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1 Introduction

The confluence of a new era of gravitational wave astronomy [1] and a new understanding
of the relationship [2–9] between generalized asymptotic BMS charges [10–18], and gravi-
tational memory effects [19–23] has led to the tantalising possibility of using observations
to constrain semi-classical effects in gravity [8, 24–28]. An important aspect of this new
understanding is the expectation that any gravitational memory effect corresponds to an
asymptotic charge generated by a particular asymptotic symmetry. For example, the stan-
dard displacement memory effect [19, 20, 29] is related to supertranslation charges [3, 5].
Given the plethora of memory effects [4, 14, 30–35] and various extensions of the asymp-
totic symmetry group [12, 13, 16–18, 36–40], a natural programme to consider is one of
relating the various memory effects to the various asymptotic charges, in the hope that one
may learn something new about semi-classical/quantum gravity.

Recently, it has been argued [15] that the most appropriate context in which to con-
sider such questions is the first order tetrad formalism [41–44]. The relevant gravitational
action then includes, in principle, any extra terms that do not contribute to the equations
of motion, including higher derivative terms [45, 46]. The result is that by applying the
covariant phase space formalism [47–53] to the asymptotic BMS symmetries of the back-
ground, we obtain more charges than may have been expected. In particular, in addition
to the standard BMS charges that have been known in the literature for some time (see
e.g. [54]), one obtains also dual charges [16, 38].1 The contribution of higher derivative
terms in the action are not associated with any global charges, such as Bondi mass or
angular momentum, or NUT charges. Nevertheless, the charges derived therefrom are

1An alternative approach which makes the relation between charges and symmetries one to one, is
to start from a duality invariant formulation of the theory at hand. In this way, dual charges generate
asymptotic symmetries of the dual gauge field [55]. Interestingly, the expression of the dual charge is the
same in both approaches.
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non-trivial [45]. Moreover, in contrast with the two-derivative terms, there are charges
derived from the higher derivative terms that are generated by internal Lorentz transfor-
mations. The status of internal Lorentz transformations is a matter of debate within the
literature [17, 42, 56–63]. However, the results of ref. [45] suggest that their physical sig-
nificance must at least be considered. In this work, we shall go further by arguing that
not only are charges associated with internal Lorentz transformations non-trivial but that
they are directly related to physical observables.

The physical observable that is of particular interest here is the precession of a freely-
falling gyroscope in the asymptotic region of spacetime caused by gravitational waves [64,
65], and a net rotation after the passage of gravitational wave dubbed the ‘gyroscopic
memory effect’. As noted in refs. [64, 65], the expression for the gyroscopic memory effect
is clearly related to dual quantities. However, it is not equal to any of the dual charges
previously derived.

In this paper, we show that the gyroscopic memory effect is related to the dual higher
derivative or Gauss-Bonnet charge of [45] that is generated by internal Lorentz transforma-
tions. Furthermore, we show that the Pontryagin charge generated by an internal Lorentz
transformation is related to a new subleading memory effect, which we call the radial kick
memory. While, the relation of the precession of a spin vector to charges derived from
asymptotic Lorentz transformations is natural, given that the effect is very much frame-
dependent, the relation of a radial kick memory effect to an internal Lorentz charge is not
immediately obvious.

One possible explanation for the relation of these memory effects to internal Lorentz
charges is that beyond the standard and dual BMS charges derived from the two-derivatve
terms in the action, there are no other independent charges and that the internal charges
conveniently repackage an expression that may equally be interpreted as a spacetime ro-
tation or even superrotation charge [12]. Another possibility is that the internal Lorentz
charges are in fact related to various extensions of the BMS group [13, 17, 18, 39, 40, 66].
In order to investigate this, one must first investigate the charges associated with the
additional symmetry generators.

Of course, one may choose boundary conditions that freeze out asymptotic internal
Lorentz transformations, just as one can choose boundary conditions that freeze out super-
translations and break the BMS group down to the Poincaré group. However, correspond-
ingly, such a choice would amount to a configuration space that precludes a gyroscopic
memory effect. We would argue that this would not be desirable as such a memory effect is
a natural physical effect that ought to be reflected in any true configuration space. There-
fore, the boundary conditions ought to be such as to accommodate asymptotic internal
Lorentz transformations. This highlights the importance of memory effects as a guide for
determining the appropriate boundary conditions that one ought to impose.

This paper is organized as follows. In section 2, we begin by reviewing the space
of solutions that we shall we be working in, namely asymptotically flat spacetimes and
recall their asymptotic symmetry generators. In subsection 2.1, we define a local inertial
frame, which is necessary for describing gravitational memory effects, which are treated
in subsection 2.2. In this subsection we introduce the radial kick memory and review
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briefly the gyroscopic memory effect of refs. [64, 65]. In section 3, we review the higher
derivative charges derived in ref. [45] and make the link between these and the memory
effects discussed in section 2.2. In section 4, we establish the gyroscopic memory effect
as a vacuum transition under the residual internal Lorentz symmetry. We end with some
general comments.

Notation: latin indices (a, b, . . .) denote internal Lorentz indices and are raised and low-
ered with respect to the Lorentz metric ηab. We use Greek letters (µ, ν, . . .) to denote the
spacetime indices. The vierbein ea = eaµdx

µ. The spacetime metric can be expressed
in terms of the vierbein as ds2 = gµνdx

µdxν = ηabe
aeb. Indices (µ̂, ν̂, . . .) denote internal

Lorentz indices associated with a particular orthonormal frame introduced in section 2.2.
Indices I, J, . . . will denote spacetime indices on the round 2-sphere and will be lowered and
raised using the round 2-sphere metric γIJ and its inverse, respectively, except where explic-
itly stated otherwise. Finally, we define the curvature 2-form as Rab(ω) = dωab + ωac ∧ ωcb,
where ωab = ωµabdx

µ is the spin connection.

2 Metrics and frames in the far zone

In the absence of cosmological constant, arbitrary localized matter sources lead to asymp-
totically flat spacetimes, which are most conveniently described in the Bondi gauge

grr = gra = 0, ∂r det
(
r−2gab

)
= 0. (2.1)

Any such metric is commonly written as

ds2 = −e2β(Fdu2 + 2du dr) + r2hIJ

(
dθI − U I

r2 du

)(
dθJ − UJ

r2 du

)
. (2.2)

The Bondi gauge is particularly well adapted to null rays generated by the matter source
whose center of mass is located at the origin of space r = 0. The future lightcones of the
source are described by u = const surfaces with normal ` = e−2β∂r, the tangent vector to
outgoing affine null geodesics, along which the angles θI remain constant. Finally, r is the
areal distance, so that the area of coordinate spheres is 4πr2 irrespective of the metric. In
the far zone where r is very large compared to the size of the source, one can solve the
Einstein equations perturbatively in the small parameter 1/r, with the boundary condition
that limr→∞ hIJ(u, r, θ) = qIJ(θ), where qIJ is a fixed metric on the round sphere with
Ricci scalar R[q] = 2. Thus we find

F = 1− 2m
r

+ 1
r2

( 1
16C

2 + 1
3DIL

I + 1
4DIC

IJDKCJ
K
)

+O(r−3), (2.3)

β = − C2

32r2 +O(r−3), (2.4)

hIJ = qIJ + 1
r
CIJ + 1

4r2 qIJC
2 +O(r−3), (2.5)

U I = −1
2DJC

IJ + 1
r

[
−2

3L
I + 1

16D
IC2 + 1

2C
IJDKCJK

]
+O(r−2), (2.6)
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where CIJ is the Bondi shear, DI is the covariant derivative on the ‘celestial’ sphere
DIqJK = 0 and we use the shorthand notation C2 ≡ CIJC

IJ . The remaining Einstein
equations fix the time derivative of the mass and angular momentum aspects m and LI in
terms of the shear.

The geometric construction of the coordinate system as described above still admits
certain residual coordinate transformations given by the BMS generators x→ x+ ξ with

ξu = f, ξr = r

2
(
CI∂If −DIξ

I
)
, ξI = Y I −

∫ ∞
r

dr′
e2β

r′2

(
h−1

)IJ
∂Jf, (2.7)

where f = T
(
xI
)

+ u
2DIY

I and Y I is a conformal Killing vector on the sphere. It is
well known that these form the asymptotic symmetries of the asymptotic phase space and
correspond to well defined charges given by

PT =
∫
Tm , JY =

∫
Y INI , (2.8)

where NI is the improved angular momentum aspect of ref. [67].

2.1 Local inertial frames

An experimenter located in the far zone describes her measurements in a local frame
constructed by orthonormal basis vectors eµ̂µ. Assuming that the observer has velocity
V = V µ∂µ, a natural tetrad adapted to the observer and to the radial rays arriving from
the source is [64]

e0̂ = V , er̂ = 1
γ

`− V , eî =
E I
î

r

[
∂I + γIJ

(
r2vJ − UJ

)
`
]
, (2.9)

where E I
î

is a zweibein on the sphere constrained by

hIJE
I
î
E J
ĵ

= δîĵ . (2.10)

The condition (2.10) still allows for rotations of the transverse vectors by an arbitrary
rotation angle λ(u, r, θI) as E I

î
→ Rî

ĵE I
ĵ
. To study physical effects meaningfully, we fix

the tetrad further by imposing that transverse directions are induced from a given zweibein
Ê I
î

on the celestial sphere [45], i.e.

Eî
I(u, r, θI) = XI

J(u, r, θI)Êî
J(θI) , (2.11)

where XIJ = qIKX
K
J is symmetric and Ê I

î
(θJ) is a time-independent zweibein on the

celestial sphere such that
qIJ Ê

I
î
Ê J
ĵ

= δîĵ . (2.12)

In physical terms, this corresponds to choosing transverse directions from a specific map-
ping of the sky through distant stars. The above condition and the asymptotic expansion
of hIJ imply that

E I
î

= Ê J
î

(
δJ
I − 1

2rCJ
I + 1

16r2C
2δJ

I
)

+O(1/r3). (2.13)
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The above construction fixes all ‘local Lorentz transformations’ except a time-independent
rotation in the transverse plane with angle λ(θI) [45]

Ê I
î
→ Rî

ĵ(λ)Ê I
ĵ
, Rîĵ = cosλ δîĵ + sin λ ε̂iĵ . (2.14)

It is natural to ask whether this residual transformation corresponds to a nontrivial charge
and a physical observable. We will address these questions in the following sections.

The above construction works for general observers with arbitrary velocity. However,
to make a concrete statement, we consider an observer that is freely falling and is at rest
at some initial time u = u0 before the arrival of GWs. The velocity of the observer is then
given by V = γ(∂u + vr∂r + vI∂I) with

γ = 1 + m0
r

+ γ2
r2 , γ2 =

∫ u

u0
du′m+ 1

16∆C2, (2.15a)

vr = ∆m
r
−
γ2 + ∆

(1
6DIL

I + 1
8(DJC

IJ)2)
r2 , (2.15b)

vI = −∆DJC
IJ

2r2 +
DIγ2 + ∆

(
− 2

3L
I + 1

2C
IJDKCJK

)
r3 = U I + 1

r2DI

∫ u

u0
du′m, (2.15c)

where ∆X ≡ X(u)−X(u0). The observer can use the frame (2.9) to construct a Riemann
normal coordinate system X µ̂ in her lab as follows. For any nearby spacetime event p,
there is a geodesic which passes through the event and intersects the observer’s worldline
Γ orthogonally at a given proper time τ(p). The coordinate of the event is given by
X µ̂(p) = (τ(p), Xm̂(p)) where Xm̂(p)em̂ is the unique vector orthogonal to Γ at τ(p) whose
integral curve reaches the event p at an affine parameter equal to 1. Here, m̂ = (r̂, î).
The position X µ̂ of free test particles in the observer’s lab obeys the geodesic deviation
equation

Ẍ µ̂ = Rµ̂0̂0̂ν̂ X
ν̂ (2.16)

where overdot refers to differentiation with respect to the proper time τ . This is because
the length scale of the observer’s lab is much smaller than the radius of curvature of the
background metric.

2.2 Persistent gravitational wave effects

There are several gravitational wave effects that persist after the passage of the wave. We
will briefly discuss some of these effects that are relevant for our considerations.

Displacement memory. One can show that at leading order in 1/r, the dynamics takes
place in the transverse plane for which R0̂̂i0̂ĵ = − 1

2r C̈îĵ , which is nonzero only during the
time interval (τ0, τf ) when the gravitational wave passes through the observation point.
Assuming that the test mass is initially at rest, integrating the geodesic deviation equa-
tion (2.16) twice over time implies

X î(uf ) = X î
0 + 1

2r∆C î ĵX
ĵ
0 . (2.17)

where X0 = X(u0) is the initial position of the test mass. This is the standard displacement
memory effect [19, 20, 29].
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Gyroscopic memory. Another type of observable that an observer can measure is the
orientation of a freely falling gyroscope in her lab and how it is affected by GWs. This was
considered in [64, 65]. Consider a small freely falling gyroscope with proper velocity V µ,
given by equation (2.15), and spin Sµ. In the local frame (2.9) adapted to the observer
outlined above, the rate of precession of the spin vector due to the background geometry is

dSµ̂

dτ
≡ V · ∇Sµ̂ = Ωµ̂

ν̂ S
ν̂ , Ωµ̂ν̂ ≡ −V µωµ

µ̂ν̂ . (2.18)

In fact, the 0̂ component of the spin vector vanishes in this comoving frame and the r̂
component is subleading. Therefore, the pertinent effect is given by

dS î

dτ
= Ωî

ĵS
ĵ . (2.19)

A careful computation gives that2

Ωîĵ = −
ε̂iĵ
r2 M̃ , M̃ = 1

8
(
2DIDJ C̃

IJ −NIJ C̃
IJ
)
, (2.20)

where ε̂iĵ is the alternating tensor with ε1̂2̂ = 1 and the symmetric trace-free dual ten-
sor [38] C̃IJ = εIKCK

J . The quantity M̃, called the dual covariant mass aspect in [28],
which transforms covariantly under asymptotic Diff(S2) transformations [28] and consti-
tutes the imaginary part of ψ̊2, controls the precession rate of the gyroscope due to non-
trivial gravitational effects in the background. In particular, note that in the absence of
gravitational radiation and gravito-magnetic monopoles (NUT charges), the right hand
side is zero, which implies no precession. For the net memory effect, one considers the
time integral of (2.20) in a sandwich configuration of two non-radiating backgrounds with
a burst of gravitational radiation in between [64], giving a net rotation

∆S î = 1
r2 ∆Rî ĵ S

ĵ
0 , ∆Rî ĵ = λ εî ĵ , λ =

∫
duM̃. (2.21)

Radial kick memory. There is also a subleading memory effect in the radial direction,
which has been neglected in the literature simply because it appears at O(1/r3). However,
this quantity naturally appears in our analysis in the next section. Consider two test
masses with the same angular position but with some initial radial separation X r̂

0 . Using
equation (2.16), we find that to leading order

Ẍ r̂ = R0̂r̂0̂r̂X
r̂
0 , (2.22)

where the relative acceleration in the er̂ direction due to gravitational effects is given to
leading order by

R0̂r̂0̂r̂ = − 2
r3M , M = m+ 1

8NIJC
IJ (2.23)

2The precession also contains a trivial term that exists even in the Minkowski background. Cancelling
this term corresponds to going to a frame whose spatial basis vectors are tied to distant stars rather that
the source. See [64, 65] for details.
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Note that the first term on the right-hand side is expected from Newtonian gravity, while
the second term is a genuine gravitational wave effect. The quantity M, called the ‘co-
variant mass aspect’, constitutes the real part of the second Weyl scalar ψ̊2 and transforms
covariantly under asymptotic Diff(S2) transformations [28]. Note that as long as u− u0 is
small3 with respect to r, we have that the only non-zero component of the deviation vector
in the asymptotic orthonormal frame is sr̂ = sr. Considering the time integral of (2.23) in
a sandwich configuration of two non-radiating backgrounds with a burst of gravitational
radiation in between, the net radial velocity is

∆V r̂ = 1
r3

∫
duM. (2.24)

3 Higher derivative charges

In ref. [15], it is argued that a systematic classification of asymptotic charges in gravity
may be obtained by considering all possible contributions to the gravitational action that
do not affect the equations of motion in a first order tetrad formulation. In other words,
any combination of terms that gives an Einstein tensor upon variation with respect to the
gravitational degrees of freedom. In particular, dual gravitational charges [16, 38] may
be obtained from a Holst term, or Nieh-Yan term in the presence of fermions [15, 60].
Following ref. [15], charges coming from higher derivative terms in the action, namely the
Gauss-Bonnet and Pontryagin terms

IGB = 1
2εabcd

∫
M
Rab ∧Rcd and IP = i

2

∫
M
Rab ∧Rab (3.1)

have been studied in ref. [45]. An important aspect of this study is the role of internal
Lorentz symmetries, which has been treated by a number of authors [15, 17, 41–44, 56–63].
In ref. [56], the combined action of the diffeomorphisms and internal Lorentz transfor-
mations on the vierbein is chosen so that it vanishes for Killing isometries. However,
ref. [45] advocates a different definition for asymptotic symmetries: that the action on
the gauge-fixed vierbein must be chosen as to match the action of the diffeomorphisms on
the gauge-fixed metric. This means then that the residual internal Lorentz transformations
then correspond to the improper internal Lorentz transformations and are, therefore, phys-
ically relevant. Although, the two prescriptions are the same as far as the BMS charges are
concerned [63], there is an important consequence for the existence of asymptotic internal
Lorentz generators: the prescription of ref. [56] freezes them out, while the prescription of
ref. [45] allows a functions-worth λ(xI) of such generators, which corresponds to rotations
in the two-dimensional i directions. These generators will then have associated asymptotic
charges. In contrast to the case of two-derivative terms in the action, where the residual in-
ternal Lorentz symmetries do not give non-trivial charges [60], for higher derivative charges
this is no longer the case [45]. To leading order, the internal Lorentz charges associated

3To be precise, we require that u − u0 � r, which can simply be arranged.
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with the higher derivative terms in the gravitational action are:

QGBλ = 1
r

∫
S
dΩ λ

(
2DIDJ C̃

IJ −NIJ C̃
IJ), (3.2)

QPλ = −4
r

∫
S
dΩ λ

(
2m+ 1

4NIJC
IJ). (3.3)

Comparing equations (2.20) and (3.2), and equations (2.23) and (3.3), we find a striking
resemblance. In fact, if we choose

λ ∝ δ(2)(x− x0), (3.4)

where x0 corresponds to the point on the sphere from which the geodesics emanate, we find
an equivalence between the respective expressions. Hence, the precession rate of a freely-
falling gyroscope corresponds to a Gauss-Bonnet charge density generated by an internal
Lorentz symmetry, while the radial acceleration of freely-falling test masses corresponds
to a Pontryagin charge density generated by an internal Lorentz symmetry. In the case of
the gyroscopic memory effect, the relation to an internal Lorentz symmetry is somewhat
intuitive, since the very existence of gyroscopic memory relies on the properties of a frame
attached to the gyroscope. Moreover, we have established an interpretation of this effect
as a vacuum transition. In the case of the radial kick memory, the coincidence of the
change in the radial velocity given by equation (2.24) and the charge (3.3) is not as clear
from a phase space perspective. Mathematically, this coincidence arises from the fact that
R0̂r̂0̂r̂ = R1̂2̂1̂2̂.

4 Gyroscopic memory as vacuum transition

The standard displacement memory can be interpreted as a vacuum transition. Let us
briefly review that. In practice, the full spacetime can be considered as a sandwich config-
uration of two non-radiating backgrounds with a burst of gravitational radiation in between.
The two non-radiating regions — also called a radiative vacuum—are specified by time-
independent shears which take the form CIJ = D〈IDJ〉C. The function C(θI), called the
supertranslation field, parametrizes the radiative vacuum and has the interesting property
that it shifts under a supertranslation δTC = T . Therefore, the vacua form a homogeneous
space under the action of supertranslations.

A generic radiation process induces a net change in the shear given by

∆CIJ = CIJ(u→ +∞)− CIJ(u→ −∞) =
∫
duNIJ , (4.1)

which corresponds to a vacuum transition, i.e. a shift in the supertranslation field ∆C =
δTC = T , where T is the induced supertranslation. This symmetry transformation is
generated by the action of the corresponding supermomentum PT =

∫
S2 mT . The phys-

ical observable of this vacuum transition is the displacement memory discussed around
equation (2.17).

– 8 –
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Memory Physical observable Vacuum transition Generator
Displacement ∆X î = 1

2r∆C î ĵ X
ĵ
0 ∆C = δTC = T PT in equation (2.8)

Gyroscopic ∆S î = 1
r2 ∆Rî ĵ(λ)S ĵ0 ∆Φ = δλΦ = λ QGBλ in equation (3.2)

Table 1. Summary of the memory effects and the respective expressions.

However, our considerations show that one needs to add another function to specify
the radiative vacuum. A dyad on the sphere Ê J

î
is specified by

Ê J
î

= Rî
ĵ(Φ)Ēĵ

J , (4.2)

where Rî
ĵ(Φ) is a rotation matrix with angle Φ and Ēĵ

J is a given reference dyad. Under
the symmetry transformation (2.14), the vacuum field Φ is shifted δλΦ = λ. The net
effect of radiation on asymptotic gyroscopes is a rotation in transverse directions given
by equation (2.21). This can be equivalently understood as a rotation in the celestial
dyad,4 which in turn corresponds to a shift in the vacuum field Φ under the symmetry
transformation (2.14). A vacuum is thus labeled by the pair

(
C(θI),Φ(θI)

)
and a radiation

process induces a transition in both of these functions, which correspond to symmetry
transformations in the phase space generated by the supermomentum PT and the Gauss
Bonnet charge QGBλ defined respectively in equations (2.8) and (3.2):

{PT , CIJ} = D〈IDJ〉T , {QGBλ , Ê I
î
} = λεî

ĵÊ I
ĵ
. (4.3)

The orders at which the memory effect, the charge and the change in the physical field
arise are analogous to what happens in the case of the displacement memory effect. In
that case, the memory effect is seen at order 1/r, which is the order at which the Bondi
shear appears in the metric on the 2-space, while the supertranslation charge comes in at
leading order. In the case of the gyroscopic memory effect, the rate of precession is at order
1/r2, see equation (2.20), and the charge is at order 1/r, see equation (3.2). The pertinent
physical field here is ωuîĵ , which also changes at order 1/r2; see equation (31) of ref. [64].
This analogy is summarised in table 1.

We finish with a comment regarding the observability of such effects. While there is a
good prospect of future gravitational wave detectors observing the displacement memory
effect [23, 69–71], the additional memory effects considered in this paper are subleading
effects, making them more difficult to observe. Nevertheless, the fact that we have related
potentially observable memory effects to charges derived from higher derivative terms in
the gravitational action, offers the possibility, in principle, of constraining observationally
higher derivative terms, which are important in semi-classical gravity.

5 Discussion

In this paper, we have extended the known examples of a correspondence between asymp-
totic symmetries and memory effects to two further cases. As to whether there must in

4From this point of view, the gyroscopic memory is translated into the ‘astrometric memory’ discussed
in ref. [68].
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general be a relation between these two physical quantities, we would expect this to be
the case, even though there is no proof yet. The reason that we expect this statement to
be true is the following: A memory effect is typically understood in terms of a transition
between two non-radiative spacetimes. However, a non-radiative configuration (which we
may call a radiative vacuum, i.e. a no graviton state) is also characterized by charges. This
point is investigated in detail recently in [72].

In this work, we have treated the Gauss Bonnet and Pontryagin terms as independent,
namely, we assume that they come with independent and arbitrary coupling constants
in the action that we can tune. Indeed, what we call the Gauss Bonnet and Pontryagin
charges are derived by varying the charge corresponding to the residual internal Lorentz
symmetry with respect to these coupling constants. Similarly supermomenta and dual
supermomenta correspond to the real and imaginary parts of the supertranslation charge.
However, another perhaps more satisfactory approach is that the symmetries and charges
of the theory are derived after the action has been fixed once and for all. In order to do
this one has to implement a “duality invariant formulation” of the theory. While such a
formulation has been worked out in the case of Maxwell theory [55], whether this can be
done for non-linear gravity is an open problem.
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