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1 Introduction

One of the most fascinating discoveries in theoretical physics is the so-called AdS/CFT
correspondence [1]. In its original form it asserts the complete equivalence between type-
IIB string theory on the AdS5 × S5 background and the maximally supersymmetric gauge
theory in 4 dimensions, namely N = 4 Super Yang-Mills (SYM). The importance of the
correspondence relies on its weak/strong coupling nature which provides powerful tools in
understanding the strongly coupled dynamics of gauge theories. One of the main properties
of the correspondence is its integrability. Exploiting the key feature of integrability which
both of the aforementioned theories possess, an intense activity took place allowing the
determination of its spectrum, at the planar level, for any value of the ’t Hooft coupling λ.
To achieve this goal a variety of integrability based techniques were employed, such as the
asymptotic Bethe ansatz [2], the thermodynamic Bethe ansatz [3], and the Y-system [4].

On the contrary, much less is known about the structure constants of the theory. The
main obstacle here, is that for the calculation of the three-point correlation functions the
exact form of the eigenstates of the dilatation operator is needed [5–7]. Systematic studies
of three-point correlators involving BPS, as well as, non-BPS operators were performed
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in [8–11] by computing the contributions arising from both the planar one-loop Feynman
diagrams, as well as from the correct form of the one-loop eigenstates of the dilatation
operator [6, 11].

More recently, certain non-perturbative in nature methods for bootstrapping three-
point correlation functions were developed in [12–15]. In addition, by exploiting the
AdS/CFT correspondence, three-point correlation functions involving three heavy states in
the SU(2) or the SL(2) subsectors were calculated at strong coupling [16, 17]. This was ac-
complished by evaluating the area of the corresponding minimal surface through Pohlmeyer
reduction. Another front where significant progress has been made is the one where the
three-point correlator involves two non-protected operators with large charges, which are
dual to classical string solutions, and one light state. The strong coupling result for this
kind of three-point functions can be obtained by integrating the vertex operator that de-
scribes the light state over the classical surface which corresponds to the free propagation
of the heavy state from one point of the boundary of AdS5 to another [18–23].

There is another occasion in which one can extract useful information for both the
spectrum and the structure constants of the theory. This is possible in a particularly
interesting limit, called the BMN limit [24] in which one focuses on the sector of operators
with large R-charge. These operators are dual to string states propagating in the pp-
wave limit of the AdS5×S5 geometry. Different proposals concerning the form of the cubic
string Hamiltonian had been put forward in [25–27]. In [28, 29] the issue of how to correctly
relate the string amplitudes obtained from the pp-wave cubic Hamiltonian to the structure
constants of the N = 4 SYM was finally settled. This was achieved by combining a number
of results available from both the string and the field theory sides [30–33].1 It is precisely
this limit that we will employ in section 7 in order to get information for the spectrum of
the marginally deformed conformal field theory (CFT) with Schrodinger symmetry.

Despite the aforementioned unprecedented insights into the strongly coupled dynamics
of gauge theories originating from the original AdS/CFT scenario, N = 4 SYM is far from
QCD, the theory one would like to understand at low energies where the confinement of
the quarks takes place. In recent years, the identification of integrable deformations of
the original AdS/CFT correspondence has attracted significant attention. These come a
step closer to more realistic gauge theories. One of the reasons is that due to the defor-
mations supersymmetry may be completely or partially broken. A case where the effects
of the deformation is more profound is the correspondence between a certain Schrödinger
spacetime and its dual null-dipole deformed conformal field theory [35–37]. On the gravity
side [38] the theory may be easily obtained from the AdS5 × S5 background through a
solution generating technique known as TsT transformation. One starts by performing
an Abelian T-duality along one of the isometries of the five-sphere S5 followed by a shift
along one of the light-like directions of the AdS5 boundary. Finally a second T-duality
along the coordinate of the sphere dualised initially must be performed. The background
resulting from this procedure is the so-called Sch5 × S5 and for certain choices of the five

1Furthermore, using the techniques of coordinate and algebraic Bethe ansatz the entanglement entropy
of the N = 4 SYM spin chain was studied in [34]. An exact expression for the entanglement entropy of a
state with two excitations in the BMN limit was also derived in the same work.
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sphere isometry is non-supersymmetric. The holographic dual field theory is, of course,
also non-supersymmetric and realises the Schrödinger symmetry algebra as its symmetry
group. The field theory dual can be straightforwardly obtained by introducing a certain ?-
product among the fields of the N = 4 SYM Lagrangian. This ?-product can be identified
with the corresponding Drinfeld-Reshetikhin twist of the underlying integrable structure of
the undeformed parent theory, namely N = 4 SYM [39–43]. Consequently, the deformed
theory is fully integrable at the planar level with its integrability properties being inherited
from the parent N = 4 SYM.

In contradistinction to the original AdS/CFT scenario very few observables have been
calculated in the deformed version of the correspondence. In particular, two, three and
n-point correlation functions of scalar operators were calculated in [44] and [45] using the
gravity side of the correspondence. It is important to mention that all these operators
were dual to point-like strings propagating in the Sch5×S5 background. Extended dyonic
giant magnon and spike solutions were found in [46] and their dispersion relations were
determined (in [47] finite size corrections of those solutions were calculated). The exis-
tence of these solutions is in complete agreement with the fact that the theory remains
integrable. In the same work an exact expression, as a function of the coupling λ, for
the dimensions of the gauge operators dual to the giant magnon solution was conjectured.
Subsequently, the Penrose limit around a certain null geodesic was utilised in [48] to study
the spectrum of the bosonic strings in the light-cone and show that two of the eigenfre-
quencies of the bosonic spectrum derived are in complete agreement with the dispersion
relation of the giant magnon solution in the original Schrodinger background [46, 49]. In-
spired by the pp-wave spectrum an improved conjecture about the exact in the t’Hooft
coupling dispersion relation for the magnons in the original Schrödinger background was
put forward. Furthermore, agreement was found between this dispersion relation and the
one-loop anomalous dimension of BMN-like operators providing further evidence in favour
of the correspondence [48]. On the field theory side, the one-loop spectrum of operators
belonging in a SL(2) closed sub-sector has been determined in [50]. These authors found
agreement between the one-loop anomalous dimensions of certain long operators and the
string theory prediction (see also [51]).

Subsequently, three-point functions involving two heavy and one light operator were
calculated in the Schrödinger background by the use of holography [49]. The light operator
was chosen to be the dilaton while the heavy states were either the giant magnon or spike
solutions constructed in [46]. These results are the first in the literature where three-point
correlation functions involving heavy states described by extended string solutions were
calculated. The results of [49] provide the leading term of the correlators in the large λ
expansion and are in perfect agreement with the form of the correlator as this is dictated
by non-relativistic conformal invariance. Additionally, pulsating string solutions in the
Schrödinger background were constructed in [52]. Finally, Giant Graviton configurations
both in the Schrödinger background, as well as in its pp-wave limit were found in [53]
and [54], respectively. These solutions exhibit an intriguing behaviour, namely the degen-
eracy between the point and the Giant Graviton is lifted in favour of the Giant Graviton,
as soon as the deformation is turned on. This behaviour is unique since in all the cases
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studied in the literature the point and the Giant Graviton have always the same energy
regardless whether the deformation parameter is zero or non-zero, i.e. [55, 56].

In this paper, we continue the study of spacetimes with Schrödinger symmetry and
their dual dipole-deformed CFT’s. In particular, in section 2 we derive a new supergravity
solution by marginally deforming the Schrödinger background presented in appendix A
(see also [50]). This is accomplished by performing a series of TsT transformations along
two of the five-sphere isometries of the Schrödinger solution. The resulting background
is integrable for large number of colours N and depends on two deformation parameters,
namely µ and γ. In section 3 we write down the Lagrangian of the field theory dual to
our background. It is obtained from the Lagrangian of N = 4 SYM by introducing the
appropriate star product among the N = 4 SYM fields. The resulting gauge theory has a
mild non-locality along one of its light-like directions and is integrable at the planar level.
Both of these properties are inherited from the parent Schrödinger background.

It is the aim of this work to test this doubly-deformed new paradigm of the AdS/CFT
correspondence and clarify the interplay of the two deformation parameters. In section 4
we find a point-like string solution and derive its dispersion relation which depends on both
deformation parameters µ and γ in a certain way. In 4.1, we identify the dual field theory
operators and in 4.2 reproduce the leading, in the deformation parameters, terms of the
dispersion relation by using the Landau-Lifshitz coherent state approach. This constitutes
a non-trivial test of the correspondence.

Subsequently, in section 5 we evaluate the Wilson loop expectation value, at strong cou-
pling, in the marginally deformed Schrödinger background that we constructed in 2. The
Wilson loop consists of two straight lines extending along the time direction and sitting at
two points in space separated by a distance L. We calculate the energy of this configuration
as a function of the separation length. This corresponds, as usual, to the potential between
two quarks sitting at a distance L on the boundary [57]. The energy depends on both
deformation parameters and for small values of the separation length L (with respect to
the Schrödinger parameter µ) it exhibits confining behaviour, i.e. it is linearly proportional
to L with the constant of proportionality being inversely proportional to µ2. When the
separation length is much greater than the Schrödinger parameter, the energy is inversely
proportional to L exhibiting the characteristic behaviour of a Wilson loop in conformal
theories. We should stress that it is the first time that such a calculation is performed
in the 10-dimensional solution of type-IIB supergravity with Schrödinger symmetry. In
all other cases in the literature the calculation was done in a reduced 5-dimensional back-
ground [58, 59] and as a result the behaviour of the Wilson loop expectation value was
completely different. This is due to the non-trivial winding of the string on the five-sphere
which is imposed by consistency of the 10-dimensional equations of motion.

In section 6 we present the Giant Graviton solution in the background that was con-
structed in section 2. The bottomline of the computation is that despite the presence of
both the Schrödinger and the marginal parameters (namely µ and γ) in the background,
the energy of the Giant Graviton depends only on µ. The parameter γ disappears from
the computation. As a result, the analysis of the Giant Graviton’s energy reduces to the
discussion that was presented in [53].
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In section 7, we take the Penrose limit along a certain null geodesic of the Schrödinger
background. The geodesic is chosen such that the final geometry depends on both deforma-
tion parameters. The main goal of this section is to extract information about the spectrum
of our Schrödinger background in this particular BMN limit in which string theory is solv-
able. We fully determine the spectrum of the strings by determining the eigenfrequencies
of all 8 transverse physical degrees of freedom of the bosonic string. Their energies give
a prediction for the anomalous dimensions of the dual field theory operators as an exact
function of the effective coupling λ′ = λ

J2 . Four of them depend only on the parameter µ
while the remaining four depend on both deformation parameters µ and γ. Based on the
string spectrum on the pp-wave geometry, we make, in section 7.1, an educated guess for
the exact in λ dispersion relation of the magnon excitations in the original doubly deformed
background which provides us with an exact prediction for the dimensions of the dual field
theory operators.

In section 8 we conclude the paper and discuss potential future directions in the frame-
work of the marginally deformed Schrödinger holography. The paper is supplemented with
two appendices: in appendix A we present the Schrödinger background before the TsT
transformation and in appendix B we write down the conventions for the Polyakov action
and the Virasoro constraints.

2 Construction of the solution

Starting with the type-IIB solution described in section (2.2) of [50], which we review in
appendix A, we perform a TsT transformation along the U(1) isometries generated by the
vectors ∂χ and ∂φ. The TsT transformation goes schematically as follows2

• T-duality in the χ-direction: χ→ χ̃

• Translation in the φ-direction: φ→ φ+ γ̂ χ̃

• T-duality in the χ̃-direction: χ̃→ ˜̃χ

After the third step we rename the coordinate ˜̃χ to χ. The deformation parameter γ̂ is
constant and has units of [length]−2. In the following we will express everything in terms
of the dimensionless constant γ = R2γ̂. Let us mention that γ̂ is related to the field theory
deformation γ̃ through the following relation

2 γ̂ = γ̃

2π ⇒ γ =
√
λ
γ̃

4π , (2.1)

where λ = g2N is the ’t Hooft coupling.

2Another marginal Schrödinger solution, based on the Lunin-Maldacena background, is obtained in [60]
through Null-Melvin twist.
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The result of the above process is a solution of the type-IIB supergravity with metric
that is given by the line element below

ds2

R2 =−
(

1 + 4µ2W

z4 + x2
1 + x2

2
z2

)
dt2 + 1

z2
(
dx2

1 + dx2
2 + dz2)+ 4W dχ2 + dη2

+ 2
z2

[
dt dv + γµW sin2 η

(
cos2 η cos θdψ −

(
1− sin2 η cos2 θ

)
dφ
)
dt

]
+ W

4 sin2 η
(
4 + γ2 sin2 η cos2 η sin2 θ

)
dψ2 + 4W sin2 η dχ

(
dψ − cos θ dφ

)
+ sin2 η

4
(
dθ2 + 4W dφ2 − 8W cos θ dφ dψ

)
(2.2)

where W is a function of the angles η and θ given by the expression

W =
[
4 + γ2 sin2 η

(
1− sin2 η cos2 θ

)]−1
. (2.3)

The TsT transformation generates a dilaton that can be expressed in terms of W as follows

Φ = 1
2 ln

(
4W

)
. (2.4)

The NS two-form including the new terms arising from the second TsT transformation is

B2
R2 = 2µW

z2 dt ∧
(
2dχ− sin2 η cos θdφ+ sin2 ηdψ

)
+ γ W sin2 η dφ ∧

[(
1− sin2 η cos2 θ

)
dχ+ 1

2 sin2 η sin2 θ dψ

]
+ γ W sin2 η cos2 η cos θ dχ ∧ dψ .

(2.5)

Finally, for the RR fields we find

F3
R2 = −γ2 sin3 η cos η sin θ dη ∧ dθ ∧ dψ
F5
R4 = 4

z5 dt ∧ dv ∧ dx1 ∧ dx2 ∧ dz + 2W sin3 η cos η sin θ dη ∧ dθ ∧ dφ ∧ dχ ∧ dψ

+ γ µW

z2 sin3 η cos η sin θ dt ∧ dη ∧ dθ ∧ dψ ∧
(
2 dχ− sin2 η cos θ dφ

)
.

(2.6)

Notice that when γ = 0 one obtains the solution of the appendix A, while for γ = µ = 0
one recovers the original AdS5 × S5 solution.

3 Dual field theory

In this section, we briefly discuss the field theory which is dual to the type IIB supergravity
background that is presented in the previous section. Since this solution is obtained after
two sets of TsT transformations3 the dual field theory Lagrangian should be obtained by

3One should remember that the Scrodinger background of appendix A is also obtained from the AdS5×S5

solution after a certain TsT transfrormation, i.e. T-duality along the angle χ, shift along a light-like direction
and T-duality along the T-dualised isometry χ̃.
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replacing the ordinary field products in the N = 4 Lagrangian by the following modified
star product

(Φ1 ? Φ2)(x) = e i
γ̃
2

(
Qχ1 Q

φ
2−Q

φ
1 Q

χ
2
)

e
L
2 (∂−1Q

χ
2−Q

χ
1 ∂−2) Φ1(x1) Φ2(x2)

∣∣∣∣
x1,2=x

= e i
γ̃
2

(
Qχ1 Q

φ
2−Q

φ
1 Q

χ
2
)

Φ1(x+ L2) Φ2(x− L1) .
(3.1)

One should assign to each field in the theory a dipole length which is proportional to its
R-charge along the χ isometry, namely

LΦ ≡
LQχΦ

2 ê− with ê− = 1√
2

(1,−1, 0, 0) . (3.2)

In the last equation, ê− denotes the vector along the minus null-direction x− and QχΦ the
R-charge of the field Φ along the χ isometry. Notice that the two exponentials in the
first line of (3.1) commute since all the participating generators are isometries. This is in
complete agreement with the fact that the order of the two sets of TsT transformations
is irrelevant, i.e. the resulting background is the same regardless which of the two TsT
transformations is done first.

As a result, the dipole-deformed SYM Lagrangian becomes

L = Tr
[
− 1

2FµνF
µν + 2DµΦAB D

µΦAB + 2 i ψαA σ
µ
αα̇ (Dµψ̄

α̇A)

+ 2 g2
[
ΦAB,ΦCD

]
?

[ΦAB,ΦCD]? − 2
√

2 g
(
[ψαA,ΦAB]?ψαB − [ψ̄Aα̇ ,ΦAB]?ψ̄α̇B

) ]
(3.3)

where the scalar fields with upper indices ΦAB (A,B = 1, 2, 3, 4) are defined as

ΦAB = 1
2ε

ABCDΦCD ≡ Φ∗AB, (3.4)

and where the covariant derivative is also defined through the star product

DµΦ = ∂µΦ− ig[Aµ,Φ]? (3.5)

with Φ being any of the fields of the theory. The theory (3.3) has a mild non-locality
along the null direction x− (see (3.1)) and non-relativistic conformal invariance along the
remaining 3 dimensions.

The fields ΦAB are related to the three complex scalars Zi, i = 1, 2, 3 with canonical
kinetic term as follows

Φ14 = Z1
2 , Φ24 = Z2

2 , Φ34 = Z3
2 , Φ13 = −Z2

2 , Φ23 = Z1
2 , Φ12 = Z3

2 . (3.6)

We have adopted the “mostly-minus” metric (+,−,−,−) and the following conventions
for the gauge group generators

Tr
(
T aT b

)
= δab

2 ,
[
T a, T b

]
= ifabcT c , (T a)ij(T a)kl = 1

2

(
δilδ

k
j −

1
N
δijδ

k
l

)
. (3.7)
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In passing, notice that the action (3.3) is invariant under the following gauge transfor-
mations which, however involve the aforementioned star product

Φ(x)→ (U−1 ? Φ ? U)(x) = U−1 (x+ LΦ) Φ(x)U (x− LΦ) (3.8)

instead of the ordinary local gauge transformations. The field with such a transformation
law can be thought as a dipole that extends from x + LΦ to x − LΦ along the minus of
the light ray, hence the name dipole deformed theory. Notice also that in order for the
star product to be associative, Φ1 ? Φ2 should be assigned dipole length L1 + L2, while
LΦ† = −LΦ [61].

In more detail, the R-charges of the various fields in the Lagrangian (3.3) (see also (3.6))
are as follows

Z1 , ψ1 : (Qχ, Qφ, Qψ) = (1, 1/2, 1/2)
Z2 , ψ2 : (Qχ, Qφ, Qψ) = (1,−1/2, 1/2)
Z3 , ψ3 : (Qχ, Qφ, Qψ) = (1, 0, 0)
Aµ , ψ4 : (Qχ, Qφ, Qψ) = (0, 0, 0)

(3.9)

with the conjugate fields Z̄1, Z̄2, Z̄3 and ψ̄A having the opposite charges. These charges
can be readily read from the Hopf parametrisation of the undeformed S5 which is as follows

Z1 = sin η sin θ2 e
i χ e

i
2 (φ+ψ), Z2 = sin η cos θ2 e

i χ e
i
2 (−φ+ψ) & Z3 = cos η ei χ

ds2
S5 =

3∑
i=1

dZ†i dZi = dχ2 + dη2 + sin2 η dχ (dψ − cos θdφ)

+ 1
4 sin2 η

(
dθ2 + dφ2 + dψ2 − 2 cos θ dφ dψ

)
.

(3.10)

Each of the fermions has the same charge as its supersymmetric bosonic partner.

4 Point-like string and its dispersion relation

In the background we described in the previous section, we will now consider point-like
string configurations of the following form

θ = θ0 , η = π

2 , φ = ψ = x1 = x2 = 0 ,

χ = ω τ , t = κ τ , v = µ2mτ , z = z0 .
(4.1)

Applying the above ansatz to the Plyakov action and from the equations of motion for z
and θ we determine the values of z0 and ω to be

z2
0 = κ

m
(
1 + 1

4 γ
2 sin2 θ0

) & ω = µm

(
1 + 1

4 γ
2 sin2 θ0

)
(4.2)

while θ0 remains arbitrary. Then from the Virasoro constraint one obtains

κ2 − ω2

1 + 1
4 γ

2 sin2 θ0
− µ2m2

(
1 + 1

4 γ
2 sin2 θ0

)
= 0 . (4.3)
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We now proceed to rewrite (4.3) in terms of the conserved quantities of the solution. To this
end we calculate the energy, the angular momentum in the five-sphere and the eigenvalue
of the mass operator which for our solution read

E =
√
λκ , J =

√
λ

ω

1 + 1
4 γ

2 sin2 θ0
& M =

√
λm

(
1 + 1

4 γ
2 sin2 θ0

)
. (4.4)

Substituting now (4.4) in (4.3) one obtains

E2 = µ2M2

1 + 1
4 γ

2 sin2 θ0
+ J2

(
1 + 1

4 γ
2 sin2 θ0

)
. (4.5)

At this point, let us stress that the dispersion relation above gives a prediction at strong
coupling for the dimension of the dual field theory operator in the doubly deformed back-
ground. Let us also mention that it depends explicitly on both deformation parameters
µ and γ.

4.1 Dispersion relation from the coherent state approach

In this section, we will show that the dispersion relation (4.5) can be reproduced at leading
order in the λ expansion using coherent states. Notice that to this order the dispersion
relation (4.5) becomes

E = J + J
γ2

8 sin2 θ0 + 1
2
µ2M2

J
+O(µ2γ̃2, µ4, γ̃4) (4.6)

where we have used that both deformation parameters appearing in the background are
proportional to

√
λ. Thus, the sum of the second and the third term in the right hand

side of (4.6) denotes the leading contribution to anomalous dimensions of the dual field
theory operators. Notice also that to this order in perturbation theory the two deformation
parameters disentangle, i.e. the anomalous dimension is the sum of two terms one involving
the parameter µ and the other involving γ. In what follows, we will see that this is in
agreement with the expectations coming from the coherent state approach.

The goal of this section is to identify the field theory operators whose dispersion relation
is given by (4.6) and reproduce their anomalous dimension by using the coherent state
approach of [62]. As mentioned in [50], there are two equivalent ways of doing this. The
first is to consider spin chains with periodic boundary condition and use the deformed
one-loop Hamiltonian of the theory. The second, which is the one we will be following, is
to consider spin chains with doubly twisted boundary conditions but use the undeformed
N = 4 one-loop Hamiltonian, instead.

The first step is to identify the operators whose dimensions are given by (4.5) & (4.6).
By inspecting (3.9) and (3.10) one concludes that the operator dual to our point-like string
solution should involve the Z1 and Z2 fields but not Z3, namely J sin2 θ0

2 Z1’s and J cos2 θ0
2

Z2’s (see (3.9) and (4.1)). Furthermore, since the string has motion along the V -direction
the operators should contain the covariant derivative along the minus null-direction D−,
as it also happens in the case of the single µ deformation [50]. In conclusion, the dual
operators will be schematicaly of the form

O = Tr
(
DS1
− Z

J sin2 θ0
2

1 DS2
− Z

J cos2 θ0
2

2

)
+ . . . , (4.7)
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where the dots denote terms in which the derivatives are distributed differently among the
scalar fields. The corresponding spin chain will consist of a collection of sites, each of which
will accommodate one of the following letters

|Z1〉 =
∣∣∣12
〉
⊗| ↑〉, |Z2〉 =

∣∣∣12
〉
⊗| ↓〉, |Dm

−Z1〉 =
∣∣∣12 +m

〉
⊗| ↑〉, |Dm

−Z2〉 =
∣∣∣12 +m

〉
⊗| ↓〉 .
(4.8)

Thus, we see that at the one-loop level the spin chain is as if it was the product of a SL(2)⊗
SU(2) spin chains. More specifically, the left entry corresponds to the third component
of an SL(2) spin at the representation j = 1

2 ,4 while the right entry corresponds to third
component of an SU(2) spin at the representation j = 1

2 , respectively. This sector is closed
at one-loop but ceases to be so from two-loops on. The state described by (4.7) is in
general a quantum, highly entangled state whose exact form is very complicated. However,
when the number of scalars and derivatives is large one may approximate it by low-energy
excitations with long wavelengths. The description is then achieved by putting the product
of an SL(2) coherent state times an SU(2) coherent state at each site of the spin chain.
The Hamiltonian of the chain is obtained by considering the continuum limit of the action
of the SL(2) and SU(2) one-loop Hamiltonians on the corresponding coherent states.

An alternative, more geometric way of deriving this Hamiltonian is to consider long
classical strings with large charges moving in a AdS3×S3 subspace of the complete AdS5×
S5 background. For this reason, we choose from (3.9) a three-dimensinal sphere that is
parametrised by the angles χ, θ and φ, setting η = π/2 and ψ = 0. Then the metric we
will use for the AdS3 × S3 background will be

ds2 = − cosh2 ρ

2 dt
2 + 1

4 dρ
2 + sinh2 ρ

2 dφ
2
1 + 1

4
(
dθ2 + dφ2

)
+ dχ2 − cos θ dχ dφ. (4.9)

The action of the string is given, as usual by the Polyakov action

S =
√
λ

4π

∫
d2σGµν (∂τXµ∂τX

ν − ∂σXµ∂σX
ν) (4.10)

and should be supplemented by the Virasoro constraints

Gµν∂τX
µ∂σX

ν = 0 & Gµν(∂τXµ∂τX
ν + ∂σX

µ∂σX
ν) = 0. (4.11)

The next step is to perform the following change of variables

φ1 = ϕ+ t & χ = φ2 − t (4.12)

and make the following ansatz for the motion of the string

t = k τ, ϕ = ϕ(τ, σ), φ2 = φ2(τ, σ), ρ = ρ(τ, σ), θ = θ(τ, σ), φ = φ(τ, σ). (4.13)
4The j = 1

2 representation of SL(2) is infinite dimensional with its lowest weight state being |mj j〉 =
|0〉 = | 12

1
2 〉 while its excited states are |mj j〉 = | 12 +m 1

2 〉, m > 0. In (4.8) the quantum number j = 1
2 of

the representations have been suppressed for both SL(2) and SU(2).
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Subsequently, one should take the Frolov-Tseytlin (F-T) limit which consists in sending
k →∞ while keeping k ∂τXµ = fixed, as well as ∂σXµ = fixed, where Xµ ∈ {ρ, ϕ, φ2, θ, φ}.
By keeping the leading terms in the F-T limit the first Virasoro constraint in (4.11) becomes

k

(
sinh2 ρ

2 ∂σϕ− ∂σφ2 + 1
2 cos θ ∂σφ

)
= 0 . (4.14)

Similarly, by substituting the Virasoro constraint (4.14) in (4.10) and keeping again only
the leading in the k-expansion terms, the action becomes

S =
√
λ

4π

∫
dτ

∫ 2π

0
dσ

[
2 k sinh2 ρ

2 ∂τϕ− 2 k ∂τφ2 + k cos θ∂τφ

− 1
4
[
(∂σρ)2 + sinh2 ρ (∂σϕ)2 + (∂σθ)2 + sin2 θ (∂σφ)2

]]
.

(4.15)

From this Lagrangian, one may derive the corresponding Hamiltonian which, after changing
the range of the variable σ from [0, 2π] to [0, J ], reads

H = λ

32π2

∫ J

0
dσ
[
− (∂σ~l)2 + (∂σ~n)2

]
= λ

32π2

∫ J

0
dσ
[
∂σl+ ∂σl− − (∂σl0)2 + ∂σn+ ∂σn− + (∂σn0)2

] (4.16)

where ~l and ~n parametrise a point on a 2-dimensional hyperboloid and on a two dimensional
sphere, respectively. More specifically
~l = (lx, ly, l0) = (sinh ρ cosϕ, sinh ρ sinϕ, cosh ρ) with ~l ·~l = 1 = l20 − l2x − l2y
~n = (nx, ny, n0) = (sin θ cosφ, sin θ sinφ, cos θ) with ~n · ~n = n2

0 + n2
x + n2

y = 1
(4.17)

with l± = lx ± i ly. Two important comments are in order. The first is that the Hamil-
tonian (4.16) is precisely the Hamiltonian one gets by taking the continuum limit of the
one-loop Hamiltonians of the SL(2) and SU(2) closed subsectors of N = 4 SYM theory.
Secondly, notice that the Hamiltonian governing the dynamics of the spin chain (4.8) at
one-loop order is the sum of two independent terms. This is in agreement with the fact
that at the leading order the two deformation parameters µ and γ disentangle in the string
dispersion relation (4.6).

The Poisson brackets of the li and ni are determined from the commutation relations
of the SL(2) and SU(2) algebras respectively, after the usual replacement { , }P.B. → −i[ , ].
For the SL(2) case and by taking into that Si → ni/2 [50] , we find that{

l0(σ), l±(σ′)
}

= ∓ 2 i l±(σ) δ
(
σ − σ′

)
{
l+(σ), l−(σ′)

}
= 4 i l0(σ) δ

(
σ − σ′

)
. (4.18)

The Hamilton equations for (4.16) by the use of (4.18) are the Landau-Lifshitz equations
for the classical (non-compact) ferromagnet

∂tl0 = {l0,H} = − i λ

16π2

(
l− ∂

2
σl+ − l+ ∂2

σl−
)

∂tl± = {l±,H} = ∓ i λ

8π2

(
l0 ∂

2
σl± − l± ∂2

σl0
)

(4.19)
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It is an easy task to check that time evolution preserves the constraint ~l · ~l = 1 and thus
only two of the three equations for the components of ~l are independent. Similarly, for the
SU(2) case one gets {

n0(σ), n±(σ′)
}

= ∓ 2 i n±(σ) δ
(
σ − σ′

)
{
n+(σ), n−(σ′)

}
= − 4 i n0(σ) δ

(
σ − σ′

)
. (4.20)

The Hamilton equations for (4.16) by the use of (4.20) are the Landau-Lifshitz equations
for the classical spin-1/2 ferromagnet

∂tn0 = {n0,H} = − i λ

16π2

(
n− ∂

2
σn+ − n+ ∂

2
σn−

)
∂tn± = {n±,H} = ± i λ

8π2

(
n0 ∂

2
σn± − n± ∂2

σn0
)

(4.21)

It is again straightforward to verify that time evolution preserves the constraint ~n · ~n = 1.
The last step is to solve (4.19) and (4.21) with the appropriate twisted boundary

conditions. These solutions will be presented in the next section.

4.2 Doubly twisted boundary conditions

The last step before deriving the dispersion relation (4.6) from the coherent state approach
is to set up the appropriate twisted boundary conditions and subsequently seek solutions
of (4.19) and (4.21) given these boundary conditions. Given the form of the one-loop
states (4.8) the operator implementing the twisted boundary conditions is the product of
two operators, one for the SL(2) part and one for the SU(2) part,

|sJ+1〉 ⊗ |ŝJ+1〉 = S |s1〉 ⊗ Ŝ |ŝ1〉 , (4.22)

where S corresponds to the SL(2) part while Ŝ corresponds to the SU(2) part.
For the equations (4.19) we closely follow [50]. There are only minor differences which

originate from the definitions of the coherent states. While in [50] one has that 〈~l|Si|~l〉 =
−1

2 li we follow the normalisations of [22] in which 〈~l|Si|~l〉 = 1
2 li. In this case the twisted

boundary conditions for the spin chain read [50]

|sJ+1〉 = S |s1〉 with S = e iL(P− 1Qχ−Qχ1 P−), (4.23)

with the boldface letters denoting the total charges of the spin chain as a whole. This
equation implies the following twisted boundary conditions for the spin operators of the
SL(2) sub-chain. Recall that the total R-charge along the χ isometry of the spin chain is
equal to half of its length, i.e. J and P− is identified with −iS−

SiJ+1 = e−LJ S
−
1 Si1 e LJ S

−
1 . (4.24)

By employing the anti-commutators for the spin operators one derives for the last similarity
transformation the following relations

S−J+1 = S−1 , S0
J+1 = S0

1 − LJ S−1 & S+
J+1 = S+

1 − 2LJ S0
1 + L2 J2 S−1 (4.25)
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which translate to the following quasi-periodic boundary conditions

l−(t, σ + J) = l−(t, σ)
l0(t, σ + J) = l0(t, σ)− LJ l−(t, σ)
l+(t, σ + J) = l+(t, σ)− 2LJ l0(t, σ) + L2 J2 l−(t, σ). (4.26)

At this point, let us mention that solutions satisfying these twisted boundary conditions
are necessarily complex. Then by making the ansatz [50]

l0 = α+ β σ & l− = 2 iM
J

(4.27)

one can immediately see that the equation for l− is satisfied while l+ is uniquely determined
through the constraint l20− l+l− = 1. Notice also that α and β may depend on time. Using
the aforementioned constraint the equation for l0 (first equation in (4.19)) becomes

∂tl0 = − i λ

16π2 ∂
2
σl

2
0 ⇒ α = − i λ

8π2 β
2 t . (4.28)

The boundary conditions (4.23) are then enough to fix β

β = − 2 i LM
J

. (4.29)

Plugging now the solution in the first two terms of (4.16), we obtain the part of the one-loop
anomalous dimension that depends on the deformation parameter µ

∆1 = − λ

32π2 J β
2 = λL2M2

8π2 J
= 1

2
µ2M2

J
(4.30)

which agrees perfectly with the third term in the string prediction (4.6). To derive the last
equality we have taken into account that µ =

√
λ L

2π .
We now turn to the solution of the second set of equations (4.21). In this case the

twisted boundary conditions for the spin chain read

|ŝJ+1〉 = Ŝ |ŝ1〉 with Ŝ = e i γ̃
(
Qχ1 Qφ−Qφ1 Qχ

)
(4.31)

with the boldface letters denoting the total charges of the spin chain as a whole. This
equation implies the following twisted boundary conditions for the spin operators of the
SL(2) sub-chain. Recall that the total R-charge along the χ isometry of the spin chain is
equal to half of its length, i.e. J , as well as that Qφ1 corresponds to Ŝ0

1 (see (3.9))

ŜiJ+1 = e i γ̃ J Ŝ0
1 Ŝi1 e− i γ̃ J Ŝ0

1 . (4.32)

By employing the anti-commutators for the spin operators for the SU(2) algebra now, one
derives for the last similarity transformation the following relations

Ŝ0
J+1 = Ŝ0

1 , Ŝ+
J+1 = Ŝ+

1 e− 2 i γ̃ J Ŝ0
1 & Ŝ−J+1 = e 2 i γ̃ J Ŝ0

1 Ŝ−1 (4.33)
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which translate to the following quasi-periodic boundary conditions

n0(t, σ + J) = n0(t, σ)
n±(t, σ + J) = e∓ i γ̃ J n0(t,σ) n±(t, σ) . (4.34)

We now make the following ansatz

n0 = cos θ0
2 & n± = sin θ0

2 e± i (a1 t+β1 σ) with n2
0 + n+n− = 1 . (4.35)

One can immediately check that the first equation in (4.21) is satisfied. The equation for
n+ in (4.21) determines α1 in terms of β1, namely

α1 = − λβ
2
1

8π2 cos θ0
2 . (4.36)

Finally, the second equation in the twisted boundary conditions (4.34) specify β1 to be

β1 = − γ̃ cos θ0
2 . (4.37)

Plugging this value in the last two terms of (4.16) one gets for the part of the one-loop
anomalous dimension of our operators which depends on the deformation parameter γ

∆2 = λ

32π2 J sin2 θ0
2 β2

1 = J λ

32π2
γ̃2

4 sin2 θ0 = J
γ2

8 sin2 θ0 (4.38)

which agrees perfectly with the third term in the string prediction (4.6). To derive the last
equality we have taken into account (2.1).

Summing up (4.30) and (4.38) we get the complete one-loop anomalous dimension of
our operators ∆(1) = ∆1 +∆2 which as already mentioned is in perfect agreement with the
string prediction (4.6).

5 Wilson loop calculation

In this section we will evaluate the expectation value of a certain Wilson loop operator
(WL) in the marginally deformed Schrödinger background that we constructed in section 2.
The Wilson loop consists of two straight lines extending along the time direction and
sitting at two points in space separated by a distance L. We calculate the energy of
this configuration as a function of the separation length. This corresponds, as usual,
to the potential between two quarks sitting at a distance L on the boundary [57]. The
standard prescription for the holographic computation that was introduced in [57] dictates
the minimization of the Nambu-Goto action for a fundamental string propagating into
the dual supergravity background. The string endpoints are lying on the two sides of the
Wilson loop. The presence of the Schrödinger deformation parameter imposes the presence
of a relative angle between the quarks. Contrary to other TsT deformed geometries that
are known in the literature, there is no consistent ansatz for the trajectory of the Wilson
loop for which all the angles of the deformed five-sphere are set to constant values.
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We will perform the computation in Poincare coordinates. For this reason we quote
explicitly the form of the background metric (we have set the radius of the spacetime
R = 1)

ds2 =− 4µ2W

z4 dx2
+ + 1

z2
(
dx2

1 + dx2
2 + dz2)+ 4W dχ2 + dη2

+ 2
z2

[
dx+ dx− + γµW sin2 η

(
cos2 η cos θdψ −

(
1− sin2 η cos2 θ

)
dφ
)
dx+

]
+ W

4 sin2 η
(
4 + γ2 sin2 η cos2 η sin2 θ

)
dψ2 + 4W sin2 η dχ

(
dψ − cos θ dφ

)
+ sin2 η

4
(
dθ2 + 4W dφ2 − 8W cos θ dφ dψ

)
(5.1)

where the definition for W is in (7.35) and the expression for the dilaton is the same as
in (2.4). For the WL computation we also need the expression of the NS two-form

B2 = 2µW
z2 dx+ ∧

(
2dχ− sin2 η cos θdφ+ sin2 ηdψ

)
+ γ W sin2 η dφ ∧

[(
1− sin2 η cos2 θ

)
dχ+ 1

2 sin2 η sin2 θ dψ

]
+ γ W sin2 η cos2 η cos θ dχ ∧ dψ .

(5.2)

In order to make contact with the other Wilson loop computations that appear in the
literature, we perform the following change of variables to the metric (5.1) and the NS
two-form (5.2)

x− = 1√
2

(−t+ ζ1) , x+ = 1√
2

(t+ ζ1) & z = 1
u

(5.3)

and now the boundary is located at u→∞. We have checked that the following ansatz is
consistent with the corresponding equations of motion

η = π

2 , θ = π

2 , φ = ψ = x2 = 0 & ζ1 = 0 . (5.4)

Setting these values to the metric (2.2), after the change of variables that we introduced
in (5.3), we arrive to the following reduced four-dimensional metric

ds2 = −u2
[
1 + µ̃2 u2

1 + γ̃2

]
dt2 + u2dx2

1 + du2

u2 + dχ2

1 + γ̃2 with γ̃ = γ

2 & µ̃ = µ√
2
. (5.5)

while the NS-two form of equation (5.2) becomes

B2 = µ̃ u2

1 + γ̃2 dt ∧ dχ . (5.6)

Notice that in this section γ̃ is not the field theory deformation parameter appearing in
equation (2.1). The Nambu-Goto action for the fundamental string in the presence of a
B-field has the following form

S = 1
2π

∫
dτ dσ

[√
− det γαβ −

1
2ε

αβ Bαβ

]
(5.7)

– 15 –



J
H
E
P
0
9
(
2
0
2
2
)
1
8
8

with the expressions for the symmetric and the antisymmetric contributions are given as
usual be the following expressions

γαβ = gMN∂αx
M∂βx

N & Bαβ = BMN∂αx
M∂βx

N . (5.8)

Notice that in the trajectories we are considering there is a contribution from the antisym-
metric part, contrary to the considerations of [58, 59, 63] where the backgrounds that are
probed are not embedded in string theory, that is they are 5-dimensional. The embedding
ansatz for the string trajectory is the following

x1 = σ = x , u = u(x) & χ = χ(x) . (5.9)

Applying this ansatz to the reduced metric (5.5), the Nambu-Goto action for the string
becomes

S = 1
2π

∫
dx

[√
g(u)(∂xu)2 + f(u) + h(u)(∂xχ)2 − w(σ) ∂xχ

]
(5.10)

where the different functions are defined as follows

g(u) = 1 + µ̃2 u2

1 + γ̃2 , f(u) = u4g(u) , h(u) = u2

1 + γ̃2 g(u) & w(u) = µ̃ u2

1 + γ̃2 . (5.11)

Conservation of energy and angular momentum lead to the following first order differential
equations

f√
g u′2 + f + hχ′2

= α1 & hχ′√
g u′2 + f + hχ′2

− w = κ (5.12)

where κ and α1 are constants. The string develops a minimum at the turning point in
which the derivative of u with respect to x vanishes. Renaming the constants in such a
way that this point is denoted as u0, amounts to the following relation between α1 and u0

α1 = u2
0

√
1− 2κ µ̃

√
1− ξ2 with ξ = κ

u0

√
1 + γ̃2

1− 2κ µ̃ . (5.13)

Notice that there is no way for the other constant κ to be fixed. Solving the equations
in (5.12) for x and integrating from the turning point u0 until the boundary, we obtain
the expression for the length of the Wilson loop. The string, that penetrates in the bulk,
connects a quark with an antiquark on the boundary, placed at the positions x = L/2 and
x = −L/2 respectively. The expression for the length reads

L = 2u2
0

√
1− ξ2

∫ ∞
u0

du

u2
√(

u2 − u2
0
) [
u2 + u2

0 (1− ξ2)
]

= 2
u0
√

(1− ξ2) (2− ξ2)

[
(2− ξ2) E(k)−K(k)

]
with k = 1− ξ2

2− ξ2 (5.14)

where K(k) and E(k) are the complete elliptic integrals of the first and second kind,
respectively. The calculation of the angle breaks in two parts: there is a finite contribution
that vanishes if we set the constant κ to zero (recall that κ is related to the conservation of
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the “angular momentum”) and an infinite contribution (i.e. divergent integral) that needs
to be regularized in the same fashion as the energy. More specifically we have

∆χ = ∆χfinite + ∆χreg (5.15)

and the finite part is given by the following integral that can be calculated analytically in
terms of the elliptic integral K(k)

∆χfinite = 2√
1− 2κ µ̃

∫ ∞
u0

κ
(
1 + γ̃2)√ (

u2 − u2
0
) [
u2 + u2

0 (1− ξ2)
] du

= 2
√

1 + γ̃2 ξ√
2− ξ2 K(k) . (5.16)

To regularize the divergent integral in the infinite contribution, we subtract the angle of
two straight strings that in the Schrödinger part of the geometry extend from the boundary
until the distance ζ. The result of the calculation is

∆χreg = 2 µ̃√
1− 2κ µ̃

[ ∫ ∞
u0

u2 du√(
u2 − u2

0
) [
u2 + u2

0 (1− ξ2)
] − ∫ ∞

ζ

u du√
u2 − ζ2

]

= − 2 µ̃ u0√
1− 2κ µ̃

1√
2− ξ2

[
(2− ξ2) E(k)−K(k)

]
with ζ = u0 ξ . (5.17)

The regularization term in (5.17) subtracts the infinity of the first integral close to the
boundary but does not add any finite piece. Notice that the regularized contribution to
the angle in (5.17) is directly proportional to the Schrödinger parameter µ̃ and vanishes
if we set µ̃ to zero. The total energy of the Wilson loop is also divergent and has to be
regularized. The result of the computation is

Eqq̄ = 1
π

1− κ µ̃√
1− 2κ µ̃

[ ∫ ∞
u0

u2 du√(
u2 − u2

0
) [
u2 + u2

0 (1− ξ2)
] − ∫ ∞

ζ

u du√
u2 − ζ2

]

= − u0

π
√

2− ξ2
1− κ µ̃√
1− 2κ µ̃

[
(2− ξ2) E(k)−K(k)

]
. (5.18)

Setting the Schrödinger parameter µ̃ to zero and imposing that κ = ` u0
(
1 + γ̃2)−1/2 where

` is a constant with 0 < ` < 1, we end-up with the expressions for the length, angle and
energy that were presented in section 5.2 of [64] (see also [65]).

To proceed with the computation, we have to solve for the auxiliary parameters κ and
u0 in terms of the boundary distance L and the angle ∆χ and then substitute this solu-
tion/identification to the expression of the energy in (5.18). This can be done analytically
only for large values of u0, since in this case the expressions for the elliptic integrals can be
expanded. For generic values of u0 we do the following: we fix the angle ∆χ to a specific
value and by solving numerically equation (5.15) we determine all the pairs (κ, u0) that
correspond to this specific value. Afterwards we substitute those values to the expressions
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Figure 1. Plots of the length of the WL as a function of the penetration parameter u0 (left panels)
and of the energy of the WL as a function of the length (right panels) for two different values of the
deformation parameter γ̃. More specifically, the upper two plots are for γ̃ = 0 and the lower two
plots are for γ̃ = 5. The angle between the quarks along the five sphere is kept fixed at the value
∆χ = π

16

√
1 + γ̃2. Different colors correspond to different values of the deformation parameter µ̃:

blue for µ̃ = 0, red for µ̃ = 0.2, green for µ̃ = 0.5 and magenta for µ̃ = 1.

for the Wilson loop length and energy, namely (5.14) and (5.18). In figure 1 we have plot-
ted the length as a function of the parameter u0 (left panels) and the energy as a function
of the length (right panels) for two different values of the deformation parameter γ̃. More
specifically, the upper two plots are for γ̃ = 0 and the lower two plots are for γ̃ = 5. The
angle is fixed to the value ∆χ = π

16
√

1 + γ̃2. The different colors in the curves correspond
to different values of the deformation parameter µ̃. Plots with similar behavior can be
obtained by changing the value of the angle and of γ̃.

Fitting the data of the plots from figure 1 in the region where u0 is small, we see that
for both values of the deformation parameter γ̃ and for all the values of the deformation
parameter µ̃, the length is inverse proportional to u0 and the energy is inverse proportional
to the length. Based on that observation we conclude that for large values of L, when the
Wilson loop is probing the far interior of the background and the quarks are far away from
each other, the geometry has AdS characteristics.
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This picture changes considerably when the value of u0 increases. This can be seen
explicitly, since the elliptic integrals in equations (5.14), (5.15) and (5.18) can be expanded
perturbatively. To simplify the analytic expressions, the constant value of the angle is
denoted as

∆χ = ` π
√

1 + γ̃2 (5.19)

where ` is a constant. Inspired by the fitting of the numerical data that we have already
obtained, we introduce the following ansatz for κ in (5.15)

2κ µ̃ = 1− 1 + γ̃2

4
1

µ̃2u2
0
−
(
1 + γ̃2)2

8
1− 2 `
µ̃4u4

0
−
(
1 + γ̃2)3

64
3− 28 `+ 30 `2

µ̃6u6
0

(5.20)

and expanding in large values of u0 we determine the coefficients. Substituting (5.20)
in (5.14) and (5.18) we obtain the following expressions for the length

L = π

µ̃ u2
0

√
(1 + γ̃2) (1− `)

[
1− 1 + γ̃2

16
`+ 7
µ̃2u2

0
+
(
1 + γ̃2)2

512
99− 26 `+ 135 `2

µ̃4u4
0

]
(5.21)

and for the energy

Eqq̄ = −1− `
4 µ̃

√
1 + γ̃2

[
1− 1 + γ̃2

2 µ̃2 u2
0

+
(
1 + γ̃2)2

64
11 + 17`
µ̃4 u4

0

]
(5.22)

as expansions in inverse powers of u0. Combining (5.21) and (5.22) we obtain the following
expression for the energy in powers of the length

Eqq̄ = −1− `
4 µ̃

√
1 + γ̃2 + (1 + γ̃2)

√
1− `

8π µ̃2 L + 3
(
1 + γ̃2) 3

2 (1− 5 `)
256π2 µ̃3 L2 · · · . (5.23)

In figure 2 we compare the perturbative expansions of the length and of the energy with
respect to the numerical counterparts. Keeping the same number of terms in the expansion,
the overlap of the two curves (numerical and perturbative) is maintained for larger values
of the length, the lower the value of the deformation parameter µ̃ is.

There are various interesting conclusions to draw from the preceding analysis and
especially from equation (5.23). As immediate observation is that as the length of the
Wilson loop decreases, the energy instead of decreasing to minus infinity which would be
the expected AdS behavior, flows to a finite value that is inversely proportional to the
deformation parameter µ̃. As a result, by increasing the value of µ̃ we can bring the quarks
close to each other with less energy cost and in the limit of µ̃ → ∞ we have complete
screening. Another striking feature of (5.23) is that for small values of the boundary
distance the energy is linear in the length and a confining behavior arises. This behavior
remains dominant for the Wilson loop until an inflection point in the plot of the energy
versus the length is reached. This is not easily seen by looking in the plots of figure 1 and
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Figure 2. Zooming in of the plots of figure 1 in the region of large values of u0 or equivalently of
small values of L. The solid lines are the result of the numerical evaluation, while for the dotted
black lines we have used the perturbative expressions, namely equations (5.21) and (5.23).

one has to draw the first and the second derivative of the energy with respect to the length.
It is after that point that the characteristic AdS structure that we described previously
emerges. In figure 3 we have plotted the length and the energy of the inflection point as
functions of the deformation parameter µ̃. The length is almost linear in µ̃ while the energy
is inverse proportional. Notice that the inflection point we calculate numerically is different
from the inflection point that one could calculate using the perturbative expansion for the
energy in (5.23). This is not surprising since as can be seen from figure 3, for large enough
values of µ̃ the inflection point is not anymore close to the L→ 0 limit.

The analysis of the behavior of the Wilson loop is telling us that in order to probe
the effect of the deformation parameter µ̃ in the geometry, we have to stay close to the
boundary (where u0 is large and consequently L is small) and not penetrate deep in the
IR. This is explained by the fact that in the reduced metric (5.5) the term that contains
the effect of the µ̃ becomes important when u is large, i.e. close to the boundary. This is
a behavior that distinguishes the Schrödinger solution from all the other TsT transformed
backgrounds.
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Figure 3. Plots of the length (left panel) and of the energy (right panel) of the inflection point
as functions of the deformation parameter µ̃. When the length is smaller, the Wilson loop has a
confining behavior. Fitting the data we confirm that the length is linear in µ̃ while the energy is
inverse proportional.

6 Giant Graviton

In this section we will present the Giant Graviton solution in the background that was
constructed in section 2. The bottom-line of the computation is that despite the presence
of both the Schrödinger and the marginal parameters (namely µ and γ) in the background,
the energy of the Giant Graviton depends only on µ. The parameter γ disappears from
the computation. As a result, the analysis of the Giant Graviton’s energy reduces to the
discussion that was presented in [53]. Here we will examine the technicalities behind the
γ cancellation. Notice the following: in the literature it is known that in the marginally
deformed backgrounds the energy of the Giant Graviton is blind to the presence of the
γ deformation (see for example [55, 56, 66]). However, since in the background of sec-
tion 2 there is a mixing between the two deformations, a term with a γ dependence could
potentially survive. In the following we will see why this is not the case.

To proceed with the computation along the lines of [67], we perform the following
change of variables in (2.2)

ρ = sin η . (6.1)

To construct the WZ term of the D3-brane action that describes the Giant Graviton, we
need to determine the RR potentials. For F3 in (2.6) we determine C2 as follows

F3 = dC2 ⇒ C2
R2 = − 1

8 γ ρ
4 sin θ dρ ∧ dθ ∧ dφ (6.2)

while from the definition for F5

F5 = dC4 −H3 ∧ C2 (6.3)

and (2.6), we obtain an expression for C4 that has a smooth zero deformation limit

C4
R4 = − 1

z4 dt ∧ dv ∧ dx1 ∧ dx2 + ρ4

8 sin θ dθ ∧ dφ ∧ dχ ∧ dψ +B2 ∧ C2 . (6.4)
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Now that all the potentials are known, we have to consider the action of a probe
D3-brane to describe Giant Graviton solutions in (2.2). The action has the usual form

SD3 = −T3

∫
d4ξ e−Φ

√
− detP

[
g −B + 2πα′F

]
+ T3

∫ ∑
q

P
[
Cq ∧ e−B+2πα′F

]
(6.5)

where P denotes the pullback on the brane worldvolume directions and T3 is the tension of
the D3-brane. An important comment is in order: notice that expanding the exponential
of the WZ term, the combination of the potentials that will contribute to the action is
C4 − B2 ∧ C2. From (6.4) we observe that this combination is deformation independent.
This means that the WZ contribution to the action will be identical to the undeformed case
and all the potential deformation dependence will come only from the DBI term. To see
whether this happens, we have to consider a consistent ansatz for the D3-brane embedding.
The D3-brane probe we consider extends along the following directions

ξ0 = τ , ξ1 = θ , ξ2 = φ & ξ3 = ψ (6.6)

while the ansatz for the embedding is the following

t = τ

R
, v = ν τ , ~x = 0 , z = z0 , ρ = ρ0

R
& χ = ω τ (6.7)

with ρ0 being the size of the graviton in the internal space.
Substituting the ansatz (6.7) in the D3-brane action (6.5) and integrating, an impres-

sive cancellation occurs and, we obtain the on-shell action and the Lagrangian of [53] that
only depend on the Schrödinger deformation parameter µ. The presence of the dilaton in
the string frame DBI term is essential for the γ cancelation in the action. The Lagrangian
becomes

LD3 = − N

R4

[
ρ3

0

√
1− Γ−

(
R2 − ρ2

0
) (

ω2 − ∆2

R2

)
− ρ4

0 ω

]
(6.8)

where the different constants are defined as follows

κ = 1
R
, Γ = 2R

Z2
0
ν , ∆ = µ

Z2
0

& 2π2 T3 = N

R4 . (6.9)

From this point on the analysis is identical to the case that only the Schrödinger deforma-
tion is present and can be found in [53]. Notice that if one performs a stability analysis
around the Giant Graviton solution in (6.7), the vibration modes will depend on both
deformation parameters µ and γ. Support on this argument is coming from the study of
the spectra of frequencies (for both the scalar and the gauge fields) in the γ deformed
backgrounds [55, 66, 70].

7 PP-wave background and the string spectrum

In this section we consider the Penrose limit of the deformed solution that was constructed
in section 2, around a geodesic that sits at η = 0. Notice that this geodesic and the
corresponding dispersion relation do not depend on the deformation parameter γ. In order
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to have a geodesic with such a dependence, we have to set the value of η different from 0.
If we set η = π/2, which is the case we analyzed in section 4, then we have a degenerate
solution since the determinant of the metric of the pp-wave background is zero. This
fact implies that we lose one of the coordinates and the pp-wave backround becomes 9-
dimensional, a feature that is undesirable. On the other hand, if we keep the value of η
fixed but arbitrary, then in order for the geodesic ansatz to be consistent we have to fix
the value of ω in terms of the deformation parameters. In this way we obtain a pp-wave
solution, but with the cost that it is extremely complicated, e.g. it is impossible to bring
it in the Brinkmann form and study the spectrum of bosonic excitations. For all these
reasons we choose to expand around η = 0.

In particular, we expand the coordinates in the following way

t = κU , v = µ2mU − ω

m

y2
R
, χ = ω U + y2

R
+ 1
ω

V

R2 ,

z =
√
κ

m

(
1 + y1

R

)
, x1 =

√
κ

m

y3
R
, x2 =

√
κ

m

y4
R

& η = r

R
.

(7.1)

One can check that the dominant terms of the previous expansion in the R → ∞ limit
guarantee that the null condition for the geodesic is satisfied, provided that the parameters
κ, ω and m are related through the following dispersion relation

κ2 = ω2 +m2µ2 . (7.2)

Notice that although this dispersion relation is γ independent the spectrum of the pp-wave
background will depend on γ in a non-trivial way.

Using the aforementioned expansion for the coordinates and taking the limit R → ∞
in the line element, we end up with the following expression

ds2
pp = 2 dU dV +

[
2ω
(
y1 dy2 − y2 dy1 + y5 dy6 − y6 dy5 + y7 dy8 − y8 dy7

)
+ µmγ

(
y6 dy5 − y5 dy6 + y7 dy8 − y8 dy7

)]
dU +

8∑
i=1

dy2
i − F dU2 ,

where F = 4µ2m2 y2
1 +

(
µ2m2 + ω2)(y2

3 + y3
4
)
− γ2

4
(
µ2m2 − ω2) 8∑

i=5
y2
i .

(7.3)

Moreover, in order to arrive to the previous expression for the metric of the pp-wave we
considered the following change of coordinates

y5 + i y6 = r sin θ2 e
iφ+ψ

2 & y8 + i y7 = r cos θ2 e
iφ−ψ2 (7.4)

and shifted V as follows: V → V −ω y1 y2. The geometry (7.3) has a vanishing Ricci scalar
(i.e. R µ

µ = 0), as it should be for a pp-wave geometry.
We would like to further simplify the expression for the line element of our pp-wave

background and bring it into the Brinkmann form. In order to do this we perform three
rotations in the three complex planes defined by the coordinate pairs (y1, y2), (y5, y6) and
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(y7, y8) as it is described in the following relations

y1 + i y2 = (ỹ1 + i ỹ2) e−i ω U , y5 + i y6 = (ỹ5 + i ỹ6) ei
µmγ−2ω

2 U ,

y8 + i y7 = (ỹ8 + i ỹ7) ei
µmγ+2ω

2 U .
(7.5)

After dropping the tildes, the geometry has the standard line element

ds2
pp = 2 dU dV +

8∑
i=1

dy2
i −H dU2 (7.6)

and the function H is defined as follows

H = ω2(y2
1 + y2

2
)

+
(
µ2m2 + ω2)(y2

3 + y2
4
)

+ ω

4
[(

4 + γ2)ω − 4µmγ
](
y2

5 + y2
6
)

+ω

4
[(

4 + γ2)ω + 4µmγ
)(
y2

7 + y2
8
)

+ 4µ2m2
[
y1 cos(ω U) + y2 sin(ω U)

]2
. (7.7)

The geometry is supported by a NS 2−form and a RR 5−form

B2 = µmdU ∧
(
y2 dy1 − y1 dy2 + y5 dy6 − y6 dy5 + y7 dy8 − y8 dy7

)
+ γ ω

2 dU ∧
(
y6 dy5 − y5 dy6 + y7 dy8 − y8 dy7

)
,

F5 = 4ω dU ∧
(
dy1 ∧ dy2 ∧ dy3 ∧ dy4 − dy5 ∧ dy6 ∧ dy7 ∧ dy8

)
,

(7.8)

where in the expression for the 2−form we have dropped terms that are total derivatives.
Notice that if we set γ = 0 the expressions (7.6), (7.7) and (7.8) reduce to the expressions
of [48]. Moreover if we set µ = 0, we obtain the pp-wave solution that was analyzed
in [68, 69] (see also [70]).

To calculate the spectrum of closed strings propagating on the pp-wave background
that is given (7.6) and (7.8), we have to write down the bosonic string action and derive
the equations of motion. To set-up the conventions, in appendix B we have collected, the
Polyakov action and the Virasoro constrains.

Choosing the light-cone gauge (i.e. U = α′p+τ), the Virasoro constraints will determine
V in terms of the remaining eight degrees of freedom. It turns out that the equations of
motion for the scalars y3 and y4 are completely decoupled, while the rest couple in pairs.
Below we analyze them separately.

Equations of motion for y1 & y2. The equations of motion for the scalars y1 and y2
have a more complicated form due to the explicit dependence on τ

2 y1 + 2α′ p+ µm∂σy2

− α′2 p2
+

[
ω2y1 − 4µ2m2 cos

(
α′p+ωτ

) [
y1 cos

(
α′p+ωτ

)
+ y2 sin

(
α′p+ωτ

)]]
= 0 ,

2 y2 − 2α′ p+ µm∂σy1

− α′2 p2
+

[
ω2y2 − 4µ2m2 sin

(
α′p+ωτ

) [
y1 cos

(
α′p+ωτ

)
+ y2 sin

(
α′p+ωτ

)]]
= 0 .

(7.9)
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Notice here that this set of equations does not depend on the γ deformation parameter
and the analysis has been presented in [48]. However, in order to be complete we briefly
repeat it here. To eliminate the dependence in τ , we perform the following rotation

y1 = ỹ1 cos
(
α′p+ωτ

)
− ỹ2 sin

(
α′p+ωτ

)
, y2 = ỹ1 sin

(
α′p+ωτ

)
+ ỹ2 cos

(
α′p+ωτ

)
. (7.10)

an the system of equations in (7.9) becomes

2 ỹ1 − 4α′2 p2
+ µ

2m2 ỹ1 + 2α′ p+
(
ω ∂τ ỹ2 + µm∂σỹ2

)
= 0 ,

2 ỹ2 − 2α′ p+
(
ω ∂τ ỹ1 + µm∂σỹ1

)
= 0 .

(7.11)

Imposing the ansatz

ỹ1 =
∞∑

n=−∞
αne

−iω̃nτ+nσ , ỹ2 =
∞∑

n=−∞
βne
−iω̃nτ+nσ , (7.12)

with αn and βn being constants, we end up with a homogeneous algebraic system for αn
and βn. Requiring that the determinant of the matrix that defines the aforementioned
algebraic system with respect to αn and βn vanishes, we obtain a quartic equation for the
eigenfrequencies ω̃n

ω̃4
n + γ2 ω̃

2
n + γ1 ω̃n + γ0 = 0 , (7.13)

with

γ0 = n4 , γ1 = 8α′2 p2
+ µmω n & γ2 = −2n2 − 4α′2 p2

+
(
ω2 + µ2m2) . (7.14)

The solution of the quartic equation above is

ω̃(1)
n = −S ± 1

2

√
−4S2 − 2γ2 + γ1

S
, ω̃(2)

n = S ± 1
2

√
−4S2 − 2γ2 −

γ1
S
, (7.15)

where

S = 1
2

√
−2

3γ2 + 1
3

(
Q+ ∆1

Q

)
, Q3 = 1

2
(
∆1 +

√
∆2

1 − 4∆3
0

)
,

with ∆1 = 2 γ3
2 + 27 γ2

1 − 72 γ2 γ0 & ∆0 = γ2
2 + 12 γ0 .

(7.16)

Equations of motion for y3 & y4. The decoupled equations for the scalars y3 and y4
do not depend on the γ deformation parameter and read

2yi − α′2p2
+ κ

2yi = 0 , i = 3, 4 . (7.17)

These can be easily solved using the plane wave ansatz yi ∼ e−i ωi;n τ+i n σ which implies
that the eigenfrequencies for yi are

ω2
i;n = α′2 p2

+ κ
2 + n2 = α′2 p2

+
(
ω2 + µ2m2)+ n2 , i = 3, 4 . (7.18)
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Equations of motion for y5 & y6. We now move to the equations for the scalars y5
and y6, which are coupled due to the derivative terms

2 y5 − α′2 p2
+ ω

[(
1 + γ2

4

)
ω − µmγ

]
y5 + α′ p+

(
γ ω − 2µm

)
∂σy6 = 0 ,

2 y6 − α′2 p2
+ ω

[(
1 + γ2

4

)
ω − µmγ

]
y6 − α′ p+

(
γ ω − 2µm

)
∂σy5 = 0 .

(7.19)

The above set of equations can be decoupled if we consider the linear combinations y±56 =
y5 ± iy6. Then for the y±56 we get

2y+
56 − α

′2p2
+ω

[(
1 + γ2

4

)
ω − µmγ

]
y+

56 − i α
′ p+

(
γ ω − 2µm

)
∂σy

+
56 = 0 ,

2y−56 − α
′2p2

+ω

[(
1 + γ2

4

)
ω − µmγ

]
y−56 + i α′ p+

(
γ ω − 2µm

)
∂σy

−
56 = 0 .

(7.20)

Choosing again a plane-wave ansatz y±56 ∼ e
−iω±56;nτ+inσ we get

(
ω±56;n

)2 = α′2 p2
+ ω

[(
1 + γ2

4

)
ω − µmγ

]
± nα′ p+

(
2µm− γ ω

)
+ n2 . (7.21)

It is important to notice that the frequencies depend on both deformation parameters µ
and γ in a non-trivial way.

Equations of motion for y7 & y8. The equations for the scalars y7 and y8 can be
treated similarly to those for y5 and y6. In particular we have that

2 y7 − α′2 p2
+ ω

[(
1 + γ2

4

)
ω + µmγ

]
y7 − α′ p+

(
γ ω + 2µm

)
∂σy8 = 0 ,

2 y8 − α′2 p2
+ ω

[(
1 + γ2

4

)
ω + µmγ

]
y8 + α′ p+

(
γ ω + 2µm

)
∂σy7 = 0 .

(7.22)

Notice that these can be obtained from the equations of motion for y5 and y6 in (7.19)
by sending y5 7→ y8, y6 7→ y7 and µ 7→ −µ. Thus the eigenfrequencies for the decoupled
scalars y±78 = y8 ± iy7 can be obtained from those for y±56 in eq. (7.21) simply by sending
µ 7→ −µ, i.e.

(
ω±78;n

)2 = α′2 p2
+ ω

[(
1 + γ2

4

)
ω + µmγ

]
∓ nα′ p+

(
2µm+ γ ω

)
+ n2 . (7.23)

Notice that in the case of γ = 0 we obtain the frequencies of the Schrödinger back-
ground that were computed in [48], while for µ = 0 the frequencies in (7.15), (7.18), (7.21)
and (7.23) reduce to those computed in [68, 69] (see also [70]).

Moreover, in the pp-wave background, one can try to construct a Giant Graviton
solution in the same way that we did in section 6. The bottomline of the construction is
that this pp-wave graviton, in the same way as the graviton of section 6, will be independent
of the γ deformation parameter. As a result such a computation reduces to the computation
of [54]. In order to obtain a Giant Graviton that depends on the γ deformation parameter,
one should try for a different geodesic.
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7.1 PP-wave spectrum and dispersion of the giant magnon

In this section, and based on the bosonic spectrum on the pp-wave background derived in
the previous section, we make an educated guess for the exact in λ anomalous dimensions
of the operators that are dual to the string excitations (7.18), (7.21) and (7.23). To this
end we closely follow section 4 of [48].

One starts from the fact that the light-cone string Hamiltonian is linear in the gener-
ators E, M and J , namely,

Hl.c. ≡ p− = p+ = i
∂

∂x+ = i

[
κ
∂

∂T
+ ω

∂

∂χ
+ µ2m

∂

∂V

]
. (7.24)

Furthermore, since the conserved charges in the original Schrödinger background are
given by

E = i
∂

∂T
, J = − i ∂

∂χ
, M = − i ∂

∂V
, (7.25)

one gets the following relation for the light-cone Hamiltonian in terms of the conserved
charges of the original doubly deformed spacetime

Hl.c. = κE − ωJ − µ2mM . (7.26)

Additionally, the light-cone momentum is given by

α′p+ = α′p− = −iα′ ∂
∂x−

= −i α
′

ωR2
∂

∂χ
= J√

λ
. (7.27)

In (7.27), in order to simplify the notation, we have set ω = 1 and we have also used the
relation between the radius R and the ’t Hooft coupling λ, that is R2/α′ =

√
λ.

By identifying the light-cone Hamiltonian (7.26) with the energy of a single string
excitation given by (7.23), that is Hl.c. = ω±78;n, one gets that

κ
√
λE − µ2m

√
λM

J
−
√
λ =

√
1 + γ2

4 + µmγ + n2λ

J2 ∓
n(2µm+ γ)

√
λ

J
. (7.28)

The next step is to write the angular momentum, energy and particle number of the string
moving on the pp-wave geometry as the corresponding quantities of the point-like BMN
particle plus corrections of order O(λ0), that is

E =
√
λκ+ ε1 , J =

√
λ+ j1 , M =

√
λm+m1 . (7.29)

One then solves (7.29) for the quantities
√
λκ,
√
λ and

√
λm in terms of E, J and M and

substitute the resulting expressions in (7.28) to obtain

E2 − µ2M2

J
− J − Y1 =

√
1 + γ2

4 + µmγ + n2λ

J2 ∓
n(2µm+ γ)

√
λ

J
, (7.30)
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where Y1 collects the terms involving ε1, j1 and m1 and is given by

Y1 = ε1E − µ2Mm1
J

− j1 . (7.31)

The last step is to express J in terms of E, ε1, M , m1 and j1. This can be done by
plugging (7.29) in the holding relation κ2 = µ2m2 + ω2 to get

E2 − µ2M2 − J2 = Z with
Z = 2

(
ε1κ
√
λ−
√
λj1 − µ2m

√
λm1

)
+ ε21 − j2

1 − µ2m2
1 . (7.32)

The first equation in (7.32) can now be solved for J to give

J =
√
E2 − µ2M2

[
1− 1

2
Z

E2 − µ2M2

]
, (7.33)

where in order to derive this last equation we have approximated
√

1− Z
E2−µ2M2 by 1 −

1
2

Z
E2−µ2M2 , since Z is of O(

√
λ) while E2 − µ2M2 is of O(λ).

The result for J should be now substituted in (7.30) to give

√
E2 − µ2M2 − J =

√
1 + γ2

4 + µmγ + n2λ

J2 ∓
n(2µm+ γ)

√
λ

J
+W , (7.34)

with
W = 1

2 J
(
ε21 − j2

1 − µ2m2
1

)
+ Z2

4 J (Z + J2) . (7.35)

Let us stress that W in (7.34) should be ignored since it scales as 1/J and it becomes zero
in the strict J infinity limit in which the giant magnon is defined.

In precisely the same way one obtains the following exact in λ′ = λ
J2 dispersion relation

for the excitations of (7.21).

√
E2 − µ2M2 − J =

√
1 + γ2

4 − µmγ + n2λ

J2 ±
n(2µm− γ)

√
λ

J
. (7.36)

Finally, for the excitations of (7.18) which do not depend at all on γ one straightforwardly
obtains √

E2 − µ2M2 − J =

√
1 + µ2m2 + n2λ

J2 . (7.37)

We close this section by making an educated guess for the exact in λ dispersion relation
of the magnon excitations in the original doubly deformed background. Indeed, inspired
by the form of the pp-wave spectrum it is plausible to conjecture that the exact dispersion
relation corresponding to (7.37) is given by

√
E2 − µ2M2 − J =

√
1 + µ2m2 + λ

π2 sin2 p

2 , J →∞ , (7.38)
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while the ones corresponding to (7.36) and (7.34) are given by (for J →∞)

√
E2 − µ2M2 − J =

√
1 + γ2

4 − µmγ + λ

π2 sin2 p

2 ±
(
µm− γ

2

) √
λ

π
sin p (7.39)

and
√
E2 − µ2M2 − J =

√
1 + γ2

4 + µmγ + λ

π2 sin2 p

2 ∓
(
µm+ γ

2

) √
λ

π
sin p (7.40)

respectively.
Indeed, for small values of the momentum p = 2πn

J , n ∈ Z one gets (7.37), (7.36)
and (7.34) respectively. It would be interesting to identify the corresponding field the-
ory operators and check whether their exact in λ conformal dimensions are indeed given
by (7.38), (7.39) and (7.40). It is important to note that these dispersion relations can be
rewritten in a form relevant for the dual null dipole doubly deformed CFT of section 3 by
using the relations µ =

√
λ

2π L and γ =
√
λ

4π γ̃ (see [50]), where L̃ and γ̃ are the parameters
entering the star product that deforms the parent theory, N = 4 SYM. Having done this,
equations (7.38), (7.39) and (7.40) have the correct weak coupling expansion in integer
powers of λ. A final comment is in order. Note that for γ = 0 and λ � 1 the dispersion
relations (7.38), (7.39) and (7.40) reduce to the dispersion relation of the giant magnon
solution of [46], while for µ = 0 and λ� 1 to the dispersion relation of the giant magnon
solution of [71].

8 Conclusions

In this work we performed a thorough and detailed study of a new example of the AdS/CFT
correspondence, namely of the marginally deformed Schrödinger background. From the
gravity side this solution is constructed by performing a series of TsT transformations along
two of the five-sphere isometries of the Schrödinger solution. As a result the background
depends on two deformation parameters and is integrable for large number of colours N .
From the field theory side, the Lagrangian of the theory is obtained from that of N = 4
SYM by introducing the appropriate star product among the fields. The resulting gauge
theory is integrable at the planar level.

Putting an emphasis on the study of the correspondence for this doubly-deformed
background, we identified a point-like string solution that depends on both deformation
parameters and we derived its dispersion relation. Exploiting the power of the correspon-
dence, we identified the dual field theory operators and using the Landau-Lifshitz coherent
state approach, we managed to reproduce the leading terms of the aforementioned disper-
sion relation. This is a highly non-trivial test of the correspondence. We performed the
computation at leading order, in which case the two deformations are disentangled. It
would be very interesting to extend this calculation beyond the leading order, that would
include terms depending on products of the two deformations simultaneously. In this case
the corresponding Hamiltonian wouldn’t be the sum of two terms, one related to AdS3 and
the other to S3, as it happens with the one loop Hamiltonian (4.16).
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Moving forward to the study of field theory observables through their gravity realisa-
tion, we focused our attention on the evaluation of the Wilson loop expectation value. The
Wilson loop consists of two straight lines extending along the time direction and sitting at
two points in space separated by a distance L. We calculate the energy of this configuration
as a function of the separation length. This corresponds, as usual, to the potential between
two quarks sitting at a distance L on the boundary [57]. We identified an embedding
ansatz for the string that depends on both deformation parameters and calculated the en-
ergy of the aforementioned configuration as a function of the separation boundary length.
The behaviour of the energy exhibits interesting properties: for values of the length much
smaller than the Schrödinger parameter, the energy is inversely proportional to the L, a
behaviour that resembles that of a conformal theory. When the separation length is much
less than the Schrödinger parameter, an intriguing confining behaviour arises. The energy
is linearly proportional to the length with the constant of proportionality being inversely
proportional to µ2. As µ → 0, we obtain the expected conformal behaviour for all the
values of the length. Notice here that the observations we detailed above hold for every
value of the deformation parameter γ. Essentially the presence of γ is only “dressing” the
results, but does not alter their qualitative characteristics or the physical interpretation.

The next observable we shed the light on was the Giant Graviton solution. Even
if both deformation parameters appear in the induced metric of the D3-brane action, a
cancellation takes place and the marginal deformation γ disappears from the energy of
the Giant Graviton. It would be very interesting to perform a stability analysis around
the aforementioned solution. Based on similar cases in the literature, the vibration modes
will depend on both deformation parameters µ and γ. Examining those modes a relation
between the parameters might arise, in order for the solution to be stable.

It is well-known that string theory is solvable in the pp-wave limit. Furthermore, the
spectrum of the strings on the pp-wave background provides information about the di-
mensions of a particular subsector of gauge theory operators having large charges. Having
these in mind we took the Penrose limit of the marginally deformed Schrödinger back-
ground along a certain null geodesic. This geodesic was special, in the sense that the final
background has a dependence on both deformation parameters. To elaborate on the pp-
wave solution we have calculated the spectrum of closed bosonic strings in the deformed
background. The eigenfrequencies of the eight transverse physical degrees of freedom give
a prediction for the anomalous dimensions of the dual field theory operators as an exact
function of the effective coupling λ′ = λ

J2 . Four of the eigenfrequencies depend only on
the Schrödinger parameter while the remaining four depend on both the marginal and the
Schrödinger parameters. Finally, based on the string spectrum on the pp-wave geometry,
we made an educated guess for the exact in λ dispersion relation of the magnon excitations
in the original doubly deformed background which provides us with an exact prediction for
the dimensions of the dual field theory operators.

The analysis we performed so far leaves a number of interesting open questions, be-
sides the ones we have already discussed in the process of summarizing our findings. An
important calculation that can be done is the construction of the Giant Magnon solution
and the corresponding computation of its dispersion relation. With the proper ansatz this
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relation would depend on both deformation parameters. Notice that while in the present
work the dispersion relation on the pp-wave background is exact in λ′ with the momen-
tum of the magnon being p � 1, the dispersion relation of the Giant Magnon will be in
the strong coupling regime λ � 1 with the momentum excitation being finite. While the
two computations are independent and different, there is a region of the parametric space
for which there is an overlap. In section 7.1, we made an informed guess for the exact
in λ dispersion relation of the giant magnon in the background (2.2), (2.4) and (2.5). It
would be interesting to identify the exact form of the field theory operators and calculate
their anomalous dimension in order to test these dispersion relations at the weak coupling
regime. Along the same lines, one may try to employ, after generalising, the method of [50]
that is based on the Q-Baxter equation in order to calculate the spectrum of our doubly
deformed background. This is necessary since, like in [50], the corresponding to (3.3) spin
chain does not have a reference state, rendering thus the usual Bethe ansatz approach
inapplicable.

Another interesting direction is the calculation of the spectra of massless excitations
in the marginally deformed Schrödinger background. One needs to solve the Laplace equa-
tion in the deformed background and the computation is performed by transforming the
associated differential equations into Schrödinger problems. Within the correspondence,
those fluctuations correspond to certain operators in the gauge theory.
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A The non-supersymmetric Schrödinger solution

We present the type-IIB solution [50] which is obtained after applying the appropriate TsT
transformation to the AdS5×S5 solution. The background is non-supersymmetric and has
the Schrödinger group as its symmetry group.

The background consists of a metric with line element:

R−2 ds2 =−
[
1 + µ2

z4 + x2
1 + x2

2
z2

]
dt2 + 1

z2

(
2 dtdv + dx2

1 + dx2
2 + dz2

)
+ dχ2 + dη2

+ sin2 η dχ
(
dψ − cos θ dφ

)
+ 1

4 sin2 η
(
dθ2 + dφ2 + dψ2 − 2 cos θ dφ dψ

)
,

(A.1)
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where µ is a deformation parameter. There is also a non-trivial NS two-form given below:

B2 = R2 µ

z2 dt ∧
(
dχ+ ω

)
with ω = 1

2 sin2 η
(
dψ − cos θ dφ

)
. (A.2)

Finally, the RR sector contains only the self-dual five-form which is:

F5 = R4

2
(
1 + ?

)
cos η sin3 η sin θ dη ∧ dχ ∧ dθ ∧ dφ ∧ dψ . (A.3)

Notice that when µ = 0 one recovers the AdS5 × S5 solution.

B String action

We start with the (generalized) Polyakov action of a string propagating in a background
with metric GMN , NS two-form BMN and dilaton Φ, which is:

S = − 1
4πα′

∫
d2σ

√
|h|
(
hab∂aX

M∂bX
NGMN − εab∂aXM∂bX

NBMN + α′R(h)Φ
)
, (B.1)

where hab is the world-sheet metric, R(h) is the Ricci scalar constructed with hab and
σa = (σ0, σ1) = (τ, σ) are the string coordinates. Notice that εab is the Levi-Civita tensor,
to be distinguished from the Levi-Civita symbol εab with ε01 = 1.

Things can get simpler going to the conformal gauge where:

hab = ηab = diag(−1, 1) . (B.2)

Then the string action reads:

S = − 1
4πα′

∫
d2σ

(
ηab∂aX

M∂bX
NGMN + εab∂aX

M∂bX
NBMN

)
. (B.3)

This has to be supplemented by the Virasoro constraints which at the conformal gauge
take the form:(

∂τX
M∂τX

N + ∂σX
M∂σX

N
)
GMN = 0 , ∂τX

M∂σX
NGMN = 0 . (B.4)
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