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1 Introduction

This paper is about computing tree-level scattering amplitudes of excited strings in string
theory [1, 2]. Concretely, we compute the amplitude for an excited string in any precisely
specified state to decay into another excited string in any precisely specified state, via
emission of a light string (a tachyon or a photon), see figure 1.

The number of different states of a highly excited string grows exponentially with its
mass, and the decay amplitude is a complicated function of the outgoing angle, depending
sensitively on the precise state of the ingoing and outgoing string.

Our study is in part motivated by the large body of work, particularly in the last
decade, broadly concerned with the emergence of thermality in quantum many-body sys-
tems and the structure and characteristics of the underlying microstates. This includes the
eigenstate thermalization hypothesis [3–6], its intersection with [7–10] quantum many-body
chaos and out-of-time-order correlators [11–13], and its realization in quantum field theory
and high energy contexts, such as in [14–19].
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Figure 1. The decay an excited string at level N and momentum p into an excited string at level
N ′ and momentum p′ via emission of a tachyon (or a photon) of momentum k. We compute this
amplitude, for any ingoing and outgoing excited string state.

Our specific thermodynamic system of interest is a highly excited string, and our goal
is to extract the structure of the microstates through scattering amplitudes. Of course, a
highly excited string is no ordinary quantum many-body system; plausibly, its microstates
may account for a sizable fraction of the entropy of a black hole [20–22]. The process we
compute — emission of a photon from a highly excited string — is of course the precise
analog of a black hole, or a piece of coal, emitting a photon of radiation.

This work is an outgrowth and continuation of the study of chaos in scattering am-
plitudes [23–25]. More generally, the study of excited string scattering may connect with
the large literature on modern scattering amplitudes in quantum field theory and string
theory [26], such as scattering of higher spin particles [27, 28].

Our calculation is made possible by technical advances in string theory, fundamental
yet recent, which dictate how to form highly excited strings from many photons. In short,
any amplitude involving excited strings in any state can be extracted from an amplitude
involving exclusively the light strings (tachyons and photons); the more complex the excited
string states, the more photons need to be included, see figure 2. For an amplitude with one
excited string formed from photons of the same helicity this was shown explicitly in [25].

More generally, important progress was made in [29], which streamlined the approach
of extracting excited string amplitudes from many-photon amplitudes, by finding explicit
expressions for the appropriate excited string vertex operators [30]. This result was recently
used in [24] to compute the amplitude involving one heavy string and two tachyons. Here we
compute the more general amplitude, involving two heavy strings and one tachyon. More
substantially, to specify the state of the string one must not only specify which modes are
excited (which partition of N one is choosing), but also the polarizations (which, for a
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Figure 2. Scattering amplitudes involving excited strings, such as the one shown in figure 1, are
most effectively computed from amplitudes involving exclusively tachyons and photons, with the
excited strings appearing as intermediate states.

highly excited string, are complicated and constrained high rank tensors), for which there
is no natural, generic choice. Of course, the standard approach in QED is to eliminate
the photon polarization dependence by averaging the square of the amplitude over the
polarizations. It is here that the power of viewing excited string amplitudes as coming
from amplitudes of tachyons and photons really shines: our problem of string polarization
averaging reduces to the familiar and elementary task of photon polarization averaging.
Implementing this gives us a simple expression.

The paper is organized as follows: in section 2 we warmup with a computation of the
decay amplitude of the lightest massive string state into two tachyons. The computation is
elementary, yet captures the essential physics which will appear in later sections for highly
excited strings, without the notational complexity.

In section 3.1 we establish our notation for labelling excited strings. In section 3.2
we briefly discuss how we find excited string amplitudes — through amplitudes involving
tachyons and photons, and we set up the kinematics for our decay process.

In section 4 we write down the amplitude and the polarization sum of the amplitude
squared. In section 4.1 we start with the case of an excited string decaying into two
tachyons, while in section 4.2 we study the more general case, of an excited string decaying
into another excited string and emitting a tachyon.

In section 5 we take these results and look at examples of the amplitudes for light
strings.

We conclude in section 6.
Many of the technical details of the paper are relegated to the appendices. In ap-

pendix A we review the construction of vertex operators which create excited strings.
These are used in appendix B to compute our amplitudes, and the sum over polarizations
is performed in appendix B.1. In appendix B.2 we indicate how the decay amplitudes stud-
ied in the main body of the text (which, despite the title of the paper, focuses on emission
of a tachyon) change if the excited string emits a photon instead of a tachyon.
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A(1,1),(0) (2.13) as,

A(1,1),(0) = bA(1,1)(0)
µ⌫ �(a)

µ �(b)
⌫ , bA(1,1)(0)

µ⌫ = p0µp
0
⌫ � 2p0(µp⌫) + pµp⌫ (q·p0)2 + ⌘µ⌫

q·p0
2

(1 + q·p0) (2.17)

Squaring the amplitude, and summing over the polarizations by replacing �(a)
µ �(a)

⇢ ! ⌘µ⇢ and

�(b)
⌫ �(b)

� ! ⌘⌫� we get,

1

4

X

polarizations

|A(1,1),(0)|2 =
⌘µ⇢

2

⌘⌫�

2
bA(1,1)(0)
µ⌫

bA(1,1)(0)
⇢� (2.18)

=
1

4

 
(p0·L·p0)2 + 2p0·L·p0 q·p

0

2
(1 + q·p0) + (D�2)

✓
q·p0
2

(1 + q·p0)
◆2
!

where we defined,

Lµ⌫ = ⌘µ⌫ � pµq⌫ � p⌫qµ + p2qµq⌫ . (2.19)

Using that p0·L·p0 = 5
2
sin2 ✓ and taking D = 4, we recover (2.16).

Averaging over ingoing string states

Let us summarize where we are so far: we start with a massive string, m2 = 2 (corresponding

to level-two), which decays into two tachyons. The amplitude depends on the state of the string,

which is characterized by which modes are excited and their polarizations. For this massive string

at level two, one can either excite the second mode once (what we called the state (2)) or the first

mode twice (what we called the state (1, 1)). We computed the square of the amplitude for each

of these choice, and performed and average over polarizations. There is one more average we can

perform, which is over the states (2) and (1, 1),

1

2

X

polarizations

|A(2)(0)|2 +
1

4

X

polarizations

|A(1,1),(0)|2 (2.20)

It should be an average, not a sum, right? If one is computing the decay cross-section of a string

of m2 = 2, and is indi↵erent to any of the details of the state of the string, this is the rate one will

find.

� (2.21)

3. Amplitudes with heavy strings

Perhaps first write out amplitude with all the photons and tachyons. Then state the pole we

are looking for. State what the amplitude will depend on. Then give answer. Then say that faster
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pendix B.1. In Appendix B.2 we indicate how the decay amplitudes studied in the main body

of the text (which, despite the title of the paper, focuses on emission of a tachyon) change if the

excited string emits a photon instead of a tachyon.

2. An invitation: lightest massive string decaying into two tachyons
{sec2}

We begin with a simple example, of the lightest massive string decaying into two tachyons.

The lightest massive string is at level N = 2, with mass m2 = 2 and momentum p. 1 It decays into

a string at level N 0 = 0 (a tachyon) of momentum p0 and mass m2 = �2, by emitting a tachyon

with momentum k. The kinematics, with the massive string initially at rest, is,

p =
p
2(1,~0)

p0 = � 1p
2
(1,

p
5 sin ✓,

p
5 cos ✓,~0)

k = � 1p
2
(1,�

p
5 sin ✓,�

p
5 cos ✓,~0) , (2.1)

where m2 = �p2 = 2 and p02 = k2 = 2.

The massive string can be in two di↵erent states: the state (2) in which the second mode is

excited �·A�2|0i, or the state (1, 1) in which the first mode is excited twice, �(1)·A�1�
(2)·A�1|0i.

These correspond to the two possible partitions of N = 2. For each of these states there is a choice

of polarizations, the �. 2

Ingoing string with second mode excited once

We start with the string in the state (2).

We would like to view amplitudes involving massive strings as arising from scattering processes

involving only tachyons and photons. Concretely, we start with a tachyon of momentum p+2q and

scatter a photon of momentum �2q o↵ of it, so that we produce our massive string of momentum

p, see Fig. 3(a). Since the tachyon must have mass m2 = �2, we have the requirement that

2 = (p+2q)2 = p2+4p ·q (where we used that the photon has null momentum, q2=0) which means

that q must satisfy p·q = 1. An acceptable choice of q is,

q = � 1p
2
(1, 0, 1,~0) . (2.2)

1We have set the square of the string length ↵0 = 1/2. All our calculations are for open strings in tree-level
bosonic string theory in D dimensions.

2Of course, this way of talking about states implies we are thinking in terms of light-cone gauge, in which
�·A�2|0i and �(1)·A�1�

(2)·A�1|0i are independent. In covariant gauge, these are part of one polarization tensor for
the states at level 2, see Appendix A. In any case, for a string at a given level, we are free to compute amplitudes
in which we average or sum over all all or some or only one of the di↵erent states. The choice we will be making is
natural for light-cone gauge.
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(b)

Figure 3. (a) We extract the scattering amplitude involving an excited string in the state λ·A−2|0〉
from an amplitude involving a “DDF photon” of momentum −2q. (b) We extract the scattering
amplitude involving an excited string in the state λ(1)·A−1 λ

(2)·A−1|0〉 from an amplitude involving
two “DDF photons”, each of momentum −q.

2 An invitation: lightest massive string decaying into two tachyons

We begin with a simple example, of the lightest massive string decaying into two tachyons.
The lightest massive string is at level N = 2, with mass m2 = 2 and momentum p.1 It
decays into a string at level N ′ = 0 (a tachyon) of momentum p′ and mass m2 = −2, by
emitting a tachyon with momentum k. The kinematics, with the massive string initially
at rest, is,

p =
√

2(1,~0)

p′ = − 1√
2

(1,
√

5 sin θ,
√

5 cos θ,~0)

k = − 1√
2

(1,−
√

5 sin θ,−
√

5 cos θ,~0) , (2.1)

where m2 = −p2 = 2 and p′2 = k2 = 2.
The massive string can be in two different states: the state (2) in which the second

mode is excited λ·A−2|0〉, or the state (1, 1) in which the first mode is excited twice,
λ(1)·A−1λ

(2)·A−1|0〉. These correspond to the two possible partitions of N = 2. For each of
these states there is a choice of polarizations, the λ.2

Ingoing string with second mode excited once. We start with the string in the
state (2).

We would like to view amplitudes involving massive strings as arising from scattering
processes involving only tachyons and photons. Concretely, we start with a tachyon of mo-
mentum p+2q and scatter a photon of momentum −2q off of it, so that we produce our mas-
sive string of momentum p, see figure 3(a). Since the tachyon must have mass m2 = −2, we

1We have set the square of the string length α′ = 1/2. All our calculations are for open strings in
tree-level bosonic string theory in D dimensions.

2Of course, this way of talking about states implies we are thinking in terms of light-cone gauge, in which
λ·A−2|0〉 and λ(1)·A−1λ

(2)·A−1|0〉 are independent. In covariant gauge, these are part of one polarization
tensor for the states at level 2, see appendix A. In any case, for a string at a given level, we are free to
compute amplitudes in which we average over all or some or only one of the different states. The choice we
will be making is natural for light-cone gauge.
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have the requirement that 2 = (p+2q)2 = p2+4p·q (where we used that the photon has null
momentum, q2=0) which means that q must satisfy p·q = 1. An acceptable choice of q is,

q = − 1√
2

(1, 0, 1,~0) . (2.2)

We will refer to this photon, of momentum −2q, as a “DDF photon”. The photon will
have a polarization λ. The polarization must be orthogonal to the momentum, λ·q = 0
and, as is familiar, the amplitude is invariant under λ → λ + q. There are therefore D−2
independent polarization vectors in D dimensions. We take these to be the right and left
circular polarizations,

λ± = 1√
2

(0, 1, 0,±i,~0) , (2.3)

which are the complete set (and natural choice) in D = 4, supplemented with D− 4 other
basis polarizations, λI = (0, . . . , 0, 1, 0, . . . , 0), where the I’th component is 1 while all oth-
ers are zero, if we are in D > 4.3 The amplitude we are interested in, of p→ p′+ k, can be
thought of as the residue of the pole of the amplitude for (p+2q)+(−2q)→ p′+k at the reso-
nance where the intermediate string is on-shell. It is useful to introduce the polarization ζµ,

ζµ = λµ − (λ · p)qµ . (2.4)

This can be thought of as the polarization of our massive string: it manifestly satisfies
ζ·p = 0, because q · p = 1. For our kinematics, we see that ζµ = λµ. The amplitude for the
decay p → p′ + k, denoted by A(2)(0) to indicate that the initial string is in the state (2)
and the final string is in the state (0) (a tachyon), will later be shown to be,

A(2)(0) = − 1√
2
ζ·p′(1 + 2q·p′) . (2.5)

Taking the polarization to be either left or right circular, as in (2.3), and using the explicit
kinematics we get the amplitude as a function of the angle θ,

A(+)
(2)(0) = A(−)

(2)(0) = − 5
2
√

2
sin θ cos θ . (2.6)

For the transverse polarizations λI , the amplitude vanishes. In computing the scattering
cross-section, it is common to average the amplitude squared over polarizations. This is
just one half of the sum over polarizations,

∑
polarizations

|A(2)(0)|2 = |A(+)
(2)(0)|

2 + |A(−)
(2)(0)|

2 = 25
4 sin2 θ cos2 θ , (2.7)

where, as is familiar, we have done the sum over all polarizations by doing the sum over
the basis polarizations.

3Since the dynamics is confined to a three dimensional plane, giving special status to one of the transverse
directions, as we have done in (2.3), is artificial. We did this because our preference is to work in D = 4,
but for some questions it is important to work in the critical dimension of D = 26.
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Ingoing string with first mode excited twice. Now let us look at the case in which
the massive string is in the state (1, 1), in which the first mode is excited twice. To achieve
this state, we take the scattering process in which we start with a tachyon of momentum
p + 2q, scatter a DDF photon with polarization λ(1) and momentum −q off of it, then
scatter another DDF photon with polarization λ(2) and momentum −q off of it, and then
get a decay into the tachyons with momenta p′ and k, see figure 3(b). Looking at the
residue of the pole where the internal strings are on-shell gives us the desired amplitude,

A(1,1),(0) = 1√
1 + |ζ (1)∗·ζ (2)|2

(
ζ (1)·p′ ζ (2)·p′ + 1

2ζ
(1)·ζ (2)q·p′(1 + q·p′)

)
, (2.8)

where, as in (2.4), we introduced the polarizations ζ(1) and ζ(2),

ζ (1)
µ = λ(1)

µ − (λ(1)·p)qµ , ζ (2)
µ = λ(2)

µ − (λ(2)·p)qµ . (2.9)

Let us look at the amplitude for the different basis choices of polarization for the DDF
photons. Each of the two photons can be either left or right circularly polarized (2.3). The
amplitudes are,

A(+,+)
(1,1)(0) =A(−,−)

(1,1)(0) = 5
4
√

2
sin2 θ , A(+,−)

(1,1)(0) = 5
8 sin2 θ+ 1

2 , A(I,I)
(1,1)(0) = 1

8
√

2
(1−5cos2 θ) ,

(2.10)
in which the first/second superscript in the amplitude denotes the polarization of λ(1)/ λ(2).
Now squaring the amplitude and summing over the polarizations we have,

∑
polarizations

|A(1,1)(0)|2 = 2
( 5

4
√

2
sin2 θ

)2
+
(5

8 sin2 θ + 1
2

)2
+(D−4)

( 1
8
√

2
(1− 5 cos2 θ)

)2
.

(2.11)

Summary. Let us summarize: we started with a massive string, m2 = 2 (corresponding
to level N = 2), which decays into two tachyons. The amplitude depends on the state of the
string, which is characterized by which modes are excited and their polarizations. For this
massive string at level two, one can either excite the second mode once (which we labelled
as (2)) or the first mode twice (which we labeled as (1, 1)). For each of these choices, we
computed the amplitude for a basis of polarizations and we computed the square of the
amplitude and averaged over polarizations.

If we wish, we may do a further sum over all the states at level N = 2. Setting the
dimension to be the critical dimension, D = 26, and summing (2.7) and (2.11) we get,∑

polarizations
|A(2)(0)|2 +

∑
polarizations

|A(1,1)(0)|2 = 3 . (2.12)

The answer is independent of the angle — as it should be, since a string at rest has spherical
symmetry, if we sum over all possible polarizations.4

4If we had not set D = 26, there would be θ dependence. This is at it should be — covariant gauge
and light-cone gauge only agree for D = 26, i.e. the string states, as counted in light-cone gauge (which is
effectively what we are doing) only fall into representations of SO(D−1) for D = 26.
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The rest of the paper will be conceptually similar to this section. We will compute
scattering amplitudes for the decay of an excited string (in the most general state) into
another excited string (also in the most general state) through tachyon emission. We do
this by forming the excited strings through repeated scatterings with photons. The number
of photons we use and their polarizations determine the excited string state that we get.
Viewing amplitudes involving excited strings as residues of poles of amplitudes involving
only tachyons and photons is extremely useful: it provides a coherent wave of organizing
the excited string states, it gives an effective computational tool for computing amplitudes
involving excited strings, and it allows the average over string polarizations to be almost
trivially performed — by using the standard quantum field theory techniques for averaging
over photon polarizations.

3 Tachyon emission from a heavy string: setup

In section 3.1 we establish our notation for labelling excited strings. In section 3.2 we
briefly discuss how we find excited string amplitudes , through amplitudes with tachyons
and photons. We also set up the kinematics for our decay process, which we will use in
section 5 when writing the amplitude as an explicit function of the angle θ of the outgoing
excited string and tachyon.

3.1 Excited strings

We have a massive string with momentum p and mass −p2 = 2(N−1) which decays into
another massive string with mass −p′2 = 2(N ′−1) and a tachyon of momentum k, −k2 =
−2, see figure 4(a). The ingoing string is in the excited state,∏

n,a

λ(a)
n ·A−n|0〉 , (3.1)

where Aµ−n excites the n’th mode of the string in the µ spacetime direction and λ(a)
n is the

polarization. We let there be gn excitations of mode n; the product over a above runs from 1
to gn and the product over n runs from one to infinity. If mode a n isn’t excited, then its gn is
zero, and that n is excluded from the product. The string is at level N , which sets its mass,

N =
∞∑
n=1

ngn , −p2 = 2(N − 1) . (3.2)

There are a total of J creation operators, J =
∑∞
n=1 gn.

The excited string emits a tachyon and decays into an excited string in the state,∏
n,a

λ′
(a)
n ·A−n|0〉 , (3.3)

where now the occupation number of level n is g′n, the polarizations are λ
′(a)
n , and the total

level and mass are,

N ′ =
∞∑
n=1

ng′n , −p′2 = 2(N ′ − 1) . (3.4)

There are a total of J ′ creation operators, J ′ =
∑∞
n=1 g

′
n.
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3.1. Excited strings
{sec:31}

We have a string with momentum p and mass �p2 = 2(N�1) which decays into another

massive string with mass �p02 = 2(N 0�1) and a tachyon of momentum k, �k2 = �2, see Fig. 4(a).

The ingoing string is in the excited state,

Y

n,a

�(a)

n ·A�n|0i , (3.1) {31}

where Aµ
�n excites the n’th mode of the string in direction Xµ and �(a)

n is the polarization. We let

there be gn excitations of mode n; the product over a above runs from 1 to gn and the product

over n runs from one to infinity. If mode n isn’t excited, then gn is zero, and that n is excluded

from the product. The string is at level N , which sets its mass,

N =
1X

n=1

ngn , �p2 = 2(N � 1) . (3.2)

There are a total of J creation operators, J =
P1

n=1 gn.

The excited string emits a tachyon and decays into an excited string in the state,

Y

n,a

�0(a)
n ·A�n|0i , (3.3) {33}

where now the occupation number of level n is g0n, the polarizations are �0(a)
n , and the total level

and mass are,

N 0 =
1X

n=1

ng0m , �p02 = 2(N 0 � 1) . (3.4)

There are a total of J 0 creation operators, J 0 =
P1

n=1 gn.

If one is agnostic as to the polarizations, the state of a string at level N is characterized by

the partition of N . As is well known, the number of states at level N – which is the number of

di↵erent partitions of N – grows exponentially with
p
N for large N . We will label the state by the

modes that are excited. For instance, at level N = 2, we can either excite the first mode (n = 1)

twice, which we label as (1, 1), or we can excite the second mode (n = 2) once, which we label as

(2). For N = 3 we have the states: (3), (2, 1), (1, 1, 1).

3.2. Kinematics
{sec:kin}

For most of the discussion we will not need to pick an explicit frame of reference. However, to

orient ourselves, it is useful to keep in mind the kinematics. It is convenient to choose kinematics
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(b)

Figure 4. (a) We compute the amplitude of a string of momentum p, in some definite excited
state, to decay into another string of momentum p′ in a definite excited state, via emission of a
tachyon of momentum k. The amplitude depends on the angle θ of the outgoing string and tachyon,
and the polarizations of the ingoing and outgoing strings. (b) This amplitude is extracted from the
amplitude involving a large number of “DDF photons” of momenta that are integer multiples of a
null vector q. These photons can be thought of as creating the excited string. The precise state of
the excited string sets the polarizations and momenta of the DDF photons.

If one is agnostic as to the polarizations, the state of a string at level N is characterized
by the partition ofN . As is well known, the number of states at level N —which is the num-
ber of different partitions of N — grows exponentially with

√
N for large N . We will label

the state by the modes that are excited. For instance, at level N = 2, we can either excite
the first mode (n = 1) twice, which we label as (1, 1), or we can excite the second mode (n =
2) once, which we label as (2). Likewise, for N = 3 we have the states: (3), (2, 1), (1, 1, 1).

3.2 Kinematics

For most of the discussion we will not need to pick an explicit frame of reference. However,
to orient ourselves, it is useful to keep in mind the kinematics. It is convenient to choose
kinematics in which the ingoing string is at rest. We take,

p =
√

2N−2(1,~0)
p′ = −(E′, ω sin θ, ω cos θ,~0)
k = −(Ek,−ω sin θ,−ω cos θ,~0) , (3.5)

where the energies are,

E′ = N+N ′−1√
2N−2

, Ek = N−N ′−1√
2N−2

, ω =
√

(N−N ′−1)2 + 4(N−1)√
2N−2

. (3.6)

This satisfies momentum conservation, p+ p′ + k = 0.
As mentioned earlier, we form an excited string by scattering so-called “DDF photons”

off of a tachyon [29, 30] (see also [24, 31–35]). The DDF photons have momenta that are
an integer multiple of q, where q is a null vector, q2 = 0. Specifically, to create the ingoing
excited string in the state (3.1), we start with a tachyon with momentum p+Nq. We then
successively scatter photons off of it — one photon for each creation operator in (3.1) —
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that have momenta −nq and polarization λ(a)
n . The same procedure applies to the outgoing

excited string: it can be thought of as created from a tachyon of momentum p′ +N ′q′ off
of which photons of momenta −nq′ and polarization λ′(a)

n are scattered. See figure 4(b).
More precisely, we will look at the amplitude of 3+J+J ′ particles. Of these, three

are tachyons: a tachyon of momentum p+Nq, a tachyon of momentum p′+N ′q′, and a
tachyon of momentum k. There are also J photons: gn photons with momenta −nq and
polarizations λ(a)

n (with a running from 1 to gn). And another J ′ photons: g′n photons of
momenta −nq′ and polarizations λ′(a)

n (with a running from 1 to g′n). The amplitude we
are interested in — of an excited string at level N decaying into excited string at level
N ′ and a tachyon — is the residue of the J + J ′ order pole of this amplitude, where the
intermediate strings are on-shell [25],

J∏
k=1

J ′∏
k′=1

A(m1,m2,...,mJ )(m′1,m′2,...,m′J )[
(p+Nq−

∑k

i=1miq)
2+2(

∑k

i=1mi−1)
][

(p′+N ′q′−
∑k′

i=1 m
′
iq
′)2+2(

∑k′

i=1m
′
i−1)

]
∼
A(m1,m2,...,mJ )(m′1,m′2,...,m′J )

(1− p·q)J(1− p′·q′)J ′ ,

where the excited ingoing string is labelled as (m1,m2, . . . ,mJ) and the excited outgoing
string is labelled as (m′1,m′2, . . . ,m′J).

We see that (at the on-shell pole we are interested in) the DDF photons which create
the ingoing massive string must have a q for which q·p = 1 (this can equivalently be seen
from the fact that we need 2 = (p+Nq)2). Likewise, the DDF photons forming the outgoing
massive string have momenta which is an integer multiple of q′ (which is proportional to
q) for which q′·p′ = 1.

Turning to the specific kinematics, with our choice of kinematics above the most general
q and q′ are,

q = −1√
2N−2

(1, sin β, cosβ,~0) , q′ = −1
ω cos(θ−β)− E′ (1, sin β, cosβ,~0) , (3.7)

where β is an arbitrary angle. Since the amplitudes will only depend on θ−β we can,
without loss of generality, set β to be any value we like; we take β = 0,

q = − 1√
2N−2

(1, 0, 1,~0) , q′ = −1
ω cos θ − E′ (1, 0, 1,

~0) . (3.8)

Let us look at the possible dot products of the various momenta: p, p′, k, q. The dot
products involving p, p′, k will all be constants. The dot products involving q are,

q·p′ = 1
q′·p

= −E
′ − ω cos θ√

2N−2
. (3.9)

This relation between q·p′ and q′·p is general: using that q′ is proportional to q, q′ = c q

where c is some constant, we can take the dot product with p which gives q′·p = c, or we
can take the dot product with p′ which gives 1 = c q·p′. Finally, there is the dot product
k·q which won’t explicitly enter our amplitudes, but in any case follows from momentum
conservation, k·q = −1− p′·q.

– 9 –



J
H
E
P
0
9
(
2
0
2
2
)
2
1
1

Each of the DDF photons will have a polarization. For the DDF photons forming the
ingoing massive string the polarizations will be denoted by λ, with potentially additional
superscripts or subscripts to distinguish multiple DDF photons, and the DDF photons
forming the outgoing massive string will have polarizations denoted by λ′. The polarizations
must be orthogonal to the momenta, λ·q = λ′·q′ = 0, and thus take the form,

λ = 1√
1 + |~Λ|2

(0, 1, 0, ~Λ) , λ′ = 1√
1 + |~Λ′|2

(0, 1, 0, ~Λ′) , (3.10)

with arbitrary ~Λ and ~Λ′. The auxiliary polarization ζ, see (2.4), satisfies ζ·p = 0 and is for
our kinematics,

ζµ = λµ − (λ·p)qµ = λµ , (3.11)
because we have λ·p = 0. Likewise, the auxiliary polarization for the outgoing DDF
photons, ζ ′µ = λ′µ − (λ′·p′)q′µ, satisfies ζ ′·p = 0 and for our kinematics is given by,

ζ ′µ = 1√
1 + |~Λ′|2

(
ω sin θ

E′−ω cos θ , 1, −ω sin θ
E′−ω cos θ ,

~Λ′
)
. (3.12)

We note that,
ζn·ζm = λn·λm , (3.13)

which is a coordinate invariant statement which follows from applying the definition (2.4)
of ζ and use of λ·q = 0.

Finally, for the circular polarizations λ± = 1√
2(0, 1, 0,±i,~0) and λ′± = 1√

2(0, 1, 0,±i,~0)
we have the following dot products for the corresponding ζ± and ζ ′±:

ζ± · p′ = −
1√
2
ω sin θ , ζ ′±·p = ω√

2
q′·p sin θ . (3.14)

Lastly, we need a formula which expresses decay rates in terms of amplitudes. The
familiar result in quantum field theory is,

dΓ = 1
2M

∏
f

dd−1pf
(2π)d−1

1
2Ef

 |A|2(2π)dδd(
∑

pi) , (3.15)

for the decay of a particle of mass M . For our kinematics, this becomes,
dΓ
dΩ = ωd−3

16(N−1)(2π)d−2 |A|
2 , (3.16)

where Ω is the solid angle. For a given set of occupation numbers for the ingoing string
and the outgoing string, we will want to compute the decay rate in which we are agnostic
as to the polarizations: we want to average over the ingoing polarizations and sum over
the outgoing polarizations. Averaging is proportional to summing, so the quantity we are
interested in is the sum of polarizations of the amplitude squared,∑

polarizations
|A|2 . (3.17)

In what follows we will compute the amplitudes for states with definite occupation numbers
and definite polarizations. In addition, for each set of occupation numbers, we will sum
over all polarizations of the square of the amplitude.
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4 The amplitude

We now turn to computing the amplitude.

4.1 Excited string decaying into two tachyons

Let us start with the special case in which the excited string decays into two tachyons
(N ′ = 0). This case is slightly simpler than the case in which the outgoing string is
excited. Also, for simplicity of notation, we mostly take the ingoing string to be in a state
in which the first k modes are each excited once — the modifications to the formulas for
not exciting some of these modes or exciting some of them multiple times is evident and
will be given in section 4.2.

Amplitude. We have an excited string in the state (see (3.1))
∏
n λn·A−n|0〉 with mo-

mentum p, which was formed by scattering DDF photons of momenta −nq and polarization
λn off of a tachyon of momentum p+Nq. It decays into a tachyon of momentum p′ and a
tachyon of momentum k. The amplitude is (see appendix B for the derivation),

A = ζ1,µ1 · · · ζk,µkA
µ1µ2···µk , (4.1)

where ζµn is defined in terms of the polarization λn for the n’th DDF photon,

ζn,µ = λn,µ − (λn·p)qµ , (4.2)

and the tensor part of the amplitude is found by differentiating a generating function,

Aµ1µ2···µk = ∂

∂J1,µ1
· · · ∂

∂Jk,µk
exp

( ∞∑
n=1

Jn·Vn +
∞∑

1=n≤m
Jn·JmWn,m

)∣∣∣∣
Jn=0

. (4.3)

The Vµn andWn,m that appear here are linear functions of the outgoing tachyon momentum
(p′) as well as nonlinear functions of its scalar product with the DDF photon momentum,
q·p′. Specifically, these functions are,

Vµn = − p
′µ
√
n

(1 + nq·p′)n−1
(n−1)! , Wn,m = nm

n+m
q·Vn q·Vm

q·p′+1
q·p′

, (4.4)

where (a)n is the Pochhammer symbol, (a)n = a(a+1) · · · (a+n−1) and which, explicitly,
for some low values of n are:

Vµ1 = −p′µ , Vµ2 = − p
′µ
√

2
(1+2q·p′) ,

Vµ3 = − p
′µ
√

3
1
2(1+3q·p′)(2+3q·p′) , W1,1 = 1

2q·p
′(1+q·p′) . (4.5)

For a general ingoing string state, if some mode n isn’t excited, then we simply exclude
the corresponding ∂

∂Jn,µn
term in (4.3). Analogously, if a mode n is excited multiple times

then we add an additional superscript index to distinguish the different DDF photons at
level n (the polarizations are taken to be λ(a)

n ), and we add in the corresponding number
of additional derivatives in (4.3), and modify the normalizations of the λ(a)

n so that the
state has unit norm. In the event that this isn’t clear, the next section will have an explicit
formula with the additional notation.
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Simple examples. Let us look at some simple cases. In the simplest case, in which only
mode n is excited, the amplitude is,

A = ζn·Vn , (4.6)

as is clear from taking a single derivative in (4.3). Taking n = 2 we recover our earlier
result (2.5). The next simplest case is the one in which the ingoing string has only two
modes, n and m, which are excited. The amplitude in this case is,

A = ζn·Vn ζm·Vm + ζn·ζmWn,m , (4.7)

which results from (4.3), i.e.

A = ζn,µζm,νAµν , Aµν = ∂

∂Jn,µ

∂

∂Jm,ν
exp (Jn·Vn+Jm·Vm+Jn·JmWn,m)

∣∣∣
Jn=Jm=0

.

(4.8)
If n = m, then we add a superscript to distinguish the two polarizations, i.e.,

A = ζ (1)
n ·Vn ζ (2)

n ·Vn + ζ (1)
n ·ζ (2)

n Wn,n . (4.9)

Setting n = m = 1 gives the A(1,1),(0) which we wrote earlier in (2.8). Analogously, if we
excite three modes (n,m, k) the amplitude is,

A = ζn·Vnζm·Vmζk·Vk + (ζn·ζmWn,mζk·Vk + perm.) . (4.10)

The pattern is clear.
A special case is when all the DDF photons are left-circular polarized, or they are all

right-circular polarized. Then the dot products of all the polarizations are zero and the
amplitude becomes,

A(+,...,+) = A(−,...,−) =
∏
n

1√
gn!

(ζ+·Vn)gn . (4.11)

Here we’ve added back in that mode n can be excited gn times; i.e, we took the ingoing
string to be in the state

∏
n

1√
gn!(λ+·A−n)gn |0〉 where λ+ is the right-circular polariza-

tion (2.4) and ζ+ is the corresponding ζ, where recall that ζµ = λµ − (λ·p)qµ. In (4.11)
we are of course only taking the product over the n for which gn is nonzero, so as to only
include the state normalization factor 1/

√
gn! for those modes.

Polarization average. We have computed the amplitudes with an arbitrary polarization
for the ingoing excited string. An obvious question is which polarization we actually want.
Indeed, we have a set of polarization vectors {λ(a)

n }, and each polarization vector can be
an arbitrary superposition of the basis vectors. Specifying the polarizations is too much
information. The usual approach in quantum field theory is to assume that we don’t
measure the polarization, and perform an average over all polarizations for the ingoing
state. This is what we will do here. As we emphasized in the introduction, the advantage
of our approach for computing amplitudes with excited strings — by viewing them in terms
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of amplitudes having exclusively tachyons and photons — is that it is straightforward to
perform the sum over polarizations.

Specifically, the scattering cross-sections involve the square of the amplitude. We would
like to average the square of the amplitude over all polarizations. As is standard in quantum
field theory, we do this by using that, within an amplitude,

∑
polarizations λ

∗
µλν → ηµν . Doing

this for our amplitude A given in (4.1)–(4.3), we find that (see appendix B.1),∑
polarizations

|A|2 = Lµ1ν1Lµ2ν2 · · ·LµkνkA
µ1µ2···µkAν1ν2···νk , (4.12)

where we defined,
Lµν = ηµν − pµqν − pνqµ + p2qµqν . (4.13)

Lµν serves as a projection operator and has the following properties:

Lµνp
ν = Lµνq

ν = 0 , LαβLρση
βσ = Lαρ Lµν = Lνµ , Lµνη

µν = LµνL
µν = D−2 .

(4.14)
The result (4.12) is simple. We emphasize that the averaging is over the λ polarizations
which are the physical ones (and not the ζ, which are auxiliary vectors we have constructed).
If in the amplitude we had just λ instead of ζ, then in (4.12) we would have had ηµν instead
of Lµν . The Lµν elegantly accounts for the ζ.5

Simple examples. Let us look at (4.12) for some simple cases involving only a few
excited modes, and see how it reproduces our earlier results. For instance, if the ingoing
string has only mode n excited, the amplitude is (4.6) and (4.12) becomes,∑

polarizations
|A|2 = LµνAµAµ , Aµ = Vµn . (4.15)

Taking n = 2, we recover our earlier result (2.7).
Next, let us look at the case in which the ingoing string has modes n and m each

excited once. The amplitude is (4.7) and (4.12) becomes,∑
polarizations

|A|2 = Lµ1ν1Lµ2ν2Aµ1µ2Aν1ν2 , Aµν = VµnVνm + ηµνWn,m . (4.16)

Taking n = m = 1 we recover the earlier result (2.11).
As our last example, if we have an ingoing string in which modes n, m, and k are each

excited once, the amplitude is (4.10) and we see that (4.12) gives,∑
polarizations

|A|2 = Lµ1ν1Lµ2ν2Lµ3ν3Aµ1µ2µ3Aν1ν2ν3 ,

Aµ1µ2µ3 = Vµ1
n Vµ2

m V
µ3
k +

(
Wn,mη

µ1µ2Vµ3
k + perm.

)
(4.17)

5A simple way to see how Lµν appears is the following. Recall that for a massive vector boson of momen-
tum pµ and mass m, inside the polarization sum of the square of the amplitude one has

∑
λ
λ∗µλν → Pµν ,

where Pµν = ηµν − pµpν

m2 and has the property that Pµνpν = 0. This is a consequence of the orthogonality
of the polarization to the momentum, εµpµ = 0. Our particles have momenta that are p plus different
multiples of q. Lµν achieves orthogonality regardless of what the multiple of q is, by being orthogonal to
both p and q individually.
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To summarize this section: we have looked at the decay of an excited string at level N
with momentum p into two tachyons of momenta p′ and k. The state of the excited string
is parameterized by a choice of partition of N (dictating which modes are excited) along
with the polarizations λ(a)

n of the excited modes, see (3.1). The amplitude is given by (4.1)
and (4.3), and the square of the amplitude summed over polarizations is given by (4.12).

4.2 Excited string decaying into an excited string and emitting a tachyon

We now turn to the more general case, of an excited string at level N decaying into an
excited string at level N ′ through emission of a tachyon. As in the previous section (which
took N ′ = 0) the ingoing string is in the general state (3.1) at level N , while the outgoing
string is also in the general state (3.3) at level N ′.

We are interested in the amplitude for arbitrary choices of polarization, and we are
interested in the square of the amplitude summed over polarizations.

Amplitude. We begin with the amplitude. We show in appendix B that the amplitude is,

A =
∏
n,a

ζ
(a)
n,µan

ζ ′
(a)
n,µ′an

Aµ1
1···µ′11 ··· , (4.18)

where, to be clear, Aµ1
1···µ′11 ··· contains

∑
n gn unprimed indices (one for each polarization

vector associated with the ingoing string) and
∑
n g
′
n primed indices (one for each polar-

ization vector associated with the outgoing string), and takes the form,

Aµ1
1···µ′11 ··· =

∏
n,a

∂

∂J (a)
n, µan

∂

∂J ′(a)
n, µ′an

Agen
∣∣∣
J

(a)
n,µan

=J ′(a)
n,µ′an

=0
, (4.19)

where Agen is,6

Agen = exp
(∑
n,a

(
J (a)
n ·Vn + J ′(a)

n ·V ′n
)

+
∑

n,m,a,b

(
J (a)
n ·J (b)

m Wn,m + J ′(a)
n ·J ′(b)m W ′n,m + J (a)

n ·J ′(b)m Mn,m

))
. (4.20)

Here Vµn and Wn,m were given earlier in (4.4). Exchanging p with p′ and q with q′, gives
V ′µn and W ′n,m,

V ′µn = (−1)n+1 p
µ

√
n

(1 + nq′·p)n−1
(n−1)! , W ′n,m = nm

n+m
q′·V ′n q′·V ′m

q′·p+1
q′·p

. (4.21)

6The explicit range of summation is: in
∑

n,a
J

(a)
n ·Vn we have 1 ≤ n ≤ ∞ and 1 ≤ a ≤ gn; in∑

n,a
J
′(a)
n ·V ′n we have 1 ≤ n ≤ ∞ and 1 ≤ a ≤ g′n; in

∑
n,m,a,b

J
(a)
n ·J(b)

m Wn,m we have 1 ≤ n,m ≤ ∞
and 1 ≤ a ≤ gn and 1 ≤ b ≤ gm, unless a = b, in which case we restrict to n ≤ m, or n = m, in which
case we restrict to a ≤ b (as we do not want the same term to appear twice); a similar condition holds for∑

n,m,a,b
J
′(a)
n ·J ′(b)m W ′n,m but with prime indices; and for

∑
n,m,a,b

J
(a)
n ·J ′(b)m Mn,m we have 1 ≤ n,m ≤ ∞

and 1 ≤ a ≤ gn and 1 ≤ b ≤ g′m.
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Finally, the term arising from the contraction of the ingoing and the outgoing DDF photons
is,

Mn,m = −q·Vn q′·V ′m
nm(1+q·p′)
m+nq·p′ . (4.22)

Notice that Mn,m is invariant under p, q, n ↔ p′, q′,m, as it should be. To see this, note
that 1+q·p′

m+q·p′ = 1+q′·p
n+mq′·p , where we used (3.9): q·p′ = 1/q′·p.

The amplitude is seemingly ambiguous, because of the dependence on q and q′, which
are not uniquely specified. However as discussed earlier, below (3.7), a rotation of q and
q′ is simply a coordinate rotation, shifting the origin of θ.

Polarization sum. We now square the amplitude and sum over polarizations of the in-
going string and the outgoing string. The result is similar to the one in the previous section,
which had N ′ = 0 (4.12), but with additional L′µν factors coming from the polarizations of
the outgoing string. In particular (see appendix B.1), the square of the amplitude summed
over polarizations is, ∑

polarizations
|A|2 =

∏
n,a

Lµanνan L
′
µ′an ν

′a
n
Aµ1

1···µ′11 ···Aν1
1···ν′11 ··· , (4.23)

where Lµν was given earlier in (4.13) and L′µν is the projection operator for the outgoing
string, defined analogously to Lµν ,

L′µν = ηµν − p′µq′ν − p′νq′µ + p′2q′µq
′
ν . (4.24)

Simple examples. To get oriented with the formula for the amplitude and the
polarization-summed amplitude squared, let us look at some simple examples.

First, we notice that if N ′ = 0 we may set all the J ′(a)
n terms in Agen to zero, and

the amplitude reduces to what we had in section 4.1 where we took N ′ = 0 at the outset.
Notice also that the amplitude has a symmetry between excitations of the ingoing string
and excitations of the outgoing string — to get between ingoing and outgoing one adds a
prime: p, q, ζµ ↔ p′, q′, ζ ′µ.

Next, we look at a simple example: consider exciting mode n for the ingoing string
and mode m for the outgoing string. The amplitude (4.18) is then,

A = ζn,µζ
′
m,µ′Aµµ

′
,

∑
polarizations

|A|2 = LµνL
′
µ′ν′Aµµ

′Aνν′ , Aµµ′ = VµnV ′
µ′

m + ηµµ
′Mn,m .

(4.25)
As another example, if we excite modes n and m for the ingoing string and mode k for the
outgoing string, the amplitude is,

A = ζn,µ1ζm,µ2ζ
′
k,µ′1
Aµ1µ2µ′1 ,

∑
polarizations

|A|2 = Lµ1ν1Lµ2ν2L
′
µ′1ν
′
1
Aµ1µ2µ′1Aν1ν2ν′1

Aµ1µ2µ′1 = Vµ1
n Vµ2

m V ′
µ′1
k +

(
Wn,mη

µ1µ2V ′µ
′
1
k +Mn,kη

µ1µ′1Vµ2
m +Mm,kη

µ2µ′1Vµ1
n

)
. (4.26)

The pattern should be clear.
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Another special case is when all the DDF photons are left-circular polarized (or they
are all right-circular polarized). Then the dot products of all the polarizations are zero and
the amplitude becomes,

A(+,...,+)(+,...,+) = A(−,...,−)(−,...,−) =
∏
n

1√
gn!

(ζ+·Vn)gn
∏
n

1√
g′n!

(ζ ′+·V ′n)g′n , (4.27)

where the first product is only over the n for gn is nonzero, and the second product is only
over the n for which g′n is nonzero.

5 Examples

In the previous section we found the amplitude A (4.18) for the decay of an excited string
at level N in an arbitrary state into another excited string at level N ′ in an arbitrary state
and a tachyon. We also found the square of the amplitude, summed over polarizations of
the ingoing string and polarizations of the outgoing string, (4.23). Using the kinematics
in section 3.2 in which the ingoing string is at rest, these can be written as functions of
the angle θ of the outgoing string/tachyon. In this section we write the amplitude and the
polarization summed square amplitude explicitly for various excited string states at low
values of N and N ′.

The simplest case is N = 1 and N ′ = 0 — a photon decaying into two tachyons. We
won’t include it because it isn’t compatible with our chosen kinematics of the initial string
at rest. The next simplest case, N = 2 and N ′ = 0, was discussed in section 2. So we
begin with N = 2 and N ′ = 1.

5.1 N = 2, N ′ = 1

We can partition N = 2 in two ways: (2) (the second string mode is excited once) and
(1, 1) (the first string mode is excited twice). We look at each case in turn.

Ingoing state (2). The amplitude is given by (4.25) with n = 2 and m = 1. Explicitly,

A(2)(1) = − 1√
2

(1 + 2q·p′)ζ2·p′ζ ′1·p+
√

2ζ2·ζ ′1(1 + q·p′) . (5.1)

In the helicity basis the amplitude is,

A(+)(+)
(2)(1) = − 1√

2
(cos θ+ cos(2θ)) , A(+)(−)

(2)(1) = 1√
2

(cos θ− cos(2θ)) , A(I)(I)
(2)(1) =

√
2 cos θ .

(5.2)
We have not written the other two choices of helicity, because the amplitudes are always
invariant under a flip of all polarizations. So, A(+)(+)

(2)(1) = A(−)(−)
(2)(1) and A(+)(−)

(2)(1) = A(−)(+)
(2)(1) .

Squaring the amplitude and taking the sum over the polarizations (or directly using
eq. 4.23) we get, ∑

polarizations
|A(2)(1)|2 = cos 4θ + (D−3) cos 2θ +D−2 . (5.3)
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Ingoing state (1, 1). The amplitude is given by (4.26) with n = m = k = 1. Explicitly,

N−1A(1,1)(1) = ζ (1)
1 ·p′ ζ

(2)
1 ·p′ ζ ′1·p− ζ

(2)
1 ·p′ ζ

(1)
1 ·ζ ′1 − ζ

(1)
1 ·p′ ζ

(2)
1 ·ζ ′1 + 1

2ζ
(1)
1 ·ζ

(2)
1 ζ ′1·p q·p′(1 + q·p′) ,

(5.4)
where the normalization factor is N−2 = 1 + |ζ (1)

1
∗·ζ (2)

1 |2 (here and for what follows we will
be assuming |ζ (1)

1 |2 = |ζ (2)
1 |2=1). In the helicity basis the amplitude is,

A(+,+)(+)
(1,1)(1) = −1√

2
sin θ(1 + cos θ) , A(+,+)(−)

(1,1)(1) = 1√
2

sin θ(1− cos θ) ,

A(+,−)(+)
(1,1)(1) = A(+,−)(−)

(1,1)(1) = −1
4 sin 2θ , A(+,I)(I)

(1,1)(1) = − sin θ , A(I,I)(+)
(1,1)(1) = 1

4
√

2
sin 2θ .

The sum over polarizations is,

∑
polarizations

|A(1,1)(1)|2 = 1
8 sin2 θ ((D+6) cos 2θ + 17D−42) . (5.5)

As a check, notice that if we further sum over the ingoing states — (2) and (1, 1) —
we get,

∑
polarizations

|A(2)(1)|2 +
∑

polarizations
|A(1,1)(1)|2 = 1

32 (65D−154− (D−26) cos 4θ) , (5.6)

which is a constant for D = 26, as expected.

5.2 N = 3, N ′ = 0

We can partition N = 3 in three ways: (3) (the third string mode is excited once), (2, 1)
(the second string mode is excited once and the first string mode is excited once), (1, 1, 1)
(the first string modes is excited three times). We look at each case in turn.

Ingoing state (3). The amplitude is given by (4.6) with n = 3. Explicitly,

A(3)(0) = −1
2
√

3
(1 + 3q·p′)(2 + 3q·p′)ζ3·p′ . (5.7)

In the helicity basis the amplitude is,

A(+)
(3)(0) = −1

8
√

2
sin θ

(
1− 27 cos2 θ

)
. (5.8)

The sum over polarizations is,

∑
polarizations

|A(3)(0)|2 = 1
64 sin2 θ

(
1−27 cos2 θ

)2
. (5.9)
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Ingoing state (2, 1). The amplitude is given by (4.7) with n = 2 and m = 1. Explicitly,

A(2,1)(0) = (1 + 2q·p′)ζ1·p′ ζ2·p′ +
2
3q·p

′(1 + q·p′)(1 + 2q·p′)ζ1·ζ2 . (5.10)

In the helicity basis the amplitude is,

A(++)
(2,1)(0) = 3

√
3

2
√

2
sin2 θ cosθ , A(+−)

(2,1)(0) = 7cosθ−3cos3θ
4
√

6
, A(II)

(2,1)(0) = cosθ(3cos2θ+1)
4
√

6
.

The sum over polarizations is,

∑
polarizations

|A(2,1)(0)|2 = cos2 θ

192 (9(D+22) cos 4θ + 12(D−98) cos 2θ + 11D+914) . (5.11)

Ingoing state (1, 1, 1). The amplitude is given by (4.10) with n = m = k = 1 (and
with the polarizations having a superscript distinguishing them). Explicitly,

N−1A(1,1,1)(0) = −ζ (1)
1 ·p′ ζ

(2)
1 ·p′ ζ

(3)
1 ·p′ −

1
2q·p

′(1 + q·p′)
(
ζ (1)

1 ·ζ
(2)
1 ζ (3)

1 ·p′ + perm.
)
, (5.12)

where the normalization factor is,

N−2 = 1 + |ζ (1)
1
∗·ζ (2)

1 |2 + |ζ (1)
1
∗·ζ (3)

1 |2 + |ζ (2)
1
∗·ζ (3)

1 |2 + (ζ (1)
1
∗·ζ (2)

1 ζ (2)
1
∗·ζ (3)

1 ζ (3)
1
∗·ζ (1)

1 + c.c.) . (5.13)

In the helicity basis the amplitude is,

A(+++)
(1,1,1)(0) = 3

4 sin3 θ , A(++−)
(1,1,1)(0) =

√
3

16 sinθ (7−3cos2θ) , A(II+)
(1,1,1)(0) =

√
3

64 (3sin3θ−sinθ) .

The sum over polarizations is,

∑
polarizations

|A(1,1,1)(0)|2 = 3 sin2 θ

1024 ((9D+48) cos 4θ + 12(D−48) cos 2θ + 11(D+48)) .

(5.14)
As a check, notice that if we further sum over the ingoing states — (3), (2, 1) and

(1, 1, 1) — we get,∑
polarizations

|A(3)(0)|2 +
∑

polarizations
|A(2,1)(0)|2 +

∑
polarizations

|A(1,1,1)(0)|2

= 32668 + 634D
12288 + D−26

12288 (817 cos 2θ + 534 cos 4θ + 63 cos 6θ) , (5.15)

which is a constant for D = 26, as expected.

6 Discussion

Previous attempts to study highly excited strings have run up against the challenge of
characterizing the high dimensional polarization tensor of the strings. This is overcome
here, by building excited strings out of photons. Our main result, given in section 4.2, is a
well-organized expression for the amplitude for an excited string to decay into an excited
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string and a tachyon, as well as the decay rate for the process, which involves the square of
the amplitude averaged over ingoing polarizations and summed over outgoing polarizations.
The expression is compact — encoded in terms of derivatives of an exponential generating
function, yet complex, reflecting the intricate structure of an excited string, whose state at
mass level N is characterized by the choice of partition of N .

We looked at explicit expressions for the amplitudes, as functions of the kinematic
angle, for various string states of low mass. The next step, which is our real interest, is to
look in more detail at the amplitudes for highly excited strings, and study the behavior of
the microstates versus the ensemble. The microcanonical ensemble here is all highly excited
strings at a given mass level. In fact, long ago — as a test of the correspondence principle
between excited strings and black holes [20–22] (see also [36–38]) — Amati and Russo [39,
40] computed the emission spectrum from an ensemble of excited strings, averaging over
all strings at a given mass, finding the expected blackbody spectrum for a low energy
photon emitted from the high mass string. A fundamental set of questions throughout
statistical mechanics is: how does the behavior of the microstates differ from the ensemble,
how is it that for many coarse-grained observables the microstate and the ensemble are
indistinguishable, and which observables retain memory of the microstate? We are now
equipped to address this in the context of a highly excited string — an especially important
quantum many-body system — emitting a single tachyon or photon. We hope to report
on this in future work.
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A Excited string vertex operators

In this appendix we review the DDF vertex operators as constructed in [29], see also [24, 31].
Recall that the vertex operator for the tachyon is eip·X , whereas the vertex operator for

an excited string takes the form of a polynomial of ∂kXµ for various powers of k. Specifi-
cally, the DDF vertex operator is a polynomial made up of q·∂kX and ζ·∂kX for various k.

We first write down the DDF vertex operator which creates a string in which mode n is
excited, 1√

n
λn·A−n|0〉. The expression will require some unpacking. The vertex operator is,

V(n)(z) = ζn·Pn eip·X , (A.1)

where, as in the main body of the text, ζn,µ = λn,µ − (λn·p)qµ and,

Pµn (z) = 1√
n

n∑
m=1

i

(m−1)!∂
mXµ Sn−m(U (n)

r ) . (A.2)

Here Sn(ur) is a function of the set of variables {ur} with integer r, which is defined by
a contour integral,

Sn(ur) =
∮

0

dw

2πi
1

wn+1 exp
(

n∑
r=1

urw
r

)
. (A.3)
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To obtain the explicit expression for a given n, one can Taylor expand the exponential to
pick out the wn term, which is the one that contributes. For instance, for the first three
values of n,

S1(ur) = u1 , S2(ur) = 1
2u

2
1 + u2 , S3(ur) = 1

6u
3
1 + u1u2 + u3 . (A.4)

For our expression (A.2) the variables ur are U (n)
r (the r denotes the label of the set; the

n is an additional index),
U (n)
r = −n i

r!q·∂
rX . (A.5)

Combining everything, we see that the DDF vertex operator is, for instance, for n = 2,

V(2) = 1√
2

(
iζ2·∂2X + 2(ζ2·∂X)(q·∂X)

)
eip·X . (A.6)

Let us check that this is correct. The standard way of constructing vertex operators
is in the covariant formalism. One looks for operators annihilated by the Virasoro gener-
ators (corresponding to physical states; reflecting diffeomorphism invariance of the string
worldsheet). At level-two this gives the vertex operator,(

iξµ∂
2Xµ + ξµν∂X

µ∂Xν
)
eip·X , (A.7)

where the Virasoro constraints require that the polarization vector ξµ and tensor ξµν satisfy,

ξµ − pνξµν = 0 , ηµνξµν − 2p·ξ = 0 . (A.8)

Our DDF vertex operator (A.6) is precisely of this form, with ξµ = 1√
2ζ2,µ and ξµν =

1√
2(ζ2,µqν + ζ2,νqµ). The Virasoro constraints are automatically satisfied. This is one of

the major advantages of using DDF vertex operators, which becomes particularly apparent
at high level: as opposed to covariant vertex operators, in which the polarization tensors
have a sequence of Virasoro constraints they must satisfy, for the DDF vertex operators
the constraints are automatically satisfied.

Now let us look at the DDF vertex operator for two excited modes, corresponding to
the state 1√

nm
(λn·A−n)(λm·A−m)|0〉. It is given by,

V(n,m) = (ζn·Pn ζm·Pm + ζn·ζm Sn,m) eip·X , (A.9)

where the term associated with the dot product of the polarizations is defined as,

Sn,m = 1√
nm

m∑
l=1

l Sn−l(U (n)
r )Sm+l(U (m)

r ) , for m ≥ n , Sm,n = Sn,m . (A.10)

For instance, for n = m = 1,

V(1,1) = −
(
ζ (1)

1 ·∂X ζ (2)
1 ·∂X + 1

2ζ
(1)
1 ·ζ

(2)
1

(
iq·∂2X + (q·∂X)2

))
eip·X . (A.11)

This is consistent with the vertex operator in covariant form (A.7), with the identification,

ξµ = −1
2ζ

(1)
1 ·ζ

(2)
1 qµ , ξµν = −1

2
(
ζ (1)

1 ·ζ
(2)
1 qµqν + ζ (1)

1,µζ
(2)
1,ν + ζ (1)

1,νζ
(2)
1,µ

)
. (A.12)

Again, the Virasoro constraints (A.8) are automatically satisfied.
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Finally, the DDF vertex operator for the general state
∏∞
n=1

∏gn
a=1

1√
n
λ

(a)
n ·A−n|0〉 is,7

V = eip·X
∏
n,a

ζ(a)
n ·

∂

∂J
(a)
n

exp

∑
n,a

J (a)
n ·Pn +

∑
n,m,a,b

J (a)
n ·J (b)

m Sn,m

 ∣∣∣
J=0

. (A.13)

In short, every polarization ζ(a)
n must appear one, and it can appear either by being con-

tracted into Pn, or by being contracted with some other polarization ζ(b)
m and come with a

factor of Sn,m.
Let us briefly comment on the normalization of the states, and correspondingly of the

vertex operators. The state with a single creation operator, 1√
n
λn·A−n|0〉, has the inner

product |λn|2, as a result of the string theory conventions for the commutation relations,
[An, A−m] = nδn,m. This is the origin of the 1/

√
n factor in Pµn in (A.2) and Sn,m in (A.10).

Furthermore, we would like the state to have inner product equal to one, so we pick the
normalization of λn so that |λn|2=1. Notice that if we have a state in which we excite the
same mode twice, such as,

1
n

(λ(1)
n ·A−n)(λ(2)

n ·A−n)|0〉 , (A.14)

then we pick the polarizations to have the normalization |λ(1)
n |2|λ(2)

n |2 + |λ(1)
n
∗·λ(2)

n |2 = 1.

B Derivation of the amplitude

We will compute a three-point amplitude, with an excited string of momentum p, another
excited string of momentum p′, and a tachyon of momentum q. The amplitude is given by,

A = 〈V (z)V ′(z′)eik·X(w)〉 , (B.1)

where the vertex operator for the excited string of momentum p sits at z and was given
in appendix A, (A.13), the vertex operator for the excited string of momentum p′ sits
at z′ and is given by (A.13) but with primed variables instead of unprimed variables,
p, ζ, q → p′, ζ ′, q′, and the tachyon sits at w. By SL2 invariance, we are allowed to choose
any z, z′, w, and after computing the correlator we will take,

z = 0 , z′ = 1 , w =∞ . (B.2)

Using the explicit form of the vertex operator (A.13), we may write the amplitude as,

A =
∏
n,a

ζ(a)
n ·

∂

∂J
(a)
n

ζ ′
(a)
n ·

∂

∂J ′(a)
n

Agen
∣∣∣
J=J ′=0

, (B.3)

where,

Agen =
〈

exp
(∑
n,a

(
J (a)
n ·Pn(z)+J ′(a)

n ·P ′n(z′)
)

+
∑

n,m,a,b

(
J (a)
n ·J (b)

m Sn,m(z)+J ′(a)
n ·J ′(b)m S′n,m(z′)

))
eip·X(z)eip

′·X(z′)eik·X(w)
〉
. (B.4)

7The explicit range of summation in the exponent of (A.13) is: in the first term we have 1 ≤ n ≤ ∞ and
1 ≤ a ≤ gn; in the second term we have 1 ≤ n,m ≤ ∞ and 1 ≤ a ≤ gn and 1 ≤ b ≤ gm, unless a = b, in
which case we restrict to n ≤ m, or n = m, in which case we restrict to a ≤ b (as we do not want the same
term to appear twice).
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We now need to compute this correlation function. This is straightforward, since Xµ is a
free field with the two-point function,

〈Xµ(z1)∂Xν(z2)〉 = ηµν

z12
. (B.5)

We simply need to perform the Wick contractions. We start with Pn(z), defined in (A.2).
We look at the terms in which it contracts with the exponentials eip′·X(z′)eik·X(w). We may
make the replacement,

i

(m−1)!∂
mXµ → −p′µ

(z′ − z)m −
kµ

(w−z)m → −p
′µ , (B.6)

where for the second arrow, we set the points to be (B.2). Likewise, we may make the
replacement, U (n)

r (z)→ Û (n)
r where,

Û (n)
r = n

r

(
p′·q

(z′−z)r + k·q
(w−z)r

)
→ n

r
p′·q , (B.7)

where for the second replacement we set the points to be (B.2). Finally, since

Sm

(
n

r
p′·q

)
= (np′·q)m

m! , (B.8)

we have that inside the expectation value,

Pµn (z)→ − p
′µ
√
n

n∑
m=1

Sn−m

(
n

r
p′·q

)
= Vµn , (B.9)

where Vµn was defined in (4.4). Turning to Sn,m defined in (A.10), using (B.8) we have that
inside the expectation value,

Sn,m →
1√
nm

m∑
l=1

l Sn−l

(
n

r
p′·q

)
Sm+l

(
m

r
p′·q

)
=Wn,m , (B.10)

where we did the sum over l, and Wn,m was defined in (4.4)
Similar results carry over for the primed variables. Namely, we may make the replace-

ment,
i

(m−1)!∂
mXµ → −pµ

(z − z′)m −
kµ

(w−z′)m → (−1)m+1pµ , (B.11)

where for the second arrow, we set the points to be (B.2). Likewise, we make the replace-
ment, U ′(n)

r (z′)→ Û (n)
r where,

Û (n)
r = n

r

(
p·q′

(z−z′)r + k·q′

(w−z′)r
)
→ (−1)rn

r
p·q′ . (B.12)

Now since,

Sm
(
Û (n)
r

)
= (−1)m (np·q′)m

m! , (B.13)

– 22 –



J
H
E
P
0
9
(
2
0
2
2
)
2
1
1

inside the expectation value we have,

P ′
µ
n(z′)→ pµ√

n

n∑
m=1

(−1)m+1(−1)n−mSn−m
(
n

r
p·q′

)
= V ′µn , (B.14)

with V ′µn defined in (4.21). Likewise, S′n,m →W ′n,m, also defined in (4.21).
Finally, we need to look at the term coming from the contraction of Pn(z) and Pm(z′).

Using (A.2) we get,

〈Pµn (z)P νm(z′)〉 = ηµν
1√
nm

∑
l1,l2

(−1)l1+1(l1+l2−1)!
(l1−1)!(l2−1)!

1
(z − z′)l1+l2 Sn−l1

(
Û (n)
r

)
Sm−l2

(
Û ′

(n)
r

)
,

(B.15)
where we used (B.5), which upon differentiating gives,

〈∂l1Xµ(z)∂l2Xν(z′)〉 = (−1)l1 (l1+l2−1)!
(z − z′)l1+l2 . (B.16)

Taking the points to be at locations (B.2) we get,

〈Pµn (z)P νm(z′)〉 = ηµν
(−1)m+1
√
nm

∑
l1,l2

(l1+l2−1)!
(l1−1)!(l2−1)!

(np′·q)n−l1
(n−l1)!

(mp·q′)m−l2
(m−l2)! = ηµνMn,m ,

(B.17)
whereMn,m was defined in (4.22) and we used (B.8) and (B.13) and that q·p′ = 1/q′·p.

In total, we have recovered the amplitude claimed in the main body of the text, (4.19)
and (4.20).

B.1 Averaging over polarizations

In this appendix we derive the sum over DDF photon polarizations of the square of the
amplitude given in the main body of the text, (4.23).

We start by recalling the standard result in quantum field theory, that one may replace
a sum over photon polarizations as

∑
λ λ
∗
µλν → ηµν . This is easy to see. Let us write the

amplitude as A = λµAµ, where we have separated out the dependence of the amplitude
on the polarization λµ of some particular photon. We take a basis of photon polarizations
(see (3.10)) to be λ = (0, 1, 0, 0) and λ = (0, 0, 0, 1), where we have restricted to four
dimensions for simplicity. This gives for the sum,∑

λ

|A|2 =
∑
λ

λ∗µλνAµAν = |A1|2 + |A3|2 . (B.18)

However, the amplitude is invariant under λµ → λµ + qµ (the photon momentum is pro-
portional to qµ), and so qµAµ = 0. With our qµ in (3.8) this gives A0 +A2. Consequently,
−|A0|2 + |A2|2 = 0 and we may replace (B.18) with,∑

λ

|A|2 = ηµνAµAν , (B.19)

as desired.
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Now we need to apply this result to our amplitude (4.19) for the decay of an excited
string into another excited string and a tachyon.

To start, let us look at the amplitude for an ingoing string that has two modes excited
and an outgoing string that is a tachyon. This was given in (4.7),

A = ζn·Vnζm·Vm + ζn·ζmWn,m , (B.20)

where it is important to remember that ζn,µ ≡ λn,µ − (λn·p)qµ. We square the amplitude,

|A|2 = |ζn·Vnζm·Vm|2 + ((ζn·Vnζm·Vm)(ζn·ζmWn,m)∗ + c.c.) + |ζn·ζmWn,m|2 , (B.21)

and sum over the polarizations by replacing
∑
λ(λµn)∗λνn → ηµν . We do this for each of the

three terms above. For the first term we find that,∑
polarizations

|ζn·Vnζm·Vm|2 = (LµνVµnVνn)(LαβVαmVβm) , (B.22)

where we defined,
Lµν = ηµν − pµqν − pνqµ + p2qµqν , (B.23)

which serves as a projection operator. Lµν has the following properties,

Lµνp
ν = Lµνq

ν = 0 , LαβLρση
βσ = Lαρ Lµν = Lνµ , Lµνη

µν = LµνL
µν = D−2 .

(B.24)
Likewise, the sum over polarizations of the second term in (B.21) is,∑

polarizations
(ζn·Vnζm·Vm)(ζn·ζm)∗ = LµνVµnVνm , (B.25)

and finally, for the last term in (B.21) we have,∑
polarizations

|ζn·ζm|2 = D−2 , (B.26)

where D is the spacetime dimension (it arises from ηµνη
µν = D−2). Summing these three

contributions, we can write them in the following instructive form,∑
polarizations

|A|2 = LµνLαβ(VµnVαm + ηµαWn,m)(VνnVβm + ηνβWn,m) = LµνLαβAµαAνβ .

(B.27)
This reproduces the answer (4.16) that was claimed in the main body of the text.

Repeating this derivation for a few more examples, it becomes clear that in general
the result is the equation (4.23) given in the main body of the text.

B.2 Photon emission

In the bulk of the paper we computed the amplitude of an excited string to decay into
another excited string, via emission of a tachyon. In this appendix we modify the formulas
for the case in which, instead of a tachyon, a photon is emitted.
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The three-point amplitude with an excited string of momentum p, another excited
string of momentum p′, and a photon of polarization ε and momentum k is given by,

A = 〈V (z)V ′(z′) ε·∂X(w) eik·X(w)〉 , (B.28)

where V (z) and V ′(z′) are the vertex operators for the excited strings. The amplitude is
similar to the earlier amplitude we studied, (B.1), in which a tachyon is emitted — the
distinction is that the photon vertex operator has an additional ε·∂X(w) factor.

Inserting the vertex operators for the excited strings, and performing the Wick con-
tractions, the amplitude can be written as,

A =
∏
n,a

ζ(a)
n ·

∂

∂J
(a)
n

ζ ′n
(a)· ∂

∂J ′n
(a)A

ph
gen

∣∣∣
J=J ′=0

, (B.29)

where the generating function is,

Aph
gen =

(
ε·p′ −

∑
n,a

nq·p′+n
1+nq·p′ q

′·Vn J (a)
n ·ε+

∑
n,a

nq′·p+n
1+nq′·p q·V

′
n J
′
n

(a)·ε
)
Agen , (B.30)

where Agen is the generating function (4.20) for the case in which a tachyon is emitted.
The distinction between the amplitude for photon emission versus tachyon emission is due
to the additional terms, linear in the photon polarization, which are generated by all the
possible Wick contractions of the operator ε·∂X. In fact, a simple way of getting (B.30) is
to generalize (4.20) to the case in which all three strings are excited, and then specialize
to the case in which one of the excited strings is in the first excited state.

Turning to the kinematics, in the frame in which an excited string at rest decays, it is
given by,

p =
√

2N−2(1,~0)
p′ = −(E′, ω sin θ, ω cos θ,~0)
k = −ω(1,− sin θ,− cos θ,~0) , (B.31)

with
ω = N −N ′√

2N − 2
, E′ = N +N ′ − 2√

2N − 2
. (B.32)

This kinematics is a slight variation of the kinematics in the main body (3.5) for tachyon
emission.

Open Access. This article is distributed under the terms of the Creative Commons
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