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1 Introduction

In the past two decades Soft-Collinear Effective Theory (SCET) [1–4] has been applied
in different branches of particle physics to derive factorization theorems and to resum
logarithmically-enhanced corrections to all orders in perturbation theory. Somewhat sur-
prisingly, by far the largest fraction of the SCET analyses has focused exclusively on the
leading terms in the underlying power expansion. With the ever increasing precision of
perturbative QCD calculations, the study of next-to-leading power corrections has started
only recently to attract considerable attention (see e.g. [5–22]). While the subleading
terms in the effective Lagrangian are known since the early applications of SCET in the
context of charmless B-meson decays [3, 4, 23–25], the recent work has focused e.g. on
constructing subleading operator bases [6–8] and on studying the anomalous dimensions of
power-suppressed SCET operators [9, 11]. Nevertheless, there currently exists only a very
limited number of processes, for which the resummation of large logarithmic corrections has
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been extended to subleading power, which includes e.g. the study of threshold logarithms
in Drell-Yan and Higgs production [12, 15, 19], e+e− event-shape distributions [10, 22] and
the bottom-quark induced h→ γγ decay [17, 18, 20, 21].

The study of power corrections is a very non-trivial task, and among the many complica-
tions that one faces, the most challenging one seems to be the problem of endpoint-divergent
convolution integrals. Due to the presence of energetic particles in the effective theory,
SCET is a non-local theory, and the factorization theorems take the form of a convolution of
a hard-coefficient function with matrix elements of non-local SCET operators.1 As long as
these convolutions are well-behaved at the endpoints, the operator matrix elements can be
renormalized by means of distributions prior to taking the convolutions, and the logarithmic
corrections can be resummed using renormalization-group techniques. This is, however, no
longer true if the convolutions are by themselves divergent at the endpoint and produce
poles in the applied regulators, which spoils the renormalization program.

The problem of endpoint-divergent convolution integrals seems to arise generically
in SCET at subleading power. Further progress in this field therefore requires to better
understand the endpoint dynamics, and to formulate factorization theorems that hold for
the renormalized rather than the bare quantities. In a series of papers [17, 20, 21], this has
recently been achieved for the bottom-quark induced h→ (bb̄)∗ → γγ decay amplitude. In
that work the derivation of a renormalized factorization theorem proceeds via two key steps:

• The presence of endpoint divergences in the bare factorization theorem signals a
sensitivity to configurations that invalidate the generic scaling of the soft and collinear
momenta. In the endpoint region, the bare functions therefore become multi-scale
objects that must be refactorized. While this idea of endpoint refactorization has by
now been used in different contexts [17, 19, 22], it was — to the best of our knowledge
— for the first time proposed in a thesis by one of us in [26].

• In a second step the terms in the bare factorization theorem are reorganized in
a way that the endpoint contributions are properly subtracted in the convolution
integrals. In the specific implementation of [17, 20, 21], this rearrangement naturally
induces cutoffs that regularize the endpoint-divergent convolutions. This step depends,
however, on the specific structure of the bare factorization theorem, and it remains to
be investigated if it can be applied to other processes as well.

In the present paper we argue that the simple textbook process of muon-electron
scattering in the backward direction can be viewed as a template case to study the problem
of endpoint divergences in SCET. More specifically, we consider the µ−e− → µ−e−

scattering amplitude in the exact backward limit at asymptotically large center-of-mass
energies

√
s � me,µ. It is known for more than 50 years that the dominant double-

logarithmic corrections ∼ αn+1
em ln2nme,µ/

√
s resum to a modified Bessel function in this

limit [27, 28]. The goal of the present article consists in reproducing this result with modern
effective-field-theory methods, and in illustrating that this process shows a more complicated

1Throughout this paper we use the notion “convolution” in a loose sense for every integration in a
factorization theorem. The integrations are not necessarily convolutions in the strict mathematical sense.
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pattern of endpoint divergences than the h→ (bb̄)∗ → γγ decay. We therefore advocate this
simple QED process as a prime example for studying non-trivial aspects of soft-collinear
factorization for generic 2→ 2 processes, or processes with even higher particle multiplicities.
In particular, we believe that our findings can shed new light onto the factorization of
hard-exclusive processes in QCD, like B-meson decays into energetic light hadrons. Our
analysis in fact descends from a specific study of Bc → ηc form factors in [26, 29].

The analysis of the muon-electron backward-scattering process is formulated in an
effective theory that is referred to as SCET-2. Due to the presence of massive fermions in the
loop integrals, the effective-theory formulation requires a rapidity regulator in addition to the
usual dimensional regulator. Interestingly, it turns out that the µ−e− → µ−e− scattering
amplitude contributes at leading power, but the convolution integrals are nevertheless
endpoint-divergent because of a specific soft-enhancement mechanism that we describe in
section 3. Due to this mechanism certain helicity flips can occur an arbitrary number of
times without inducing any type of power suppression, which is at the origin of an iterative
pattern of endpoint divergences.

While we do not aim at deriving a renormalized factorization theorem in this work, we
will show that the dominant double logarithms can be resummed in the effective theory,
using endpoint refactorization conditions and consistency relations. Interestingly, the Bessel
function is reproduced in our analysis via an infinite tower of collinear-anomaly exponents
— a structure that has not yet been observed in any previous application of SCET-2 before.
The considered muon-electron scattering process therefore provides new insights into the
effective theory, even on the simplest double-logarithmic level, and it allows one to clearly
isolate the problem of endpoint divergences on the level of a leading-power QED process.

This article is organized as follows. In section 2 we present some basic definitions,
and we show how the dominant double logarithms can be resummed with “traditional”
diagrammatic methods. In section 3 we derive a bare factorization theorem for the backward-
scattering amplitude, and we illustrate that it suffers from endpoint-divergent convolution
integrals. We then derive endpoint refactorization conditions for the collinear matrix
elements in section 4, and we show how the perturbative expansion of the modified Bessel
function is recovered order-by-order in the effective theory from consistency relations. We
finally perform a detailed comparison of the SCET analysis for the bottom-quark induced
h→ γγ decay and the µ−e− → µ−e− backward-scattering process in section 5, before we
conclude in section 6. Some technical aspects of our analysis are discussed in the appendix.

2 Preliminaries

In this section we introduce our notation to describe the kinematics in the muon-electron
backward scattering. We identify two Dirac structures that contribute at leading power
in the small expansion parameter and define the corresponding form factors. To set the
stage for the effective-theory analysis, we follow the traditional diagrammatic approach to
sum the leading double-logarithmic contributions, which arise from particular ladder-type
diagrams with soft lepton propagators, to all orders.
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2.1 Kinematics and power counting

We consider the 2→ 2 scattering process

e−(p1)µ−(p2) −→ e−(p′1)µ−(p′2) (2.1)

of massive leptons, p2
1 = p′1

2 = m2
e and p2

2 = p′2
2 = m2

µ, at large center-of-mass energies√
s� me,µ. In the kinematic situation of exact backward scattering all four external leptons

can be chosen to move along the z-axis. We then define the standard light-cone vectors
nµ±, with n2

+ = n2
− = 0 and n+n− = 2, such that the external momentum components

perpendicular to nµ± vanish, and we can write

p
(′)
i
µ = n+p

(′)
i

2 nµ− + n−p
(′)
i

2 nµ+ . (2.2)

The longitudinal components can be expressed as

n+p1 = n−p
′
1 =

s+m2
e −m2

µ +
√
λ
(
s,m2

e,m
2
µ

)
2
√
s

=
√
s−
√
u+
√
−t

2 ,

n−p2 = n+p
′
2 =

s−m2
e +m2

µ +
√
λ
(
s,m2

e,m
2
µ

)
2
√
s

=
√
s+
√
u+
√
−t

2 , (2.3)

with the Mandelstam variables s, t, u and the Källén function λ(s,m2
e,m

2
µ) = s2 + m4

e +
m4
µ − 2m2

es− 2m2
µs− 2m2

em
2
µ. The remaining light-cone components are then fixed by the

on-shell conditions (n−p(′)
1 )(n+p

(′)
1 ) = m2

e and (n−p(′)
2 )(n+p

(′)
2 ) = m2

µ. In the exact backward
limit, s is the only independent Mandelstam variable, whereas t = −λ(s,m2

e,m
2
µ)/s and

u = (m2
µ −m2

e)2/s are fixed by s and the lepton masses.
We are interested in the asymptotic limit of the QED scattering amplitude at large

energies, s� m2
µ & m2

e. In this limit the amplitude can be simplified by an expansion in the
small power-counting parameter λ = mµ/

√
s, and we aim at resumming double-logarithmic

corrections ∼ αn+1
em ln2nme,µ/

√
s to all orders in perturbation theory using the framework

of SCET.2 We emphasize that, although the mass ratio me/mµ is numerically small, we
count me/mµ = O(1) since the ratio does not scale with the center-of-mass energy

√
s.

This implies that we do not resum any logarithms of the form αem ln2me/mµ. With respect
to the power-counting parameter λ, the external momenta then scale in their light-cone
components (n+p

(′)
i , (p

(′)
i )⊥, n−p(′)

i ) as

pµ1 ∼ p
′
2
µ ∼

(
1, 0, λ2

)√
s , pµ2 ∼ p

′
1
µ ∼

(
λ2, 0, 1

)√
s , (2.4)

which, as we will explain in more detail in section 3, amounts to the respective scaling of
collinear and anti-collinear modes in SCET. We remark that the kinematic configuration

2The expansion parameter λ is not to be confused with the Källén function λ(s,m2
e,m

2
µ), which we

always indicate by the additional kinematic arguments.
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Figure 1. Left: tree-level exchange of a hard photon between the collinear and anti-collinear leptons.
Right: one-loop graph that contributes to the amplitude at the double-logarithmic level (in Feynman
gauge). We find it convenient to display this diagram with a twisted electron line, such that all
(anti-)collinear external momenta are on the (left) right side of the diagram.

implies a certain fine-tuning of the momenta, in the sense that the difference of the two
(anti-)collinear momenta must be ultra-soft,

pµ2 − p
′
1
µ = p′2

µ − pµ1 =
√
u
nµ− + nµ+

2 ∼
(
λ2, 0, λ2

)√
s , (2.5)

with invariant mass (p2 − p′1)2 = (p′2 − p1)2 = u = O(λ4s)� m2
e,µ.

Due to the counting me/mµ = O(1), it is sufficient to consider the equal-mass limit
me = mµ ≡ m for the resummation of the leading double-logarithmic corrections.3 The
kinematics then simplifies to

n+p1 = n−p
′
1 = n−p2 = n+p

′
2 =
√
s

2

1 +

√
1− 4m2

s

 =
√
s
(
1 +O

(
λ2
) )

, (2.6)

which implies that pµ1 = p′2
µ ≡ pµ and pµ2 = p′1

µ ≡ p̄µ, and the problem becomes symmetric
with respect to the exchange of the light-cone directions nµ− ↔ nµ+. The Mandelstam
variables furthermore simplify to t = 4m2 − s ≈ −s and u = 0 in this approximation.
Obviously, once one is interested in resumming subleading logarithms, one cannot use these
simplifications any longer. Nevertheless, as we will see below, already the double logarithms
of the leading-power amplitude have an interesting all-order structure that shares many
complications related to endpoint singularities in SCET. In order to keep the discussion
transparent, we therefore adopt the equal-mass limit in the following.

2.2 Fixed-order analysis

At lowest order in perturbation theory, the backward scattering happens through the
t-channel exchange of a hard photon, as depicted in the left panel of figure 1. The
corresponding amplitude reads

M(0) = 4παem
t

[
ū(e)(p̄)γνu(e)(p)

] [
ū(µ)(p)γνu(µ)(p̄)

]
. (2.7)

In each Dirac string the matrix γν is sandwiched between a collinear and an anti-collinear
spinor. At leading power in λ, the equations of motion imply that only the perpendicular

3We consider distinguishable lepton flavours to avoid cross diagrams from the exchange of identical
particles.
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component γµ⊥ = γµ − /n−
2 n

µ
+ −

/n+
2 n

µ
− contributes,

M(0) = 4παem
−s

[
ū

(e)
ξ̄
γν⊥u

(e)
ξ

] [
ū

(µ)
ξ γ⊥νu

(µ)
ξ̄

]
+O (λ) , (2.8)

and the tree-level amplitude can be expressed in terms of a single Dirac structure. Here
uξ and uξ̄ denote the large components of the respective on-shell spinors of collinear and
anti-collinear particles in the large-energy limit, which fulfill the equations of motion
/n−uξ = 0 = /n+uξ̄. Performing a Fierz transformation, we can write

[
ū

(e)
ξ̄
γν⊥u

(e)
ξ

] [
ū

(µ)
ξ γ⊥νu

(µ)
ξ̄

]
= −2

[
ū

(e)
ξ̄

/n−
2 PR u

(µ)
ξ̄

] [
ū

(µ)
ξ

/n+
2 PR u

(e)
ξ

]
+ (R↔ L) ,

(2.9)

where PL,R = 1
2(1∓ γ5) are the usual chiral projection operators. This expression shows

that the chiralities of the leptons are conserved and decouple,

M(0) (e−µ− → e−µ−
)

=M(0)
(
e−Rµ

−
R → e−Rµ

−
R

)
+M(0)

(
e−Lµ

−
L → e−Lµ

−
L

)
+O (λ) ,

(2.10)

as expected in the high-energy limit.
Radiative corrections generate a form factor that multiplies the tree-level amplitude

M(0), but they also induce another helicity-flipping Dirac structure

M̃ = 4παem
−s

([
ū

(e)
ξ̄
u

(e)
ξ

] [
ū

(µ)
ξ u

(µ)
ξ̄

]
−
[
ū

(e)
ξ̄
γ5u

(e)
ξ

] [
ū

(µ)
ξ γ5u

(µ)
ξ̄

])
= 4παem
−s

(
2
[
ū

(e)
ξ̄

/n−
2 PR u

(µ)
ξ̄

] [
ū

(µ)
ξ

/n+
2 PL u

(e)
ξ

]
+ (R↔ L)

)
, (2.11)

at leading power in λ. In general, the amplitude can thus be described in terms of
two form factors in the high-energy limit, a helicity-conserving form factor F1(λ) and a
helicity-changing form factor F2(λ),

M = F1(λ)M(0) + F2(λ)M̃+O(λ) . (2.12)

In the following we expand these form factors perturbatively as Fi(λ) = ∑∞
n=0

(αem
2π
)n
F

(n)
i (λ)

with F (0)
1 (λ) = 1 and F (0)

2 (λ) = 0 for the tree-level contributions.
At one-loop order one needs to evaluate the usual box, vertex and self-energy diagrams

for a four-fermion scattering amplitude. We find that the next-to-leading order (NLO)
corrections to the form factors are given at leading power in λ by

F
(1)
1 (λ) = 1

2 ln2 λ2 − ln λ2 − 2n`
3 ln µ

2

s
− 10n`

9 − π2

3 − 4 + 2πi
(

1
εIR

+ ln µ
2

s

)
, (2.13)

with n` the number of lepton flavours, and

F
(1)
2 (λ) = ln λ2 + 2 , (2.14)

where we renormalized the QED coupling in the MS-scheme.
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Several comments about this result are in order. First, we observe that the helicity-
changing contributions in F2(λ) are at most single-logarithmic, and they in fact do not
contribute in the interference with the Born amplitude on the cross-section level. The
double logarithms ∼ αnem ln2nm/

√
s, which are the concern of our paper, are thus entirely

captured by the helicity-conserving form factor F1(λ), on which we will concentrate in
the following. Second, the amplitude contains a soft singularity, which again is of lower
logarithmic order and therefore irrelevant for the following discussion. As usual, the 1/εIR-
divergence in the amplitude is cancelled by the corresponding real-emission process in a
soft-photon inclusive observable. The last and for our purpose most important comment
about the result in (2.13) is that — in Feynman gauge — the double logarithm ln2 λ2 is
fully determined by the crossed-box diagram shown in the right panel of figure 1. More
precisely, the double-logarithmic contributions to the planar box and the vertex diagrams
cancel in their sum in this particular gauge.

NNLO virtual corrections to muon-electron scattering are known in the massless ap-
proximation for more than two decades [30], and they have been computed more recently
for a massive muon and a massless electron in [31]. Partial NNLO results for non-vanishing
muon and electron masses are also available [32, 33], but they do not contain the con-
tributions from the two-loop box diagrams yet. We are therefore not in the position to
extract the leading logarithms in the equal-mass limit at NNLO from the existing results in
the literature.

2.3 The double-logarithmic amplitude

We now briefly discuss the traditional approach for resumming the double-logarithmic
contributions to the backward-scattering amplitude to all orders following [27, 28]. Before
we turn to two- and higher-loop contributions, we will explain the simplifications that arise
in the double-logarithmic approximation at one-loop order in some detail. In Feynman
gauge, we just saw that the double logarithms are entirely encoded in the crossed-box
diagram shown in the right panel of figure 1. In the equal-mass limit we thus start from

iM' (4παem)2
∫

ddk

(2π)d

[
ū(e) (p̄) γµ (/k +m) γνu(e) (p)

] [
ū(µ) (p) γν (/k +m) γµu(µ) (p̄)

]
(k2 −m2)2 (k − p)2 (k − p̄)2 ,

(2.15)

where from now on we use the symbol ' to indicate the double-logarithmic approximation.
These double logarithms arise from the kinematic configuration in which the virtual lepton
propagators go on-shell, which fixes their virtuality to O(λ2), whereas both light-cone
components n−k and n+k are small of O(λ). The loop momentum thus scales as a soft
momentum in the SCET terminology of section 3. Expanding the numerator in λ shows
that only the perpendicular components of all Dirac matrices contribute,[

ū(e) (p̄) γµ (/k +m) γνu(e) (p)
] [
ū(µ) (p) γν (/k +m) γµu(µ) (p̄)

]
=
[
ū

(e)
ξ̄
γµ⊥ (/k⊥ +m) γν⊥u

(e)
ξ

] [
ū

(µ)
ξ γ⊥ν (/k⊥ +m) γ⊥µu(µ)

ξ̄

]
+O (λ) . (2.16)

– 7 –
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Due to the vanishing perpendicular components of the external momenta, we can further
substitute this by

k2
⊥

d− 2
[
ū

(e)
ξ̄
γµ⊥γ

α
⊥γ

ν
⊥u

(e)
ξ

] [
ū

(µ)
ξ γ⊥νγ⊥αγ⊥µu

(µ)
ξ̄

]
+m2

[
ū

(e)
ξ̄
γµ⊥γ

ν
⊥u

(e)
ξ

] [
ū

(µ)
ξ γ⊥νγ⊥µu

(µ)
ξ̄

]
.

(2.17)

In d = 4 dimensions the first term reduces to the tree-level Dirac structure, and it hence
contributes to the form factor F1(λ). The second term, on the other hand, only gives a
contribution to the helicity-flipping form factor F2(λ), which is single-logarithmic and can
thus be neglected. After some algebra we find that the double-logarithmic contribution to
F1(λ) is entirely contained in the integral

F
(1)
1 (λ) ' 16iπ2s

∫
ddk

(2π)d
k2
⊥

(k2 −m2)2(k − p)2(k − p̄)2 (2.18)

= 16iπ2s

∫
ddk

(2π)d

{
1

(k2 −m2)(k − p)2(k − p̄)2 + m2 − (n−k)(n+k)
(k2 −m2)2(k − p)2(k − p̄)2

}
.

In the following we concentrate on the first term, which contains only one massive lepton
propagator, and by repeating the same analysis for the second term, one can show that it
does not produce any double logarithms.

As already stated, we consider the loop momentum to be soft, and in this approximation
the photon propagators become eikonal,

(k − p)2 + i0 ≈ −
√
s n−k + i0 , (k − p̄)2 + i0 ≈ −

√
s n+k + i0 . (2.19)

We then integrate over the perpendicular components and examine the analytic structure of
the resulting (n−k)-integral in the complex plane. One finds that the form factor is given
by the discontinuity associated with the lepton propagator with

F
(1)
1 (λ)' (4π)ε

Γ(1−ε)

∫ ∞
0

d(n−k)
n−k

∫ ∞
0

d(n+k)
n+k

θ
(
(n+k)(n−k)−m2

)(
(n+k)(n−k)−m2

)−ε
.

(2.20)

In the effective-field-theory formulation the longitudinal integrations would be unconstrained
in the soft region. In the traditional approach, however, one imposes hard cutoffs on the
longitudinal integrations,

m2
√
s
� n+k �

√
s ,

m2
√
s
� n−k �

√
s , (2.21)

such that one can perform the integral in d = 4 dimensions. In terms of the dimensionless
variables x = n+k/

√
s and y = n−k/

√
s this gives

F
(1)
1 (λ) '

∫ 1

λ2

dx

x

∫ 1

λ2/x

dy

y
= 1

2 ln2 λ2 , (2.22)

in agreement with (2.13).
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Figure 2. Ladder-type diagrams that determine the double-logarithmic contribution to the scattering
amplitude in Feynman gauge. Notice again that the upper line is twisted. The double logarithms
arise from the kinematic configuration in which each lepton propagator goes on-shell and the photon
propagators become eikonal, see the discussion around (2.23). At each order in perturbation theory
the Dirac algebra can then be simplified such that the double logarithms are contained in a simpler
scalar integral (right graph), where solid (dashed) lines indicate massive (massless) propagators.

At higher orders the dominant corrections ∼ αnem ln2nm/
√
s can be computed in a

similar fashion. The key observation is that they purely arise from ladder-type photon
exchanges (in the twisted notation, see figure 2), where the loop integrations within each
individual sub-diagram generate double logarithms in the same way as discussed for the
one-loop case above. This implies that one only has to consider momentum configurations
in which all lepton propagators go on-shell and the photon propagators become eikonal,

(ki − ki−1)2 + i0 ≈ −(n+ki)(n−ki−1) + i0 . (2.23)

This corresponds to the situation in which the longitudinal components of the lepton
momenta are strongly ordered (see also [27, 28]),

m2
√
s
≈ n+p̄� n+k1 � . . .� n+kn � n+p ≈

√
s ,

m2
√
s
≈ n−p� n−kn � . . .� n−k1 � n−p̄ ≈

√
s . (2.24)

Focusing again on the double-logarithmic contribution, one can simplify the numerator as
before to reduce the ladder diagram with n rungs to a simpler scalar integral,

F
(n)
1 (λ) '

(
−16iπ2

)n
(−s)

∫
ddk1

(2π)d
. . .

ddkn

(2π)d
1

k2
1 −m2 . . .

1
k2
n −m2

× 1
(p̄− k1)2

1
(k1 − k2)2 . . .

1
(kn−1 − kn)2

1
(kn − p)2 , (2.25)

which in fact also holds at tree level with F (0)
1 (λ) = (−s)/(p− p̄)2 = 1 +O(λ). The double

logarithms of the backward-scattering amplitude are thus entirely contained in a simpler
set of scalar integrals, depicted in figure 2, which provides a well-defined template for
studying the problem of endpoint singularities in SCET by means of a method-of-regions
analysis. In fact, although in a different physical context, precisely these integrals were
studied before in [26].

Due to the eikonal structure (2.23) of the photon propagators, the integrals over the
perpendicular components can again be performed trivially, which yields a contribution
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associated with the discontinuity of each lepton propagator. In terms of the dimensionless
variables xi = n+ki/

√
s and yi = n−ki/

√
s, the resulting factors θ

(
(n+ki)(n−ki)−m2)

furthermore combine with the phase-space constraints from (2.24) to the follow-
ing representation

F
(n)
1 (λ) '

∫
dx1
x1

∫
dy1
y1

. . .

∫
dxn
xn

∫
dyn
yn

θ
(
x1y1 − λ2

)
. . . θ

(
xnyn − λ2

)
× θ (1− y1) θ (y1 − y2) . . . θ

(
yn − λ2

)
θ (1− xn) θ (xn − xn−1) . . . θ

(
x1 − λ2

)
=
∫ 1

λ2

dx1
x1

∫ 1

x1

dx2
x2

. . .

∫ 1

xn−1

dxn
xn

∫ 1

λ2/x1

dy1
y1

∫ y1

λ2/x2

dy2
y2

. . .

∫ yn−1

λ2/xn

dyn
yn

. (2.26)

For any given n, these integrals can be performed explicitly, which yields the simple result

F
(n)
1 (λ) ' 1

n! (n+ 1)! ln2n λ2 . (2.27)

Therefore we obtain for the resummed expression

F1(λ) =
∞∑
n=0

(
αem
2π

)n
F

(n)
1 (λ) '

∞∑
n=0

(
αem
2π ln2 λ2

)n
n!(n+ 1)! =

I1
(
2
√

αem
2π ln2 λ2

)
√

αem
2π ln2 λ2

, (2.28)

with the modified Bessel function of the first kind I1(2
√
z). More rigorously, this result

can be obtained by introducing an additional cutoff parameter for the integrals (2.26) as
discussed in [28]. The so-defined auxiliary function then obeys an implicit integral equation
which can be solved in Laplace space. The result (2.28) has an interesting asymptotic
behaviour in the limit z →∞,

I1(2
√
z)√

z
≈ 1

2
√
π

e2
√
z

z3/4 , (2.29)

and the form factor thus grows exponentially in | ln λ2|, contrary to the exponential fall off
from the standard Sudakov factor in the same approximation.

3 Formulation in SCET

We now address the question how the resummed expression (2.28) in the double-logarithmic
approximation is reproduced in the effective field theory. To do so, we derive a “bare”
factorization theorem for the backward-scattering amplitude, which, as we shall see, suffers
from endpoint-divergent convolution integrals. These endpoint divergences spoil the standard
approach for resumming the logarithmic contributions to all orders using renormalization-
group techniques. We will come back to this point in the following section, and focus here
on the details of the derivation of the factorization theorem.

As is familiar from other examples that involve massive fermions, the loop integrals
require a rapidity regulator in the effective theory to make the contributions from individual
momentum regions well-defined. The relevant effective theory is called SCET-2, and we
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will follow a two-step matching procedure in this section, in which one first integrates
out hard fluctuations associated with the scale

√
s � m. The degrees of freedom in the

intermediate effective theory SCET-1 are hard-collinear, anti-hard-collinear and soft modes
with respective scaling in the power-counting parameter λ:

hard: kµ ∼ (1, 1, 1)
√
s ,

hard-collinear: kµ ∼ (1,
√
λ, λ)
√
s ,

anti-hard-collinear: kµ ∼ (λ,
√
λ, 1)
√
s ,

soft kµ ∼ (λ, λ, λ)
√
s . (3.1)

In SCET-1 the large component of a hard-collinear fermion field scales as λ1/2, a soft
fermion field as λ3/2, and photon fields scale as their corresponding momentum components.
Interactions between the (anti-)hard-collinear and soft sectors can be eliminated from the
SCET-1 Lagrangian by a decoupling transformation.

The on-shell amplitude contains, however, collinear and anti-collinear external states
with virtualities k2 = O(m2) much smaller than the hard-collinear scale m

√
s. As anti-

cipated in (2.4), their generic scaling behaviour is given by

collinear: kµ ∼
(
1, λ, λ2

)√
s ,

anti-collinear: kµ ∼
(
λ2, λ, 1

)√
s . (3.2)

In a second matching step, one therefore integrates out (anti-)hard-collinear fluctuations,
and the resulting effective theory SCET-2 contains collinear, anti-collinear and soft modes.
The large component of a collinear fermion field now scales as λ, and interactions between
the (anti-)collinear and soft sectors are always highly off-shell and therefore not part of the
SCET-2 Lagrangian.

3.1 Method-of-regions analysis

In order to illustrate some subtleties associated with the regularization prescription, we
find it instructive to analyze the momentum regions of the one-loop scalar integral in the
first term of the second line in (2.18), which captures the double-logarithmic contributions
at this order, in some detail. We define

I ≡ 16iπ2s µ̃2ε
∫

ddk

(2π)d
1

(k2 −m2)(k − p)2(k − p̄)2 = 1
2 ln2 λ2 + 2π2

3 +O(λ) , (3.3)

where the usual i0-prescription of the Feynman propagators is understood. The integral is
IR- and UV-finite, but for later purposes we expressed the integral measure in d = 4− 2ε
dimensions with µ̃2 = µ2eγE/(4π).

The integral receives contributions from four momentum regions: the loop momentum
kµ, which is assigned to the massive lepton propagator, can either become hard, collinear,
anti-collinear, or soft. It is well known that individual momentum regions of loop integrals
with massive propagators can be ill-defined, even when they are evaluated in d dimensions.
The reason is that dimensional regularization is attached to the transverse momentum
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components in light-cone coordinates, and in the presence of mass terms the regularization
does not carry over to the longitudinal components after integrating over the transverse
space [34]. In other words, dimensional regularization as a boost-invariant regularization
scheme only distinguishes momentum modes by their virtuality, but in SCET-2 all three
long-distance modes have equal virtuality, k2 = O(m2), and are separated only by a
parametrically large boost. To consistently regularize the appearing singularities then
requires the use of rapidity regulators. Many different prescriptions have been proposed in
the literature (see e.g. [13, 34–38]), and in the following we use an analytic regulator that
supplements each integral measure with a factor

ddk → ddk
( ν

2k0 − i0
)α
, (3.4)

with 2k0 = n+k + n−k. This regulator preserves the nµ− ↔ nµ+ symmetry of the process,
and the i0-prescription is chosen to be consistent with the analytic structure of the eikonal
propagators, as we will see below. To this end it is important that the loop momentum
is always assigned to the massive lepton propagator in the direction of fermion flow, as
is illustrated by the diagram in figure 2. Such an adhoc prescription, of course, violates
gauge invariance, which is only restored once the contributions from the soft, collinear and
anti-collinear regions are combined. A discussion about a gauge-invariant implementation
of a rapidity regulator is beyond the scope of the present paper, and it is in fact not needed
to resum the double-logarithmic contributions as we will see in section 4.

With the analytic regulator in place, the contributions from the individual momentum
regions can readily be computed. As the analytic regulator is supposed to regularize rapidity
divergences only, it is important that the limit α → 0 is taken before the dimensional
regulator is set to zero. We then obtain the following contributions to the integral in (3.3):

Hard region. The contribution from the hard region simply corresponds to the massless
integral, which can be performed in d dimensions:

I(hard) = 16iπ2s µ̃2ε
∫

ddk

(2π)d
1

k2(k − p)2(k − p̄)2

= 1
ε2

+ 1
ε

ln µ
2

s
+ 1

2 ln2 µ
2

s
− π2

12 +O(ε) . (3.5)

By dropping the fermion masses, we observe that the integral has become IR-divergent,
and these divergences are fully controlled by the dimensional regulator.

Collinear region. In the collinear region one of the photon propagators becomes eikonal,
and the rapidity regulator simplifies according to 2k0 = n+k +O(λ2):

I(anti-col) =−16iπ2√sµ̃2ε
∫

ddk

(2π)d
( ν

n+k−i0
)α 1

(k2−m2+i0)(k2−2kp+m2+i0)(n+k−i0)

= eεγE Γ(ε)
( µ2

m2

)ε( ν√
s

)α ∫ 1

0
dxx−1−α (1−x)−2ε

=− 1
αε
− 1
α

ln µ2

m2−
1
ε

ln ν√
s
−ln µ2

m2 ln ν√
s

+π2

3 +O(α,ε) . (3.6)
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To evaluate the integral we pick up the residues in the small momentum component n−k.
The integral over the perpendicular components then acquires a UV divergence 1/ε. The
analytic structure furthermore restricts the integration domain of the remaining integral
over the large component n+k =

√
s x to the interval x ∈ [0, 1]. This integral is endpoint

divergent as x→ 0 and generates a 1/α pole in the rapidity regulator. As expected, the
collinear mode is characterized by a virtuality µ2 ∼ m2 and a large energy ν ∼

√
s.

Anti-collinear region. As our choice of the analytic regulator preserves the nµ− ↔ nµ+
symmetry, the anti-collinear region simply gives the identical result:

I(anti-col) = I(col) . (3.7)

Soft region. In the soft region both photon propagators become eikonal, but now with
hard-collinear scaling (k − p)2 ∼ (k − p̄)2 ∼ m

√
s. Since n−k ∼ n+k in this region, the

i0-prescription of the analytic regulator becomes relevant, which, as argued before, has
been chosen to be in line with the i0-prescription of the eikonal propagators. We find

I(soft) = 16iπ2 µ̃2ε
∫

ddk

(2π)d
(

ν

n+k+n−k−i0

)α 1
(k2−m2+i0)(n−k−i0)(n+k−i0)

= eεγEµ2ε

Γ(1−ε)

∫ ∞
0

dξ
ξ−ε

ξ+m2

∫ ∞
0

d(n+k)
n+k

(
ν n+k

ξ+m2+(n+k)2

)α

= 2
αε

+ 2
α

ln µ2

m2 + 2
ε

ln ν

m
+2ln µ2

m2 ln ν

m
− 1
ε2
− 1
ε

ln µ2

m2−
1
2 ln2 µ

2

m2 +π2

12 +O (α,ε) .
(3.8)

Here we used the residue theorem in the variable n−k. The analytic structure then fixes the
variable n+k to the entire positive real axis, and the rapidity regulator mixes the longitudinal
n+k with the k⊥ integration (we wrote ξ ≡ −k2

⊥ > 0). The latter again generates a UV
singularity 1/ε, whereas the integral over n+k acquires a 1/α singularity from both limits
n+k →∞ and n+k → 0. These rapidity divergences reflect the overlap with the collinear
and anti-collinear region for fixed invariant mass (n−k)(n+k) ∼ m2, respectively. From the
last line we read off that the soft region is characterized by a virtuality µ2 ∼ m2 and a
small energy ν ∼ m.

Given the results from all regions, one easily verifies that their sum reproduces the full
integral in (3.3). For the following discussion it is, moreover, instructive to contrast the
calculation with a second one that uses the alternative rapidity regulator να/(n+k − i0)α.
Obviously, this leaves the hard as well as the collinear region unaffected, whereas the soft
region becomes scaleless in this scheme, as the regulator no longer mixes the longitudinal
and the perpendicular integrations. To compensate this mismatch, the anti-collinear region
then gives the sum of the former soft and anti-collinear regions with

I(anti-col)′ = 1
αε

+ 1
α

ln µ2

m2 + 1
ε

ln ν
√
s

m2 + ln µ2

m2 ln ν
√
s

m2 −
1
ε2
− 1
ε

ln µ2

m2 −
1
2 ln2 µ

2

m2 + 5π2

12 ,

(3.9)
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which shows that µ2 ∼ m2 in this region, whereas the small component n+k now scales with
ν ∼ m2/

√
s. While we will mainly work with the symmetric regulator from (3.4) in this

section, we will exploit the very fact that the soft integrals are scaleless in the alternative
regularization scheme to resum the double-logarithmic corrections in section 4.

3.2 Bare factorization theorem

We now formulate the problem in the effective theory and derive an all-order factorization
theorem for the scattering amplitude using a two-step QED→ SCET-1→ SCET-2 matching
procedure. This factorization must be understood among bare objects that are not yet
expanded in the dimensional regulator ε, and implicitly supplemented by a suitable rapidity
regulator α.

To keep the discussion concise, we focus in this section on the helicity-conserving form
factor F1(λ). We will find that the respective bare factorization theorem at leading power
in λ consists of two terms that can be written in the form

F1 (λ) =
∫
dx

x

∫
dy

y
H (xys)

{
fc (x) fc̄ (y)+f̃c (x) f̃c̄ (y)

}
(3.10)

+
∫
dx

x

∫
dy

y

∫
dρ

ρ

∫
dω

ω
Jhc

(
ρx
√
s
)
Jh̄c

(
ωy
√
s
)

×
[
S (ρ,ω)

{
fc (x) fc̄ (y)+f̃c (x) f̃c̄ (y)

}
+S̃ (ρ,ω)

{
fc (x) f̃c̄(y)+f̃c(x)fc̄(y)

}]
.

Up to an overall sign, the respective expression for the form factor F2(λ) takes precisely the
same form, but with one or three helicity-flipping functions (indicated by the tilde), instead
of zero or two, as in the above expression for F1(λ). The term in the first line arises from
integrating out hard modes, and it starts at tree level with the hard-photon exchange shown
in the left panel of figure 1. The second term in the following two lines, depicted in figure 3,
only starts at one-loop order and involves the exchange of soft leptons, which in SCET are
induced by power-suppressed currents. We now address each of these structures in turn.

First term. The first term reflects the standard hard-scattering picture. It arises from
integrating out hard fluctuations at a scale

√
s� m, and involves a hard-coefficient function

that is convoluted with forward matrix elements of non-local SCET-2 operators. As the
hard-collinear scale is irrelevant for this contribution, the matching from the intermediate
theory SCET-1 onto the final theory SCET-2 is trivial in this case. The relevant operator
takes the form

O1(σ, τ) =
[
χ̄

(e)
c̄ (0)

/n−
2 PR χ

(µ)
c̄ (σn−)

] [
χ̄(µ)
c (τn+)

/n+
2 PR χ

(e)
c (0)

]
+ (R→ L) , (3.11)

whose Dirac structure can be directly associated with the tree-level expressions in (2.8)
and (2.9), and the lepton field operators χc = W †c ξc = W †c (/n−/n+/4)ψc are the usual
gauge-invariant SCET building blocks, i.e. the large components of the spinor fields in each
collinear sector dressed with collinear Wilson lines.

As the collinear and anti-collinear sectors are decoupled in SCET-2, one can study
flavour-off-diagonal forward matrix elements of this operator separately in each sector.
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We then define the two collinear functions fc(x) and f̃c(x) occurring in the factorization
theorem (3.10) via

〈
µ− (p)

∣∣ χ̄(µ)
c (τn+)

/n+
2 PR(L) χ

(e)
c (0)

∣∣e− (p)
〉

=
∫
dx eixτn+p

{
fc (x)

[
ū

(µ)
ξ

/n+
2 PR(L)u

(e)
ξ

]
+ f̃c (x)

[
ū

(µ)
ξ

/n+
2 PL(R)u

(e)
ξ

]}
, (3.12)

and in complete analogy for the anti-collinear functions fc̄(y) and f̃c̄(y). Since the fermion
mass contributes at leading power in SCET-2, the matrix element must be parametrized in
terms of two functions in each sector, a helicity-conserving function fc(x) and a helicity-
flipping function f̃c(x). These functions can be considered as a particular manifestation of
generalized parton distributions (GPDs), see e.g. [39–41] for reviews. In our case the GPDs
are off-diagonal in lepton flavour, but diagonal in external momenta (in the language of
GPDs this corresponds to the limit of zero skewness).

We emphasize that the collinear functions describe both lepton and anti-lepton dis-
tributions, and their support is given by the interval x ∈ [−1, 1], where x measures the
fraction of the collinear lepton momentum that enters the hard interaction, relative to the
external momentum p (the momentum fraction x is in fact carried by both lepton flavours,
as a consequence of translation invariance).4 As the anti-lepton distribution in a lepton only
starts at O(α2

em), it is not relevant for the resummation of the double logarithms that we
envisage in section 4. We can therefore restrict the longitudinal integrations to the interval
[0, 1] for this discussion later on.

The hard function H(xys) in the first term of (3.10) can be determined in a QED →
SCET-1 matching calculation. Despite matching a 2→ 2 scattering amplitude, the specific
kinematics of the process fixes the argument of the hard function to a single variable
xys. In practice the matching is most conveniently performed on-shell in dimensional
regularization, setting all IR scales to zero along with pµ → x

√
s nµ−/2 and p̄µ → y

√
s nµ+/2.

When working in dimensional regularization, the operator basis needs to be extended by
evanescent operators, but once again this complication is irrelevant for the resummation of
the leading double logarithms and can therefore be disregarded in our analysis in section 4.

As usual in an effective-field-theory treatment, the IR divergences of the hard function
must match the UV divergences of the collinear functions defined above. But since the
considered scattering amplitude is IR-divergent by itself — see (2.13) — the hard function
contains an additional source of IR divergences that is not captured by those functions. We
already discussed the physics of these IR divergences in section 2.2; they are associated
with another form of soft momentum modes that do not scale with m�

√
s, but rather

with the experimental resolution energy Eγ � m. As the corresponding soft function is
4For x ≥ 0 one considers the situation that an electron with momentum fraction x inside the initial-state

electron is absorbed at the origin, and a muon with the same momentum fraction is emitted back at the
point τn+ into the final-state muon. For x ≤ 0 one considers the situation that a positron with momentum
fraction (−x) is emitted at the origin into the final state (where it recombines with an initial-state electron),
and an anti-muon with the same momentum fraction (generated by pair creation from the initial state) is
absorbed at the point τn+.

– 15 –



J
H
E
P
0
9
(
2
0
2
2
)
1
8
3

Figure 3. Exchange of two virtual soft leptons at the one-loop level.

scaleless to all orders in perturbation theory in our setup, we refrain from including it in
the factorization theorem (3.10) for clarity. We nevertheless explicitly show in appendix A
that the UV divergences of this soft function match the remnant IR singularities of the
hard function at one-loop order, as they should in a consistent effective-theory description.

The helicity structure of the process furthermore implies that the factorization theorem
for the form factor F1(λ) contains an even number of helicity-flipping functions, whereas
the one for the form factor F2(λ) contains an odd number. The hard function is, moreover,
normalized to H(xys) = 1 at tree level in our conventions, and the helicity-conserving
functions evaluate to fc(x) = δ(1 − x) and fc̄(y) = δ(1 − y) at this order, whereas the
helicity-flipping ones are only non-zero at the loop level. The first term in the factorization
theorem (3.10) therefore reproduces the tree-level result F1(λ) = 1.

Second term. The second contribution to the factorization theorem (3.10) is more subtle.
It arises from the exchange of two virtual soft leptons and starts only at the one-loop
level, as illustrated in figure 3. Here, for example, the collinear electron in the initial state
turns into an anti-collinear electron not through the exchange of a hard photon, but rather
through two consecutive exchanges of a hard-collinear and an anti-hard-collinear photon,
allowing the virtual electron to become soft. We note that other one-loop graphs that
involve soft lepton configurations are power-suppressed, and only the particular ladder-type
diagram with two soft-lepton propagators contributes at leading power.

In SCET-1 the soft contribution to the scattering amplitude can be written as the
matrix element of a time-ordered product that involves subleading Lagrangian insertions

L(1/2)
ξq (x) = χ̄

(`)
hc (x) /A⊥hc(x)ψ(`)

s (x−) , (3.13)

which couples a soft lepton to a hard-collinear lepton and photon. Here

A⊥,µhc = e

[
A⊥,µhc −

i∂⊥,µn+Ahc
in+∂

]
(3.14)

denotes the usual gauge-invariant building block for perpendicular hard-collinear photon
fields. For a consistent expansion in the power-counting parameter λ, the soft fields must be
multipole expanded in interactions with hard-collinear fields, which is the reason why the soft
lepton field only depends on xµ− ≡ (n+x)nµ−/2. Similar expressions with xµ+ ≡ (n−x)nµ+/2
hold for interactions of soft fields with anti-hard-collinear fields. We will see, however,
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shortly that the multipole expansion is subtle for the considered process, because of the
specific kinematic configurations of backward scattering.

In order to describe the soft contribution to the scattering amplitude we thus start
from the SCET-1 operator

O2 = T

{
iL(1/2)

ξ̄q
(0), i

∫
ddx1 L(1/2)

qξ̄
(x1), i

∫
ddx2 L(1/2)

ξq (x2), i
∫
ddx3 L(1/2)

qξ (x3)
}
,

(3.15)

which after decoupling the soft photons from the hard-collinear and anti-hard-collinear
fields with suitable field redefinitions factorizes into

O2 =
∫
ddx1

∫
ddx2

∫
ddx3 T

{[
χ̄

(e)
h̄c

/A⊥h̄c
]α

(0)
[
/A⊥h̄cχ

(µ)
h̄c

]β
(x1)

}
(3.16)

× T
{[
χ̄

(µ)
hc

/A⊥hc
]γ

(x2 + x3)
[
/A⊥hcχ

(e)
hc

]δ
(x3)

}
× T

{[
S†n+ψ

(e)
s

]α
(0)

[
ψ̄(µ)
s S̄n+

]β
(x1+)

[
S†n−ψ

(µ)
s

]γ
(x2− + x3)

[
ψ̄(e)
s S̄n−

]δ
(x3)

}
,

where we have made the spinor indices (α, β, γ, δ) explicit. We furthermore shifted one of the
integration variables, and distinguished between soft Wilson lines associated with incoming
particles (denoted by S̄n) and outgoing particles (denoted by S†n). Their precise definition
can be found in appendix A. Notice that despite appearance all the soft fields in (3.16)
have been multipole-expanded, where the reference point for the multipole expansion is
x = 0 in the anti-hard-collinear direction but x = x3 in the hard-collinear direction. As
the relevant forward matrix element of the hard-collinear operator in the second line is
translation invariant, one can shift the hard-collinear fields to the spacetime points x2
and 0, respectively, to obtain a structure that is similar to the one in the first line. The
coordinates x1 and x2 therefore scale inversely to an anti-hard-collinear and a hard-collinear
momentum, respectively, whereas the coordinate x3 scales inversely to a soft momentum.
This is a consequence of the specific kinematics of backward scattering, in which both
virtual leptons in figure 3 can only become soft simultaneously when the difference of the
two (anti-) hard-collinear external momenta scales as a soft momentum.5

It may seem surprising that an operator with four insertions of a power-suppressed
interaction can give a leading-power contribution, in particular since the operator O1
in (3.11) only involves leading-twist projections. By applying the SCET-1 power-counting
rules described at the beginning of this section, one finds that O1 ∼ λ2, whereas O2 ∼ λ2

precisely since the spacetime point x3 scales inversely to a soft momentum, which yields
the necessary enhancement. In the following we refer to this phenomenon as the soft-
enhancement mechanism.

In the next step one integrates out the hard-collinear and anti-hard-collinear fluctuations
and matches the intermediate theory SCET-1 onto the final theory SCET-2, in which the

5A different situation arises in the limit in which all kinematic invariants are large compared to the
electron mass, i.e. s, |t|, |u| � m2. In that case, as has been shown in [42] for Bhabha scattering, large
logarithms in the ratio of the electron mass and the center-of-mass energy can be multiplicatively factorized
using SCET methods in a straight-forward manner.
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collinear, soft and anti-collinear sectors are decoupled. The corresponding matching relation
for the forward matrix element of the hard-collinear operator in the second line of (3.16) reads
〈
µ− (p)

∣∣T [χ̄(µ)
hc

/A⊥hc
]γ

(x2)
[
/A⊥hcχ

(e)
hc

]δ
(0)

∣∣e− (p)
〉

=

2ie2
∫

ddk

(2π)d
eikx2

∫
dx

Jhc ((n−k)x (n+p))
− (n−k)x (n+p)

×

fc (x)
[
ū

(µ)
ξ

/n+
2 PRu

(e)
ξ

] [
/n−
2 PR

]δγ
+ f̃c (x)

[
ū

(µ)
ξ

/n+
2 PLu

(e)
ξ

] [
/n−
2 PR

]δγ
+ (R↔ L)

 ,

(3.17)

where we rearranged the collinear spinors with the help of a Fierz transformation. The
matching relation shows that the second term in the factorization theorem can be expressed
in terms of the same collinear functions fc(x) and f̃c(x) defined in (3.12), which are,
however, in this case convoluted with a non-trivial hard-collinear matching coefficient. This
jet function, which we normalized to Jhc

(
x(n+p)(n−k)

)
= 1 at tree level, only depends on

the light-cone component n−k ∼ λ. In complete analogy one then parametrizes the forward
matrix element of the anti-hard-collinear operator.

We finally turn to the vacuum matrix element of the soft operator in the last line
of (3.16). The most general parametrization of this matrix element with four open spinor
indices is rather involved. After contraction with the hard-collinear matrix elements,
however, only two soft functions contribute to the backward-scattering amplitude at leading
power. One is helicity conserving,

S (ρ,ω) =

−i e
2

8π2

∫
d(n−x1)

∫
d(n+x2) e+ i

2ρ(n+x2) e−
i
2ω(n−x1)

∫
ddx3 (3.18)

×
〈
0
∣∣T [ψ̄(µ)

s S̄n+

]
(x1+)

/n+
2 PR(L)

[
S†n+

ψ(e)
s

]
(0)
[
ψ̄(e)
s S̄n−

]
(x3)

/n−
2 PR(L)

[
S†n−

ψ(µ)
s

]
(x2−+x3)

∣∣0〉,
and one is helicity flipping,

S̃ (ρ,ω) =

−i e
2

8π2

∫
d(n−x1)

∫
d(n+x2) e+ i

2ρ(n+x2) e−
i
2ω(n−x1)

∫
ddx3 (3.19)

×
〈
0
∣∣T [ψ̄(µ)

s S̄n+

]
(x1+)

/n+
2 PR(L)

[
S†n+

ψ(e)
s

]
(0)
[
ψ̄(e)
s S̄n−

]
(x3)

/n−
2 PL(R)

[
S†n−

ψ(µ)
s

]
(x2−+x3)

∣∣0〉.
One may think that the soft functions can only depend on the product ρω because of boost
invariance, but the rapidity regulator that is needed in endpoint-divergent convolutions
to make the soft integrals well-defined breaks this symmetry, and they should therefore
be considered as functions of two independent variables (see also (3.24) for the explicit
expressions of the soft functions at leading order). As the soft contribution to the form
factors only starts at O(αem), we furthermore found it convenient to absorb a factor e2 into
the definition of the soft functions.
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Our results for the soft contribution to the form factors can finally be expressed in terms
of a four-fold convolution over the variables (x, y, ρ, ω). When performing these convolutions,
one has to carefully restore the i0-prescriptions in the various denominators, which yields
the discontinuity of the soft functions, as we will show explicitly in the one-loop calculation
below. Starting at the two-loop level, the soft functions are in fact not IR-finite, because
of soft singularities associated with modes of energy Eγ � m. As these IR-divergences
are expected to factorize from the entire scattering amplitude, they must also be present
in the second term of the factorization theorem. We finally remark that — with minor
modifications in the definitions of the collinear and soft functions — the bare factorization
formula also holds for non-equal lepton masses or for a sufficiently small but non-zero
scattering angle.

3.3 Endpoint-divergent convolutions

Although the relevant scales in the process seem to be completely disentangled in the bare
factorization theorem (3.10), it cannot be used to resum the logarithmic corrections to all
orders with renormalization-group techniques. As we will explicitly show in this section by
computing all ingredients that are required at the NLO level, the various convolutions give
rise to divergences in the dimensional regulator ε and the rapidity regulator α, which spoil the
renormalization program. While our prior interest consists in making this problem explicit,
we will also clarify in the following which ingredients are needed in the double-logarithmic
approximation that we will address in detail in section 4. Throughout this section, we
employ the notation we introduced earlier, writing F1(λ) = ∑∞

n=0
(αem

2π
)n
F

(n)
1 (λ) etc.

First term. We start with the hard contribution to the form factor, which evaluates to
F

(0)
1 (λ) = 1 at tree level. As we have seen in the method-of-regions analysis in section 3.1,

the IR divergences of the hard loops are regularized in dimensional regularization, and we
may therefore perform the corresponding QED → SCET-1 matching calculation without
an additional rapidity regulator. Since the hard function is a single-scale object, radiative
corrections can then only generate powers of (xys)−ε at each loop order, which should
not be expanded in the dimensional regulator, since the convolution integrals are — as
we will see shortly — in general endpoint-divergent in the limits x → 0 and y → 0. By
properly factoring out this piece, but expanding the remaining functions in ε, we find that
the one-loop contribution to the bare hard-coefficient function is given by

H(1) (xys) =
(
µ2

xys

)ε [ 1
ε2

+ 2πi
ε
− 1
ε
− 13π2

12 − 4− 2n`
3ε −

10n`
9

]
, (3.20)

which refers to a specific definition of evanescent operators, but the first two terms in the
square bracket are scheme-independent. Similar to the full-theory calculation discussed
in section 2.2, the double pole in ε can again be extracted purely from the ladder-type
diagram in Feynman gauge.

We next consider the collinear matrix elements, defined in (3.12), which evaluate to
f

(0)
c (x) = δ(1− x) and f̃ (0)

c (x) = 0 at tree level. As the tree-level distributions vanish at the
endpoint x→ 0, their convolution with the hard function is endpoint-finite to all orders in
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Figure 4. Radiative corrections to the collinear matrix element (3.12) at O(αem).

perturbation theory. We will show next, however, that the one-loop matrix elements do not
vanish as x→ 0, which leads to endpoint-divergent convolution integrals. Specifically, the
endpoint divergences manifest themselves in the form

∫ 1
0 dxx

−1−nε−α in the convolution
with the n-loop hard function, i.e. they produce a pole in the dimensional regulator ε at n
loops, but they require the rapidity regulator α for the convolution with the tree-level hard
function for n = 0.

The relevant Feynman diagrams for the calculation of the collinear functions fc(x)
and f̃c(x) at O(αem) are shown in figure 4. In our calculation we implement the rapidity
regulator in the symmetric form (3.4), which ensures that the corresponding anti-collinear
functions are given by the same expressions with x→ y and n+p→ n−p̄. Accounting for
the renormalization factors of the lepton fields, we find

f (1)
c (x) =

(
µ2eγE

m2

)ε (
ν

n+p

)α
Γ (ε)

{
δ (1− x)

(1
ε

+ 1
2 +O (ε, α)

)

+ θ (x) θ (1− x) (1− ε) 1 + x2 − ε (1− x)2

xα (1− x)1+2ε

}
,

f̃ (1)
c (x) =

(
µ2eγE

m2

)ε (
ν

n+p

)α
θ (x) θ (1− x) Γ (1 + ε) (1− ε) x−α (1− x)1−2ε , (3.21)

where we kept the exact dependence on both regulators ε and α, except in the delta-function
term, whose convolution with the hard function is uncritical. In the limit x→ 0, we thus
observe that the collinear functions do not vanish anymore,

f (1)
c (x→ 0) =

(
µ2eγE

m2

)ε (
ν

n+p

)α
Γ (ε) (1− ε)2 x−α ,

f̃ (1)
c (x→ 0) =

(
µ2eγE

m2

)ε (
ν

n+p

)α
Γ (1 + ε) (1− ε) x−α , (3.22)

which produces endpoint divergences in the convolution with the hard function as argued
above. Interestingly, the endpoint behaviour of the collinear functions is — in Feynman
gauge — again entirely captured by the “ladder-type” diagram in the right panel of figure 4,
whereas the contributions from the Wilson-line diagrams vanish linearly as x→ 0. Notice
also that the helicity-conserving function fc(x) is UV-divergent, and it hence contributes in
the double-logarithmic approximation, whereas the helicity-flipping function f̃c(x) is not.
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We already emphasized that one should not expand the bare collinear functions in the
various regulators before performing the convolution with the hard function, but let us for
the moment nevertheless do so to cross-check our results. Setting the rapidity regulator to
zero, and expanding the expression (3.21) in plus-distributions, we obtain

f (1)
c (x) = 1

ε

[
1 + x2

1− x

]
+

+O
(
ε0
)
, (3.23)

and we thus recover the one-loop quark-to-quark splitting kernel, as expected for a forward
GPD. In contrast to standard applications of GPDs, we consider here, however, moments
that are divergent in the limit x→ 0, which prevents one from renormalizing these objects
in the standard sense.

Second term. As the soft contribution to the form factor starts as O(αem), we need
to evaluate the respective ingredients only at tree level to the considered NLO accuracy.
Starting from the definitions in (3.18) and (3.19), we find for the tree-level soft functions

S(1) (ρ, ω) = 1
2πi

(
µ2eγE

m2 − ρω − i0

)ε (
ν

ρ+ ω − i0

)α
Γ (ε) (1− ε) ,

S̃(1) (ρ, ω) = 1
2πi

(
µ2eγE

m2 − ρω − i0

)ε (
ν

ρ+ ω − i0

)α
Γ (1 + ε) m2

m2 − ρω − i0 . (3.24)

With the explicit results at hand, we can now illustrate how the discontinuities of the soft
functions arise in the convolution integrals. To this end, we restore the i0-prescription in
the tree-level hard-collinear propagators, which yields∫

dρ

ρ− i0

∫
dω

ω − i0 S(1) (ρ, ω)

= 1− ε
Γ (1− ε)

∫ ∞
0

dρ

ρ

∫ ∞
0

dω

ω
θ
(
ρω −m2

)( µ2eγE

ρω −m2

)ε (
ν

ρ+ ω

)α
, (3.25)

where we have used that the soft function has a branch cut in the lower half-plane of the
complex variable ρ only for ω > 0. We emphasize that the analytic properties of the chosen
rapidity regulator in (3.4) are crucial at this step. We thus obtain a non-zero contribution
to the double convolution from the discontinuity

Disc
(
m2 − ρω

)−ε
=
(
m2 − ρω − i0

)−ε
−
(
m2 − ρω + i0

)−ε
,

which implies ρω > m2, but in general radiative corrections will also induce a second branch
with ρω < m2 and ρ, ω > 0 (see appendix B).

The convolution integrals are most easily evaluated by splitting the phase space into
two regions with ρ > ω and ρ < ω. As the rapidity regulator (3.4) preserves the nµ− ↔ nµ+
symmetry, both regions yield identical contributions, and we furthermore find it convenient
to introduce the variables u = ρω and v = ρ+ ω to simplify the subsequent calculation. We
then find that both of these integrations are endpoint-divergent; the limit u→∞ produces
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a 1/ε pole and the limit v →∞ a 1/α pole. We also note in passing that the soft integrals
would be scaleless if we had chosen the alternative regulator να/(n+k − i0)α, but in this
case the calculation of the anti-collinear functions would have been more complicated. This
is similar to what we have seen in the method-of-regions analysis in section 3.1.

The double-logarithmic approximation. We now have assembled all pieces to illus-
trate how the double logarithms are generated at the one-loop order in the effective-theory
formulation. Our calculation, of course, should not only reproduce the double logarithms,
but the full NLO result from (2.13), but to prove this would require a more sophisticated
treatment of evanescent operators, which we do not pursue here.

Starting from the bare factorization theorem (3.10), the one-loop contribution to the
form factor F1(λ) becomes

F
(1)
1 (λ) = H(1) (s) + 2

∫
dx

x
f (1)
c (x) +

∫
dρ

ρ− i0

∫
dω

ω − i0 S(1) (ρ, ω) (3.26)

' 1
ε2

(
µ2

s

)ε
− 2
αε

(
µ2

m2

)ε (
ν√
s

)α
+
{ 2
αε
− 1
ε2

}(
µ2

m2

)ε (
ν

m

)α
= 1

2 ln2 λ2 ,

where we have approximated (n+p) = (n−p̄) ≈
√
s at leading power. We thus reproduce the

double-logarithmic correction of the NLO result in (2.13), but is interesting to note how the
double logarithms are generated in the effective theory from a peculiar interplay between the
various regions. While the pattern is the same as for the scalar integral that we discussed in
section 3.1, we appreciate now that they do so via endpoint-divergent convolution integrals.

While there seems to be no gain in rederiving the one-loop logarithms via the effective-
field-theory formulation, it will be critical for resumming the logarithmic corrections to
all orders, as we will show in the following section. In particular, the double-logarithmic
approximation — which for this particular example is known for more than 50 years —
provides in our opinion a prime example for studying the physics of endpoint singularities in
SCET. On the double-logarithmic level, the factorization theorem (3.10) in fact simplifies
tremendously, since one can immediately drop all helicity-flipping functions, constrain the
integration boundaries of the variables x and y to the unit interval, and disregard the
contributions from evanescent operators. If in addition we switch to the alternative regulator
να/(n+k − i0)α that makes all moments of the soft function scaleless to all orders, we see
that the double logarithms are captured by a surprisingly simple and minimal structure,

F1(λ) '
∫ 1

0

dx

x

∫ 1

0

dy

y
H(xys) fc(x) fc̄(y) , (3.27)

where the anti-collinear function is, of course, no longer given by the expressions from above,
due to the different choice of the rapidity regulator. We thus obtain a factorization theorem
that involves two leading-twist collinear functions that are convoluted with a hard-coefficient
function that depends only on the product of the convolution variables. The structure
looks completely harmless, since all interactions and all twist projections are performed at
leading power. Nevertheless, and somewhat against the common lore, the convolutions are
endpoint-singular in the limits x→ 0 and y → 0 in a complicated way.
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We believe that the key ingredient, which distinguishes the current process from other
examples with endpoint divergences in SCET that were studied recently (see e.g. [17, 19, 22]),
is the two-fold convolution in the hard-scattering term, which contains products of endpoint-
divergent moments. We will perform a detailed comparison of the present QED process
with the bottom-induced h→ γγ decay in section 5, but we think that the structure we are
seeing in (3.27) is more general, and applies in a similar fashion to more complicated hard-
exclusive processes in QCD, like exclusive heavy-to-light B-meson decays, which involve
endpoint-divergent convolutions of both heavy- and light-meson light-cone distribution
amplitudes with a perturbative hard-scattering kernel. In contrast to these examples,
however, the current QED backward-scattering process is, of course, much simpler and it is
in some sense a well-defined perturbative playground for studying non-trivial aspects of
soft-collinear factorization.

4 Resummation of double logarithms

In the previous section we saw that the convolution integrals in the factorization theo-
rem (3.10) are divergent in the limits x, y → 0 and ρ, ω →∞ at NLO, which prevents one
from renormalizing the bare quantities prior to performing the convolutions. In particular,
the explicit calculation in (3.26) illustrates that the convolutions in the first term produce
a 1/α pole that cancels against a similar contribution from the convolutions in the second
term. For this cancellation to happen, the two terms must describe the same physics in the
endpoint region of the respective convolutions. In this section we will show that the collinear
functions can indeed be refactorized in the limit x→ 0 in terms of the very same jet and
soft functions that appear in the second term. While this idea of endpoint refactorization
seems to be crucial for dealing with endpoint-divergent convolutions in SCET [17, 19, 22],
it was first introduced by one of us in [26] in the context of exclusive B-meson decays. The
refactorization conditions in conjunction with the simplistic structure of the factorization
theorem (3.27) in the presence of the asymmetric rapidity regulator furthermore allow
us to resum the double-logarithmic corrections to all orders using consistency relations.
Interestingly, we will find that this resummation that yields the well-known Bessel function
from (2.28) proceeds via an infinite tower of collinear-anomaly exponents.

4.1 Refactorization of collinear matrix elements

Endpoint-divergent moments of the collinear functions fc(x) and f̃c(x) signal a sensitivity to
unnaturally small light-cone components of the collinear momenta, which invalidates their
power counting n+k = x

√
s = O(

√
s). As argued before, the physics in the endpoint region

must reflect the asymptotic contribution of the second term in the factorization theorem,
and one should therefore count x = O(λ) in the endpoint region, while keeping the virtuality
k2 = O(m2) fixed. In other words, the backward-scattering amplitude receives two different
types of contributions: one for generic x = O(1) for which the standard hard-scattering
picture applies, and one for x = O(λ) for which the collinear functions become multi-scale
objects and must be refactorized.
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Figure 5. Refactorization of the endpoint contribution to the collinear functions at O(αem).

In the explicit NLO calculation from section 3.3, we found that the dominant endpoint
contribution to the collinear functions is entirely captured in Feynman gauge by the last
diagram in figure 4. In the endpoint region with x = O(λ), this diagram can be refactorized
in the form illustrated in figure 5. The goal of the present section consists in deriving the
precise form of this refactorization condition, and in proving that the same jet and soft
functions that were defined in section 3.2 arise in this context. To this end, we proceed in
close analogy to the discussion of the soft contribution to the factorization theorem from
the previous section. Specifically, we reconsider the collinear matrix element in the limit
x→ 0 in SCET-1, where the endpoint configuration is produced via subleading Lagrangian
insertions, similar to the mechanism shown in figure 3,∫
dτ e−ixτn+p

〈
µ−(p)

∣∣ χ̄(µ)
c (τn+)

/n+
2 PRχ

(e)
c (0)

∣∣e−(p)
〉 x→0−−−→∫

dτ e−ixτn+p

〈
µ−(p)

∣∣T{[ψ̄(µ)
s S̄n+

]
(τn+)

/n+
2 PR

[
S†n+ψ

(e)
s

]
(0), i

∫
ddx1L(1/2)

qξ (x1), i
∫
ddx2L(1/2)

ξq (x2)
}∣∣e−(p)

〉
.

(4.1)

By following exactly the same steps that were used in the previous section, one finds that
the endpoint contribution to the collinear functions can be refactorized in the form6

fc(x→ 0) =
∫
dx′

x′

∫
dρ

ρ
Jhc
(
ρx′(n+p)

) [
fc(x′)S

(
ρ, x(n+p)

)
+ f̃c(x′) S̃

(
ρ, x(n+p)

)]
,

f̃c(x→ 0) =
∫
dx′

x′

∫
dρ

ρ
Jhc
(
ρx′(n+p)

) [
f̃c(x′)S

(
ρ, x(n+p)

)
+ fc(x′) S̃

(
ρ, x(n+p)

)]
,

(4.2)

which holds for the bare functions, up to contributions which vanish at least linearly in
the limit x→ 0. We recall that a Fierz transformation was applied in the derivations in
section 3.2, and the refactorization conditions are therefore in general modified by evanescent
operators, which we do not include in this work. Analogous expressions can be derived for
the anti-collinear functions fc̄(y) and f̃c̄(y) in the limit y → 0.

6There is a subtle point hidden in our notation, namely the soft functions inherit the rapidity regulator
that has been expanded for n+k � n−k in the collinear region, and it therefore does not correspond to the
one that is implied by the definition of the soft functions in (3.18) and (3.19). But apart from this point,
one obtains exactly the same functions and we decided not to introduce a new notation for these objects.
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The above refactorization conditions, which are a key result of our paper, have an
interesting structure. First of all, they can be diagonalized by switching from the helicity
basis to the vector- and axial-vector currents. More importantly, one observes that the same
collinear functions that are being refactorized in the limit x→ 0 appear on the right-hand
side of these equations within a two-fold convolution, and the relations should therefore
be considered as implicit formulae for the collinear functions. As the soft functions start
as O(αem), the collinear functions on the right-hand side enter, however, at lower order
in perturbation theory than on the left-hand side of the equations. But even worse, the
convolutions in the variables x′ and ρ turn out to be endpoint-divergent — they in fact involve
the same divergent moments of fc(x′) — and the various functions must therefore again be
supplemented by the rapidity regulator. The problem of endpoint-divergent convolutions
thus repeats itself on the level of the refactorization conditions. We will see below that the
consistency of the effective-theory formulation requires this iterative structure.

Focusing again on the double-logarithmic contributions, the refactorization conditions
take a simpler form,

fc(x→ 0) '
∫
dx′

x′
fc(x′)

∫
dρ

ρ
Jhc
(
ρx′(n+p)

)
S
(
ρ, x(n+p)

)
, (4.3)

which is the one that was anticipated in [26]. Subtracting the asymptotic limit x→ 0 from
the collinear function fc(x) thus amounts to a convolution,

fc(x)− fc(x→ 0) '
∫
dx′

x′
fc(x′)

{
x δ(x− x′)−

∫
dρ

ρ
Jhc
(
ρx′(n+p)

)
S
(
ρ, x(n+p)

)}
.

(4.4)

This relation can formally be solved for fc(x), which leads to an infinite sum of nested
convolutions of the soft and jet functions as discussed in [26]. While such a representation
may not be particularly illuminating, the structure of the refactorization condition (4.3)
has several important implications:

• On dimensional grounds, the jet function can only depend on powers of
(
ρx′(n+p)

)−ε
at each loop order, similar to what we have seen for the hard function in section 3.3.
As the soft function is a boost-invariant object, it can only depend on the product of
the arguments ρx(n+p) (modulo terms associated with the rapidity regulator, which
are irrelevant for this aspect). One can therefore rescale the convolution variable ρ in
a way to move the x-dependence of the soft function into the jet function. The upshot
is that the collinear functions receive positive powers of xε through hard-collinear
loops in the refactorization formula, starting at two loops. Hence, in the convolution
with the n-loop hard function, the moment

〈
x−1−nε〉

fc
≡
∫ 1

0
dxx−1−nε fc(x) (4.5)

generates rapidity divergences for every n, since the positive powers of xε inherent in
fc(x) can cancel the x−nε at a certain order. More precisely, the one-loop collinear
function produces a rapidity divergence in the convolution with the tree-level hard
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function as we have seen explicitly in section 3.3, the two-loop collinear function
does so in the convolution with the one-loop and tree-level hard function, etc. The
very structure that all moments 〈x−1−nε〉fc generate rapidity divergences starting at
O(αn+1

em ) will be important for the resummation of the double-logarithmic contributions
in the following section.

• As the convolutions in x′ and ρ are in general endpoint-divergent, both functions fc(x′)
and S

(
ρ, x(n+p)

)
must be evaluated with the rapidity regulator α in place. We argued

in section 3.2, however, that the collinear functions are particular manifestations of
GPDs, which are, of course, finite in the limit α→ 0. In other words, moments of the
collinear functions suffer from rapidity divergences, but not the collinear functions
themselves. This in turn implies that the rapidity divergences associated with the x′-
and ρ-convolutions must cancel against each other within the refactorization formula.
By the usual collinear-anomaly argument [43, 44] this cancellation then generates a
large rapidity logarithm,

1
α

+ ln
(

ν

n+p

)
− 1
α
− ln

(
ν

x(n+p)

)
= ln x . (4.6)

We thus expect that the collinear functions have a logarithmic dependence on x in the
endpoint region, even for finite values of the dimensional regulator, i.e. when terms
like xε are not expanded in the limit ε → 0. These logarithms first show up at the
two-loop order, and they are borne out by an explicit two-loop calculation of the
scalar integrals (2.25) in [26].

While these comments are somewhat technical, they should become clearer in the following
sections, and they are also illustrated by an explicit “higher-loop” calculation in appendix B.
We close this section with a remark that may have confused the careful reader. Namely one
may wonder if the soft functions in the refactorization formulae can be made scaleless by
a suitable choice of the rapidity regulator, and in this way the collinear functions would
simply vanish at the endpoint x → 0 at each loop order. This is, unfortunately, not
possible since the soft functions themselves are not scaleless, see e.g. (3.24), but only their
double moments if the asymmetric regulator is applied. The refactorization conditions in
contrast only involve single moments of the soft functions, which are not scaleless in any
regularization scheme.

4.2 Resummation using consistency relations

In this section we will show how the double logarithms that we derived earlier in section 2.3
with diagrammatic methods are reproduced in the effective theory. As the factorization
theorem (3.10) only holds for bare quantities, we cannot use renormalization-group tech-
niques for this purpose. Instead we will exploit the simplified version of the factorization
theorem (3.27), which captures the full information on the double-logarithmic contributions
in a scheme with an asymmetric rapidity regulator να/(n+k − i0)α. We will then resum
the double-logarithmic contributions using three ingredients: (i) consistency, which requires
that the poles in the various regulators cancel on the level of the form factor; (ii) scale
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separation, which ties the characteristic logarithms for each function to these poles; (iii)
the refactorization condition (4.3), which provides another non-trivial input as we will
see below.

On the double-logarithmic level one can safely neglect all effects associated with the
running of the coupling, and we can hence work with a vanishing beta function. This
implies that in d = 4− 2ε spacetime dimensions the dimensionless coupling αem(µ) ≡ αem
depends on the scale µ only trivially through dαem/d lnµ = −2εαem. We then rewrite the
bare factorization theorem in the form

F1 (λ) '
∫ 1

0

dx

x
fc

(
x; µ
m
,
ν√
s

)∫ 1

0

dy

y
fc̄

(
y; µ
m
,
ν
√
s

m2

)
H

(
µ2

xys

)
, (4.7)

where we have made the dependence on all dimensionless scale ratios explicit. As we work
with bare unexpanded quantities, this dependence is of the form (µ/m)ε and (ν/

√
s)α etc,

see e.g. (3.20) and (3.21) for explicit expressions of the one-loop hard and collinear functions.
We re-emphasize that these are still the bare quantities, which formally do not depend on the
renormalization scale µ, but in our notation we want to track the logarithms associated with
each function that are generated once the expansion in the various regulators is performed.

We now insert the perturbative expansion of the hard function

H

(
µ2

xys

)
=
∞∑
n=0

(
αem
2π

)n( µ2

xys

)nε {
h(n)

ε2n
+O

( 1
ε2n−1

)}
, (4.8)

where h(0) = 1 and we only kept the highest pole in ε at each loop order in accordance with
the double-logarithmic approximation. Defining zh = αem

2π
1
ε2
(µ2

s

)ε, we obtain

F1 (λ) '
∞∑
n=0

znh h
(n) 〈x−1−nε〉

fc

(
µ

m
,
ν√
s

) 〈
y−1−nε〉

fc̄

(
µ

m
,
ν
√
s

m2

)
(4.9)

in terms of the moments that we introduced in (4.5), and we have made the scale dependence
of these moments explicit. The moments are in general endpoint-divergent, and they generate
poles in the dimensional regulator ε and the rapidity regulator α.

We first focus on the cancellation of the rapidity divergences, which turn out to have a
very specific structure. First of all, the hard function is free from any rapidity divergences,
which are entirely encoded in the collinear and anti-collinear moments, as indicated by their
dependence on the rapidity scale ν. As argued towards the end of the previous section,
these moments generate rapidity divergences for any value of n. These 1/α poles, together
with the respective dependence on the rapidity scale ν, must cancel for arbitrary values of ε,
i.e. without expanding in the dimensional regulator. Interestingly, this cancellation happens
not only for the sum of all contributions, but for each term in the sum individually. The
reason is that the moments, which depend on powers of (µ/m)ε, cannot compensate for the
powers of sε in zh, which forbids a cross-talk between the various contributions. The rapidity
divergences must therefore cancel in the product of a collinear and an anti-collinear moment
for each fixed value of n. One can then use the standard collinear-anomaly argument to
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show that the rapidity logarithms associated with the 1/α poles exponentiate [43, 44],

〈
x−1−nε〉

fc

(
µ

m
,
ν√
s

) 〈
y−1−nε〉

fc̄

(
µ

m
,
ν
√
s

m2

)
= rn (µ/m)×

(
m2

s

)Fn(µ/m)

, (4.10)

where Fn(µ/m) is called a collinear-anomaly exponent and rn(µ/m) a remainder function.
The right-hand side of this expression is manifestly independent of the rapidity scale ν,
and the respective bare quantities depend only on powers of (µ/m)ε, as indicated by
their arguments.

After inserting (4.10) into the expression for the form factor, we obtain an infinite
tower of collinear-anomaly exponents,

F1(λ) '
∞∑
n=0

znh h
(n) rn(µ/m)×

(
m2

s

)Fn(µ/m)

. (4.11)

We next turn to the cancellation of the 1/ε poles, which is more complicated, since it
happens only on the level of the sum of all contributions. To this end, we expand the
collinear-anomaly exponents and the remainder functions in ε, keeping again only the
highest poles in the double-logarithmic approximation. The refactorization condition (4.3)
provides an important constraint in this context, since it tells us that Fn(µ/m) = O(αn+1

em ),
as argued towards the end of section 4.1. We thus expand

rn(µ/m) =
∞∑
k=0

(
αem
2π

)k ( µ2

m2

)kε
r

(k)
n

ε2k
,

Fn (µ/m) =
∞∑

l=n+1

(
αem
2π

)l ( µ2

m2

)lε F (l)
n

ε2l−1 , (4.12)

where r(0)
n = 1 at tree level, since the moments trivially evaluate to unity in the convolution

with the delta function. Notice also that the power of the ε-divergences is reduced by one
unit for the anomaly exponents, since they are generated by an additional 1/α pole in the
loop calculations.

We finally determine the unknown coefficients h(n), r(k)
n and F (l)

n from the requirement
that the form factor F1(λ) is finite in the limit ε→ 0. Counting the free parameters and
the number of consistency relations at each perturbative order shows that this requirement
fixes all coefficients but one, which we choose to be h(1). Although the complete system of
equations is non-linear, all new coefficients at O(αnem) can be determined by solving linear
relations, once all coefficients up to O(αn−1

em ) are known. In this way the double-logarithmic
series can be constructed order-by-order. More precisely, one has 2n consistency relations
from pole cancellation, and (2 + 3n)/2 new parameters for even n, respectively (3 + 3n)/2
for odd n. This leaves one free parameter for n = 1, while the number of constraints
matches the number of coefficients for n = 2, 3. Interestingly, the system of linear equations
is over-determined for n ≥ 4. We then find that the coefficients in the expansion of the
hard function are given by h(n) = (h(1))n/(n!)2, and the bare hard function thus evaluates
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to a modified Bessel function in the given approximation,

H

(
µ2

xys

)
'
∞∑
n=0

(
αem
2π

)n( µ2

xys

)nε (
h(1)

)n
(n!)2 ε2n

= I0

2
√
αem
2π

h(1)

ε2

(
µ2

xys

)ε . (4.13)

We could not find closed expressions for the anomaly coefficients F (l)
n and the ones of the

remainder function r(k)
n . For the former, we find that the lowest-order terms are given by

F (1)
0 = −h(1), (4.14)

F (2)
0 = 1

2
(
h(1)

)2
, F (2)

1 = −1
2
(
h(1)

)2
,

F (3)
0 = − 7

12
(
h(1)

)3
, F (3)

1 = 2
3
(
h(1)

)3
, F (3)

2 = − 1
12
(
h(1)

)3
,

F (4)
0 = 127

144
(
h(1)

)4
, F (4)

1 = −15
16
(
h(1)

)4
, F (4)

2 = 1
16
(
h(1)

)4
, F (4)

3 = − 1
144

(
h(1)

)4
.

The remainder-function coefficients can, however, be related to the anomaly exponents via7

r(k)
n = −(n+ 1 + k) (n!)2

(h(1))n+1 F (n+1+k)
n , (4.15)

which we verified explicitly up to O(α14
em).

Inserting all coefficients back into (4.11), expanding first in the coupling αem and then
in the dimensional regulator ε, one recovers order-by-order the well-known Bessel function,

F1 (λ) '
I1
(
2
√

αem
2π h(1) ln2 λ2

)
√

αem
2π h(1) ln2 λ2

, (4.16)

which still depends on an unknown coefficient h(1). As usual, we thus need to determine
one coefficient from a one-loop calculation in order to resum the double logarithms to all
orders. This coefficient is likely related to the one-loop cusp anomalous dimension, and it
can be directly read off from the expression (3.20), which yields h(1) = 1 in our conventions.
We hence confirm the result (2.28) that we obtained earlier, but it is interesting to note
how the resummation is achieved within the effective theory from a non-trivial cancellation
of 1/α and 1/ε poles. In particular, we are not aware of any resummation in SCET-2 that
proceeds via an infinite tower of collinear-anomaly exponents.

4.3 Higher-order structure of fc(x→ 0)

The refactorization condition (4.3) for the collinear function fc(x) in the limit x→ 0 has
a similar structure as the factorization theorem (3.27) for the form factor F1(λ), and one

7If the rn(µ/m) and Fn(µ/m) are considered as functions of the variable zc = αem
2π

1
ε2

(
µ2

m2

)ε, we note
that these relations amount to a linear differential equation,

rn(zc) = −1
ε

(n!)2

(h(1))n+1znc

d

dzc
Fn(zc) .

.
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may therefore apply similar methods to study the higher-order structure of the asymptotic
function fc(x→ 0) relevant in the double-logarithmic approximation. In particular, this
analysis reveals that the consistency of the effective theory requires the two features that
we mentioned towards the end of section 4.1, i.e. the bare function fc(x → 0) generates
logarithms in ln x and positive powers of xε, starting at two-loop order. While this provides
interesting insights into the endpoint dynamics at higher orders, we stress that the results
from this section cannot be applied to calculate endpoint-divergent moments, since we take
the limit α→ 0 in the course of this discussion.

The refactorization formula (4.3) is indeed simply a copy of (3.27), with the anti-collinear
function replaced by the soft function and, consequently, the hard function replaced by the
jet function. One can thus cast the refactorization condition into a form that is similar to
the starting point (4.7) of the previous analysis,

fc (x→ 0)'
∫ 1

0

dx′

x′
fc

(
x′; µ

m
,
ν

n+p

)∫ ∞
0

dρ

ρ
DiscS

(
ρ,x(n+p) ; µ

m
,

ν

x(n+p)

)
Jhc

(
µ2

ρx′ (n+p)

)
,

(4.17)

where we have used the analyticity properties of the integrand in the complex ρ-plane to
rewrite the integrations in terms of the discontinuity of the soft function — see (3.25) —
and we remind the reader of the subtlety discussed in the footnote of section 4.1. It is also
easy to understand that the functional form of the jet function agrees with the one of the
hard function on the double-logarithmic level, as both functions are determined by the
same massless ladder-type loop integrals. We can thus immediately exploit (4.13) to derive
the all-order form of the jet function in the double-logarithmic approximation,

Jhc

(
µ2

ρx′ (n+p)

)
' I0

(
2
√
αem
2π

1
ε2

(
µ2

ρx′ (n+p)

)ε)
=
∞∑
n=0

(
αem
2π

)n( µ2

ρx′ (n+p)

)nε 1
(n!)2 ε2n

.

(4.18)

Due to boost invariance, the soft function can furthermore only depend on the product
ρx(n+p), up to terms that are associated with the rapidity regulator. It is therefore
convenient to introduce the dimensionless variable ρ̂ = ρx(n+p)/m2, as well as the moments

〈
ρ̂−1−nε〉

S

(
µ

m
,

ν

x (n+p)

)
≡
∫ ∞

0
dρ̂ ρ̂−1−nε DiscS

(
m2ρ̂

x (n+p)
, x(n+p);

µ

m
,

ν

x(n+p)

)
.

(4.19)

We are then in the position to write down the analogous relation to (4.9) for the collinear
function in the endpoint region,

fc (x→ 0) '
∞∑
n=0

znc
xnε

(n!)2
〈 (
x′
)−1−nε 〉

fc

(
µ

m
,
ν

n+p

) 〈
ρ̂−1−nε〉

S

(
µ

m
,

ν

x (n+p)

)
, (4.20)

where we introduced zc = αem
2π

1
ε2
( µ2

m2
)ε. We stress that the x-dependence of the soft moments

must be of the indicated form, since it is entirely induced by terms that violate boost
invariance, and it is therefore directly tied to the rapidity scale ν.
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Following the discussion from the previous section, we now first consider the cancellation
of the rapidity divergences, which must happen on the level of the collinear function itself,
since it is a well-defined GPD in d dimensions. Specifically, the finiteness of fc(x → 0)
in the limit α→ 0 requires that the soft moments in (4.19) are endpoint-divergent; they
in fact produce poles in the rapidity regulator for small arguments ρ̂ → 0, as discussed
in appendix B. By a similar argument as in the previous section, the 1/α poles must
furthermore again cancel for each term in the sum individually, since the moments cannot
compensate for the factors xnε. We thus obtain similar to (4.10)

〈 (
x′
)−1−nε 〉

fc

(
µ

m
,
ν

n+p

) 〈
ρ̂−1−nε〉

S

(
µ

m
,

ν

x (n+p)

)
= r̂n (µ/m)× xFn(µ/m) , (4.21)

where Fn(µ/m) are the same anomaly exponents that we discussed in the previous section,
since the relation involves the same moments of the collinear function fc(x), whereas the
remainder functions r̂n(µ/m) are new objects. The latter can be expanded in the form

r̂n(µ/m) =
∞∑
k=1

(
αem
2π

)k ( µ2

m2

)kε r̂
(k)
n

ε2k−1 , (4.22)

which differs from (4.12), since the soft moments only start at O(αem), and the new
remainder functions have one divergence less in the double-logarithmic approximation, since
the collinear function itself is yet to be integrated over x, which produces another divergence.

We finally need to determine the coefficients r̂(k)
n . In contrast to the form factor

F1(λ), we cannot invoke the strict pole cancellation argument here, since the bare collinear
function is not finite in the limit ε→ 0. We do know, however, that forward GPDs have a
single-logarithmic evolution, and the collinear function fc(x) can therefore only receive a
single pole in ε from each order in perturbation theory. This condition, together with the
lowest-order coefficients r̂(1)

n = 1/(n+ 1) that need to be determined by an explicit one-loop
calculation, then determines all r̂(k)

n . Plugging these coefficients back into (4.20) — without
performing an expansion in ε — then yields at one-loop order

f (1)
c (x→ 0) '

(
µ2

m2

)ε 1
ε
, (4.23)

in agreement with our previous findings in (3.22) in the given approximation with α→ 0.
At two loops we obtain

f (2)
c (x→ 0) '

(
µ2

m2

)2ε {
xε − 1

2ε3 − ln x
ε2

}
, (4.24)

which has precisely the features that we mentioned at the beginning of this section, but
we can now trace the origin of the factor xε and the logarithm ln x. While the former
arises in (4.20) from the loop expansion of the jet function, the latter is generated in (4.21)
through the collinear anomaly. The structure (4.24) has in fact been predicted by explicit
two-loop calculations; it can be read off e.g. from the leading terms in (8.26) of [26], as well
as from our higher-order analysis of the nested scalar integrals (2.26) in appendix B.
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It is now a straightforward task to construct the higher-order terms. The three- and
four-loop contributions read e.g.

f (3)
c (x→ 0) '

(
µ2

m2

)3ε {
x2ε − 14xε + 13

12ε5 + ln x
ε4

+ ln2 x

2ε3

}
, (4.25)

and

f (4)
c (x→ 0)'

(
µ2

m2

)4ε {
x3ε−15x2ε+339xε−325

144ε7 − (3xε+23)lnx
12ε6 − 3ln2x

4ε5 −
ln3x

6ε4

}
.

(4.26)

We do not aim to find a closed expression for the unexpanded bare function fc(x → 0).
However, once we expand in ε and focus on the leading UV poles, the asymptotic collinear
function itself becomes a modified Bessel function, which after restoring the tree-level
contribution δ(1− x) as well as the phase-space constraint θ(1− x) takes the form

fc (x→ 0)
∣∣
UV−div = δ (1− x) + θ (1− x) αem

2πε
I1
(
2
√

αem
2πε ln 1

x

)
√

αem
2πε ln 1

x

. (4.27)

We emphasize that this representation is not suited for calculating endpoint-divergent
moments, but it is nevertheless useful, since it provides another cross-check. The expres-
sion (4.27) can in fact be understood as the MS renormalization factor associated with
the one-loop quark-to-quark splitting kernel in the small-x limit, as can be verified by
performing a Mellin transform,∫ 1

0
dxxN−1fc (x→ 0)

∣∣
UV−div = exp

(
αem
2πε

1
N

)
, for N > 0 . (4.28)

We note that the small-x limit of fc(x) is determined by the singular behaviour at N = 0
in Mellin space.

5 Comparison to h→ (bb̄)∗ → γγ

In many respects the problem of muon-electron backward scattering studied in this article
appears very similar to the bottom-quark induced h → γγ decay, whose factorization
properties within SCET have been derived in a sequence of papers [17, 20, 21]. In that case
the form factor multiplying the leading one-loop amplitude can, at the double-logarithmic
level, be written as

Fb (z) = 2F2

(
1, 1; 3

2 , 2;−z/2
)

= 2
∞∑
n=0

n!
(2n+ 2)! (−2z)n , (5.1)

with z = αsCF
4π ln2 m2

b

M2
h
, which should be compared to the analogous approximation for

the form factor F1(λ) in (2.28). Both processes are described in SCET-2, and rapidity
divergences are caused by light but massive fermion propagators that overlap in the endpoint
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region between the (anti-)collinear and soft modes. Nevertheless, the structure of the bare
factorization formula in both situations turns out to be different. For the bottom-induced
h → γγ decay amplitude the bare factorization theorem takes the schematic form (the
precise form can be found in eq. (50) of [17])

H1〈γγ|O1|h〉+H2 ∗ 〈γγ|O2|h〉+H3 Jhc ∗ S ∗ Jh̄c , (5.2)

with the ∗ symbol indicating a convolution. For the comparison with the factorization
theorem of the muon-electron scattering amplitude in (3.10), the first term in (5.2) plays
only a minor role. The second term is a convolution of a collinear matrix element — which
is related to the leading-twist photon distribution amplitude φγ(x) — with a respective
hard-matching function H2(x). This convolution is endpoint-divergent as x→ 0. We note
that in the above equation this term arises from two identical contributions as a sum of
collinear as well as anti-collinear matrix elements, which requires using a symmetric rapidity
regulator. The corresponding term to compare with would be the first term fc ∗H ∗ fc̄ in
our factorization theorem, which contains endpoint-divergent convolutions of two collinear
functions in the limit x→ 0 and y → 0. The last term in (5.2) is a convolution of the soft
function with two hard-collinear jet functions, and should be compared with the second
term fc ∗ Jhc ∗ S ∗ Jh̄c ∗ fc̄ in our bare factorization theorem.

There is a simple physical argument that explains the main difference between the
two scenarios: the helicity suppression of the h→ γγ amplitude must be present in each
individual term in the factorization formula. Resolving the partonic structure of the
photon in terms of a collinear (bb̄) pair is a power-suppressed effect, 〈γγ|O2|h〉 ∼ mb �Mh.
Similarly, also the soft function must share the helicity suppression in the third term, S ∼ mb

(see e.g. (40) and (44) in [17]). The power-counting thus forbids two of these functions
to appear in a single term, which forces the bare factorization formula to be a sum of
endpoint-divergent moments. This is in contrast to the muon-electron scattering amplitude:
neither are the (anti-)collinear, nor are the soft functions power-suppressed in λ = mµ/

√
s.

Hence, products of endpoint-divergent moments appear in the bare factorization theorem.
This difference is reflected by several technical aspects that we briefly summarize below:

• In the double-logarithmic approximation, the form factor Fb(z) in (5.1) can be written
as [45]

Fb(z) = 2
∫ 1

0
dξ

∫ 1

0
dη θ(1− ξ − η) FS(ξηz) , with FS(ξηz) = e−2ξηz . (5.3)

Here the function FS(ξηz) in the integrand arises from the standard Sudakov-type
exponentiation of soft-gluon corrections to the h → bb̄ subprocess [46]. In our
case, the series of radiative corrections responsible for the double logarithms rather
yields nested integrals in (2.26), reflecting the iterative nature of the problem. The
analogous formula to (5.3) for muon-electron backward scattering can then be written
as a consistency relation

F1 (λ) ' F1 (z) = I1 (2
√
z)√

z
= 1 + z

∫ 1

0
dξ

∫ 1

0
dηF1

(
ξ2z
)
θ (1− ξ − η) F1

(
η2z

)
,

(5.4)
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where the form factor to be calculated appears again within the integral on the
right-hand side, with z = αem

2π ln2 λ2. To compare with (2.26) one has to identify the
logarithmic variables ξ = ln x/ ln λ2 and η = ln y/ ln λ2, and θ(1− ξ− η) = θ(xy− λ2)
from the discontinuity of the soft-fermion propagator.

• In h→ γγ, the additive structure of the bare factorization formula implies that only
a single rapidity divergence appears in the endpoint-divergent convolutions to all
orders in perturbation theory (see (60,61) in [17]). In contrast, the rapidity poles in
muon-electron backward scattering exponentiate in inverse moments.

• The refactorization condition for the matrix element of O2 in h→ γγ is schematically
given by (see (55) in [17])

[[〈γγ|O2(x)|h〉]] ≡ 〈γγ|O2(x)|h〉
∣∣
x→0 ∼ Jhc ∗ S , (5.5)

whereas in our case it reads

fc(x→ 0) ∼ fc ∗ Jhc ∗ S . (5.6)

The refactorization properties are related to the exponentiation of rapidity poles, and
reflect the iterative nature of the problem at hand, as the collinear function fc appears
on both sides of this relation. The reason why an iterative structure like in (5.6)
cannot arise in h→ γγ is again the helicity suppression. In this sense (5.5) can be
viewed as a special case of (5.6).

• As a consequence, the n-loop (with n ≥ 2) expression for the bare collinear func-
tion fc(x) at small x contains explicit powers of logarithms ln x which arise from
a cancellation of rapidity poles within the endpoint-divergent convolutions of the
refactorization formula. These logarithms cause higher poles in the rapidity regula-
tor, and do not appear in h → γγ (see eqs. (40)-(42) in [17] for the corresponding
two-loop expressions).

• In h→ γγ the soft function S in the factorization theorem (5.2) vanishes if its argument
goes to zero (see eq. (45) in [17]). As a consequence, the convolution integrals with the
jet functions only obtain endpoint divergences from the upper integration boundary.
This integration domain is removed in the renormalized factorization theorem as
the integrals have a hard upper cutoff ∼Mh. Starting at NLO, the soft function in
muon-electron backward scattering does not vanish for small arguments, see (B.8).
The convolutions of the soft function with the jet functions then receive rapidity poles
also from small arguments, ρ, ω → 0, i.e. endpoint singularities would not be removed
by an upper cutoff.

6 Conclusions

In this paper we argued that the simple perturbative textbook process of muon-electron
scattering in the backward direction provides an interesting laboratory to study conceptual
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aspects of soft-collinear factorization. In particular, the backward-scattering amplitude
at large center-of-mass energies

√
s � me,µ is known to receive large double-logarithmic

corrections of the form ∼ αn+1
em ln2nme,µ/

√
s that resum to a modified Bessel function

[27, 28]. In the modern SCET formulation this structure is recovered by an iterative
pattern of endpoint-divergent convolution integrals.

The presence of endpoint divergences in the factorization theorem prevent the use of
renormalization-group techniques to resum the logarithmic corrections to all orders. This
problem arises generically in SCET at subleading power, but for the current process it shows
up already at leading power. While this feature may seem surprising, we explained that
it is caused by a particular soft-enhancement mechanism that is specific to the backward
kinematics. The problem of endpoint divergences can therefore be studied in a particular
transparent way at leading power in an abelian version of SCET. At the same time the
simple QED process unveils a structure of endpoint singularities — even at the leading
double-logarithmic level — that is more complicated than what has been discussed in the
literature so far. As the soft enhancement can lift the helicity suppression, the endpoint
divergences manifest themselves in a nested pattern, in contrast to other examples like the
bottom-induced h→ γγ decay [17, 20, 21], for which the iteration stops already at the first
step because of the helicity suppression.

By using endpoint-refactorization conditions for the collinear matrix elements and
consistency relations, we showed that the double-logarithmic corrections can be resummed
in the effective theory. The cancellation of the rapidity divergences generates an infinite
tower of collinear-anomaly exponents that reflects the iterative structure of the endpoint
divergences. While we did not attempt to derive a renormalized factorization theorem in
this work, it would be interesting to understand if a rearrangement of the terms in the
bare factorization formula — in the spirit of what has been proposed for the h→ γγ decay
amplitude in [17, 20, 21] — can also be formulated for the current process. In view of the
discussion in section 5, it seems however likely that this will require additional conceptual
and technical ingredients which is beyond the scope of this work.

The main qualitative difference that distinguishes the muon-electron scattering process
from other examples that have been studied in SCET recently is that the bare factorization
theorem contains products of endpoint-divergent moments, whereas it contains a sum in
the other cases [17, 22]. Although the backward kinematics seems to be very special
and fine-tuned, we argue that the process mimics the general structure of hard-exclusive
processes in QCD, for which products of endpoint-divergent moments that involve hadronic
light-cone distribution amplitudes (LCDAs) typically arise in the factorization theorem.
The present work in fact emerged from a study of Bc → ηc transition form factors in the
limit mb � mc � ΛQCD [26, 29]. In this limit the hadronic states can be approximated by
non-relativistic bound states of two massive quarks that are on-shell and move with the same
four-velocity. The charm-quark mass mc provides an intrinsic IR regulator, and relativistic
corrections to the light-cone distribution amplitudes can be computed perturbatively [47].
Endpoint divergences then arise in inverse moments of the Bc-meson and ηc-meson LCDAs,
and their perturbative evaluation requires a rapidity regulator. Although the physics seems
to be quite different, the B-meson decay in this setup and the muon-electron backward-
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scattering amplitude share many similarities from the factorization point of view, like
the exponentiation of rapidity logarithms in endpoint-divergent moments of the heavy-
and light-meson LCDAs [26]. While the transition from the perturbative calculation with
massive quarks to realistic charmless B → π form factors is non-trivial, we expect that the
structure of the renormalized factorization theorem — which is yet to be determined — will
be identical, with the soft and collinear matrix elements becoming non-perturbative objects.

In summary, we believe that our work can give new insights to the problem of endpoint-
divergent convolution integrals in SCET. The considered QED process of muon-electron
backward scattering is, on the one hand, simple enough to clearly illustrate the key problem
without additional complications like e.g. operator mixing, while it is, on the other hand,
sufficiently generic and mimics the factorization of hard-exclusive processes in QCD.
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A One-loop IR divergences

In (2.13) we found that the NLO corrections to the muon-electron scattering amplitude
generate an IR divergence,

F
(1)
1 (λ) = 2πi

εIR
+ . . . , (A.1)

which must be understood as a soft singularity, since collinear singularities are regularized
by the lepton masses. The reason why this IR singularity is purely imaginary is subtle. In
this appendix we briefly explain how it arises from soft-photon exchanges with momenta
kµ ∼ Eγ � m, where Eγ is the experimental resolution energy.

The soft physics associated with the scale Eγ is described by the vacuum matrix element

Ŝ =
〈
0
∣∣ (S̄n−S†n− S̄n+S

†
n+

)
(0)
∣∣0〉 , (A.2)

with light-like soft Wilson lines associated with the incoming leptons

S̄n(x) = exp
(

+ieQ`
∫ 0

−∞
ds n ·As(x+ sn)

)
, (A.3)

and the outgoing leptons

S†n(x) = exp
(

+ieQ`
∫ ∞

0
ds n ·As(x+ sn)

)
, (A.4)
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respectively. Here we use the convention iDµ = i∂µ + eQ`A
µ for the covariant derivative

in QED, with e =
√

4παem and the electric charge Q` = −1 for leptons. The perturbative
calculation of the quantity Ŝ in (A.2) yields scaleless integrals to all orders in dimensional
regularization, and the soft function Ŝ has therefore been dropped in the discussion in the
main text. Nevertheless, it is important that the effective theory correctly reproduces the
IR physics of the scattering amplitude or, equivalently, that the remaining IR divergences
of the hard function H(xys) cancel against the UV divergences of the soft function Ŝ.

The important observation is that the product (S̄S†) describes a light-like Wilson
line that extends from negative to positive infinity. It does not combine to unity, because
the eikonal propagators associated to S̄ and S† have different i0-prescriptions, which is
at the origin of the imaginary part. To see this, we extract the UV singularities of Ŝ at
O(αem), using an off-shell regularization scheme in the spirit of [48, 49]. We then find for
the one-loop expression,

Ŝ(1) = −16iπ2
∫

ddk

(2π)d
1

k2 + i0

( 1
n−k − δ

− 1
n−k + δ

)( 1
n+k − δ̄

− 1
n+k + δ̄

)

= − 2πi
εUV

+O
(
ε0
)
. (A.5)

Here δ = p2/(n+p) + i0 and δ̄ = p̄2/(n−p̄) + i0 are remnants of the off-shell regularization in
the soft Wilson lines. The UV poles of Ŝ thus precisely cancel against the IR poles in (A.1)
as expected.

B Method-of-regions analysis of nested integrals

We saw in section 4 that the factorization theorem and the refactorization conditions
not only determine the double logarithms of the scattering amplitude to all orders by
consistency, but they also fix the hard and collinear functions in this approximation,
see (4.13) and (4.23)–(4.26). In this appendix we confirm some of these higher-order results
independently, by starting from the nested-integral representation of the double-logarithmic
amplitude in (2.26). As this set of scalar integrals originates from the relevant Feynman
integrals, they obey the same type of factorization formula as the form factor F1(λ) in (3.27),
at least on the double-logarithmic level. This allows us to extract the individual functions
entering the factorization formula to a high order in αem by means of a method-of-regions
analysis. To this end, we first generalize the expression (2.26) to d = 4− 2ε dimensions,

F
(n)
1 (λ)' lim

ε→0

(
µ2

s

)nε ∫
dx1

x1+ε
1

∫
dy1

y1+ε
1

. . .

∫
dxn

x1+ε
n

∫
dyn

y1+ε
n

θ
(
x1y1−λ2

)
. . . θ

(
xnyn−λ2

)
×θ (1−y1) θ (y1−y2) . . . θ

(
yn−λ2

)
θ (1−xn) θ (xn−xn−1) . . . θ

(
x1−λ2

)
.

(B.1)

Here an additional factor (xiyi−λ2)−ε comes from integrating the perpendicular momentum
components in each loop integral in d dimensions, see e.g. (2.20) for the corresponding
one-loop expression. On the double-logarithmic level, this factor can be approximated by
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(xiyi − λ2)−ε ≈ (xiyi)−ε, since (i) in the hard region the power counting implies xiyi � λ2,
and (ii) in the soft and collinear regions we are only interested in the UV singularities that
arise in the limit xiyi →∞. We also simplified the prefactor in (B.1) for convenience.

A proper method-of-regions analysis of the integrals in (B.1) requires analytic regular-
ization. In this appendix, however, we are rather interested in the higher-order structure
of the individual functions, ignoring for the moment that they enter endpoint-divergent
convolutions. It is furthermore worth emphasizing that it is not the propagators that are
expanded in the individual momentum regions, but rather the phase-space constraints.

Hard and jet functions. Expanding (B.1) in the hard region with xi ∼ yi ∼ O(1)� λ2,
we can easily derive a closed analytic expression for the highest poles in ε of the bare hard
function to all orders in αem. The n-loop contribution reads

H(n)(xys) '
(
µ2

s

)nε ∫ x

0

dxn

x1+ε
n
· · ·
∫ x2

0

dx1

x1+ε
1
×
∫ y

0

dy1

y1+ε
1
· · ·
∫ yn−1

0

dyn

y1+ε
n

=
(
µ2

xys

)nε 1
n!2ε2n , (B.2)

which sums to a modified Bessel function and confirms the result in (4.13). The hard-
collinear jet function has precisely the same functional form in this approximation, but with
different arguments.

Collinear functions. As argued before, we are only interested here in the expressions
for the collinear functions with the rapidity regulator set to zero, which can be compared
to (4.23)–(4.26). Hence, the collinear and anti-collinear functions can be identified upon
replacing the argument x → y. Adopting the power counting in the collinear region,
xi ∼ O(1) and yi ∼ O(λ2), and dropping the integrations that correspond to the convolution
with the tree-level hard and anti-collinear functions, we can write the n-loop contribution
to the collinear function in the given approximation as

f (n)
c (x) '

(
µ2

s

)nε ∫ 1

0

dx1
xε1

δ(x1 − x)
∫ 1

x1

dx2

x1+ε
2
· · ·
∫ 1

xn−1

dxn

x1+ε
n

×
∫ ∞
λ2/x1

dy1

y1+ε
1

∫ y1

λ2/x2

dy2

y1+ε
2
· · ·
∫ yn−1

λ2/xn

dyn

y1+ε
n

. (B.3)

We do not aim to find a closed form for the n-loop integral, but we rather evaluate this
expression order-by-order in αem. At one-loop order this gives

f (1)
c (x) '

(
µ2

s

)ε ∫ 1

0

dx1
xε1

δ(x1 − x)
∫ ∞
λ2/x1

dy1

y1+ε
1

=
(
µ2

m2

)ε 1
ε
, (B.4)
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in agreement with (4.23), if we again omit the step functions that constrain the integration
domain to the unit interval. Starting at two loops, the structures become more interesting,

f (2)
c (x) '

(
µ2

s

)2ε ∫ 1

0

dx1
xε1

δ(x1 − x)
∫ 1

x1

dx2

x1+ε
2

∫ ∞
λ2/x1

dy1

y1+ε
1

∫ y1

λ2/x2

dy2

y1+ε
2

=
(
µ2

m2

)2ε (
− 1

2ε2
) ∫ 1

x

dx2
x2

{(
x

x2

)ε
− 2

}

=
(
µ2

m2

)2ε {
xε − 1

2ε3 − ln x
ε2

}
, (B.5)

which confirms (4.24). In particular, this analysis shows that the explicit logarithm ln x
arises because x enters as a cutoff of intermediate longitudinal momentum integrals, and it
does not arise from an expansion in the dimensional regulator ε. It is a straightforward
task to verify along these lines also the three- and four-loop results in (4.25) and (4.26)
that were obtained in the main text from consistency relations.

Soft function. Lastly, we adopt the soft counting xi ∼ yi ∼ O(λ), which leads to the
following n-loop representation of the soft function in the double-logarithmic approximation,

DiscS(n) (ρω) '
(
µ2

s

)nε ∫ ∞
0

dx1
xε1

δ
(
x1 − ω/

√
s
) ∫ ∞

0

dyn
yεn

δ
(
yn − ρ/

√
s
)

×
∫

dx2

x1+ε
2

. . .
dxn

x1+ε
n

∫
dy1

y1+ε
1

. . .
dyn−1

y1+ε
n−1

θ
(
x1y1 − λ2

)
. . . θ

(
xnyn − λ2

)
× θ (xn − xn−1) . . . θ (x2 − x1)× θ (y1 − y2) . . . θ (yn−1 − yn) . (B.6)

We remark that the nested integrals already involve the discontinuity of the massive lepton
propagators, and hence the soft region corresponds to the discontinuity of the soft function
as well, DiscS(ρω) = S(ρω + i0)− S(ρω − i0), see the discussion around (3.25). We now
compute the first two terms in the perturbative series explicitly. At LO we have

DiscS(1) (ρω) '
(
µ2

s

)ε ∫ ∞
0

dx1
xε1

δ
(
x1 − ω/

√
s
) ∫ ∞

0

dy1
yε1

δ
(
y1 − ρ/

√
s
)
θ
(
x1y1 − λ2

)

=
(
µ2

ρω

)ε
θ(ρω −m2) . (B.7)

This expression is in agreement with the discontinuity of the result in (3.24) in the double-
logarithmic approximation and for vanishing rapidity regulator α→ 0, since the singularities

– 39 –



J
H
E
P
0
9
(
2
0
2
2
)
1
8
3

from the convolution integrals arise from the limit ρω →∞. At NLO we get

DiscS(2) (ρω) '
(
µ2

s

)2ε ∫ ∞
0

dx1
xε1

δ
(
x1 − ω/

√
s
) ∫ ∞

0

dy2
yε2

δ
(
y2 − ρ/

√
s
) ∫ dx2

x1+ε
2

∫
dy1

y1+ε
1

× θ
(
x1y1 − λ2

)
θ
(
x2y2 − λ2

)
θ (x2 − x1) θ (y1 − y2)

=
(
µ2

ρω

)2ε(∫
du

u1+ε θ

(
u− m2

ρω

)
θ (u− 1)

)2

= 1
ε2

(
µ2

ρω

)2ε

θ
(
ρω −m2

)
+ 1
ε2

(
µ2

m2

)2ε

θ
(
m2 − ρω

)
. (B.8)

This result shows that the soft function has in general two branches, one for ρω > m2 and
one for ρω < m2. In particular, the latter does not vanish in the limit ρω → 0, which
implies that the convolution of the soft function with the hard-collinear jet functions is
again endpoint-divergent (and requires rapidity regulators) for small arguments. As we
work in SCET-2 , this does not mean that a new region with even lower virtuality appears.
Instead, it precisely reflects the kinematic configuration associated with the leading double
logarithms described in section 2.3: all fermion propagators go on-shell with virtuality
k2 ∼ m2, and are strongly ordered in their rapidity, such that all photon propagators
become eikonal and would be identified as matching coefficients in a refactorization formula.
We therefore expect that the soft function for small arguments obeys again a refactorization
formula, and at higher loops receives logarithmic corrections of the form ln(ρω/m2).

Lastly, we mention that the soft function for asymptotically large arguments S∞(ρω) ≡
DiscS(ρω →∞), which plays an important part in the rearrangement of the factorization
formula in [17], can be given in a closed form

S∞(ρω) ' αem
2π

(
µ2

ρω

)ε
I0

2
√
αem
2π

1
ε2

(
µ2

ρω

)ε , (B.9)

which again involves a modified Bessel function.
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