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1 Introduction

Analytic computations for scattering cross sections play a crucial role in the field of high
energy particle physics phenomenology. In such computations, we use perturbative quantum
field theory (QFT) in order to achieve precise predictions for observables that allow us
to study the interactions of fundamental particles. The field of analytic computations
is advancing rapidly and has produced many cutting-edge results, like predictions for
production cross sections to third order in QCD perturbation theory for the Large Hadron
Collider(LHC) [1–7], fourth order QCD results for the production of hadrons in electron-
positron collisions [8, 9] or analytic formulae for event shape observables like the energy-
energy correlation function [10–12]. On top of predictions for explicit cross sections, analytic
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results play a crucial role to determine many universal quantities appearing as ingredients
to the calculation of scattering cross sections. Shining examples are the splitting functions
at third order in perturbative QCD [13–17], the so-called cusp anomalous dimension at
fourth loop order [18, 19], or extraction of the universal infrared behavior of scattering
amplitudes at third loop order [20, 21].

In this article, we discuss and extend a set of analytic ingredients for perturbative
computations that have already found widespread application. The quantities in question
are so-called soft integrals. These integrals are Feynman integrals for phase-space and
loop integrals expanded around a certain kinematic limit — the so-called soft or threshold
limit. Throughout this article, we work within the framework of dimensional regularization.
Our soft integrals first made their appearance in the computation of hadronic production
cross section for a Higgs boson at N3LO [22–25], where they played a two-fold role: first,
using the framework of reverse unitarity [26–30], it is possible to express the threshold
approximation of the production cross section [25, 31] as a linear combination of these soft
master integrals. Second, the soft master integrals served as boundary conditions [6, 32] for
differential equations [33–37] used to calculate the exact Higgs boson cross section at N3LO
in QCD perturbation theory.

The same soft master integrals were subsequently used in the computation of several
analytic results. First, the computation of the inclusive gluon fusion Higgs boson production
cross section at the LHC was extended to the charged current and neutral current Drell-Yan
cross sections [3, 4, 7], as well as to the production cross section of a Higgs boson from
bottom quark fusion [2, 38]. In ref. [39] it was realized that analytic computations for
more differential quantities, like the rapidity or transverse momentum distributions, can be
carried out efficiently thanks to the knowledge of the very same analytic information. As a
result, it was possible to perform a threshold expansion of differential cross sections for the
production of a Higgs boson at N3LO [40] and to compute the rapidity distribution of the
Higgs boson [5] using analytic results. In ref. [41] it was pointed out that soft integrals may
serve as key analytic ingredients to determine so-called collinear master integrals. In turn,
these results were then used to determine the so-called transverse momentum-dependent
beam functions at N3LO in QCD [42] as well as the N -jettiness beam functions at the same
order [43]. In ref. [44] it was realized that it is easy to analytically continue the soft integrals
computed for a production cross section to serve as ingredients for the computation of a
Deep Inelastic Scattering (DIS) process or a cross section relevant for an electron-positron
annihilation experiment. As a consequence, the energy-energy correlation function was
calculated in the large-angle limit at N3LO in QCD perturbation theory [10]. The above
results have widespread implications on particle physics phenomenology, which demonstrates
the importance of analytic results for soft integrals.

The soft integrals discussed above were presented in the literature as a Laurent series
in the dimensional regulator up to the power required to perform computations at N3LO
in QCD perturbation theory. Here, we extend this computation to include two additional
powers in this Laurent expansion, and consequently, we obtain information that will be
an ingredient for the computation of scattering cross sections beyond N3LO. In particular,
we compute two classes of soft integrals: the first one is differential in the four-momentum
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Figure 1. Schematic depiction of a partonic scattering cross involving m+2 partons and a color
neutral particle h.

of the color-neutral particle, while the second one is integrated over the full final state
phase space. Our basis of soft integrals is given in terms of pure functions of uniform
transcendental weight. Here we focus on integrals with two and three partons in the final
state as results for single parton final state integrals can be found elsewhere [32, 45–47]. We
then use these new results in order to determine the neutral current Drell-Yan and gluon
fusion Higgs boson production cross section in the threshold limit to two orders beyond the
finite term in the dimensional regulator at N3LO.

Threshold factorization [48–54] allows one to compute the threshold limit of any colorless
production cross section once purely virtual corrections for this process and the so-called
threshold soft function are known. We compute the threshold soft function through N4LO
in perturbative QCD up to one undetermined constant. We extract explicitly the anomalous
dimension of the soft function through N4LO as one of our results. We find agreement for
the threshold anomalous dimension and soft function with the existing results [55]. Building
on refs. [55–60], as a side product we are able to determine previously unknown coefficients
of the Altarelli-Parisi splitting functions at third non-trivial order.

This article is organized as follows. In section 2 we introduce our notation and give
our definitions of soft phase space and loop integrals. Next, we discuss our computation
of soft loop and phase space integrals for integrals in section 3. We then apply these soft
integrals to the computation of the Drell-Yan and Higgs boson production cross section
in the threshold limit through N3LO in perturbative QCD in section 4. We generalize
our results to generic production cross sections using threshold factorization and extract
the threshold soft function and anomalous dimension in section 5. Finally, we draw our
conclusions and summarize our results in section 6.

2 Setup

In this article we discuss Feynman integrals appearing in the computation of scattering
cross sections in perturbative QFT. We are interested in scattering processes where two
partons and one color-neutral particle (like a Higgs boson or an off-shell photon) scatter
with m massless final state particles. Schematically, an amplitude for such a process is
depicted in figure 1. We are interested in the case where all kinematic information of these
m final state particles is integrated out. Defining all momenta to be in-going, momentum
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conservation is given by
p1 + p2 + ph + k = 0, (2.1)

where we denote the collective momentum of the m massless final state partons by k. We
define the following variables.

s = (p1 + p2)2, w1 = − 2p1k

2p1p2
, w2 = − 2p2k

2p1p2
, x = (2p1p2)k2

(2p1k)(2p2k) .

(2.2)
We are interested in the kinematic limit where the energies of the m final state particles

are almost zero, i.e., they are soft, and consequently, we have k ∼ 0. Furthermore, we
are interested in the case where any loop momentum appearing in a virtual loop of our
scattering process is low energetic as well. We refer to the resulting phase space and
loop integrals as soft integrals. Constructing such a soft integral follows the method of
regions [61], and details can be found in refs. [23, 24].

Above we only specified that the m soft particles are in the final state. Depending
on whether the remaining external particles are in the final or initial state, the soft
integrals contribute to different kinds of scattering processes. For example, the kinematic
configuration where the momenta p1 and p2 in the initial state and ph in the final state
corresponds to a partonic production process of the colorless state h from hadron collisions
at the LHC:

Production: p1 + p2 → ph + k. (2.3)

If we consider ph and p1 in the initial state and p2 in the final state, we obtain a kinematic
configuration corresponding to a semi-inclusive Deeply Inelastic Scattering (DIS) process:

DIS : p1 + ph → p2 + k. (2.4)

Finally, if only ph is in the initial state, this may be recognized as a doubly-resolved
scattering configuration in e+e− annihilation:

e+e− Annihilation: ph → p1 + p2 + k. (2.5)

In the remainder of this section, we will first discuss the final state phase space associated
with the three different scattering configurations discussed above. Next, we will discuss the
general structure of soft integrals, how to analytically continue it from one kinematic region
to another, and finally, we will define inclusive soft integrals.

2.1 Final state phase space

For different scattering processes we define the following phase space measures:

1. Production:

dΦh+m = (2π)d δd
(
p1+p2+ph+

m+2∑
i=3

pi

)
ddph
(2π)d

(2π)δ+
(
p2
h−m2

h

)m+2∏
i=3

ddpi
(2π)d

(2π)δ+(p2
i ).

(2.6)
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2. DIS :

dΦ1+m = (2π)d δd
(
p1 + ph +

m+2∑
i=2

pi

)
m+2∏
i=2

ddpi
(2π)d

(2π) δ+
(
p2
i

)
. (2.7)

3. e+e− Annihilation:

dΦ2+m = (2π)d δd
(
ph +

m+2∑
i=1

pi

)
m+2∏
i=1

ddpi
(2π)d

(2π) δ+
(
p2
i

)
. (2.8)

We work in dimensional regularization and denote the spacetime dimension by d = 4− 2ε,
where ε is the dimensional regulator. Introducing the momentum k and using the variables
we defined in eq. (2.2), we parametrize the phase space measures as follows:

1. Production:

dΦh+m = (sw1w2)1−ε

4(2π)3−2ε (1− x)−εdΦm(k) dx dw1 dw2 dΩ2−2ε

× δ
(
m2
h

s
− (1− w1 − w2 + w1w2x)

)
θ(x(1− x))θ(w1)θ(w2).

(2.9)

2. DIS :

dΦ1+m =
(
p2
hw1w2

)1−ε
4 (2π)3−2ε (1− w1)−3+2ε (1− x)−ε (1− w1 − w2 + w1w2x)−1+ε

× dΦm (k) dx dw1 dw2 dΩ2−2ε θ (x (1− x)) θ (−w1) θ (w2) θ
(
−p2

h

)
.

(2.10)

3. e+e− Annihilation:

dΦ2+m = π4−2ε (p2
h

)1−ε (
p2
hw1w2

)1−ε (1− x)−ε

(1− 2ε) Γ (1− 2ε) (1− w1 − w2 + w1w2x)3ε−4

× θ (x (1− x)) θ (−w1) θ (−w2) dw1 dw2 dx dΦm (k) ,
(2.11)

with

dΦm (k) = (2π)d δd
(
k −

m+3∑
i=3

pi

)
m+3∏
i=3

ddpi
(2π)d

(2π) δ+
(
p2
i

)
. (2.12)

In the soft limit, where all final state partons associated with the momenta p3, . . . , pm+2
become low-energetic, we find

w1 → 0, w2 → 0. (2.13)

– 5 –
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In this limit, the differential phase space measures become proportional to each other.

lim
w1,2→0

dΦh+m
dw1dw2dx =

dΦsoft
h+m

dw1dw2dx =
(
p2
hw1w2

)1−ε
4 (2π)3−2ε (1− x)−ε dΦm (k) dΩ2−2ε,

lim
w1,2→0

dΦ1+m
dw1dw2dx = lim

w1,2→0

dΦh+m
dw1dw2dx,

lim
w1,2→0

dΦ2+m
dw1dw2dx = (4π)ε−2 (p2

h

)1−ε Γ (1− ε)
(1− 2ε) Γ (1− 2ε) lim

w1,2→0

dΦh+m
dw1dw2dx. (2.14)

Above, we implicitly set Kronecker delta constraints of external variables to unity.

2.2 General structure of soft integrals

We define a differential soft Feynman integral including L loops and m soft final state
particles by

ID (s, w1, w2, x) = cL+m

∫ dΦsoft
h+m

dw1dw2dx

L∏
i=0

ddp2+m+i

(2π)d
ID(ph, p1, . . . , p2+L+m, ε).

(2.15)
We define the constant

cL = (4π)−LεeLεγE . (2.16)

The integrand ID is a ratio of polynomials in Lorentz invariant scalar products of the
external momenta and loop momenta as well as the dimensional regulator. The superscript
label ‘D’ indicates that we refer to these integrals as differential soft integrals. In contrast,
we define inclusive soft integrals with a superscript ‘I’ as

II(s, z̄) = cL+m

∫
dΦsoft

h+m

L∏
i=0

ddp2+m+i
(2π)d II(ph, p1, . . . , p2+L+m, ε)

=
∫ 1

0
dx
∫ ∞

0
dw1 dw2 δ(z̄ − w1 − w2) ID(s, w1, w2, x). (2.17)

For example, the inclusive soft phase space volume is given by∫
dΦsoft

h+m =
∫ 1

0
dx
∫ ∞

0
dw1 dw2 δ(z̄ − w1 − w2) lim

w1,2→0

dΦh+m
dw1dw2dx

= (4π)1−2εmeγEεm(p2
h)−1+m−mεz̄−1+2m(1−ε)Γ(1− ε)m
2Γ(2m(1− ε)) . (2.18)

Properly chosen integrands of soft integrals are characterized by a rescaling symmetry.

ID(ph, λp1, p2, . . . , p2+L+m, ε) = λα1ID(ph, p1, p2, . . . , p2+L+m, ε),

ID(ph, p1, λp2, . . . , p2+L+m, ε) = λα2ID(ph, p1, p2, . . . , p2+L+m, ε), (2.19)

for integer exponents α1 and α2 that can be determined easily from the specific integrands.
This is most easily illustrated by looking at an example. For the following integrand of a
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phase space integral with two additional partons in the final state, we find the exponents
α1 = α2 = −1:

ID
example(ph, p1, p2, p3, p4, ε) = 1

(2p1p3)(2p2p4) . (2.20)

From the fact that s is the only Lorentz invariant variable in our set of variables of eq. (2.2),
we conclude that any differential soft integral takes the form

ID(s, w1, w2, x) = sΛ−(m+L)εw
δ1−(m+L)ε
1 w

δ2−(m+L)ε
2 f(x, ε). (2.21)

Above, the integer mass dimension Λ and the integer exponents δ1 and δ2 can be determined
from the integrand using the rescaling symmetry in conjunction with the dependence of
the loop and phase space measure on the variable s, w1 and w2. The integers m and L are
the number of final state partons that were integrated out and the number of loops. The
variable x is invariant under a rescaling of the momenta p1 and p2, and consequently, our
soft differential integrals have a non-trivial functional dependence on x in the form of a
function f(x, ε). Inclusive soft master integrals then take the form

II(s, z̄) = sΛ−(m+L)εz̄δ1+δ2+1−2(m+L)εf̃(ε), (2.22)

where z̄ is introduced via eq. (2.17) and f̃(ε) is a function of the dimensional regulator.
Having identified the structure of differential soft integrals, we can now discuss what

happens when crossing from production to DIS or e+e− kinematics. First, we note that the
variable x is by definition (eq. (2.2)) invariant under crossing the partons with momenta p1
or p2 from initial to final state or vice versa. We can collect the dependence of soft integrals
on the remaining variables s, w1, and w2 using eq. (2.21) into one prefactor.

ID ∼ (sw1w2)−(m+L)ε =
((2p1k)(2p2k)

(2p1p2)

)−(m+L)ε
. (2.23)

From the above equation, we easily see that this factor is also invariant under crossing p1 or
p2 from the initial to the final state or vice versa. Consequently, differential soft integrals
are identical for production, DIS or e+e− scattering kinematics, up to an overall sign that
can be determined from the integer powers Λ, δ1, and δ2.

3 Computing soft master integrals

We begin this section by outlining our method to compute soft integrals. After that, we
show our explicit results for phase space integrals with two additional final state partons,
(m = 2, L = 0 in eq. (2.15)). We refer to these integrals as double real (RR) phase space
integrals. We then briefly discuss our results for soft integrals with three additional partons
in the final state (triple real; RRR) and soft integrals with two additional partons in the
final state and one loop integral (double-real virtual; RRV).
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3.1 Method

Soft Feynman integrals can be related to each other via the framework of reverse unitarity [26–
30] and IBP identities [62–64]. We construct a basis of master integrals for soft integrals
involving a certain number of loop and phase space integrals. We then use methods
developed in refs. [65, 66] to construct a basis for so-called canonical master integrals. We
construct such a basis for both differential and inclusive soft integrals. We use differential
equations [33–37] for differential soft master integrals to compute the functional dependence
of these integrals on the variable x. Next, we use eq. (2.17) to relate the differential and
inclusive soft master integrals to each other. Since in many cases the inclusive soft master
integrals can be evaluated directly, without first computing their differential analogs, we can
express the boundary conditions required for the solution of the differential equations for the
differential soft master integrals in terms of the inclusive soft master integrals. This relation
between inclusive and differential master integrals also constrains some of the inclusive
master integrals. We elaborate on this below in section 3.2.3 using an example. Additional
consistency conditions that can be determined from the system of differential equations and
from relations of the differential soft master integrals to systems of differential equations
appearing in the computation of refs. [42, 43], and this gives additional constraints on the
inclusive soft master integrals. Ultimately, we determine the remaining inclusive soft master
integrals using direct integration techniques developed in refs. [23, 24]. We express the
inclusive soft master integrals as a Laurent series in the differential regulator with rational
numbers and the multiple ζ values as coefficients (and they depend on p2

h and z̄ as shown
in eq. (2.22)). The resulting differential master integrals depend on the variables p2

h, w1,
and w2, as illustrated in eq. (2.21), and the function f(x) is given by a Laurent series in
the dimensional regulator and harmonic polylogarithms [67] with argument x and multiple
ζ values as coefficients. As we choose canonical integrals as our basis integrals, the master
integrals have uniform transcendental weight. In particular, we compute in this article all
soft master integrals up to transcendental weight eight, or equivalently up to O(ε8) in the
Laurent expansion.

3.2 RR soft integrals with two final state partons

As an example, we discuss explicitly in this section the soft master integrals for pure phase
space integrals with two partons in the final state that are integrated out (RR). The
corresponding inclusive soft master integrals were presented already to all orders in the
dimensional regulator in ref. [22].

3.2.1 Differential RR soft master integrals

We define three differential RR soft master integrals by

ID-RR
i = c2

∫ dΦsoft
h+2

dw1dw2dxI
D-RR
i . (3.1)
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The corresponding integrands are given by

ID-RR
1 = −s

2
12ε(s13 + s14)

s14
,

ID-RR
2 = s2

12ε
(
s2

12s34 − s14s23 − s14s24
)

s14s24
, (3.2)

ID-RR
3 = s2

12ε
(
s2

12s34 − s12s13s23 − s12s13s24 − s12s14s23 − s12s14s24 + s13s23 + s13s24
)

s13s24
.

Here, we used the notation

sij = (pi + pj)2, sii = p2
i . (3.3)

The integrated results in terms of our chosen variables of eq. (2.2) are given by

ID-RR
1 = e2γεs−2ε

12 w−2ε
1 w−2ε

2 (1− x)−εx−ε
128π3Γ(1− 2ε) . (3.4)

ID-RR
2 = ID-RR

1 (1− 2x 2F1(1, 1; 1− ε; 1− x)).

ID-RR
3 = ID-RR

1 (−2x 2F1(1, 1; ε+ 1; 1− x) + 2xε(1− x)−εΓ(1− ε)Γ(ε+ 1) + 1).

These results are valid to all orders in the dimensional regulator, and 2F1 is the Gauss
hypergeometric function,

2F1(a, b; c;x) =
∞∑
n=0

(a)n(b)n
(c)n

xn

n! . (3.5)

This function can be easily expanded in terms of a Laurent series in the dimensional
regulator using the results of ref. [68].

3.2.2 Inclusive RR soft master integrals

To express a basis of double real inclusive soft master integrals we require two different
master integrals.

II-RR
i = c2

∫
dΦsoft

h+2II-RR
i . (3.6)

The integrands are given by

II-RR
1 = ε3

s12
s14s34

,

II-RR
1 = ε3z̄

s2
12

s13s24s34
. (3.7)

The integrals are given by

II-RR
1 = (1− 2ε)(3− 4ε)(1− 4ε)Φsoft

h+2 = e−2γεz̄−4εs−2ε
12 Γ(1− ε)2

256π3Γ(1− 4ε) ,

II-RR
2 = −3e−2γεΓ(1− 2ε)2Γ(1− ε)

128π3Γ(1− 4ε)Γ(1− 3ε) z̄
−4εs−2ε

12 3F2(−ε,−ε,−ε; 1− ε,−3ε; 1). (3.8)
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3.2.3 Relating inclusive and differential RR soft master integrals

The fact that we compute a basis of master integrals simultaneously for the differential
and inclusive cases can be very helpful. If we integrate the differential integrals over the
inclusive soft phase space measure using IBP identities, we find that the result is related to
the phase space volume.

c2

∫
dΦsoft

h+2ID-RR
1 = (1− 2ε)Φsoft

h+2,

c2

∫
dΦsoft

h+2ID-RR
2 = −Φsoft

h+2,

c2

∫
dΦsoft

h+2ID-RR
3 = Φsoft

h+2. (3.9)

Since we are computing the differential master integrals using the method of differential
equations, we can fix the boundary conditions of the differential equations by performing the
inclusive integration over all differential variables and demanding that the above equations
are true. Conversely, we may integrate the integrand of an inclusive soft master integral
over the differential soft measure.

c2

∫ dΦsoft
h+2

dw1dw2dxI
I-RR
2 = − s2

12ε
2

x(1− x)w1w2

[
ID-RR

1 + ID-RR
3

]
(3.10)

Subsequently integrating over the remaining variables w1, w2, and x we can determine the
value of the inclusive master integral II-RR

2 and indeed find the solution of eq. (3.8).

II-RR
2 = c2

∫
dxdw1dw2δ(1− w1 − w2)

∫ dΦsoft
h+2

dw1dw2dxI
D-RR
2 . (3.11)

In this fashion, we determined all boundary conditions and inclusive RR soft master integrals
by only computing the inclusive soft phase space volume (eq. (2.18)) explicitly. We observe
in more complicated cases than the RR soft master integrals that additional boundary
conditions need to be computed by other means.

3.3 RRR and RRV soft master integrals

One of the main results of this article is the computation of differential and inclusive
soft master integrals through transcendental weight eight for RRV and RRR scattering
configurations. To determine these integrals, we follow the steps outlined above, and we
present our results in terms of computer-readable files together with the arXiv and journal
submission of this article. In particular, we compute 24 differential and 14 inclusive RRV
soft master integrals.

ID-RRV
i = c3

∫ dΦsoft
h+2

dw1dw2dx

∫ ddp6
(2π)d I

D-RRV
i , (3.12)

II-RRV
i = c3

∫
dΦsoft

h+2

∫ ddp6
(2π)d I

I-RRV
i . (3.13)
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Furthermore, we compute 61 differential and 13 inclusive soft RRR master integrals.

ID-RRR
i = c3

∫ dΦsoft
h+3

dw1dw2dx I
D-RRR
i , (3.14)

II-RRR
i = c3

∫
dΦsoft

h+3 II-RRR
i . (3.15)

Many of our integrals were computed already through transcendental weight six for the
purpose of refs. [23, 24, 40, 42, 43], and we find agreement with these past results. In order
to ensure the correctness of our soft integrals, we furthermore explicitly derive numerical
results for them through all calculated orders in ε using Mellin-Barnes (MB) techniques.
Indeed, the properties of the integrands under rescaling in eq. (2.19) implies that for RRR
we can easily integrate out the energies of the soft particles in terms of Γ functions. The
remaining angular integrals can be performed in closed form as a MB integral [69]. Following
this strategy, we can easily obtain a MB representation for all RRR soft integrals [23],
which can be evaluated numerically as a Laurent series in the dimensional regulator using
standard techniques [70, 71]. For the RRV integrals, we cannot immediately perform the
integration over the energies in terms of Γ functions, because they are entangled with the
loop integration. We can, however, easily introduce additional MB integrations for the
(soft regions of the) one-loop integrals involved [24], and then evaluate numerically the MB
representations for the combined phase space and loop integrations.

4 Threshold limit of production cross sections

In this section, we discuss the LHC cross sections for the production of a virtual photon or
a Higgs boson in gluon fusion in the infinite top quark mass limit:

σB = τ σ̂B0 C
2
B

∑
ij

fi(τ) ◦τ ηBij (τ) ◦τ fj(τ), B ∈ {H, γ∗}. (4.1)

In the above equation the fi are parton distribution function, σ̂B0 represents the partonic
Born cross section and we define the ratio τ = Q2/S, where Q is the virtuality of the
produced boson1 and S is the hadronic center-of-mass energy. The PDFs are convoluted
with the partonic coefficient functions, see appendix B for details. The partonic coefficient
functions are given by

ηBij (z) = Nij
2Q2σ̂B0

∞∑
m=0

∫
dΦh+mMij→B+m. (4.2)

The initial state dependent normalization factor Nij is given by

Ngg = 1
4(n2

c − 1)2(1− ε)2 , Ngq = 1
4(n2

c − 1)nc(1− ε)
, Nqq̄ = 1

4n2
c

, (4.3)

where g, q and q̄ represent a gluon, quark and anti-quark respectively, and nc denotes the
number of fundamental SU(nc) colors. The factor CB is equal to one for the production

1In case of the Higgs boson production cross section, Q is identical to the Higgs boson mass.
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cross section of a virtual photon and equal to the Wilson coefficient [72–75] for the infinite
top quark mass effective field theory [76–79]. Mij→B+m represents the color and spinor
summed interference of scattering amplitudes describing the production of the desired boson
B and m final state partons in the collision of initial state partons i and j. Expanding
Mij→B+m in the strong coupling constant αS gives the perturbative coefficient functions
in QCD perturbation theory.

ηBij (z) =
∞∑
i=0

aiSη
B, (i)
ij (z), aS = αS

π
(4π)εe−εγE . (4.4)

In the definition of aS we include for convenience already a factor (4π)εe−εγE , anticipating
later MS renormalization. At Born level we find

ηH, (0)
gg (z) = 1

1− εδ(z̄), η
γ∗, (0)
qq̄ (z) = (1− ε)δ(z̄), z̄ = 1− z. (4.5)

For more details see refs. [4, 6].
In this article, we are interested in the threshold limit of the partonic coefficient

function. This limit is characterized by the kinematic condition that all the radiation
produced alongside the produced boson is very low energetic, and we consider the limit
z̄ → 0. In this limit, the partonic coefficient function factorizes as follows.

lim
z̄→0

ηBij = HB
ij × S

Rij

thr.(z). (4.6)

Above, HB
ij is the process-dependent hard function and SRij

thr. is the so-called threshold soft
function that only depends on the color representation of the initial state partons Rij . The
hard function was computed for Higgs boson and photon production through three loops in
refs. [80–83] and at fourth loop order in refs. [18, 19, 84–86]. Similarly, SRij

thr. was computed
through N3LO in QCD perturbation theory in refs. [31, 87, 88] and we discuss partial fourth
loop-order results below.

The threshold soft function can be computed by considering the strict soft limit of the
partonic coefficient function of one of Higgs boson or photon production.

Sadjoint
thr. (z) = (1− ε) lim

strict soft
ηHij (z),

Sfundamental
thr. (z) = 1

(1− ε) lim
strict soft

ηγ
∗

ij (z). (4.7)

The strict soft limit is defined by taking all final state parton momenta to be very low
energetic and all loop momenta to be uniformly low energetic as well. It is now easy to
see that the partonic cross section in this limit can be expressed in terms of soft master
integrals as introduced in previous sections. In practice, this is achieved by following the
method of regions [61] and using techniques introduced in refs. [23, 24]. To compute the
threshold soft function contribution at nth perturbative order, matrix elements with up
to n additional soft partons in the final state must be included. Contributions with one
additional parton can be extracted from the computation of the one emission current at
one and two loop order [46, 89–91]. The integrand for two and three additional partons
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required for computations up to N3LO in QCD perturbation theory was determined for the
purposes of refs. [23, 24, 31, 40, 42, 43], and we build on these results here. In particular,
we use our newly computed soft master integrals to compute SRij

thr.(z) at N3LO in QCD
perturbation theory. This result was previously obtained in refs. [31, 87, 88, 92] through
finite order in the dimensional regulator ε at N3LO, and we find agreement. We extend these
results here to include two additional orders in the Laurent expansion in the dimensional
regulator, which will serve as a key ingredient for a future computation of the Higgs boson
and Drell-Yan production cross section at N4LO. In particular, we compute results for
the bare partonic cross section ηBij (z) in the threshold limit to O(ε8−2n) at NnLO in QCD
perturbation theory for n ∈ {0, 1, 2, 3}. We attach our results in electronically readable
form alongside the arXiv and journal submission of this article.

5 Threshold factorization and soft anomalous dimension

In this section we discuss the universal nature of the partonic scattering cross section at
threshold. Next, we use results from existing literature to extract anomalous dimensions
which play a crucial role in the resummation of large logarithm in a diverse range of
scattering processes.

5.1 Threshold factorization

The inclusive cross section for the production of a colorless final state factorizes in the
limit where the hadronic center-of-mass energy becomes similar to the invariant mass of the
colorless system, i.e., τ → 1. This was realized in refs. [48–51] for QCD and derived in the
language of soft-collinear effective theory (SCET) [93–97] in refs. [52–54]. Mathematically,
we may write eq. (4.1) in this limit as2

σB = σ̂B0
∑
ij

HB
ij f

th
i (τ)⊗τ Srthr.(τ)⊗τ f th

j (τ) +O(1− τ). (5.1)

Above, the product ⊗τ is defined in the appendix in eq. (B.5) and r = Rij denotes the color
representation of the initial state partons. The hard function HB

ij (µ2) is the squared Wilson
coefficient of the leading power hard scattering operator that couples the color singlet to
the partons i and j. It is related to the form factor of such an operator.

We can define the soft function as a squared matrix element of soft Wilson lines [98, 99]
involving a measurement over a complete set of soft states |Xs〉,

Srthr.(z) = 1
Cr

∑
Xs

tr 〈0|Y † rn̄ (0)Y r
n (0)δ

(
Ê2 −Q2(1− z)

)
|Xs〉 〈Xs|Y † rn (0)Y r

n̄ (0) |0〉 ,

(5.2)
where the operator Ê picks up the total energy of the real emissions, the Wilson lines are
taken in the representation r of the scattering partons and along their light-like direction
n, n̄ and Cr is the quadratic Casimir of the gauge group for the representation r. Note
that for the rest of this section, we will drop the label r for the representation, but the

2For simplicity, we set here CB = 1 as it can easily be absorbed in the hard function.
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Figure 2. Cut diagram for the one real emission correction to the threshold soft function Srthr. for
color singlet production. Doubled lines represent Wilson lines that trace the path of the initial state
partons involved in the hard scattering process. The wiggled line represents a radiated gluon which
crosses the final state phase space cut indicated by the dashed line.

following discussion straightforwardly applies to both the case of adjoint and fundamental
representation. Explicitly the Wilson lines take the form

Yn(x) = P exp
[
ig

∫ 0

−∞
dt n ·As(x+ tn)

]
. (5.3)

The contributions to Srthr.(z) can be represented, order by order in perturbation theory, in
terms of cut diagrams and can be calculated in terms of eikonal Feynman rules, see for
example figure 2.

The quantities in eq. (5.1) are bare quantities that are individually ultraviolet and
infrared divergent, and the divergences manifest themselves as poles in the dimensional
regulator ε. We implement the renormalization of the strong coupling constant via the
operator ZαS (see appendix A), which expresses the bare strong coupling constant in terms
of its renormalized counterpart. We absorb infrared singularities of the hard function into
ZH(µ2). The threshold PDFs f th

i (τ) absorb collinear initial state singularities via a standard
mass factorization counter term (see appendix B for details).

HB
ij

(
µ2
)

= ZH
(
µ2
)

ZαSH
B
ij ,

f th
i

(
τ, µ2

)
= Γr (τ)⊗τ f th

i (τ) ,

Srthr.

(
τ, µ2

)
= ZH

(
µ2
)−1

Γr (τ)−1 ⊗τ ZαSS
r
thr, (τ)⊗τ Γr(τ)−1. (5.4)

Note, that we indicate renormalized and finite objects by explicitly indicating their depen-
dence on the scale µ2.

In the context of SCET, the divergences appearing in the bare soft function can be
interpreted as UV divergences in the effective theory. Therefore, we can absorb these
divergences in an MS counterterm ZS(z, µ2) for this operator and obtain a renormalized
soft function. Extracting from eq. (5.4) we find

Srthr.

(
z, µ2

)
= ZS

(
z, µ2

)
⊗z ZαSS

r
thr. (z) ,

ZS
(
z, µ2

)
= ZH

(
µ2
)−1

Γr(z)−1 ⊗z Γr(z)−1. (5.5)
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The hard function obeys the renormalization group equation (RGE)

µ2 d
dµ2H

B
ij

(
µ2
)

= γrH

(
αS
(
µ2
)
, µ2

)
HB
ij

(
µ2
)
,

γrH

(
αS
(
µ2
)
, µ2

)
= Γrcusp (αS (µ)) ln Q

2

µ2 + 1
2γH

(
αS
(
µ2
))
. (5.6)

Above Γrcusp(αS(µ2)) is the cusp anomalous dimension [98]. Furthermore, we distinguish
γrH(αS(µ2)), the non-cusp part of the anomalous dimension, from the entire anomalous
dimension γrH(αS(µ2), µ2) by the number of arguments. The renormalization group equation
for the threshold PDFs is given by the DGLAP evolution equation [100–102] in the limit of
z → 1. Explicitly, the anomalous dimension of the threshold PDFs is the limit of z → 1 of
the Altarelli-Parisi splitting functions:

γfundamental
f

(
z, αS

(
µ2
))

= lim
z→1

Pqq
(
z, αS

(
µ2
))
,

γadjoint
f

(
z, αS

(
µ2
))

= lim
z→1

Pgg
(
z, αS

(
µ2
))
. (5.7)

With this we find

µ2 d
dµ2 f

th
i

(
z, µ2

)
= γrf

(
z, αS

(
µ2
))
⊗z f th

i

(
z, µ2

)
,

γrf

(
z, αS

(
µ2
))

= Γrcusp

(
αS
(
µ2
)) [ 1

1− z

]
+

+ 1
2γ

r
f

(
αS
(
µ2
))
δ(1− z). (5.8)

Above, the plus distribution is defined via its action on a test function as

∫ 1

0
dz

[ 1
1− z

]
+
φ(z) =

∫ 1

0
dz

( 1
1− z

)
(φ(z)− φ(1)). (5.9)

Since the hadronic cross section is independent of the scale µ2, the threshold soft
function also satisfies an RGE that can be derived by consistency:

µ2 d
dµ2S

r
thr.

(
z, µ2

)
= γrthr.

(
z, αS

(
µ2
))
⊗z Srthr.

(
z, µ2

)
,

γrthr.

(
z, αS

(
µ2
))

= −Γrcusp

(
αS
(
µ2
))(

2
[ 1

1− z

]
+

+ δ (1− z) log Q
2

µ2

)
(5.10)

+ 1
2γ

r
thr.

(
αS
(
µ2
))
δ(1− z).

In order for the hadronic cross section in eq. (5.1) to be independent of the scale, the
following equation has to be satisfied.

γrthr.

(
αS
(
µ2
))

= −2γrf
(
αS
(
µ2
))
− γrH

(
αS
(
µ2
))
. (5.11)
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5.2 Results for the threshold anomalous dimension through N4LO

All but one ingredient to compute the threshold limit of the partonic coefficient function
for DY and Higgs boson production at N4LO are currently available. The one missing
ingredient is the coefficient of δ(z̄) of the threshold soft function at N4LO. The hard
function can be extracted from the computation of the purely virtual matrix elements
computed through four loops in QCD in refs. [19, 80–86]. The ultraviolet renormalization
counterterms are given in terms of the QCD beta function [103–108]. The cusp anomalous
dimension is known through fourth loop order [18, 19]. The mass factorization counterterm
at threshold can be determined from the Altarelli-Parisi splitting functions, which have
been determined through second [13–17, 109, 110] and third [55–60] non-trivial order. The
last ingredient is not yet available in fully analytic form, and some constants have been
determined only numerically, based on an extraction from computation of several moments
of the full splitting functions and a leading color computation. The consequence is that the
splitting functions are afflicted by an, albeit small, numerical uncertainty. Our computation
of the soft function to higher orders in the dimensional regulator through third order enables
us to determine all contributions to the soft function at fourth order originating from
ultraviolet and infrared counter terms.

We first construct the finite, renormalized partonic coefficient function through N4LO
in QCD using the definitions of the previous sections. We define

ηBij, thr.

(
z, µ2

)
= lim

z→1
ηBij

(
z, µ2

)
= HB

ij

(
µ2
)
S
Rij

thr.

(
z, µ2

)
. (5.12)

We can then compare this with the existing results of ref. [55] and find agreement. Next,
we want to exploit that the soft function is described by Wilson lines, as described above.
This implies that the difference between the threshold soft function determined from the
DY and Higgs boson cross section is only given by the color representation of the Wilson
lines associated with the ingoing partons. To make this statement manifest we take the
logarithm of the soft function and replace color factors as indicated below.

log
(
ηDYij, thr.

(
z, µ2

)/
HDY
ij

(
µ2
))

(5.13)

!= CF
CA

log
(
ηHiggs
ij, thr.

(
z, µ2

)/
HHiggs
ij

(
µ2
)) ∣∣∣∣∣

C4
AA→CA/CFC

4
AF ,C

4
AF→CA/CFC

4
F F

+O
(
α5
S

)
,

where C4
R1R2

denote quartic Casimir operators (see appendix C). The principle governing
the above identity is often referred to as generalized Casimir scaling [59], which is a direct
consequence of the fact that the soft function can be written as a matrix element of soft
Wilson lines. Note, that the simple change of Casimir invariants as indicated above is
particular to fourth order results.

We use eq. (5.13) to constrain some of the currently unknown coefficients of the third-
order splitting function or to derive relations among them. In refs. [55, 60] the unknown
coefficients of the γr,(4)

f (half the coefficient of δ(z̄) in the four loop quark and gluon splitting
function) are organized in terms of the contributing color factors. For example,

1
2γ

fundamental,(4)
f = C4

F b
4
q, C4

F
+ C3

FCAb
4
q, C3

FCA
+ nfC

3
F b

4
q, C3

Fnf
+ . . . . (5.14)
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In the end, we are able to determine all but four unknown coefficients for both the
gluon and quark splitting function. Explicitly we determine the following previously
unknown constants:

b4q, C4
F

= −384ζ2ζ5 − 120ζ2ζ3 + 64ζ4ζ3 − 450ζ2 − 342ζ4 − 2111ζ6 (5.15)

+ 5880ζ7 − 2520ζ5 − 1152ζ2
3 + 2004ζ3 + 4873

24 .

b4q, C3
FCA

= 2064ζ2ζ5 −
1988

3 ζ2ζ3 + 128ζ4ζ3 + 1167ζ2

+ 2167ζ4 + 79297ζ6
18 − 10920ζ7 − 976ζ5 + 3220ζ2

3 − 3260ζ3 −
2085

4 .

b4q, C2
FC

2
A

= −2104ζ2ζ5 + 2096
9 ζ2ζ3 − 32ζ4ζ3 −

46771ζ2
27

− 60850ζ4
27 − 5497ζ6

2 + 8610ζ7 + 5354ζ5
9 − 7102ζ2

3
3 + 129662ζ3

27 + 29639
36 .

Furthermore, we find the following relations.

b4g, nfC
2
FCA

= b4q, nfCFC
2
A
. (5.16)

b4g, C4
AA

= b4q, C4
AF
− 272ζ2ζ3 + 1184ζ2

3 − 508ζ4
3 + 748ζ6

9
+ 760ζ5

3 − 784ζ3
3 − 800

9 .

b4g, C4
A

= − 1
24b

4
q, C4

AF
+ 80ζ2ζ5 −

3902
9 ζ2ζ3 + 168ζ4ζ3 + 2098ζ2

27 + 8965ζ4
54

− 19129ζ6
54 + 700ζ7 −

14617ζ5
9 + 682ζ2

3
3 + 48088ζ3

27 + 50387
486 .

The identified coefficients and relations are consistent with the numerical values found in
refs. [55, 60]. The four remaining coefficients are known only numerically as determined by
table 1 of ref. [60] and we show their values here.

b4q, nfC
2
FCA

= −455.247± 0.005. (5.17)

b4q, C4
AF

= −998.0± 0.2.

b4q, C4
F F

= −143.6± 0.2.

b4q, nfC
3
F

= 80.780± 0.005.

Finally, we are able to determine the threshold anomalous dimension analytically up
to the four unknown coefficients. We define the perturbative expansion of the threshold
anomalous dimension as

γrthr. =
∞∑
i=0

(
αS
(
µ2)
π

)i
γ
r,(i)
thr. . (5.18)

Numerically, we find that

γ
fundamental,(4)
thr. = −41.8± 0.01%, γ

adjoint,(4)
thr. = −114.964± 0.04%. (5.19)
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We include the threshold anomalous dimension and the threshold soft function in analytic
form as electronically readable files together wit the arXiv submission of this article.

5.3 Thrust and N-jettiness anomalous dimensions to N4LO

Consistency relations among SCET factorization theorems allow us to relate the threshold
anomalous dimension to the anomalous dimensions driving the logarithmic behavior of
SCETI observables, which is a large class of observables including DIS at large−x, the
jet-mass observable, as well as the thrust, C-parameter, and N -jettiness [111] event shapes.

Given the universality of SCETI anomalous dimensions [112], it suffices to find a relation
for one of these observables. For this, we take the factorization theorem of the non-singlet
structure function at threshold in DIS [48, 50, 98, 113]

F ns
2

(
x,Q2

)
=
∑
q

e2
qQ

2H
(
Q2, µ2

) ∫ 1

x
dξJq

(
Q2 ξ − x

x
, µ2

)
f th
q

(
ξ, µ2

)
, (5.20)

where Jq is the SCETI jet function that also appears in the factorization theorem for
thrust [114–116] and N -Jettiness [111]. Its RGE reads

µ2 d
dµ2Ji

(
s, µ2

)
=
∫

ds′γiJ
(
s− s′, µ2

)
Jq
(
s′, µ2

)
,

γiJ

(
s, µ2

)
= −Γicusp

(
αS
(
µ2
)) 1

µ2

[
µ2

s

]
+

+ 1
2γ

i
J

(
αS
(
µ2
))
δ(s) . (5.21)

The RGE invariance of the factorized cross section immediately implies that the non-cusp
part of γiJ(s, µ2) is

γiJ

(
αS
(
µ2
))

= −γif
(
αS
(
µ2
))
− γiH

(
αS
(
µ2
))

, (5.22)

and by using eq. (5.11) we can rewrite it in terms of the threshold and collinear anoma-
lous dimension3

2γiJ
(
αS
(
µ2
))

= γithr.

(
αS
(
µ2
))
− γiH

(
αS(µ2)

)
. (5.23)

We would like to emphasize that we extracted γiH(αS(µ2)) from ref. [86] and γif (αS(µ2))
from refs. [55, 60] in combination with the relations found in section 5.2. For the SCETI
beam function [112] Bi(t, z, µ2), one can either use the equivalence between the SCETI jet

3Note also that, since from the thrust factorization it is trivial to show that

γi
H(αS(µ2)) + 2γi

J (αS(µ2)) + γi
S(αS(µ2)) = 0 ,

with γi
S(αS(µ2)) being the anomalous dimension of the thrust soft function, eq. (5.23) implies that the

threshold soft function anomalous dimension is the opposite of the thrust soft function anomalous dimension

γi
S(αS(µ2)) = −γi

thr.(αS(µ2)) .
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and beam function anomalous dimensions and eq. (5.23), or repeat this exercise using the
generalized threshold factorization theorem [117], to show that the following relation holds

µ2 d
dµ2Bi

(
t,z,µ2

)
=
∫

dt′γiB
(
t−t′,µ2

)
Bi
(
t′,µ2

)
, (5.24)

γiB

(
t,µ2

)
=−Γicusp

(
αS
(
µ2
)) 1

µ2

[
µ2

t

]
+

+ 1
4
(
γithr.

(
αS
(
µ2
))
−γiH

(
αS
(
µ2
)))

︸ ︷︷ ︸
2γi

B(αS(µ2))

δ(t) .

For completeness, we include the jet/beam function anomalous dimension in analytic form
as electronically readable files together with the arXiv and journal submission of this article.

6 Conclusions

Throughout this paper, we computed analytic results for so-called soft master integrals.
These integrals play a crucial part in the analytic computation of scattering cross sections
involving two identified hadrons, and we discussed how these integrals relate to LHC
production cross sections, semi-inclusive deeply inelastic scattering, and e+e− annihilation.
Our integrals are essential ingredients to compute perturbative cross sections through N3LO
and beyond in QCD and QED perturbation theory.

We have presented explicit analytic results for differential and inclusive soft master
integrals as a Laurent series in the dimensional regulator for partonic scattering processes
involving two initial state partons and two or three soft final state partons on top of a
colorless final state. Our calculation extends available results in the literature, as we include
the first nine terms in the expansion in the dimensional regulator.

Our differential master integrals are integrated analytically over the final state parton
momenta and retain all differential dependence on the four-momentum of the colorless final
state. These integrals depend in a non-trivial fashion on one dimensionless variable in terms
of functions expressed as harmonic polylogarithms. Our inclusive soft master integrals are
in addition integrated over the degrees of freedom of the colorless final state particle and
are given by linear combinations of multiple zeta values. Our differential and inclusive
master integrals are so-called pure functions of uniform transcendental weight. We discuss
explicitly how the computation of such soft master integrals is greatly facilitated by the
simultaneous computation of differential and inclusive soft master integrals in conjunction
with the use of the method of differential equations.

We build on a prior computation of the inclusive cross section for the production of
a Higgs boson or a lepton pair at the LHC at the production threshold and express the
corresponding partonic coefficient function in terms of our soft master integrals. With this,
we compute threshold corrections to these partonic cross sections to two higher powers in
the dimensional regulator. These results form a crucial ingredient for a future determination
of the Drell-Yan and Higgs boson production cross section at N4LO in perturbative QCD.

Finally, we recap the factorization of cross sections describing the production of a
colorless final state in the threshold limit. We extract all required anomalous dimensions and
find agreement with previous results. We then explicitly determine the so-called threshold
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soft function at N4LO in perturbative QCD up to one constant that is yet to be determined
from a genuine computation at this order. Furthermore, we extract the threshold anomalous
dimension through fourth loop order. Finally, using the generalized Casimir scaling property
of the threshold soft function, we obtain new analytic results for several coefficients in the
four-loop Altarelli-Parisi splitting functions in the term proportional to δ(1− z).

We present many of our results as ancillary files in electronically readable form appended
to the arXiv and as supplementary material attached to this article, and we enumerate
them here:

1. Definitions and solutions for canonical inclusive soft master integrals for RR, RRV, and
RRR production cross sections. In our solutions we set z̄ = Q2 = 1 as the functional
dependence on these variables is easily restored by multiplying the solutions with
(z̄Q)−2(m+L)ε, where m and L are the number of soft partons and loops respectively.

2. Definitions and solutions for canonical differential soft master integrals for RR, RRV,
and RRR production cross sections. In our solutions we set w1 = w2 = Q2 = 1 as the
functional dependence on these variables is easily restored by multiplying the solutions
with (w1w2Q

2)−(m+L)ε, where m and L are the number of soft partons and loops
respectively. Furthermore, we include the matrices A for the canonical differential
equations of our differential soft master integrals I, which take the form

d~I = dA · ~I. (6.1)

3. The bare inclusive soft-virtual cross section for the production of a Higgs boson
or a Drell-Yan lepton pair through N3LO in perturbative QCD and including two
additional powers in the dimensional regulator, i.e., in total the first nine terms in
the expansion in ε at every perturbative order.

4. The renormalized, finite soft function (see eq. (5.5)) for the production of a colorless
final state by scattering of quarks of gluons through N4LO in perturbative QCD. The
soft function is determined up to one remaining constant at N4LO multiplying a Dirac
delta distribution of z̄.

5. The threshold anomalous dimension through N4LO in perturbative QCD. In particular,
we include γrthr.(αS(µ2)) of eq. (5.11).

6. The N-Jettiness beam function anomalous dimension γrJ(αS(µ2)) through N4LO in
perturbative QCD of eq. (5.23).
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A Ultraviolet renormalization

The strong coupling constant renormalizes as

αS = αS
(
µ2
)

(4π)−ε eεγEZα
(
µ2
)
, (A.1)

with

ZαS (µ2) = 1 + aS
(
µ2
) [
−β0

4ε

]
(A.2)

+ a2
S

(
µ2
) [ β2

0
16ε2 −

β1
16ε

]

+ a3
S

(
µ2
) [−β3

0
64ε3 + 7β1β0

384ε2 −
β2

192ε

]

+ a4
S

(
µ2
) [ β4

0
256ε4 −

23β1β
2
0

3072ε3 + 3β2
1

2048ε2 −
5β0β2
1536ε2 −

β3
1024ε

]
+O

(
a4
S

(
µ2
))
,

with aS(µ2) = αS(µ2)/π and βi the coefficients of the QCD beta function [103–108]. The
Wilson coefficient [72–75] for the heavy top effective theory renormalizes as

Ct = Zt
(
µ2
)
Ct
(
αS
(
µ2
)
,m2

t , µ
2
)
, Zt

(
µ2
)

= 1
1− β(αS(µ2))

ε

. (A.3)

B Mass factorization

The mass factorization counter term absorbs collinear singularities into a suitable re-
definition of the parton distribution functions. It is defined in terms of the following
differential equation

∂µ2Γij
(
x, µ2

)
= −aS

(
µ2
)

Γik
(
x, µ2

)
◦x Pkj

(
x, µ2

)
, ∂µ2 = d

d log (µ2) . (B.1)

Here, Pij are the Altarelli-Parisi splitting functions [13–17] and the above differential
equation is derived from DGLAP evolution of PDFs [100–102]. We note that

∂µ2aS
(
µ2
)

= −εaS
(
µ2
)
− β

(
aS(µ2)

)
. (B.2)

We expand Γij(x, µ2) in the strong coupling constant and define

Γij
(
x, µ2

)
=
∞∑
o=0

as
(
µ2
)o

Γ(o)
ij

(
x, µ2

)
, Γ(0)

ij

(
x, µ2

)
= δijδ (1− x) . (B.3)

In eq. (B.1) we make use of the Mellin convolution

f (z) ◦z g (z) =
∫ 1

z

dx
x
f (x) g

(
z

x

)
. (B.4)

In the main part of this article we are interested in the soft limit of functions which enter
such Mellin convolutions. A convolution of two functions f(x) and g(x) which have both
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been computed in the limit x→ 1 will introduce power suppressed terms in (1− x). It is
thus useful to introduce another convolution which maintains the correct leading term of
the convolution but does not introduce additional power suppressed terms.

f(z)⊗z g(z) =
∫ 1

z
dxf(x)g (1− x+ z) . (B.5)

The above definition is easily found by expanding the original Mellin transform around the
limit of z → 1. We also define the mass factorization counter term in this limit to be

Γadjoint
(
x, µ2

)
= lim

x→1
Γgg

(
x, µ2

)
, Γfundamental

(
x, µ2

)
= lim

x→1
Γqq

(
x, µ2

)
. (B.6)

C Color

We define
CA = nc, CF = n2

c − 1
2nc

, (C.1)

where nc is the number of colors. We define the Casimir values by

CnR1R2 = 1
(n!)2

(
T
{a1
R1

. . . T
an}
R1

) (
T
{a1
R2

. . . T
an}
R2

)
, (C.2)

where the curly brackets indicate the fully symmetric trace over the terms and T aR is a
generator of SU(nc) in representation R. We find for

• n = 3:
C3
FF = 1

16
n2
c − 4
nc

(
n2
c − 1

)
, C3

FA = 0, C3
AA = 0. (C.3)

• n = 4:

C4
FF = 1

96
18− 6n2

c + n4
c

n2
c

(
n2
c − 1

)
, (C.4)

C4
FA = 1

48nc
(
6 + n2

c

) (
n2
c − 1

)
,

C4
AA = 1

24n
2
c

(
36 + n2

c

) (
n2
c − 1

)
.
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