
J
H
E
P
0
9
(
2
0
2
2
)
2
1
3

Published for SISSA by Springer

Received: June 29, 2022
Accepted: September 4, 2022

Published: September 26, 2022

Collision of localized shocks in AdS5 as a series
expansion in transverse gradients

Sebastian Waeber and Laurence G. Yaffe
Department of Physics, University of Washington,
Seattle WA 98195-1560, U.S.A.

E-mail: swaebe@uw.edu, yaffe@phys.washington.edu

Abstract: We introduce a computational framework to more efficiently calculate the
collision of localized shocks in five dimensional asymptotically Anti-de Sitter space. We
expand the Einstein equations in transverse gradients and find that our numerical results
agree well with exact solutions already at first order in the expansion. Moreover, the
Einstein equations at first order in transverse gradients can be decoupled into two sets of
differential equations. The bulk fields of one of these sets has only a negligible contribution
to boundary observables, such that the computation on each time slice can be simplified to
the solution of several planar shockwave equations plus four further differential equations
for each transverse plane ‘pixel’. At the cost of errors of . 10% at the hydrodynamization
time and for low to mid rapidities, useful numerical solutions can be sped up by roughly
one order of magnitude.

Keywords: AdS-CFT Correspondence, Gauge-Gravity Correspondence, Quark-Gluon
Plasma, Black Holes

ArXiv ePrint: 2206.01819

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP09(2022)213

mailto:swaebe@uw.edu
mailto:yaffe@phys.washington.edu
https://arxiv.org/abs/2206.01819
https://doi.org/10.1007/JHEP09(2022)213


J
H
E
P
0
9
(
2
0
2
2
)
2
1
3

Contents

1 Introduction 1

2 Approximating transverse flow and hydrodynamization time in heavy ion
collisions 2

3 Transverse gradient expansion 3

4 Transverse derivative corrections to shock collisions 6
4.1 Single localized shocks in Fefferman-Graham coordinates 6
4.2 Integration strategy 7
4.3 Initial data up to order O(∇⊥) 9
4.4 Hierarchy among O(∇⊥)-fields 11
4.5 Easy O(∇2

⊥)-terms 12

5 Results 13

6 Conclusion 17

A Einstein equations 20

B Decoupling of transverse derivative expanded Einstein equations 21

1 Introduction

In the past decade a considerable progress has been achieved with respect to simulating
heavy ion collisions via holography [1–3, 9–17]. The difficulty of simulating the first few
fractions of 1 fm/c after a heavy ion collision comes from the strongly coupled and far from
equilibrium nature of the incipient quark-gluon plasma. The gauge/gravity duality, or the
dynamical equivalence of strongly coupled, conformal, supersymmetric field theories in d

dimensions to weakly coupled Einstein gravity in d + 1 dimensions, provides a powerful
tool for studying the early stages of a heavy ion collision. The duality between gravity in
five dimensional asymptotically Anti-de Sitter (AdS) space and N = 4 super-Yang-Mills
(SYM) theory is especially useful in this context, as the latter theory provides a reasonable
approximation to a QCD plasma at high temperatures.

Holographic simulations of heavy ion collisions have become progressively more intri-
cate and realistic up to the point of the exact treatment of collisions of localized nuclei
in [3]. These studies revealed non-trivial and sometimes unexpected properties of the pre-
hydrodynamic quark gluon plasma, from a sizable transverse flow [3], to universal behaviors
regarding post collision flow and hydrodynamization at near constant proper time [1, 9, 10],
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just to name a few. However, there are still many interesting and demanding problems
that remain unexplored. In particular the simulation of localized heavy ion collisions with
a granular structure needed to explain the observed large event-by-event fluctuations of
flow observables. In this work we develop tools to substantially facilitate the treatment of
these problems by introducing a computational framework to efficiently calculate localized
shockwave collisions in five dimensional asymptotically AdS space.

Heavy ions collided at LHC and RHIC are highly relativistic and Lorentz contracted.
Due to this strong contraction, gradients transverse to the beam axis are very small com-
pared to longitudinal gradients. The idea of approximating heavy ion collisions by ne-
glecting transverse gradients is not new and is the justification for earlier studies of planar
shockwave collisions in Anti-de Sitter space [1, 2]. Planar collisions can be thought of as the
zeroth order solutions to Einstein equations that were expanded in transverse gradients.

In this work we study the next-to-leading order results when the Einstein equations
are expanded in transverse derivatives. Already at first order in transverse derivatives we
find remarkably good agreement with the exact results in [3]. Moreover, we show that at
first order the Einstein equations can be decoupled into two sets of differential equations
for two disjoint sets of bulk fields. The fields of the larger set contribute negligibly to
boundary observables. We explain why this happens and find that we can reproduce the
exact results to good accuracy for times up to the hydrodynamization time, even for broad
shocks, with an algorithm that only requires the planar shock solution and four additional
differential equations to be solved on each time slice and transverse ‘pixel’. Just using a
Mathematica implementation, we can reproduce, to good accuracy, the results of [3], using
12 cores on a standard desktop machine, in about 36 hours.

The approach presented in this work follows up and expands on a natural idea, first
appearing in [14] and later in [10]. The idea is to approximate exact, localized collisions with
planar showckwave collisions by viewing the colliding system as composed of independent
subregions in the transverse plane, or ‘pixels’, which are large compared to the longitudinal
extent of the projectiles, but small compared to their transverse extent. In each pixel and
at zeroth order in transverse derivatives the dynamics are approximated by a collision of
planar, in general asymmetric shocks.

The paper is structured as follows: for those readers less interested in computational
details, we present key results at the beginning, in section 2. This is followed by a broader
discussion of the transverse gradient expansion in section 3 and more detailed discussion of
our calculations in section 4. Section 5 contains further analysis of our numerical results,
followed by a few concluding remarks in section 6.

2 Approximating transverse flow and hydrodynamization time in heavy
ion collisions

From [3] we know that during the early, pre-hydrodynamic stage after the collision of two
relativistic heavy ions, a sizable transverse flow is produced, which simulations at zeroth
order in transverse derivatives, e.g. [1–3, 9–17], fail to capture. While there are models,
e.g. [8], which roughly estimate the size of transverse momenta from zeroth order data, the
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simplifications and assumptions required do not yield quantitative control or reliable error
estimates.1

The systematic approximation discussed in this work requires the aspect ratios of
projectiles to be large, an assumption which is very well fulfilled for realistic heavy ion
collisions. We find that already for localized collisions of projectiles with a comparatively
small aspect ratio of 8, the transverse flow of our approximation and the exact results in [3]
agree surprisingly well, both at mid and small rapidity, up until the hydrodynamization
proper time. Examples of our results for transverse energy flux are depicted in figure 1.
The error of the first order approximation increases slowly for larger rapidities and later
proper times. As suggested by the approximation in [8] and consistent with [3] we find
that the maximum value of the transverse energy flux as a function of proper time reaches
a plateau as displayed in figure 2 and stays approximately constant. For higher rapidities
the plateau is reached at later proper times.

One key observable to extract from holographic heavy ion collisions is the hydrody-
namization time. To quantify how well the system is described by hydrodynamics one
introduces a residual ∆ (defined later on in eq. (5.4)), which measures the deviation of
the stress energy tensor from its hydrodynamic approximation. For a small ∆, typically
below 0.15, the hydrodynamic approximation is appropriate. Remarkably we find that
our approximate solution and the exact solution of [3] for ∆ match well already at zeroth
order in transverse derivatives, especially for low rapidities and in the central region of the
collision. We also find approximately the same hydrodynamization time (i.e., the time at
which the residual ∆ drops below a threshold of 0.15) in the central region. We display
the residual ∆ and its zeroth order in transverse derivatives approximation in figure 3 at
various proper times and rapidities.

In general, observables evaluated before the hydrodynamization time are well described
by either the zeroth or first order transverse derivative approximation.

3 Transverse gradient expansion

Let Gµν be a bulk solution to the Einstein equations in asymptotically AdS space which
varies slowly with respect to the transverse boundary coordinates x⊥ = (x, y). Specifically,
we assume that transverse spatial gradients are small compared to longitudinal gradients,
and that the length scale of transverse variations is large compared to the inverse energy
scale defined by the longitudinally integrated energy density. To encode this, we introduce
a formal expansion parameter ε such that, after defining x̃⊥ ≡ εx⊥, gradients along x̃⊥

satisfy (
∂x̃⊥Gµν

)
/
(
∂x||Gµν

)
= O(1). (3.1)

and (
µ(x⊥) ∂x̃⊥Gµν

)/
Gµν = O(1) , (3.2)

where the local energy scale µ(x⊥) is defined by
∫
dx|| T 00(x||,x⊥) = µ(x⊥)3N2

c /(2π2).
Since the metric Gµν is assumed to only weakly depend on x⊥ the parameter ε is a small

1For example, the modeling in [8] presumes negligible transverse anisotropy, Txx ≈ Tyy.
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Figure 1. The averaged, lab-frame transverse momentum density 〈T 0⊥〉 = 〈(x̂⊥)i T 0i〉 up to first
order in transverse derivatives, as a function of the transverse plane radius x⊥ =

√
x2 + y2, at

proper time τ = 1.25 (left) and τ = 2 (right). Both plots display the averaged transverse energy
flux at rapidity ξ = 0 (blue curve) and at ξ = 1 (yellow curve). The red dashed curves represent
the exact results of [3]. At τ = 1.25 and low rapidities the first order approximation and the exact
results agree very well. This agreement slightly deteriorates for larger rapidities and later proper
times, but still remains quite good. We work in units in which the maximum of the longitudinally
integrated energy density is set to 1.
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Figure 2. The maximum value of the averaged, lab-frame transverse momentum density 〈T 0⊥〉 =
〈(x̂⊥)i T 0i〉 up to first order in transverse derivatives, as a function of proper time τ , for two
rapidities ξ = 0 (blue curve) and ξ = 1 (yellow curve). The energy flux appears to reach a stable
plateau, consistent with the approximation in [8].

number and we can treat the Einstein equations written in terms of the rescaled coordinate
x̃⊥ as a perturbative expansion in ε. We express the metric in terms of the rescaled
coordinate Gµν(x0, x||,x⊥) = G̃µν(x0, x||, x̃⊥) expand the Einstein equations in powers of
ε, truncate at a given order, and then scale back to the original coordinates x⊥ when
solving the equations. This procedure is equivalent to replacing ∂⊥ → ε ∂⊥, expanding the
Einstein equations in powers of ε, solving them order by order and setting ε = 1 in the end.

To spell this out more explicitly, we write the Einstein equations for a metric G

schematically as
E(G) = 0. (3.3)
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Figure 3. The residual ∆ (defined in eq. (5.4)) indicating when and where the hydrodynamic
approximation is a reasonable description. For ∆ . 0.15 hydrodynamics is applicable. We show
the results for the zeroth order in transverse derivative approximation (first row) and the exact
solutions (second row) from [3], for collisions with otherwise identical parameters. Especially for
low rapidities and close to the central region we see quite good agreement between the exact and
approximate solution, already at zeroth order in transverse derivatives. In both cases one finds a
hydrodynamization time of t ≈ 1.25 in the central region and for zero rapidity. Visible artifacts are
a consequence of the sparse grids used to discretize the transverse directions.

Expanding in transverse derivatives, we have

E(G) = E(0)(G) + εE(1)(G) + ε2E(2)(G), (3.4)

where the differential operator E(i) contains i powers of transverse derivatives. Let G(i)
µν

denote an approximate solution to the Einstein equations valid to order O(εi) so that

E(G(i)) = O(εi+1). (3.5)

We assume that G(i)
µν is known up to some maximum order I on some initial Cauchy surface

at time t = t0. We want to solve for G(i)
µν up to this order I for some future time interval

t0 ≤ t ≤ t1. At order zero the metric G(0)
µν (x0, x||,x⊥) is, for every fixed value of x⊥, some

solution to the planar Einstein equations (obtained by neglecting transverse derivatives),
with parameters of the specific planar solution varying slowly with x⊥ (as done in e.g. [14]).
In other words

E(0)(G(0)) = 0. (3.6)

We emphasize that G(0) is not a single planar solution with vanishing transverse derivatives,
rather the relevant planar solution varies (slowly) with changing x⊥. One now systemati-
cally corrects this zeroth order approximation by writing

G(i)
µν(x0, x||,x⊥) = G(i−1)

µν (x0, x||,x⊥) + δg(i)
µν(x0, x||,x⊥) (3.7)
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and demands that the Einstein equations hold up to the next order. Let ∆(i)
L be the planar

Lichnerowicz operator evaluated on G(i),

∆(i)
L ≡

δE(0)(G(i))
δG(i) . (3.8)

Then eq. (3.5) will be satisfied if

∆(i−1)
L δg(i) = −E(0)(G(i−1))− εE(1)(G(i−1))− ε2E(2)(G(i−2)). (3.9)

4 Transverse derivative corrections to shock collisions

In the next two subsections we quickly review the general treatment of (localized) shock
collisions in AdS5 [1–3], after which we discuss in more detail the solution of the Ein-
stein equations in the transverse gradient expansion up to first order. We address how to
construct consistent initial data up to first order in transverse derivatives in section 4.3.

4.1 Single localized shocks in Fefferman-Graham coordinates

As in [1, 3], a single shock moving in ±z direction in Fefferman-Graham (FG) coordinates
may be described analytically,

ds2 = 1
ρ2
(
− dt2 + dρ2 + (dx⊥)2 + dz2 + ρ4h±(x⊥, z∓, ρ)(dz±)2) (4.1)

with z∓ = z∓t. The metric ansatz (4.1) solves the Einstein equations provided the function
h± fulfills the linear differential equation(

d2

dρ2 −
3
ρ

d

dρ
+ ∇2

⊥

)
ρ4 h± = 0. (4.2)

Any ρ-independent function, h±(x⊥, z∓, ρ) = h±(x⊥, z∓), solves (4.2) through first order
in transverse derivatives. To match previous work, we will use a Gaussian profile

h±(x⊥, z∓) = A√
2πw2

exp
(
−1

2(z∓)2/w2
)

exp
(
−1

2(x⊥ − b)2/R2
)
. (4.3)

With this choice, the single shock metric is a valid zeroth order solution solving (3.6),
which we denote as G(0)[h±]. Moreover the same metric is a valid solution at first order,
so G(1)

FG[h±] = G
(0)
FG[h±]. In general the metric (4.1) corresponds to a state in the dual field

theory for which

〈T 00〉 = 〈T zz〉 = N2
c

2π2h±
∣∣∣
ρ=0

(4.4)

〈T 0z〉 = ±N
2
c

2π2h±
∣∣∣
ρ=0

(4.5)

For later convenience we define a rescaled stress-energy tensor T̂µν = (2π2/N2
c )Tµν . For

numerical calculations we work in units in which the rescaled amplitude in (4.3) is set to
one: AN2

c /(2π2) = 1.

– 6 –
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4.2 Integration strategy

For the time evolution of two colliding localized shocks, we transform to infalling Eddington-
Finkelstein (EF) coordinates and employ the characteristic formulation of general relativity.
In EF coordinates the line element of the metric Gµν may be written as

ds2 = r2hµν(x, r)dxµdxν + 2 drdt. (4.6)

Here x ≡ (t,x⊥, x||). In these coordinates the boundary is positioned at r = ∞. Follow-
ing [1], we have used diffeomorphism invariance to fix the component of the line element
proportional to drdt to equal 2 drdt. The metric (4.6) is also invariant under shifts of the
radial coordinate of the form

r → r′ = r + λ(x). (4.7)

As in [1] we will exploit the radial shift symmetry to fix the radial position of the apparent
horizon rh to correspond to the end of our integration domain.

Let us write the metric in EF coordinates more specifically as

ds2 = −2A(x, r)dt2 +Gij(x, r)dxidxj + 2drdt− 2Fi(x, r)dtdxi, (4.8)

with i = x, y, z denoting spatial derivatives. Let Gij = Σ2ĝij with det ĝij = 1. Note
that, unlike in section 3, henceforth Gij denotes the spatial part of the EF-metric. For
convenience we also slightly modify our convention regarding the superscript index (·)(i).
Henceforth, for a function X, let X(i) denote the difference between the i-th and (i− 1)-th
order solution. In other words, using the notation of section 3, we abbreviate δX(i) with
X(i) and we will henceforth use the notation X(i) only in this context. Through first order
in transverse derivative expansion the unimodular condition on ĝ implies that det ĝ(0)

ij = 1,
and Tr ĝ(1)

ij ≡ (ĝ(0))ij(ĝ(1))ij = 0 for the first order correction in transverse derivatives ĝ(1).
The spatial scalar factor Σ has the near boundary form

Σ = (r + λ) +O(r−7), (4.9)

and the other metric functions have a near boundary beahvior given by

(r + λ)−2A = 1
2 + r−4 a4 +O(r−5), (4.10)

(r + λ)−2 Fi = − ∂iλ

(r + λ)2 + r−4 f4
i +O(r−5), (4.11)

(r + λ)−2 ĝij = δij
(r + λ)2 + r−4 ĝ4

ij +O(r−5). (4.12)

Let a4, f4
i and ĝ4

ij be the O(r−4) expansion coefficients of the near boundary expansion of
the rescaled functions (r + λ)−2A, (r + λ)−2 Fi and (r + λ)−2 ĝij . The CFT stress energy
tensor in 3 + 1 dimensions is determined by the O(r−4) coefficients a4, f4

i and ĝ4
ij in the

– 7 –
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near boundary expansions (4.10)–(4.12):

〈T̂ 00〉 = −3
2
(
(a4)(0) + (a4)(1))+O(ε2) (4.13)

〈T̂ 0z〉 = −
(
(f4
z )(0) + (f4

z )(1))+O(ε2) (4.14)

〈T̂ 0⊥〉 = −(f4
⊥)(1) +O(ε2) (4.15)

〈T̂ ij〉 = (ĝ4
ij)(0) +

(
ĝ4
ij

)(1)
− 1

2
(
(a4)(0) + (a4)(1)

)
δij +O(ε2). (4.16)

As demonstrated in [5, 6] and generalized in [1] the Einstein equations expressed in EF
coordinates (4.6) can be written as a nested system of ordinary radial differential equations
(ODEs) on each time slice. Defining derivatives along outgoing geodesics, d+ = ∂t +A∂r,
one can write these nested equations in the form (A.1a)–(A.1e) given in appendix A. This
system can be solved sequentially to determine the time derivatives of fields once we know
{a4, f4

i , ĝij , λ} on a given time slice. The shift λ can be chosen to fix the horizon position
equal to the endpoint of the integration domain in the bulk. Three of the differential
equations are constraint equations, of which two are equivalent to the covariant conservation
of the boundary stress energy tensor, which are used to compute the time derivatives of
the energy and momentum density {a4, f4

i } given by

∂ta
4 = 2

3∂if
4
i ∂tf

4
i = 1

2∂ia
4 − ∂j ĝ4

ij . (4.17)

The differential equation that determines the shift λ, so that the horizon matches the
end of our integration domain, is obtained by requiring that the congruence of outgoing
geodesics has vanishing expansion rate there. This results into the non-linear ODE

d+Σ|rh = −Σ′F 2

2 − Σ∇F
3

∣∣∣
rh
, (4.18)

where rh is the radial position of the apparent horizon, primes ′ denote radial derivatives
∂r and ∇ is the covariant derivative acting on spatial tensor fields using the Christoffel
connection of Gij (see (A.3)). Requiring this expansion rate to be constant at the radial
position of the horizon leads to a linear elliptic differential equation for ∂tλ. Having solved
for {∂ta4, ∂tf

4
i , ∂tĝij , ∂tλ} on one time slice, we use the fourth order Runge Kutta method

to evolve the metric in time.
In the case of exact localized shock collisions [3] the elliptic differential equation for

∂tλ is difficult to handle and solving it requires a large amount of wall clock time and
memory.2 The treatment of this equation is substantially simplified if we expand in trans-
verse derivatives. The details of this differential equation are not relevant for the following
discussion, for the interested reader, the exact differential equation is given in (3.47) of [1].
Let us write this linear horizon fixing equation schematically as[

Kij∂i∂j + Li∂i +M
]

(∂tλ)− S = 0, (4.19)

2After discretization with Nx, Ny and Nz grid points in x, y and z directions, the standard brute force
approach to solving this differential equation would require the inversion of a matrix of size (NxNy Nz)×
(NxNy Nz). For modest spatial grid sizes of, e.g., 32 × 32 × 512 this requires over 2 TB of memory and
more wall clock time than solving all other equations on a given time slice. More sophisticated methods
involving domain decomposition, require very large amounts of memory and run time as well.
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where Kij , Li, M and S are functions of the metric and its derivatives. At zeroth order
in transverse derivatives eq. (4.19) simplifies to an ordinary linear differential equation
in the longitudinal coordinate z, which can be trivially parallelized over the transverse
coordinates x⊥,

D(0)(∂tλ)(0) = S(0), (4.20)

D(0) = K(0)
zz ∂

2
z + L(0)

z ∂z +M (0). (4.21)

To compute the first order in transverse derivative correction we can reuse the Green’s
function for D(0) and transverse derivatives only contribute to the source term S̃(1),

D(0)(∂tλ)(1) = S̃(1) (4.22)

S̃(1) = S(1) +
(
K(1)
zz ∂z∂z + L(1)

z ∂z +M (1) +
∑
ij=x,y

K
(0)
ij ∂i∂j +

∑
i=x,y

L
(0)
i ∂i

)
(∂tλ)(0).

(4.23)

Eq. (4.22) is clearly still parallelizable over every value of x⊥. The ability to parallelize
and reuse the Green’s function for D(0) allows us to circumvent this bottleneck of the exact
treatment.

The same principle applies to the Einstein equations written as a system of ODEs that
we solve on each time slice. Again we can reuse the radial Green’s functions computed at
zeroth order in transverse gradients. The main advantage of an expansion in transverse
gradients is thus that Green’s functions for each point in the transverse plain are no more
expensive to compute than in the planar case, both for the nested system of radial ODEs
and the elliptic differential equation which fixes the horizon position. We solve the system
of ODEs and (4.19)–(4.23) using spectral methods [7]. The details of our numerics can be
found at the beginning of section 5.

4.3 Initial data up to order O(∇⊥)

We now discuss the construction of a numerical solution for the initial data of localized
shocks, in five dimensional AdS space, up to first order in transverse gradients ∇⊥. Follow-
ing [1] we transform the single shocks (4.1) from FG coordinates to infalling Eddington-
Finkelstein (EF) coordinates. In EF coordinates the metric takes the form (4.6). In this
coordinate system the family of curves γxµ0 (r) = (xµ0 , r) with varying radial coordinate r is
a geodesic congruence with affine parameter r. Demanding that the tangential vector field
Y µ of the image of this congruence under the coordinate transformation to FG coordinates
solves the geodesic equation, Y µ∇µY ν = 0, provides a system of differential equations
whose solution allows us to explicitly express FG coordinates Y (X) in terms of EF coordi-
nates X. As boundary conditions of the geodesic equations we require that the coordinate
systems match on the boundary, limρ→0 Y = limr→∞X, and that the radial coordinates
match at a hypersurface in the bulk where ρmax = 1

rmin
with rmin the end of our integration

domain, r ∈ [rmin,∞].

– 9 –
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We solve the geodesic equations up to first order in transverse derivatives, which con-
tribute via derivatives acting on the metric in the Christoffel symbols.3 We write the zeroth
order ansatz plus first order corrections for the FG coordinates Y (X) in terms of the EF
coordinates Xµ = (t,x⊥, z, u) with inverted radial coordinate u = 1/r as

Y µ =
(
tFG, (x⊥)FG, zFG, ρ

)
, (4.24)

tFG = t+ u2(α(0)(Xµ) + α(1)(Xµ)
)
, (4.25)

(x⊥)FG = x⊥ + u5δ
(1)
⊥ (Xµ), (4.26)

zFG = z + u5(γ(0)(Xµ) + γ(1)(Xµ)
)
, (4.27)

ρ = u+ u2(β(0)(Xµ) + β(1)(Xµ)
)
, (4.28)

With (4.24)–(4.28) we solve

(Y µ)(0)
,uu + 2

u
(Y µ)(0)

,u +
(
(ΓFG)µαβ

)(0)(Y α)(0)
,u (Y β)(0)

,u = 0, (4.29)

(Y µ)(1)
,uu + 2

u
(Y µ)(1)

,u + 2
(
(ΓFG)µαβ

)(0)(Y α)(1)
,u (Y β)(0)

,u = −
(
(ΓFG)µαβ

)(1)(Y α)(0)
,u (Y β)(0)

,u .

(4.30)

Here and henceforth we use the usual subscript notation for derivatives (·),x = ∂x(·) for a
coordinate x . Let Gab denote the spatial part of the metric in EF coordinates and g̃αβ be
the metric in FG coordinates. Then

G
(0)
ab =

1 0 0
0 1 0
0 0 (Y µ)(0)

,z (Y ν)(0)
,z g̃

(0)
µν

 (4.31)

and

G
(1)
ab = δab a, b = x, y (4.32)

G(1)
az = 2(Y µ)(0)

,a (Y ν)(0)
,z g̃

(0)
µν a = x, y (4.33)

G(1)
zz =

∑
i+j+k=1

(Y µ)(i)
,z (Y ν)(j)

,z g̃
(k)
µν . (4.34)

For the numerical time evolution we will need the zeroth order terms (ĝab)
(0)
± and first order

corrections (ĝab)
(1)
± of the rescaled spatial metric ĝ. These are given by

(ĝab)
(0)
± =

(
detG(0))−1/3

G
(0)
ab , (4.35)

(ĝab)
(1)
± =

(
detG(0))−1/3

G
(1)
ab −

1
3
(

detG(0))−1/3
G

(1)
ij (G(0))ij G(0)

ab , (4.36)

3Even though it might appear so at first glance, writing the geodesic equation Y µ∇µY ν = 0 in the
form ∂2

τx
ν = −Γναβ∂τxα∂τxβ (with Y ν = ∂τx

ν) does not introduce an ambiguity regarding the transverse
derivative expansion, since the relation Y µ∂µY

ν = ∂2
τx

ν holds up to every order in ε. Thus, the most
convenient way to expand the geodesic equation in transverse derivatives is to expand the equation ∂2

τx
ν =

−Γναβ∂τxα∂τxβ . It is then easy to see why transverse derivatives only explicitly contribute via the Christoffel
symbols.

– 10 –



J
H
E
P
0
9
(
2
0
2
2
)
2
1
3

such that det(ĝ(0)
± +ĝ(1)

± ) = 1+O(ε2). The fourth order near boundary expansion coefficients
of A and Fi in (4.8) for a single Gaussian shock moving in ±z direction are

(a4)± = − 2A
3
√

2πw2
exp

(
−1

2(z∓)2/w2
)

exp
(
−1

2(x⊥ − b)2/R2
)

+O(ε2) (4.37)

(f4
z )± = A√

2πw2
exp

(
−1

2(z∓)2/w2
)

exp
(
−1

2(x⊥ − b)2/R2
)

+O(ε2) (4.38)

f4
⊥ = 0. (4.39)

Comparing the near boundary expansion of the determinant of the spatial metric given
in (4.31), (4.32)–(4.34) expressed by the functions α, β, γ, δ and their derivatives, with the
near boundary expansion of Σ, shows that the shift parameter λ, introduced in (4.7), can
be obtained from the relation

(λ)(i)
± = −1

2
(
∂2
uY

ρ)(i)∣∣
u=0. (4.40)

Finally the initial data for the collision of localized shocks at order O(εi) in EF coordinates
at t = t0 = −2 is given by combining the data for well-separated counter-propagating single
shocks,

{(a4)(i)
+ + (a4)(i)

− , f (i)
⊥ , (f4

z )(i)
+ − (f4

z )(i)
− , (ĝ(i)

ab )+ + (ĝab)−, (λ)(i)
+ + (λ)(i)

− }. (4.41)

Since each shock individually is an exact solution to Einstein equations, their sum is an
approximate solution with exponentially small errors, if they are sufficiently separated,
such that they don’t overlap and the region between them is pure AdS up to exponentially
small errors. The initial time t0 = −2 is chosen such that left and right moving shocks
are spatially well separated and have no overlap in the bulk region between the apparent
horizon and the boundary. As in [1–3] we work with a small background energy density to
deal with irregularities in the integration domain.

4.4 Hierarchy among O(∇⊥)-fields

The Einstein equations, expanded in transverse derivatives through first order, separate
into two sets of differential equations for two disjoint sets of bulk fields S1 and S0:

S1 = { d+ĝxz, d+ĝyz, ĝxz, ĝyz, Fx, Fy}, (4.42)
S0 = {Σ, d+Σ, d+ĝxx, d+ĝyy, d+ĝzz, ĝxx, ĝyy, ĝzz, Fz, A}. (4.43)

with corresponding sets of boundary initial data,

I1 = {f4
x , f

4
y }, (4.44)

I0 = {f4
z , a

4}. (4.45)

The set S1 consists of those bulk fields that vanish at order O(ε0), whereas S0 represents all
bulk fields which are non-zero at order O(ε0). In appendix B we show that O(ε) terms of
functions in S1 can be computed once we know the ∂⊥-derivatives of the O(ε0) contributions
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to S0 (the planar solutions) and I1. They do not depend on O(ε) contributions to functions
of S0. At the same time the differential equations for the O(ε) correction terms of the
functions in S0 do not depend on functions in S1 nor on transverse derivatives of functions
in S0.

Remarkably, the first order transverse derivative corrections to the zeroth order solu-
tions of the fields in S0 contribute negligibly to the expectation value of boundary observ-
ables. Their contributions are two orders of magnitude smaller than those of first order
corrections to fields contained in set S1. As shown in appendix B, through first order in
transverse derivatives, the differential equations for the fields in S0 and the functions in
I0 do not contain any explicit transverse derivatives. The only first order corrections to
these differential equations are a consequence of negligibly small O(ε)-corrections to the
initial conditions {(ĝij)(1), (a4)(1), (f4

z )(1)} on the first time slice, a result of small transverse
gradients appearing in the coordinate transformation from FG to EF coordinates. Thus,
up to an error of about 1% we can ignore their first order corrections to the boundary
stress energy tensor. Since their equations also decouple from the differential equations
for fields in S1 and temporal differential equations of functions in I1, we can substantially
simplify the calculation. In order to compute the relevant contributions to the boundary
stress energy tensor up to the first order in transverse derivatives, it is thus sufficient to
solve planar shockwave collisions plus only four additional differential equations on each
time slice. Those four equations are given by the O(ε)-terms of the x, y components of
eq. (A.1b), and the {x, z} and {y, z} components of eq. (A.1d) given in appendix A. For
each point in the transverse plain the numerics are, therefore, only slightly slower than pla-
nar shockwave collisions. It should be emphasized that the approximation of expanding in
transverse gradients improves as one further increases the aspect ratio of incoming shocks
(for fixed longitudinal extent and energy scale µ). The parameters in [3] were chosen to
simulate the collision of rather broad blobs of energy; for collisions of more realistic, highly
Lorentz-contracted projectiles, the agreement should, thus, further improve.

We have computed collisions with identical initial conditions comparing the full first
order in transverse derivatives with the above simplified approach. We verified that the
contributions to boundary observables in both treatments were identical up to errors of
≈ 1%.

4.5 Easy O(∇2
⊥)-terms

At late times, well after the hydrodynamization time, differences between the exact solution
and the approximation by transverse derivative expansion, truncated at first order, become
substantial (see e.g. figure 6, 12). At time t ≈ 4 higher order corrections in transverse
derivatives can no longer be neglected. However, treating second order corrections exactly
would more than double memory usage and substantially increase run time to a point
where the advantage over the exact solution might become small. Solving radial differential
equations and the elliptic differential equation, to update the shift parameter, continue to
be much faster compared with the exact treatment. Computing the source terms of each
radial differential equation will become the new run-time bottleneck when computing higher
order corrections.
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One can separate second order corrections in transverse derivatives to the boundary
stress energy tensor into two categories: contributions from bulk fields and contributions
from boundary data which is time evolved using the covariant conservation equation of
the stress energy tensor. As explained above, calculating contributions to boundary ob-
servables coming from spatial components of the bulk metric is costly in memory and run
time. On the other hand, one may easily determine the partial second order corrections in
transverse derivatives to the energy density (∆a4)(2) and the longitudinal momentum den-
sity (∆f4

z )(2) arising from the first order terms of the transverse energy flux T̂ tx, T̂ ty, the
shear components T̂ zx, T̂ zy and the conservation equation of the boundary stress energy
tensor (4.17) using

∂t (∆a4)(2) = 2
3
(
∂x(f4

x)(1) + ∂y(f4
y )(1) + ∂z(∆f4

z )(2)
)
, (4.46)

∂t(∆f4
z )(2) = −∂x(ĝ4

xz)(1) − ∂y(ĝ4
yz)(1) + 1

2∂z(∆a
4)(2), (4.47)

plus the initial condition (∆f4
z )(2) = (∆a4)(2) = 0 on the first time slice. Recall that x

and y are the transverse coordinates in our notation and thus the partial derivatives ∂x,y
introduce a factor ε, while the derivative ∂z does not. Solving for this subset of second
order corrections requires negligible additional memory and wall-clock time.

A priori, one might only expect to obtain a qualitative estimate of the size of second
order corrections from such an incomplete calculation of second order terms. Hence, it is
all the more remarkable that we find that inclusion of second order terms in the bound-
ary conservation equation (4.46) and (4.47), alone, drastically improves the agreement
between the transverse derivative expansion and the exact result for most observables (see
figure 6, 11, 12). Nonetheless, this partial second order treatment should be employed
with care, like every partial higher order calculation without proof one has captured a
dominating contribution.

5 Results

We compute the coordinate transformation from FG to EF coordinates using a Chebyshev
grid in the radial direction with three domains containing 31 grid points each and Fourier
grids in longitudinal and transverse directions. The longitudinal grid consists of N = 256
and the transverse grids consist of Nx,y = 36 grid points. For the time evolution in EF
coordinates we found a radial Chebyshev grid with only two domains with 18 grid points
each to be sufficient. After computing the EF initial data, to perform the time evolution
we remap data to a smaller transverse Fourier grid with 12 grid points in each dimension
and a coarser longitudinal Fourier grid with 140 grid points. To enable comparison of our
approximation with the exact results our physical parameters are chosen to match those
in [3]. The physical sizes of the spatial 3-torus in which we placed the shocks are Lz = 12
in longitudinal direction and Lx,y = 32 in transverse direction. We chose the longitudinal
width parameters of the shocks to be w = 0.5 and R = 4 and work in units such that the
amplitude is set to one N2

cA/(2π2) = 1. The impact parameter is b = 3
4R x̂. We perform

our calculation with a background energy density of 3.6% of the energy density’s peak
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value. Discretizing non-linear PDEs introduces artificial, high frequency oscillations that
have to be removed via numerical filters. The details of this filtering procedure is discussed
in [1]. On each time slice we apply a filter in longitudinal direction on the updates of
the spatial components of the bulk metric, the energy density a4, the momentum density
f4
i and the shift parameter λ (all of which we compute via the fourth order Runge-Kutta
method), removing one third of all modes corresponding to the highest frequencies, while
keeping the remaining two thirds. In addition we apply a radial filter on the longitudinally
filtered updates by transforming the radial Chebyshev grid onto a slightly smaller, single
domain grid with 35 grid points, and transforming back to the original grid. We do not
filter during the individual substeps of the Runge-Kutta algorithm.

We compare the stress energy tensor after the collision with its hydrodynamic approx-
imation, where the constitutive relations are truncated after the first order in derivatives.
For this we solve the Eigenvalue equation

Tµ ν u
ν = −εuµ (5.1)

order by order in transverse derivatives for the fluid velocity uµ and the proper energy
density ε. The hydrodynamic approximation

Tµνhydro = p gµν + (ε+p)uµuν + Πµν , (5.2)

where the viscous stress is given by

Πµν = −2 η
[
∂(µuν) + u(µu

ρ∂ρuν) − 1
3 ∂αu

α(ηµν + uµuν)
]

+O(∂2) , (5.3)

is also expanded up to order O(∇⊥). Here p is the pressure and η the shear viscosity.
In order to evaluate how well the system is described by hydrodynamics we compute the
residual

∆ = 3
ε

√
∆Tµν∆Tµν (5.4)

with ∆Tµν = Tµν − Tµνhydro. Again let ∆(i) denote the O(εi) contribution to ∆. The
hydrodynamic approximation is generally taken to be valid for ∆ < 0.15. We show the
results for the residual at zeroth order, ∆(0), and the first order correction ∆(1), at proper
times τ = 1.25, τ = 2 and rapidities ξ = 0, ξ = 1 in figure 4 and figure 5, respectively.
Evidently the inclusion of first order transverse dynamics only has a small effect on the
residual ∆, and already at zeroth order in transverse derivatives we find in the central
region (small x⊥) the same hydrodynamization time4 of t ≈ 1.25 as in [3].

Our results regarding transverse energy flux, shown earlier in figure 1 and 2, illustrate
good agreement between the O(ε)-approximation and the exact solution regarding trans-
verse flow. In figure 6 we display the xx and zz-components of the stress tensor, T xx and
T zz, at the origin x = y = z = 0 as a function of time. Again both stress components
agree well with the results in [3]. Only for T xx and at late times, t > 2, do we observe
a noticeable disagreement. As also shown in figure 6, this error is more than halved by

4This result is highly sensitive to the choice of the threshold ∆ < 0.15 at which we consider the hydro-
dynamic description to be valid, with a potential residual sensitivity to the longitudinal grid size.
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0

0.2

0.4

0.6

0.8

Figure 4. The hydrodynamic residual ∆ at zeroth order in transverse derivatives, for proper times
τ = 1.25, τ = 2 and rapidities ξ = 0, ξ = 1. Already at zeroth order the residual ∆(0) agrees well
with the exact results. As in [3] we find a hydrodynamization time of about t ≈ 1.25 for the central
region.

-0.010

-0.005

0

0.005

Figure 5. First order corrections in transverse derivatives to the hydrodynamic residual ∆ at
proper times τ = 1.25, τ = 2 and rapidities ξ = 0, ξ = 1. Consistent with the agreement between
the results at zeroth order and the exact results in [3], we find the first order correction to the
residual ∆ to be less than 2%. This is a consequence of the fact that only fields in S0 given in (4.43)
contribute to the residual at first order.

including the partial O(ε2)-corrections discussed in section 4.5. This suggests that even
for rather broad shocks, as shown in this work, and late times t ≈ 4 the full inclusion of
O(ε2)-corrections should provide a decent approximation, whereas for earlier times, t < 2,
first order corrections appear sufficient. In figure 7 we display the energy density through
first order in transverse derivatives as a function of time at z = y = 0 for various values of
the transverse coordinate x.

We computed the fluid 3-velocity v = ū/u0 up to order O(ε) and display its absolute
value at time t = 4 on both a x = 0 slice and a z = 0 slice in figure 8.

In figure 9 we display the absolute energy flux |T 0i| at various times on the y = 0
slice. In figure 10 we show the analogous plots for the energy density T 00. Note that since
first order corrections to the energy and momentum densities are negligible, figure 9 and
figure 10 display the zeroth order terms. A general comparison of results through order
O(ε) and exact results shows that the worst agreement occurs for the energy density T 00

at late times t = 4. Therefore we study in figure 11 and 12 the energy density on several
z = const, y = 0 slices at times t = 2 and t = 4 respectively. At time t = 2 we still observe
quite good agreement with the exact results, with partial O(ε2)-corrections again improving
the approximation. At t = 4 the errors appear to be substantial. However, including partial
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Txx

Tzz

-2 -1 1 2 3 4
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1.2

-2 -1 1 2 3 4
t

0.1

0.2

0.3

0.4

Figure 6. On the left: the x and z components of the pressure, T zz and T xx, at O(ε), shown as a
function of time at x = y = z = 0. Again we see good agreement with the results in [3] (red dots),
slowly deteriorating for T xx at late times. On the right: the x-component of the pressure T xx up
to order O(ε) (solid blue line), shown as a function of time at x = y = z = 0 compared with the
inclusion of partial O(ε2)-corrections. Again the red dots represent the exact result from [3]. The
black dashed line includes partial O(ε2)-corrections discussed in section 4.5.

-2 -1 1 2 3 4
t

0.5

1.0

1.5

T00(x=0)

T00(x=10/3)

T00(x=20/3)

T00(x=10)

Figure 7. The energy density T 00 through O(ε) (shown as a function of time at y = z = 0). We
display the evolution of the energy density for various values of the transverse coordinate x.

0

0.2

0.4

0.6

Figure 8. The fluid velocity |v| = |u/u0| at t = 4 up to first order in transverse derivatives. On
the left hand side we display the y = 0 slice of |v|, while the right side shows the z = 0 slice.
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Figure 9. The energy flux |T 0i| including first order corrections in transverse derivatives, for times
t = −2, t = 0, t = 2 and t = 4 (from top left to bottom right), and at y = 0.

O(ε2)-corrections again substantially improves agreement in the central region z = 0 and
for large z. However, at intermediate values for the longitudinal coordinate z ≈ 2 a notable
mismatch between approximation and exact results remains.

6 Conclusion

In this work we introduce the framework of a transverse derivative expansion to allow more
efficient calculations of holographic models of heavy ion collisions. The first order correction
to collisions of planar shocks allows us to reproduce the exact solutions in [3] remarkably
well. The transverse derivative expansion has substantial computational advantages over
the very large memory and time consuming exact treatment. At a given point in the
transverse plane, Green’s functions of the differential operators that have to be solved on
each time slice are identical to those computed for planar collisions. Transverse derivatives
only contribute to source terms. Moreover, it is possible to decouple the Einstein equations
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Figure 10. The energy density T 00 at zeroth order, for times t = −2, t = 0, t = 2 and t = 4 (from
top left to bottom right), and at y = 0. First order corrections to T 00 are negligible.
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Figure 11. The energy density at zeroth order (solid blue curve) in the central region y = 0, z = 0
(left) as well as at z = 2.1 (right) at time t = 2. The red dotted curve represents the exact results,
while the black dashed curve includes the partial O(ε2) corrections discussed in section 4.5.

– 18 –



J
H
E
P
0
9
(
2
0
2
2
)
2
1
3

-15 -10 -5 5 10 15
x

0.05

0.10

0.15

0.20

-15 -10 -5 5 10 15
x

0.05

0.10

0.15

0.20

0.25

-15 -10 -5 5 10 15
x

0.1

0.2

0.3

Figure 12. The energy density at zeroth order (solid blue curve) in the central region y = 0, z = 0
(top left) and at z = 2.1 (top right) and z = 3.3 (bottom) at time t = 4. The red dotted curve
represents the exact results, while the black dashed curve includes partial O(ε2) corrections discussed
in section 4.5. Differences between the exact solution and the truncated transverse derivative
expansion continue to increase with time, such that long after the hydrodynamization time they
become substantial. Therefore, it appears to be a fluke that the (partial) second order corrected
solution and the exact solution for vanishing z fit so well in the top left plot.

at first order in transverse derivatives into two sets. One of them only contributes negligibly
to boundary observables. In section 4.4 and appendix section B discuss why this happens.
As a consequence the equations to be solved on each time slice, and each transverse pixel,
up to first order in transverse derivatives reduce to those for planar shock collisions plus
only four additional differential equations. This reduces the computation time, compared
with the exact treatment of localized shock collisions, roughly by an order of magnitude.

In future works we intend to employ the methods described in this paper to study more
realistic models of collisions of heavy ions including a granular structure and transverse
energy density fluctuations, which are required to explain the observed large event-by-
event fluctuations of flow observables. As found in [3] there is a considerable transverse
flow, which develops before the hydrodynamic description becomes valid. The question of
how sizable transverse energy density fluctuations of the localized shock’s initial conditions
affect the transverse dynamics before hydrodynamization remains an interesting and open
question.
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A Einstein equations

We are going to work with the Einstein equations in the chracteristic formulation first
derived for AdS space in [1]. The full form of the equations including the source terms for
the constraint equations can be found there in eq. (3.22)-(3.39). We are going to write
explicitly those differential equations which we need to solve on each time slice and leave
out constraint equations which are used to update the momentum and energy density:

(
∂2
r + QΣ[ĝ]

)
Σ = 0 (A.1a)(

δji ∂
2
r + PF [ĝ, Σ]ji ∂r +QF [ĝ, Σ]ji

)
Fj = SF [ĝ, Σ]i (A.1b)(

∂r +Qd+Σ
)
d+Σ = Sd+Σ[ĝ, Σ, F ] (A.1c)(

δk(iδ
l
j)∂r +Qd+ĝ[ĝ,Σ]klij

)
d+ĝkl = Sd+ĝ [ĝ, Σ, F, d+Σ]ij (A.1d)

∂2
rA = SA[ĝ, Σ, F, d+Σ, d+ĝ]. (A.1e)

In the following we are going to denote the connection of the spatial, covariant derivative,
modified to be covariant under radial shifts, as Γ̃ijk and define

Γ̃ijk ≡ Γijk + Gil

2 (FkG′lj + Fj G
′
lk − FlG′jk) (A.2)

with the standard Christoffel symbol for covariant derivatives acting on spatial tensor fields

Γijk = Gil

2 (∂kGlj + ∂jGlk − ∂lGjk) (A.3)

and indices ijk along spatial directions. Here primes ′ represent radial derivatives ∂r. This
allows us to define derivatives acting on spatial tensor fields, which are covariant under
both spatial diffeomorphisms and radial shifts (4.7) as

∇̃iwj = ∂iwj + Fiw
′
j − Γ̃lij wl. (A.4)
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With these definitions we can write the so far unspecified terms appearing in (A.1a)–(A.1e)

QΣ[ĝ] = tr(g′2)
12 (A.5a)

PF [ĝ, Σ]ji = −(G′)ji + 3 Σ′

Σ δji (A.5b)

QF [ĝ,Σ]ji = −(G′′)ji + (G′2)ji + tr
(
G′′ − G′2

2

)
δji (A.5c)

SF [ĝ, Σ]i = ∇k(G′)ki − 6∇i
Σ′

Σ (A.5d)

Qd+Σ[Σ] = 2 Σ′

Σ (A.5e)

Sd+Σ[ĝ, Σ, F ] = Σ
6

(
R̃− 12− ∇̃F ′ − F ′2

2

)
(A.5f)

Qd+ĝ[ĝ,Σ]klij = −(G′)k(iδ
l
j) + 7

2
Σ′

Σ δk(iδ
l
j) (A.5g)

S̄d+ĝ[ĝ, Σ, F, d+Σ]ij = 1
Σ2

(
−3

2G
′
ij

d+Σ
Σ + R̃ij − ∇̃jF ′i −

F ′i F
′
j

2

)
(A.5h)

Sd+ĝ[ĝ, Σ, F, d+Σ]ij = (S̄d+ĝ)(ij) − tr(S̄d+ĝ)
Gij
3 (A.5i)

where R̃ij is the radial diffeomorphism covariant, spatial Ricci tensor.

B Decoupling of transverse derivative expanded Einstein equations

In the following we are going to show that the differential equations of the functions be-
longing to set S1 in (4.42) can be decoupled from the equations of the functions belonging
to set S0 in (4.43) through first order in transverse derivatives. Furthermore the differential
equations of functions in S0 do not depend on transverse derivatives of the zeroth order
metric.

Let the superscript (1) denote the first order transverse derivatives correction to zeroth
order in transverse derivatives solutions which we denote by the superscript (0). Then the
following statements hold:

1. For solutions at zeroth order in transverse derivatives we have (ĝij)(0)
i 6=j = 0 as well as

(Fx)(0) = 0, (Fy)(0) = 0.

2. The trace
(
tr(g′2)

)(1) does not depend on (ĝij)(1)
i 6=j or (ĝ′ij)

(1)
i 6=j , since (ĝij)(0)

i 6=j = 0.

3. ((G′)ij)
(1)
i 6=j does not depend on (ĝij)(1)

i=j , (ĝ′ij)
(1)
i=j , (Σ)(1), (Σ′)(1) and ((G′)ij)

(1)
i=j does

not depend on (ĝij)(1)
i 6=j or (ĝ′ij)

(1)
i 6=j , again because (ĝij)(0)

i 6=j = 0.

4. Similarly ((G′′)ij)
(1)
i 6=j , ((G′2)ij)

(1)
i 6=j do not depend on (ĝij)(1)

i=j and its derivatives nor on
(Σ)(1) and its derivatives. Also ((G′′)ij)

(1)
i=j , ((G′2)ij)

(1)
i=j do not depend on (ĝij)(1)

i 6=j or
its derivatives.
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5. Again by only using that (ĝij)(0)
i 6=j = 0, it is easy to show that (∇k(G′)kz)(1) does

not depend on transverse derivatives of zeroth order functions nor on (ĝij)(1)
i 6=j and

its derivatives. And (∇k(G′)kx,y)(1) does not depend on (ĝij)(1)
i=j , (Σ)(1) and their

derivatives.

6. After a slightly more tedious calculation it follows again from statement 1 that
(R̃ij)(1)

i 6=j does not depend on (ĝij)(1)
i=j , (Σ)(1), (Fz)(1) and their derivatives and (R̃ij)(1)

i=j

does not depend on transverse derivatives of zeroth order functions nor on (ĝij)(1)
i 6=j

nor on Fx, Fy. The same is obviously true for ∇̃jF ′i and F ′i F ′j .

7. Statement 6 implies that R̃ = GijR̃ij , ∇̃F ′ and F ′2 do not depend on transverse
derivatives of zeroth order functions, nor on (ĝij)(1)

i 6=j nor on Fx, Fy.

8. Statement 3, 4 and 5 imply that (PF [ĝ, Σ]ji )
(1)
i=j , QF [ĝ, Σ]ji )

(1)
i=j and SF [ĝ, Σ]z do not

depend on (ĝij)(1)
i 6=j , nor its derivatives, nor on transverse derivatives of zeroth order

functions and (PF [ĝ, Σ]ji )
(1)
i 6=j , QF [ĝ, Σ]ji )

(1)
i 6=j and SF [ĝ, Σ]x,y do not depend on (ĝij)(1)

i=j
and its derivatives nor on (Σ)(1) and its derivatives.

9. Statement 7 implies that (Sd+Σ[ĝ, Σ, F ])(1) does not depend on transverse derivatives
of zeroth order functions, nor on (ĝij)(1)

i 6=j , nor on Fx, Fy.

10. Statement 1 and
(
(d+g)(1)

ij

)
i 6=j = 0 imply that (Qd+ĝ[ĝ,Σ]klijd+ĝkl)(1) for i 6= j does

not depend on (d+ĝij)(1)
i=j nor on (ĝij)(1)

i=j , (ĝ′ij)
(1)
i=j , (Σ)(1), (Σ′)(1) and for i = j it does

not depend on (d+ĝij)(1)
i 6=j , (ĝij)(1)

i 6=j , (ĝ′ij)
(1)
i 6=j .

11. Statement 1, 6 and 7 imply that (Sd+ĝ[ĝ, Σ, F, d+Σ]ij)(1)
i 6=j does not depend on (ĝij)(1)

i=j ,
(Σ)(1) and their derivatives and (Sd+ĝ[ĝ, Σ, F, d+Σ]ij)(1)

i=j does not depend on trans-
verse derivatives of zeroth order functions, nor on (ĝij)(1)

i 6=j , nor on Fx, Fy.

12. From eq. (4.17) it is obvious that the time derivative of (a4)(1) and (f4
z )(1) do not

depend on (f4
x,y)(1), its derivatives, nor on transverse derivatives of ĝ4

ij , nor on (ĝ4
ij)

(1)
i 6=j

and that the time derivative of (f4
x,y)(1) does not depend on (f4

z )(1), nor on (ĝ4
ij)

(1)
i=j .

13. Due to 1, the time derivative of (ĝij)1
i 6=j does not depend on A(1), nor on ∂tλ(1). In

addition (ĝij)1
i 6=j itself is not affected by first order shifts λ(1).

14. From eq. (4.18) it is apparent that the first order correction to the shift function λ(1)

does not depend on transverse derivatives of the zeroth order metric, nor on (Fx)(1),
(Fy)(1).

From statement (8)–(14) both claims follow.
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