
J
H
E
P
0
9
(
2
0
2
2
)
1
9
7

Published for SISSA by Springer

Received: July 13, 2022
Accepted: September 13, 2022
Published: September 23, 2022

The geometry of decoupling fields

Ibrahima Bah,a,b Federico Bonetti,c Enoch Leunga and Peter Wecka
aDepartment of Physics and Astronomy, Johns Hopkins University,
3400 North Charles Street, Baltimore, MD 21218, U.S.A.
bInstitute for Advanced Study,
1 Einstein Drive, Princeton, NJ 08540, U.S.A.
cMathematical Institute, University of Oxford,
Woodstock Road, Oxford, OX2 6GG, U.K.
E-mail: iboubah@jhu.edu, federico.bonetti@maths.ox.ac.uk,
yleung5@jhu.edu, pweck1@jhu.edu

Abstract: We consider 4d field theories obtained by reducing the 6d (1,0) SCFT of N
M5-branes probing a C2/Zk singularity on a Riemann surface with fluxes. We follow two
different routes. On the one hand, we consider the integration of the anomaly polynomial
of the parent 6d SCFT on the Riemann surface. On the other hand, we perform an
anomaly inflow analysis directly from eleven dimensions, from a setup with M5-branes
probing a resolved C2/Zk singularity fibered over the Riemann surface. By comparing the
4d anomaly polynomials, we provide a characterization of a class of modes that decouple
along the RG flow from six to four dimensions, for generic N , k, and genus. These modes
are identified with the flip fields encountered in the Lagrangian descriptions of these 4d
models, when they are available. We show that such fields couple to operators originating
from M2-branes wrapping the resolution cycles. This provides a geometric origin of flip
fields. They interpolate between the 6d theory in the UV, where the M2-brane operators
are projected out, and the 4d theory in the IR, where these M2-brane operators are part of
the spectrum.

Keywords: Anomalies in Field and String Theories, Field Theories in Higher Dimensions,
Global Symmetries, M-Theory

ArXiv ePrint: 2112.07796

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP09(2022)197

mailto:iboubah@jhu.edu
mailto:federico.bonetti@maths.ox.ac.uk
mailto:yleung5@jhu.edu
mailto:pweck1@jhu.edu
https://arxiv.org/abs/2112.07796
https://doi.org/10.1007/JHEP09(2022)197


J
H
E
P
0
9
(
2
0
2
2
)
1
9
7

Contents

1 Introduction and summary 1

2 Review of the eleven dimensional flux setups 7

3 Anomaly polynomials in class Sk from inflow 9
3.1 Integrated anomaly polynomial from six dimensions 9
3.2 Anomaly inflow from eleven dimensions 10
3.3 Matching the two sides: decoupled modes and flip fields 12

4 Wrapped M2-branes and flip fields 15

5 The case of genus one 17
5.1 The Y p,q quiver theories from inflow 18
5.2 More quiver theories and flip fields at genus one 20

6 Central charges 22
6.1 Computational setup 23
6.2 Salient properties of the central charge 24
6.3 Exact results for uniform flux configurations 28
6.4 Perturbative analysis 30
6.5 Genus-one cases 31

7 Conclusion and outlook 31

A Review of the E3
4 contribution to anomaly inflow 33

B Computation of the E4X8 contribution to anomaly inflow 34
B.1 Contribution from the resolved orbifold singularities 34
B.2 Other contributions and final result 38
B.3 Comparison with [26] 39

C Anomaly inflow computation for the torus case 39

D Change of basis between flavor and resolution flux quanta 42

1 Introduction and summary

The reduction of higher-dimensional superconformal field theories (SCFTs) to lower di-
mensions has proven to be a powerful framework to construct non-trivial field theories,
study their properties, and, more broadly, organize the space of quantum field theories
(QFTs) using topological and geometric tools. One of the most prominent realizations of
this paradigm is provided by class S constructions [1, 2] and their generalizations [3–13].
The central idea is to start with a 6d SCFT and reduce it on a Riemann surface, triggering
a renormalization group (RG) flow that can yield a non-trivial 4d SCFT in the IR.

In most instances, the parent 6d SCFT admits a realization in string/M/F-theory.
Indeed, an atomic classification of 6d (1,0) SCFTs has been proposed in F-theory [14]. When
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an explicit string theoretic construction of the parent SCFT is available, we have two ways
of thinking about the resulting 4d SCFT: it is the IR fixed point of a purely field-theoretic
RG flow from six dimensions, and it is also the QFT capturing the low-energy dynamics of
a string theory setup with four non-compact dimensions of spacetime. As a simple example,
we may consider the 6d (2,0) SCFT of type AN−1, which can be realized by a stack of
N M5-branes. This 6d SCFT can be reduced on a smooth Riemann surface preserving
4d N = 2 or N = 1 supersymmetry, depending on the choice of topological twist [1, 7].
In M-theory, the M5-brane stack is wrapped on the Riemann surface, and the choice of
topological twist is mapped to the topology of the normal bundle to the M5-branes.

In this work, we explore a generalization of this circle of ideas to 4d N = 1 SCFTs of
class Sk [8]. In the class Sk program, the parent 6d SCFT is the 6d (1,0) theory realized
by a stack of N M5-branes probing a C2/Zk singularity. The global symmetries of this
SCFT for generic N , k include the SU(2)R R-symmetry and a U(1)× SU(k)× SU(k) flavor
symmetry.1 This 6d (1,0) SCFT is reduced on a Riemann surface with a topological twist
that preserves 4d N = 1 supersymmetry. The data that specify the construction include
the topology of the Riemann surface, possible defects (punctures) that can decorate the
Riemann surface, and a choice of fluxes for global symmetries of the 6d (1,0) SCFT.

For simplicity, in this paper we restrict our attention to the case of a smooth Riemann
surface without punctures. Even in this simpler class of setups, the RG flow from six to
four dimensions can exhibit subtle features, such as a non-trivial pattern of modes that
decouple along the flow, as demonstrated in [12] for reductions on tori with flux.

In the construction of Lagrangian models for 4d SCFTs originating from reductions of
a 6d SCFT, it is not unusual to encounter flip fields, i.e. gauge singlets φ that participate in
a superpotential coupling Wflip = φO, where O is a gauge invariant operator (for example,
a baryonic operator constructed from a bifundamental field in a quiver gauge theory). For a
gauge theory of sufficiently large rank, the superpotential coupling Wflip = φO is irrelevant:
in the deep IR, the flip field φ is expected to behave as a free field, and therefore decouple
from the interacting SCFT. Flip fields are ubiquitous in the literature on class S and its
generalizations [8, 11, 13, 15–24], and appear in particular in many models studied in [12].
One of the aims of this work is to revisit this class of models, with the aim of shedding light
on the origin of flip fields from a geometric M-theory perspective.

The main goal of this paper is to contrast the field-theoretic point of view on Sk
constructions with a point of view based on a direct construction from M-theory, as
illustrated in figure 1. Our objective is two-fold:
(i) Identify the M-theory setups that correspond to class Sk reductions on a smooth

Riemann surface with non-zero fluxes for the global SU(k)2 flavor symmetry of the
parent 6d SCFT.

(ii) Exploit these M-theory setups to gain insights on the field theory flow from 6d to 4d.
Let us now proceed to summarize the main results of this paper.

1For k = 2, the U(1) factor enhances to SU(2). For N = 2 the flavor symmetry enhances to SU(2k). For
k = 2, N = 2, it enhances to SO(7). For the remainder of this work, we focus on the U(1)× SU(k)× SU(k)
symmetry of the general case. Moreover, we are cavalier about the global form of the symmetry group, since
it does not play a role in our discussion.
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Figure 1. Schematic depiction of the flows across dimensions considered in this work. On the
left: a stack of M5-branes with flat 6d worldvolume probes a C2/Zk singularity, yielding a 6d (1,0)
SCFT, plus 6d modes associated to free tensor, vector multiplets. The interacting 6d (1,0) SCFT is
reduced on a Riemann surface with fluxes. The outcome is organized into an interacting 4d SCFT,
and a collection of 4d free fields, interpreted as flip fields. On the right: a stack of M5-branes probes
a resolved C2/Zk singularity and is wrapped on a Riemann surface. At low energies, this M-theory
setup gives the same 4d SCFT, plus other 4d modes coming from free tensor, vector multiplets
on the Riemann surface. The blue, solid arrows denote anomaly inflow from the 11d bulk onto
the M5-branes. The red, hollow arrows denote the purely field-theoretical reduction of the 6d (1,0)
SCFT on the Riemann surface.

Inflow for wrapped M5-branes probing flux backgrounds. As far as objective (i) is
concerned, a natural proposal is as follows: in M-theory, we should consider a stack of
M5-branes that probes a resolved C2/Zk singularity, further wrapped on a Riemann surface.
The 11d background probed by the M5-branes is expected to be a flux background: a
non-zero G4-flux threads non-trivial 4-cycles, obtained combining the Riemann surface with
the 2-cycles originating from the resolution of the C2/Zk singularity.

The above discussion can be made more precise for k = 2. Indeed, in this case we
can establish a connection to a class of AdS5 solutions in 11d supergravity, first discussed
by Gauntlett, Martelli, Sparks, and Waldram (GMSW) [25]. These solutions take the
form of a warped product AdS5 ×wM6, in which the internal space M6 is a fibration of a
4-manifold M4 over a Riemann surface Σg. The space M4 can be regarded as a resolution
of the orbifold S4/Z2: the north and south pole of the S4 are fixed points of the Z2 action,
yielding locally R4/Z2 singularities; the singularity at each pole is resolved introducing a
2-cycle. The internal G4-flux configuration is specified by three positive integer flux quanta,
which we denote by N , NN1 , NS1 . The flux quantum N measures G4-flux on the 4-cycle
given by the fiber M4 at a generic point of the base Σg. The integer NN1 quantifies instead
the G4-flux on the 4-cycle obtained by combining the Riemann surface with the resolution
2-cycle at the north pole of S4. Similar remarks apply to NS1 . We propose the following
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interpretation of this class of solutions: they describe the near-horizon geometry of a stack
of N wrapped M5-branes probing a resolved C2/Z2 singularity [26].

As discussed in [27], the topology and G4-flux configuration of the internal space M6
for k = 2 admit a natural generalization for higher k. In this case, M6 is still taken to be
a fibration of a 4-manifold M4 over a Riemann surface Σ, but M4 is identified with the
resolution of the orbifold S4/Zk. The fixed points of the orbifold action are locally R4/Zk
and can be resolved by blow-up, introducing a collection of k − 1 resolution 2-cycles near
each pole of the S4. The G4-flux configuration is described by a total of 2k− 1 flux quanta,
N , {NNi}

k−1
i=1 , {NSi}

k−1
i=1 , in direct analogy to the GMSW solution.

Explicit AdS5 solutions in which the internal space M6 has the topology described
in the previous paragraph are not known for k > 2. While the relevant BPS system is
well-studied [25, 28], the search for such solutions proves to be a challenging task. This is
certainly an important problem, but one which we choose to set aside for the purposes of
this paper. Our working assumption is that the topology and flux configuration for k > 2
can be realized in the near horizon limit of a well-defined M-theory setup.

Crucially, in order to extract the physical consequences of our working assumption we
do not need an explicit holographic solution. Building on [29, 30], systematic methods have
been developed [31] (see also [32]) to compute the inflow anomaly polynomial I inflow

6 for the
wrapped M5-branes probing the resolved singularity, using as input the topology and flux
configuration of M6. The quantity I inflow

6 is a 6-form characteristic class that captures the
anomalous variation of the bulk 11d supergravity action in the presence of the wrapped
M5-branes. According to the standard anomaly inflow paradigm, I inflow

6 is expected to be
canceled by the ’t Hooft anomalies of the 4d degrees of freedom living along the non-compact
directions of the M5-brane stack. The computation of I inflow

6 was performed in [26] for
k = 2 and in [27] for general k, at cubic order in the flux quanta (which originate from the
2-derivative C3G4G4 coupling in the M-theory effective action). In this work we complete
the computation of I inflow

6 by deriving the terms linear in the flux quanta (which originate
from the higher-derivative coupling C3X8).

Comparison with the integrated anomaly polynomial in field theory. In order
to contrast the field-theoretical and M-theory perspectives on class Sk theories, it is natural
to compare the quantity I inflow

6 on the M-theory side with the quantity
∫

Σg I
SCFT
8 on the

field theory side. Here, ISCFT
8 denotes the anomaly polynomial of the parent interacting

6d (1,0) SCFT [33], and
∫

Σg I
SCFT
8 denotes the 6-form characteristic class obtained upon

integrating ISCFT
8 on the Riemann surface, taking into account both R-symmetry and

flavor fluxes [12]. In particular, the quantity
∫

Σg I
SCFT
8 depends not only on N , k, and the

Euler characteristic χ of the Riemann surface, but also on the flavor fluxes for the Cartan
subgroups of the SU(k)2 flavor symmetry, denoted by Nbi , Nci , i = 1, . . . , k (subject to the
constraints ∑k

i=1Nbi = 0, ∑k
i=1Nci = 0).

One of the main results of this paper is a precise match between
∫

Σg I
SCFT
8 and I inflow

6 ,
including terms of order 1 in the flux parameters. The match takes the following form,

− I inflow
6 − Iv,t6 =

∫
Σg
ISCFT

8 − Iflip
6 = ISCFT

6 . (1.1)
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The 6-form ISCFT
6 is the anomaly polynomial of the interacting 4d SCFT of class Sk that we

want to study.2 The quantity Iv,t6 is the anomaly polynomial of a collection of free 4d fields,
which we interpret as the reduction on Σg of a free 6d tensor multiplet and free 6d vector
multiplets. The quantity Iflip6 is also the anomaly polynomial of a collection of free 4d fields,
but with a different interpretation: they are flip chiral multiplets, i.e. gauge singlets coupled
to 4d operators of the interacting 4d SCFT via irrelevant interactions. They are free fields,
but due to their superpotential couplings to non-trivial operators in the interacting SCFT,
they give large contributions to the integrated anomaly polynomial

∫
Σ I

SCFT
8 (here “large”

refers to the fact that these contributions scale with N and the flux quanta, and are not
order one fixed numbers). These contributions have to be suitably accounted for in order
to extract the anomaly polynomial ISCFT

6 of the interacting 4d SCFT from the integrated
polynomial

∫
Σ I

SCFT
8 . The role of flip fields in the field-theory flow from 6d to 4d is studied

in detail in [12] with several examples where the Riemann surface is a torus.
Our analysis furnishes a general expression for the contribution Iflip

6 of flip fields, for a
Riemann surface of arbitrary genus and for arbitrary values of k and the flux parameters.
Our findings match the results of [12] in the case of genus one.

The case k = 2 at genus one: D3-branes at the tip of Cone(Y p,q). In the special
case k = 2 and genus one, the GMSW solution is related by a chain of string theory dualities
to the AdS5 × Y p,q solutions in Type IIB string theory [25], which are holographically dual
to the SCFTs engineered by a stack of D3-branes at the tip of the Calabi-Yau cone over
Y p,q. By analyzing this special case, we find further evidence in favor of (1.1), by verifying
the relation

k = 2, genus g = 1: − I inflow
6 = ISCFT

6 (Y p,q) . (1.2)

The above equality holds exactly in N , and not only at large N . We confirm the map
between the p, q integers of Y p,q and the flux quanta on the M-theory side, established
in [34]. Notice that the term Iv,t

6 in the general relation (1.1) is absent in (1.2), because it
is proportional to the Euler characteristic of the Riemann surface.

Flip fields and M2-brane operators. The anomaly polynomial Iflip
6 encodes the anoma-

lies of the flip fields we encounter upon reducing the 6d (1,0) SCFT on the Riemann surface.
From the data in Iflip

6 it is straightforward to extract the charges and multiplicities of the
operators that get flipped. Such charges and multiplicities can be matched precisely with
those of wrapped M2-brane states in the M-theory setup.

In the case k = 2, one can resort to the explicit AdS5 GMSW solution to study
supersymmetric M2-brane probes, by identifying the calibrated 2-cycles in the internal
space M6 [34]. Moreover, the charges of the operators originating from these wrapped
M2-brane probes can be extracted systematically from the terms in the uplift ansatz for G4
that are linear in the external gauge fields. These are in turn conveniently extracted from
the same 4-form E4 that we utilize in the anomaly inflow computation.

2While we expect that the flows from six to four dimensions studied in this work yield non-trivial SCFTs
in the IR, we do not have a general proof. Our analysis of the case of genus one in section 5 and of the
central charges in section 6 supports our expectations.
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For k > 2 we do not have an explicit holographic solution, nor do we have a solution
describing the flux background probed by the M5-brane stack. For these reasons, a
direct analysis of the calibration conditions for wrapped M2-brane probes is challenging.
Nonetheless, we can identify non-trivial 2-cycles in the internal space M6. Motivated by the
analogy with the k = 2 case, we make the working assumption that the relevant non-trivial
2-homology classes in M6 admit a calibrated representative, so that the associated wrapped
M2-brane operators are BPS. We can then proceed to compute their charges from the 4-form
E4 utilized in the anomaly inflow analysis. We obtain a perfect match with the charges of
the operators that are flipped by the fields in Iflip

6 . Moreover, we can also reproduce their
multiplicities: they are simply given by the units of G4 flux threading the relevant 2-cycle
(combined with the Riemann surface), by virtue of a standard Landau-level degeneracy
argument [35], which we review in section 4.

The identification of charges and multiplicities of flipped operators, and wrapped M2-
brane operators, suggests the following physical picture. The wrapped M2-branes operators
are associated to blow-up modes for the C2/Zk singularity. In the 6d (1,0) SCFT, however,
such modes are not present [36–44]. In contrast, we expect the M2-brane operators to
be part of the spectrum of the 4d theory obtained by reduction on the Riemann surface.
Indeed, in Lagrangian models, they are baryonic operators. As a result, a mechanism is
needed to interpolate between six and four dimensions; this mechanism is precisely given by
the flip fields from the term Iflip

6 . They act as Lagrange multipliers that project away the
wrapped M2-brane operators in the integration of the anomaly polynomial on Σg. In the
4d theory, they are expected to be free fields and decouple, thus effectively reintroducing
the M2-brane operators.

Central charges. We study a-maximization [45] on the combination −I inflow
6 − Iv,t

6 , in
order to support the interpretation of this quantity as the anomaly polynomial of the
interacting SCFT of class Sk. By a combination of analytic and numeric methods, we
explore vast regions of the flux parameter space. Our findings provide evidence for the
existence of a unique local maximum of the trial a central charge. The resulting a and c
are compatible with the Hofman-Maldacena bounds [46].

Organization of the paper. The rest of this paper is organized as follows. In section 2
we review the M-theory flux setups studied in [27], giving a brief account of the isometries
and topology of the relevant internal space M6. In section 3 we discuss the anomaly
inflow computation (including the E4X8 contribution) and we present in detail the main
relation (1.1), giving the explicit expressions for Iv,t

6 and Iflip
6 . Section 4 is devoted to the

match between the charges and multiplicities of the flip fields entering Iflip
6 , and those of

operators originating from M2-branes wrapping resolution 2-cycles in M6. In section 5
we focus on the case in which the Riemann surface is a torus, establishing a precise
correspondence with D3-brane theories dual to AdS5 × Y p,q, for k = 2. We also consider
some explicit Lagrangian examples with k = 2, 3. In section 6 we use a-maximization to
compute conformal and flavor central charges from −I inflow

6 − Iv,t
6 and establish various

properties of these quantities. We conclude with an outlook in section 7. Several appendices
collect useful material and detailed derivations.
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2 Review of the eleven dimensional flux setups

In this section we summarize the basic features of the internal space M6 in the putative 11d
flux backgrounds of relevance for the 4d field theories of Sk. For a more detailed account of
the geometry and homology of M6, we refer the reader to [27]. M6 is characterized by the
fibration

M4 ↪→M6 → Σg , (2.1)

where Σg is a Riemann surface of genus g, and M4 is the manifold obtained by resolving
the fixed points of the orbifold S4/Zk via a blow-up procedure,

M4 = [S4/Zk]resolved . (2.2)

This M4 is locally a multi-center Gibbons-Hawking space, with k − 1 2-cycles separated by
k (unit-charge) Kaluza-Klein monopoles aligned along a common axis. It admits two U(1)
isometries, and can be expressed in turn as a fibration

S1
ϕ ↪→M4 → S1

ψ ×M2 , (2.3)

where M2 is a compact 2d space. Schematically, the metric on M4 can be cast in the form

ds2(M4) = ds2(M2) +R2
ψ(η, θ)dψ2 +R2

ϕ(η, θ)Dϕ2 ,

Dϕ = dϕ− L(η, θ)dψ ,
(2.4)

where the angular coordinates η and θ span the 2d space M2. The S1
ψ circle shrinks

everywhere on the boundary ∂M2, at η, θ = 0, π. Before the blow-up, the orbifold fixed
points are labeled by η = 0, π, which we refer to here as the north and south poles,
respectively. After the blow-up, each pole is replaced by a chain of k− 1 resolution 2-cycles.
The k monopoles in the north carry Kaluza-Klein charge +1, while the k monopoles in
the south carry charge −1, with the relative sign accounting for the opposite orientations
relative to M2 at η = 0, π. There is a U(1) gauge symmetry associated with each resolution
2-cycle, so there is an overall U(1)k−1 symmetry in both the north and the south. The
topology of the S4/Zk and its resolved counterpart M4 are illustrated in figure 2.

The function L(η, θ) is piecewise constant on ∂M2, with its difference across a given
monopole measuring that monopole’s Kaluza-Klein charge. Labeling the resolution 2-cycles
in the north by i = 1, . . . , k − 1 and those in the south by i = k + 1, . . . , 2k − 1, we have
explicitly

`i ≡ L(ti < t < ti+1) =


i− k

2 for i = 1, . . . , k,

3k
2 − i for i = k + 1, . . . , 2k ,

(2.5)

where t is a periodic coordinate parameterizing the boundary ∂M2.
In the full internal space M6, twisting of M4 over the Riemann surface introduces a

U(1) connection over Σg to the form dψ. N = 1 supersymmetry is preserved specifically by
a topological twist [6, 7]

dψ → Dψ = dψ − 2πχAΣ . (2.6)
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η = π

η = 0

θ = 0θ = π M2

η = π

η = 0

θ = π θ = 0M2

i = k + 1

i = k + 2 i = 2k − 1

i = 2k

i = k

i = k − 1 i = 2

i = 1

Figure 2. Illustration of the topology of the unresolved S4/Zk space (left) and resolved M4 space
(right), with the ψ and ϕ angles suppressed, taken from [27]. The circle S1

ψ vanishes along the
entire boundary ∂M2, while S1

ϕ vanishes only at the 2k monopoles, labeled by the index i. The blue
bubbles represent the resolution 2-cycles connected by unit-charge Kaluza-Klein monopoles.

The quantity χ = 2(1− g) is the Euler characteristic of the genus-g Riemann surface, with
volume form VΣ normalized as

∫
Σg VΣ = 1, and AΣ is the local antiderivative of VΣ. This

topological twist leads to nontrivial relations in the homology of M6. Consider first the
2-cycles in M6. There are two types: the boundary 2-cycles in M4, and the Riemann surface
Σg itself, at the position of each of the monopoles. We thus have 4k total 2-cycles,

CΣ,i
2 = Σg|t=ti , Ci2 = [ti, ti+1]× S1

ϕ , (2.7)

one of each type for every i = 1, . . . , 2k. However, as described in [27], only 2k − 1 of
these 2-cycles are independent. The situation is analogous for the 4-cycles. The region M4
constitutes one 4-cycle in the full M6 space, as do the 2k pairings of the boundary 2-cycles
with Σg,

CC
4 = M4 , Ci4 = Ci2 × Σg = [ti, ti+1]× S1

ϕ × Σg . (2.8)

The topological twist (2.6) trivializes certain linear combinations of these 4-cycles, however,
2k∑
i=1
Ci4 = χCC

4 ,
2k∑
i=1

`i Ci4 = 0 , (2.9)

leaving 2k − 1 independent 4-cycles. It is convenient to adopt a complete basis of 4-cycles
C4,α consisting of the M4 bulk 4-cycle, the k− 1 4-cycles in the north, and the k− 1 4-cycles
in the south,

C4,α=C = CC
4 , C4,α=Ni=1,...,k−1 = Ci=1,...,k−1

4 , C4,α=Si=1,...,k−1 = Ci=2k−1,...,k+1
4 . (2.10)

The corresponding basis of 2k − 1 2-cycles Cα2 can be taken to be Poincaré-dual to these
4-cycles. Quantization of the M-theory 4-form flux G4 associates each 4-cycle with an integer,

N =
∫
CC

4

G4
2π , Ni =

∫
Ci4

G4
2π , (2.11)
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subject to linear constraints inherited from (2.9), namely,

2k∑
i=1

Ni = χN ,
2k∑
i=1

`iNi = 0 . (2.12)

In the basis (2.10), we have 2k − 1 independent flux quanta,

NNi=1,...,k−1 = Ni=1,...,k−1 , NSi=1,...,k−1 = Ni=2k−1,...,k+1 , NC = N . (2.13)

All told, the space M6 is characterized by the integer parameters k, χ, N , NNi , NSi .

3 Anomaly polynomials in class Sk from inflow

In this section we argue that the inflow anomaly polynomial for wrapped M5-branes probing
a resolved C2/Zk singularity is to be identified with the anomaly polynomial of a class Sk
theory, obtained from reduction of the parent 6d (1,0) SCFT on a smooth Riemann surface
with non-trivial SU(k)2 flavor fluxes. The identification holds up to the contribution of a
suitable collection of free fields, which we discuss in detail.

3.1 Integrated anomaly polynomial from six dimensions

Here we review briefly the integration of the 6d 8-form anomaly polynomial ISCFT
8 on a

smooth genus-g Riemann surface, with a non-trivial topological twist and flavor fluxes [12].
Let us stress that ISCFT

8 denotes the anomaly polynonomial of the interacting 6d (1,0) SCFT
realized by a stack of M5-branes probing a C2/Zk singularity [33], without the inclusion of
decoupled sectors, such as the center-of-mass mode of the stack.

The R-symmetry of the parent 6d (1,0) theory is SU(2)R. In the reduction to four
dimensions, the Chern root of the SU(2)R bundle is shifted to implement the topological
twist that preserves 4d N = 1 supersymmetry,

c2(SU(2)R) = −
[
c1(R′)− χ

2 VΣ
]2
. (3.1)

The label R′ on the 4d background Chern class c1(R′) is a reminder that this is a reference
R-symmetry, which does not generically coincide with the 4d N = 1 superconformal
R-symmetry RN=1.

For generic N , k, the 6d SCFT admits a U(1)s×SU(k)b×SU(k)c flavor symmetry. The
Chern roots of the SU(k)b, SU(k)c bundles are denoted by bi, ci (i = 1, . . . , k), respectively,
and they are subject to the constraints ∑k

i=1 bi = 0 = ∑k
i=1 ci. The reduction to four

dimensions is performed with the following Chern root shifts,

c1(U(1)s) = c1(t) , bi = c1(βi) +Nβi VΣ , ci = c1(γi) +Nγi VΣ . (3.2)

Notice in particular that, for simplicity, in this work we do not turn on a flavor flux for
the U(1)s symmetry. The quantities c1(t), c1(βi), c1(γi) are the first Chern classes of
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background fields for 4d U(1) global symmetries. We observe that c1(βi), c1(γi), as well as
the flavor fluxes Nβi , Nγi , are constrained quantities,

k∑
i=1

c1(βi) =
k∑
i=1

c1(γi) = 0 ,
k∑
i=1

Nβi =
k∑
i=1

Nγi = 0 . (3.3)

We find it convenient to adopt the following parametrizations of the above constraints,

Nβi = N
β̃i
−N

β̃i−1
, c1(βi) = c1(β̃i)− c1(β̃i−1) ,

Nγi = Nγ̃i
−Nγ̃i−1

, c1(γi) = c1(γ̃i)− c1(γ̃i−1) , i = 1, . . . , k , (3.4)

with the conventions N
β̃0

:= 0, N
β̃k

:= 0, c1(β̃0) := 0, c1(β̃k) := 0, Nγ̃0
:= 0, Nγ̃k

:= 0,
c1(γ̃0) := 0, c1(γ̃k) := 0.

We are now in a position to quote the result of the integration of the anomaly polynomial
ISCFT

8 of the parent 6d (1,0) SCFT on the Riemann surface Σg,∫
Σg
ISCFT

8 = −
[
k2(N2 +N − 1) + 2

]
χ(N − 1)

12 c3
1(R′) + k2χN(N2 − 1)

12 c1(R′) c2
1(t)

− 1
2
[
kN(N − 1)c2

1(R′)− kN2c2
1(t)

] k∑
i=1

[
Nβic1(βi) +Nγic1(γi)

]
+ kχN2(N − 1)

4 c1(R′)
k∑
i=1

[
c2

1(βi) + c2
1(γi)

]
+ kN2

2

k∑
i=1

[
Nβic1(t) c2

1(βi)−Nγic1(t) c2
1(γi)

]
(3.5)

+ kN3

6

k∑
i=1

[
Nβic

3
1(βi) +Nγic

3
1(γi)

]
+ N2(N − 1)

2

k∑
i=1

c2
1(βi)

k∑
j=1

Nβjc1(βj)

+ N2(N − 1)
2

k∑
i=1

c2
1(γi)

k∑
j=1

Nγjc1(γj)

+ N2

2

[
k∑
i=1

c2
1(βi)

k∑
j=1

Nγjc1(γj) +
∑
i

c2
1(γi)

k∑
j=1

Nβjc1(βj)
]

− (k2 − 2)χ(N − 1)
48 c1(R′) p1(T4)− kN

24

k∑
i=1

[
Nβic1(βi) +Nγic1(γi)

]
p1(T4) .

3.2 Anomaly inflow from eleven dimensions

The inflow anomaly polynomial for a stack of M5-branes probing a background associated
with the internal geometry M6 and background flux configuration G4 is given by [31]

− I inflow
6 =

∫
M6

[1
6 E

3
4 + E4 ∧X8

]
, X8 = 1

192

[
p1(TM11)2 − 4 p2(TM11)

]
. (3.6)

The closed and gauge-invariant 4-form E4 is constructed from G4 by including the external
gauge fields associated with the isometries and the non-trivial cohomology classes of M6.
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 region near 
resolved southern 

orbifold point 

MS
4

(k ≥ 2)

 region near 
resolved northern 

orbifold point 

MN
4

(k ≥ 2)

northern polar cap 
(  limit of )k = 1 MN

4

southern polar cap 
(  limit of )k = 1 MS

4

central region of M4

Figure 3. Pictorial depiction of the strategy used to evaluate the E4X8 contribution to the inflow
anomaly polynomial. In order to obtain the resolved orbifoldM4, we consider the central “cylindrical”
region of S4 away from the poles, and we glue in the resolved orbifolds at each pole. These include
resolution 2-cycles, depicted as small green circles in the figure. The central contribution is obtained
by taking a full S4 and removing small polar caps. The contribution of the latter is computed by
taking the limit k = 1 in the contribution of the resolved orbifolds.

The 8-form characteristic class X8 is built with the Pontryagin classes pi(TM11) of the
tangent bundle of the 11d spacetime.

The computation of the inflow anomaly polynomial for the flux setups reviewed in
section 2 is discussed in detail in [27] for general k, where the contribution of the E3

4 term
was studied. The contribution of the E4X8 term for general k is derived in appendix B. We
have a completely explicit expression for −I inflow

6 in terms of k, N , χ, the flux parameters
NNi , NSi , the external field strengths Fψ2 , Fϕ2 , F

Ni
2 , F Si

2 , and the first Pontryagin class
p1(TW4) of the external spacetime. Since this expression is quite complicated, however, we
refrain from reproducing it in the main text. The E3

4 contribution to −I inflow
6 is given in

appendix A, while the result for the E4X8 part can be found in appendix B.
Without going into the technical details of the E4X8 computation, it is interesting to

comment on the general strategy we follow, which is depicted pictorially in figure 3. The
main idea is to organize the contributions to E4X8 into a bulk part, originating from the
central region of S4 away from the poles, and the parts associated to the resolved orbifold
points at the north and south poles of the S4. Operationally, we obtain an expression for
the resolved orbifolds at the poles for generic k. If we specialize to k = 1, i.e. no orbifolding,
this contribution is identified with the contribution of the polar caps of S4, i.e. small
neighborhoods of the two poles. If we take the full S4 contribution, and we subtract these
polar caps for k = 1, we get the contribution of the central “cylindrical” region. Finally, we
glue back in the resolved orbifolds with the appropriate value k > 1, in order to get the
final desired result.

In concluding, we observe that the E3
4 contribution was computed in [27] using a

different strategy, but is nonetheless compatible with this cut-and-glue picture. Both for
E4X8, and for E3

4 , the contribution associated to the central region of M4 is equal to the
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inflow anomaly polynomial for a 4d N = 1 SCFT originating from the 6d (2, 0) SCFT of
type AN−1 with twist parameters p, q satisfying p = q [7].

3.3 Matching the two sides: decoupled modes and flip fields

Let us now discuss the relation between
∫

Σg I
SCFT
8 and −I inflow

6 . To this end, it is convenient
to introduce the following notation,

I free
6 (qR′ ; qt; qβ̃i ; qγ̃i) = 1

6

[
qR′ c1(R′) + qt c1(t) +

k−1∑
i=1

q
β̃i
c1(β̃i) +

k−1∑
i=1

qγ̃i c1(γ̃i)
]3

(3.7)

− 1
24 p1(TW4)

[
qR′ c1(R′) + qt c1(t) +

k−1∑
i=1

q
β̃i
c1(β̃i) +

k−1∑
i=1

qγ̃i c1(γ̃i)
]
.

This quantity is the anomaly polynomial of a free, positive-chirality Weyl fermion in four
dimensions, with prescribed charges qR′ , qt, qβ̃i , qγ̃i under the 4d U(1) symmetries U(1)R′ ,
U(1)t, U(1)

β̃i
, U(1)γ̃i , in the notation of section 3.1. The quantities c1(β̃i), c1(γ̃i) are the

unconstrained Chern roots defined by (3.4).
We can write the difference between

∫
Σg I

SCFT
8 and −I inflow

6 in terms of a collection of
free fermions, with anomaly given by (3.7) for appropriate charges. More precisely, we find

− I inflow
6 − Iv,t6 =

∫
Σg
ISCFT

8 − Iflip
6 , (3.8)

where Iv,t6 and Iflip
6 are given by

Iv,t6 = χ

2 (k − 2) I free
6
(
qR′ = 1; qt = 0; q

β̃i
= 0; qγ̃i = 0

)
+ χ

2
∑

1≤a<b≤k
I free

6
(
qR′ = 1; qt = 0; q

β̃i
= N Lia,b; qγ̃i = 0

)
+ χ

2
∑

1≤a<b≤k
I free

6
(
qR′ = 1; qt = 0; q

β̃i
= 0; qγ̃i = N Lia,b

)
, (3.9)

Iflip
6 =

∑
1≤a<b≤k

m
(β)
a,b I

free
6
(
qR′ = 1; qt = 0; q

β̃i
= N Lia,b; qγ̃i = 0

)
+

∑
1≤a<b≤k

m
(γ)
a,b I

free
6
(
qR′ = 1; qt = 0; q

β̃i
= 0; qγ̃i = N Lia,b

)
. (3.10)

Some remarks on our notation are in order. The quantities Lia,b can be identified with the
components of the positive roots of the Lie algebra su(k),

Lia,b = Lia − Lib , Lia = δa,i − δa,i+1 , 1 ≤ a < b ≤ k , i = 1, . . . , k − 1 . (3.11)

The multiplicity factors m(β)
a,b , m

(γ)
a,b are given in terms of the unconstrained flavor fluxes

N
β̃i
, Nγ̃i

introduced in (3.4) by the following expressions,

m
(β)
a,b = N

β̃a
−N

β̃a−1
−N

β̃b
+N

β̃b−1
, m

(γ)
a,b = Nγ̃a

−Nγ̃a−1
−Nγ̃b

+Nγ̃b−1
. (3.12)
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The relation (3.8) holds provided that we make the following identifications among quantities
related to anomaly inflow from eleven dimensions, and quantities related to integration
from six dimensions,

Fψ2
2π = 2 c1(R′) , Fϕ2

2π = −k c1(t) ,

FNi
2

2π = c1(β̃i) + 2
N χ

N
β̃i
c1(R′) , F

Sk−i
2
2π = −c1(γ̃i)−

2
N χ

Nγ̃i
c1(R′) ,

NNi =
k−1∑
j=1

(Ak−1)ij Nβ̃j
, NSk−i =

k−1∑
j=1

(Ak−1)ij Nγ̃j
. (3.13)

The quantities (Ak−1)ij are the entries of the Cartan matrix of su(k),

(Ak−1)ij = 2 δi,j − δi,j+1 − δi+1,j , i, j = 1, . . . , k − 1 . (3.14)

Notice the k−i label on southern quantities, as opposed to the i label on northern quantities.

Interpretation of Iv,t
6 . The free-field contributions in Iv,t6 are interpreted as originating

from the reduction on Σg of free fields in six dimensions, as suggested by the fact that they
are proportional to the Euler characteristic χ. The 8-form anomaly polynomials of a free
6d (1,0) tensor multiplet, and a free 6d (1,0) vector multiplet, are readily computed and
integrated on the Riemann surface, with the result

I
(1,0) tens
8 = −I(1,0) vec8 = −χ2 I

free
6
(
qR′ = 1; qt = 0; q

β̃i
= 0; qγ̃i = 0

)
. (3.15)

This observation suggests us to interpret the first line of Iv,t6 in (3.9) as a contribution
of one tensor and k − 1 vectors. The former is associated with the center of mass of the
M5-brane stack, while the latter is thought of as the Cartan generators of SU(k). By a
similar token, we interpret the other terms in (3.9) as coming from the reduction of 6d
W-bosons of SU(k), whose charges are indeed given by the roots of su(k).

Interpretation of Iflip
6 . While the free-field contributions in Iv,t6 have a 6d interpretation,

those in Iflip
6 are interpreted in four-dimensional terms. More precisely, we identify Iflip

6
with the anomaly polynomial of a collection of flip fields. Here, by flip field we mean a 4d
N = 1 chiral multiplet φ that couples to an operator O of the interacting 4d SCFT with a
superpotential coupling of the form

Wflip = φO . (3.16)

The field φ has canonical kinetic terms and, if it were not for (3.16), would be completely
decoupled from the 4d SCFT. Since the superpotential has R-charge 2 and is neutral under
other global symmetries, the coupling (3.16) implies

qR′ [Ψφ] = (2− qR′ [O])− 1 , qX [Ψφ] = −qX [O] , (3.17)
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where Ψφ denotes the fermion in the chiral multiplet φ, and qX is a shorthand notation
for qt, qβ̃i , qγ̃i . The charges qR′ [Ψφ], qX [Ψφ] are the charges given Iflip

6 in (3.10). They are
readily translated into charges of the operators O that get flipped,

flipped op.’s O(β)
a,b : qR′ [O(β)

a,b ] = 0 , q
β̃i

[O(β)
a,b ] = −N Lia,b , qγ̃i [O

(β)
a,b ] = 0 , (3.18)

flipped op.’s O(γ)
a,b : qR′ [O(γ)

a,b ] = 0 , q
β̃i

[O(γ)
a,b ] = 0 , qγ̃i [O

(γ)
a,b ] = −N Lia,b .

Notice how all flipped operators have zero charge under U(1)R′ .
In section 4 we match the charges of the flipped operators (3.18) with charges of

wrapped M2-brane states, and we comment further on the physical mechanism underlying
the flipping of these operators.

Flavor fluxes versus resolution fluxes: a geometric picture. Let us motivate the
identification (3.13) by considering the geometric interpretation of the flux quanta Nβ̃i

, Nγ̃i

in the 6d setup. Prior to compactification over the Riemann surface, the internal space
of the 6d theories is S4/Zk, and has two orbifold fixed points which can be resolved
by the set of 2-cycles Ci2 defined in (2.7). Associated with each 2-cycle is a U(1) flavor
symmetry. The only 4-cycle in such a setup is the (unresolved) S4/Zk that is analogous
to CC

4 ; there is no analogue of the 4-cycles Ci4 defined in (2.8). As a consequence, the flux
quanta Nβ̃i

, Nγ̃i assigned to the U(1)β̃i ,U(1)γ̃i flavor symmetries in the compactification
are naturally associated with Ci2 but not Ci4. From the perspective of the expansion

E4 ⊃ Nα(Ωα
4 )eq +N

Fα2
2π ∧ (ω2,α)eq , (3.19)

flux quanta are intrinsically paired to 4-cycles [27]. So we conjecture that Nβ̃i
, Nγ̃i are really

flux quanta with respect to the 4-cycles Poincaré-dual to the resolution 2-cycles Ci2 (after
reduction on the Riemann surface). In contrast, the flux quanta NNi , NSi were defined with
respect to the 4-cycles C4,Ni , C4,Si described in (2.10). Direct comparison between

∫
Σg I

SCFT
8

and −I inflow
6 therefore requires that we find the transformation matrices relating these two

distinct bases of homology classes. As worked out in appendix D, these transformation
matrices turn out to be block diagonal, with each of the two nontrivial blocks proportional
to Ak−1, the Cartan matrix of su(k). One may heuristically interpret this as a remnant of
the enhanced SU(k) symmetry present at each orbifold fixed point before being resolved
into k − 1 2-cycles with U(1) symmetries. Indeed, the identification in (3.13) is precisely
the change of basis we have described, with an additional sign change for the southern flux
quanta to preserve their positivity.

Next, we argue that the factor of 1/k in the identification (3.13) of the field strength
Fϕ2 with the Chern root c1(t) can be attributed to the different periodicities of t and ϕ.
More specifically, the periodicity of the angular variable t in the 6d theories is reduced from
2π to 2π/k by the Zk quotient, but the periodicity of ϕ in the inflow computation directly
from 11d is simply 2π by construction. In the former case, we gauge the U(1)t isometry as
(Dt)g = Dt−At1, while in the latter case we gauge the U(1)ϕ isometry as (Dϕ)g = Dϕ+Aϕ1 .
This motivates the identifications,

t = 1
k
ϕ , At1 = −1

k
Aϕ1 , F t2 = −1

k
Fϕ2 . (3.20)
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Lastly, the factor of 2 appearing in the identification (3.13) between Fψ2 /2π and c1(R′) is
needed to ensure an appropriate R-charge normalization [34].

4 Wrapped M2-branes and flip fields

Operators from M2-branes wrapping calibrated 2-cycles. The calibration condi-
tions for probe M2-branes wrapping 2-cycles in the internal space M6 were derived in [34],
where they were also analyzed for the k = 2 GMSW solutions. The homology classes of the
resolution 2-cycles of M4 (at a generic point on the Riemann surface) admit a calibrated
representative. In the notation of section 2, these homology classes are the Ci2 in (2.7) with
labels i = 1 and i = 3. Wrapping M2-brane probes on such 2-cycles yields BPS particle
states in the external spacetime.

A direct analysis of the calibration conditions for k ≥ 3 is challenging. Indeed, we do
not have an explicit AdS5 solution in which the internal space has the topology and flux
quanta of M6. Solutions describing the flux background probed by the M5-brane stack are
not known, either. For these reasons, we refrain from studying the calibration conditions for
M2-brane probes for k ≥ 3, and we make the following working assumption: the homology
classes of the resolution 2-cycles of M4 admit calibrated representative 2-cycles. We wrap
probe M2-branes on such cycles, getting BPS states in the external spacetime.

In what follows, we study for generic k ≥ 2 the charges and multiplicities of such
states. Crucially, these data do not depend on the (putative, for k > 2) explicit calibrated
representative, but only on its homology class.

Charges of M2-branes operators. The method for the computation of the charges of
wrapped M2-brane operators is explained in [34]. The key point is to use the standard
coupling of the 11d 3-form C3 to the worldvolume of the M2-brane probe. The desired
charges are extracted by integrating this 3d coupling along the compact directions of the
2-cycle wrapped by the M2-brane, thus extracting terms linear in the external gauge fields.

In order to determine how the external gauge fields enter the 11d 3-form C3, we resort
to the 4-form E4 used in the anomaly inflow computation. More precisely, we proceed as
follows: extract the terms in E4 that are linear in the external 2-form field strengths Fψ2 ,
Fϕ2 , FNi

2 , F Si
2 , and cast these terms as a total derivative of a 3-form δC3 that is linear in the

corresponding external gauge fields Aψ1 , A
ϕ
1 , A

Ni
1 , ASi

1 . All the relevant charges of interest
are then obtained by integrating δC3 on the 2-cycle wrapped by the M2-brane.

After these general preliminaries, we are in a position to outline the results we obtain
for the setups of interest in this work. The 3-form δC3 derived from E4 takes the form

δC3 ⊃ (ω2,β)g ∧Aβ1 + (Ω2,I)g ∧AI1 , (4.1)

where the label β runs over all independent 2-cycles in M6, while I is a collective label
for the isometry directions ψ, ϕ. The 2-forms (ω2,β)g are obtained from the harmonic
2-forms on M6 by means of the replacements dψ → dψ +Aψ1 , dϕ→ dϕ+Aϕ1 . The 2-forms
(Ω2,I)g are derived in the process of constructing the equivariant completion of the harmonic
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4-forms on M6. We refer the interested reader to [27], where the explicit expressions of
(ω2,β)g and (Ω2,I)g can be found.

The charges under the U(1) field strengths for flavor symmetries and isometries,
respectively F β2 and F I2 , can then by computed from the integrals

(Qβ)i = N

∫
Ci2

(ω2,β)g, (QI)i =
∫
Ci2

(Ω2,I)g. (4.2)

The results can be summarized in the following table, up to an overall orientation choice,

Qψ Qϕ QNj QSj mult.

i = 1, . . . , k − 1 χ−1NNi 0 −N (Ak−1)ij 0 NNi

i = 2k − 1, . . . , k + 1 χ−1NSi 0 0 +N (Ak−1)ij NSi

(4.3)

where we have written the flavor charges in terms of the entries of the Cartan matrix of
su(k). Notice that the charges are given in a basis that corresponds to the external gauge
fields in the anomaly inflow computation. Making use of (3.13), they are readily translated
to the basis used in the integration of the anomaly polynomial of the 6d SCFT,

QR′ Qt Q
β̃j

Qγ̃j mult.

i = 1, . . . , k − 1 0 0 −N (Ak−1)ij 0 NNi

i = 2k − 1, . . . , k + 1 0 0 0 −N (Ak−1)ij NSi

(4.4)

In the above tables we have also reported the multiplicity of the M2-brane operators, which
is derived as explained below.

Multiplicities of M2-branes operators. The multiplicities, or degeneracies, of the
states originating from an M2-brane probe wrapping a 2-cycle can be derived using a
Landau-level argument [35]. The probe M2-branes of interest in this work wrap a resolution
2-cycle Ci2 in M4, and sit at a point on Σg. Moreover, a non-trivial G4-flux is turned on
along the 4-cycle that results from combining the resolution 2-cycle Ci2 and the Riemann
surface Σg. As a result, the M2-brane behaves like a point particle on Σg, in the presence of
a non-zero magnetic field. This quantum-mechanical system exhibits a well-known Landau
degeneracy of states, which is simply given by the total magnetic flux, measured in units of
the minimal magnetic flux that can be turned on. This quantized magnetic flux is indeed
identified with the quantized G4-flux through the 4-cycle obtained combining Σg and Ci2.
In conclusion, the expected degeneracies of the wrapped M2-brane operators of interest are
simply given by the values of the corresponding G4-flux.

Comparison to flip fields. The anomaly polynomial Iflip
6 is interpreted as a sum over

flip fields. The charges of the corresponding flipped operators are collected in (3.18), for a
generic pair of labels a < b, a, b = 1, . . . , k. These pairs correspond to all positive roots of
su(k). Those pairs a < b with b = a + 1 correspond to the simple roots of su(k). Based
on standard intuition regarding M-theory on a Zk singularity, we expect the M2-branes
wrapping the (k − 1) resolution 2-cycles at the north and south poles to correspond to the
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simple roots of su(k)N, su(k)S. (The full set of positive roots corresponds to BPS bound
states of the M2-brane states corresponding to the simple roots.) Now, the identity

Lia,a+1 = (Ak−1)ai , a, i = 1, . . . , k − 1 , (4.5)

shows a match between the charges of the flipped operators in (3.18), and the charges of
M2-branes wrapping resolution 2-cycles in (4.4).

The multiplicities of the flip fields for generic a < b are reported in (3.12). Let us
specialize to b = a + 1, and combine (3.12) with the relations (3.13) between the flavor
fluxes and the resolution fluxes. We obtain

m
(β)
a,a+1 = NNa , m

(γ)
a,a+1 = NSa , a = 1, . . . , k − 1 . (4.6)

We thus verify that, for pairs with b = a+ 1, corresponding to simple roots, the multiplic-
ities that enter Iflip

6 coincide with the degeneracies given by the Landau-level argument
discussed above.

M-theory origin of the flipping mechanism. Recall that the flip fields enter the 4d
theory via the schematic superpotential coupling

Wflip = φO . (4.7)

Based on the previous analysis, we identify the flipped operators O with the operators
originating from M2-branes wrapping the resolution 2-cycles in the internal space. For
generic N , the coupling (4.7) is irrelevant. It is therefore important in the UV, where its
effect is to project out the operators O. This fits with the fact that the 6d parent SCFT
admits no blow-up modes for the C2/Zk singularity [36–44]. In contrast, (4.7) is irrelevant
in the deep IR, where the flip fields φ become free fields and decouple. The operators O are
thus effectively reintroduced in the 4d theory.

5 The case of genus one

In this section, we consider several explicit examples at genus one in order to gather evidence
for a series of connected claims:

• Since Iv,t6 drops out of (3.8) when χ = 0, in this case the quantity −I inflow6 provides
direct access to the anomaly polynomial of the corresponding 4d SCFT,

− I inflow6 = ISCFT6 . (5.1)

• The quantity we have called Iflip
6 in (3.8) is indeed the anomaly polynomial of the flip

fields that appear in the field-theoretic construction on tori with fluxes.

• The difference between
∫

Σg I
SCFT
8 and Iflip

6 as given by our formula (3.10) is indeed
equal to the anomaly polynomial of the interacting SCFT in four dimensions,∫

Σg
ISCFT

8 − Iflip
6 = ISCFT

6 . (5.2)
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Note that both the E3 contribution to the inflow anomaly polynomial recorded in appendix A
and the E4X8 contribution derived in appendix B are expressed in a form which only applies
for higher-genus Riemann surfaces, i.e. χ < 0. The genus-one result can be obtained either
by first using (3.13) and subsequently fixing χ = 0, or by repeating an analogous anomaly
inflow computation as in [27] with cohomology class representatives chosen consistently
with χ = 0 from the beginning (which we describe in appendix C). We have verified that
both paths produce the same result,

−I inflow6 (χ = 0) = −1
2
[
kN(N − 1)c2

1(R′)− kN2c2
1(t)

] k∑
i=1

[
Nβic1(βi) +Nγic1(γi)

]
+ kN2

2

k∑
i=1

[
Nβic1(t) c2

1(βi)−Nγic1(t) c2
1(γi)

]
+ N2(N − 1)

2

k∑
i=1

c2
1(βi)

k∑
j=1

Nβjc1(βj)

+ N2(N − 1)
2

k∑
i=1

c2
1(γi)

k∑
j=1

Nγjc1(γj)

+ N2

2

[
k∑
i=1

c2
1(βi)

k∑
j=1

Nγjc1(γj) +
∑
i

c2
1(γi)

k∑
j=1

Nβjc1(βj)
]

+ kN3

6

k∑
i=1

[
Nβic

3
1(βi) +Nγic

3
1(γi)

]
− kN

24

k∑
i=1

[
Nβic1(βi) +Nγic1(γi)

]
p1(T4)

−
∑

1≤a<b≤k
m

(β)
a,b I

free
6
(
qR′ = 1; qt = 0; q

β̃i
= N Lia,b; qγ̃i = 0

)
−

∑
1≤a<b≤k

m
(γ)
a,b I

free
6
(
qR′ = 1; qt = 0; q

β̃i
= 0; qγ̃i = N Lia,b

)
. (5.3)

We explore how the expression (5.3) can be used to verify the claims highlighted above in
various examples.

5.1 The Y p,q quiver theories from inflow

Consider the case k = 2 for genus one. Here we find that the equation (5.3) reproduces the
anomaly polynomial of the Y p,q quiver gauge theories, which can be engineered on a stack
of D3-branes at the tip of the Calabi-Yau cone over Y p,q [47].

The Y p,q are an infinite family of Sasaki-Einstein manifolds labeled by positive integers
p and q with 0 ≤ q ≤ p [25]. The holographic duals of the corresponding AdS5 × Y p,q

solutions in Type IIB string theory were constructed in [47], using an iterative procedure on
the quiver for Y p,p. The field content of this family of quiver gauge theories is summarized in
table 1. The quiver associated with Y p,q has 2p gauge groups, represented diagrammatically
by 2p nodes. All fields are in either a spin-0 or spin-1/2 representation of a global SU(2)
symmetry. There are two additional global U(1)’s, labeled here as U(1)B and U(1)F .
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Degeneracy U(1)B U(1)F U(1)ϕ U(1)R0

Y singlets p+ q p− q −1 0 1
Z singlets p− q p+ q 1 0 0
U doublets p −p 0 ±1/2 1/2
V doublets q q 1 ±1/2 1/2

Table 1. Field content for the infinite family of Y p,q quiver gauge theories. See, e.g. [47].

The anomaly polynomial for general Y p,q quiver gauge theories can be computed directly
from the field content and associated degeneracies, and is given by

ISCFT6 (Ypq) = N2

8 (p+ q) c1(R0)3 − 1
12
[
4c1(R0)2 − p p1(TW4)

]
c1(R0)

+ N2

4 (2p− q) c1(R0)2c1(F ) + N2

4 (p2 − q2) c1(R0)2c1(B)

− N2

8 (p+ q) c1(ϕ)2c1(R0) + N2q

4 c1(ϕ)2c1(F )− N2

4 (p2 − q2) c1(ϕ)2c1(B)

− N2p

2 [c1(F ) + p c1(B)]2 c1(R0)− N2p

2 (p2 + pq − q2) c1(B)2c1(R0)

+N2p2 [c1(F ) + q c1(B)] c1(B)c1(F ) . (5.4)

In virtue of a chain of dualities connecting the GMSW solution in 11d supergravity to the
AdS5 × Y p,q solutions in Type IIB, the internal manifold M6 in the corresponding inflow
setup is defined by k = 2 and χ = 0. The quantity −I inflow6 can be obtained for example
from (5.3),

−I inflow6 (k = 2, χ = 0) =

2N2
[
N
β̃1
c1(β̃1) +Nγ̃1

c1(γ̃1)
] (
c1(t)2 − c1(R′)2

)
− 4N2

[
N
β̃1
c1(β̃1)2 +Nγ̃1

c1(γ̃1)2
]
c1(R′) + 2N2

[
N
β̃1
c1(β̃1)c1(γ̃1)2 +Nγ̃1

c1(γ̃1)c1(β̃1)2
]

− 2N2
[
N
β̃1
c1(β̃1)3 +Nγ̃1

c1(γ̃1)3
]
− 1

12(N
β̃1

+Nγ̃1
)
[
4c1(R′)2 − p1(TW4)

]
c1(R′). (5.5)

Under the field strength redefinitions,

c1(β̃1) = 1
2 c1(F )− 1

2(p− q) c1(B)− 1
2 c1(R0) , c1(γ̃1) = −1

2 c1(F )− 1
2(p+ q) c1(B) ,

c1(R′) = c1(R0) , c1(t) = −1
k
c1(ϕ) ,

and the identifications
N
β̃1

= 2(p+ q), Nγ̃1
= 2(p− q) (5.6)

between the integers p, q and the resolution flux quanta N
β̃1
, Nγ̃1

, we verify an exact
match, ISCFT6 (Ypq) = −I inflow6 . This match supports our claim (5.1) that the topological
and geometric data of M6 fully characterize the anomaly polynomial of the corresponding
(genus-one) 4d SCFT.
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5.2 More quiver theories and flip fields at genus one

Next we revisit some explicit examples at genus one reported in [12] in order to provide
further evidence for the interpretation of Iflip

6 in (3.8) and the equality (5.2). In these
examples, we consider N to be generic, but make the implicit assumption that N is large
enough to ensure that all the couplings between flip fields and baryons are irrelevant. It
would be interesting to consider in greater detail low values of N , but we refrain from such
analysis in this work.

Example no. 1. Consider the gauge theory with the quiver depicted in figure 4 of [12],
reproduced for convenience as quiver (a) in figure 4. This theory corresponds to k = 2. In
our notation, the flavor fluxes are

N
β̃1

= 1 , Nγ̃1
= 0 . (5.7)

From the quiver one extracts the charges of all fields. These charges are: the charge q̂R
under a convenient reference R-symmetry (given in the caption of figure 4); the charges
q̂t, q̂β, q̂γ extracted from the exponents of the t, β, γ fugacities in the quiver. In order
to compare the quiver data with our formulae, we need the map between the charges
(q̂R; q̂t; q̂β ; q̂γ) of the quiver description, and the charges (qR′ ; qt; qβ̃1

; qγ̃1
) used in this work,

q̂R = qR′ −
1
3 qβ̃1

, q̂t = qt , q̂β = −q
β̃1
, q̂γ = −qγ̃1

. (5.8)

The last two relations simply state how to relate our conventions for the flavor charges
to those of [12]. The first relation encodes how the reference R-symmetry in the quiver
compares to the reference R-symmetry R′ from six dimensions.

According to our general formula (3.10), we have one species of flip field with charges
(qR′ ; qt; qβ̃1

; qγ̃1
) = (1; 0; 2N ; 0) and multiplicity 2, as computed from (3.12) using (5.7) (with

labels a = 1, b = 2). Making use of the dictionary (5.8), the charges in the notation of the
quiver are (q̂R; q̂t; q̂β; q̂γ) = (1− 2

3N ; 0;−2N ; 0). These are indeed the correct charges for
the (fermions in the chiral) fields that flip the baryons of the adjoints that carry an “X” in
the quiver diagram.

Finally, using again (5.7) and (5.8), one can verify (5.2), where the anomaly of the
SCFT is extracted from the quiver, simply ignoring the flip fields. (The gauge singlets
associated with the arrows that connect a node to itself are kept, because they participate
in relevant superpotential couplings.) Note that due to the restriction (5.7) on the flavor
fluxes, there is a symmetry enhancement of the U(1)γ̃1

to an SU(2). This can be seen at
the level of the anomaly polynomial in that c1(γ̃1) enters only quadratically, via the term

ISCFT
6 ⊃ 2N2c1(β̃1)c1(γ̃1)2. (5.9)

Example no. 2. This example is the gauge theory with quiver depicted in figure 5 of [12],
reproduced for convenience as quiver (b) in figure 4. This theory also corresponds to k = 2.
In our notation, the flavor fluxes are

N
β̃1

= 1
2 , Nγ̃1

= 1
2 . (5.10)
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Figure 7: The quiver diagram for the 4d class S3 theory corresponding to a torus with two

units of �1 flux and one of �2 flux. Next to the fields are their charged summarized using

fugacities. This theory has a combination of cubic and quartic superpotential terms. Again

these are most conveniently generated by taking all terms consistent with the symmetries.

Additionally there are superpotential terms coming from the flipping. The theory also has

an R-symmetry, a convenient choice for which is to give all the bifundamentals R-charge 1
2 ,

and R-charge 1 for the adjoints and their singlets.

combinations of u(1)t, u(1)�1 and u(1)�2 while the last is 2u(1)�2 � u(1)�1 .

Next we preform a-maximization. We take the R-symmetry to be:

u(1)0R = u(1)R + ↵u(1)�1 (4.17)

where we take u(1)R to rotate the bifundamentals with charge 1
2 and the adjoints and their

associated singlets with charge 1. The flipping fields attached to the bifundamental then

also have R charge 1 while those attached to the adjoits have R charge 0. Performing the

a-maximization we find that: ↵ = 3�
p
5

6 . With this value we find that a = 5
p
5

4 .

However with this R-charge the adjoint flipping fields are below the unitary bound.

Therefore the natural conjecture is that these fields become free at some point along the

flow leading to an accidental u(1) that mixes with the R-symmetry. We can now repeat the

a-maximization, but taking these to be free fields where we find: ↵ =
p
13�3
6 . We find that

all fields have dimensions above the unitary bound and that the superpotential coupling the

flipping fields to the adjoints is irrelevant. All of these are consistent with our claim. We can

also preform a-maximization considering all the flipping fields as free, where we indeed find

that, compared to that point, the superpotential coupling the flipping fields to the adjoints

is irrelevant while the one coupling the flipping fields to the bifundamentals is relevant.

So to conclude we expect the theory in figure 7 to flow to an interacting fixed point

consisting of the quiver theory, without the adjoint flipping, plus two free chiral fields. We

next want to evaluate the index of this fixed point. Again for simplicity we shall first ignore

the two free chiral fields. From 6d we expect an su(4) ⇥ su(2) ⇥ u(1) global symmetry. We
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Figure 5: The quiver diagram for the 4d class S2 theory corresponding to a torus with flux

(12 ,
1
2 , 0). Next to the fields are their charges summarized through fugacities. The theory has a

quartic superpotential involving the four bifundamentals as well as the superpotential coming

from the flipping. There is also an R-symmetry where it is convenient to give R-charge 1
2 to

the four bifundamentals Qi and R-charge 2� N
2 to the flipping fields  ,�.

the resulting theory depends on the value of N . For N > 2, this superpotental is irrelevant

and the theory should flow to the same fixed point, but with free singlets. However, for

N = 2, this superpotental is relevant and the theory should flow to a new fixed point. We

shall now discuss the latter case in more detail. Note that for this special case of N = 2,

Q1 is a 2 ⇥ 2 matrix and the notation Q2
1 stands for detQ1, and similarly for Q2. Each of

these terms is invariant under a corresponding su(2) global symmetry and the global su(4)

symmetry which is present in the absence of these terms [30] is broken to su(2)⇥ su(2)⇥u(1)

in the presence of these terms, where u(1) is the baryonic symmetry which acts as +1 on Q1

and Q2 and as �1 on Q3 and Q4.

First we shall need to perform a-maximization to determine the superconformal R-

symmetry. It is straightforward to see that only the baryonic symmetry u(1)� + u(1)� can

mix with the naive u(1)R of the KW model. Thus, we define:

u(1)0R = u(1)R + ↵
u(1)� + u(1)�

2
(4.7)

By performing a-maximization we find ↵ =
p
10�3
6 ⇡ 0.027, so the R-charges change only

slightly compared to their naive value. One can check that all gauge invariant fields are above

the unitary bound so this is consistent with the theory flowing to an interacting fixed point.

We can next evaluate the anomalies for this theory. Particularly, for the conformal
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Figure 4: The quiver diagram for the 4d class S2 theory corresponding to a torus with

flux (1, 0, 0). Next to the fields are their charges summarized through fugacities. We use

mostly standard notation except for two points: lines from a group to itself represent N2

hypermultiplets forming the adjoint plus singlet representations of the group; we write an X

over a field to represent the fact that the baryon of that field is flipped. The theory has a cubic

superpotential for every triangle which can also be derived by considering the most general

cubic superpotential that is gauge invariant and consistent with the symmetry allocation.

There is also the superpotential term which is not generally cubic coming from the flipping.

All fields, save the flipping fields, have the free R-charge 2
3 .

The Higgs branch of this N = 2 A�ne A1 theory was evaluated in [22], see section

5.2.1 and in particular equation (5.19). Furthermore it was found to be the closure of the

next to minimal orbit of usp(4) as in Table 3 of [23] and Tables 10 and 12 of [24], where

another description sets it as the Z2 orbifold of the closure of the minimal nilpotent orbit of

SL(4) (alternatively known as the reduced moduli space of 1 SU(4) instanton on C2). This

emphasizes that the global symmetry on this part is indeed usp(4). The unrefined Hilbert

Series takes the form

HA�ne Quiver
N=2,k=2 (⌧) =

(1 + ⌧2)(1 + 3⌧2 + ⌧4)

(1� ⌧2)6
(4.4)

and it admits the highest weight generating function [24, 25]

HWGA�ne Quiver
N=2,k=2 (⌧, µ1, µ2) =

1

(1� µ2
1⌧

2)(1� µ2
2⌧

4)
, (4.5)

with µ1 and µ2 the fugacities for the highest weights of usp(4). From this one deduces the
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Figure 6: On the left is the quiver diagram for the 4d class S3 theory corresponding to a

torus with only �1 flux, while on the right is a table summarizing the charges of the various

fields. Note that several di↵erent fields have the same charges and so are represented with

the same letter. This theory has a rather large cubic superpotential involving the 12 triangles

in the diagram. Again these are most conveniently generated by taking all cubic terms

consistent with the symmetries. Additionally there are the superpotential terms coming from

the flipping, which in general are not cubic. It is again convenient to choose the R-symmetry

so that all non-flipping fields have R-charge 2
3 .

marginal operators in the �[2]su(2), as well as the marginal operators in the adjoint of the

full global symmetry G which must be present to cancel the contribution of the conserved

currents. These contribute 10 exactly marginal operators. So we now have more than those

expected from (4.1).

We can also consider closing the last puncture with a baryon charged under �2. The

resulting flux leads to the symmetry breaking pattern su(6) ! su(4)⇥ su(2)⇥ u(1) which we

expect to be the 4d global symmetry. In the field theory the vev leads to a quiver with an

su(N) group with N flavors. This group confines in the IR leading to the identification of the

groups it’s connected to and making the flipping fields massive. After the dust settles we end

with the so called L222 [20] quiver theory in figure 7. This theory can also be derived from 4

NS branes on the circle, with two types of orientation.

We next proceed to analyze this theory in detail. First we need to evaluate the conformal

R-symmetry. By inspection one can see that there is only one u(1) that can mix with the

R-symmetry, which in our notation is u(1)�1 . The remaining u(1)’s can be grouped into 4

baryonic u(1)’s, each rotating one of the four pairs of bifundamentals with opposite charges

while the adjoints and their associated singlets being neutral. Three of these u(1)’s are
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Figure 6: On the left is the quiver diagram for the 4d class S3 theory corresponding to a

torus with only �1 flux, while on the right is a table summarizing the charges of the various

fields. Note that several di↵erent fields have the same charges and so are represented with

the same letter. This theory has a rather large cubic superpotential involving the 12 triangles

in the diagram. Again these are most conveniently generated by taking all cubic terms

consistent with the symmetries. Additionally there are the superpotential terms coming from

the flipping, which in general are not cubic. It is again convenient to choose the R-symmetry

so that all non-flipping fields have R-charge 2
3 .

marginal operators in the �[2]su(2), as well as the marginal operators in the adjoint of the

full global symmetry G which must be present to cancel the contribution of the conserved

currents. These contribute 10 exactly marginal operators. So we now have more than those

expected from (4.1).

We can also consider closing the last puncture with a baryon charged under �2. The

resulting flux leads to the symmetry breaking pattern su(6) ! su(4)⇥ su(2)⇥ u(1) which we

expect to be the 4d global symmetry. In the field theory the vev leads to a quiver with an

su(N) group with N flavors. This group confines in the IR leading to the identification of the

groups it’s connected to and making the flipping fields massive. After the dust settles we end

with the so called L222 [20] quiver theory in figure 7. This theory can also be derived from 4

NS branes on the circle, with two types of orientation.

We next proceed to analyze this theory in detail. First we need to evaluate the conformal

R-symmetry. By inspection one can see that there is only one u(1) that can mix with the

R-symmetry, which in our notation is u(1)�1 . The remaining u(1)’s can be grouped into 4

baryonic u(1)’s, each rotating one of the four pairs of bifundamentals with opposite charges

while the adjoints and their associated singlets being neutral. Three of these u(1)’s are
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Figure 4. Explicit examples of quiver gauge theories of class Sk realized on a torus with fluxes,
taken from [12]. The gauge nodes are SU(N) groups. An arrow connecting two distinct nodes is a
bifundamental chiral multiplet. An arrow connecting a node to itself represents an adjoint-plus-singlet
chiral multiplet. An “X” on an arrow signals that the baryon associated with that field is flipped.
The charges under the global, non-R-symmetries are given in terms of fugacities. The reference
R-symmetry charges for the various quivers are as follows. In quiver (a), all fields (except the flip
fields) have R-charge 2/3. In quiver (b), all fields (except the flip fields) have R-charge 1/2. In
quiver (c), all fields (except the flip fields) have R-charge 2/3. In quiver (d), the bifundamentals have
R-charge 1/2 and the adjoint-plus-singlet’s have R-charge 1. For a description of the superpotential
of these models, we refer the reader to [12].

Once again, we need the dictionary between the charges (q̂R; q̂t; q̂β ; q̂γ) of the quiver descrip-
tion, and the charges (qR′ ; qt; qβ̃1

; qγ̃1
) used in this work,

q̂R = qR′ −
1
4 qβ̃1

− 1
4 qβ̃2

, q̂t = qt , q̂β = −q
β̃1
, q̂γ = −qγ̃1

. (5.11)

Our formula (3.10) predicts one species of flip fields with charges (qR′ ; qt; qβ̃1
; qγ̃1

) =
(1; 0; 2N ; 0), and one species with charges (qR′ ; qt; qβ̃1

; qγ̃1
) = (1; 0; 0; 2N). According

to (3.12) and (5.10), both species have multiplicity 1. In the notation of the quiver, the
charges are (q̂R; q̂t; q̂β; q̂γ) = (1− 1

2N ; 0;−2N ; 0) and (q̂R; q̂t; q̂β; q̂γ) = (1− 1
2N ; 0; 0;−2N),
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which indeed match with the charges of the (fermions in the chiral) fields that flip the
baryons of the fields marked with an “X” in the quiver. We can verify (5.2) in this example
as well, making use of (5.10) and (5.11).

Example no. 3. This example is the gauge theory with quiver depicted in figure 6 of [12],
reproduced for convenience as quiver (c) in figure 4. This theory has k = 3. In our notation,
the flavor fluxes are

N
β̃1

= 2 , N
β̃2

= 1 , Nγ̃1
= 0 , Nγ̃2

= 0 . (5.12)

Let (q̂R; q̂t; q̂β1 ; q̂β2 ; q̂γ1 ; q̂γ2) denote the charges extracted from the quiver (and its adjacent
table). They are related to the charges (qR′ ; qt; qβ̃1

; q
β̃2

; qγ̃1
; qγ̃2

) used in this work via

q̂R = qR′−
4
9 qβ̃1

− 2
9 qβ̃2

+ 1
9 qt , q̂t = qt ,

q̂β1 = q
β̃1

+q
β̃2

q̂β2 = q
β̃2

,
q̂γ1 = qγ̃1

+qγ̃2

q̂γ2 = qγ̃2

. (5.13)

As in the previous examples, using (5.12) and (5.13) we can verify that the charges and
multiplicities of flip fields given by our formulae match with the quiver data. We can also
verify (5.2), where the SCFT anomaly is computed from the quiver, simply ignoring all flip
fields.

Example no. 4. This example is the gauge theory with quiver depicted in figure 7 of [12],
reproduced for convenience as quiver (d) in figure 4. This theory has k = 3. In our notation,
the flavor fluxes are

N
β̃1

= 1 , N
β̃2

= 1 , Nγ̃1
= 0 , Nγ̃2

= 0 . (5.14)

The dictionary between (q̂R; q̂t; q̂β1 ; q̂β2 ; q̂γ1 ; q̂γ2) and (qR′ ; qt; qβ̃1
; q
β̃2

; qγ̃1
; qγ̃2

) in this example
is

q̂R = qR′ −
1
2 qβ̃1

− 1
2 qβ̃2

, q̂t = qt ,
q̂β1 = q

β̃1
+ q

β̃2

q̂β2 = q
β̃2

,
q̂γ1 = qγ̃1

+ qγ̃2

q̂γ2 = qγ̃2

. (5.15)

Once again, we have a match of charges and multiplicities of flip fields, and (5.2) can be
verified.

6 Central charges

We continue our study of the putative 4d N = 1 SCFTs of interest in this paper by computing
their central charges using a-maximization [45]. In this section we will first describe the
computational complexity of this a-maximization problem. We then study several important
properties of the resulting central charges. Some exact results are presented for a special
family of G4-flux configurations with sufficiently few independent parameters that the
maximization problem can be solved analytically. Finally, we treat the general case with
a perturbative analysis in the regime where the ratios NNi/|χ|N and NSi/|χ|N are small.
Most of the discussion in this section implicitly assumes that we are working with a g ≥ 2
Riemann surface, unless otherwise specified.
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6.1 Computational setup

The anomaly polynomial of a 4d N = 1 SCFT contains

ISCFT
6 ⊃ trR3

6

(
FR2
2π

)3
− trR

24
FR2
2π p1(TW4) , (6.1)

where R is the generator of the superconformal R-symmetry and FR2 its background field
strength, and p1(TW4) is the first Pontryagin class of the 4d worldvolume W4. Its central
charges are [48]

a = 3
32(3trR3 − trR) , c = 1

32(9trR3 − 5trR) . (6.2)

In the presence of additional flavor symmetries, one may also compute the associated flavor
central charges [49],

bGδ
ab = −6tr(RT aG T bG) , (6.3)

where T aG are generators of the flavor symmetry G, with the normalization tr(T aG T bG) = δab/2
in the fundamental representation.

As described before, we can access ISCFT
6 through either of the equalities in (1.1),

repeated here for convenience,

ISCFT
6 = −I inflow

6 − Iv,t
6 =

∫
Σg
ISCFT

8 − Iflip
6 . (6.4)

For concreteness, suppose we restrict our attention to the first equality above, we can define
a trial R-symmetry as

Rtrial = 2Tψ + qϕTϕ +
k−1∑
i=1

(qNiTNi + qSiTSi) . (6.5)

The various TG are the generators of the U(1)G flavor symmetries, and the factor of 2 in
front of Tψ is inserted to ensure it has the appropriately normalized R-charge [34]. This is
equivalent to carrying out the following replacements in the anomaly polynomial(s),

Fψ2 → 2FR2 , Fϕ2 →Fϕ2 +qϕFR2 , FNi
2 →FNi

2 +qNiFR2 , F Si
2 →F Si

2 +qSiFR2 , (6.6)

from which we can construct a trial central charge,

atrial({qG}) = 27
16 ARRR + 9

4 AR , (6.7)

where ARRR and AR are respectively the coefficients of (FR2 /2π)3 and FR2 /2π in the
polynomial ISCFT

6 ({qG}). The central charge a corresponds to the local maximum of
atrial({qG}) with respect to the 2k − 1 real parameters qG. Such a solution is hereafter
denoted by {qGmax}. Up to an overall normalization, the flavor central charge bG for a given
flavor symmetry G can be extracted by plugging {qGmax} into ISCFT

6 ({qG}), and then reading
off the coefficient ARGG in front of (FR2 /2π)(FG2 /2π)2. We can also similarly find c.

Analytically searching for a local maximum of atrial({qG}) amounts to performing
a two-step process: first solving the quadratic equations ∂atrial/∂q

G = 0 simultaneously
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for all G, and then identifying a solution {qGmax} that yields a negative-definite Hessian
matrix [∂2atrial/∂q

Gi∂qGj ]{qG}={qGmax}. As far as the former is concerned, Bezout’s theorem
asserts that atrial({qG}) has at most 22k−1 (or infinitely many) critical points. Hence, the
computational complexity of the problem scales roughly as 4k at large k. This presents a
formidable challenge even for state-of-the-art algebraic solvers, in which case we have to
resort to numerical methods. In fact, the only scenario where we are able to analytically solve
the a-maximization problem for generic combinations of χ, N , NNi , NSi for i = 1, . . . , k − 1
is k = 2, in which we are able to fully reproduce the result of [26]. As we will discuss later
in this section, there exists a family of theories with certain special flux configurations
{NNi , NSi} that significantly reduce the number of independent extremization parameters
qG, thus rendering the a-maximization problem analytically solvable for k > 2 as well.

6.2 Salient properties of the central charge

The central charge a thus obtained for the SCFTs via a-maximization exhibits a number of
crucial properties which we collect in this subsection.

Uniqueness. For a given choice of k, χ, N , NNi , NSi , if the central charge a exists
then it is necessarily unique. The proof of this statement proceeds as follows. Given
the replacements made in (6.6), the trial central charge atrial({qG}) defined in (6.7) is
a cubic polynomial of the 2k − 1 variables qG where G = ϕ,Ni,Si for i = 1, . . . , k − 1.
Suppose a local maximum of atrial exists at some point {qGmax} ∈ R2k−1. We can project the
(2k− 1)-dimensional vector ~q = (qG1 , . . . , qG2k−1) onto an arbitrary line Rp ⊂ R2k−1 passing
through {qGmax}. Restricted to this line, the trial central charge becomes a univariate cubic
polynomial atrial(qp) = atrial({qG})|Rp where ~qp = projRp~q.

A univariate cubic polynomial admits at most one local maximum, so by construction
{qGmax} is the unique local maximum of atrial(qp) along any Rp. Since Rp can be chosen to
connect {qGmax} to any other point in the parameter space, along which {qGmax} is always
the unique local maximum, we conclude that atrial has at most one local maximum at
{qG} = {qGmax}.3

Large-N scaling relation. Recall that the central charges of the SCFT are encoded by
the anomaly polynomial ISCFT

6 = −I inflow
6 − Iv,t

6 . The former can be further decomposed
into an O

(
N3, N3

Ni,Si
)
contribution I inflow,E

3
4

6 and an O(N,NNi,Si) contribution I inflow,E4X8
6 .

Although Iv,t
6 is of O(N3) according to (3.9), we have checked that it always contribute

only at O(N) to the central charge a. Hence in the large-N,NNi,Si limit (or loosely, the
large-N limit), a can be effectively determined by performing a-maximization directly on
−I inflow,E

3
4

6 .
We observe that the large-N inflow anomaly polynomial I inflow,E

3
4

6 , constructed in [27]
and reviewed in appendix A, satisfies an interesting identity. Suppose we have two distinct
setups with generally different Euler characteristics, χA, χB, of the (g ≥ 2) Riemann

3To the best of our knowledge, this result concerning the number of local maxima/minima of a multivariate
cubic polynomial was first explicitly proven by [50].
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surfaces, and they are wrapped by different numbers, NA, NB, of M5-branes, then the
corresponding large-N inflow anomaly polynomials follow

I
inflow,E3

4
6 (k, χA, NA, {NNi}, {NSi}, F

ψ
2 , F

ϕ
2 , {F

Ni
2 }, {F

Si
2 })

= χAN
3
A

χBN3
B

I
inflow,E3

4
6

(
k, χB, NB,

{
χBNB

χANA
NNi

}
,

{
χBNB

χANA
NSi

}
, Fψ2 , F

ϕ
2 , {F

Ni
2 }, {F

Si
2 }
)
.

(6.8)

Consequently, we have an analogous scaling relation for the trial central charge,

atrial(k, χA, NA, {NNi}, {NSi}, q
ϕ, {qNi}, {qSi})

= χAN
3
A

χBN3
B

atrial

(
k, χB, NB,

{
χBNB

χANA
NNi

}
,

{
χBNB

χANA
NSi

}
, qϕ, {qNi}, {qSi}

)
. (6.9)

This motivates the definitions of “reduced flux quanta,”

nNi = NNi
|χ|N

, nSi = NSi
|χ|N

, (6.10)

such that the central charge, which is the (unique) local maximum of atrial, obeys

1
χAN3

A

a(k, χA, NA, {nNi}, {nSi}) = 1
χBN3

B

a(k, χB, NB, {nNi}, {nSi}) (6.11)

in the large-N limit. It follows from (6.8) that the same scaling relation applies to the other
central charges c and bG as well.

Existence and flux positivity. As alluded to earlier, a central charge does not necessarily
exist for an arbitrary combination of k, χ, N , NNi , NSi . This is possible because while
Bezout’s theorem states that there can be at most 22k−1 critical points of atrial({qG}), they
may be all saddle points (possibly with a local minimum swapped in). Moreover, given a
choice of orientation for the internal space M6, we define the charge (or more precisely the
number of M5-branes) N to be positive under this orientation. Similarly, we can define
the rest of the flux quanta using the same choice of orientation for the relevant cycles.4
For a supersymmetric theory, we expect all of these flux quanta to have the same sign as
N . It is therefore important for us to examine the range of parameters within which our
construction admits a central charge.

In figure 5 we illustrate the range of existence of the central charge a for a variety
of specific configurations of NNi and NSi , given fixed k, χ, N . For k = 2 there is only
one trivial pair of axes, i.e. NN1 and NS1 , but for k = 3 there are four independent flux
quanta, so we show here several representative 2d cross-sections in the (discrete) space of
flux quanta. In all cases considered we observe a clear-cut boundary separating the regions
of the flux lattice with or without a central charge. We also note that a always exists
when the flux quanta are strictly nonnegative; the red “exclusion region” always lies in the

4Alternatively, flipping the orientation for M6 amounts to flipping the signs of all the flux quanta,
including N .
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Figure 5. 2d exclusion plots visualizing the existence/nonexistence of the central charge a for k = 2
and k = 3. The choices of k, χ, N are labeled on top of each plot, whereas the specific configuration
of the (integral) flux quanta, NNi

, NSi
, can be read off from the coordinates of a given dot. A dot is

green if a exists for the corresponding combination of flux quanta; it is red if a does not exist. Note
that the upper four plots are symmetric with respect to the exchange of axes as a consequence of
the D2 symmetry of M4.

three quadrants with at least one negative flux quantum. In fact, we find that the same
qualitative feature applies to general k: setups characterized by strictly nonnegative flux
configurations have (unique) central charges.

Furthermore, we can deduce from the large-N scaling relation (6.11) that as we decrease
|χ| or N , the boundary of the exclusion region retreats towards the two positive axes but
never crosses them. This is because the ratio χBNB/χANA cannot change sign as long as
we keep g ≥ 2. In other words, the central charge is guaranteed to exist everywhere in the
first quadrant (where all flux quanta are positive) once the signs of χ and N are fixed, thus
conforming to our expectation that all fluxes in SCFTs should be of uniform sign.

For the case of k = 2 studied in [26], we can see that the relative signs of fluxes are fixed
directly in the holographic dual, namely, the GMSW solution [25]. If explicit holographic
duals are found for k > 2 in the future, we anticipate the same uniform-flux-sign condition
to hold.

Dihedral symmetry. It was noted in [27] that the inflow anomaly polynomial is invariant
(up to a sign) under the two parity transformations of M4. Unsurprisingly, this nice property
carries over to the central charge. Let us first consider the action of a north-south involution,
the trial central charge atrial({NNi}, {NSi}, qϕ, {qNi}, {qSi}) is invariant under

NNi ↔ NSi , qϕ → qϕ , qNi ↔ −qSi (6.12)
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for i = 1, . . . , k − 1. Similarly, if we consider the action of an east-west involution, atrial is
invariant under

NNi ↔ NNk−i , NSi ↔ NSk−i , qϕ → −qϕ , qNi ↔ qNk−i , qSi ↔ qSk−i . (6.13)

Omitting the explicit functional dependence on k, χ, and N , we see that the central charge
exhibits a dihedral symmetry,

a({NNi},{NSi}) = a({NSi},{NNi}) = a({NNk−i},{NSk−i}) = a({NSk−i},{NNk−i}) , (6.14)

where the arguments should be understood to be ordered.
When fluxes are configured symmetrically, we can further use this symmetry of atrial to

place powerful constraints on the values of the parameters qGmax that determine the exact
R-symmetry. For example, consider a flux configuration with NNi = NSi for all i, (6.12)
implies that local maxima of atrial should exist in pairs distributed symmetrically across
the fixed locus of this involution in the (2k − 1)-dimensional parameter space, i.e. if a local
maximum is located at some point (qϕmax, {qNimax}, {qSimax}), then there must also be another
local maximum at (qϕmax, {−qSimax}, {−qNimax}). However, since atrial has at most one local
maximum, all (pairs of) local maxima must coincide and lie on the fixed locus qNi = −qSi

of the involution (6.12). Applying the same reasoning to (6.13), we conclude that for any
choice of k, χ, N ,

1. NNi = NSi ⇒ qNimax = −qSimax ;

2. NNi = NNk−i , NSi = NSk−i ⇒ qϕmax = 0 , qNimax = q
Nk−i
max , qSimax = q

Sk−i
max ;

3. NNi = NNk−i = NSi = NSk−i ⇒ qϕmax = 0 , qNimax = q
Nk−i
max = −qSimax = −qSk−i

max .

Note that k = 2 setups are described by just two resolution flux quanta NN1 and NS1 , so they
automatically fall under the second family. The invariance of atrial under (6.13) then fixes
qϕmax = 0. Indeed, this is consistent with the fact that for k = 2 the U(1)ϕ flavor symmetry
is enhanced to SU(2)ϕ, whose non-abelian nature prohibits it from mixing with the R-
symmetry, as argued in [45]. For general k, the last family of flux configurations listed above
is of the most interest because the central charge can be much more efficiently determined
through a modified a-maximization problem. Instead of (6.5) the trial R-symmetry for such
flux configurations can be expressed as

Rtrial = 2Tψ +
d(k−1)/2e∑

i=1
qNi(TNi + TNk−i − TSi − TSk−i) . (6.15)

In this way, the dimension of the parameter space is reduced from 2k − 1 to d(k − 1)/2e,
i.e. there are roughly a factor of four fewer degrees of freedom. We refer to such setups
as bisymmetric flux configurations. In the next subsection we will study a special case of
bisymmetric flux configurations in which all flux quanta NNi and NSi are equal.
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6.3 Exact results for uniform flux configurations

The a-maximization problem is much more tractable for uniform flux configurations, that
is, NNi = NSi := NN for i = 1, 2, . . . , k − 1, than for arbitrary configurations. It is indeed
exactly solvable for sufficiently small k. As described earlier, finding the central charges
for k = 2 and k = 3 with uniform flux configurations is effectively a 1d maximization
problem, and in both cases the various central charges can be written as reasonably compact
closed-form expressions. For k = 2, we get

a=
[
χ2(9N2−8)−18NN(χN−2NN)

]3/2−9χ2NN(9N2−6)+54N2
N(3χN−4NN)

48χ2 ,

(6.16)

c=
[
χ2(9N2−8)−18NN(χN−2NN)

]3/2−9χ2NN(9N2−6)+54N2
N(3χN−4NN)

48χ2

+
√
χ2(9N2−8)−18NN(χN−2NN)

48 , (6.17)

ARϕϕ =
χ2N(N2−1)+NNN

[
3(χN−2NN)+

√
χ2(9N2−8)−18NN(χN−2NN)

]
12χ , (6.18)

ARii = N(χN−NN)
√
χ2(9N2−8)−18NN(χN−2NN)−3NNN(χN−2NN)

3χ , (6.19)

whereas for k = 3, we have

a= 9χ2(N−1)2(27N2+27N−14)−6χNN(135N3−253N+118)+12N2
N(81N2−80)

64
[
10NN−3χ(N−1)

] ,

(6.20)

c= 3χ2(N−1)2(81N2+81N−28)−2χNN(405N3−641N+236)+N2
N(972N2−640)

64
[
10NN−3χ(N−1)

] ,

(6.21)

ARϕϕ = 3χ2N(N−1)(N2−1)−10χNNN(N2−1)+24N2N2
N

120NN−36χ(N−1) , (6.22)

ARii = 9χ2N2(N−1)2−51χN2NN(N−1)+64N2N2
N

20NN−6χ(N−1) . (6.23)

The divergence of the expressions above when N = 1 and NN = 0 shall not worry us as
long as we are working in the large-N limit. Moreover, it can be easily checked that a
and c are the same at leading order. Interestingly, we observe that ARN1N1 = AR S1S1 for
k = 2, and ARN1N1 = ARN2N2 = AR S1S1 = AR S2S2 for k = 3. This pattern has a natural
generalization for higher k, as we will soon see.

While being fully analytic, the central charges we find for k ≥ 4 cannot be reduced
to similarly compact forms. Nevertheless, figure 6 illustrates the functional dependence
of a, a/c, ARϕϕ, ARii on NN for a range of k. Note that the scaling relation (6.8) implies
up to O(N3, N3

N), changing χ and N amounts to rescaling the axes of the plots of a,
ARϕϕ, ARii without altering their qualitative behavior. It can be seen that all the central
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Figure 6. Plots of a, a/c, ARϕϕ, ARii for k = 2 to k = 7 with identical flux quanta NNi
= NSi

:= NN
for all i = 1, . . . , k − 1. NN is treated as a continuous real parameter for visualization purposes. All
of the plots are evaluated with χ = −2 and N = 10. For a given k, there are d(k−1)/2e independent
ARii anomaly coefficients, which are proportional to the flavor central charges bi associated with
the resolution cycles of M4. We use solid lines for i = 1, dashed lines for i = 2, and dotted lines for
i = 3 where applicable.

charges are monotonic in k and NN. We also note that the ratio a/c is well within the
Hofman-Maldacena bounds [46] on N = 1 SCFTs,

1
2 ≤

a

c
≤ 3

2 . (6.24)

Let us briefly comment on the flavor central charge bi ∝ ARii. In general, because of
the D2 symmetry of M4, there are d(k − 1)/2e independent ARii when all the resolution
flux quanta are equal, i.e.

ARNiNi = ARNk−iNk−i = AR SiSi = AR Sk−iSk−i (6.25)

for i = 1, 2, . . . , d(k − 1)/2e, hence the notation ARii := ARNiNi = AR SiSi . Specifically,
there is one independent ARii for k = 2, 3, two for k = 4, 5, and three for k = 6, 7. It is
evident from the separation between lines of like color in figure 6 that

ARii ≥ AR(i+1)(i+1) ≥ · · · ≥ ARd(k−1)/2ed(k−1)/2e . (6.26)

The inequalities are simultaneously saturated when NN = 0.
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6.4 Perturbative analysis

Even though it is exceptionally challenging to analytically determine the central charge
through a-maximization for arbitrary combinations of k, χ, N , NNi , NSi , we can use
perturbation theory to solve the equations ∂atrial/∂q

G = 0 order by order in the regime
where

N3
Ni
χ2 ,

N3
Si
χ2 � |χ|N � NNi , NSi � 1 . (6.27)

The first and the last inequalities are required to ensure that the O(N) contributions from
I inflow,E4X8

6 and Iv,t
6 are negligible.5 We find that the perturbative expansions of the central

charges a = c and the anomaly coefficient ARϕϕ can be written as

a = c = −9k2χN3

64 − 27N
64χ

k−1∑
i,j=1

i(k − j)(NNiNNj +NSiNSj ) +O
(
N3

Ni,Si
)
, (6.28)

ARϕϕ = −χN
3

12 −
N

2k2χ

k−1∑
i,j=1

i(k − j)(NNiNNj +NSiNSj ) +O
(
N3

Ni,Si
)
. (6.29)

For uniform flux configurations, these perturbative expansions have been checked to be
consistent with the previously shown exact expressions (6.16), (6.18), (6.20), (6.22) derived
for k = 2 and k = 3.

The symmetry (6.25) between flavor central charges bNi,Si ∝ AR(Ni,Si)(Ni,Si) no longer
holds for nonuniform flux configurations. We list below the perturbative expansions of
various flavor central charges for k = 2 and k = 3, so the reader can compare them to their
uniform-flux analogs (6.19) and (6.23). For k = 2, we obtain

ARN1N1 = −χN3 +N2NN1 −
NN2

S1

2χ +O
(
N3

Ni,Si
)
, (6.30)

AR S1S1 = −χN3 +N2NS1 −
NN2

N1

2χ +O
(
N3

Ni,Si
)
, (6.31)

whereas for k = 3, we obtain

ARN1N1 =−3χN3

2 +N2(5NN1 +2NN2)
4

−
N
[
5N2

N1
+26NN1NN2 +2N2

N2
+16(N2

S1
+NS1NS2 +N2

S2
)
]

24χ +O
(
N3

Ni,Si
)
, (6.32)

ARN2N2 =−3χN3

2 +N2(2NN1 +5NN2)
4

−
N
[
2N2

N1
+26NN1NN2 +5N2

N2
+16(N2

S1
+NS1NS2 +N2

S2
)
]

24χ +O
(
N3

Ni,Si
)
, (6.33)

5Appropriate powers of χ are inserted in the inequalities here based on the facts that NNi/|χ|N ,
NSi/|χ|N ∼ 1 are the “characteristic scales” and that I inflow,E

3
4

6 scales as χN3.
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ARS1S1 =−3χN3

2 +N2(5NS1 +2NS2)
4

−
N
[
5N2

S1
+26NS1NS2 +2N2

S2
+16(N2

N1
+NN1NN2 +N2

N2
)
]

24χ +O
(
N3

Ni,Si
)
, (6.34)

ARS2S2 =−3χN3

2 +N2(2NS1 +5NS2)
4

−
N
[
2N2

S1
+26NS1NS2 +5N2

S2
+16(N2

N1
+NN1NN2 +N2

N2
)
]

24χ +O
(
N3

Ni,Si
)
. (6.35)

6.5 Genus-one cases

The expressions reported earlier in this section are not applicable to the cases where the
Riemann surface is a torus, although we shall remark that our previous arguments leading
to the uniqueness theorem of central charges continue to hold here. To determine the central
charges in such cases, we can perform a-maximization on the expression (5.3) obtained from
re-writing the inflow anomaly polynomial using (3.13). Note that Iv,t

6 vanishes in this limit,
so that the anomalies of the interacting 4d SCFT can be read off directly, as stated in (5.1).

Let us first focus on the case of k = 2. We find that the various central charges admit
qualitatively different expressions depending on whether the two independent flux quanta,
NN1 and NS1 , are the same or different. Specifically, if NN1 6= NS1 , we recover the central
charges of the Y p,q theories obtained by [47] for q > 0, using the identifications (5.6). On
the other hand, if NN1 = NS1 := NN, or equivalently, q = 0, we instead have

a = 3(9N2 − 8)NN
64 , c = (27N2 − 16)NN

64 ,

ARϕϕ = N2NN
8 , ARN1N1 = AR S1S1 = 3N2NN

2 .

(6.36)

Similarly to the higher-genus cases, it is technically challenging to analytically solve
the a-maximization problem corresponding to generic flux configurations for k > 2, except
when all the resolution flux quanta are equal. For these uniform flux configurations, the
central charges admit rather simple functional forms as follows,

a= a1(k)N2NN−a2(k)NN , c= c1(k)N2NN−c2(k)NN , ARϕϕ = b(k)N2NN . (6.37)

We record in table 2 the values of these coefficients for k = 2 to k = 7. Note that
a1(k) = c1(k) as expected.

7 Conclusion and outlook

In this work, we have identified a geometric origin of flip fields in 4d N = 1 SCFTs of class Sk,
by adopting an 11d perspective on these models. The comparison between anomaly inflow
from M-theory, and integration of the 6d anomaly polynomial, led us to the relation (1.1),
which is central to our analysis. The charges and multiplicities in Iflip

6 are then interpreted
in terms of M2-brane operators, associated to blow-up modes of the C2/Zk singularity.
We thus get a physical picture of the role of flip fields: they are necessary to interpolate
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k 2 3 4 5 6 7
a1 27/64 243/160 81/22 14175/1952 120285/9536 17199/856
a2 3/8 3/2 15/4 15/2 105/8 21
c1 27/64 243/160 81/22 14175/1952 120285/9536 17199/856
c2 1/4 1 5/2 5 35/4 14
b 1/8 1/5 3/11 21/61 495/1192 52/107

Table 2. Central charge coefficients (with genus one) for various k.

between six dimensions, where such blow-up modes are not present, and four dimensions,
where they are part of the SCFT.

The results of this paper suggest several directions for future research. Firstly, it would
be interesting to find explicit AdS5 solutions in 11d supergravity, which generalize the
GMSW solutions from k = 2 to higher values of k. This work shows that the topology and
flux configuration of M6 give rise, via inflow, to the anomaly polynomial of a 4d SCFT of
class Sk with fluxes for the SU(k)b, SU(k)c flavor symmetries. This observation is a strong
hint that AdS5 solutions should exist, whose internal space has the topology and G4-flux
quanta of M6.

The special case in which the Riemann surface is a torus also deserves further investi-
gation. For k = 2, we have obtained a precise match between the M-theory inflow anomaly
polynomial, and the anomaly polynomial of the SCFT realized by N D3-branes at the tip
of the cone over the Sasaki-Einstein space Y p,q (with p, q determined by the flavor fluxes in
the M-theory construction). It is natural to study generalizations to higher values of k, for
instance exploring possible connections to other families of explicit Sasaki-Einstein metrics,
such as [51, 52].

Another natural direction for further study is to consider 4d theories of class SΓ,
i.e. theories obtained from reduction of the 6d (1,0) SCFT realized by N M5-branes probing
the singularity C2/Γ, with Γ an ADE subgroup of SU(2). Based on our results, we conjecture
that the pattern of charges of flip fields for these models should be given in terms of the roots
and Cartan matrix of gΓ, the ADE Lie algebra associated to Γ. It would be interesting to
perform explicit checks of this conjecture, for instance against the Lagrangian models of [53].
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A Review of the E3
4 contribution to anomaly inflow

In this appendix, we record the E3
4 contribution to −I inflow6 , derived in [27] for χ < 0,

−I inflow,E
3
4

6 =

− 2
3χ2

2k∑
i=1

Ni

[
`2iN

2
i +3UiUi+1

](Fψ2
2π

)3

+ 3
2χ

2k∑
i=1

[2`i
3χN

3
i +Ni(UiY ψ

i+1+Ui+1Y
ψ
i )+N

k
(UiUi+1+`2iN2

i )(δ2k
i −δki )

](
Fψ2
2π

)2Fϕ2
2π

−
2k∑
i=1

[
N3
i

3χ2 +NiY
ψ
i Y

ψ
i+1−

NNi

2kχ (`i+1−`i)(Ui+Ui+1)

+ N

kχ
(δ2k
i −δki )

(
NiUi+χUiY ψ

i +χUi+1Y
ψ
i+1

)]Fψ2
2π

(
Fϕ2
2π

)2

+ 3N
2χ

2k∑
i=1

Ni(Ui+Ui+1)wiα
(
Fψ2
2π

)2Fα2
2π −

χN2

2k

2k∑
i=1

Y ψ
i+1(`i+1−`i)(wi+1

α −wiα)
(
Fϕ2
2π

)2Fα2
2π

−2N
2k∑
i=1

[
Ni

(
Ni

2χ+Y ψ
i+1

)
wiα−

N

kχ
(δ2k
i −δki )δC

αUi

]
Fψ2
2π

Fϕ2
2π

Fα2
2π

−N2
2k∑
i=1

[
Niw

i
αw

i
β−(`i+1−`i)(wi+1

α −wiα)(wi+1
β −wiβ)Ui+1

] Fψ2
2π

Fα2
2π

F β2
2π

−χN
2

2

2k∑
i=1

(`i+1−`i)(wi+1
α −wiα)(wi+1

β −wiβ)Y ψ
i+1

Fϕ2
2π

Fα2
2π

F β2
2π

−χN
3

6

2k∑
i=1

(wi+1
α −wiα)(wi+1

β −wiβ)
[
`i+1w

i
γ−`iwi+1

γ +(`i+1−`i)(wi+1
γ +wiγ)

] Fα2
2π

F β2
2π

F γ2
2π ,

(A.1)

where Ui ≡ NαU
α
0 (ti), Y ψ

i ≡ NαY
α

0,ψ(ti) are values of functions parameterizing basis forms
in cohomology at the positions of the monopoles, while `i, wiα are constants on the intervals
composing ∂M2. Explicitly, in the basis introduced in (2.10), we have

Ui =U1−
i−1∑
j=1

`jNj , Y ψ
i=1,··· ,k =Y ψ

1 −
i−1∑
j=1

Nj

χ
, Y ψ

i=k+1,··· ,2k =Y ψ
1 +N

2 −
i−1∑
j=1

Nj

χ
,

wαi=1,··· ,k =−δαNi−
δαC
χ
, wαi=k+1,··· ,2k−1 =−δαS2k−i−

δαC
χ
, wαi=k =wαi=2k =−δ

α
C

χ
,

`i=1,··· ,k = i− k2 , `i=k+1,··· ,2k = 3k
2 −i . (A.2)

To study perturbative anomalies for continuous symmetries, topological mass terms from the
11d effective action must be integrated out. As discussed in [27], this can be accomplished
by imposing the condition ∑

α

NαF
α
2 = 0 (A.3)
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on the original set of 2k− 1 U(1) field strengths associated with the non-trivial cohomology
classes of M6.

B Computation of the E4X8 contribution to anomaly inflow

Recall that the internal space M6 is a fibration of M4 over the Riemann surface Σg, where
M4 is the resolved orbifold S4/Zk. In order to evaluate the E4X8 contribution to the
inflow anomaly polynomial, it is convenient to regard M4 as consisting of three regions: the
region near the north pole, the region near the south pole, and the central region. In this
appendix we present a computation of the contribution from each region, using the same
parameterization of E4 as employed in [27]. Note that this parameterization assumes χ < 0.
After the field redefinitions (3.13), however, the final result can be extended to the case χ = 0.

B.1 Contribution from the resolved orbifold singularities

The contributions to X8 originating from the polar regions can be evaluated recalling that
M4 is an S1

ϕ fibration over a 3d space parametrized by the ψ circle and the 2d space M2.
The S1

ϕ fibration has monopole sources located along the boundary of M2, grouped into a
collection of k monopoles with charge +1 in the region near the north pole, and a collection
of k monopoles with charge −1 in the region near the south pole. In the vicinity of each
monopole, M4 is locally approximated by single-center ALF Taub-NUT metric. This 4d
space has self-dual curvature, and correspondingly it has only one independent Chern root.
If we denote the Chern roots as λ1, λ2, we have

λ1 + λ2 = 0 , λ1 − λ2 = 2λ1 := 2λ . (B.1)

The independent Chern root λ can be identified with the first Chern class of the S1
ϕ bundle,

which is effectively localized at the center of the Taub-NUT space. The relations (B.1) also
apply if we consider a multicenter Taub-NUT metric to model the union of the northern
and southern regions. In this case, λ is supported at the locations of the various monopoles.

It is useful to recall that, for a single-center ALF Taub-NUT space TNn with monopole
charge n, we have [54]

p1(TNn) = λ2
1 + λ2

2 = 2λ2 ,

∫
TNn

p1(TNn) = 2n . (B.2)

If we consider a multi-center Taub-NUT, we can write

2λ2 =
2k∑
i=1

p1(TNni) , (B.3)

where the charge ni is +1 for 1 ≤ i ≤ k (northern region) and −1 for k + 1 ≤ i ≤ 2k
(sourthern region). We observe that the 4-form λ2 has legs along M4 only, and is supported
at the locations of the monopoles.

Upon twisting M4 over the Riemann surface, and activating the external gauge fields,
the Chern roots λ1, λ2 get shifted: the sum λ1 + λ2, which is associated with the angle ψ

– 34 –



J
H
E
P
0
9
(
2
0
2
2
)
1
9
7

in the base of the Taub-NUT S1
ϕ fibration, is shifted by the total connection for the angle

ψ, consisting of a contribution along the Riemann surface (implementing the topological
twist), and a contribution along the external spacetime,

λ1 + λ2 → λ1 + λ2 − χV Σ
2 + Fψ2

2π . (B.4)

The difference λ1 − λ2, which is instead associated with the S1
ϕ fiber, is shifted by the

external gauge field for the ϕ isometry,

λ1 − λ2 → λ1 − λ2 + Fϕ2
2π . (B.5)

Recalling (B.1), the Chern roots of (the polar regions of) M4 after twisting and gauging
take the form

λ1,2 = ±λ− χ

2 V
Σ

2 + 1
2
Fψ2
2π ±

1
2
Fϕ2
2π . (B.6)

After these preliminaries, we can proceed with the computation of X8 that captures
the northern and southern caps of M4. To compute the Pontryagin classes of the total 11d
spacetime, we can apply the splitting principle, with reference to the schematic decomposition

TM11 → TW4 ⊕ TΣg ⊕ TM4 , (B.7)

using (B.6) for the Chern roots of the last summand. We obtain

p1(TM11) = p1(TW4) + λ2
1 + λ2

2 , p2(TM11) = p1(TW4)
(
λ2

1 + λ2
2
)

+ λ2
1 λ

2
2 , (B.8)

and hence (neglecting terms with more than six legs in the external spacetime)

X8 = 1
192

[
p1(TM11)2 − 4 p2(TM11)

]
= 1

192
(
λ2

1 − λ2
2
)2 − 1

96 p1(TW4)
(
λ2

1 + λ2
2
)
. (B.9)

As noted above, λ is supported at the locations of the monopoles. Upon expanding (B.9),
we encounter terms without λ, terms linear in λ, and terms with λ2. Higher powers of λ
vanish, because they have too many legs along M4. Next, we observe that the terms that
are linear in λ do not contribute to E4X8. This is due to the fact that, in our construction
of E4, we have imposed that E4 be regular as we approach the locations of the monopoles.
As a result, E4 localized at a monopole cannot provide the additional M4 legs that would
be necessary (together with λ) to saturate the integral in the M4 directions. Furthermore,
we can drop all terms in X8 that have purely external legs. Taking these considerations
into account, we see that the relevant terms in X8 are given by

X8 = χ

96 V
Σ

2
Fψ2
2π

[
p1(TW4)−

(
Fϕ2
2π

)2]
+ 1

48 λ
2
[(

Fψ2
2π

)2
− p1(TW4)

]
− χ

24 λ
2 V Σ

2
Fψ2
2π .

(B.10)
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We may now consider the parametrization of E4 given by equation (4.8) of [27], and reported
here for convenience,

E4 = Nα (Ωα
4 )g +Nα (Ωα

2,I)g F
I
2

2π +Nα Ωα
0,IJ

F I2
2π

F J2
2π

+N
Fα2
2π (ω2,α)g +N

Fα2
2π ω0,αI

F I2
2π +N

γ4
2π . (B.11)

For the explicit parameterization and properties of the various forms appearing in this
expansion we refer the reader to appendix B of [27]. Upon expanding E4X8 and collecting
the terms that can saturate the M6 integration, we arrive at

E4X8 ⊃−
χ

96 Nα Ωα
4 V

Σ
2

[(
Fϕ2
2π

)2
− p1(TW4)

]
Fψ2
2π

+ 1
48 λ

2
[
Nα (Ωα

2,I)g F
I
2

2π +N
Fα2
2π (ω2,α)g

][(
Fψ2
2π

)2
− p1(TW4)

]

− χ

24 λ
2 V Σ

2

(
N
Fα2
2π ω0,αI

F I2
2π +Nα Ωα

0,IJ
F I2
2π

F J2
2π

)
Fψ2
2π . (B.12)

The terms with γ4 are omitted, as it can be easily verified that they drop from the
computation, given our prescription to compute integrals of λ2 described below.

For the first line of (B.12) we just need the integral

Nα

∫
M6

Ωα
4 V

Σ
2 = Nα

∫
M2

dTα1 = Nα a
α
C = N . (B.13)

The terms with λ2 are handled recalling (B.2) and (B.3), which imply the prescription
λ2Z →

∑2k
i=1 niZ(ti). Here Z stands for an arbitrary quantity on M4, Z(ti) denotes

Z evaluated at the i-th monopole, and ni = +1 for i = 1, · · · , k and ni = −1 for i =
k + 1, · · · , 2k are the monopole charges. We also need to recall that

Nα Ωα
2,ψ = 2Nα U

α
0 V

Σ
2 + . . . , Nα Ωα

2,ϕ = −χNα Y
α

0,ψ V
Σ

2 + . . . ,

ω2,α = −χWψ
0,α V

Σ
2 + . . . , Ωα

0,ψψ = − 1
χ
Uα0 , 2 Ωα

0,ψϕ = Y α
0,ψ , Ωα

0,ϕϕ = Y α
0,ϕ ,

(B.14)

where the omitted terms are not relevant for the M6 integration. We also need

ω0,αI = W0,αI , (B.15)

where the W ’s are the 0-forms that enter the parametrization of the harmonic 2-forms ω2,α.
We find it convenient to introduce the shorthand notation

Ui := Nα U
α
0 (ti) , Y ψ

i := Nα Y
α

0,ψ(ti) , Y ϕ
i := Nα Y

α
0,ϕ(ti) ,

(Wψ
α )i := W0,αψ(ti) , (Wϕ

α )i := W0,αϕ(ti) .
(B.16)
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Collecting the various contributions to the integral of (B.12), we obtain∫
M6

E4X8 ⊃ −
χN

96

[(
Fϕ2
2π

)2
− p1(TW4)

]
Fψ2
2π (B.17)

+ 1
48

[(
Fψ2
2π

)2
− p1(TW4)

] k∑
i=1

[
2 F

ψ
2

2π (Ui − Uk+i)− χ
Fϕ2
2π
(
Y ψ
i − Y

ψ
k+i
)]

− χN

48

[(
Fψ2
2π

)2
− p1(TW4)

]
Fα2
2π

k∑
i=1

[
(Wψ

α )i − (Wψ
α )k+i

]

− χ

24
Fψ2
2π

k∑
i=1

[
− 1
χ

(
Fψ2
2π

)2
(Ui − Uk+i) + Fψ2

2π
Fϕ2
2π
(
Y ψ
i − Y

ψ
k+i
)

+
(
Fϕ2
2π

)2 (
Y ϕ
i − Y

ϕ
k+i

)]

− χN

24

(
Fψ2
2π

)2 Fα2
2π

k∑
i=1

[
(Wψ

α )i − (Wψ
α )k+i

]
− χN

24
Fψ2
2π

Fϕ2
2π

Fα2
2π

k∑
i=1

[(Wϕ
α )i − (Wϕ

α )k+i] .

To evaluate the above sums, we need to recall some relations regarding the quantities U , Y ,
W for our choice of basis of 4- and 2-cycles in the parameterization for E4,

(Y α
ϕ )i=1,··· ,k = aαC

2k , (Y α
ϕ )i=k+1,··· ,2k = −a

α
C

2k ,

(Y α
ψ )i=1,··· ,k = (Y α

ψ )1 −
i−1∑
j=1

aαj
χ
, (Y α

ψ )i=k+1,··· ,2k = (Y α
ψ )1 + aαC

2 −
i−1∑
j=1

aαj
χ
,

Uαi = Uα1 −
i−1∑
j=1

`ja
α
j , (Wϕ

α )i = wiα − wi−1
α

`i − `i−1
, (Wψ

α )i = `iw
i−1
α − `i−1w

i
α

`i − `i−1
.

(B.18)

Note also that `i − `i−1 = −(`k+i − `k+i−1) = +1 for i = 1, · · · , k. The quantities wiα are in
turn given by

wαi=1,··· ,k = −δαNi −
δαC
χ
, wαi=k+1,··· ,2k−1 = −δαS2k−i −

δαC
χ
, wαi=k = wαi=2k = −δ

α
C
χ
. (B.19)

The above relations imply in particular

k∑
i=1

(Y ϕ
i − Y

ϕ
k+i) = N ,

k∑
i=1

(Y ψ
i − Y

ψ
k+i) = 0 ,

k∑
i=1

(Ui − Uk+i) =
k∑
i=1

k+i−1∑
j=i

`jNj ,

k∑
i=1

[(Wα,ϕ)i − (Wα,ϕ)k+i] = 0 ,
k∑
i=1

[
(Wψ

α )i − (Wψ
α )k+i

]
=

k∑
i=1

2
(
δαSk−i − δ

α
Ni

)
.

(B.20)

Furthermore, we need the following identity,

k∑
i=1

i+k−1∑
j=i

`jNj = k2

4 χN − 2
k−1∑
i,j=1

(A−1
k−1)ij(NNi +NSk−j )

= k2

4 χN − 2
k−1∑
i,j=1

(Nβ̃i
+Nγ̃i) , (B.21)
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where Ak−1 is the Cartan matrix of su(k) and in the second step we have used the
dictionary (3.13) between the flux quanta in the M-theory setup, and the flavor fluxes of
the class Sk reduction.

It follows that the contribution from E4X8 to −I inflow,E4X8
6 capturing the polar caps of

the resolved orbifold M4 can be written as

(−I inflow,E4X8
6 )polar caps = −χN96

[(
Fϕ2
2π

)2
− p1(TW4)

]
Fψ2
2π −

χN

24

(
Fϕ2
2π

)2 Fψ2
2π

+ 1
24

[
2
(
Fψ2
2π

)2
− p1(TW4)

]
Fψ2
2π

[
k2χN

4 − 2
k−1∑
i,j=1

(Nβ̃i
+Nγ̃i)

]

+ χN

24

[
3
(
Fψ2
2π

)2
− p1(TW4)

] k−1∑
i=1

(
FNi

2
2π −

F Si
2

2π

)
. (B.22)

B.2 Other contributions and final result

The remaining contribution to consider is associated with the central region in M4, between
the two polar caps. We may extract this contribution as follows,

(−I inflow,E4X8
6 )central region = (−I inflow,E4X8

6 )S4 − (−I inflow,E4X8
6 )polar capsk=1 . (B.23)

The quantity (−I inflow,E4X8
6 )polar capsk=1 is simply (B.22) evaluated for k = 1, with the con-

vention that the sums over i with range 1 to k − 1 be simply dropped. The quantity
(−I inflow,E4X8

6 )S4 is the E4X8 contribution to anomaly inflow for an (unorbifolded) S4

fibered over the Riemann surface. The rationale behind (B.23) is that the central region
can be obtained starting from S4 and removing the polar caps without orbifold, which are
captured as the special case k = 1 of the computation of the previous subsection.

The quantity (−I inflow,E4X8
6 )S4 corresponds to a special case of the Bah-Beem-Bobev-

Wecht (BBBW) setup [7], which is in general parameterized by two integer twist parameters
q1, q2, subject to the constraint q1 + q2 = −χ/2. In this work, we are turning off the flavor
twist parameter ζ (governing a twist of the ϕ isometry along the Riemann surface), which
corresponds to the case q1 = q2 = −χ/2. Both the E3

4 and the E4X8 contributions to
anomaly inflow were studied for general q1, q2 in [31], with the results

(−I inflow, E
3
4

6 )S4 = 2
3 N

3 (q1 n1 n
2
2 + q2 n2 n

2
1) , (B.24)

(−I inflow, E4X8
6 )S4 = −N24 (q1 n1 + q2 n2) p1(TW4) + N

6 (q1 n
3
1 + q2 n

3
2)

− N

6 (q1 n1 n
2
2 + q2 n2 n

2
1) .

The quantities n1, n2 are the first Chern classes of the external gauge fields associated with
the U(1)2 isometry of the S4 fibration over Σg that is visible for generic q1, q2. The relation
to the background fields Fψ2 , Fϕ2 considered in this work is

n1 = 1
4
Fψ2
2π + 1

2
Fϕ2
2π , n2 = 1

4
Fψ2
2π −

1
2
Fϕ2
2π . (B.25)
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notation of [26] notation of this work and [27]
NN = −NS1

NS = +NN1

cN
1 = −F

S1
2

2π + (N χ−NS1)(N χ−NN1 −NS1)
2N χ (2N χ−NN1 −NS1)

Fψ2
2π

cS
1 = +FN1

2
2π + (N χ−NN1)(N χ−NN1 −NS1)

2N χ (2N χ−NN1 −NS1)
Fψ2
2π

cψ1 = 1
2
Fψ

2π

pϕ1 =
(
Fϕ2
2π

)2

Table 3. Flux parameter and external gauge field strength redefinitions required to match with the
results of [26].

We are now in a position to write down the final answer for the E4X8 contribution
to anomaly inflow. This quantity is the sum of (B.22) and (B.23), with (−I inflow,E4X8

6 )S4

extracted from (B.24) with the identifications (B.25) and q1 = q2 = −χ/2. In conclusion,
we arrive at

−I inflow, E4X8
6 = −N χ

24
Fψ2
2π

(
Fϕ2
2π

)2
+ N χ

24

[
3
(
Fψ2
2π

)2
− p1(TW4)

] k−1∑
i=1

(
FNi

2
2π −

F Si
2

2π

)

+ Fψ2
2π p1(TW4)

[
− N χ

96 (k2 − 2) + 1
12

k−1∑
i=1

(
N
β̃i

+Nγ̃i

)]

+
(
Fψ2
2π

)3 [N χ

48 (k2 − 1)− 1
6

k−1∑
i=1

(
N
β̃i

+Nγ̃i

)]
. (B.26)

B.3 Comparison with [26]

The full inflow anomaly polynomial −I inflow
6 for general k, including the E4X8 contribution

evaluated above, agrees with the results of [26] for k = 2. To verify this, one needs to
perform a redefinition of flux parameters and external gauge fields. The quantities in [26]
are related to those in this paper and [27] as in table 3.

C Anomaly inflow computation for the torus case

We derive in this appendix the E3
4 contribution to the inflow anomaly polynomial, I inflow,E

3
4

6 ,
for the case of genus one, following the general philosophy adopted by [27] for the construction
of the higher-genus inflow anomaly polynomial. We are going to describe only the essential
elements which distinguish this computation from the original one, and we refer the reader
to [27] for a detailed discussion of the formalism.

The Euler characteristic of the torus is χ = 2− 2g = 0, so it makes the topological twist
of the U(1)ψ bundle trivial while preserving N = 1 supersymmetry [28, 55]. Specifically,
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the global angular forms associated with the isometries reduce respectively to

(Dψ)g = dψ +Aψ1 , (Dϕ)g = dϕ− L (dψ +Aψ1 ) +Aϕ1 . (C.1)

Cohomology class representatives of H2(M6) and H4(M6) can be written as

ω2,α = (dWψ
0,α + LdWϕ

0,α) ∧ dψ2π + dWϕ
0,α ∧

Dϕ

2π +WΣ
0,αV

Σ
2 , (C.2)

Ωα
4 = dTα1 ∧

dψ

2π ∧
Dϕ

2π + (dUα0,ψ + LdUα0,ϕ) ∧ dψ2π ∧ V
Σ

2 + dUα0,ϕ ∧
Dϕ

2π ∧ V
Σ

2 , (C.3)

where WΣ
0,α is a constant such that ω2,α is closed. Note especially that the expression for

Ωα
4 is not the same as the naïve χ = 0 limit of (B.17) in [27], otherwise the flux quanta

Ni =
∫
C4,i

NαΩα
4 for i = 1, 2, . . . , 2k are ill-defined. This is also necessary so as to recover

the sum rules,
2k∑
i=1

aαi = 0 ,
2k∑
i=1

`ia
α
i = 0 , (C.4)

that are consistent with their higher-genus cousins. As a reminder, we choose to parameterize
a given basis of (co)homology classes using the expansion coefficients,

C4,C = aαC C4,α , C4,i = aαi C4,α , CΣ,i
2 = bΣ,iα Cα2 , Ci2 = biα Cα2 , (C.5)

where the various cycles are introduced in section 2. These coefficients can be expressed in
terms of various auxiliary differential forms defined earlier,

aαC =
∫
∂M2

Tα1 , aαi = Uα0,ϕ(ti+1)− Uα0,ϕ(ti) , bΣ,iα = WΣ
0,α , biα = Wϕ

0,α(ti+1)−Wϕ
0,α(ti) .
(C.6)

Recall that the four-form flux E4 (restricting only to continuous zero-form symmetries)
can be expanded as follows,

E4 =Nα
(
Ωα

4
)g+Nα

(
Ωα

2,I
)g F I2

2π +N(ω2,α)g F
α
2

2π +NαΩα
0,IJ

F I2
2π

F J2
2π +Nω0,αI

F I2
2π

Fα2
2π . (C.7)

One can show that the following choice of forms,

Ωα
2,ψ = (dXα

0 − LTα1 ) ∧ dψ2π − T
α
1 ∧

Dϕ

2π + Uα0,ψV
Σ

2 ,

Ωα
2,ϕ = (dUα0,ϕ + LdY α

0 + Tα1 ) ∧ dψ2π + dY α
0 ∧

Dϕ

2π + Uα0,ϕV
Σ

2 ,

Ωα
0,ψψ = Xα

0 , Ωα
0,ψϕ = 1

2 U
α
0,ϕ , Ωα

0,ϕϕ = Y α
0 ,

(C.8)

are compatible with the closure and regularity constraints on E4. Applying the convention

NαNβJ αβI = 0 (C.9)

for each I ∈ {ψ,ϕ}, we can uniquely fix the reference values,

Ũ0,ψ(t1) = 1
N

2k∑
i=2

[
Ni + `i

(
Ỹ0,ϕ(ti+1)− Ỹ0,ϕ(ti)

)] i−1∑
j=1

(`i − `j)Nj , (C.10)

Ũ0,ϕ(t1) = 1
N

 2k∑
i=1

`iNiỸ0,ϕ(ti+1) +
2k∑
i=2

`i
(
Ỹ0,ϕ(ti+1)− Ỹ0,ϕ(ti)

) i−1∑
j=1

Nj

 , (C.11)
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where we used the shorthand notation Ni = Nαa
α
i , Ũ0,ψ = NαU

α
0,ψ, Ũ0,ϕ = NαU

α
0,ϕ,

Ỹ0 = NαY
α

0 .
The resulting inflow anomaly polynomial can be written as

I
inflow,E3

4
6 =

2k∑
i=1

ũi

[(
Ũ0,ϕ + `iỸ0

)[
X0 + 1

2 `i
(
Ũ0,ϕ + `iỸ0

)]]ti+1

ti

(
Fψ2
2π

)3

+
2k∑
i=1

[1
2 `iŨ

3
0,ϕ + ũi

(
X̃0 + `iŨ0,ϕ + 1

2 `
2
i Ỹ0

)
Ỹ0

]ti+1

ti

(
Fψ2
2π

)2Fϕ2
2π

+
2k∑
i=1

`i

[(
Ũ2

0,ϕ + 1
2 ũiỸ0

)
Ỹ0

]ti+1

ti

Fψ2
2π

(
Fϕ2
2π

)2

+
2k∑
i=1

1
2

[
Ũ0,ϕỸ0

(
Ũ0,ϕ + `iỸ0

)]ti+1

ti

(
Fϕ2
2π

)3

+
2k∑
i=1

N

[
Wψ

0,αŨ0,ϕX̃0 + ũi
[
Wϕ

0,αX̃0 + wα,i
(
Ũ0,ϕ + `iỸ0

)]

+ bΣα`i

[
X̃0Ỹ0 + 1

2
(
Ũ0,ϕ + `iỸ0

)2]]ti+1

ti

(
Fψ2
2π

)2Fα2
2π

+
2k∑
i=1

N

[1
2
(
wα,i + `iW

ϕ
0,α
)
Ũ2

0,ϕ + `iwα,iũiY0 + 1
2 b

Σ
α

(
Ũ0,ϕ + `iỸ0

)2]ti+1

ti

Fψ2
2π

Fϕ2
2π

Fα2
2π

+
2k∑
i=1

N

[
`iW

ϕ
0,αŨ0,ϕỸ0 + bΣα

(
Ũ0,ϕ + 1

2 `iỸ0

)
Ỹ0

]ti+1

ti

(
Fϕ2
2π

)2Fα2
2π

+
2k∑
i=1

N2
[
ũi

(
Wψ

0,α + 1
2 `iW

ϕ
0,α

)
Wϕ

0,β + bΣαwβ,i
(
Ũ0,ϕ + `iỸ0

)]ti+1

ti

Fψ2
2π

Fα2
2π

F β2
2π

+
2k∑
i=1

N2`i

[1
2 W

ϕ
0,αW

ϕ
0,βŨ0,ϕ + bΣαW

ϕ
0,βỸ0

]ti+1

ti

Fϕ2
2π

Fα2
2π

F β2
2π

+
2k∑
i=1

N3

2 bΣα`i

[
Wϕ

0,βW
ϕ
0,γ

]ti+1

ti

Fα2
2π

F β2
2π

F γ2
2π , (C.12)

subject to the condition that NαF
α
2 = 0. The values of the various auxiliary functions

evaluated at any ti are given by

`i =


i− k

2 if 1 ≤ i ≤ k ,

3k
2 − i if k + 1 ≤ i ≤ 2k ,

(C.13)

ũi = Ũ0,ψ(t1) + `iŨ0,ϕ(t1) +
i−1∑
j=1

(`i − `j)Nj , (C.14)

Ũ0,ψ(ti) = Ũ0,ψ(t1)−
i−1∑
j=1

`jNj , (C.15)
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Ũ0,ϕ(ti) = Ũ0,ϕ(t1) +
i−1∑
j=1

Nj , (C.16)

Ỹ0(ti) =


N

2k if 1 ≤ i ≤ k ,

−N2k if k + 1 ≤ i ≤ 2k ,
(C.17)

X̃0(ti) = −
i−1∑
j=1

[
`jNj + `2j

(
Ỹ0(tj+1)− Ỹ0(tj)

)]
, (C.18)

Wψ
0,α(ti) = `iwα,i−1 − `i−1wα,i

`i − `i−1
, (C.19)

Wϕ
0,α(ti) = wα,i − wα,i−1

`i − `i−1
, (C.20)

and in a Poincaré-dual basis of (co)homology classes as introduced in section 2, we have

wα,i=1,...,k−1 = −δα,Ni , wα,i=k+1,...,2k−1 = −δα,S2k−i , wα,k = wα,2k = 0 , bΣα = δα,C .

(C.21)
A prescription (3.13) is provided in the main text to obtain an inflow anomaly polynomial

that has a well-defined χ = 0 limit. It turns out that we can exactly reproduce this anomaly
polynomial by taking (C.12) and carrying out the replacements,

Fψ2
2π = 2c1(R′) , Fϕ2

2π = −kc1(t) ,

FNi
2

2π = c1(β̃i)− 2N
β̃i
c1(R′) , F

Sk−i
2
2π = −c1(γ̃i) + 2Nγ̃i

c1(R′) ,

NNi =
k−1∑
j=1

(Ak−1)ij Nβ̃j
, NSk−i =

k−1∑
j=1

(Ak−1)ij Nγ̃j
.

(C.22)

To conclude, this independent derivation for genus one from first principles confirms the
validity of using (3.13) to acquire an inflow anomaly polynomial for arbitrary g ≥ 1,
including the case χ = 0.

D Change of basis between flavor and resolution flux quanta

From the perspective of an 11d flux background probed by an M5-brane stack, the flux
quanta Nα appearing in the expansion of E4 represent the amount of flux threading the
4-cycles C4,α. Therefore, it is natural to express these flux quanta with respect to a
(co)homology basis determined by an intuitive choice of 4-cycles, namely,

C4,α=N1,...,Nk−1 = Ci=1,...,k−1
4 , C4,α=C = CC

4 , C4,α=S1,...,Sk−1 = Ci=2k−1,...,k+1
4 , (D.1)

as in (2.10). One can then proceed to define the “natural” basis 2-cycles Cα2 to be those
that are Poincaré-dual to these basis 4-cycles. For simplicity, the basis of (co)homology
classes described above will hereafter be referred to as the “resolution flux basis.” On the
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other hand, as explained in section 3.3, the starting point for the basis implicitly used in the
compactification of the 6d N = (1, 0) theories is instead an intuitive set of basis 2-cycles,(
Cα=N1,...,Nk−1

2
)′= Ci=1,...,k−1

2 ,
(
Cα=C

2
)′= CC

2 ,
(
Cα=S1,...,Sk−1

2
)′= Ci=2k−1,...,k+1

2 , (D.2)

where CC
2 is defined to be the Poincaré dual of C4,C = M4. The rest of the basis 4-cycles

(C4,α)′ can be similarly defined to be the Poincaré duals of (Cα2 )′. We will hereafter refer to
this basis of (co)homology classes as the “flavor flux basis.”

In this appendix we find the transformation matrix that relates the resolution flux basis
and the flavor flux basis. Using the relations following from Poincaré duality and regularity
of the basis two-forms in appendix C of [27], we can express the basis 2-cycles Cα2 in the
resolution flux basis in terms of familiar 2-cycles. Let us start with the case of k = 2. One
finds that

CΣ,1
2 = CΣ,2

2 = χ CN1
2 + CC

2 , CΣ,3
2 = CΣ,4

2 = χ CS1
2 + CC2 ,

Ci=1
2 = 2 CN1

2 , Ci=2
2 = Ci=4

2 = −CN1
2 + CS1

2 , Ci=3
2 = −2 CS1

2 ,
(D.3)

which can be inverted to give

CN1
2 = 1

2 C
i=1
2 ,

CC
2 = CΣ,1

2 − χ

2 C
i=1
2 = CΣ,3

2 + χ

2 C
i=3
2 ,

CS1
2 = −1

2 C
i=3
2 .

(D.4)

Meanwhile, the basis 2-cycles in the flavor basis are(
CN1

2
)′ = Ci=1

2 = 2 CN1
2 ,(

CC
2
)′ = CC

2 ,(
CS1

2
)′ = Ci=3

2 = −2 CS1
2 ,

(D.5)

so we can express the basis transformation compactly as (Cα2 )′ = (R−1
2 )αβ C

β
2 where

R−1
2 =

2 0 0
0 1 0
0 0 −2

 . (D.6)

The orthonormal pairing between cycles and cohomology representatives is preserved if
(ω2,β)′ = (R2)αβ ω2,α, such that∫

(Cα2 )′
(ω2,β)′ =

∫
(R−1

2 )αγ C
γ
2

(R2)δβ ω2,δ = (R−1
2 )αγ (R2)δβ δ

γ
δ = δαβ . (D.7)

Demanding Poincaré duality between the 2-cycles (Cα2 )′ and some set of 4-cycles (C4,α)′
amounts to requiring

δαβ =
∫
M6

(Ωα
4 )′ ∧ (ω2,β)′ =

∫
M6

(R4)αγ Ωγ
4 ∧ (R2)δβ ω2,δ = (R4R2)αβ , (D.8)
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which means that the 4-cycles that are Poincaré-dual to the basis 2-cycles in the flavor
basis can be expressed as (C4,α)′ = (R−1

4 )αβ C4,β with

R−1
4 = R2 =


1
2 0 0

0 1 0

0 0 −1
2

 . (D.9)

As discussed in appendix D of [27], the flux quanta associated with the new and old bases of
4-cycles are related by N ′α = (R−1

4 )βαNβ to make the inflow anomaly polynomial invariant,
and hence we get6

N ′N1 = 1
2 NN1 , N ′C = NC = N , N ′S1 = −1

2 NS1 . (D.10)

As noted previously, in order to preserve positivity of the flux quanta an additional overall
sign flip must be included in the basis transformation on southern quantities.

We now move on to the case of k = 3. By repeating the same exercise as before, we
derive that in the resolution flux basis,

CN1
2 = 1

3
(
2 Ci=1

2 + Ci=2
2
)
,

CN2
2 = 1

3
(
Ci=1

2 + 2 Ci=2
2
)
,

CC
2 = CΣ,1

2 − χ

2
(
2 Ci=1

2 + Ci=2
2
)
,

CS2
2 = −1

3
(
2 Ci=4

2 + Ci=5
2
)
,

CS1
2 = −1

3
(
Ci=4

2 + 2 Ci=5
2
)
.

(D.11)

On the other hand, the basis 2-cycles in the flavor flux basis are

(
CN1

2
)′ = Ci=1

2 = 2 CN1
2 − C

N1
2 ,(

CN2
2
)′ = Ci=2

2 = −CN1
2 + 2 CN2

2 ,(
CC

2
)′ = CC

2 ,(
CS2

2
)′ = Ci=4

2 = −2 CS2
2 + CS1

2 ,(
CS1

2
)′ = Ci=5

2 = CS2
2 − 2 CS1

2 ,

(D.12)

6Note that the requirement of having no topological mass term associated with γ4 in the inflow anomaly
polynomial is preserved, i.e. N ′α(Fα2 )′ = (R−1

4 )γαNγ (R−1
2 )αδ F δ2 = (R2R−1

2 )γδNγF
δ
2 = NαF

α
2 = 0, assuming

that we only restrict to the zero-form symmetries and also follow the convention that NαNβJ αβI = 0.
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so the corresponding basis transformation matrix is

R−1
2 =


2 −1 0 0 0
−1 2 0 0 0
0 0 1 0 0
0 0 0 −2 1
0 0 0 1 −2

 . (D.13)

The flux quanta in the two bases are then related by

N ′N1 = 1
3(2NN1 +NN2) , N ′N2 = 1

3(NN1 + 2NN2) , N ′C = N ,

N ′S2 = −1
3(2NS2 +NS1) , N ′S1 = −1

3(NS2 + 2NS1) .
(D.14)

Following the analogous exercise for k ≥ 4, one can inductively find that the basis
transformation matrix R−1

2 is given by

R−1
2 =

Ak−1 0 0
0 1 0
0 0 −Ak−1

 , (D.15)

where Ak−1 is the Cartan matrix of su(k). Note that this formula applies also to k = 2 and
k = 3.

To summarize, the flux quanta NNi , NSi in the resolution flux basis can be expressed
in terms of the flux quanta N ′Ni , N

′
Si in the flavor flux basis as

NNi =
k−1∑
i=1

(Ak−1)ij N ′Nj , NSi = −
k−1∑
i=1

(Ak−1)ij N ′Sj . (D.16)

Alternately, we have

N ′Ni =
k−1∑
i=1

(A−1
k−1)ij NNj , N ′Si = −

k−1∑
i=1

(A−1
k−1)ij NSj , (D.17)

where the inverse Ak−1 given by [56]

(A−1
k−1)ji = min{i, j} − ij

k
. (D.18)

We can thus interpret the flux quanta identifications in (3.13) as a change of basis between
a natural 4-cycle and a natural 2-cycle basis, along with a reversal of indexing and sign flip
in the south to preserve positivity of the fluxes, i.e.

N
β̃i

= N ′Ni , Nγ̃i
= −N ′Sk−i . (D.19)
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