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1 Introduction

The idea of a gravitational theory belonging to a Minkowski-signature subspace of a higher
dimensional spacetime, i.e. a braneworld gravity theory, has a long history in theoretical
physics investigations, and has clearly been of interest for cosmology [1]. In ref. [2], a
categorisation, or “taxonomy” of such braneworld gravities was given for constructions
involving noncompact transverse spaces. The conceptually simplest of these categories,
“Type I”, involves a consistent truncation of the higher-dimensional supergravity to a lower-
dimensional theory on the worldvolume. This type will be the main focus of the present
paper. It should be contrasted with the generation, not via a consistent truncation, of a
lower-dimensional effective theory that is only valid within a certain low-energy range of
scales, called “Type III” in ref. [2]. Examples of the latter include Randall-Sundrum (RS)
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models [3] involving patching of sections of a higher-dimensional AdS space, or models [4]
which naturally generate a mass gap between a discrete L2 normalisable transverse-space
wave function mode and the continuum of delta-function normalisable modes expected
from a noncompact transverse space [5].

Type I and Type III constructions have different virtues. Type I constructions, involv-
ing a consistent truncation of the higher dimensional theory, give rise to fully nonlinear
lower-dimensional worldvolume theories. Type III constructions, not based on a consistent
truncation, inherently give only a perturbative realisation of lower-dimensional gravita-
tional physics, but they do generate an intrinsic localisation of the effective gravity theory
at least within a limited range of scales [2, 6].

The existence of Type I consistent truncations to worldvolume gravities was found
in ref. [7] for domain-wall or more general magnetic braneworlds. These constructions
promote the flat Minkowskian worldvolume metric of an initial “vacuum” supergravity
brane solution to a generalisation with a worldvolume Ricci-flat metric. Within the context
of the original higher dimensional theory, this amounts to making a consistent truncation
to the lower-dimensional theory, but just for the worldvolume metric. This gave rise to
applications such as braneworld black holes [8].

There can be a lot more to worldvolume physics than just Ricci-flat pure gravity
metrics, however. An indication of this possibility was given in the studies [9, 10] of,
amongst others, the embedding of the pure N = 4, d = 4 supergravity within a D = 5
RS gauged supergravity context, which was then lifted further up to D = 10 Type IIB
supergravity using an existing Kaluza-Klein S5 ansatz [11]. In that case, the unbroken
supersymmetry of the vacuum RS construction allowed an extension of a d = 4 metric-only
truncation to one involving the full N = 4 supergravity multiplet. This provided a good
example of a Kaluza-Klein reduction down to a d = 4 interacting gravity-matter theory
with nontrivial dependence on the transverse space — in that case, reduction on the single
coordinate transverse to the RS patch surface.

Since an AdS5 × S5 spacetime is the asymptotic near-horizon geometry of a Type IIB
D3-brane, the construction of ref. [9] may be taken to suggest a further generalised em-
bedding of D3 worldvolume (i.e. horizon) supergravity into D = 10 Type IIB supergravity.
The original D3-brane is a 1

2 -BPS solution, i.e. it possesses sixteen unbroken supercharges.
So the suggested worldvolume supergravity theory in the D3 brane case is N = 4, d = 4
supergravity. The original flat Type IIB D3-brane solution should serve as a structural
“skeleton” for such a construction, generalising the way that D = 5 AdS space serves in
the construction of ref. [9].

Showing how a fully nonlinear N = 4 supergravity theory embedding on a D3-brane
worldvolume works is the first result of the present paper, as presented in section 2. The
resulting KK ansatz is motivated by considering carefully the two asymptotic limits: flat
D = 10 space at transverse-space infinity and AdS5 × S5 in the near-horizon region, with
the result confirmed by showing agreement, after a voluntary truncation to just N = 2
supersymmetry, with the d = 4 structure of ref. [9]. We follow this up by demonstrating
how a wide class of N = 4 worldvolume black-hole solutions is embedded into the Type
IIB theory, using the harmonic-map construction of refs. [12–15].
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In section 3, we present an analogous construction for the M5-brane, with fully non-
linear N = (4, 0), d = 6 worldvolume supergravity. An example of an embedded solution
into D = 11 M-theory supergravity in this case is given by a worldvolume multi-charged
anti-self-dual string solution.

Section 4 shows how further diagonal and vertical dimensional reductions may consis-
tently be combined with the braneworld embeddings, giving the braneworld supergravity
embeddings of all descendants of the D3- and M5-branes.

2 D3-branes with their worldvolume supergravities

The geometry of the 1
2 -BPS solution of D = 10 Type IIB supergravity describing parallel

D3-branes is a warped product R1,3×W R6. As shown in ref. [7], it is consistent to replace
the R1,3 worldvolume of the D3-branes with a generic, four-dimensional manifold M4 with
a general Ricci-flat metric gµν . In the language of ref. [2], this is a “Type I” consistent
truncation of Type IIB supergravity down to pure, N = 1, d = 4 supergravity. However,
since the original flat-worldvolume solution preserves sixteen supercharges, we anticipate
the existence of a more general consistent truncation to pure N = 4, d = 4 supergravity.
The Ricci-flat replacement R1,3 → M4 would then be just a further consistent truncation
of the N = 4 theory to its purely gravitational sector. Our goal here is to construct such a
generalisation of flat D3-branes, referred to henceforth as skeleton branes, to ones with full
four-dimensional worldvolume N = 4 supergravity. We will then classify the stationary
black-hole solutions of the N = 4 theory and, for completeness, will explicitly construct a
family of charged black hole solutions. These solutions, when uplifted back into Type IIB
supergravity using our embedding, have interpretations as D3-branes with charged black
holes on their worldvolume.

2.1 Skeleton D3-branes and d = 4, N = 4 supergravity

The supergravity solution ofD = 10 Type IIB supergravity describing N parallel D3-branes
in units where α′ = 1 is given by1

dŝ2 = H−1/2ds2(R1,3) +H1/2
(
dr2 + r2dΩ2

5

)
,

F̂(5) = 16πN(1 + ∗̂) vol5 , H = 1 + 4πN
r4 ,

(2.1)

where dΩ2
5 is the metric on the round five-sphere, vol5 is its associated volume form, and

for simplicity, the string coupling constant has been set to one. This solution preserves
sixteen rigid supercharges. For this to be a string theory background, the five-form flux
must obey the quantisation condition

1
16π4

∫
C5
F̂(5) ∈ Z , (2.2)

1Our convention for the Hodge dual is ∗(dxm1 ∧ · · · ∧ dxmp ) = 1
q!

√
|g|εm1···mp

n1···nqdx
n1 ∧ · · · ∧ dxnq ,

where εn1···nD with lowered indices is numerical with ε012...D−1 = 1, and q = D − p.
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for any non-trivial five-cycle C5. The only non-trivial five-cycle in (2.1) is C5 = S5, and
for it we find

1
16π4

∫
C5
F̂(5) = N ∈ Z . (2.3)

In terms of the Cartesian coordinates yΛ, Λ ∈ {1, . . . , 6}, on the transverse space R6, the
volume form of the five-sphere is

vol5 = 1
5!
yΛ

r6 ε
Λ

Σ1···Σ5dy
Σ1 ∧ · · · ∧ dyΣ5 = − 1

16πN ∗6dH , (2.4)

where r2 = yΛyΛ, ε123456 = 1, the Λ indices are raised/lowered by the flat Euclidean metric
δΛΣ, and ∗6 is the Hodge dual with respect to δΛΣ. The five-form is then explicitly

F̂(5) = H−2 vol4 ∧dH − ∗6dH , (2.5)

where vol4 is the volume form on the Minkowski worldvolume.
The solution (2.1) is the skeleton on which we will embed the pure N = 4, d = 4

supergravity theory. This theory contains one graviton, four gravitini, six U(1) vectors,
four dilatini, and one complex scalar, which parametrises the coset space SL(2,R)/ SO(2).
We will denote the bosonic degrees of freedom by the metric gµν , six one-forms AΛ

(1), where
Λ ∈ {1, . . . , 6}, and the complex scalar τ = χ + ie−φ. The Lagrangian describing the
bosonic sector of the d = 4 theory is given by

L4 = R∗41− 1
2dφ ∧ ∗4dφ−

1
2e

2φdχ ∧ ∗4dχ−
1
2e
−φFΛ

(2) ∧ ∗4F
Λ
(2) −

1
2χF

Λ
(2) ∧ F

Λ
(2) . (2.6)

where FΛ
(2) = dAΛ

(1). For the rest of this paper, all fields without a hat are taken to be
lower-dimensional.

For completeness, we will record below the Bianchi identities and the equations of
motion obtained from (2.6):

dFΛ
(2) = 0 , (2.7)

dGΛ
(2) = 0 , (2.8)

d∗4dφ− e2φdχ ∧ ∗4dχ+ 1
2e
−φFΛ

(2) ∧ ∗4F
Λ
(2) = 0 , (2.9)

d(e2φ∗4dχ)− 1
2F

Λ
(2) ∧ F

Λ
(2) = 0 , (2.10)

Rµν = 1
2∇µφ∇µφ+ 1

2e
2φ∇µχ∇νχ+ 1

2e
−φ
(
FΛ
µρFΛ ρ

ν − 1
4(FΛ)2gµν

)
, (2.11)

where (FΛ
(2))

2 = FΛ
µνFΛµν , and

GΛ
(2) = e−φ∗4FΛ

(2) + χFΛ
(2) (2.12)

is the SL(2,R) dual of FΛ
(2).
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2.2 Embedding N = 4 supergravity on D3-branes

To embed the pure N = 4 supergravity theory on the worldvolume of the skeleton D3-
branes, we need to generate six Abelian vector fields and a complex scalar that parame-
terises the coset SL(2,R)/ SO(2). These vector fields cannot be obtained through a usual
Kaluza-Klein reduction on the transverse R6, as the D3-branes are supported by a har-
monic function on that R6. They also cannot be generated through a Pauli reduction on
the transverse S5, i.e. the five-sphere boundary of R6 at infinity, because U(1)6 is not a
subgroup of SO(6). This means that the six vector fields must appear in the fluxes of
the Type IIB theory, and, due to gauge invariance, they must appear through their field
strengths. The field strengths must also appear in an SO(6) invariant manner, as the
N = 4 theory has a global SO(6) symmetry that rotates them. Furthermore, the D = 10
Type IIB theory already contains a complex scalar τ̂ = Ĉ0 + ie−Φ̂ that parameterises the
SL(2,R)/ SO(2) coset. With these facts in mind, we find, after some trial and error, that
the embedding of the full d = 4, N = 4 supergravity theory on the worldvolume of skeleton
D3-branes is given by

dŝ2 = H−1/2gµν(x)dxµdxν +H1/2dyΛdyΛ , Φ̂ = φ(x) , Ĉ0 = −χ(x) ,

Ĥ(3) = 1√
2
FΛ

(2) ∧ dy
Λ , F̂(3) = − 1√

2
e−φ∗4FΛ

(2) ∧ dy
Λ ,

F̂(5) = H−2 vol4 ∧dH − ∗6dH , H = 1 + 4πN
r4 .

(2.13)

where FΛ
(2) are two-forms on the four-dimensional subspace that we will show correspond

to the field strengths of the N = 4 theory, ∗4 is the Hodge dual computed with respect to
the four-dimensional metric gµν , vol4 is the volume form associated with gµν , and ∗6 is the
Hodge dual computed with respect to the flat metric δΛΣ on the transverse R6.

We will demonstrate that (2.13) solves the Type IIB Bianchi identities and equations
of motion, which are presented in appendix A, provided that the four-dimensional fields
(gµν , φ, χ,FΛ

(2)) solve the Bianchi identities and equations of motion of N = 4 supergrav-
ity (2.7)–(2.11). Let’s begin with the Bianchi identities. The five-form in (2.13) is closed
since H is harmonic, so its Bianchi identity (A.1) becomes

F̂(3) ∧ Ĥ(3) = 0 , (2.14)

which is satisfied by our three-form fluxes, as FΛ
(2) ∧ ∗4F

Σ
(2) is symmetric in (Λ,Σ). Next,

the Bianchi identities (A.3), (A.2) for the three-forms give

Ĥ(3) : dFΛ
(2) = 0 , (2.15)

F̂(3) : dGΛ
(2) = 0 , (2.16)

for all Λ ∈ {1, . . . , 6}, where GΛ
(2) = e−φ∗4FΛ

(2) +χFΛ
(2) is the SL(2,R) dual of FΛ

(2) as defined
in (2.12). These are the Bianchi identities and flux equations of motion of the N = 4 theory.

To evaluate the equations of motion, we record below the Hodge duals

∗̂dΦ̂ = H∗4dφ ∧ vol6 , ∗̂F̂(1) = −H∗4dχ ∧ vol6 ,

∗̂Ĥ(3) = 1√
2
H∗4FΛ

(2) ∧ ∗6dy
Λ , ∗̂F̂(3) = 1√

2
He−φFΛ

(2) ∧ ∗6dy
Λ ,

(2.17)
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where vol6 is the volume form on R6. Beginning with the F̂(3) equation (A.7), we find

d(eΦ̂∗F̂(3)) = 1√
2
∂ΛHFΛ

(2) ∧ vol6 , (2.18)

where we have used the Bianchi identity dFΛ
(2) = 0 and the identity d∗6dyΛ = 0. Next,

F̂(5) ∧ Ĥ(3) = 1√
2
∂ΛHFΛ

(2) ∧ vol6 , (2.19)

so
d(eΦ̂∗F̂(3))− F̂(5) ∧ Ĥ(3) = 0 (2.20)

identically. For the Ĥ(3) equation (A.8), a similar calculation shows that it reduces to a
0 = 0 identity using the Bianchi identities and field equations for FΛ

(2). For the RR scalar
equation, we have

d(e2Φ̂∗̂F̂(1)) = −d(He2φ∗4dχ ∧ vol6) = −Hd(e2φ∗4dχ) ∧ vol6 (2.21)

as dH ∧ vol6 = 0 and d vol6 = 0, and

Ĥ(3) ∧ ∗̂F̂(3) = 1
2He

−φFΛ ∧ FΣdyΛ ∧ ∗6dyΣ = 1
2He

−φFΛ
(2) ∧ F

Λ
(2) ∧ vol6 . (2.22)

Therefore, (A.9) becomes

d(e2φ∗4dχ)− 1
2F

Λ
(2) ∧ F

Λ
(2) = 0 , (2.23)

and we find that the transverse dependence factors out nicely. Similarly, the dilaton equa-
tion (A.10) reduces to

d∗4dφ− e2φdχ ∧ ∗4dχ+ 1
2e
−φFΛ

(2) ∧ ∗4F
Λ
(2) = 0 . (2.24)

These are the scalar equations for the N = 4 theory.
Finally, we move to the Einstein equations (A.11). The non-zero components of the

Ricci tensor are

R̂µν = Rµν −
64π2N2

r10H3 gµν , R̂ΛΣ = −1
2H
−2∂ΛH∂ΣH + 64π2N2

r10H2 δΛΣ . (2.25)

Let
T̂ 1
MN = 1

96 F̂MP1P2P3P4F̂
P1P2P3P4

N , (2.26)

be the contribution of F̂(5) to the stress tensor. A straightforward calculation shows that
the non-zero components of T̂ 1

MN are

T̂ 1
µν = −64π2N2

r10H3 gµν , T̂ 1
ΛΣ = −1

2H
−2∂ΛH∂ΣH + 64π2N2

r10H2 δΛΣ , (2.27)
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which perfectly cancels the “brane part” of the Ricci tensor. Thus, the Einstein equations
reduce to

Rµν = 1
2∇̂µΦ̂∇̂νΦ̂ + 1

2e
2Φ̂∇̂µĈ0∇̂νĈ0

+ 1
4e
−Φ̂
(
ĤµP1P2Ĥ

P1P2
ν − 1

12(Ĥ(3))2ĝµν

)
+ 1

4e
Φ̂
(
F̂µP1P2F̂

P1P2
ν − 1

12(F̂(3))2ĝµν

) (2.28)

for the worldvolume components,
1
2∇̂µΦ̂∇̂ΣΦ̂ + 1

2e
2Φ̂∇̂µĈ0∇̂ΣĈ0

+1
4e
−Φ̂
(
ĤµP1P2Ĥ

P1P2
Σ − 1

12(Ĥ(3))2ĝµΣ

)
+1

4e
Φ̂
(
F̂µP1P2F̂

P1P2
Σ − 1

12(F̂(3))2ĝµΣ

)
= 0

(2.29)

for the mixed components, and
1
2∇̂ΛΦ̂∇̂ΣΦ̂ + 1

2e
2Φ̂∇̂ΛĈ0∇̂ΣĈ0

+1
4e
−Φ̂
(
ĤΛP1P2Ĥ

P1P2
Σ − 1

12(Ĥ(3))2ĝΛΣ

)
+1

4e
Φ̂
(
F̂ΛP1P2F̂

P1P2
Σ − 1

12(F̂(3))2ĝΛΣ

)
= 0

(2.30)

for the transverse components. Using the ingredients provided in appendix B, we find
that (2.28) reduces to

Rµν = 1
2∇µφ∇µφ+ 1

2e
2φ∇µχ∇νχ+ 1

2e
−φ
(
FΛ
µρFΛ ρ

ν − 1
4(FΛ)2gµν

)
, (2.31)

This the Einstein equation of the N = 4 theory. The (µ,Λ) and (Λ,Σ) components of the
Einstein equations reduce to 0 = 0 identities.

We have now shown explicitly that (2.13) is a consistent truncation of Type IIB su-
pergravity on a background of N parallel D3-branes to the N = 4 supergravity theory on
the four-dimensional worldvolume.

2.2.1 Asymptotic limits

The skeleton D3-brane solution (2.1) is part of a large class of interpolating solitons. At
small r, the solution becomes AdS5 × S5, and at large r, it becomes the R1,9 vacuum. We
will examine our embedding of the N = 4 theory obtained in (2.13) at these limits, and
find that (2.13) retains the interpolating structure.

The flat limit. As r → ∞, the harmonic function H → 1, and the embedding of the
N = 4 theory (2.13) becomes

dŝ2 = gµν(x)dxµdxν + dyΛdyΛ , Φ̂ = φ(x) , Ĉ0 = −χ(x) ,

Ĥ(3) = 1√
2
FΛ

(2) ∧ dy
Λ , F̂(3) = − 1√

2
e−φ∗4FΛ

(2) ∧ dy
Λ , F̂(5) = 0 ,

(2.32)
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which describes the embedding of the N = 4 theory into the R1,9 vacuum of Type IIB
supergravity. It is easy to check that (2.32) is indeed a solution to the Type IIB equations
of motion provided that the four-dimensional fields satisfy the equations of motion of the
N = 4 theory.

As an aside, it is interesting to consider compactifying the R6 in (2.32) by a compact
quotient. This is now possible because the R6 flat-space trivialisation of the harmonic
function supporting the original solution allows ∂/∂yΛ to be Killing vectors. The simplest
compactification will be the unit six-torus T 6, where the coordinates yΛ take values in
[0, 2π). With this identification, the Page charges associated to Ĥ(3) and F̂(3), corresponding
to the charges of the NS5- and D5-branes sourced by these fluxes, are now finite, with

QNS5 = 1
4π2

∫
C3
Ĥ(3) = 1√

2

6∑
Λ=1

1
2π

∫
C2
FΛ

(2) , (2.33)

and

QD5 = 1
4π2

∫
C′3

(
F̂(3) + Ĉ0Ĥ(3)

)
= − 1√

2

6∑
Λ=1

1
2π

∫
C′2

GΛ
(2) , (2.34)

where C2 and C ′2 are, in principle, different two-cycles. We can write this more succinctly as

QNS5 = 1√
2

6∑
Λ=1

c1(FΛ
(2)) , QD5 = − 1√

2

6∑
Λ=1

c1(GΛ
(2)) . (2.35)

where c1 denotes the first Chern class. The first Chern classes are quantised, so

QNS5, QD5 ∈
1√
2
Z . (2.36)

In string theory, however, we must have QNS5, QD5 ∈ Z. To remedy this, we employ a
trombone rescaling of the Type IIB fields (see (A.12)),

ĝ 7→
√

2ĝ , Φ̂ 7→ Φ̂ , Ĉ0 7→ Ĉ0 , Ĥ(3) 7→
√

2Ĥ(3) , F̂(3) 7→
√

2F̂(3) , (2.37)

so that

QNS5 =
6∑

Λ=1
c1(FΛ

(2)) , QD5 = −
6∑

Λ=1
c1(GΛ

(2)) (2.38)

are integers. We note that the NS5 charge corresponds to the magnetic charges of the
N = 4 theory, whereas the D5 charge corresponds to the generalised electric charges.

The horizon limit and N = 2 supergravity. As r → 0, the harmonic function
H → c/r4 with c = 4πN , and the embedding of the N = 4 theory (2.13) becomes

dŝ2 = c−1/2r2gµν(x)dxµdxν + c1/2dr
2

r2 + c1/2dΩ2
5 , Φ̂ = φ(x) , Ĉ0 = −χ(x) ,

Ĥ(3) = 1√
2
FΛ

(2) ∧ dy
Λ , F̂(3) = − 1√

2
e−φ∗4FΛ

(2) ∧ dy
Λ ,

F̂(5) = 16πN
(
vol5−c−2r3 vol4 ∧dr

)
,

(2.39)
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where we have used spherical polar coordinates on R6, and we recall that dΩ2
5 and vol5 are

respectively the metric and the volume form on the round five-sphere. For an asymptot-
ically flat metric gµν , (2.39) corresponds to a truncation of Type IIB supergravity on the
five-sphere down to an asymptotically AdS5 spacetime. It can be verified that (2.39) is also
an exact solution to the Type IIB equations of motion provided that the four-dimensional
fields obey the corresponding equations of motion of the N = 4 theory.

The N = 4 supergravity theory (2.6) in four dimensions admits a consistent truncation
to the N = 2 supergravity theory, which contains one graviton, one vector, and two
gravitini. The Lagrangian for the bosonic sector of this theory is simply the Einstein-
Maxwell Lagrangian,

L4 = R∗41− 1
2F(2) ∧ ∗4F(2) . (2.40)

There are multiple ways of getting to the N = 2 theory from the N = 4 theory, but at
least two of the vectors of the N = 4 theory must be retained. Keeping only F5

(2) and F
6
(2),

the truncation is given by

φ = χ = 0 , F5
(2) = 1√

2
∗4F(2) , F6

(2) = 1√
2
F(2) . (2.41)

In terms of the Type IIB embedding (2.39), we have

dŝ2 = c−1/2r2gµν(x)dxµdxν + c1/2dr
2

r2 + c1/2dΩ2
5 , Φ̂ = 0 , Ĉ0 = 0 ,

Ĥ(3) = 1
2
(
F(2) ∧ dy6 + ∗4F(2) ∧ dy5

)
, F̂(3) = 1

2
(
F(2) ∧ dy5 − ∗4F(2) ∧ dy6

)
,

F̂(5) = 16πN
(
vol5−c−2r3 vol4 ∧dr

)
.

(2.42)

The N = 2 theory was also embedded into the AdS5×S5 near-horizon of parallel D3-branes
in ref. [9] using a specific system of spherical polar coordinates. We shall now show that
our embedding (2.42) is equivalent to that of ref. [9].

In the absence of the Type IIB scalars, it is convenient to combine the NSNS and RR
three-forms into a complex three-form Ĝ(3) = F̂(3) + iĤ(3). The Bianchi identities and
equations of motion of the Type IIB theory in terms of Ĝ(3) are given in appendix A.
Choosing the following spherical coordinates on R6,

y1,2,3,4 = rv1,2,3,4 cos ξ , y5 = r sin ξ cos τ , y6 = r sin ξ sin τ , (2.43)

where vi, i ∈ {1, 2, 3, 4}, parametrise the unit three-sphere, satisfying vivi = 1. Then, we
find that Ĝ(3) is locally exact, Ĝ(3) = dÂ(2), with

Â(2) = 1
2e

iτr sin ξ
(
F(2) + i∗4F(2)

)
. (2.44)

Performing the change of coordinates r = e−k|z|, we recover the embedding of ref. [9].
Consequently, the construction of ref. [9] represents an N = 2 truncated asymptotic limit
as r → 0 of the full D3-brane N = 4 embedding of the present paper.
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2.3 Stationary solutions and black holes

The N = 4 supergravity theory contains many supersymmetric, stationary black hole solu-
tions. Using our embedding (2.13), these black holes can be uplifted to Type IIB supergrav-
ity, where they then have the interpretation of being situated on worldvolumes of D3-branes.
These black holes can be constructed by first reducing the four-dimensional theory along a
timelike U(1) isometry to a Euclidean theory in three dimensions, whose bosonic sector con-
sists of a metric coupled to non-linear sigma model with a pseudo-Riemannian target space
MS . Following the work of [12–15], null geodesics onMS correspond to certain classes of
black holes. Here, we will perform the timelike Kaluza-Klein reduction explicitly and show
that the corresponding target space is MS = SO(8, 2)/ SO(6, 2) × SO(2). A class of null
geodesics will also be constructed on a submanifold NS = R × SO(2, 1)/ SO(1, 1) ⊂ MS

for completeness.
Consider a timelike reduction of four-dimensional N = 4 supergravity,

ds2
4 = −eρ(x)(dt+A(1))2 + e−ρ(x)hmn(x)dxmdxn , φ = φ(x) , χ = χ(x) ,

AΛ
(1) = aΛ(x)(dt+A(1)) + BΛ

(1) ,
(2.45)

where m,n ∈ {1, 2, 3}. Defining HΛ
(2) = dBΛ

(1) + aΛF(2), where F(2) = dA(1), the equations
of motion can be obtained from the Lagrangian

L3 = R∗31− 1
2dφ ∧ ∗3dφ−

1
2e

2φdχ ∧ ∗3dχ−
1
2dρ ∧ ∗3dρ+ 1

2e
−φ−ρdaΛ ∧ ∗3daΛ

+ 1
2e

2ρF(2) ∧ ∗3F(2) −
1
2e
−φ+ρHΛ

(2) ∧ ∗3H
Λ
(2) + χdaΛ ∧HΛ

(2) ,
(2.46)

where ∗3 is the Hodge dual defined with respect to the three-dimensional metric hmn,
and R is the Ricci scalar of hmn. In three dimensions, vectors are dual to scalars, so
the spectrum of this Euclidean theory consists of the metric hmn and sixteen scalars. To
construct this vector-scalar dualisation, we first examine the Bianchi identities and the
equations of motion of HΛ

(2). They are

dHΛ
(2) = daΛ ∧ F(2) , (2.47)

d(e−φ+ρ∗3HΛ
(2) − χda

Λ) = 0 . (2.48)

The dual formulation is in terms of six scalars hΛ defined by

HΛ
(2) = eφ−ρ∗3(dhΛ + χdaΛ) , (2.49)

so that (2.48) is trivially satisfied. Eq. (2.47) then becomes the equation of motion for hΛ.
Next, we examine the Bianchi identity and the equation of motion of F(2),

dF(2) = 0 , (2.50)
d(e2ρ∗3F(2))− daΛ ∧ dhΛ = 0 , (2.51)

where we have used (2.49) to write HΛ
(2) in terms of hΛ. These can be dualised by intro-

ducing a scalar f , with

F(2) = −e−2ρ∗3
(
df + 1

2h
ΛdaΛ − 1

2a
ΛdhΛ

)
. (2.52)
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In the f and hΛ variables, the Lagrangian reads

L3 = R∗31− 1
2dφ ∧ ∗3dφ−

1
2e

2φdχ ∧ ∗3dχ−
1
2dρ ∧ ∗3dρ

+ 1
2e
−φ−ρdaΛ ∧ ∗3daΛ + 1

2e
φ−ρPΛ

(1) ∧ ∗3P
Λ
(1) −

1
2e
−2ρQ(1) ∧ ∗3Q(1) ,

(2.53)

where we have defined the one-forms

PΛ
(1) = dhΛ + χdaΛ , Q(1) = df + 1

2h
ΛdaΛ − 1

2a
ΛdhΛ . (2.54)

As discussed in [16, 17], the scalars parametrise the coset space SO(8, 2)/ (SO(6, 2)× SO(2))
with signature (+, . . . ,+︸ ︷︷ ︸

4

,−, . . . ,−︸ ︷︷ ︸
12

), which we will now show explicitly. Firstly, we will

perform the field redefinition

ρ = − 1√
2

(φ1 + φ2) , φ = − 1√
2

(φ1 − φ2) , (2.55)

so that the Lagrangian reads

L3 = R∗31− 1
2dφ1 ∧ ∗3dφ1 −

1
2dφ2 ∧ ∗3dφ2 −

1
2e
−
√

2φ1+
√

2φ2dχ ∧ ∗3dχ

+ 1
2e
√

2φ1daΛ ∧ ∗3daΛ + 1
2e
√

2φ2PΛ
(1) ∧ ∗3P

Λ
(1) −

1
2e
√

2φ1+
√

2φ2Q(1) ∧ ∗3Q(1) .
(2.56)

Then, using the results of [17], we find that (2.56) can be written as

L3 = R∗31 + 1
4 tr(dM−1 ∧ ∗3dM) , (2.57)

with M = VTW0V, where

V = exp
(1

2φ1H1 + 1
2φ2H2

)
exp

(
−χE 2

1

)
exp

(
−fV 12

)
exp

(
aΛU 1

Λ + hΛU 2
Λ

)
(2.58)

is the coset representative,2 (H1, H2) and (E 2
1 , V 12, U 1

Λ , U 2
Λ ) are respectively the two

non-compact Cartan generators and the fourteen positive-root generators of so(2, 8) in the
notation of [17], and the fiducial matrix W0 is defined as

W0 = diag(−1,−1, 1, 1, 1, 1, 1, 1,−1,−1) . (2.59)

The structure ofW0 determines the denominator group of the coset to be SO(6, 2)×SO(2).
We have thus shown that all stationary solutions to the N = 4 supergravity theory are

encoded in a three-dimensional Euclidean theory describing gravity minimally coupled to
sixteen scalars parametrising the coset space SO(8, 2)/ (SO(6, 2)× SO(2)). A special class
of these stationary solutions are black hole solutions which correspond to harmonic maps

2We identify our field variables with those of [17] by A1
(0)2 = −χ,A(0)12 = −f,BΛ

(0)1 = aΛ, BΛ
(0)2 = hΛ,

and replace their I index with our Λ index.
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between three-dimensional Euclidean space and the coset space [12–15]. From (2.57), the
equations of motion for the metric hmn and the scalars M are

Rmn = −1
4 tr

(
∇mM∇nM−1

)
,

∇m
(
M−1∇mM

)
= 0 ,

(2.60)

where ∇ is the Levi-Civita connection with respect to hmn. A key observation of [12] was
that these equations simplify greatly if the scalars are taken to depend on the three spatial
coordinates through a single, harmonic function σ(x). In this case, the scalar equations
become

d

dσ

(
M−1dM

dσ

)
= 0 , (2.61)

which is a geodesic equation on the scalar manifold. The solution to this is

M = A exp(σB) , (2.62)

where A ∈ SO(8, 2)/ SO(6, 2)×SO(2), and B ∈ so(8, 2) are constant matrices. Substituting
this into the Einstein equations gives

Rmn = 1
4∇mσ∇nσ tr(B2) , (2.63)

and we note that the metric on the scalar target manifold along the geodesic becomes

ds2 = −1
2 tr(dM−1dM) = 1

2 tr(B2)dσ2 . (2.64)

Thus, scalar-manifold null geodesics (which exist due to the split signature on it) are
mapped-to from three-dimensional Ricci-flat geometries. When lifted back to ten dimen-
sions using (2.13), such solutions correspond to D3-branes with charged black holes on their
worldvolume. In three dimensions, baring conical singularities, Ricci-flat geometries are
flat, so null geodesics on the scalar target manifold are mapped-to from R3. The harmonic
function σ(x) takes the form

σ(x) =
∑
l

kl

|x− xl|
, (2.65)

where kl are constants, and we have imposed the boundary condition σ(∞) = 0 so that the
solutions when lifted back to four dimensions are asymptotically flat. This construction
can be generalised to include multiple harmonic functions σa.

For illustration, we will now construct a simple null geodesic on the scalar target
manifold. It is consistent to keep only φ1, φ2 and one of the aΛ, say a1 = a. The metric on
the scalar manifold then becomes

ds2 = dφ2
1 + dφ2

2 − e
√

2φ1da2 , (2.66)

which is the metric on R× SO(2, 1)/ SO(1, 1). The geodesic equations are then

φ1 : φ′′1 + 1√
2
e
√

2φ1(a′)2 = 0 ,

φ2 : φ′′2 = 0 ,
a : a′′ +

√
2a′φ′1 = 0 ,

(2.67)
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where the primes denote derivatives with respect to the harmonic function σ. The general
solution for the φ2 equation is

φ2(σ) = p0 + p1σ , (2.68)

where p0,1 are constants. With this, the null condition reads

(a′)2 = e−
√

2φ1
(
(φ′1)2 + p2

1

)
, (2.69)

which when substituted into the φ1 (or a) equation, gives

φ′′1 + 1√
2

(φ′1)2 + p2
1√
2

= 0 . (2.70)

Performing the field redefinition u(σ) = eφ1(σ)/
√

2, this becomes the eigenvalue equation

u′′ = −p
2
1

2 u , (2.71)

the general solution of which is

u(σ) = q0 cos
(
p1√

2
σ

)
+ q1
p1

sin
(
p1√

2
σ

)
, (2.72)

where q0,1 are constants. The value of a(σ) can then be obtained through (2.69). In the
limit p1 → 0, which corresponds to consistently truncating out the dynamics of φ2, we have

lim
p1→0

u(σ) = q0 + q1√
2
σ . (2.73)

3 M5-branes with their worldvolume supergravities

The geometry of the 1
2 -BPS solution of M-theory describing parallel M5-branes, or in the

present language, skeleton M5-branes, is a warped product R1,5 ×W R5. As with the
skeleton D3-branes of the previous section, it is perfectly consistent to replace the R1,5

worldvolume with a generic, six-dimensional manifold M6 with a Ricci-flat metric gµν .
Since the original solution preserves sixteen supercharges and since the Killing spinor is
chiral on the six-dimensional worldvolume, we may now anticipate that there is in fact a
consistent truncation to pure worldvolume N = (4, 0) supergravity in six dimensions. In
this section, we will construct the corresponding embedding of six-dimensional, N = (4, 0)
supergravity onto the worldvolume of the skeleton M5-branes. We will then consider anti-
self-dual string solutions of the N = (4, 0) theory, and will examine their dynamics when
uplifted back into M-theory using the braneworld embedding.

3.1 Skeleton M5-branes and d = 6, N = (4, 0) supergravity

The M-theory solution describing N parallel M5-branes in units where the M-theory length
scale has l11 = 1 is given by

dŝ2
11 = H−1/3ds2(R1,5) +H2/3dyidyi , F̂(4) = −∗5dH , H = 1 + πN

r3 , (3.1)
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where i ∈ {1, . . . , 5}, r2 = yiyi, and ∗5 is the Hodge dual with respect to the flat metric on
the transverse R5. For this to be a valid background for a quantum theory, the four-form
flux must obey the quantisation condition,

1
8π3

∫
C4
F̂(4) ∈ Z , (3.2)

for any non-trivial four-cycle C4. The only non-trivial four-cycle in (3.1) is C4 = S4, the
asymptotic four-sphere on the transverse R5, and for it we find

1
8π3

∫
S4
F̂(4) = N ∈ Z . (3.3)

The solution (3.1) is the skeleton on which we will embed the pure, chiral, six-dimensional,
N = (4, 0) supergravity. The bosonic sector of this theory contains a graviton and five
two-form potentials with anti-self-dual field strengths. Denoting these bosonic degrees of
freedom by gµν and Bi

(2), the equations of motion of the N = (4, 0) theory are

Rµν = 1
4G

i
µρσG

i ρσ
ν , (3.4)

d∗6Gi(3) = 0 , Gi(3) = −∗6Gi(3) , (3.5)

where i ∈ {1, . . . , 5}, Gi(3) = dBi
(2), and ∗6 is the Hodge dual with respect to the six-

dimensional metric gµν .

3.2 Embedding N = (4, 0) supergravity on M5-branes

We find, using similar techniques to the case of the D3-branes, the following embedding of
the N = (4, 0) supergravity theory on the worldvolume of the skeleton M5-branes,

dŝ2
11 = H−1/3gµνdx

µdxν +H2/3dyidyi ,

F̂(4) = Gi(3) ∧ dy
i − ∗5dH , Gi(3) = −∗6Gi(3) ,

(3.6)

where we impose the anti-self-duality of Gi(3) by hand. Let’s begin with the Bianchi iden-
tity (C.1). We find

dF̂(4) = dGi(3) ∧ dy
i , (3.7)

since d∗5dH = 0 by the harmonicity of H. The closure of F̂(4) then requires

dGi(3) = 0 , (3.8)

for all i ∈ {1, . . . , 5}. By the anti-self-duality of Gi(3), this is equivalent to its equation
of motion (3.5). To compute the equation of motion for F̂(4) (C.2), we first record the
Hodge dual

∗̂F̂(4) = HGi(3) ∧ ∗5dy
i +H−2 vol6 ∧dH , (3.9)

where vol6 is the volume form with respect to the six-dimensional metric gµν , and we used
the anti-self-duality of Gi(3). Then, using the closure of Gi(3), we find

d∗̂F̂(4) = −Gi(3) ∧ dH ∧ ∗5dy
i . (3.10)
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The Chern-Simons term reads

F̂(4) ∧ F̂(4) = −2Gi(3) ∧ dy
i ∧ ∗5dH −Gi(3) ∧G

j
(3) ∧ dy

i ∧ dyj . (3.11)

The anti-self-duality of Gi(3) means that Gi(3) ∧G
j
(3) = −Gi(3) ∧ ∗6G

j
(3), which is symmetric

under exchange of (i, j), so the second term vanishes. This leaves the first term, which
using the symmetry of the Hodge dual, can be rewritten as

F̂(4) ∧ F̂(4) = −2Gi(3) ∧ dH ∧ ∗5dy
i . (3.12)

Therefore,
d∗̂F̂(4) −

1
2 F̂(4) ∧ F̂(4) = 0 (3.13)

identically. Unlike the skeleton M5-branes, the Chern-Simons contribution to the flux
equation of motion is non-zero, and is crucial for the consistency of our truncation.

We now turn to the Einstein equations (C.3). The non-zero components of the Ricci
tensor are

R̂µν = Rµν −
3π2N2

2r8H3 gµν , R̂ij = −1
2H
−2∂iH∂jH + 3π2N2

r8H2 δij . (3.14)

where Rµν is the Ricci tensor of gµν . Using the ingredients in appendix D, we find that
the non-zero components of the stress tensor are

T̂µν = 1
4G

i
µρσG

i ρσ
ν − 3π2N2

2r8H3 gµν , T̂ij = −1
2H
−2∂iH∂jH + 3π2N2

r8H2 δij . (3.15)

The Einstein equations in the worldvolume directions then reduce to

Rµν = 1
4G

i
µρσG

i ρσ
ν , (3.16)

which is the Einstein equation of the N = (4, 0) theory (3.4). The Einstein equations along
the (µ, i) and (i, j) directions reduce to 0 = 0 identities. We have thus shown that (3.6) is
a consistent truncation to the N = (4, 0) theory.

3.2.1 Asymptotic limits

As is the case for the skeleton D3-branes, skeleton M5-branes are interpolating solitons.
At distances far away from the brane, as |yi| → ∞, the solution (3.1) becomes the R1,10

vacuum, and close to the brane, |yi| → 0, the solution becomes AdS7 × S4. We will again
examine our embedding (3.6) at these limits, and find that (3.6) retains this interpolating
structure.

The flat limit. As |yi| → ∞, the harmonic function H → 1, and the embedding (3.6)
becomes

dŝ2
11 = gµνdx

µdxν + dyidyi ,

F̂(4) = Gi(3) ∧ dy
i , Gi(3) = −∗6Gi(3) .

(3.17)
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It can be easily checked that this is a solution to the M-theory equations of motion provided
that the six-dimensional fields solve the equations of motion of the N = (4, 0) theory.
Similar to the D3-branes, it is useful to compactify the transverse R5, which again is
possible because ∂/∂yi are Killing vectors due to the trivialisation of the harmonic function.
Choosing this compactification to be T 5, so yi ∈ [0, 2π) for all i ∈ {1, . . . , 5}, we find that
the quantisation of F̂(4) becomes

1
8π3

∫
C4
F̂(4) = 1

4π2

5∑
i=1

∫
C3
Gi(3) ∈ Z , (3.18)

which is guaranteed as the middle term is just a sum of the quantisation conditions of Gi(3)
in the six-dimensional N = (4, 0) theory.

The horizon limit and N = (2, 0) supergravity. As |yi| → 0, the harmonic function
H → c/r3 with c = πN , and the embedding (3.6) becomes

dŝ2
11 = c−1/3rgµνdx

µdxν + c2/3dr
2

r2 + c2/3
(
dξ2 + cos2 ξ dΩ2

3

)
,

F̂(4) = Gi(3) ∧ dy
i − ∗5dH , Gi(3) = −∗6Gi(3) .

(3.19)

where we have used the following spherical polar coordinates on R5,

ya = rva cos ξ , y5 = r sin ξ , a ∈ {1, . . . , 4} , (3.20)

with va parametrising a three-sphere vava = 1. For an asymptotically flat metric gµν , (3.19)
describes a truncation of M-theory on a four-sphere to an asymptotically AdS7 space-
time. This is an exact solution of the M-theory equations of motion provided that the
six-dimensional fields obey the equations of motion of the N = (4, 0) theory.

The N = (4, 0) supergravity theory admits a consistent truncation to minimal N =
(2, 0) supergravity, the bosonic sector of which consists of a metric and a two-form potential
with an anti-self-dual flux. The truncation is obtained by setting four of the Gi(3) to zero.
Without loss of generality, we will choose G5

(3) = G(3) to be the non-zero one, so (3.19)
becomes

dŝ2
11 = c−1/3rgµνdx

µdxν + c2/3dr
2

r2 + c2/3
(
dξ2 + cos2 ξ dΩ2

3

)
,

F̂(4) = G(3) ∧ (sin ξ dr + r cos ξ dξ) + 3c cos3 ξ dξ ∧ vol3 , G(3) = −∗6G(3) .

(3.21)

where vol3 is the volume form on the three-sphere. Recalling that G(3) is closed, we can
integrate F̂(4) to obtain the three-form gauge potential

Â(3) = r sin ξ G(3) + c sin ξ(2 + cos2 ξ) vol3 . (3.22)

After performing a coordinate transformation r = e−2k|z|, this is precisely the embedding
of N = (2, 0) supergravity on the horizon of M5-branes constructed in [9].
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3.3 Anti-self-dual strings

The N = (4, 0) supergravity theory admits the multi-charged anti-self-dual string solution

ds2
6 = h−1(−dt2 +dx2)+h(dR2 +R2dΩ2

3) , Gi(3) = 2qi(1−∗6) vol3 , h = 1+ |q|
R2 , (3.23)

where |q|2 = qiqi, and vol3 is the volume form on the round three-sphere. The charges are
normalised so that

1
4π2

∫
S3
Gi(3) = qi ∈ Z . (3.24)

As R→ 0, the solution asymptotes to AdS3×S3, where the three-sphere radius is propor-
tional to

√
|q|, and as R→∞, the solution asymptotes to R1,5.

Using our embedding (3.6), we can construct the anti-self-dual-string-M5 solution,
which can be viewed as a configuration of open membranes ending on the skeleton M5-
branes. This solution also exhibits an “asymptotically asymptotically” AdS structure.
There is an eleven-dimensional asymptotic, |yi| → 0, which brings the eleven-dimensional
geometry into anM7×S4 structure, whereM7 is asymptotically AdS7 provided that the six-
dimensional metric gµν is asymptotically flat. There is also a six-dimensional asymptotic,
R → 0, with which the six-dimensional metric becomes AdS3 × S3. So, our solution
encompasses quite a few different AdS solutions of different dimensions. A particular
configuration is to take |yi| → 0 and let the six-dimensional radius R vary. The resulting
solution describes a flow between the AdS7 vacuum and a warped AdS3 solution.

4 Diagonal and vertical reductions

Descendants of the D3- and M5-branes can be obtained by diagonal or vertical dimensional
reductions [18, 19]. Diagonal reductions correspond to Kaluza-Klein reductions in world-
volume directions, and vertical reductions correspond to Kaluza-Klein reductions on the
transverse space after creating a transverse-space shift isometry by stacking the branes ap-
propriately. Let’s first consider the diagonal reductions. A one-step diagonal reduction of
the M5-brane produces a D4-brane, and a one-step diagonal reduction of the D3-brane can
be interpreted as a D2-brane via T-duality. One can further apply the diagonal reduction
machinery to the D2-brane to obtain a D1-string, again via T-duality. The D1-string can
then be dualised to an F1-string using S-duality. We will show in this section that the same
logic applies to the embedding of worldvolume supergravities on branes. By substituting
the Kaluza-Klein ansatz for the worldvolume supergravities into their D3- and M5-brane
embeddings, we obtain, through the usual M-theory/IIA duality and IIA/IIB T-duality, the
corresponding embeddings of the worldvolume supergravities for the descendant branes.

For vertical reductions, the situation is rather simpler. Mathematically, the conse-
quence of stacking the branes to create an isometry is just to limit the harmonic function
so as to depend on one fewer transverse coordinate. For the skeleton branes, this is possi-
ble because the only condition on the harmonic function is its harmonicity, which can be
satisfied even if the function depends on fewer coordinates. In the examples of the D3-
and M5-branes with their worldvolume supergravities embedded, we find that the embed-
dings (2.13) and (3.6) also support vertical reductions in the same way — the harmonic
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function just needs to depend on fewer coordinates. This allows us to construct embeddings
of worldvolume supergravities on branes that are vertically descendent from the D3- and
M5-branes.

In the following, we will illustrate the diagonal and vertical reductions using the M5-
brane with its embedded worldvolume supergravity.

4.1 Diagonal example: M5→ D4

The diagonal descendant of the M5-brane, the D4-brane, has a five-dimensional world-
volume. The worldvolume supergravity theory is then pure N = 4 supergravity in five
dimensions, whose bosonic sector consists of a metric gµν , a scalar φ and six vectors A0

(1),
Ai(1) where i ∈ {1, . . . , 5}. We will now show that this can be obtained by a standard
Kaluza-Klein reduction of the M5-brane’s worldvolume supergravity, the N = (4, 0) super-
gravity theory in six dimensions. Recall that the N = (4, 0) supergravity theory contains a
graviton and five two-form potentials with anti-self-dual fluxes. The Kaluza-Klein ansatz is

dŝ2
6 = Σ ds2

5 + Σ−3(dθ +
√

2A0
(1))

2 , Ĝi(3) = Σ2∗5F i(2) + F i(2) ∧ (dθ +
√

2A0
(1)) , (4.1)

where we put hats on the six-dimensional fields, define the SO(1, 1) scalar Σ = e−φ/
√

6,
and F i(2) = dAi(1), and have already imposed the anti-self-duality condition on Ĝi(3). With
this ansatz, we find that the equations of motion of the N = (4, 0) theory are encoded in
the five-dimensional Lagrangian,

L5 = R∗51−3Σ−2dΣ∧∗5dΣ−Σ−4F 0
(2)∧∗5F

0
(2)−Σ2F i(2)∧∗5F

i
(2)−
√

2A0
(1)∧F

i
(2)∧F

i
(2) , (4.2)

where F 0
(2) = dA0

(2). This is the canonical Lagrangian of the pure N = 4 supergravity
theory in five dimensions [20]. We can now employ our embedding (3.6) to embed this
N = 4 supergravity theory on the M5-brane worldvolume,

dŝ2
11 = H−1/3

[
Σ ds2

5 + Σ−3(dθ +
√

2A0
(1))

2
]

+H2/3dyidyi ,

F̂(4) =
[
Σ2∗5F i(2) + F i(2) ∧ (dθ +

√
2A0

(1))
]
∧ dyi − ∗R5dH , H = 1 + πN

r3 .
(4.3)

Here, ∗5 is the Hodge dual with respect to the five-dimensional, worldvolume metric ds2
5,

and ∗R5 is the Hodge dual with respect to the flat metric on the transverse R5. This can
then be interpreted as the Type IIA solution3

ds̃2
10 = H−3/8Σ5/8ds2

5 +H5/8Σ−3/8dyidyi , eΦ̃ = H−1/4Σ−9/4 ,

F̃(2) =
√

2F 0
(2) , H̃(3) = −F i(2) ∧ dy

i ,

F̃(4) = Σ2∗5F i(2) ∧ dy
i − ∗R5dH ,

(4.4)

which describes pure five-dimensional N = 4 supergravity embedded on the worldvolume
of D4-branes.

3Our conventions for Type IIA supergravity and its relation to M-theory are presented in appendix C.
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4.2 Vertical example: M5→ NS5

The vertical descendant of the M5-brane, i.e. the NS5-brane, has a six-dimensional world-
volume. Thus, the worldvolume supergravity theory on the NS5-brane should be the same
as the worldvolume supergravity of the M5-brane. Let yi = (ya, θ), a ∈ {1, . . . , 4}, be the
decomposition R5 = R4 × R of the transverse space, and let H, the harmonic function on
R5, depend only on ya. This means that

H = 1 + N

r2 , r2 = yaya . (4.5)

With this choice of harmonic function, the M5-brane solution with its worldvolume super-
gravity embedded becomes

dŝ2
11 = H−1/3gµνdx

µdxν +H2/3(dyadya + dθ2) ,

F̂(4) = Ga(3) ∧ dy
a +G5

(3) ∧ dθ − ∗4dH ∧ dθ , H = 1 + N

r2 ,
(4.6)

where ∗4 is the Hodge dual with respect to the flat metric on R4, and we recall that Ga(3)
and G5

(3) are anti-self-dual. This can then be interpreted as the Type IIA solution

ds̃2
10 = H−1/4gµνdx

µdxν +H3/4dyadya , eΦ̃ = H1/2 ,

H̃(3) = G5
(3) ,

F̃(4) = Ga(3) ∧ dy
a − ∗4dH ,

(4.7)

which describes the pure six-dimensional N = (4, 0) supergravity theory embedded on the
NS5-brane worldvolume.

5 Conclusion

In this paper, we have demonstrated how noncompact Kaluza-Klein consistent reductions
to corresponding supergravities can be made onto the worldvolumes of D3-branes in D =
10 Type IIB supergravity and of M5-branes in D = 11 M-theory or D = 10 Type IIA
supergravity. We also have showed how further diagonal or vertical dimensional reductions
can be made consistently with the braneworld embeddings. These results clearly suggest a
conjecture that consistent Kaluza-Klein reductions can be made onto the worldvolumes of
any brane solutions with unbroken supersymmetry to worldvolume supergravity theories
with the type of supersymmetry as the underlying “skeleton” brane. We have constructed
the consistent-truncation Kaluza-Klein ansätze for the bosonic sectors of the illustrative
cases studied, but extensions to include the corresponding fermionic fields are not expected
to pose key difficulties.

Another question is how the braneworld supergravity embeddings that we have found
relate to string theory constructions. Clearly, in a perturbative α′ expansion, the general
Weyl-anomaly beta function relations between string and gravitational field theories [21]
gives a leading-order in α′ consistency condition for closed strings on the embedded su-
pergravity backgrounds we have found. Proceeding to all-orders in α′ is more delicate.
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Replacement of flat-space worldvolume conformal blocks with conformal blocks of equiva-
lent central charge or using string-theory dualities are approaches that have been used to
generate all-orders consistent superstring backgrounds with “curved” worldvolumes [22].
Further string-theory implications of the supergravity-level embeddings we have found re-
main as interesting areas for further development.
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A Type IIB supergravity conventions

Our conventions are taken from [23]. The bosonic sector of Type IIB supergravity contains
the RR forms F̂(1), F̂(3), F̂(5), the NSNS three-form Ĥ(3), the dilaton Φ̂ and the metric,
which will be taken to be the Einstein frame metric. The Bianchi identities are

dF̂(5) + F̂(3) ∧ Ĥ(3) = 0 , (A.1)
dF̂(3) + F̂(1) ∧ Ĥ(3) = 0 , (A.2)

dĤ(3) = 0 , (A.3)
dF̂(1) = 0 , (A.4)

which can be solved by introducing potentials as

F̂(1) = dĈ0 , Ĥ(3) = dB̂(2) ,

F̂(3) = dĈ(2) − Ĉ0dB̂(2) , F̂(5) = dĈ(4) − Ĉ(2) ∧ Ĥ(3) .
(A.5)

The equations of motion read

∗̂F̂(5) = F̂(5) , (A.6)

d(eΦ̂∗̂F̂(3))− F̂(5) ∧ Ĥ(3) = 0 , (A.7)

d(e−Φ̂∗̂Ĥ(3))− eΦ̂F̂(1) ∧ ∗̂F̂(3) − F̂(3) ∧ F̂(5) = 0 , (A.8)

d(e2Φ̂∗̂F̂(1)) + eΦ̂Ĥ(3) ∧ ∗̂F̂(3) = 0 , (A.9)

d∗̂dΦ̂− e2Φ̂F̂(1) ∧ ∗̂F̂(1) + 1
2e
−Φ̂Ĥ(3) ∧ ∗̂Ĥ(3) −

1
2e

Φ̂F̂(3) ∧ ∗̂F̂(3) = 0 , (A.10)

R̂MN = 1
2∇̂M Φ̂∇̂N Φ̂ + 1

2e
2Φ̂∇̂MC0∇̂NC0 + 1

96 F̂MP1P2P3P4F̂
P1P2P3P4

N

+ 1
4e
−Φ̂
(
ĤMP1P2Ĥ

P1P2
N − 1

12(Ĥ(3))2ĝMN

)
+ 1

4e
Φ̂
(
F̂MP1P2F̂

P1P2
N − 1

12(F̂(3))2ĝMN

)
. (A.11)
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These admit a trombone symmetry, where

ĝMN 7→ k2ĝMN , Φ̂ 7→ Φ̂ , Ĉ0 7→ Ĉ0 ,

F̂(3) 7→ k2F̂(3) , Ĥ(3) 7→ k2Ĥ(3) , F̂(5) 7→ k4F̂(5) ,
(A.12)

for a constant k.
In a configuration where Φ̂ = 0 and F̂(1) = 0, it is convenient to package the three-form

fluxes into a complex three-form

Ĝ(3) = F̂(3) + iĤ(3) , (A.13)

whose Bianchi identity and equation of motion are

dĜ(3) = 0 , (A.14)

and
d∗̂Ĝ(3) − iĜ(3) ∧ F̂(5) = 0 . (A.15)

The Bianchi identity for the five-form then reads

dF̂(5) + i

2Ĝ(3) ∧ Ĝ(3) = 0 , (A.16)

and the consistency conditions for setting Φ̂ = 0 and F̂(1) = 0 are contained in the single
condition

Ĝ(3) ∧ ∗̂Ĝ(3) = 0 . (A.17)

With this condition, the Einstein equations simplify to

R̂MN = 1
96 F̂MP1P2P3P4F̂

P1P2P3P4
N + 1

8

(
ĜMP1P2Ĝ

P1P2

N + ĜMP1P2Ĝ
P1P2

N

)
. (A.18)

B Useful identities (D3)

From (2.13), we have

ĤµνΛ = 1√
2
FΛ
µν , F̂µνΛ = − 1√

2
e−φF̃Λ

µν , (B.1)

where F̃Λ
µν are the components of ∗4FΛ

(2). Then,

ĤµP1P2Ĥ
P1P2

ν = FΛ
µρFΛ ρ

ν ,

ĤµP1P2Ĥ
P1P2

Σ = 0 ,

ĤΛP1P2Ĥ
P1P2

Σ = 1
2HF

Λ
µνFΣµν ,

(B.2)

and

F̂µP1P2F̂
P1P2

ν = −1
2e
−2φ(FΛ

(2))
2gµν + e−2φFΛ

µρFΛ ρ
ν ,

F̂µP1P2F̂
P1P2

Σ = 0 ,

F̂ΛP1P2F̂
P1P2

Σ = −1
2e
−2φHFΛ

µνFΣµν ,

(B.3)

where the indices on the r.h.s. are raised by either gµν or δΛΣ.
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C M-theory and Type IIA supergravity conventions

The bosonic sector of M-theory consists of a metric ĝMN and a four-form flux F̂(4). The
Bianchi identity for the four-form is

dF̂(4) = 0 , (C.1)

and the equations of motion are

d∗̂F̂(4) −
1
2 F̂(4) ∧ F̂(4) = 0 , (C.2)

R̂MN = 1
12

(
F̂MPQRF̂

PQR
N − 1

12(F̂(4))2ĝMN

)
. (C.3)

The dynamics of Type IIA supergravity are encoded in M-theory about backgrounds where
the eleven-dimensional spacetime has an U(1) isometry. We write

dŝ2
11 = e−Φ̃/6ds̃2

10 + e4Φ̃/3(dθ + Ã(1))2 ,

F̂(4) = F̃(4) + H̃(3) ∧ (dθ + Ã(1)) ,
(C.4)

where the ten-dimensional Type IIA fields are distinguished with a tilde and are indepen-
dent of θ. The metric g̃ is the Einstein frame metric of the Type IIA theory. The Bianchi
identity of F̂(4) yields

dH̃(3) = 0 , dF̃(4) − H̃(3) ∧ F̃(2) = 0 , (C.5)

where F̃(2) = dÃ(1). These can be integrated by introducing the NSNS two-form potential
B̃(2) and RR three-form potential Ã(3),

H̃(3) = dB̃(2) , F̃(4) = dÃ(3) − H̃(3) ∧ Ã(1) . (C.6)

D Useful identities (M5)

From (3.6), the non-zero components of F̂(4) are

F̂µνρi = Giµνρ , F̂ijkl = −εpijkl∂pH , (D.1)

where the i, j, . . . indices are raised by δij . Then,

F̂µP1P2P3F̂
P1P2P3

ν = 3Giµσ1σ2G
i σ1σ2
ν ,

F̂µP1P2P3F̂
P1P2P3
i = 0 ,

F̂iP1P2P3F̂
P1P2P3
j = 6H−2

(
∂kH∂

kHδij − ∂iH∂jH
)
,

(D.2)

where the indices on the r.h.s. are raised by either gµν or δij . For the (i, j) components,
we used the anti-self-duality of Gi(3), which states that Gi(3) ∧ G

j
(3) = −Gi(3) ∧ ∗6G

j
(3) =

−Gj(3) ∧ ∗6G
i
(3) = Gj(3) ∧G

i
(3) = 0.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

– 22 –

https://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
9
(
2
0
2
2
)
0
9
9

References

[1] V.A. Rubakov and M.E. Shaposhnikov, Do We Live Inside a Domain Wall?, Phys. Lett. B
125 (1983) 136 [INSPIRE].

[2] C.W. Erickson, R. Leung and K.S. Stelle, Taxonomy of brane gravity localisations, JHEP 01
(2022) 130 [arXiv:2110.10688] [INSPIRE].

[3] L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999)
4690 [hep-th/9906064] [INSPIRE].

[4] B. Crampton, C.N. Pope and K.S. Stelle, Braneworld localisation in hyperbolic spacetime,
JHEP 12 (2014) 035 [arXiv:1408.7072] [INSPIRE].

[5] C.M. Hull and N.P. Warner, Noncompact Gaugings From Higher Dimensions, Class. Quant.
Grav. 5 (1988) 1517 [INSPIRE].

[6] C.W. Erickson, R. Leung and K.S. Stelle, Higgs effect without lunch, Phil. Trans. Roy. Soc.
Lond. A 380 (2022) 20210184 [arXiv:2202.00017] [INSPIRE].

[7] D. Brecher and M.J. Perry, Ricci flat branes, Nucl. Phys. B 566 (2000) 151
[hep-th/9908018] [INSPIRE].

[8] A. Chamblin, S.W. Hawking and H.S. Reall, Brane world black holes, Phys. Rev. D 61
(2000) 065007 [hep-th/9909205] [INSPIRE].

[9] H. Lü and C.N. Pope, Branes on the brane, Nucl. Phys. B 598 (2001) 492 [hep-th/0008050]
[INSPIRE].

[10] M. Cvetič, H. Lü and C.N. Pope, Brane world Kaluza-Klein reductions and branes on the
brane, J. Math. Phys. 42 (2001) 3048 [hep-th/0009183] [INSPIRE].

[11] H. Lü, C.N. Pope and T.A. Tran, Five-dimensional N = 4, SU(2)×U(1) gauged supergravity
from type IIB, Phys. Lett. B 475 (2000) 261 [hep-th/9909203] [INSPIRE].

[12] G. Neugebauer and D. Kramer, A method for the construction of stationary
Einstein-Maxwell fields. (in german), Annalen Phys. 24 (1969) 62 [INSPIRE].

[13] P. Breitenlohner, D. Maison and G.W. Gibbons, Four-Dimensional Black Holes from
Kaluza-Klein Theories, Commun. Math. Phys. 120 (1988) 295 [INSPIRE].

[14] G. Clement and D.V. Galtsov, Stationary BPS solutions to dilaton-axion gravity, Phys. Rev.
D 54 (1996) 6136 [hep-th/9607043] [INSPIRE].

[15] D.V. Gal’tsov and O.A. Rytchkov, Generating branes via sigma models, Phys. Rev. D 58
(1998) 122001 [hep-th/9801160] [INSPIRE].

[16] C.M. Hull and B. Julia, Duality and moduli spaces for timelike reductions, Nucl. Phys. B
534 (1998) 250 [hep-th/9803239] [INSPIRE].

[17] H. Lü, C.N. Pope and K.S. Stelle, M theory/heterotic duality: A Kaluza-Klein perspective,
Nucl. Phys. B 548 (1999) 87 [hep-th/9810159] [INSPIRE].

[18] M.J. Duff, P.S. Howe, T. Inami and K.S. Stelle, Superstrings in D = 10 from
Supermembranes in D = 11, Phys. Lett. B 191 (1987) 70 [INSPIRE].

[19] H. Lü, C.N. Pope and K.S. Stelle, Vertical versus diagonal dimensional reduction for
p-branes, Nucl. Phys. B 481 (1996) 313 [hep-th/9605082] [INSPIRE].

– 23 –

https://doi.org/10.1016/0370-2693(83)91253-4
https://doi.org/10.1016/0370-2693(83)91253-4
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB125%2C136%22
https://doi.org/10.1007/JHEP01(2022)130
https://doi.org/10.1007/JHEP01(2022)130
https://arxiv.org/abs/2110.10688
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.10688
https://doi.org/10.1103/PhysRevLett.83.4690
https://doi.org/10.1103/PhysRevLett.83.4690
https://arxiv.org/abs/hep-th/9906064
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9906064
https://doi.org/10.1007/JHEP12(2014)035
https://arxiv.org/abs/1408.7072
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.7072
https://doi.org/10.1088/0264-9381/5/12/005
https://doi.org/10.1088/0264-9381/5/12/005
https://inspirehep.net/search?p=find+J%20%22Class.Quant.Grav.%2C5%2C1517%22
https://doi.org/10.1098/rsta.2021.0184
https://doi.org/10.1098/rsta.2021.0184
https://arxiv.org/abs/2202.00017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2202.00017
https://doi.org/10.1016/S0550-3213(99)00659-8
https://arxiv.org/abs/hep-th/9908018
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9908018
https://doi.org/10.1103/PhysRevD.61.065007
https://doi.org/10.1103/PhysRevD.61.065007
https://arxiv.org/abs/hep-th/9909205
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9909205
https://doi.org/10.1016/S0550-3213(01)00021-9
https://arxiv.org/abs/hep-th/0008050
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0008050
https://doi.org/10.1063/1.1377272
https://arxiv.org/abs/hep-th/0009183
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0009183
https://doi.org/10.1016/S0370-2693(00)00073-3
https://arxiv.org/abs/hep-th/9909203
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9909203
https://inspirehep.net/search?p=find+%22AnnalenPhys.%2C24%2C62%22
https://doi.org/10.1007/BF01217967
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C120%2C295%22
https://doi.org/10.1103/PhysRevD.54.6136
https://doi.org/10.1103/PhysRevD.54.6136
https://arxiv.org/abs/hep-th/9607043
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9607043
https://doi.org/10.1103/PhysRevD.58.122001
https://doi.org/10.1103/PhysRevD.58.122001
https://arxiv.org/abs/hep-th/9801160
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9801160
https://doi.org/10.1016/S0550-3213(98)00519-7
https://doi.org/10.1016/S0550-3213(98)00519-7
https://arxiv.org/abs/hep-th/9803239
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803239
https://doi.org/10.1016/S0550-3213(99)00086-3
https://arxiv.org/abs/hep-th/9810159
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9810159
https://doi.org/10.1016/0370-2693(87)91323-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB191%2C70%22
https://doi.org/10.1016/S0550-3213(96)90137-6
https://arxiv.org/abs/hep-th/9605082
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9605082


J
H
E
P
0
9
(
2
0
2
2
)
0
9
9

[20] J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034
[hep-th/0602024] [INSPIRE].

[21] C.G. Callan, Jr., E.J. Martinec, M.J. Perry and D. Friedan, Strings in Background Fields,
Nucl. Phys. B 262 (1985) 593 [INSPIRE].

[22] G. Papadopoulos, J.G. Russo and A.A. Tseytlin, Curved branes from string dualities, Class.
Quant. Grav. 17 (2000) 1713 [hep-th/9911253] [INSPIRE].

[23] J.P. Gauntlett and O. Varela, Universal Kaluza-Klein reductions of type IIB to N = 4
supergravity in five dimensions, JHEP 06 (2010) 081 [arXiv:1003.5642] [INSPIRE].

– 24 –

https://doi.org/10.1088/1126-6708/2006/05/034
https://arxiv.org/abs/hep-th/0602024
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0602024
https://doi.org/10.1016/0550-3213(85)90506-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB262%2C593%22
https://doi.org/10.1088/0264-9381/17/7/310
https://doi.org/10.1088/0264-9381/17/7/310
https://arxiv.org/abs/hep-th/9911253
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9911253
https://doi.org/10.1007/JHEP06(2010)081
https://arxiv.org/abs/1003.5642
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.5642

	Introduction
	D3-branes with their worldvolume supergravities
	Skeleton D3-branes and d=4, N=4 supergravity
	Embedding N=4 supergravity on D3-branes
	Asymptotic limits

	Stationary solutions and black holes

	M5-branes with their worldvolume supergravities
	Skeleton M5-branes and d=6, N=(4,0) supergravity
	Embedding N=(4,0) supergravity on M5-branes
	Asymptotic limits

	Anti-self-dual strings

	Diagonal and vertical reductions
	Diagonal example: M5-D4
	Vertical example: M5-NS5

	Conclusion
	Type IIB supergravity conventions
	Useful identities (D3)
	M-theory and Type IIA supergravity conventions
	Useful identities (M5)

