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1 Introduction

Liouville field theory (LFT) is ubiquitous in theoretical higher energy physics. It naturally
arises in the formulation of the 2D quantum gravity [1, 2] and in the path integral quantiza-
tion of string theory [3]. It also has applications to 3D gravity [4], to N = 2 superconformal
gauge theories in 4D [5], to string theory on AdS3 × N backgrounds [6], to AdS/CFT
holography in the stringy regime [7], to dS/CFT correspondence [8], and to many others
subjects, including black hole physics and cosmology. The timelike version of theory also
has interesting applications, for example in the study of dynamical tachyon condensation [9].
The consistency of timelike LFT as a bona fide CFT together with its applications to physics
have been investigated by many authors in the last twenty years [9–25], and in a series
of recent works the theory has been revisited from a new perspective: in [26, 27], LFT
was considered in the context of quantum cosmology and a Weyl-invariant formulation
of gravity. In [28], the Euclidean path integral of 2D gravity with positive cosmological
constant was studied in the semiclassical limit and its connection to timelike LFT was
discussed. The problem was analyzed by expanding the theory around the two-sphere
saddle point. The main idea was that, while the Euclidean 2D gravitational path integral
is in general highly fluctuating, when it is coupled to a matter CFT with large central
charge it admits a semiclassical two-sphere saddle point that renders the problem tractable
perturbatively. After choosing a Weyl gauge, the computation of the partition function
reduces to that for timelike LFT. The authors of [28] presented results up to 2-loops and
provided a path integral computation of the LFT central charge in the semiclassical limit.
This led them to propose an expression for the 2D gravitational partition function on the
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two-sphere, which boils down to the expression of the partition function of timelike Liouville
on the sphere topology. More results of this calculation appeared in [29], where the author
reviews 2D quantum gravity coupled to a matter CFT in the fixed area ensemble and in
the semiclassical limit. The computation of the partition function on the two-sphere is
done in [29] at 2-loops using the path integral approach, what is achieved by considering
all the relevant Feynman diagrams and incorporating the fixed area constraint. As in [28],
it was found that all UV divergences cancel to 2-loop order. These results were extended
in [30], where a computation at 3-loops was performed in a similar framework. More works
along this line appeared recently: in [31], the semiclassical gravitational path integral was
discussed in relation to random matrices, and in [32] the timelike LFT computation was
performed in presence of boundaries. The latter work nicely shows how subtle the analytic
continuation that connects the spacelike LFT to its timelike version can be. The subtleties
of the analytic extension of LFT from spacelike to timelike signature is well known and
it is clearly expressed by the computation of the 3-point correlation function on the sphere,
where the timelike analog of the Dorn-Otto-Zamolodchikov-Zamolodchikov (DOZZ) formula
does not agree with the naive analytic extension of the spacelike formula. That is the reason
why any computation of timelike quantities that strongly relies on the spacelike formulae
has to be revised and, when possible, computed separately. Here, we present a detailed
computation of the Liouville partition function on the fluctuating sphere at finite values of
the central charge, both for the spacelike and the timelike theory. After introducing LFT in
section 2, in section 3 we discuss the derivation of the spacelike partition function from the
DOZZ formula. In section 4, we rederive this quantity by using a Coulomb gas approach that
turns out to be suitable to later compute the timelike partition function. The spacelike fixed
area partition function is discussed in section 5, and a semiclassical computation of it using
the fixed area saddle point is given in section 6. In section 7, we present the exact expression
for the timelike partition function, we discuss its properties, its difference with respect to
the spacelike quantity, and its relation with other results presented in the literature.

2 Liouville field theory

LFT is a non-compact conformal field theory [33, 34] defined by the action

SL[Λ] = 1
4π

∫
d2z

(
∂ϕ∂̄ϕ+ 1

2
√

2
QRϕ+ 4πΛe

√
2bϕ
)
. (2.1)

Λ is a positive parameter that corresponds to the cosmological constant. The background
charge Q takes the value Q = b + b−1 for the Liouville potential barrier Λe

√
2bϕ to be a

marginal operator. The second term in (2.1) involves the scalar curvature, R, and in the
conformal gauge it has to be understood as keeping track of a δ-function contribution to the
curvature coming from the point at infinity. The CFT is defined on the Riemann sphere,
CP1. The theory is globally defined on CP1 once one specifies the boundary conditions,
which is done by imposing the behavior ϕ ' −2

√
2Q log |z| for large |z|. Under holomorphic

transformations z → w(z) the Liouville field transforms by acquiring an inhomogeneous
piece that depends on Q; namely ϕ(z) → ϕ(w) −

√
2Q log |dwdz |, where we are using that
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R = 0 on the projective plane. The central charge of the theory also depends on Q and is
given by cL = 1 + 6Q2, which is bigger than 25 provided b is real.

One is typically interested in coupling LFT to another CFT, which would represent
the matter content of the full theory. We will refer to this putative matter CFT as M and
we will denote its central charge cM. In this way, we have the total central charge

c = 1 + 6Q2 + cM + cghosts,

with the ghosts contribution being cghosts = −26. Therefore, Weyl anomaly cancellation
thus demands

Q =
√

25− cM
6 , (2.2)

which requires b to be non-real for large positive cM. In the semiclassical limit (b → 0)
of the spacelike theory, in contrast, Q is positive and large, so that cM has to be a large
negative number.

The vertex operators of the full theory are given by [35]

Oα,h(z) = Vα(z)× VMh (z) = e
√

2αϕ(z) × VMh (z).

These operators create Virasoro primaries on Liouville × M of conformal dimension
∆ = α(Q− α) + h, with h being the contribution of the matter CFT; that is, VMh (z)
are dimension h conformal primaries of the theory M. Normalizability in the spacelike
theory demands α ∈ Q/2 + iR. Here, we will focus on the LFT factor of the theory, so we
will omit the matter content just assuming it is there.

3 Partition function from DOZZ

The LFT N -point correlation functions on the sphere are defined as follows [13, 34, 36, 37]

〈Vα1(z1)Vα2(z2) . . . VαN (zN ) 〉L =
∫
ϕ(CP1)

Dϕ e−SL[Λ]
N∏
i=1

e
√

2αiϕ(zi) (3.1)

where the subscript ϕ(CP1) indicates that the field takes values on the Riemann sphere,
having imposed the boundary conditions given above: on CP1 the field configurations are
conditioned to obey the asymptotic ϕ(z) ' −2

√
2Q log |z| near z =∞.

In particular, the 3-point correlation functions are given by

〈Vα1(z1)Vα2(z2)Vα3(z3)〉L =
3∏
a<c

|za − zc|2∆−4(∆a+∆c)C(α1, α2, α3) (3.2)

where ∆a = αa(Q− αa), ∆ = ∑3
a=1 ∆a, and where the structure constants are given by the

DOZZ formula [36, 37]

C(α1, α2, α3) =
(
πΛγ(b2)b2−2b2)(Q−α)/b Υb(b)

Υb(α−Q)

3∏
a=1

Υb(2αa)
Υb(α− 2αa)

(3.3)
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where α = ∑3
a=1 αa, γ(x) = Γ(x)/Γ(1− x). The function Υb(x) was introduced in [36] and

can be written in terms of Barnes’ double Γ-functions Γ2(x|y) [38, 39] as follows

Υb(x) = Γ−1
2 (x|b, b−1)Γ−1

2 (b+ b−1 − x|b, b−1). (3.4)

This function obeys the reflection properties

Υb(x) = Υb(Q− x) , Υb(x) = Υb−1(x) , (3.5)

together with the shift properties

Υb(x+ b) = γ(bx)b1−2bxΥb(x) , Υb(x+ b−1) = γ(b−1x)b−1+2b−1xΥb(x) . (3.6)

The spacelike LFT partition function on the fluctuating sphere can be easily obtained
from the 3-point function above. To do so, firstly one resorts to PSL(2,C) invariance to fix
z1 = 0, z2 = 1, and z3 =∞ in the 3-point function; secondly, one considers the particular
case α1 = α2 = α3 = b, and, finally, one writes the relation

d3

dΛ3Z[Λ] = −C(b, b, b). (3.7)

Integrating this expression and using the functional properties (3.5)–(3.6), one easily
finds [36, 37]

Z[Λ] = (1− b2)
(
πΛγ(b2)

)Q/b
π3Qγ(b2)γ(b−2) , (3.8)

which is the expression of the spherical partition function of spacelike (cL ≥ 25) LFT. Now,
let us analyze this result:

• Expression (3.8) is the exact result for the spacelike Liouville partition function on
the sphere topology, valid for finite b. It turns out to be a non trivial function of b
which oscillates with growing frequency and decreasing amplitude as b−2 approaches
the values b2 = 0 and b2 = 1.

• The expression for Z[Λ] turns out to be finite. Although it is usually said — for
example in the context of string theory — that the partition function on the sphere
topology vanishes, this is not necessarily the case for theories with no Poincaré
invariance in the target space. More precisely, translation symmetry in the non-
compact field space produces an infinite volume factor that comes to compete with
the infinite volume of the conformal Killing group in the denominator of the partition
function, yielding an undetermined factor of the form ∞/∞. Therefore, while the
partition function per unit of length might vanish, the actual partition function can
in principle be finite, cf. [40]. We will come back to this point later.

• It is worth pointing out that Liouville on a 2-sphere topology does not have a real
valued saddle and that expression (3.8) can be reproduced from the path integral only
by summing over a specific set of these complex saddles. This is one of the subtleties
that demand further study.
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• The Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling of the partition function goes
like Z[Λ] ∼ ΛQ/b, which in the semiclassical limit b→ 0 behaves like ∼ Λ1/b2 .

• Expression (3.8) is valid for b ∈ R, which means cL ≥ 25. The analogous formula for
cL ≤ 1 corresponds to the timelike partition function and it will be given below, in
section 7.

• One can set the cosmological constant Λ to an arbitrary positive value Λ∗ by
shifting ϕ → ϕ − 1√

2b log(Λ/Λ∗). In particular, one can choose the special value
Λ∗ = γ(1− b2)/π, which makes the entire factor (πΛγ(b2))Q/b to disappear from the
expression.

• In the limit b2 → 1 (i.e. cL → 25) the function Z[Λ∗] diverges. This is related to the
fact that 2D string theory with cM = 1 requires a renormalization of Λ, cf. [41].

• At b2 ∈ Z≥2 the function Z[Λ∗] also diverges, exhibiting a double pole; similarly for
b−2 ∈ Z≥2.

• One of the intriguing features of the expression (3.8) is the fact that it does not exhibit
the Liouville self-duality under the transformation b → 1/b. Typically, correlation
functions of LFT are invariant under b → 1/b provided one also transforms the
cosmological constant as Λ → (πΛγ(b2))1/b2

/(γ(b−2)π); this is why the breakdown
of the self-duality at the level of the partition function is puzzling. This has been
observed by Al. Zamolodchikov in [42] and it will be explained below in the Coulomb
gas formalism.

• Before concluding this section, a word on normalization: for that of Z[Λ] to be a
sensible computation, its normalization — or, at least, the b-dependent part of it
— has to be determined somehow naturally. Here, we have considered the canon-
ical normalization that follows from (3.1) and that is consistent with the DOZZ
formula (3.3).

4 Coulomb gas computation of the partition function

As we have just seen, the derivation of the spherical partition function from the DOZZ
formula is quite direct and succinct. However, such a derivation is not possible in the
timelike theory, at least not without assuming unjustified aspects of the analytic continuation.
Therefore, being interested as we are in presenting a method by means of which the analytic
continuation from spacelike to timelike is under control, here we will give an alternative
derivation of (3.8). Such a method is given by the Coulomb gas approach, cf. [43]. This
amounts to consider the free field form of the correlator; namely

〈Vα1(z1) . . . VαN (zN ) 〉L = ΛsΓ(−s)
b

∫
Cs

s∏
t=1

d2wt

∫
ϕ(CP1)

Dϕe−SL[0]
N∏
i=1

e
√

2αi(zi)
s∏
r=1

e
√

2b(wr)

(4.1)
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This follows from expanding the interaction term Λe
√

2bϕ and integrating the zero mode of ϕ.
The integration over the zero mode produces a factor

∫
dx e−Λxx−1−s = ΛsΓ(−s) together

with a δ-function b−1 δ(s+b−1(α1 +α2 + . . . αN )−1−b−2) fixing s = −b−1∑N
i=1 αi+1+b−2,

and selecting in this way a single term in the expansion, i.e. the term of order Λs, which comes
with the insertion of s integrated interaction operators Vb(wr) = e

√
2bϕ(wr), r = 1, 2, . . . s.

The latter operators, being marginal in the free (Λ = 0) CFT, can be thought of as the
screening operators required by the presence of a background charge Q. These operators
also admit the string theory interpretation of being the vertices of the tachyons of which the
Liouville barrier (or wall) is made. In this picture, the cosmological constant Λ is related to
the string coupling constant, the Liouville wall is what prevents the theory to reach the
strong coupling regime, and the background charge Q governs the slope of the lineal dilaton:
the background charge enters in the integration over the zero mode of ϕ, yielding

bs+
N∑
i=1

αi = Q, (4.2)

where the Gauss-Bonnet theorem has been used on the right hand side of (4.2), keeping in
mind that we are formulating the theory on the sphere: 1

4π
∫
dz2R = 1

2χ(CP1) = 1.
Correlators (4.1) can be computed by performing Wick contractions of the N + s

operators, using the free field propagator 〈ϕ(z1)ϕ(z2)〉 = −2 log |z1 − z2|. The latter yields
the operator product expansion e

√
2α1ϕ(z1)e

√
2α2ϕ(z2) ∼ |z1 − z2|−4α1α2e

√
2(α1+α2)ϕ(z2) + . . .

Here, we are interested in the partition function; that is to say N = 0. In that case, the
number of screening operators to be integrated out turns out to be m = s− 3 = b2 − 2 as
the volume of the conformal Killing group PSL(2,C) should be cancelled by fixing three
out of the s local operators e

√
2bϕ(z). We use projective invariance to insert three of these

operators at the points z1 = 0, z2 = 1 and z3 = ∞. (This has to be distinguished from
the direct computation of the 3-point function [36] of three light states α1 = α2 = α3 = b,
where one has to integrate over the insertion points of all the s screening operators and not
over s− 3 of them).

The latter discussion is related to something we have said before: while the partition
function per unit of length might vanish, the actual partition function can in principle be
finite [40]. In theories such as LFT, where the exponential potential (i.e. the wall) breaks
target space translation invariance, the exact volume factor can be computed by the trick
we have just introduced: fixing three screening operators and integrating the zero mode of
ϕ explicitly.

Another important remark about (4.1) has also to do with the number of integrals
to be performed: s− 3. In the case of the partition function this is given by s = 1 + b−2,
which in general is not a positive integer but a real number. Therefore, expression (4.1)
has to be taken formally: in order to define the theory for arbitrary b ∈ R one has to
analytically extend that expression. A natural way of doing so is to first assume s ∈ Z≥1
and then extend the integrated expression to the domain s ∈ R. This strategy was shown
to reproduce the correct results in a variety of CFTs. The free field techniques as the one
considered here were developed by Dotsenko and Fateev [44] in the context of Generalized
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Minimal Models and later extended by Goulian and Li [45] to LFT; see also [46–48]. Using
these techniques, the partition function Z[Λ] is given by

Z[Λ] = Λm+3

b
Γ(−m−3)

∫
Cm

m∏
t=1

d2wt

∫
ϕ(CP1)

Dϕe−SL[0] e
√

2bϕ(0)e
√

2bϕ(1)e
√

2bϕ(∞)
m∏
r=1

e
√

2bϕ(wr)

(4.3)
with m = −2 + b−2. The vertex inserted at infinity has to be understood as being
accompanied with the appropriate factor that extract the singularity, namely in the
limz3→∞ |z3|−4e

√
2bϕ(z3). After applying the Wick rules, we get

Z[Λ] = b−1Λ3+mΓ(−m− 3)
∫
Cm

m∏
i=1

d2wi

(
m∏
r=1
|wr|−4b2 |1− wr|−4b2

m∏
t=1

t−1∏
`=1
|wt − w`|−4b2

)
,

which can be explicitly solved for integer m by using the Dotsenko-Fateev formula for
generalized Selberg type integrals; see (B.9) in [44]. As explained above, while we are
interested in the case where m is generic, in order to solve the integral expression we
first assume that m is a positive integer and then extend the final expression. Assuming
m ∈ Z≥1, we get

Z[Λ] = Λ3+m

b
Γ(−m− 3)Γ(m+ 1)πmγm(1 + b2)

×
m∏
r=1

γ(−rb2)γ2(1− (r + 1)b2)γ(−1 + (r + 2 +m)b2),

where γ(x) = Γ(x)/Γ(1−x). The non-trivial task here is to perform the analytic continuation
in m. In order to do this, we can rewrite the expression above by using that γ(−1 + (r +
2 +m)b2) = γ(rb2); so, we can write

Z[Λ] = Λ3+m

b
Γ(−m− 3)Γ(m+ 1)πmγm(1 + b2)

m∏
t=1

γ(−tb2)γ(tb2)
m+1∏
r=2

γ2(1− rb2). (4.4)

Next, further simplifications are needed: we use that m = b−2−2, i.e. 1−rb2 = (m+2−r)b2,
to arrange the last product in (4.4); and then we rewrite the product as follows

γ(1− 2b2)γ(1− 3b2) . . . γ(1−mb2)γ(1− (m+ 1)b2) = γ(b2)γ(2b2) . . . γ((m− 1)b2)γ(mb2);

that is
m+1∏
r=2

γ(1− rb2) =
m∏
r=1

γ(rb2).

Then, we use γ(−rb2)γ(1 + rb2) = 1 to write

Z[Λ] = b−1Λ1+b−2Γ(−m− 3)Γ(m+ 1)πmγm(1 + b2)γ2(b2)(−1)mb−4mΓ−2(m+ 1), (4.5)

where the identities γ(x)γ(−x) = γ(x)γ−1(1 + x) = −x−2 were used. The properties of the
γ-function are also used to write γ(2− b−2) = −(1− b−2)2γ(1− b−2), γ(1 + b2) = −b4γ(b2),
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and γ(−1+b2) = −(1−b2)−2γ(b2), and finally, once all is written in terms of b, the partition
function takes the form

Z[Λ] = (1− b2)
(
πΛγ(b2)

)1+b−2

π3(b+ b−1)γ(b2)γ(b−2) , (4.6)

which exactly reproduces (3.8). This is the exact result for the spacelike Liouville partition
function, which here we have obtained by the Coulomb gas formalism using free field
techniques.

In order to fully appreciate this calculation of Z[Λ], it is worth comparing it with
the analogous computation of the structure constant C(α1, α2, α3) for the particular con-
figuration α1 = α2 = α3 = b. In particular, this comparison permits to understand the
breakdown of Liouville self-duality. The main difference between the calculation of Z[Λ]
and that of C(b, b, b) is given by the overall factor Γ(−s) = Γ(−m−3) in (4.3). As said, this
factor comes from the integration over the zero-mode of ϕ, but it can be also thought of as
coming from the combinatorial problem of permuting all the screening operators: actually,
for integer s this factor can be written as Γ(−s) ∼ (−1)sΓ(0)/s!, where the infinite factor
Γ(0) keeps track of a divergence due to the non-compactness of the Liouville direction.
This yields the factorial 1/s! arising in the residue corresponding to the poles of resonant
correlators. In the computation of the structure constant C(b, b, b), in contrast to that
of Z[Λ], such overall factor is Γ(3 − s) instead of Γ(−s) since one has to divide by the
permutation of s− 3 screening charges instead. Therefore, we find

C(b, b, b) = Γ(3− s)
Γ(−s)

Z[Λ]
Λ3 = − s!

(s− 3)!
Z[Λ]
Λ3 = (1 + b−2)b−2(1− b−2) Z[Λ]

Λ3 , (4.7)

which is consistent with the relation d3Z
dΛ3 = −C(b, b, b) ∼ Λb−2−2 we used in section 3, cf. [36].

In other words, this combinatorial problem appears to be at the root of the breakdown of
the Liouville self-duality at the level of the partition function.

5 Fixed area partition function

Now, let us study the partition function at fixed area. The motivation to do so is, on the
one hand, to explore the semiclassical limit of this quantity; on the other hand, it will
enable us to crosscheck the normalization of our result (3.8): we already made the point
that, for the computation of the partition function to be meaningful, it is better that the
normalization gets naturally fixed.

Instead of considering the usual partition function Z[Λ], we now consider the fixed area
partition function Z(A), with the area being defined as A =

∫
d2ze

√
2bϕ. The two partition

functions are related each other as follows

Z[Λ] =
∫
R≥0

Z(A) e−ΛA dA

A
. (5.1)

From the KPZ scaling of Z[Λ], it can be shown that1

Z(A) = 1
Γ(−Q/b)(AΛ)−Q/bZ[Λ]. (5.2)

1Compare the sign of this formula with the one appearing in [36] and with the one appearing in [42].
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Using (3.8) and using properties of the Γ-function, we have Qγ(b−2)Γ(−Q/b) = b3Γ(b−2),
and then we get the following expression for the fixed area partition function [36]

Z(A) =
(
A

π

)−Q/b (1− b2)[γ(b2)]1/b2

(πb)3Γ(b−2) . (5.3)

Some comments are in order:

• The fixed area partition functions scales as Z(A) ∼ A−1−b−2 , which by definition
reproduces the correct KPZ scaling Z[Λ] ∼ Λ1+b−2 after transforming as in (5.1); that
is,

1
Γ(−1− b−2)

∫ ∞
0

e−ΛAA−2−b−2
dA = ΛQ/b. (5.4)

• Studying the analytic properties of the Ẑ[Λ] amounts to take into account the zeroes
it exhibits at b2 ∈ Z≥1 due to the factor (Γ(1− b2))−1/b2 .

• The behavior for small b is given by the following expansion

Z(A) '
(
A

π

)−1−b−2
e−2b−2 log b+O(1)

b3π3

(
1− b2 +O(b5)

)
(5.5)

• The semiclassical limit, which corresponds to small b, yields the following leading
exponential behaviour

Z(A) ' e1/b2
(
A

π

)−1/b2

. (5.6)

Below, we will show that this semiclassical behavior is exactly reproduced by the
saddle point and, besides, that it is consistent with the AdS3/CFT2 correspondence.

6 Semiclassical partition function

Now, let us study the semiclassical theory. The classical limit of LFT corresponds to take
b→ 0. This is achieved by conveniently rescaling ϕ→ ϕ/(

√
2b) and Λ→ Λ/(4πb2) in (2.1);

cf. [49]. We are interested in making an estimation of the fixed area partition function using
the saddle point approximation

Z(A) ' exp
(
− 1
b2
S

(cl)
A

)
, (6.1)

where S(cl)
A is the constant area classical Liouville action defined by

SL[ϕ] = S
(cl)
A [ϕ] + Λb2

∫
d2z eϕ ; (6.2)

see equations (2.34)–(2.39) in [36]. To find the classical solution needed for the evaluation of
the classical constant area action, we have to solve the positive curvature Liouville equation

∂∂̄ϕ = 2π
A

(∑
ηi − 1

)
eϕ, (6.3)
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Figure 1. Comparison between the classical and the quantum partition function: the dashed
lines are the exact result (5.3) while the solid lines are the saddle point approximation (6.7). The
horizontal axis is b, while different values of A correspond to curves of different colors: A = 0.1 (red),
A = 1 (blue), A = 10 (green). This manifestly shows that the semiclassical approximation matches
the exact result for small b and for all values of A.

with the usual boundary conditions, where ηi are the classical momenta. Since we are
involved with the partition function, we take ηi = 0. Up to a global conformal transformation,
there is a unique, everywhere regular solution with the right asymptotics; namely

ϕ0 = log
(

A

π(1 + zz̄)2

)
. (6.4)

We insert this solution in the regularized constant area classical action, and we perform the
integral around a big circle of radius R, taking into account the bulk action, the boundary
term, and the counterterm. We get

S
(cl)
A [ϕ0;R] = logR2 + 1

R2 − 1 + log
(
A

π

)
− 2 log(1 +R2) + logR2 , (6.5)

so that in the limit of R→∞ we have

S
(cl)
A [ϕ0] = −1 + log

(
A

π

)
. (6.6)

Therefore, the saddle point approximation tells us that

Z(A) ' e−
1
b2
S

(cl)
A [ϕ0] = e1/b2

(
A

π

)−1/b2

, (6.7)

in perfect agreement with the semiclassical leading behaviour of the quantum partition
function found in (5.6); see figure 1 for a detailed comparison.

An interesting property of the semiclassical result (6.7) is that it also matches the
expectation from AdS3/CFT2 correspondence. In reference [4], which has been regarded as
one of the precursors of AdS/CFT correspondence, it has been shown that LFT appears as
a semiclassical description of the boundary dynamics of 3D gravity in asymptotically AdS

– 10 –



J
H
E
P
0
9
(
2
0
2
2
)
1
2
6

space, where the central charge of the boundary CFT2 is given by cL = 1+6Q2 ' 6b−2 = 3`
2G ,

with ` and G being the AdS radius and the Newton constant respectively; see [50] for details.
In [51], Krasnov studied this correspondence between Liouville CFT and Einstein gravity in
AdS3 by evaluating the Einstein-Hilbert action 1

16πG
∫
d3x
√
−g(R+ 2/`2) on configurations

that correspond to puncture surfaces and comparing it with corresponding LFT correlators.
In equation2 (3.12) of [51] the semiclassical expression for the 3D gravity action with no
punctures is given, and it exactly matches the result (6.6) above.

7 Timelike partition function

Now, let us consider the timelike theory. Timelike LFT is defined starting from the spacelike
theory and performing the Wick rotation ϕ→ −iϕ along with b→ ib. These changes suffice
to produce a real action for a field ϕ with the wrong sign kinetic; namely

ŜL[Λ] = 1
4π

∫
d2z

(
−∂ϕ∂̄ϕ+ 1

2
√

2
Q̂Rϕ+ 4πΛe

√
2bϕ
)

(7.1)

where b and Λ are two real parameters, and Q̂ = b− b−1. It is customary to add a hat to
the quantities and parameters of the timelike theory, e.g. the timelike structure constant
will be denoted by Ĉ(α1, α2, α3). (It is also usual to denote β = ib; we do not use this
notation here, but it is convenient to take it into account when comparing with the formulae
in the literature).

Whether (7.1) defines an actual conformal field theory is a question that has been
addressed by many authors [11, 12, 19, 22]. In [11], the authors showed that a particular
proposal for the timelike LFT 3-point function, originally presented in [13–16], can actually
be computed by the original LFT path integral evaluated on a new integration cycle. In [17],
a Coulomb gas derivation of the timelike 3-point function was shown to reproduce the
same expression. This showed that the Coulomb gas approach suffices to compute timelike
quantities provided the analytic extension is done appropriately.

The timelike 3-point function takes the form

Ĉ(α1, α2, α3) =
(
πΛγ(−b2)b2+2b2)(Q̂−α)/b Υb(Q̂+ b− α)

bΥb(b)

3∏
i=1

Υb(2αi − α+ b)
Υb(b− 2αi)

(7.2)

with Q̂ = b − b−1, α = α1 + α2 + α3. The most salient feature of the timelike 3-point
function (7.2) is that it does not agree with the naive analytic extension b→ ib of the DOZZ
formula; on the contrary, it is more like its inversion. This introduces a problem when
trying to compute the timelike LFT partition function, as evaluating α1 = α2 = α3 = b

in (7.2) yields a vanishing result due to three Υb(0) = 0 factors in the numerator: timelike
DOZZ formula Ĉ(b, b, b) identically vanishes. On the other hand, computing the timelike
Ẑ[Λ] from the naive analytic continuation of the spacelike DOZZ does not seem to be well
justified. All this represents a problem to compute the timelike partition function, and
therefore we need to resort to a different kind of computation. This is were Coulomb gas

2Eq. (39) in the preprint.
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computation becomes important [17]. We can compute the timelike partition function as we
did in section 4 with the spacelike partition function. Following the same steps we find that
in the timelike case the number of integrated screening operators would be ŝ− 3 = b2 − 2.
Then, assuming ŝ ∈ Z>3, the timelike partition function reads

Ẑ[Λ] = Λŝ
b

Γ(−ŝ)Γ(ŝ− 2)(−πγ(−b2)b4)ŝ−3
ŝ−3∏
r=1

γ(rb2)γ(−(ŝ+ r − 1)b2 − 1)
γ2(−(1 + r)b2) . (7.3)

Noticing that 1 + rb2 = b2(ŝ − 1 − r) we can rearrange the products of Γ-functions and
eventually find

Ẑ[Λ] = (1 + b2)
(
πΛγ(−b2)

)Q̂/b
π3Q̂γ(−b2)γ(−b−2)

, (7.4)

recall Q̂ = b − b−1. This is the exact resut for the timelike LFT on the sphere topology,
cf. [17]. Some comments are in order:

• The result we obtained for the timelike partition function Ẑ[Λ] is related to the
spacelike Z[Λ] in such a way that, if we perform b → ib then Z[Λ] transforms into
−iẐ[Λ], as naively expected from the path integral definition. In other words, the
expression (7.4) is obtained from the spacelike partition function by replacing Q→ Q̂

and b2 → −b2, up to an i factor.

• The expression for Ẑ[Λ] we obtained is non-zero despite Ĉ(b, b, b) = 0.

• As in the spacelike case, the expression Ẑ[Λ] is not invariant under Liouville self-duality
b→ 1/b.

• Expanding our formula for small b, we get

Ẑ[Λ] ' (πΛ)1−b−2 sin(πb−2)
π3 e−b

−2(2+iπ+2 log b)−2γ− 2
3 ζ(3)b4+O(b6)

×
(

2b−1 + 13
3 b+ 169

36 b
3 +O(b4)

)
where γ = 0.5772156 . . . and ζ(3) = 1.2020569 . . . are the Euler-Mascheroni and the
Apéry constants, respectively.

• There is a factor Γ(−b−2)(Γ(−b2))1/b2 in the denominator of (7.4), so that when
b2 ∈ Z≥1 the expression has zeroes.

• It is possible to compare our result (7.4) with a conjecture made in [28] about the form
of the timelike partition function; see equation (5.1) therein, as well as equations (3.24),
(4.8)–(4.9) and section 4.2. The formula for the timelike partition function at finite
b proposed in [28] was inferred from the direct extension of the spacelike DOZZ
formula. A result similar to (7.4) is obtained in this way, except for some extra
factor eQ̂2(1−2 log 2)+iπ2 . As explained in [11], the semiclassical comparison between the
partition function and the Liouville action evaluated on the round 2-sphere is only
possible up to a field-independent constants; see footnote 8 on page 13 in [11]; see
also the discussion in [28] around equations (4.6)–(4.7).
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• A perturbative 2-loop computation of the sphere timelike partition function was also
addressed in [28], and it was compared with the small b expansion of the aforementioned
conjectured formula for Ẑ[Λ]. Up to normalization, the authors found a mismatch
in a factor (1 − e2πi/b2) between the perturbative and the non-perturbative result,
which they interpret as being related to an extra saddle point that, unlike the loop
calculation, the DOZZ formula does compute. Understanding the relation with the
loop computation requires further study.

• As usual in non-rational CFT computations, the Coulomb gas approach used in
this section and in section 4 requires analytic extensions of products and sums. We
have already explained how to deal with such formal expressions and with their
analytic extensions; for instance, we explained the case in which the upper limit of a
product is in general a non-integer real number. In some models this can actually
be even more subtle as upper limits of the products are often negative integers; e.g.
see (7.6) below. Let us elaborate on this: the function P (n) = ∏n

r=1 f(r), which is
obviously well defined for n ∈ Z>0, can be extended for n ∈ Z≤0 by simply defining
P (−n) = ∏n−1

r=0 f
−1(−r). By exponentiation, this implies that a sum of the form

S(n) = ∑n
r=1 f(r) admits the extension S(−n) = −∑n−1

r=0 f(−r). This prescription
has already been used in the context of non-rational CFTs [48, 52] and its consistency
can be checked by considering simple examples such as the geometric series ∑n

r=1 p
r,

the Faulhaber’s numbers ∑n
r=1 r

p and generalizations. This leads to expressions like∏+n
r=−n γ(rb2) = b−4n−2γ(−n) which often appear in CFT calculations. The techniques

employed throughout this paper are consistent with these formulae.

• Before concluding, a few words on black holes: the analytic extension of the Coulomb
gas realization discussed in this section and in section 4 has led to the exact formula for
the LFT partition function. Then, it is natural to ask whether a similar computation
can be done for other examples of non-compact CFTs. For instance, one could
address the case of string theory on the 2D black hole [53–56], whose worldsheet
CFT corresponds to the SL(2,R)k/U(1) Wess-Zumino-Witten (WZW) model, the
WZW level k being related to the black hole curvature in string units. This model
is remarkably similar to LFT, especially if one resorts to the Wakimoto free field
representation of the ŝl(2)k symmetry algebra [57]. The latter involves a scalar field
ϕ with background charge b and a commuting ghost β-γ system. In this case, the
perturbative parameter — i.e. the analog of Λ in LFT — turns out to be the black
hole mass, M . The KPZ scaling of partition function is expected to be linear in M .
Coulomb-gas like prescription to compute correlation functions in the 2D black hole
was worked out in [58]. As in LFT, to compute the partition function it is necessary
to insert three screening operators at fixed points. Then, the partition function turns
out to be given by the following integral

I = Mm+3Γ(−m− 3)
∫
Cm

m∏
i=1

d2ui

m∏
r=1
|ur|−4b2 |1− ur|−4b2

m∏
t=1

t−1∏
l=1
|ut − ul|−4b2 (7.5)
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with b−2 = k − 2. As before, this expression is merely formal since the integration
over the zero mode of ϕ demands m = −2. However, as before, we can treat this as
holding for a positive integer number m and then try to extend the final expression
for generic values of m. This yields

I = MΓ(−m− 3)Γ(m+ 1)πmγm+1(1 + b2)γ(b2)(−1)−m
m∏
r=1

(1− rb2)−2. (7.6)

However, unlike in LFT, here there is an obvious obstruction in working out this
expression. In this case, the number of integrated screening operators turns out to be
m = −2 (instead of m = −2 + b−2 as in LFT) and thus the expression diverges as

I = −M Γ2(−1) (1 + b2)2

π2b4
=∞ (7.7)

One of the two divergent factors Γ(−1), the one coming from the factor Γ(−m− 3)
in (7.6), is typically associated to the non-compactness of the target space [59], while
the other, coming from the factor Γ(m + 1) in (7.6), turns out to be associated to
the fact that the black hole partition function on the sphere is proportional to the
black hole mass M , and thus no derivative d3Z

dM3 can yield a finite 3-point function.
To understand this point better, let us be reminded of the fact that the KPZ scaling
black hole partition function is expected to go like Z[M ] ∼ M , which follows from
standard arguments in the path integral approach. On the other hand, the 3-point
function of three screening operators goes like

〈β(0)β(1)β(∞)〉 × c.c.× 〈e−
√

2bϕ(0)e−
√

2bϕ(1)e−
√

2bϕ(∞)〉 ∼M−2 , (7.8)

where c.c. stands for the complex conjugate counterpart. The difference between
the calculation of Z[M ] in the black hole theory and of Z[Λ] in LFT is ultimately
due to the difference of the background charges in both theories: since no singular
terms appear in the contractions among β fields in (7.8) then such a 3-point function
simply reduces to a LFT 3-point function but with the wrong background charge b
instead of b+ 1/b. This leads to a crucial difference, which boils down to the factor∏m
r=1(1− rb2)−2 in (7.6), cf. (4.5). In the case of LFT (with the correct background

charge) such factor is instead ∏m
r=1 r

−2 = (−1)−4mΓ−2(m + 1); see the last factor
in (7.3). In (4.5) the Γ-functions in the denominator combine with the overall factor
Γ(−m − 3)Γ(m + 1) in the numerator, yielding γ(−m)

(1−b−2)b−2(1+b−2) . This makes LFT
computation special; no analogous computation seems possible for the 2D black hole
in the continuous approach. In [40], a matrix model computation of the 2D black hole
partition function on the sphere topology was given. This is based on the sine-Liouville
FZZ dual model. The Coulomb gas computation in the FZZ dual model does correctly
reproduce the KPZ scaling of that computation [60].
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8 Conclusion

Expressions (4.6), (5.3) and (7.4) are the important formulae, which correspond to the
exact expressions for the sphere topology spacelike partition function, the fixed area
partition function, and timelike partition function, respectively. All of these formulae have
appeared previously; the first two in works of Dorn and Otto and of Zamolodchikov and
Zamolodchikov [36, 37, 42], and the third one in a work of one of us [17]. In this paper we
have rederived all these results in different ways, by means of different methods and we
have shown the formulae pass a variety of consistency checks. Our main motivation was to
emphasize the similarities and differences between the spacelike and the timelike cases in
order to clarify recent discussions of the timelike partition function based on the analytic
continuation of spacelike quantities. Besides, some of the rederivations of the partition
functions we have provided here can be helpful to gain more insight about some aspects of
this quantities. For example, as we discussed in detail, our Coulomb gas derivation could
make the lack of b → 1/b invariance of the spherical partition function clear. Also, the
Coulomb gas calculation permits to see the analytic extension from the spacelike to timelike
Liouville theory from a different point of view, and it shows the difference between the
coninuous approach computation in Liouville theory and in other non-rational CFTs, such
as the SL(2,R)/U(1) coset WZW model.
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