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1 Introduction

The interest of the Carrollian (or ultra-relativistic) contraction of the Poincaré algebra [1, 2]
in the context of gravity first appeared in the study of the “strong coupling” [3] or zero
signature [4, 5] limit of Einstein’s theory. Initially expressed in Hamiltonian terms, the
covariant formulation of that limit was worked out in [6], where the underlying Carrollian
geometry was identified and constructed. As realized more recently [7], the limit appear-
ing in [3–6] is the “electric” Carrollian contraction of Einstein gravity. There is another
Carrollian contraction, called “magnetic” in [7], which is also easily obtained in the Hamil-
tonian formalism. Conserved charges and asymptotic symmetries for both “electric” and
“magnetic” Carrollian gravity were then studied in [8–10]. Aside from the original mo-
tivation, Carrollian field theories and gravity recently received a renewed interest due to
their relation with the physics taking place at the null boundaries of asymptotically-flat
spacetimes in general relativity, see e.g. [11–14].
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Specifically, the magnetic Carrollian limit of Einstein gravity on which we focus in this
note can be derived as follows. One starts from the canonical action in D + 1 spacetime
dimensions,

I =
∫
dt dDx

(
πij ġij −NH⊥ −N iHi

)
. (1.1)

The Hamiltonian constraints take the form

H⊥ = HM +HE , Hi = − 2∇jπij , (1.2)

where

HM = −
√
g

16πGM
(R− 2Λ) , HE = 16πGMc2

√
g

(
πijπij −

1
D − 1 π

2
)
, (1.3)

with GM = c−4GN and GN denoting Newton’s constant. One can then take the limit
c → 0, effectively dropping the term HE in the Hamiltonian density, which is subleading
in that expansion [7]. One thus obtains the action of magnetic Carrollian gravity:

IM =
∫
dt dDx

(
πij ḣij −NHM −N iHi

)
. (1.4)

Signals of the existence of a magnetic Carrollian limit of general relativity were also pointed
out in [15] by implementing the limit c→ 0 on specific solutions. The magnetic theory was
also recovered in [16] at the next-to-leading order in a Carrollian expansion of the covariant
Einstein-Hilbert action, developed along the lines pioneered in [17]. In the Hamiltonian
setup, the electric Carrollian limit is obtained instead by rescaling the fields and Newton’s
constant so as to keep in the limit c → 0 the term HE in the Hamiltonian density while
dropping HM , without affecting neither the kinetic term nor Hi.

The key dynamical feature that distinguishes the magnetic contraction from the electric
one is that the momentum πij conjugate to the metric cannot be eliminated using its
own equation of motion in the magnetic case, while it can in the electric case. In the
electric theory, eliminating πij leads to the second-order covariant action of [6], while in
the magnetic theory the equation of motion for πij forces the Carrollian second fundamental
form (or extrinsic curvature) to vanish. This property plays a significant role below.

There exist other approaches to Carrollian theories of gravity, which are based on the
gauging of the Carroll algebra along the lines of standard Poincaré (or (A)dS) gaugings [18–
21]. A natural question is then to compare the Hamiltonian and gauging procedures. The
form of the equations of motion points towards the identification of the theory developed
in [18] with electric Carrollian gravity, and of that developed in [19] with magnetic Carrol-
lian gravity. In this paper, we focus on the magnetic case and we prove that the actions
presented in [19] and [7] are indeed equivalent.

Our paper is organized as follows. In section 2, we introduce the quantities that appear
in the gauging of the Carroll algebra and that give a Cartan description of Carrollian
geometry. In section 3, we prove the equivalence of the first-order action of [19] with
the Hamiltonian action of [7]. In section 4, we revisit this result starting from the relation
between the first-order and Hamiltonian formulations of Einstein gravity and implementing
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the limit c → 0 afterward. This allows us to show how the key features of the magnetic
theory are already visible in general relativity provided that one solves only part of the
torsion constraint. In appendix A, we discuss how one could modify this limiting procedure
to obtain instead the electric theory, highlighting however a series of unsatisfactory features
that are absent in the magnetic limit.

2 Gauging of the Carroll algebra — Kinematics

We review in this section Carrollian geometry from the point of view of Carrollian connec-
tions and “solderings”. A soldering attaches to the manifold the connection components
associated with translations so that they can be regarded as tangent vectors to the mani-
fold (“local frames”). This identification endows the tangent spaces to the manifold with
the structure of a flat Carroll spacetime, on which the homogeneous Carroll group acts.
This approach to Carrollian geometry is quite general and necessary for understanding the
gauging procedure to be presented later; see also the reviews [22, 23] and references therein
for related discussions. We develop in this section the concepts per se, without any refer-
ence to a limiting procedure that would regard the Carrollian structure as a contraction of
the corresponding Poincaré one.

2.1 Carroll algebra

The Carroll algebra [1, 2] is a contraction of the Poincaré algebra and its non-vanishing
commutators are

[Jab, Pc] = δcbPa − δcaPb , (2.1a)

[Jab, Cc] = δcbCa − δcaCb , (2.1b)

[Jab, Jcd] = δacJdb + δbdJca − δadJcb − δbcJda , (2.1c)

[Ca, Pb] = δabH . (2.1d)

The Latin indices a, b, . . . from the beginning of the alphabet are internal indices taking
spatial values 1, . . . , D. The corresponding capital letters A,B, . . . take the spacetime
values 0, 1, . . . , D. The generators H, Pa, Ca and Jab are associated with time translations,
spatial translations, Carrollian boosts and spatial rotations, respectively. Carrollian boosts
and spatial rotations define the homogeneous Carroll subalgebra.

Carroll transformations leave both the degenerate metric

(ζAB) =
(

0 0
0 δab

)
(2.2)

and the vector
(nA) =

(
1
0

)
, ζAB n

B = 0 (2.3)

invariant. One can in fact define the Carroll group as the group of linear transformations
that leave these objects invariant. The degenerate metric enables one to lower meaningfully
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(i.e., in a Carroll-invariant way) the internal indices. The above commutation relations can
be written in a compact way as

[JAB, PC ] = ζCBPA − ζCAPB , (2.4a)

[JAB, JCD] = ζACJDB + ζBDJCA − ζADJCB − ζBCJDA , (2.4b)

with P0 = H and J0b = Cb = −Jb0.
One can also include a cosmological constant Λ = σD(D−1)

2`2 by considering the Carroll
(A)dS algebra, which is a contraction of the (A)dS algebra and includes the additional
non-vanishing commutators

[H,Pa] = − σ
`2
Ca , [Pa, Pb] = − σ

`2
Jab , (2.5)

or together as
[PA, PB] = − σ

`2
JAB , (2.6)

where σ = 1 (−1) corresponds to the dS (AdS) case.

2.2 Carrollian connection — Vielbein

The first step in the “gauging” of a Lie algebra is to define a connection one-form taking
values on that algebra, here the Carrollian one (or its (A)dS counterpart):

Aµ = τµH + eµ
aPa + ωµ

aCa + 1
2 ωµ

abJab , (2.7)

where µ are D + 1 spacetime indices.
While the (local) introduction of a connection one-form can be done for any algebra,

the next step to be discussed uses the particular feature that some of the generators of the
Carroll algebra are translations and can be identified with a basis of tangent (co)vectors to
the manifold. Specifically, we shall make throughout the non-degeneracy assumption that
the one-forms τµ, eµa are linearly independent, so that the set of D+ 1 one-forms {τµ, eµa}
constitute a basis of the cotangent space (“soldering”). This implies that the determinant

E = det (τµ, eµa) = 1
D! εa1···aDε

µ0···µDτµ0eµ1
a1 · · · eµD

aD 6= 0 (2.8)

does not vanish. The dual basis of the tangent space is denoted by {nµ, eµa} and fulfills

eµ
aeµb = δab , τµn

µ = 1 , nµeµ
a = 0 , τµe

µ
a = 0 . (2.9)

From these relations, one derives

eµ
aeνa + τµn

ν = δµ
ν , (2.10)

(right and left inverses coincide) and

det (nµ, eµa) = E−1 . (2.11)

– 4 –
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The basis of tangent vectors {nµ, eµa} is called the “vielbein”, or “local frame” while
the one-forms {τµ, eµa} are the “inverse vielbein”, or “dual local frame”.1 We introduce
the notation

(EµA) ≡ (τµ, eµa) , (EµA) ≡ (nµ, eµa) , (2.12)

in terms of which the above relations read

EµAEµB = δAB , EµAEνA = δµ
ν . (2.13)

The vielbein and its inverse enable one to convert spacetime indices into tangent space
ones and vice-versa. We can in particular convert the indices of the Carroll-invariant
internal metric ζAB and of the vector nA into spacetime indices, yielding a degenerate
metric gµν in spacetime and the vector nµ already introduced in (2.12),

gµν = EµAEνBζAB = eµ
aeν

bδab and nµ = EµAnA , (2.14)

which fulfill by construction
gµνn

ν = 0 . (2.15)

It follows from this relation that τµ is not obtained by lowering the index ν of nν with
the metric gµν and this is the reason why we used a different letter. By contrast, we have
eµ
a δab = gµν e

ν
b and the use of the same letter here should not lead to confusion. In fact,

one has in all cases
ζAB EµA = gµν EνB , (2.16)

but this relation reduces to 0 = 0 when B = 0.
Under local gauge transformations, the Carrollian connection (2.7) transforms as

δAµ = DµΓ, where DµΓ = ∂µΓ+[Aµ,Γ] is the covariant derivative of the gauge parameter

Γ = ξH + ξaPa + λaCa + 1
2 λ

abJab . (2.17)

In components, this gives

δeµ
a = ∂µξ

a + ωµ
abξb − eµbλab , (2.18a)

δτµ = ∂µξ + ωµ
aξa − eµaλa , (2.18b)

δωµ
ab = ∂µλ

ab + 2ωµc[aλb]c −
2σ
`2
eµ

[aξb] , (2.18c)

δωµ
a = ∂µλ

a + ωµ
abλb − ωµbλab −

σ

`2
(τµξa − eµaξ) , (2.18d)

where X[µYν] = 1
2 (XµYν −XνYµ). These formulas show that the determinant condition

is preserved under transformations of the homogeneous Carroll group (boosts and spatial
rotations, with ξ = ξa = 0) for which δE = 0, but in general not under inhomogeneous
transformations (internal translations).

1We resort here to the notation which is customary in general relativity, but we stress that in the
supergravity literature (and in [19] to which we often refer in the next section) the word “vielbein” is often
used to denote the set of one forms {τµ, eµa} rather than the vectors {nµ, eµa}.
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Given its importance, we write explicitly the transformation rule of the inverse vielbein
to which (2.18) reduces for homogeneous Carroll transformations:

δeµ
a = −eµbλab , δτµ = −eµaλa . (2.19)

With the identification of {nµ, eµa} as a basis of the tangent space, we have also a linear
action of the homogeneous Carroll group in the tangent space at each point, which follows
from (2.19) and the duality of the frames, and reads

δeµa = eµbλ
b
a + λan

µ , δnµ = 0 . (2.20)

It follows that, contrary to the one-form τµ, the vector nµ is invariant under local homo-
geneous Carroll transformations. The degenerate metric gµν is also invariant under these
transformations in the tangent space since the internal metric (2.2) is itself Carroll-invariant
(λca ≡ δcbλba is antisymmetric).

One can write more compactly the transformation laws of the vielbein and the inverse
vielbein as

δEµA = EµBλBA , δEµA = −EµB λAB (2.21)

with
(λAB) =

(
0 λb
0 λab

)
. (2.22)

Tensors in the tangent space transform with the matrix λAB.
The metric gµν and the vector nµ provide a complete set of Carroll invariants that can

be constructed out of the vielbein. This is because gµν and nµ determine the vielbein up
to a Carroll transformation. Indeed if {n′µ, e′µa} is such that

gµν = e′µ
ae′ν

bδab , n′µ = nµ , (2.23)

then {n′µ, e′µa} differ from {nµ, eµa} by a linear transformation preserving the Carrollian
structure (2.2)–(2.3), i.e., by a Carroll transformation. The invariants gµν and nµ are
redundant since one has gµνnµ = 0. A non-redundant set of variables is given by (gµν , E):
if one knows gµν , the vector nµ is determined up to normalization, which is fixed by E . The
variables (gµν , E) are the basic variables of [6], where E was denoted Ω. It follows from this
observation that any function of the vielbein that is invariant under local transformations
can be viewed as a function of gµν and E . The field τµ was also introduced in [6, 7], where
it was denoted θµ.

2.3 Extrinsic curvature and Carroll-compatible torsion-free connections

Another important object introduced in [6], which we will need below, is the second fun-
damental form or extrinsic curvature defined as2

Kµν ≡ −
1
2 Lngµν = −1

2 (nρ∂ρgµν + gµρ∂νn
ρ + gνρ∂µn

ρ) . (2.24)

2Note for comparison that the authors of ref. [19] introduced an overall sign difference in the definition
of the extrinsic curvature as compared to [6].
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Contrary to what happens in the Riemannian case, it is now a spacetime tensor. It has,
however, the same number of independent components as a spatial symmetric tensor since
it is transverse, Kµνn

ν = 0. Because of this property, Kab defined through

Kab ≡ eµaeνbKµν (2.25)

contains the same information as Kµν (since Kµν = eµ
aeν

bKab) and transforms as

δKab = Kcbλ
c
a +Kacλ

c
b (2.26)

under internal homogeneous Carroll transformations.
The identification of the components EµA of the Carrollian connection as a frame in

the cotangent space enables one to define a covariant derivative Dµ for tangent tensors, by
restricting the full Carroll-covariant derivative Dµ to the homogeneous subgroup,

DµT = ∂µT + [ωµ, T ] , ωµ = ωµ
aCa + 1

2 ωµ
abJab = 1

2 ωµ
ABJAB (2.27)

(ωµa ≡ ωµ0a = −ωµa0). For instance, for a vector v = vAPA = v0H + vaPa,

Dµv
0 = ∂µv

0 + ωµav
a , Dµv

a = ∂µv
a + ωµ

a
bv
b (2.28)

and similarly for a covector ψA

Dµψ0 = ∂µψ0 , Dµψa = ∂µψa − ωµaψ0 + ωµa
bψb . (2.29)

This covariant derivative automatically preserves the metric and the normal vector nA

DµζAB = 0 , Dµn
A = 0 . (2.30)

In analogy with the terminology used in Riemannian geometry, one might call ωµAB intro-
duced in eq. (2.27) the “spin connection”.

Parallel transport and covariant derivatives are concepts that can be formulated in
any tangent basis, so one can translate the covariant derivatives defined in the local frame
{EµA ∂

∂xµ } to the coordinate frame { ∂
∂xµ }. The connection in the coordinate basis is denoted

Γµρσ. The spin connection ωµ
AB and Γµρσ are related through the standard change-of-

frame formulas for a connection, namely

∂ρEµ0 + ωρ
aEµa − ΓσρµEσ0 = 0 , (2.31a)

∂ρEµa + ωρ
abEµb − ΓσρµEσa = 0 . (2.31b)

These can be compactly written
DρEµA = 0 , (2.32)

where Dρ acts on all (internal and spacetime) indices. One way to think about these
formulas is that they express that the covariant derivative of the Kronecker tensor is zero
(as it should!), in particular if the computation is carried in a mixed basis (one index in

– 7 –
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the local frame, one index in the coordinate frame). One sometimes calls these equations
“the vielbein postulate”.

Torsion-free connections, for which D[µχν] = ∂[µχν] for any one-form χµ, play an im-
portant role in Riemannian geometry and are defined in an analogous manner in Carrollian
geometry. In a coordinate frame, in both Riemannian and Carrollian geometry, the absence
of torsion is equivalent to the symmetry of Γσρµ in its lower indices ρ, µ,

Γσρµ = Γσµρ . (2.33)

For Carrollian geometry, in the local frames {EµA} this condition is itself equivalent in
view of (2.31) to the vanishing of the torsion tensors3

Tµν = 2
(
∂[µτν] + ω[µ

aeν]a
)
, (2.34a)

Tµν
a = 2

(
∂[µeν]

a + ω[µ
abeν]b

)
, (2.34b)

expressions which can be succinctly written as

Tµν
A = 2

(
∂[µEν]

A + ω[µ
ABEν]

CζBC
)
. (2.35)

It is a well-known result of Riemannian geometry that there is a unique torsion-free,
metric-compatible connection for any Riemannian metric, called the “Levi-Civita connec-
tion”. This is not so in Carrollian geometry. One has instead [6, 24–26]:

• A necessary and sufficient condition for the existence of a torsion-free connection
that preserves the Carrollian structure (Dρgµν = 0, Dρn

µ = 0) is that the extrinsic
curvature vanishes,

Kµν = 0 . (2.36)

• When this condition is satisfied, the connection is not unique but determined up to
the addition of nρSµν where Sµν is an arbitrary symmetric and transverse tensor,

Γρµν → Γρµν + nρSµν , Sµν = Sνµ , Sµνn
µ = 0 . (2.37)

The proof is direct and is most easily carried out in local coordinates where nµ =
(1, 0, · · · , 0). [In such a coordinate system, gtt = gti = 0 and Γkij = γkij are the spa-
tial Christoffel symbols, Γjti = 0 (⇔ Kij = 0) while the Γtij are arbitrary.] Another way
to see that the extrinsic curvature must vanish is to consider the components

TABC ≡ EµAEνBTµνDζCD (2.38)

of the torsion tensor and to observe that the connection drops from T0(bc), which contains
only the vielbein and its derivative and is in fact proportional to KµνEµbEνc, so that the
constraint T0(bc) = 0 implied by the torsion-free condition (2.33) enforces Kµν = 0.

3In order to connect our notation with that of [19], one has to change the sign of ωµa, ωµab and of the
tensors Rµνa and Rµνab that we will introduce shortly in (2.40). This is a consequence of a sign difference
in the generators Ca and Jab of the Carroll algebra (2.1).
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2.4 Torsion and curvature

The curvature of the Carrollian connection (2.7) can be decomposed as

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] = Tµν H + Tµν
aPa + Fµν

aCa + 1
2Fµν

abJab , (2.39)

where the “torsions” Tµν and Tµν
a are defined in eq. (2.34) and where the “curvatures”

read

Fµν
a = 2

(
∂[µων]

a + ω[µ
abων]b −

σ

`2
τ[µeν]

a
)
≡ Rµνa −

2σ
`2
τ[µeν]

a , (2.40a)

Fµν
ab = 2

(
∂[µων]

ab + ω[µ
acων] c

b − σ

`2
e[µ

aeν]
b
)
≡ Rµνab −

2σ
`2
e[µ

aeν]
b . (2.40b)

Here, we also introduced the curvatures of the Carroll algebra, denoted by Rµνa and Rµνab,
that one recovers for σ = 0. They read explicitly

Rµν
AB = 2

(
∂[µων]

AB + ω[µ
ACων]

DBζCD
)
. (2.41)

Note that because the invariant metric ζDB is degenerate, there is no term quadratic in
ωµ

a.
The full curvature in eq. (2.39) transforms covariantly under Yang-Mills-type gauge

transformations, which yields in terms of its components

δTµν
a = Fµν

abξb − Tµνbλab , (2.42a)

δTµν = F aµνξa − Tµνaλa , (2.42b)

δFµν
ab = 2Fµνc[aλb]c −

2σ
`2
Tµν

[aξb] , (2.42c)

δFµν
a = Fµν

abλb − Fµνbλab −
σ

`2
(Tµνξa − Tµνaξ) . (2.42d)

While torsion and curvature mix under Carrollian translations, they transform separately
under the homogeneous Carroll subgroup, i.e. for ξb = 0 and ξ = 0:

Tµν
a = −Tµνbλab , δTµν = −Tµνaλa , (2.43a)

δFµν
ab = 2Fµνc[aλb]c , δFµν

a = Fµν
abλb − Fµνbλab , (2.43b)

implying
δRµν

ab = 2Rµνc[aλb]c , δRµν
a = Rµν

abλb −Rµνbλab . (2.44)

Setting
(TµνA) = (Tµν , Tµνa) , Rµν

0a = Rµν
a , (2.45)

these relations can be written as

δTµν
A = −λABTµνB , δRµν

AB = −λACRµνCB − λBCRµνAC . (2.46)

It follows in particular from these relations that

R = EµAEνBRµνAB (2.47)
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is invariant both under local Carroll homogeneous transformations in the tangent space
and coordinate transformations. It is called the scalar curvature.4 In components,

R = 2nµeνaRµνa + eµae
ν
bRµν

ab . (2.48)

3 Gauging of the Carroll algebra — Dynamics

In this section, we first review the action proposed in [19] and we highlight that its equations
of motion select a torsion-free Carrollian connection. As we have seen, this connection is
defined up to an arbitrary symmetric tensor and we show that the latter can be identified
with the momentum conjugate to the spatial metric. Taking advantage of this observation,
we then prove that the action obtained from the gauging of the Carroll algebra in [19] is
equivalent to the action of magnetic Carrollian gravity of [7].

3.1 Action from gauging

To fix the dynamics one can set up an action principle requiring that the action be invariant
only under local homogeneous Carroll transformations. This condition preserves the non-
degeneracy assumption. One also requires the action to be invariant under spacetime
diffeomorphisms (which preserve E 6= 0 too). One obvious candidate, which is the analog
of the Einstein-Hilbert action — or rather, its first-order Einstein-Cartan formulation in
which vielbein and spin connection are treated as independent variables —, is

ICar[EµA, ωµAB] = 1
16πGM

∫
dt dDx E (R− 2Λ)

= 1
16πGM

∫
dt dDx E

(
2nµeνaRµνa + eµae

ν
bRµν

ab − 2Λ
)
.

(3.1)

This is the action proposed in [19] starting from a c→ 0 limit of the relativistic Einstein-
Cartan action, where GM is a constant resulting from a rescaling of Newton’s constant.5
See also [21] for a classification of all terms built out of the connections in eq. (2.7) and the
curvatures in eq. (2.39) that are invariant under local homogeneous Carroll transformations.

The equations of motion that one derives from the action (3.1) impose the vanishing of
the torsion (2.35) (by extremizing the action with respect to the spin connection), together
with a Carrollian analog of Einstein’s equations (by extremizing the action with respect to
the vielbein). Thus, the action (3.1) forces the connection to be torsion-free in addition to
preserving the Carrollian structure. From what we have recalled above, this implies that
the extrinsic curvature vanishes and that the connection is not uniquely determined from
the vielbein but involves an arbitrary, transverse symmetric tensor.

In order to see how this arises in detail, we follow closely, in this paragraph and the
next, the paper [19], which provides important insight into the dynamical aspects of the
theory with action (3.1). From the torsion equations, one can solve for all the connection

4We use the notation R not to confuse this object with the spatial scalar curvature appearing in the
Hamiltonian formulation.

5When D+ 1 = 4 this action can be written in a MacDowell-Mansouri form: ICar = − σ`2

16πGM

∫
〈F ∧ F〉

with 〈CaJbc〉 = εabc.
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components, except for the symmetrized boost component ω(ab)
0 ≡ Eµ(aδb)cωµ

c0 of the
connection (2.27), which remains arbitrary and in terms of which the other components
can be expressed,

ωµ
a = − τµnνeρ a∂[ντρ] − eν a∂[µτν] + Sabeµ b , (3.2a)

ωµ
ab = 2 eρ[a∂[µeρ]

b] − eµ ceρ aeν b∂[ρeν]
c . (3.2b)

Here, Sab = Sba is an arbitrary symmetric tensor, which can be identified with −ω(ab)0 as
one can verify immediately from (3.2). One can view Sab as the spatial components of a
symmetric tensor SAB in the vielbein basis, the components S0A of which are arbitrary
but do not occur in the above expressions. By lowering the indices, one gets a symmetric,
transverse, twice covariant tensor, which captures the ambiguity in the Carroll-compatible,
torsion-free connections described above. The variation of the action with respect to ω(ab)0

yields an equation equivalent to T0(ab) = 0, which cannot be solved for ω(ab)
0 but sets

instead the extrinsic curvature to zero.
The next step is to eliminate the dependent spin connection components using (3.2)

while keeping the independent ones Sab, to get [19]

ICar[EµA, Sab] = 1
16πGM

∫
dt dDx E

(
2nµeνaRµνa|Sab=0 + eµae

ν
bRµν

ab − 2Λ

− 2
(
Sab − δabS

)
Kab

)
,

(3.3)

where S ≡ δabS
ab. In this form of the action, it is manifest that the field Sab acts as a

Lagrange multiplier enforcing the condition

Kab = 0 (3.4)

that the extrinsic curvature of the metric gµν should vanish.

3.2 Time gauge

We have now everything at hand to establish the equivalence of the action (3.3) with the
action (1.4) describing the magnetic limit of Einstein’s theory. The most expedient way to
do so is to (i) go to the “time gauge”, i.e., use the freedom in the Carrollian boosts to set

τi = 0 , (3.5)

where we split Greek indices as µ = {t, i} (this is permissible since the theory is invariant
under local homogeneous Carroll transformations); and (ii) introduce the lapse N and the
shift N i familiar in the ADM (D + 1)-decomposition of general relativity, which express
the vector ∂

∂t in the frame {nµ ∂
∂xµ ,

∂
∂xi
}.6 We then find that the vielbein and the inverse

vielbein are parametrized as

nµ =
(

1
N
,−N

i

N

)
, eµa =

(
0, eia

)
, (3.6)

6We assume that the hypersurfaces t = constant are transverse to the integral curves of nµ, so that the
metric gij induced on these hypersurfaces is non-degenerate and of Euclidean signature.
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and
τµ = (N, 0) , eµ

a =
(
ei
aN i, ei

a
)
, (3.7)

respectively, where eia is a spatial local frame with inverse ei
a (“D-bein”),

eiaei
b = δa

b , eiaej
a = δij . (3.8)

These expressions take the same form as in the customary time gauge in general relativ-
ity [27–29]. The residual local Carroll freedom is exhausted by the local rotations acting
on the spatial D-bein.

In terms of this parametrization, useful formulas are

gij = ei
aej

bδab , gti = gijN
j , gtt = gijN

iN j , (3.9)

for the metric,

E = Ne = N
√
g (g = determinant of spatial metric) (3.10)

for the determinant of the vielbein,

Kij = − 1
2N (ġij −∇iNj −∇jNi) , Kti = KijN

j , Ktt = KijN
iN j , (3.11)

for the extrinsic curvature (where ∇ denotes the Levi-Civita connection for the spatial
metric gij) and, using also the time-gauge,

ωt
a = eia∂iN +N iSabei

b , (3.12a)
ωi
a = Sabei

b , (3.12b)
ωt
ab = ej [aėj

b] − ej [a∂j(eib]N i)−N iejaekbeic∂[jek]
c, (3.12c)

ωi
ab = 2 ej [a∂[iej]

b] − ejaekbeic∂[jek]
c, (3.12d)

for the spin connection.

3.3 Recovering the magnetic action

Substituting eqs. (3.12) in the expression (2.41) for the curvature gives

2nµeνa Rµνa|Sab=0 = − ∂i
(
2 e eiaeja∂jN

)
, eµae

ν
bRµν

ab = R , (3.13)

where R is the Ricci scalar constructed with the spatial metric gij . Dropping a total
derivative, the action (3.3) becomes then

ICar[eia, N,N i, Sij ] = 1
16πGM

∫
dt dDx

√
g N

[
R− 2Λ− 2

(
Sij − δijS

)
Kij

]
, (3.14)

where we have also made the change of dynamical variables Sab → Sij = eiae
j
bS

ab. The
action (3.14) is manifestly first order in time derivatives (through Kij) and second order
in spatial derivatives (through R).
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It is also manifest that the action involves the D-bein only through the spatial met-
ric. This is of course a manifestation of local rotation invariance. So, one really has
ICar[eia, N,N i, Sij ] ≡ ICar[gij , N,N i, Sij ] with exactly the same integral

ICar[gij , N,N i, Sij ] = 1
16πGM

∫
dt dDx

√
g N

[
R− 2Λ− 2

(
Sij − δijS

)
Kij

]
. (3.15)

Extremization with respect to variations of the spatial metric automatically extremizes
with respect to D-bein variations.

We are now at a stone throw from proving equivalence. This is just achieved by making
one more change of variables, namely,

πij =
√
g

16πGM

(
Sij − hijS

)
⇔ Sij = 16πGM√

g

(
πij − 1

D − 1 h
ijgklπ

kl
)
, (3.16)

where hij is the inverse to the spatial metric gij . Using the explicit expression of the
extrinsic curvature in terms of ġij , the lapse, and the shift in eq. (3.11), and making an
integration by parts gives then immediately

ICar[gij , N,N i, Sij ] =
∫
dtdDx

(
πij ġij + 2Ni∇jπij −NHM

)
, (3.17)

and therefore the searched-for equality

ICar = IM (3.18)

of the action (3.1) of [19] (after the successive transformations explained above) and the
magnetic action (1.4) of [6].

4 Magnetic limit of the Einstein-Cartan action

In the previous section we related directly the first-order action (3.1) (or its equivalent
reformulation (3.3)) of [19] to the action of magnetic Carrollian gravity in ADM form
of [7]. In both cases, we thus directly considered the result of a ultra-relativistic limit of
general relativity. In this section, we instead first recall the relation between the first-order
and ADM formulations of general relativity following [28, 30, 31] and then we track the
effect of the limit at each stage of the computations. The key point we wish to highlight
is that in the relativistic case one can choose either to fully eliminate the spin connection
via the torsion constraints to recover the second-order formulation of general relativity or
to keep suitable components of the spin connection as independent fields. These turn out
to be proportional to the conjugate momenta to the spatial metric as in (3.16) and one
eventually recovers the ADM formulation of general relativity. After the limit c → 0 is
taken, the first option is instead not available anymore and, as we discussed in the previous
section, one is forced to keep the field Sab in the action.
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4.1 Setting the stage for the Carrollian limit

We start from the first-order formulation of general relativity, i.e. from the Einstein-Cartan
action

I = c3

16πGN

∫
dt dDx E

(
EµAE

ν
BRµνAB − 2 Λ

)
, (4.1)

where
RµνAB = 2 ∂[µ Ων]

AB + 2 Ω[µ
AC Ων]

DB ηCD , (4.2)

with ηCD = diag(−1,+1, . . . ,+1), while c denotes the speed of light and GN is Newton’s
constant. Moreover, tangent space indices take the values A,B = 0, 1, . . . , D, while EµA
is the coframe, Ωµ

AB is the spin connection and E = det
(
Eµ

A
)
. To define the Carrollian

limit we introduce a dimensionless parameter ε via c = ε ĉ, so that the limit corresponds to
sending ε→ 0. For simplicity, in the following we shall also set ĉ = 1. We then consider the
same scaling in ε for the components of the coframe and of the spin connection as in [19]:

Eµ
A = (ε τµ, eµa) , Ωµ

AB =
(
ε ωµ

a, ωµ
ab
)
, (4.3)

where we make explicit the link with the one-forms that we used in the previous sections.
Taking the limit ε→ 0 while rescaling Newton’s constant as

GN = ε4GM (4.4)

leads to the action (3.1).
To link the first-order action (4.1) to the ADM formulation of general relativity, it

is convenient to introduce the following quantities starting from the components of the
rescaled coframe EµA of eq. (4.3) and its inverse EµA:

ei
A ≡ EiA , nA ≡ −εN Et

A , (4.5)

where N is the usual lapse function, while the covector nA at this stage should not be
confused with the vector nA defined in eq. (2.3). The variables eiA and nA satisfy the
relations

ηAB nA nB = −1 , ei
A nA = 0 , (4.6)

where capital Latin indices are raised and lowered with the Minkowski metric ηAB. All
components of the vielbein and its inverse are determined in terms of eiA, nA and the
functions N and N i:

EµA = (−ε−1N−1 nA, eiA + ε−1N−1N i nA) , Eµ
A = (εN nA + ei

AN i, ei
A) , (4.7)

where we introduced the quantity eiA verifying

eiA ej
A = δij , eiA ei

B = δA
B + nAnB . (4.8)

The latter can also be defined as eiA = hijej
B ηAB, where hij is the inverse of the spatial

metric
gij = ei

A ej
B ηAB . (4.9)
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The parametrization (4.7) of the vielbein and its inverse implies the usual ADM decompo-
sition of the metric:

gµν =
(
N iNi − ε2N2 Ni

Ni gij

)
, gµν =

(
− 1
ε2 N2

N i

ε2 N2
N i

ε2 N2 hij − N iNj

ε2 N2

)
, (4.10)

where the spatial indices i, j = 1, . . . , D are raised and lowered using the D-dimensional
spatial metric gij and its inverse hij . From eq. (4.10), it is clear that the metric gµν becomes
degenerate in the limit ε→ 0.

All in all, together with the identity E = εN
√
g (where we recall that √g is the

determinant of the spatial metric gij), this parametrization implies the following rewriting
of the Einstein-Cartan action,

I = ε3
∫
dtdDx

√
g

16πGN

[
2 n[B e

i
A]RtiAB + εN

(
ei[A e

j
B]RijAB − 2 Λ

)
+ 2N [i n[A e

j]
B]RijAB

]
.

(4.11)

4.2 Torsion constraint

Varying the action (4.11) with respect to the full spin-connection Ωµ
AB imposes the van-

ishing of the torsion
TµνA = 2 ∂[µEν]

A + 2 Ω[µ
ABEν]

CηBC . (4.12)

We now wish to consider the variation of the same action with respect to the different
components of the spin connection, in order to identify which components of the torsion
are set to zero by each of these variations. In particular, we distinguish

Ωt
ij = Ωt

AB eiA e
j
B , Ωt

i
⊥ = Ωt

AB eiA nB , (4.13a)

Ωi
jk = Ωi

AB ejA e
k
B , Ωij⊥ = Ωi

AB ejA nB . (4.13b)

We can also project the components of the torsion on the basis of the tangent space
introduced in eq. (4.5) and obtain the following relevant components:

Tij⊥ ≡ TijA nA = 2 ∂[i ej]
A nA − 2 Ω[ij]⊥ , (4.14a)

Tijk ≡ TijA ekA = 2 ∂[i ej]
A ekA − 2 Ω[ij]

k , (4.14b)

Tti⊥ ≡ TtiA nA = ėi
A nA −N j ∂i ej

A nA − Ωti⊥ +N j Ωij⊥ + ε ∂iN , (4.14c)

Tt[ij] ≡ Tt[iA ej]A = ė[i
A ej]A − εN ∂[i ej]

A nA − e[i
A ∂j]N

k ekA

−Nk e[i
A ∂j] ekA − Ωtij + εN Ω[ij]⊥ +Nk Ω[ij]k . (4.14d)

As we shall see in detail in the following, the components of the torsion that we wrote
explicitly are set to zero by the equations of motion that follow from the variation of the
action (4.11) with respect to all components of the spin connection, except Ω(ij)⊥. This
component plays a role similar to that of the tensor Sab in the previous section and it is
related to the conjugate momenta of the spatial metric in the Hamiltonian formulation.
The corresponding “missing” torsion constraint Tt(ij) corresponds to the equation of motion
allowing one to solve for πij in terms of the time derivative of the spatial metric.
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In particular, varying with respect to Ωt
ij and Ωt

i
⊥ (which are both Lagrange multi-

pliers) one gets, respectively,
Tij⊥ = 0 , Tijj = 0 . (4.15)

Varying with respect to Ωj
ki gives

Tti⊥ δjk − Ttk⊥ δj i + εN Till δjk − εN Tkll δj i − 2 εN Tikj −N j Tik⊥ = 0 . (4.16)

Finally, variation with respect to Ω[ij]⊥ yields

− 2 Tt[ij] + TkikNj − TkjkNi = 0 . (4.17)

As already discussed, in the following we shall not need the variation with respect to Ω(ij)⊥
and therefore we refrain from exhibiting it. Still, eqs. (4.15), (4.16) and (4.17) suffice to
set to zero all components of the torsion that we included in eq. (4.14). In particular, we
are thus setting to zero the component Tijk of the torsion. By taking a linear combination
of the cyclic permutations of this constraint over the indices i, j and k one obtains

ekA ∂i ej
A + Ωi

k
j − γijk = 0 , (4.18)

where we introduced the Christoffel symbol γijk of the Levi-Civita connection for the spatial
metric.

4.3 Rewriting of the action in Hamiltonian form

Up to now, we proceeded without fixing any gauge for the local Lorentz frame. For sim-
plicity, we now fix the time gauge, see eq. (3.7). Under this condition, nA = nA = δ0

A,
which is precisely eq. (2.3), and the conjugate momentum to the spatial vielbein ei

a reads

pia ≡
∂L
∂ėia

= 2 ε3
16πGN

√
g
(
Ωk

i
⊥ e

k
a − Ωk

k
⊥ e

i
a

)
, (4.19)

where we used the time derivative of the second relation in eq. (4.8) to transfer all time
derivatives onto ei

a. One can then rewrite, upon integration by parts, the first term in the
action (4.11) as

ε3
∫
dt dDx

8πGN
√
g n[B e

i
A]RtiAB =

∫
dt dDx pia ėi

a − ε3
∫

dt dDx

16πGN
√
g
(
Ωt

ijTij⊥ − 2 Ωt
i
⊥Tijj

)
≈
∫
dt dDxπij ġij , (4.20)

where we used the symbol ≈ to stress that in the last line we imposed the constraints
following from eqs. (4.15), (4.16) and (4.17). Moreover, we defined

πij ≡ 1
2 p

(i
a e

j)a =
ε3
√
g

16πGN

(
Ω(ij)

⊥ − Ωk
k
⊥ h

ij
)

(4.21)

and we used that Ω[ij]⊥ = nA ∂[i ej]
A = 0 as a result of the first torsion constraint of

eq. (4.15) and of the time-gauge condition ei0 = 0.
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The term involving
(
ei[A e

j
B]RijAB − 2 Λ

)
also splits into two parts. The first one

constitutes the spatial curvature on account of ei
a eja = gij and ei

a eib = δab and the
spatial vielbein postulate (4.18):

ε4

8πGN

∫
dt dDx

√
g N

[
ei[A e

j
B]
(
∂i Ωj

AB + Ωi
AC Ωj

DB ζCD
)
− Λ

]
= −

∫
dt dDxN HM ,

(4.22)
where HM is the Hamiltonian constraint of magnetic Carrollian gravity defined in (1.3).
The second one can be rewritten as

ε4

8πGN

∫
dt dDx

√
g N ei[A e

j
B] Ωi

A
⊥Ωj

B
⊥ = 16πGN

ε2

∫
dt dDx

N
√
g

(
πij πij −

1
D − 1 π

2
)
,

(4.23)
where we recognize the same structure as in the Hamiltonian constraint of electric Carrol-
lian gravity defined again in (1.3).

Finally, last term in eq. (4.11) reads

ε3

8πGN

∫
dt dDx

√
g
(
N i ejA nB −N j eiA nB

) (
∂i Ωj

AB + Ωi
AC Ωj

DB ηCD
)

= 2
∫
dt dDxNi∇j πij .

(4.24)

All in all, we arrive at

I =
∫
dt dDx

(
ġij π

ij −N H⊥ −NiHi
)
, (4.25)

with

H⊥ = HM + ε2
16πGM√

g

(
gil gjk −

1
D − 1 gij gkl

)
πij πkl , (4.26a)

Hi = −2∇j πij , (4.26b)

which is exactly eq. (1.1), with the identification GN = ε4GM .
Notice that the combination of the surviving components of the spin connection giving

πij in (4.21) does not depend on ε when written in terms of quantities that do not scale in
the Carrollian limit:

πij = −
√
g

16πGM

(
ω(ij) − hij ωkk

)
, (4.27)

where only the spatial components of ωµa = ωµ
0a appears. This implies, in particular, the

relation
Sab = eia e

j
b ω(ij) (4.28)

which was derived in eq. (3.2). Taking it into account in the limit ε → 0 one recovers
from (4.25) the action of magnetic Carrollian gravity in ADM form of eq. (3.17). Our
present derivation of the relation between the action (4.25) and (3.17) highlights how-
ever how the Hamiltonian constraint of electric Carrollian gravity can be recovered as a
subleading contribution starting from the first-order action.
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5 Conclusions

In the gauging approach to Einstein’s theory, the torsion-free, metric-compatible connec-
tion one-form plays a central role. Since such a connection always exists in Riemannian
geometry (and is unique), the gauging approach is well adapted to the description of
the theory.

By contrast, the existence of a torsion-free, Carroll-compatible connection is the ex-
ception rather than the rule in Carrollian geometry [6, 24–26]. Such a connection exists
only if the extrinsic curvature (or second fundamental form) vanishes and, in that case,
it is not unique. It does not come as a surprise, therefore, that the gauging approach
developed in [19], where a connection is introduced from the very beginning, dynamically
implements these features and is equivalent to the magnetic version of Carrollian gravity,
for which exactly the same properties hold — the spatial symmetric tensor parametrizing
the non-uniqueness of the connection being the conjugate momentum to the spatial metric.

In the electric version of Carrollian gravity, however, there is no torsion-free, Carroll-
compatible connection since the extrinsic curvature does not vanish. The standard gauging
approach is for that reason not well adapted to the electric situation, since it assumes the
existence of a physically relevant connection. The non-existence of a natural connection
sheds new light on the difficulties encountered in an orthodox gauging description of the
Carrollian electric limit of Einstein’s theory [21]. Further considerations on this problem
are given in appendix A.

Even though there is no natural connection, one could blame the problem on the choice
of the Lagrangian. In fact, one can write the second-order action of electric Carrollian
gravity [6] in terms of vielbein and connection as

IElec[EµA, ωµAB] ∼
∫
dt dDx E

(
ΘλµΘλµ −Θ2

)
(5.1)

and argue that it fits already in the gauging framework, taking the form of a torsion-
squared action. Here, the symmetric, transverse tensor Θλµ is equal to the symmetrized
components eλaeµbT0(ab) of the torsion, which we have seen does not involve the connection
and is equal to the extrinsic curvature. This is a bit artificial, however, since the connection
does not appear in the Lagrangian and is thus a pure gauge field with no physical meaning
— the gauge group contains more transformations than local Carroll transformations and
diffeomorphisms and enables one to shift the connection at will. This is as it should since
there is no natural connection in the electric theory.7

7There is only a limited form of parallel transport involving the extrinsic curvature [6]. Note that the
action, which depends on the vielbein only through the metric and the volume element, can be written in
covariant first-order form

IElec[gλµ,Ω, Pλµ] =
∫
dt dDxΩ

[
PλµKλµ −GλµρσPλµP ρσ

]
where Pλµ is a symmetric tensor with gauge invariance Pλµ → Pλµ + λλnµ + λµnλ and where Gλµρσ =
1
2 (gλρgµσ + gλσgµρ) − 1

D−1gλµgρσ. By eliminating Pλµ through its own equation of motion, one recovers
the second-order action.
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A Comments on the electric limit

In section 4 we saw how the Hamiltonian constraint of electric Carrollian gravity emerges
from the first-order formulation, even if at a subleading order. It is thus natural to ask
if there exists an alternative scaling of the components of the vielbein and of the spin
connection allowing one to recover the full action of electric Carrollian gravity in ADM
form. If one writes

EµA = (ε−1 nµ, ε−2 eµa) , Eµ
A = (ε τµ, ε2 eµa) , Ωµ

AB = (ε ωµa, ε2 ωµab) , (A.1)

which differs from eq. (4.3) by the addition of a factor of ε2 (resp. ε−2) on eµa and ωµab
(resp. eµa), chooses the time gauge once again so that the metric field takes the expression
gij = ε4 ei

a eja, and also rescales Newton’s constant as

GN = ε2D+2GE , (A.2)

then, the relativistic action takes again the ADM form (4.25). This time, however, the
Hamiltonian density takes the form

H⊥ = HE − ε2
√
g

16πGE
(R− 2Λ) , (A.3a)

Hi = −2∇j πij , (A.3b)

with

πij = −
√
g

16πGE
ωk

a
(
e(i
a h

j)k − eka h
ij
)

= −
√
g

16πGE

(
ω(ij) − hij ωkk

)
. (A.4)

When ε→ 0, we recover the electric theory

IE =
∫
dt dDx

(
πij ḣij −NHE −N iHi

)
, (A.5)

which is equivalent to eq. (5.1) after elimination of the conjugate momenta. One can also
rescale the cosmological constant Λ = ε−2 ΛE to obtain a non-zero cosmological constant
term in the limit in agreement with [16].
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There is an important proviso though: if one implements the limit ε → 0 in the
Einstein-Cartan action with the rescalings (A.1) and (A.2) one obtains the action

IE = 1
16πGE

∫
dt dDx E

(
2 eµa eνb

(
∂[µ ων]

ab + ω[µ
a ων]

b
)

+ 4nµ eνa ∂[µ ων]
a
)
. (A.6)

This action is not invariant neither under local Carrollian boost nor under local spatial
rotations. Choosing the time gauge introduces therefore a non-trivial restriction in this
context. Also, the rescaling (A.1) affects the definition (4.9) of the spatial metric as

gij = ε4 ei
a ej

b δab − ε2 ei0 ej0 . (A.7)

Its ε → 0 limit is very different whether one chooses the time gauge or not, since the
matrix eia ejb δab is assumed to be invertible, but ei0 ej0 is only of rank 1. This has to be
contrasted with the magnetic Carrollian limit of section 4, where the choice of the time
gauge did not have any effect on the form of the spatial metric in the ε→ 0 limit.

Those observations are in line with the results of [21], where it was shown that it is
not possible to recover the electric Carrollian theory by gauging the Carroll algebra.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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