ(0)
w . The terms δ(d)

w,V/A contain the nonperturbative correc-
tions arising from the power suppressed contributions of OPE condensates of dimension d.
Finally, the duality violation (DV) contributions, that account for nonperturbative correc-
tions that are not captured through the OPE [27–29] in the region close to the Minkowskian
real s-axis, are encoded in δ(DV)

w,V/A.
The perturbative contribution, δ(0)

w , was extensively discussed in Part I of this work [5].
A review of these results is given in section 2.2. Here we focus on the nonperturbative
terms. The nonperturbative corrections arising from the OPE condensates, using analyt-
icity properties of the correlators and of the Adler function, can be written in terms of
contour integrals [2, 30] (x = s/s0)∑

d≥4
δ

(d)
w,V/A(s0) = 4πi

‰

|s|=s0

ds
s0
w

(
s

s0

)
ΠOPE
V/A (s) = 1

2πi

‰

|x|=1

dx
x
W (x)DOPE

V/A (xs0) , (2.5)

where the weight function for the Adler function is W (x) = 2
´ 1
x dz w(z). The general form

of OPE power corrections for the Adler function can be written as [31]

DOPE
V/A (s) = C4,0(αs(−s))

s2 〈Ō4,0〉+
∞∑
d=6

1
(−s)d/2

∑
i

C
V/A
d,i (αs(−s))〈Ōd,γi〉V/A, (2.6)

where the condensates 〈Ōd,γi〉 are nonperturbative vacuum matrix elements of gauge in-
variant dimension d operators built from the light-quark and gluon fields, with anomalous
dimension γi. The short-distance information is encoded in the Wilson coefficients Cd,i
which can be computed in perturbation theory as a series expansion in powers of αs(−s).
In the massless limit, for d = 4 the only contribution stems from the gluon condensate but
starting from d = 6 contributions from several different condensates need to be considered
for each d — this is accounted for by the sum in i.

In practical applications of the OPE for the analysis of hadronic τ spectral function
moments, due to the lack of knowledge about terms with d ≥ 6 and due to the proliferation
of operator matrix elements, an important approximation is made [11, 12, 21–23, 32, 33]:
no αs corrections in the Wilson coefficients are considered and the anomalous dimensions of
all operators are neglected, thereby removing the αs-suppressed logarithmic s dependence
from the Wilson coefficients of eq. (2.6) which reduce to mere tree-level constants. This
approximation also implies that effectively only a single condensate term contributes at
each d. For the gluon condensate correction at d = 4, we use the common renormalization
scheme invariant definition

〈Ō4,0〉 = 2π2

3 〈Ω|β̃(αs)GµνGµν |Ω〉 ≡
2π2

3 〈Ḡ
2〉 , (2.7)

where β̃(αs) ≡ −2β(αs)/β0αs = αs/π+ . . .. The O(αs) correction in the Wilson coefficient
C4,0(αs(−s)) is known [34]. The latter has sometimes been included in phenomenological
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analyses, see e.g. refs. [33, 35]. However, the logarithmic s dependence introduced by this
correction leads to rather small numerical effects for gluon condensate suppressed (GCS)
spectral function moments,3 so that the approximation of a constant Wilson coefficient
is quite good for the gluon condensate and has therefore been adopted in most recent
spectral function moment analyses. This motivates the common assumption that such an
approximation (including the neglect of anomalous dimensions) is also reliable for d ≥ 6
and that it does not affect the αs determinations, see e.g. refs. [23, 35], but no strict
proof of this assumption is available. Finally, it is also customary to write the OPE in
terms of the correlators Π(1+0)

V/A (instead of the Adler function). In this simplified form, the
Wilson coefficients and the respective effective condensates with dimension d are collectively
represented by a constant Cd and one has

ΠOPE
V/A = 1

12
〈Ḡ2〉
s2 +

∞∑
d=6

CV/Ad

(−s)d/2 , (2.8)

which gives

DOPE
V/A = 2π2

3
〈Ḡ2〉
s2 + 2π2

∞∑
d=6

d
CV/Ad

(−s)d/2 . (2.9)

In this form, Cauchy’s theorem for eq. (2.5) implies that a monomial term xm in the weight
function w(x) (W (x)) picks up solely the OPE correction with dimension d = 2(m + 1)
(d = 2m). For GCS moments the gluon condensate correction term vanishes.

The DV component of the spectral functions, ρ(DV)
V/A (s), cannot be obtained from first

principles, but, for sufficiently large s, it can be parametrized under generally accepted
assumptions about the QCD spectrum (Regge behaviour and large-Nc limit considera-
tions) [27–29]. Exploiting the analyticity properties of the correlators, it is possible to write
the contributions from DV effects as an integral over the respective spectral function con-
tribution. Since the approximate form for the DVs is only valid for sufficiently large s, away
from the resonance peaks, this contribution is then written as an integral for s > s0 as [28]

δ
(DV)
w,V/A = −8π2

ˆ ∞
s0

ds
s0
w

(
s

s0

)
ρ

(DV)
V/A (s). (2.10)

In this work, when implementing the analysis setup of ref. [12], the DV contribution to the
spectral functions will be parametrized as

ρ
(DV)
V/A (s) = e−δV/A−γV/As sin

(
aV/A + bV/As

)
, (2.11)

which introduces four additional parameters per channel: δV/A, γV/A, aV/A, and bV/A. Fol-
lowing the work of ref. [29], corrections to this ansatz arise in the form of logarithms and
1/s suppressed terms (see also eq. (3.9) of ref. [37]). These corrections have so far not been
included in phenomenological analyses.

3For the GCS spectral function moments the polynomial weight functions w(x) (W (x)) do not contain
a linear term x (quadratic term x2). In all recent high-precision αs determinations from spectral function
moments GCS spectral function moments were employed due to their better perturbative behavior and to
suppress the rather large impact of the gluon condensate correction which is currently not known with good
precision [36].
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2.2 Renormalon-free GC scheme for the Adler function

Employing the C-scheme for the strong coupling [18] and in the common approach of using a
vanishing IR cutoff, the perturbative series for the Adler function can be written in the form

D̂(s) =
∞∑
`=1

c̄` ā
`(−s) , (2.12)

where (β0 = 11− 2nf/3, nf = 3)

c̄` ≡
4` c̄`,1
β`0

, ā(µ2) ≡ β0 ᾱs(µ2)
4π . (2.13)

The perturbative coefficients are known to O(α4
s) (5-loop) [16] and read

c̄1,1 = 1 , c̄2,1 = 299
24 − 9ζ3 = 1.640 ,

c̄3,1 = 262955
1296 − 779

4 ζ3 + 75
2 ζ5 = 7.682 ,

c̄4,1 = 357259199
93312 − 1713103

432 ζ3 + 4185
8 ζ2

3 + 34165
96 ζ5 −

1995
16 ζ7 = 61.060 . (2.14)

As is customary in state-of-the-art analyses of hadronic τ decay spectral function moments,
we in addition employ an estimate for the 6-loop coefficient c̄5,1 [5],

c̄5,1 = 345.4774± 140 , (2.15)

which covers all the estimates obtained in the recent literature by dedicated analyses [2, 13–
16]. For the coefficients c̄` this gives c̄1 = 0.444, c̄2 = 0.324, c̄3 = 0.674, c̄4 = 2.382,
c̄5 = 5.991 ± 2.428. We note that the inclusion of the coefficient c̄5,1 (and its uncertainty
estimate) is not at all a minor aspect of the phenomenological analyses, as it leads to a
noticeable reduction of the renormalization scale uncertainties. In this work we adopt the
estimate of eq. (2.15).

The perturbative contributions to the spectral function moments are then determined
in analogy to eq. (2.5) via the contour integral

δ(0)
w (s0) = 1

2πi

‰

|x|=1

dx
x
W (x) D̂(xs0) . (2.16)

For the CIPT method [3] to determine the perturbation series δ(0)
w (s0) the expansion of

the Adler function shown in eq. (2.12) is used, and the contour integration is carried
out over powers of the complex-valued strong coupling αs(−s). The CIPT expansion
series arises from truncating the partial sum in eq. (2.12). For the FOPT method the
Adler function shown in eq. (2.12) is first reexpanded in powers of αs(s0). The contour
integration is carried out over the resulting polynomials of ln(−s/s0) which multiply the
powers of αs(s0). The FOPT expansion series arises from truncating the partial sum in
powers of αs(s0). From the perspective of the FOPT expansion, the CIPT method resums
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powers of ln(e±iπ) = ±iπ terms. For the implementation of renormalization scale variations
the CIPT and FOPT methods are actually expansions in powers of αs(−ξs) and αs(ξs0),
respectively. In our analysis we in general use the canonical variation interval 1/2 ≤ ξ ≤ 2.

In the common approach of using a vanishing IR cutoff the coefficients c̄` contain
IR renormalon contributions which cause the Adler function perturbation series to be
asymptotic. The different kinds of divergent contributions are compensated by associated
divergent order-by-order contributions in the condensates of the OPE corrections shown in
eq. (2.6). We call this IR factorization scheme for the condensates MS, which is indicated
by the bar over the condensate operators. The explicit form of the GC OPE correction is

δDOPE
4,0 (s) = 1

s2
2π2

3

[
1− 22

81 ā(−s) + . . .

]
〈Ḡ2〉 , (2.17)

where we have shown the O(αs) corrections to the Wilson coefficient in the renormalization-
scale invariant notation of the GC matrix element 〈Ḡ2〉. The yet unknown higher order
corrections are indicated by the ellipses. The analytic order-dependent form of the IR
renormalon contributions contained in the coefficients c̄` associated to the GC in the MS
scheme can be unambiguously quantified using the renormalon calculus and can be obtained
from the coefficients of the asymptotic series expression

δD̂4,0(s) = 2π2

3 Ng

[
1− 22

81 ā(−s) + . . .

] ∞∑
n=1

r(4,0)
n ā(−s)n , (2.18)

where

r
(4,0)
` =

(1
2

)`+4b̂1 Γ(`+ 4b̂1)
Γ(1 + 4b̂1)

, (2.19)

and b̂1 = β1/2β2
0 , with β1 = 102− 38nf/3 being the two-loop QCD β-function coefficient.

In the C-scheme for the strong coupling the form of r(4,0)
` is exact. The order-dependence

proportional to 2−`Γ(`+4b̂1) precisely characterizes the divergent asymptotic contributions
for the O(Λ4

QCD) renormalon associated to the GC OPE correction. The only unknown
is the exact value of the normalization factor Ng, since it cannot be inferred from the
renormalon calculus.

The purpose of the RF GC scheme we devised in Part I [5] is to eliminate the con-
tribution of the GC renormalon shown in eq. (2.18) order-by-order from the perturbative
coefficients c̄` of the Adler function through a scheme change of the GC matrix element
while maintaining its scale-invariance and its natural O(Λ4

QCD) scaling. This is achieved in
a first step by the rewriting the MS GC 〈Ḡ2〉 in terms of the renormalon-free GC matrix
element 〈G2〉(R2) which depends on the IR factorization scale R:

〈Ḡ2〉 ≡ 〈G2〉(R2) − R4
∞∑
`=1

Ng r
(4,0)
` ā`(R2) . (2.20)

Here the MS GC 〈Ḡ2〉 has a role analogous to the pole mass in heavy quark physics,
while the renormalon-free GC matrix element 〈G2〉(R2) has the role analogous to a short-
distance mass [8, 9]. In fact, the definition of 〈G2〉(R2) is in close analogy to the RS
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heavy quark mass scheme proposed in ref. [38]. Upon insertion in eq. (2.17) the series on
the r.h.s. of eq. (2.20) is combined with the original Adler function series in eq. (2.12).
For the IR factorization scale R the proper scaling is R2 . m2

τ for the application to τ
hadronic spectral function moments to ensure that it is still in the perturbative region and
to avoid the appearance of large logarithms ln(R2/s0). For the systematic order-by-order
cancellation of the divergent renormalon contributions in the Adler function it is essential
that the combined series is consistently expanded using the strong coupling at the same
renormalization scale either using the CIPT or FOPT renormalization scale prescription
described after eq. (2.16).

The GC matrix element 〈G2〉(R2) is scale-dependent and has O(R4) scaling, which
renders it not very convenient, since the truncated series values can strongly depend on
the values of R and Ng. This is remedied in a second step by rewriting 〈G2〉(R2) in terms
of the scale-invariant GC matrix element 〈G2〉RF,

〈G2〉(R2) ≡ 〈G2〉RF +Ng c̄0(R2) , (2.21)

where the function c̄0(R2) satisfies the same R-evolution equation as the subtraction series
on the r.h.s. in eq. (2.20) and thus of 〈G2〉(R2). Interestingly, since the divergent subtrac-
tion series is associated to a pure O(Λ4

QCD) renormalon ambiguity, its R-derivative is a
convergent series (within its radius of convergence) which can be summed exactly in closed
form [5],

d
d lnR2

[
R4

∞∑
`=1

Ng r
(4,0)
` ā`(R2)

]
= d

d lnR2 〈G
2〉(R2) = Ng

24b̂1

R4 ā(R2)
1− 2b̂1ā(R2)

. (2.22)

A very suitable choice for c̄0(R2) is the Borel sum of the subtraction series itself using the
common principle value prescription for the inverse Borel transform integration,

c̄0(R2) ≡ R4 PV
ˆ ∞

0

du e−
u

ā(R2)

(2− u)1+4b̂1
= −R

4 e
− 2
ā(R2)

(ā(R2))4b̂1
Re
[
e4πb̂1i Γ

(
− 4b̂1,−

2
ā(R2)

)]
,

(2.23)
where the analytic result of eq. (2.23) is valid for real-valued ā(R2). Here, R4/(2− u)1+4b̂1

is the Borel (transform) function of the subtraction series on the r.h.s. of eq. (2.20) for
Ng = 1 and the integral over the GC renormalon branch cut for u ≥ 2 is defined using
the average of the contour deformation above and below the real axis, referred to as the
principal value (PV) prescription. In total, the expression for the Adler function in the RF
GC scheme has the form

D̂RF(s,R2) = 1
s2

[
1 + c̄

(1)
4,0ā(−s)

] 2π2

3 Ng c̄0(R2) +
∞∑
`=1

c̄` ā
`(−s) (2.24)

−
[
1 + c̄

(1)
4,0 ā(−s)

] 2π2

3 Ng
R4

s2

∞∑
`=1

(1
2

)`+4b̂1 Γ(`+ 4b̂1)
Γ(1 + 4b̂1)

ā`(R2) ,

where the first term involving c̄0(R2) is treated strictly as a tree-level term (i.e. not being
reexpanded again and numerically evaluated in the C-scheme for the strong coupling). To
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obtain the perturbation series, either using the CIPT or the FOPT renormalization scale
setting prescription, it is mandatory to consistently expand and truncate the sum of the two
series in ā`(−ξs) and ā`(ξs0), i.e. using the strong coupling at a common renormalization
scale. This ensures the systematic removal of the GC renormalon from the Adler function.
The GC OPE correction adopts the standard form

δDOPE,RF
4,0 (s) = 1

s2
2π2

3

[
1− 22

81 ā(−s)
]
〈G2〉RF . (2.25)

The RF scheme entails that the difference between the original MS GC and our new
scale-independent RF GC, 〈G2〉RF, is formally O(ān+1

R ). In this sense, the modifications
to the GC in the RF scheme are minimal. Furthermore, the R-dependence of D̂RF(s,R2)
vanishes in the limit of large truncation order and the Borel sum of D̂RF(s,R2) (defined
with the PV prescription above) agrees with the one of the original MS GC scheme Adler
function D̂(s). This means that the RF GC matrix element 〈G2〉RF is defined with respect
to the Borel sum in the PV prescription, a scheme that has been considered in the literature
before [39–45], but has not been realized in the context of the τ hadronic spectral function
moments in the FOPT and CIPT expansions prior to ref. [5].

We note that while the dependence on the renormalon norm in eq. (2.20) is an aspect
the RF GC scheme shares with the renormalon-subtraction (RS) approach proposed in
ref. [38], the additional constructive element of eq. (2.21), which renders the RF GC to be
scale-invariant, provides the practical advantage that 〈G2〉RF is asymptotically independent
of the value of Ng. This means that the value of 〈G2〉RF is more stable with respect to
uncertainties in the value of Ng.

3 Determination of the GC renormalon norm

In Part I [5] we have demonstrated the effectiveness of the RF GC scheme in the context of
concrete Borel function models for the all-order perturbation series of the Adler function
D̂(s). For these models the value of the GC renormalon norm Ng was known exactly. We
also considered a multi-renormalon model for the Adler function in full QCD, following the
construction of Beneke and Jamin [2], which uses as input the known 5-loop coefficients of
eq. (2.14) and the central value for c̄5,1 in eq. (2.15). The Borel function model was updated
to account for the now known 5-loop coefficient of the QCD β-function and the use of the
C-scheme, see appendix A of Part I. The construction principle of the Beneke-Jamin model
is based on the natural assumption that the IR and UV renormalon terms closest to the
origin are sufficient to achieve a realistic description of the true Borel function. Because the
known perturbative corrections to Adler function are fully consistent with a sizeable GC
renormalon norm, the model predicts a sizeable value for Ng. We obtained the concrete
value Ng = 0.64 in Part I. (See appendix A for how our renormalon norm convention is
related to others employed in the recent literature.)

This result and the constructive elements of the Beneke-Jamin model are compatible
with the proposition that the GC renormalon gives a sizeable contribution to the known
QCD corrections of the Adler function at the 5-loop level. In this section we apply this
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proposition to also quantify the norm Ng with a realistic uncertainty. The uncertainty in
Ng will then enter our phenomeological analyses in section 4 as an additional parametric
error. We carry out our analysis for nf = 3 active flavors, which is the flavor number
relevant for the analysis of τ hadronic spectral functions.

In the following three subsections we use three different methods to determine Ng. In
section 3.1 we discuss different modifications of the multi-renormalon model compatible
with the naturalness assumption mentioned above to assess the stability of Ng under these
variations. In section 3.2 we examine the ‘conformal mapping approach’ introduced by
Lee to determine Ng for nf = 3 active flavors in ref. [46]. He used the known Taylor
expansion terms of the Euclidean Adler function’s Borel function B[D̂](u) at 5 loops and
a conformal mapping to relocate the gluon condensate renormalon branch point originally
located at u = 2 into the unit circle such that it becomes the branch point closest to the
origin. This allows to determine the norm through a Taylor expansion in the mapped vari-
able around the origin. We show that the concrete form of Lee’s conformal transformation
exhibits a rather slow convergence and substantially undershoots the norm at the 5 loop
level. We devise improved conformal transformations following the works of [39, 47–49],
where the convergence is accelerated and the results at 5 loops are more reliable. Finally,
in section 3.3 we discuss a novel method, called ‘optimal subtraction method’, where Ng is
determined from a minimization procedure that encodes the two improvements the RF GC
scheme achieves for FOPT and CIPT expansion series for GCS and GCE spectral function
moments. These improvements are that the CIPT-FOPT discrepancy for GCS moments
is removed and that the perturbative convergence for GCE moments is substantially im-
proved [5]. We find that all three methods provide consistent estimates for Ng compatible
with 0.64 and with uncertainties of around 30-40%. We adopt the outcome of the optimal
subtraction method, which is given in eq. (3.12), as our final result for Ng because it does
not rely on the estimate of the 6-loop coefficient c̄5,1.

Interestingly, in the quenched approximation the GC renormalon norm N
(nf=0)
g was

determined previously in two dedicated analyses by Lee [46] and Bali et al. [20]. Since
our methods can also be applied in the quenched approximation and because these two
analyses quoted incompatible results, we take the opportunity to apply our three methods
to also determine N (nf=0)

g . The results are given and discussed in App B. In appendix C
we also show that the incomplete approximate knowledge on the description of the large-
order asymptotic behavior of the gluon condensate renormalon series in the lattice strong
coupling scheme may be the reason, why the result for N (nf=0)

g obtained by Bali et al. is
so much larger than the one obtained by Lee.

3.1 Multi-renormalon Borel function model approach

Even though the concrete form of the Borel function of the perturbative Adler function
B(u) is unknown, the structure of the non-analytic contributions related to IR and UV
renormalons is known due to a one-to-one association to the terms in the OPE (see eq. (2.6))
for IR renormalons and to higher-dimensional operator insertions related to integrated out
short-distance quantum corrections for UV renormalons. To the extent that the QCD
β-function, the anomalous dimensions of the operators and the Wilson coefficients are
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known, the associated non-analytic contributions can be quantified unambiguously fixing
the order-by-order relative behavior of the renormalon contributions in the perturbative
coefficients [50–54], see also section 2.3 in Part I. The Borel function contains a linear
combination of such IR and UV renormalon terms plus terms that are fully analytic in
the u-plane.4 The non-analytic branch points for IR (UV) renormalons are located on the
positive (negative) real u-axis and related to equal-sign (sign-alternating) asymptotic series
contribution. The analytic term is related to a series contribution with a finite radius of
convergence. Non-analytic renormalon terms with branch points further away from the
origin are associated to high-dimensional and more power-suppressed contributions. The
information that is a priori unknown is the normalization of the different non-analytic IR
or UV contributions.

The previously mentioned proposition and naturalness assumption implies that the
renormalon terms closest to the origin in the Borel plane are sufficient to achieve a good
approximate description of the Adler function’s Borel function and that the known pertur-
bative coefficients of the Adler function are sufficient to approximately determine their nor-
malization. The ‘multi-renormalon’ model construction devised by Beneke and Jamin [2]
follows this proposition. The model includes a term related to the gluon condensate OPE
correction displayed in eq. (2.17), which has a branch point at u = 2 and is the IR renor-
malon located closest to the origin. Furthermore it contains a term associated to the
dimension-6 OPE correction according to the simplified expression in eq. (2.9) with a
branch point at u = 3 as well as a term accounting for the leading UV renormalon with a
branch point at u = −1 and an anomalous dimension consistent with the leading double-
pole structure known from the large-β0 approximation [55] (see section 4 of part I). Since
the QCD series terms for the Euclidean Adler function up to O(α4

s) do not show any
significant sign alternation in either the MS or C schemes for the strong coupling, the nor-
malization of the UV renormalons comes out very small, so that the inclusion of the leading
UV renormalon term is sufficient [2]. The model is supplemented by a linear polynomial
in u to account for the analytic contribution.

In the analyses of Borel function models of the Adler function D̂(s) [2, 10, 13] it is com-
mon practice to consider the Borel (transform) function, B[D̂(s)](u), to be defined with re-
spect to the coupling for the renormalization scale µ2 = −s. We adopt this convention here
as well and furthermore use the C-scheme for the strong coupling. We also refer the reader
to appendix A for the precise definition of the Borel function we employ in this work (and
its relation to other conventions used in the literature) and to ref. [18] for the C-scheme.

In this context the Beneke-Jamin model (which was employed in this form in Part I)
adopts the concrete form5

B[D̂(s)]mr(u) = b(0) + b(1)u+ 2π2

3
Ng

[
1− 22

81 ā(−s)
]

(2− u)1+4b̂1
+ N6

(3− u)1+6b̂1
+ N−2

(1 + u)2−2b̂1
. (3.1)

4There are other non-analytic terms such as instanton contributions, which have negligible numerical
effects and are therefore not relevant for the discussions here.

5Through integration-by-parts the O(ān) term of the form ān

(p−u)γ in the Borel function is equivalent to
a term of the form Γ(γ−n)

Γ(γ)(p−u)γ−n −
∑n−1

i=0 p
n−γ−i Γ(γ−n+i)

Γ(γ)Γ(1+i)u
i, which is an alternative notation frequently

used in the literature. For a more detailed discussion of this point see also section 2.3 of Part I.
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The three renormalon norms Ng, N6 and N−2 and the two polynomial coefficients b(0,1)

are then determined from the Adler function coefficients up to c̄5,1, which imply that the
first 5 terms of the Taylor series for B[D̂(s)]mr(u) read

∑5
n=1 c̄n/Γ(n)un−1, see eq. (2.13).

Using c̄5,1 = 345.477 and b̂1 = 32/81 = 0.395 we obtain Ng = 0.64, N6,0 = −15.65,
N−2 = −0.027, b(0) = 0.154 and b(1) = 0.008, which is the set of values related to the
GC norm value mentioned above in the introduction. It is the idea of the ‘renormalon
model approach’ to determine Ng with an uncertainty by considering several modifications
in the construction of B[D̂(s)]mr(u) that are consistent with the central proposition and
the naturalness assumption.

Let us first consider the impact of the uncertainty on the 6-loop coefficient c̄5,1, see
eq. (2.15). Changing the coefficient by ±140 we obtain Ng = 0.64±0.27 which corresponds
to a relative variation of 43%. This uncertainty is irreducible in the context of only having
estimates for the 6-loop coefficient c̄5,1 using the Borel model approach. It is now interesting
examining how the uncertainties related to the structure of the model itself can affect the
value of Ng. Let us study the possible impact of the O(ā2) correction in the Wilson
coefficient of the GC term. Given that the known O(ā) correction has the coefficient
−22/81 ≈ 0.27 and that the perturbative coefficients c̄` of the Adler function are very nicely
behaved with coefficients well below 0.5 up to O(ā2), see the text below eq. (2.15), it is
reasonable to assume that the size of the yet unknown O(ā2) coefficient does not exceed 0.5
as well. We thus consider a modification of the GC term shown in eq. (3.1) by considering
a Wilson coefficient of the form [1− 22

81 ā(−s) + δ ā2(−s)] with −0.5 ≤ δ ≤ 0.5. This leads
to the result Ng = 0.64+0.11

−0.08 which corresponds to a relative variation of +18% and −13%.
These variations are much smaller than that coming from c̄5,1. Using the modifications [1+
δ ā(−s)] for the Wilson coefficient of the d = 6 (N6) IR renormalon and the UV renormalon
(N−2) terms with the same δ-variation, we obtain Ng = 0.64+0.09

−0.03 andNg = 0.64+0.01
−0.01, which

are even smaller variations. Next, let us consider two other structural modifications of the
Borel model of eq. (3.1). The fact that the linear coefficient b(1) for the default model of
eq. (3.1) is rather small indicates that the contributions coming from the renormalon terms
already accounts nicely for all corrections at O(α2

s) and beyond. We therefore drop the
linear term b(1)u and include a d = 8 renormalon term of the form N8/(4 − u)1+8b̂1 . This
yields Ng = 0.68 which differs only by 6% from the norm obtained from the original model.
If we include instead of the d = 8 renormalon term an additional u = −2 UV renormalon
term N−4/(2 + u)2−4b̂1 we obtain a result for Ng that only differs by 0.5%.

We see that the unknown 6-loop coefficient c̄5,1 represents the largest source of un-
certainty of ±40% when determining the GC renormalon norm Ng using the Borel model
method. Increasing the error in c̄5,1 beyond the one adopted in eq. (2.15) would further
increase this uncertainty.6 Structural uncertainties related to the form of the Borel, model
related to the unkown higher order corrections to the Wilson coefficients or to the form
of the renormalons that are accounted for, lead to much smaller effects. Among these

6In ref. [11], see footnote 10, a much larger uncertainty is used. This larger uncertainty is much more
conservative but is disfavoured by recent dedicated analyses [13–16], and is also incompatible with our
basic proposition that the GC renormalon has a sizeable contribution to the known 5-loop correction, see
refs. [2, 13].
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subleading sources of uncertainty, the still unknown two-loop correction to the GC Wilson
coefficient is the largest with around 15 to 20%. Modifications related to IR renormalon
terms associated to condensates beyond dimension-4 or to the UV renormalons (which are
known to be small due to the absense of sign alternating contributions) have significantly
smaller effects. These observations are consistent with the assumptions entailed in our
proposition and the naturalness of the Adler function’s renormalon structure. It should be
noted, however, that the possibilities to change the form of the Borel model are certainly
not exhausted with the modifications we discussed above. Overall, we therefore consider
the outcome of this analysis primarily as a useful starting point and it is appropriate to
consider also the two alternative methods discussed in the following subsections.

3.2 Conformal mapping approach

The conformal mapping approach [46] to determine the GC renormalon norm Ng uses the
fact that the function

B̃(u) ≡ 3 (2− u)1+4b̂1

2π2 B[D̂(s)](u) (3.2)

is analytic in the vicinity around the point u = 2 as far as gluon condensate renormalon in
B[D̂(s)](u) is concerned. It has, however, still a branch point at u = 2 from (2 − u)1+4b̂1

multiplying the other renormalons or the analytic contributions. Furthermore, the radius
of convergence of the un Taylor series of (2− u)1+4b̂1 is 2, but the series converges to zero
for u = 2 because 1 + 4b̂1 is positive. The idea of the conformal mapping approach is
that one can apply conformal transformations z = f(u) such that the origin is unchanged,
i.e. f(0) = 0, and the point z2 ≡ f(2) is closer to the origin than any of the other
mapped (and unbounded) singular points {f(3), f(4), . . . , f(−1), f(−2), . . . } related to the
other IR and UV renormalons. It is then possible to determine Ng from that Taylor
series evaluated at z = z2. The condition f(0) = 0 ensures that the n-th term in this
Taylor expansion is determined from terms in the Adler function’s perturbation series up
to O(αns ), i.e. from c̄1,1, . . . , c̄n,1. This means that the Taylor series can be calculated based
purely on perturbation theory and that there is no need to consider the reconstruction of
the Borel function. The only information needed is the form of the most singular non-
analytic structure associated to the GC renormalon. The latter is known exactly from the
renormalon calculus and reads 1/(2−u)1+4b̂1 . The conformal mapping approach is model-
independent in the sense that is does not rely on assumptions about the concrete form of
the Borel function. However, it depends on the choice of the conformal transformation and
that the resulting series for Ng is already close to saturation for the available orders.

In his analysis Lee used the conformal mapping [46, 56, 57]

z = u

(1 + u) , (3.3)

which leads to z2 = 2/3 ≈ 0.667. Here the singular point second closest to the origin is
rs = 0.75 and given by the d = 6 renormalon branch point at u = 3. This results in the
Taylor series Ng = 0.40 − 0.15 − 0.042 + 0.040 + 0.071 = 0.32 at O(α5

s) using the central
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Figure 1. Series for the nf = 3 GC renormalon normNg up to order 40 obtained from the conformal
mapping approach using the Borel model of eq. (3.1). The first five orders (indicated by the blue
markers) come from the known 5-loop corrections quoted in eqs. (2.14) and the central estimate for
the 6-loop coefficient c̄5,1 of eq. (2.15). Upper left panel: results based on Lee’s mapping of eq. (3.3).
The other panels show results for the mapping function w(u, p) of eq. (3.4) for p = 5, 10, 15.

value c̄5,1 = 345 of eq. (2.15) for the last term.7 The value of z2 is quite close to rs, and the
series does not yet look to be close to a saturation. This suspicion can be substantiated by
testing the method using the multi-renormalon model of eq. (3.1) with the set of parameter
values displayed in the text below that equation. Since the model can be considered as
a reasonable approximation to the full QCD Borel function, we can check how fast the
method converges using the conformal mapping of eq. (3.3). The result as a function of
order n is shown in the left upper panel of figure 1. We see that the series is converging to
the correct value of Ng. However, the series saturates towards Ng = 0.64 only for orders
n & 40. For orders n . 5 (shown with blue markers in figure 1) the series significantly
undershoots the correct model value. This is far from satisfying and motivates considering
an alternative conformal transformation that leads to an improved saturation behavior.

7Lee carried out his analysis in the MS scheme up to O(α4
s) and determined the GC renormalon

norm of the Adler function. Accounting for the conventional factor 2π2/3 in the GC OPE correc-
tion shown in eq. (2.17) he obtained Ng = 0.048 − 0.018 − 0.008 + 0.001 in his convention for the
GC renormalon norm. Using the estimate of eq. (2.15), which corresponds to the MS coefficient
c5,1 = 280 [58], the O(α5

s) term reads +0.005. In our convention for the GC norm this corresponds to
Ng = 0.40− 0.15− 0.065 + 0.008 + 0.043 = 0.24.
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w(u, 5) w(u, 10) w(u, 15)
O(α4

s) 0.57 0.47 0.45
O(α5

s) 0.72± 0.24 0.63± 0.17 0.60± 0.15

Table 1. Results for the nf = 3 GC renormalon norm Ng at O(α4
s) and O(α5

s) . The uncertainties
at order 5 come from varying c̄5,1 within the uncertainty estimate given in eq. (2.15).

A class of conformal transformations that turns out to be much more suitable is given
by

w(u, p) =

√
1 + u−

√
1− u

p
√

1 + u+
√

1− u
p

, (3.4)

where p is a free parameter. This mapping has been employed for specific values of p in this
and other contexts in refs. [47, 59, 60] and many other works thereafter. We apply it here for
the conformal mapping approach to determine Ng. For the values p = (5, 10, 15) we obtain
z2 = (0.38, 0.32, 0.30) and rs = (0.52, 0.41, 0.38) for the singular points second closest to
the origin, which provides an evaluation of the Taylor series closer to the origin and also
has a smaller ratio of z2/rs. In the upper right and the lower panels of figure 1 we display
the convergence of the Taylor series for Ng for p = 5, 10, 15 in the context of the Borel
model already considered for Lee’s mapping. We find a substantially improved convergence
behavior. The series saturate towards Ng = 0.64 already for orders n & 20. At O(α4

s) and
O(α5

s), the series values are already within 30% and 10%, respectively, of the correct model
value, were the O(α4

s) result is always below the true value. Furthermore, the model values
coming from orders beyond O(α5

s) do not deviate from 0.64 by more than 20%. In view of
the uncertainty for Ng from the multi-renormalon model approach this is satisfactory.

For our analysis we extract the value for Ng at O(α4
s) and O(α5

s), where for the latter
we include the uncertainty due to the error in c̄5,1 given in eq. (2.15). The results are shown
in table 1. Within the uncertainties the O(α5

s) results are nicely compatible with the O(α4
s)

results for all values of p. Furthermore at O(α5
s) we obtain the smallest uncertainties for

p = 15. We have checked that the results for the three p values we have shown here are
representative for all values of p > 3 and that, in particular, there is no significant change
with respect to the p = 15 result for even larger values of p. Overall, we find that the
conformal mapping method confirms the result for Ng we obtained from the Borel model
approach with respect to the central value as well as the uncertainty.

3.3 Optimal subtraction approach

The third method to determine the GC renormalon norm Ng, which we call ‘optimal sub-
traction approach’, encodes the two major improvements the RF GC scheme achieves over
the previously used MS GC scheme for the τ hadronic spectral function moments: (1) the
reduction of the CIPT-FOPT discrepancy for GCS spectral function moments and (2) the
improvement of the badly behaved perturbation series for GCE spectral function moments.
As we have shown in Part I, for the proper choice of Ng these two types of improvements are
realized simultaneously for any possible choice of GCS or GCE spectral function moments.
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It is the idea of the optimal subtraction approach to employ an optimization procedure,
based on a χ2-type minimization, which quantifies the improvements (1) and (2) as a
function of Ng. To explain the construction of the χ2 function let us write FOPT (FO)
and CIPT (CI) spectral function moment expansion series for a given weight function w(x)
and truncated at O(αms ) in the form

δ(0),FO/CI
w,m (Ng, s0;αs(s0)) =

m∑
n=0

rFO/CI
w,n (Ng, R

2, ξ; s0, αs(s0)) , (3.5)

where the index n counts the order in the MS strong coupling expansion (either in terms
of αs(ξs0) or αs(−ξs) prior to the contour integration),8 which we collectively refer to
as O(αns ). The known perturbative coefficients in eq. (2.14) uniquely quantify rFO/CI

w,n for
n = 1, 2, 3, 4, and r

FO/CI
w,5 is determined from the estimate (2.15) with an uncertainty.

The coefficients rFO/CI
w,n depend on the subtraction scale R and the renormalization scaling

parameter ξ. In the formal large order n limit, the dependence of the truncated sum
δ

(0),FO/CI
w,m on R and ξ formally vanishes due to renormalization group invariance, which is
the reason why we have suppressed the dependence on R and ξ as arguments in δ(0),FO/CI

w,m .
For any finite order n, the truncated sum has, however, a residual dependence on R and ξ, as
it is common in perturbation theory. Note that the ‘tree-level’ term r

FO/CI
w,0 , which arises in

the RF GC scheme and is proportional to Ng c̄0(R2), is independent of the renormalization
scale parameter ξ.

Our χ2 function, which depends on the truncation order m and is constructed from a
set of GCS and GCE spectral function moments, consists of two additive parts

χ2
m(Ng) = χ2

m,GCS(Ng) + χ2
m,GCE(Ng) . (3.6)

To keep the expressions compact we have suppressed all arguments except for Ng, but the
χ2 functions also depends on R, ξ, s0 as well as αs(s0). The first term provides a measure
for the CIPT-FOPT discrepancy at order m for a set of GCS spectral function moments:

χ2
m,GCS(Ng) =

∑
i

(
δ(0),CI
wi,m (Ng)− δ(0),FO

wi,m (Ng)
)2
. (3.7)

We remind the reader that for the GCS moments, the polynomial weight functions wi do
not contain a linear x term and that the GC OPE correction is strongly suppressed. For
these spectral function moments, the CIPT as well as FOPT expansions already provide
well-behaved perturbation series even in the MS GC scheme. A contribution from a GCS
moment to χ2

m,GCS is small if the discrepancy between the truncated CIPT and FOPT
expansion series is small as well.

The second term provides a measure for the quality of convergence for a set of GCE
moments:

χ2
m,GCE(Ng) =

∑
i

(
rFO
wi,m(Ng)− rFO

wi,m−1(Ng)
)2
. (3.8)

8We remind the reader that in section 2.2 we have formulated the RF GC scheme in the context of the
C-scheme for the strong coupling, but that all concrete phenomenological analyses are carried out in the
common MS scheme. The values for αs(ξs0), αs(−ξs) and ā(R2) (the latter to be used in the function c̄0)
are obtained from the input MS value for αs(m2

τ ) using the known β-function coefficients up to 5 loops.
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We remind the reader that for the GCE moments, the polynomial weight functions wi
contain a linear x term (with a sizeable coefficient) and that GC OPE correction is sizeable.
For these spectral function moments, the CIPT as well as FOPT expansion series in the
MS GC scheme are quite badly behaved [10], so the difference between order m and order
m − 1 series terms is sizeable. A contribution from a GCE moment to χ2

m,GCE is small if
the series is well behaved. Since the CIPT expansion leads to a significant enhancement of
the sign-alternation behavior,9 which can upset artificially the difference between the size
of order m and order m − 1 series terms, we only account for the FOPT series terms for
the construction of χ2

m,GCE. The properties of the GCS and GCE moment series in the
FOPT and CIPT expansions either in the MS or the RF GC scheme mentioned above,
which motivate the forms of χ2

m,GCS and χ2
m,GCE, have been discussed in detail in section 5

of Part I (see in particular figure 3).
For the construction of χ2

m,GCS we consider five representative GCS weight functions
defined from

wn(x) ≡ w(2,n)(x) = (1− x)2
n∑
k=0

(k + 1)xk = 1− (n+ 2)xn+1 + (n+ 1)xn+2 , (3.9)

for n = 1, 2, 3, 4, 5, which were used in the phenomenological analysis in section 5.3 of
ref. [11]. The first weight function in this sequence, w1, is the well-known kinematic weight
function relevant for the inclusive hadronic τ decay rate. The explicit expressions for the
five weight functions are

w1(x) = 1− 3x2 + 2x3 ,

w2(x) = 1− 4x3 + 3x4 ,

w3(x) = 1− 5x4 + 4x5 ,

w4(x) = 1− 6x5 + 5x6 ,

w5(x) = 1− 7x6 + 6x7 . (3.10)

They are linearly independent and all doubly pinched. For the construction of χ2
m,GCE we

consider moments obtained from the following representative five GCE weight functions:

w6(x) = 3
2(1− x)2 = 3

2 − 3x+ 3x2

2 ,

w7(x) = (1− x)2
(13

12 + 5x
3

)
= 13

12 −
x

2 −
9x2

4 + 5x3

3 ,

w8(x) = 1
2(1− x)2 (5− 8x) = 5

2 − 9x+ 21x2

2 − 4x3 ,

w9(x) = (1− x)2
(3

2 + x− 3x2 + x3
)

= 3
2 − 2x− 7x2

2 + 8x3 − 5x4 + x5 ,

w10(x) = (1− x)
(

1− x3

2 + 3x4

4

)
= 1− x− x3

2 + 5x4

4 − 3x5

4 . (3.11)

9This property of the CIPT expansion is well-known and has been pointed out in refs. [2, 10]. We have
also described this behavior in Part I, see figure 3.
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Figure 2. Results for the nf = 3 GC renormalon norm Ng up to order m = 10 obtained from the
optimal subtraction approach using the Adler function obtained by the Borel model of eq. (3.1).
The first five orders, up to O(α5

s), (indicated by the blue starts) come from the known 5-loop
corrections quoted in eqs. (2.14) and the central estimate for the 6-loop coefficient c̄5,1 of eq. (2.15).
The red error bars arise from varying the IR factorization scale in the range 0.7√s0 ≤ R ≤

√
s0 and

the markers represent the average of the maximal and minimal results at each order in perturbation
theory. The blue error bar at order m = 5 is obtained by conservatively including, in addition to
the R variations, independent variations of c̄5,1 within the uncertainty estimate of eq. (2.15). Left
panel: results for s0 = m2

τ and ξ = 1. Right panel: results for s0 = m2
τ and ξ = 2.

They are linearly independent and doubly pinched as well (except for w10 which is singly
pinched), and we have adopted their form such that the coefficients of the linear x terms
have different values that is still of order one, i.e. neither too small nor too large. In any
case, all 10 weight functions are in principle also useful for phenomenological analyses with
suppressed DV corrections and we find compatible results for other choices of moments.
Note that the perturbative spectral function moment series associated to the 10 weight
functions (either in the FOPT or the CIPT expansion) all sum to values at O(α4

s) and
O(α5

s) very close to the kinematic moment series. This ensures that using the same weight
for all moments contributing to the χ2

m(Ng) does not cause any particular bias.
To find the best value with an uncertainty for Ng at the truncation order m we deter-

mine the minimum of χ2
m(Ng) for values of the subtraction scale R in the range 0.7√s0 ≤

R ≤ √s0. For the uncertainty for Ng we adopt half of the range of Ng values that is covered
and we take the average of the maximum and minimum values as the central value. As a
test of the method, we show the outcome for this analysis for s0 = m2

τ up to truncation or-
der m = 10 in figure 2 using the series for the Adler function generated by the Borel model
of eq. (3.1) for ξ = 1 (left panel) and ξ = 2 (right panel). We see that for increasing m the
results from this method nicely converge to the correct value for Ng (for the Borel model
this value is 0.64 and is indicated by the horizontal red line). We also see that for orders
m > 6 the method is slightly more stable for ξ = 2. This is related to the fact that for strong
coupling renormalization scales larger than √s0 the sign-alternating effects the UV renor-
malons, which have branch points at u = −1, are suppressed with respect to the GC renor-
malon with the branch point at u = 2. This sign-alternation disturbs the constructive struc-
ture of the χ2 function which exclusively focuses on the impact of the GC renormalon sub-
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√
s0 = mτ

√
s0 = 3 GeV

m = 4 (ξ = 1) 0.60± 0.20 0.51± 0.17
m = 4 (ξ = 2) 0.54± 0.21 0.55± 0.11
m = 5 (ξ = 1) 0.64± 0.16 0.50± 0.19
m = 5 (ξ = 2) 0.59± 0.18 0.52± 0.15

Table 2. Results for the nf = 3 GC renormalon norm Ng at orders m = 4 and 5 obtained from the
optimal subtraction approach for s0 = m2

τ , (3GeV), and ξ = 1, 2. The uncertainties at order m = 4
arise from varying the IR factorization scale in the range 0.7√s0 ≤ R ≤

√
s0 and at orderm = 5 from

the additional independent variation of c̄5,1 within the uncertainty estimate of eq. (2.15). The central
values are the average of the maximal and minimal results at each order in perturbation theory.

traction. Since, eventually, the UV renormalon will dominate the Adler function’s perturba-
tion series at very high orders (see section 5 and figure 3 of Part I where the moments for w1
and w6 have been analyzed in great detail), the implementation of the optimal subtraction
method we have adopted here cannot be applied to all orders m. However, for truncation
orders accessible by available or foreseeable calculations the method is perfectly adequate.

For the Borel model in eq. (3.1) the central value for the O(α5
s) coefficient eq. (2.15),

c̄5,1 = 345 has been adopted. Interestingly, the additional error on Ng related to the
uncertainty on c̄5,1 turns out to be quite small. To demonstrate that we have at order
m = 5 also determined the range of Ng values by carrying out the R variation described
above and in addition also varied independently c̄5,1 by ±140. The outcome is shown as
the blue error bar in both panels of figure 2. We have checked that the outcome of the
analysis remains essentially unchanged, if other moments are used that satisfy the same
criteria as w1−10 or if higher values for s0 are adopted. It should be noted, however, that it
is not easy to construct completely different inequivalent sets of analogous moments which
are linearly independent when imposing a limit on the maximal power of x.

In table 2 we display the results of the optimal subtraction method at truncation order
m = 4 and m = 5 for √s0 = mτ and √s0 = 3GeV and using ξ = 1 and ξ = 2. For
m = 5 the error on c̄5,1 is included as described in the previous paragraph. All results are
equivalent and consistent and we adopt the envelope of the m = 4 results for ξ = 1 and
ξ = 2 as our final result:

Ng = 0.57± 0.23 . (3.12)

The result, which has a relative uncertainty of 40%, is fully consistent with the estimates
we have obtained from the Borel model and the conformal mapping approaches discussed in
section 3.1 and 3.2 and is furthermore independent of the estimate for the 6-loop coefficient
c̄5,1.

The equivalence of the results obtained from the three approaches we have discussed
and which all rely on different criteria underlines that the known perturbative coefficients
of the Adler function are fully compatible with a sizeable GC renormalon norm in the
ranges obtained by our estimates. Within the natural proposition that the GC renormalon
has a sizeable contribution to the coefficient at O(α4

s), i.e. that the size of c̄4,1 is not just
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accidentally mimicking this property, our results provide a realistic estimate on the GC
renormalon norm Ng. We therefore adopt the result given in eq. (3.12) as our final result
for the GC renormalon norm.

4 Impact on strong coupling determinations

In order to demonstrate the improvements that can be achieved concerning the CIPT-
FOPT discrepancy when using the RF scheme for the GC in realistic αs analyses of τ
hadronic spectral function moments, we exemplarily carry out in this section two deter-
minations of αs(m2

τ ) following two analysis setups employed in the recent references by
Pich and Rodríguez-Sanchez [11] and by Boito, Golterman, Maltman, Peris, Rodrigues,
and Schaaf [12]. These two references are representatives of the two major approaches
concerning the treatment of nonperturbative corrections currently used in the literature,
one employing a truncated version of the traditional parametrization in terms of the OPE
corrections, see refs. [32, 33, 61, 62], and one that includes, besides the OPE corrections,
DV contributions, see refs. [21, 22, 35]. The two approaches are discussed controversially,
see e.g. refs. [63–65] and [11, 66]. For each approach we first employ the CIPT and FOPT
expansions in the common MS GC scheme, reproducing the respective published results,
and then carry out the analyses in the RF GC scheme, using our result for the GC renor-
malon norm Ng quoted in eq. (3.12). For the analysis in the RF GC scheme, additional
uncertainties due to the approximate knowledge of Ng and due to variations of the IR sub-
traction scale R are accounted for. We find that their numerical impact is relatively small.
This is particularly striking given the quite sizeable uncertainty of Ng. This outcome is
highly encouraging and underlines the practical value of the RF GC scheme.

We emphasize that the main purpose of the analyses in this section is to demonstrate
that the CIPT-FOPT discrepancy, that is present in the MS GC scheme, is significantly
reduced in the RF GC scheme, regardless of which approach is employed concerning the
treatment of the nonperturbative corrections. In our analyses we use the central value for
the estimate of the 6-loop coefficient c̄5,1 shown in eq. (2.15), for which there is a common
agreement in the literature [11, 12, 37, 67].10 When assessing theoretical uncertainties
arising from the estimate of c5,1, we use the uncertainty quoted in eq. (2.15). There is no
common agreement for this uncertainty in the literature in the context of αs determinations,
but for the purpose of our analysis this aspect is not essential since using the central value
is sufficient to demonstrate the improvement. We adopt the estimate given in eq. (2.15)
as it is consistent with the basic proposition our work is based on and furthermore not
overly agressive, see refs. [2, 13]. Our results show that a higher precision can in general
be reached in αs determinations from τ hadronic spectral function moments based on the
CIPT and FOPT expansions when the RF GC scheme is employed. The results can be
consistently combined in the RF GC scheme, while a combination in the MS GC scheme

10In ref. [11] c5,1 = 275 ± 400 is used for the 6-loop coefficient using the MS scheme for the strong
coupling, which corresponds to c̄5,1 = 340.477 ± 400 in the C-scheme. In ref. [12] c5,1 = 283 ± 142 is
used, which corresponds to c̄5,1 = 348.477± 142. In ref. [67] c5,1 = 275± 63 is used, which corresponds to
c̄5,1 = 340.477± 63.
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may lead to inconsistent results due to the asymptotic separation. We stress that the
analyses carried out in this section should not be interpreted as a supersedure of the
results for the strong coupling given in refs. [11] and [12] since they carried out many more
additional examinations we do not repeat here due to lack of space. Furthermore, our
results should not be interpreted as an approval (or disapproval) of the methods employed
in these references. A dedicated new strong coupling analysis using τ hadronic spectral
function moments will be carried out by us in a subsequent work.

As far as experimental data is concerned, we note that the LEP experiments,
ALEPH [32, 33, 68, 69] and OPAL [22, 70], have produced spectral function data from
the analyses of hadronic tau decays for the V , A, V + A, and V − A channels. More re-
cently, with the wealth of data produced by experiments measuring e+e− → hadrons in the
past decade (mainly aiming at the dispersive calculation of the muon g− 2), it has become
possible to produce a new isovector V spectral function exclusively based on experimental
data [12]. This has been achieved by extracting subleading channels from recently measured
cross-sections for e+e− → hadrons using the conserved vector current (CVC) hypothesis.
(We remind the reader that the ALEPH and OPAL analyses had to rely on Monte Carlo
simulated data for these subleading channels.) Realistic phenomenological analyses are ei-
ther based on the 2013 update of the ALEPH spectral functions [11, 21, 33, 67, 71], which
allow for the analysis of the “more inclusive” V + A channel, or on the new purely data
based V spectral function, which has significantly smaller uncertainties near the end-point
of the spectrum [12]. In order to follow the works of refs. [11] and [12] we employ, in sec-
tion 4.1, the ALEPH V +A data, while in section 4.2 we use the new V spectral function of
ref. [12]. This introduces an additional difference, besides the treatment of nonperturbative
corrections, between the results obtained in these two sections, which makes a consistent
combination of them non-trivial.

4.1 Truncated OPE analysis: multiple moments at fixed s0

We start by revisiting the analysis conducted by Pich et al. in section 5.3 of ref. [11]. This
analysis follows the so-called “truncated OPE strategy” (tOPE) (which is also the basis
of the earlier analysis in ref. [33]) and consists of the following. One chooses a number of
linearly independent integrated spectral function moments calculated at s0 = m2

τ , all based
on (at least) doubly-pinched weight functions. The pinching is argued to be sufficient to
allow for a neglect of any contribution from DV corrections. Furthermore, to allow for
a fit procedure, the number of moments must, of course, be larger than the number of
parameters in the theory description. Since the pinching and the requirement that the
moments are linearly independent bring in additional powers of x in the weight functions
w(x) and the associated OPE corrections within the approximation of eq. (2.9), it becomes
necessary to truncate the tower of OPE condensates in order to have a manageable number
of parameters in the fit procedure. This is based on the argument that the contributions
from the neglected higher power OPE corrections are hierarchical and small.

In the analysis of section 5.3 of ref. [11], the five doubly-pinched weight functions
w1,...,5(x) of eqs. (3.10) are used. (We remind the reader that w1(x) corresponds to the kine-
matic moment relevant for the inclusive hadronic τ decay rate.) Due to the absence of any
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central
value

σexp σµ σR σNg σ5 σtot

CIPT, χ2/dof = 0.82, p-value = 0.37
αs(mτ ) 0.3366 0.0042 0.0051 − − 0.0024 0.0070
C6 × 103 0.95 0.38 0.44 − − 0.012 0.58
C8 × 103 −1.07 0.46 0.22 − − 0.055 0.51
C10× 103 0.22 0.28 0.49 − − 0.0052 0.56

FOPT, χ2/dof = 1.23, p-value = 0.27
αs(mτ ) 0.3169 0.0031 0.0056 − − 0.0014 0.0065
C6 × 103 1.37 0.43 1.22 − − 0.076 1.29
C8 × 103 −0.95 0.45 1.02 − − 0.069 1.12
C10× 103 0.43 0.30 0.58 − − 0.041 0.66

RF GC scheme, CIPT, χ2/dof = 2.14, p-value = 0.14
αs(mτ ) 0.3197 0.0035 0.0047 0.0054 0.0058 0.0017 0.010
C6 × 103 4.96 0.63 0.40 0.70 1.13 0.14 1.53
C8 × 103 −3.40 0.54 0.42 0.37 0.76 0.017 1.09
C10× 103 1.50 0.33 0.22 0.33 0.41 0.020 0.65

RF GC scheme, FOPT, χ2/dof = 1.21, p-value = 0.27
αs(mτ ) 0.3169 0.0031 0.0059 0 0 0.0014 0.0068
C6 × 103 1.39 0.43 0.96 0.11 0.0048 0.075 1.06
C8 × 103 −0.80 0.45 0.99 0.14 0.059 0.065 1.10
C10× 103 0.40 0.30 0.57 0.039 0.014 0.040 0.65

Table 3. Fitted parameters from the ALEPH V + A spectral function used in ref. [11] for CIPT
and FOPT in the MS GC scheme and in the RF GC scheme. For the latter we use Ng = 0.57±0.23.
The uncertainty σ5 reflects the variation of the 6-loop coefficient as in eq. (2.15), while σµ and σR
refer to variations of the strong-coupling renormalization scale µ and of the IR subtraction scale
R as described in the text. The values for σµ, σ5, σR, and σNg are half the difference between
the maximum and minimum values obtained from the ξ, c5,1, R, and Ng variations, respectively,
using the central values for the remaining parameters. The two zeros in the lowest section refer to
numbers smaller than 10−5. The Ck are given in units of GeVk and are denoted Ok in ref. [11].

linear term x, all moments are GCS, i.e. the GC OPE correction is highly suppressed (and
absent in the approximation of eq. (2.9)), but involve the condensates C2k for k = 3, . . . , 8.

The four parameters of the fit are αs as well as the first three OPE condensates that
contribute at leading- order in the strong coupling in the approximation of eq. (2.9): C6, C8,
and C10. The contributions from condensates of dimension 12, 14, and 16 are neglected, so
that for the moments with w4(x) and w5(x) only the perturbative corrections enter the fit.
In the analysis of ref. [11], the ALEPH V , A and V +A data from the update of ref. [33] were
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used for three separate fits, which lead to perfectly equivalent determinations of αs(m2
τ ).

In the analysis below we therefore only use the V +A data from that reference. As far as
the improvement of the CIPT-FOPT discrepancy in the RF GC scheme is concerned, the
results based on the V or the A data are equivalent.

The results of the fits based on the CIPT and FOPT expansions in the usual MS
scheme for the GC are shown in the upper half of table 3. For the strong coupling the
results are11

αs(m2
τ )CIPT = 0.3366 ± 0.0070

αs(m2
τ )FOPT = 0.3169 ± 0.0065

(tOPE, MS GC, ALEPH V +A). (4.1)

The central values are obtained using c̄5,1 = 345 for the 6-loop coefficient. Apart from the
experimental error from the fits, σexp (which we treat statistically), we also quote the theory
errors related to the truncation of perturbation theory: σµ, arising from renormalization
scale variations, and σ5, from the uncertainty in the estimate of the 6-loop coefficient
c̄5,1 = 345 ± 140 in eq. (2.15). For the variation of the renormalization scale in CIPT, we
expand in powers of αs(−ξs) ≡ αs(−ξm2

τ x) prior to carrying out the contour integration
and, in FOPT, in powers of αs(ξm2

τ ), with 1/2 ≤ ξ ≤ 2 and ξ = 1 being the choice for the
central value. The total uncertainty is obtained by quadratially adding σexp, σµ, and σ5.
Our results reproduce very well those quoted in the last two lines of table 7 in ref. [11].

We see that the results for αs(m2
τ ) obtained from the CIPT and FOPT expansion

show a difference of about 0.0197, which is the typical size of the CIPT-FOPT discrepancy
that has been found in ref. [11] and in many other previous phenomenological analyses
based on variants of the tOPE strategy. This is 5 to 6 times larger than the individual
experimental uncertainties, and about 3 times larger than the total uncertainties we obtain
for the CIPT and FOPT results for αs(m2

τ ) in our analysis. Interestingly, the fit results
for the condensates obtained in the CIPT and FOPT analyses are perfectly compatible
within uncertainties indicating that the asymptotic separation mostly affects the value of
the strong coupling.

In the lower half of table 3 we show the corresponding CIPT and FOPT results
obtained in the RF GC scheme using eq. (3.12) for the gluon condensate renormalon norm
Ng and 0.7mτ ≤ R ≤ mτ for the IR subtraction scale variation. For the strong coupling
the results are

αs(m2
τ )CIPT = 0.3197 ± 0.0100

αs(m2
τ )FOPT = 0.3169 ± 0.0068

(tOPE, RF GC, ALEPH V +A). (4.2)

The central values are obtained from using Ng = 0.57 and R = 0.8mτ as well as c̄5,1 = 345.
Apart from the uncertainties related to the truncation of perturbation theory, σµ and σ5,
which we have estimated as in the MS GC scheme, we also quote the uncertainties σR and
σNg coming from the R-variation and the error in Ng, respectively. We see that the FOPT

11In ref. [11] additional OPE truncation uncertainties of 0.013 and 0.012 for αs(m2
τ )CIPT and αs(m2

τ )FOPT,
respectively, were added (see their table 8). We do not include these uncertainties in our analysis as our
main focus lies on the reconciliation of the CIPT-FOPT discrepancy.
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results are almost unaltered by the subtraction of the GC renormalon and the switch to
the RF GC scheme. At the same time, the uncertainties σR and σNg are extremely small
for αs, and lead to only minor changes of the fit results for the OPE condensates. Overall,
switching from the MS to the RF GC scheme for GCS spectral function moments has very
little impact for the FOPT expansion. So for the FOPT expansion the suppression of the
GC OPE corrections is associated to a supression of the effects induced by switching to
the GC scheme. This corroborates the conclusions of refs. [6, 7] and our observations in
Part I, that the FOPT expansion is consistent with the standard form of the OPE.

The CIPT results, on the other hand, change significantly, and now the difference
of the CIPT and FOPT central values for αs(m2

τ ) is reduced to merely 0.0028, which
is smaller than the individual experimental uncertainties. In CIPT, the RF GC scheme
introduces a new source of theory uncertainty for the αs value, which now receives
non-negligible contributions from σNg and σR even though the numerical size of the GC
OPE correction itself is still strongly suppressed (and even vanishing in the approximation
of eq. (2.9)). This (apparently) paradoxical behavior corroborates the conclusions of
refs. [6, 7] and our observations in Part I, and illustrates the incompatibility of the CIPT
expansion with the standard form of the OPE as given in eq. (2.6) and (2.9), and the need
to switch to the RF GC scheme to eliminate the dominating inconsistency that is related
to the GC renormalon. It is remarkable, however, that the final uncertainty for αs(m2

τ ),
which has to account for σNg and σR, still remains quite small and only grows from 0.0070
to about 0.010. This growth in total uncertainty for the CIPT analysis is more than
compensated by the gain in consistency between the FOPT and CIPT analyses. Finally,
we observe a change in the central values of the OPE condensates in CIPT when the RF
GC is used. The new results are still marginally compatible with the ones obtained in the
MS GC scheme. We also observe that in the RF GC scheme, the fit quality of the CIPT
analysis slightly worsens. Still, the fit is perfectly acceptable with a p-value of 14%.

Given that the asymptotic separation inherent to the CIPT expansion method in the
original MS GC scheme is removed in the RF GC scheme, it now makes good sense to
determine a combined αs result, in contrast to the results obtained in the MS GC scheme.
We average the FOPT and CIPT results in the RF GC scheme following a prescription
given in ref. [11]: we take the average of the two individual central values as the final central
value and the quadratic sum of the smaller individual uncertainty and half of the central
difference as the final combined uncertainty. (We do not reduce the individual errors in
the averaging due to the potential correlations in central values.) This results in12

αs(m2
τ ) = 0.3183 ± 0.0069 (tOPE, RF GC, ALEPH V +A). (4.3)

We adopt this averaging prescription in the RF GC analysis in the next section as well. The
uncertainty of the average reflects the potential prospect of strong coupling determinations

12In ref. [11], uncertainties of ±400 were employed for c̄5,1. If we had adopted these variations, σ5 would
increase to 0.0069 for CIPT and 0.0039 for FOPT in the MS GC scheme, which would yield αs(m2

τ )CIPT =
0.3366± 0.0096 and αs(m2

τ )FOPT = 0.3169± 0.0075. In the RF GC scheme, a similar increase in uncertainty
is observed and the final values would be αs(m2

τ )CIPT = 0.320 ± 0.011 and αs(m2
τ )FOPT = 0.3169 ± 0.0077.

The average of eq. (4.3) would then read αs(m2
τ ) = 0.3183± 0.0079.

– 26 –



J
H
E
P
0
9
(
2
0
2
2
)
2
2
3

from hadronic τ spectral function moments in a situation where an uncertainty in the
parametrization of the nonperturbative corrections in the tOPE method would be absent.
In figure 3 a visual comparison of the results for αs(m2

τ ) in the MS (left panel, see eq. (4.1))
and in the RF GC scheme (right panel, see eq. (4.2)) is displayed. The average of eq. (4.3)
is also shown in the right panel.

We note that in ref. [11] a number of other moment analyses using the CIPT and
FOPT expansions have been carried out. We have checked that the observations described
above for the improvement concerning the consistency of the extracted values for αs(m2

τ )
from the CIPT and FOPT expansions in the RF GC scheme are exemplary for all analyses
carried out by them and not specific for the moment analysis in their section 5.3.

4.2 Single weigth function analysis with multiple s0 values

We turn now to the analysis by Boito et al. in ref. [12]. This analysis follows the so-
called “DV-model strategy” advocated in refs. [35] and used in previous analyses of the
ALEPH and OPAL data in refs. [21, 22]. In order to avoid the truncation of the OPE,
one chooses weight functions with less (or even no) pinching, since this allows to employ
low-degree polynomial weight functions w(x) which strongly suppress higher-dimension
OPE corrections. In the approximation of eq. (2.9) this leads to the absence of OPE
corrections coming from higher-dimensional OPE condensates. However, this choice in
general enhances the contributions from DV effects, which therefore must be included in
the fit. This is done with the parametrization of eq. (2.11). Since DVs are related to residual
resonance effects, the parameters δV/A, γV/A, aV/A, and bV/A are channel dependent and
have to be extracted from data. The fits can be carried out using moments for the same
weight function using different values for s0 ≤ m2

τ under the assumption that the ansatz
for the DV contribution in eq. (2.11) is adequate.

In the analysis of ref. [12], the αs results are based on the V spectral function, for which
a more precise and updated data set was provided in the same reference, which includes in-
formation from recent e+e− → hadrons cross-section data related by isospin symmetry. For
the main results, moments for the weight function w(x) = 1 are considered for different val-
ues of s0. For this weight function all OPE corrections are strongly suppressed (and vanish
in the approximation of eq. (2.9)). As for the analysis of ref. [11] discussed in the previous
section, the approximation of eq. (2.9) is used so that no OPE corrections are included.
Using moments with several s0 values simultaneously, one can extract αs together with the
DV parameters from the fit. For the main results of ref. [12], between fourteen and twenty
s0 values are included in each fit, ranging from 1.55GeV2 to m2

τ , (see the entries in the last
four lines in their table 1). In our analysis below we consider the fit with twenty s0 values,
starting at s0 = 1.55GeV2. There are five fit parameters: αs and the four parameters of the
DV contribution. Other moments, including pinched moments requiring OPE condensate
corrections, were also considered in ref. [12] as a consistency check of the analysis.

The results of the fits based on the CIPT and FOPT expansions in the usual MS
scheme for the GC and using 20 values for s0 are shown in the upper half of table 4. The
central values are again obtained using c̄5,1 = 345 for the 6-loop coefficient. For the strong
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central
value

σexp σµ σR σNg σ5 σtotal

CIPT, χ2/dof = 12.97/15, p-value = 0.60
αs(mτ ) 0.3256 0.0089 0.0033 − − 0.0021 0.0097
δV 3.33 0.28 0.021 − − 0.0055 0.28
γV 0.66 0.18 0.010 − − 0.0029 0.18
aV −1.27 0.49 0.0026 − − 0.0011 0.49
bV 3.76 0.26 0.0023 − − 0.0001 0.26

FOPT, χ2/dof = 12.55/15, p-value = 0.64
αs(mτ ) 0.3083 0.0066 0.0014 − − 0.0025 0.0072
δV 3.51 0.28 0.054 − − 0.027 0.29
γV 0.57 0.17 0.029 − − 0.013 0.18
aV −1.26 0.48 0.022 − − 0.0002 0.48
bV 3.77 0.26 0.0063 − − 0.0020 0.26

RF GC scheme, CIPT, χ2/dof = 12.70/15, p-value = 0.63
αs(mτ ) 0.3159 0.0080 0.0033 0.0015 0.0035 0.0017 0.0096
δV 3.44 0.28 0.028 0.055 0.041 0.0024 0.29
γV 0.61 0.17 0.013 0.027 0.020 0.0012 0.18
aV −1.26 0.49 0.0037 0.0023 0.0023 0.0007 0.49
bV 3.77 0.26 0.0031 0.0054 0.0023 0.0001 0.26

RF GC scheme, FOPT, χ2/dof = 12.53/15, p-value = 0.64
αs(mτ ) 0.3081 0.0065 0.0015 0 0.0001 0.0025 0.0072
δV 3.52 0.28 0.053 0.0037 0.0038 0.026 0.29
γV 0.57 0.17 0.029 0.0016 0.0018 0.013 0.18
aV −1.26 0.48 0.024 0.0018 0.0008 0.0003 0.48
bV 3.77 0.26 0.0076 0.0010 0.0006 0.0019 0.26

Table 4. Fitted parameters from the improved τ vector-isovector spectral function of ref. [12]
for CIPT and FOPT in the MS GC scheme and in the RF GC scheme. For the latter case we
use Ng = 0.57 ± 0.23. The uncertainty σc5,1 reflects the variation of the 6-loop coefficient as in
eq. (2.15), while σµ and σR refer to variations of the strong-coupling renormalization scale µ and
of the IR subtraction scale R as described in the text. The values for σµ, σ5, σR, and σNg are half
the difference between the maximum and minimum values obtained from the ξ, c5,1, R, and Ng
variations, respectively, using the central values for the remaining parameters. The parameters bV
and γV are given in units of GeV−2; aV and bV are denoted αV and βV in ref. [12].
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coupling the results are

αs(m2
τ )CIPT = 0.3256 ± 0.0097

αs(m2
τ )FOPT = 0.3083 ± 0.0072

(DV mod., MS GC, new V spec. func.). (4.4)

The experimental uncertainties σexp and the uncertainty σ5, from the estimate of the 6-loop
coefficient c̄5,1, are obtained in the same way as in our tOPE analysis. The uncertainty σµ,
arising from renormalization scale variations are obtained in an analogous way as well, but
a lower bound is imposed on the ξ variations for small s0 values to avoid the appearance
of nonperturbative scales. As the strict lower bound for strong coupling renormalization
scale variations we use µmin = 0.7mτ to safely stay outside the region of nonperturbative
scales. A similar prescription was applied in ref. [12].

Our results reproduce very well those quoted in eq. (4.1) and eq. (4.2) of ref. [12],
for FOPT and CIPT, respectively. The discrepancy between the results for αs(m2

τ ) from
FOPT and CIPT is of 0.017, which is 2 to 3 times larger than the experimental uncertainties
σexp which are about twice the size as in the tOPE analysis. The uncertainty from the
renormalization scale variation σµ is significantly smaller than the experimental uncertainty
and also smaller than for the tOPE analysis. As for the tOPE analysis, the CIPT-FOPT
discrepancy in αs(m2

τ ) is much larger than the total uncertainty for both expansions which
is obtained by adding all individual uncertainties quadratically. Interestingly, the fit results
for the DV parameters for the CIPT and FOPT analysis are perfectly compatible within
uncertainties indicating again that the asymptotic separation mostly affects the value of
the strong coupling.

In the lower half of table 4, we show the results of the fits using the CIPT and FOPT
expansions in the RF GC scheme. The central values are obtained from using Ng = 0.57
and R = 0.8√s0 as well as c̄5,1 = 345. For the strong coupling the results are

αs(m2
τ )CIPT = 0.3159 ± 0.0096

αs(m2
τ )FOPT = 0.3081 ± 0.0072

(DV mod., RF GC, new V spec. func.). (4.5)

The uncertainties from the truncation of the perturbation series, σµ and σc5,1 are estimated
as in the MS GC analysis. The uncertainty from the IR factorization scale R is based on
the variation range 0.7√s0 ≤ R ≤ √s0, where for smaller values of s0 the absolute lower
bound Rmin = 0.7mτ is imposed on R, in analogy to the renormalization scale. As for the
tOPE analysis, the FOPT results are virtually unchanged and the uncertainties σR and
σNg are negligibly small. This again reflects the compatibility of the FOPT expansion with
the standard form of the OPE.

The CIPT results, on the other hand, change again significantly. The difference of
the CIPT and FOPT central values for αs(m2

τ ) is reduced to 0.008. This is more than
twice than the difference for the tOPE analysis in the RF GC scheme, but still half of the
difference that is obtained when the MS GC scheme is employed. Overall, there is a much
better agreement for the αs(m2

τ ) determinations in the RF GC scheme. There are, however,
a few notable differences. While in the tOPE analysis the uncertainty in αs(m2

τ ) increased
moderately due to σR and σNg , here these two uncertainties are still relatively small and
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do not lead to any noticeable increase in the total uncertainty. The total uncertainty for
the CIPT results even slightly decreases as a result of a smaller experimental uncertainty
σexp. Furthermore, while in the tOPE analysis σR and σNg are significant for the CIPT
expansion and there are notable changes in the central values of the OPE condensates,
here the impact of σR and σNg is smaller in comparison and the fit results for the DV
parameters change very little. Finally, while for the tOPE analysis the p-value decreased
in the RF GC scheme, no modification of the p-value is observed here.

With the strong suppression of the asymptotic separation in the RF GC scheme, it
becomes possible to average the FOPT and CIPT results of eq. (4.5). Following the pre-
scription described in the previous section we find13

αs(m2
τ ) = 0.3120 ± 0.0082 (DV mod., RF GC, new V spec. func.). (4.6)

This result reflects the prospect for strong coupling determinations under the assumptions
made in the DV-model strategy. In figure 3 a visual comparison of the results for αs(m2

τ )
in the MS (left panel, see eq. (4.4)) and in the RF GC scheme (right panel, see eq. (4.5))
is displayed. The average of eq. (4.6) is also shown in the right panel.

As already mentioned above, in ref. [12] the same type of fits have also been carried
out for smaller number of s0 values, and also some analyses based on a combination of
different types moments were carried out. We emphasize that the observations concerning
the good agreement of the CIPT and FOPT determinations of αs(m2

τ ) is general and not
dependent on the particular analysis set up described above. We also note that it may
appear tempting to combine the tOPE average of eq. (4.3) with the DV model average
in eq. (4.6) taking their difference, which only amounts to 0.0063, as an estimate for
the treatment of nonperturbative effects. We refrain from such a treatment since the V
spectral function determined in ref. [12] has not yet been analysed in the tOPE approach.
Furthermore, it is well known from the experience with the ALEPH data that the tOPE
and the DV-model strategies can lead to rather discrepant αs results when the same data
set is analysed [11, 21, 63]. This discrepancy should be attributed to the treatment of
nonperturbative effects, and a detailed investigation is beyond the scope of this work.

5 Conclusions

In this work, which is Part II of a series of articles, we have applied the renormalon-free
scheme for the gluon condensate (GC) defined in Part I [5] to the FOPT and CIPT per-
turbative expansions for τ hadronic spectral function moments and examined it from the
phenomenological perspective. The scheme is based on a perturbative redefinition of the
GC matrix clement in close analogy to the well-known implementation of short-distance
heavy quark mass schemes, where the scheme changes induce perturbative order-by-order

13If we used ±400 for the uncertainty in c̄5,1, as in ref. [11], σ5 would increase to 0.0059 for CIPT and
0.0074 for FOPT in the MS GC scheme, which would yield αs(m2

τ )CIPT = 0.326 ± 0.011 and αs(m2
τ )FOPT =

0.308 ± 0.010. In the RF GC scheme, a similar increase in uncertainty is observed and the final values
would be αs(m2

τ )CIPT = 0.316 ± 0.011 and αs(m2
τ )FOPT = 0.308 ± 0.010. The average of eq. (4.6) would

read αs(m2
τ ) = 0.312± 0.011.
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CIPT

0.3
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average

CIPT

FOPT

0.3
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0.32

0.33
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Figure 3. Left panel: results for αs(m2
τ ) in FOPT (red) and CIPT (blue) in the MS GC scheme,

following the strategies of ref. [11] (Pich et al.), based on the tOPE strategy applied to the V + A

ALEPH data [33], and ref. [12] (Boito et al.), based on the DV-model strategy applied to the
new vector spectral function of ref. [12]. Right panel: results for αs(m2

τ ) in FOPT (red) and CIPT
(blue) and their average (black) in the RF GC scheme for the same analysis set-ups. The substantial
reduction in the discrepancy between FOPT and CIPT result is clearly evident.

subtractions to the original perturbative coefficients. The renormalon-free scheme, which
was discussed in detail in Part I and which we call the RF gluon condensate scheme, de-
pends on an IR factorization scale R and the normalization Ng of the GC renormalon.
The RF GC matrix element is scale-invariant and can be easily related to other schemes
through its perturbative definition (including the non-renormalon-free original MS scheme).
In addition to the removal of renormalon related divergent perturbative contributions in
the series, which is well-known from the use of short-distance quark mass schemes, the RF
GC scheme also reconciles the long-standing discrepancy between the CIPT and FOPT
expansions for the perturbative series of τ hadronic spectral function moments, which ap-
peared for spectral function moments where the GC OPE correction is strongly suppressed
(and which we call GC suppressed). As was shown by Hoang and Regner [6, 7], the CIPT
expansion for such moments still has a strong quartic (and higher power) sensitivity to
IR moments and is therefore not compatible with the standard analytic form for OPE
corrections. This effect, which is, numerically, strongly dominated by the GC renormalon,
is much larger than the size of the GC OPE correction itself and thus renders the CIPT
expansion inconsistent if the usual MS scheme is employed for the OPE condensate matrix
elements. By switching to the RF GC scheme, this inconsistency is reduced to a negligi-
ble level, such that the CIPT expansion is practically cured. While switching to the RF
GC scheme for such moments has very little effects for the FOPT expansion, the CIPT
expansion is modified substantially such that the discrepancy between them is resolved.

In this article we explored the impact of the uncertainties of the GC renormalon norm
Ng and of variations of the IR subtraction scale R on the CIPT expansion in the RF
gluon condensate scheme for GC suppressed moments. Analysing three different methods,
which all yield consistent results, we determined N (nf=3)

g = 0.57 ± 0.23, having a relative
uncertainty of 40%. We showed that this uncertainty and variations of the IR subtraction
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scale R increase the perturbative uncertainties of the CIPT expansion, but we found that
this increase is by far outweighed by the improved consistency between the CIPT and
FOPT expansion.

We have demonstrated the improved consistency in the RF GC scheme by applying
the CIPT and FOPT expansions in the context of two full-fledged state-of-the art αs(m2

τ )
determination approaches from the recent literature by Pich and Rodríguez-Sanchez [11]
and by Boito, Golterman, Maltman, Peris, Rodrigues and Schaaf [12] and accounting
for the additional uncertainties related to the RF GC scheme. These two references are
representatives of the two major approaches concerning the treatment of nonperturbative
corrections currently used in the literature, called the truncated OPE approach and the
duality-violation-model strategy. For both approaches we find a substantially improved
consistency between the FOPT and CIPT expansions and that the uncertainties due to Ng

and R, that mostly affect the CIPT expansion, are quite small. Since the CIPT expansion
has quite different perturbative properties than the FOPT expansion related to the all-
order resummations of phase corrections [3], it thus remains a very valuable method that
should still be employed in future phenomenological analysis — but only if it is employed
within a renormalon-free GC scheme.

We believe that — for all practical matters — the long-standing CIPT-FOPT dis-
crepancy problem can now be considered as resolved. This resolution depends on the
acceptance of the proposition that the values of the known Adler function perturbative
coefficients up to O(α4

s), which are perfectly consistent with the sizeable GC norm value
N

(nf=3)
g = 0.57± 0.23, are indeed affected by the GC renormalon and not created by some

accidental unrelated finite-order behavior. This proposition can, as a matter of principle,
not be proven. But the same type of proposition is used in all phenomenological appli-
cations where perturbative subtractions of renormalons are important, most notably in
heavy quark physics. We therefore believe that it is reasonable to accept this proposition
for future analyses where the GC or the GC renormalon play important roles. As far as
the analyses of τ hadronic spectral function moments are concerned, aspects which so far
may have been considered subleading, such as uncertainties related to the treatment of
nonperturbative corrections or the treatment of different data sets [1, 37], can now receive
undivided attention.
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A GC renormalon norm conventions

In this appendix we compare our norm convention for the renormalon calculus with the
conventions used in [2, 20, 46] and provide conversion formulae. All expressions below are
written down using

dαs(Q2)
d lnQ = β(αs(Q2)) ≡ −2αs(Q2)

∞∑
n=0

βn

(
αs(Q2)

4π

)n+1
(A.1)

as the definition of the coefficients of the QCD β-function such that we have β0 = 11−2nf/3
and β1 = 102− 38nf/3 for the one- and two-loop coefficients for nf dynamical flavors. We
also adopt the abbreviation a ≡ αsβ0/(4π).

In our convention we write the perturbation series for a generic quantity as

σ =
∞∑
n=1

cn a
n . (A.2)

The corresponding Borel function is defined as

B[σ](u) ≡
∞∑
n=1

cn
Γ(n) u

n−1 , (A.3)

which gives
σ =
ˆ ∞

0
duB[σ](u) e−

u
a (A.4)

for the inverse Borel integration that gives back the original series σ. The generic form
that is adopted for a non-analytic IR renormalon term in the Borel function related to a
dimension d = 2p OPE correction reads

B[σ](u) ∼ N2p
(p− u)γ , (A.5)

which has a branch point at u = p.
In ref. [2] (Beneke and Jamin) the perturbation series for the generic quantity σ is

written as
σ =

∞∑
n=0

pn α
n+1
s , (A.6)

and the Borel function is defined as

B̂[σ](t) ≡
∞∑
n=0

pn
Γ(n+ 1) t

n . (A.7)

The inverse Borel integration has the form

σ =
ˆ ∞

0
dt B̂[σ](t) e−

t
αs = 4π

β0

ˆ ∞
0

du B̂[σ]
(4π
β0
u

)
e−

u
a , (A.8)

and the generic form adopted for a non-analytic IR renormalon term in the Borel function is

B̂[σ]
(4π
β0
u

)
∼

dIR
p

(p− u)γ . (A.9)
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In refs. [46] (Lee) and [20] (Bali et al.) the perturbation series for the generic quantity
σ is written as in eq. (A.6) and the Borel function is defined as

B̃[σ](u) = σ̃(u) =
∞∑
n=0

pn
Γ(n+ 1)

(4π)nun

βn0
. (A.10)

The inverse Borel integration reads

σ = 4π
β0

ˆ ∞
0

du B̃[σ](u) e−
u
a , (A.11)

and a generic non-analytic IR renormalon term in the Borel function is written as

B̃[σ](u) = σ̃(u) ∼ Np
(1− u/p)γ . (A.12)

The various Borel function definitions are related to ours through

B[σ](u) = 4π
β0

B̂[σ]
(4π
β0
u

)
= 4π

β0
B̃[σ](u) = 4π

β0
σ̃(u) , (A.13)

which leads to the following relation of the norms

N2p = 4π
β0

dIR
p = 4π

β0
pγ Np . (A.14)

The norm for the renormalon terms also depends on the scheme used for the strong
coupling. For two strong coupling schemes, a and a∗, which are related by a∗/a = 1−λ a+
. . . ∼ (1 + λ a + . . .)−1, their QCD scales are related by ΛQCD = Λ∗QCD e

λ/2. This implies
that the Borel function in the two schemes satisfy B[σ](u) = B∗[σ](u) eλu, so that their
respective IR renormalon norms are related by N2p = N∗2p e

pλ. For a UV renormalon term
with a branch point at u = k < 0 the analogous relation holds for p replaced by k. For the
relation between the C-scheme (for C = 0) [18] and the MS scheme we have λ = 0 (see the
appendix of Part I [5]), so that their QCD scales and renormalon norms are identical.

B GC renormalon norm in the quenched approximation

In the quenched approximation the GC renormalon norm N
(nf=0)
g was determined previ-

ously in two dedicated analyses by Lee [46] and Bali et al. [20]. Lee used the conformal
mapping approach described in section 3.2 up to O(α4

s) employing the mapping of eq. (3.3).
He obtained N D̂,(nf=0)

2 = 0.32− 0.13 + 0.026 + 0.075 = 0.29 for the GC norm of the Adler
function. Accounting for the conventional factor 2π2/3 in the Adler function’s GC OPE cor-
rection shown in eq. (2.17) and switching to our normalization convention this corresponds
to N (nf=0)

g = 0.36−0.15+0.029+0.084 = 0.32 for the GC renormalon norm. Bali et al. used
numerical stochastic perturbation theory to determine the perturbative series for the aver-
age plaquette Ppert(a) ≡ 〈P 〉 =

∑
n=0 p

latt
n αn+1(a) for the lattice spacing a up to O(α35) in

the infinite volume limit based on the standard Wilson gauge action. Here α(a) stands for
the strong coupling at lattice spacing a which should not be confused with our abbreviation
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m = 4
w(u, 5) 0.88
w(u, 10) 0.76
w(u, 15) 0.73
χ2
ξ=1 (√s0 = mτ ) 0.86±0.28
χ2
ξ=2 (√s0 = mτ ) 0.65±0.25
χ2
ξ=1 (√s0 = 3 GeV) 0.64±0.22
χ2
ξ=2 (√s0 = 3 GeV) 0.55±0.21

Table 5. Results for Ng for the nf = 0 flavor scheme at O(α4
s) using the conformal mapping

approach (upper part) as well as the optimal subtraction approach (lower part).

for the strong coupling in eq. (2.13). Using a formula for the asymptotic large-n behavior of
the GC renormalon series platt(asy)

n , the GC renormalon norm was determined from the ratio
platt
n /p

latt(asy)
n . They obtained the result N P,(nf=0)

2,latt = (42±17)×104 for the GC renormalon
norm of the plaquette in the strong coupling lattice scheme, which results in N P,(nf=0)

2,latt =
(0.61± 0.25) in MS strong coupling scheme. Accounting for the conventional factor π2/36
in the OPE corrections of the plaquette and switching to our normalization convention this
corresponds to N (nf=0)

g = (16.4± 6.7) for the GC renormalon norm. The results obtained
by Lee and Bali et al. are clearly incompatible. It is therefore worth to apply the methods
we have discussed in section 3 in the quenched approximation. Since theoretical studies of
the Adler function in the quenched approximation have so far not relied on estimates of the
O(α5

s) coefficient c̄5,1, we will in the following only use the known cofficients up to O(α4
s).

Let us start with the Borel function model approach. As was already described in
ref. [2], one can use the Borel model of eq. (3.1) dropping the linear term b(1)u given that
its coefficient is quite small. The smallness of b(1) obtained for our nf = 3 analysis in
section 3.1 indicates that the other terms contained in the Borel model should be sufficient
to describe the known coefficients, so that dropping this term does not deteriorate the
quality of the model. Using only the Adler function cofficients up to O(α4

s) this yields
Ng = 0.63 for nf = 3, which is almost identical to the case when term b(1)u and the
estimate of c̄5,1 are included, see the numbers quoted below eq. (3.1). Applying the same
method for nf = 0 (b̂1 = 51/121 = 0.421) in the C-scheme we obtain

B[D̂(s)](0)
mr(u) = b(0)+ 2π2

3
N

(nf=0)
g

[
1− 152

363 ā(−s)
]

(2− u)1+4b̂(0)
1

+ N
(0)
6

(3− u)1+2b̂(0)
1

+
N

(0)
−2

(1 + u)
γ

2−2b̂(0)
1

, (B.1)

with N (nf=0)
g = 0.98, N (0)

6 = −26.12, N (0)
−2 = 0.022 and b(0) = −0.12, where the coefficients

of the Adler function are given by c̄(0)
1,1 = 1, c̄(0)

2,1 = 1.986, c̄(0)
3,1 = 20.985, c̄(0)

4,1 = 161.224. Ap-
plying the conformal mapping approach for that same Borel function model, we again find
that Lee’s mapping function yields a very slowly converging series that undershoots the ac-
tual result significantly at O(α4

s). This indicates that his estimate N (nf=0)
g = 0.32 is some-
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Figure 4. Results for Ng at O(α2,3,4
s ) using the optimal subtraction approach for ξ = 1 (left panel)

and ξ = 2 (right panel) for the nf = 0 flavor scheme.

what low. The mapping functions of eq. (3.4) again provide much better results and yield
the results shown in the upper part of table 5 for p = 5, 10, 15. Finally, we apply the opti-
mal subtraction approach, where we can also obtain a reliable result using only information
up to O(α4

s). Following the method as described in section 3.3, we find the results for Ng

shown in the lower part of table 5 at orderm = 4 for √s0 = mτ and 3GeV and ξ = 1, 2. For
illustration, in figure 4 we also display Ng obtained for √s0 = mτ and ξ = 1, 2 at order m =
2, 3, 4. Adopting the envelope of all order m = 4 results, our final result for N (nf=0)

g reads:

N
(nf=0)
g = 0.74± 0.40 . (B.2)

The results we obtain from the Borel function model as well as from the conformal map-
ping approaches are fully compatible with eq. (B.2), and also Lee’s result is compatible
within uncertainties. The result, however, disagrees with Bali et al. We note that the
relative uncertainty in N (nf=0)

g obtained by the optimal subtraction approach is 54% and
somewhat larger than that for the case nf = 3 in eq. (3.12). This is potentially related to
the higher IR sensitivity of QCD perturbation theory in the quenched approximation.

In appendix C we provide arguments that suggest that Bali et al. may have underesti-
mated the uncertainty in their result. We therefore consider the result quoted in eq. (B.2)
as a reliable determination of the GC renormalon norm in the quenched approximation.
We note that a scenario where the GC renormalon norm N

(nf=0)
g would be around 16 cor-

responds to a situation that strongly contradicts the naturalness assumption we discussed
in section 3 and the proposition that the Adler function series at O(α4

s) is already largely
determined by the terms accounted for in the Borel function model of eq. (3.1). In fact,
the parameters of the Borel function in such a scenario would have to be highly fine-tuned,
so that the large size of the N (nf=0)

g is hidden in the perturbative coefficients up to O(α4
s).

By constructing and analyzing a number of Borel function models with such a large value
for N (nf=0)

g , we have found that in such a scenario the perturbation series for GCS spectral
function moments entirely change their nicely converging character beyond O(α4

s), so that
the values the moments series approach for orders up to O(α4

s) are far away from the val-
ues the truncated moment series approach at higher orders. In other words, the truncated
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series values at O(α4
s) including the estimate of the truncation error would be far away

from the true value of the series.

C Comment on the gluon condensate norm from lattice QCD

In ref. [20] Bali et al. determined the normalization of the GC renormalon using SU(3)
lattice QCD in the quenched approximation (nf = 0). They used numerical stochas-
tic perturbation theory to determine the perturbative series for the average plaquette
Ppert(a) ≡ 〈P 〉 =

∑
n=0 p

latt
n αn+1(a) for the lattice spacing a up to O(α35) in the infi-

nite volume limit based on the standard Wilson gauge action. Using the known formula
for the asymptotic behavior of the GC renormalon series

platt(asy)
n

n→∞= NP
(
β0
8π

)n Γ(n+ 1 + 4b̂1)
Γ(1 + 4b̂1)

×

×
{

1 + 20.08931
n+ 4b̂1

+ 505± 33
(n+ 4b̂1)(n+ 4b̂1 − 1)

+O
( 1
n3

)} (C.1)

the plaquette’s GC renormalon norm NP was determined from the ratio platt
n /p

latt(asy)
n using

that the GC renormalon is the renormalon located closest to the origin in the Borel plane.
At the hadron level the average plaquette for the lattice spacing a has the form

P (a) = Ppert(a) + π2

36 [1 +O(α(a))] a4 〈Ḡ2〉 (C.2)

accounting for the GC OPE correction. So the norm of the GC renormalon associated
to the GC matrix element 〈Ḡ2〉 is 36/π2 times the GC renormalon normalization of the
plaquette. Bali et al. argued that at orders around n = 26 the large-order asymptotics
of the GC renormalon saturates the coefficients platt

n and the uncertainties from lattice
perturbation theory are still sufficiently small, such that a reliable value for NP can be
determined. The result for the ratio as determined in ref. [20] is shown in the left panel
of figure 5, where the error bars represent the uncertainties in the lattice coefficients platt

n .
The colored symbols represent the results obtained from the formula in eq. (C.1) using the
different approximations concerning the 1/n corrections in the asymptotic large-n limit,
where ‘NLO’ stands for the dominant term without 1/n corrections,14 ‘NNLO’ stands for
including the term 20.08931/(n+ 4b̂1) and so on.

The lattice spacing also governs the UV renormalization in lattice perturbation
theory and entails a particular scheme for the strong coupling. Since the known 3-
and 4-loop coefficients βlatt

2,3 of the lattice scheme β-function15 are extremely large (see
section III A in ref. [20]), the asymptotic 1/n corrections in eq. (C.1) are very large as
well, so that the expression for the asymptotic behavior of the coefficients platt(asy)

n /NP
itself has large theoretical uncertainties even for orders where the GC renormalon may

14The terminology ‘NLO’ stems from the fact that the leading asymptotic contribution already involves
the term b̂1 which contains the 2-loop β-function coefficient β1.

15The 4-loop coefficient βlatt
3 is only known numerically with a sizeable uncertainty. This uncertainty

causes the error in the numerator of the NNNLO term in eq. (C.1).
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Figure 5. Left panel: results as a function of order for the GC renormalon norm of the average
plaquette obtained in ref. [20]. Right panel: the corresponding results when the 1/n subleading
asymptotic corrections are consistently expanded. In blue we show results at NLO, in orange at
NNLO and in green at NNNLO.

completely saturate the perturbative coefficients. For order n = 26 (and nf = 0)
the series of subleading asymptotic terms in the curly brackets of eq. (C.1) reads
{1 (NLO) + 0.725614 (NNLO) + 0.683517 (NNNLO) + O(1/n3)}. We see that the
convergence of the series in the curly brackets is quite bad so that the value of platt(asy)

26
has a large uncertainty.16 Bali et al. stated that NP can be extracted at order n = 26
from the (green) NNNLO result using the difference between NNLO and NNNLO as an
estimate for that uncertainty. They obtained NP = (42± 17)× 104, which corresponds to
N

(nf=0)
g = 16.43± 6.73 for the GC renormalon normalization in our convention.

A possible alternative way to calculate the ratio platt
n /p

latt(asy)
n and to test for the impact

of the uncertainties related to the sizeable subleading asymptotic terms in the lattice strong
coupling scheme is to systematically expand in the subleading 1/n corrections in the ratio
pn/p

latt(asy)
n :

platt
n /platt(asy)

n = platt
n

NP

(8π
β0

)n Γ(1 + 4b̂1)
Γ(n+ 1 + 4b̂1)

× (C.3)

×
{

1− 20.08931
n+ 4b̂1

− 505± 33
(n+ 4b̂1)(n+ 4b̂1 − 1)

+ 404
(n+ 4b̂1)2

+O
( 1
n3

)}
.

If the corrections were well under control, the outcome based on this formula would be
equivalent to that of Bali et al. within uncertainties. For order n = 26 the series of sublead-
ing asymptotic terms in the curly brackets in this case read {1 (NLO)−0.725614 (NNLO)−
0.156658 (NNNLO) +O(1/n3)}, which leads to a quite different outcome.17 The results of
this approach to determine NP are displayed in the right panel of figure 5. We see that the

16In contrast, in the common MS scheme for the strong coupling the corresponding series of subleading
terms at order n = 26 reads {1 (NLO)− 0.11329 (NNLO)− 0.0014895 (NNLO) +O(1/n3)} [20]. Here the
convergence is excellent.

17In the common MS scheme for the strong coupling the corresponding series at order n = 26 reads
{1 (NLO) + 0.11329 (NNLO) + 0.0143241 (NNLO) + O(1/n3)}, which is very close to the inverse of the
unexpanded result given in footnote 16.
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NNLO and NNNLO results are significantly different than those given in the left panel.
Following again Bali et al. and using the difference between the NNLO and NNNLO results
at n = 26 as the uncertainty, we obtain NP = (12±16)×104, which is compatible with zero.
This result corresponds to N (nf=0)

g = 4.66± 6.22 for the GC renormalon normalization in
our convention which is perfectly consistent with eq. (B.2) and the result of Lee [46]. The
result is, however, only marginally compatible with the result N (nf=0)

g = 16.43±6.73 based
on the unexpanded ratio platt

n /p
latt(asy)
n , showing that the uncertainty estimate based on the

difference between the NNLO and NNNLO results may not be quite reliable.
Overall, we conclude that the lattice method to determine the GC renormalon norm

advocated by Bali et al. should be assigned a larger theoretical uncertainty than that quoted
in ref. [20] due to the large errors in quantifying the large-order asymptotic behavior of
lattice perturbation theory arising from the GC renormalon. This uncertainty stems from
the enormous size of the 3- and 4-loop coefficients of the QCD β-function in the lattice UV
renormalization scheme.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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