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1 Introduction

Minima of potential functions have always been of uttermost importance in physics: from
the search for stable trajectories in the gravitational field of a star to the spontaneous
symmetry-breaking mechanism, potentials have been shown to be very useful in under-
standing the physical problem at hand. With the advent of String Theory, finding minima
of scalar potentials was fundamental to study the String Landscape [1], in this framework
Supergravity theories proved to be a conceptual testbed for this analysis. In fact, exam-
ining the structure of the vacua for supergravities is a crucial task in order to study the
patterns of supersymmetry breaking, the processes behind the generation of critical points
with non-vanishing cosmological constant, and in case the latter takes negative values the
possible holographic dual theory. More specifically, the supergravity regime of the bulk
theory in the AdS/CFT conjecture is described by gauged supergravities. Moreover, vacua
with positive values of the cosmological constant have also recently received particular
attention from the string theory community, due to the restrictions imposed upon them
by the de Sitter conjecture [2] and other conjectures formulated in the framework of the
Swampland programme. Vacua of gauged supergravities also have the desirable feature of
giving masses to scalars, thus providing a solution to the moduli stabilisation problem.

In this work, we will focus on maximal (N = 4) supersymmetric theories in D = 7
space-time dimensions. These theories are of particular interest because of their large
amount of supersymmetry that completely fixes the field content of the theory and the
Lagrangian, and in light of the limited number of possible deformations to which they
can be subjected. For instance, dimensional reductions of string theories or M-theory on
spheres produces theories whose vacua have maximally supersymmetric holographic duals.
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Moreover, our interest in seven dimensions arises since it has been shown that CFTs exist
up to six space-time dimensions [3], and it is possible to chart most of them once we know
all the vacua of Supergravity in one more dimension.

Searching for minima of the scalar potentials in supergravity theories is a challenging
task, and many techniques have been developed so far to tackle the problem. Progress
has been achieved by pursuing three main different paths. The first consists in picking a
particular theory (gaugings) and by using symmetries to truncate the field content in order
to arrive at a model with a restricted number of scalars, thus making the minimisation
procedure feasible. This method, introduced by N.P. Warner in [4, 5] made it possible to
analytically solve different minimisation conditions, thus discovering many new vacua in 4
and 5 space-time dimensions. Another proposal is to adopt a numerical approach based
on machine learning libraries, and lead to the discovery of a large amount of vacua, which
also allowed the analysis of mass spectra, residual supersymmetries and residual gauge
groups [6–13]. Both these techniques are based on the choice of a gauging, consequently,
one has to scan one theory at a time, making them inconvenient for a complete cataloguing.
Another approach has been formulated, based on the embedding tensor formalism. First
discovered in the contest of the super-Higgs mechanism [14] it has been then introduced
in the framework of the analysis of supergravity vacua [15], leading to a wealth of new
results [16–23] as well as providing the first example of a family of gauged theories depen-
dent on a continuous parameter [24]. This method does not pick a specific gauging choice,
thus allowing for a simultaneous scan of different gauge theories. The last technique will
produce a set of quadratic equations in n variables, with n the number of parameters in
the embedding tensor, this problem is NP-hard, thus analytic solutions are expected to
be found in very special cases, usually by restricting the number of variables, using some
residual symmetry. In this work, we will build upon the last method and implement the
scan using an evolution strategy algorithm, Covariance Matrix Adaptation (CMA-ES) [25],
together with a Genetic Algorithm (GA). From the solutions we obtain, we can recover the
analytic form of the vacua and their spectra.

2 Maximal supergravity in 7 dimensions

We recall, in this paragraph, all the notations and properties of the tensors needed in the
rest of the paper. It is well known, since the seminal paper by de Wit, Samtleben and Trig-
giante [26], that any possible gauging of a supergravity theory is encoded in the embedding
tensor ΘM

α, where usually the indices M,N,P, transform in the vector representation and
α, β, etc. in the adjoint of the duality group (for the case of 7 dimensions M,N, etc. will
live in the fundamental representation 5 of SL(5), so the vector representation 10 will be
described by a couple of antisymmetric indices MN = [MN ]). The job of the embedding
tensor is to select the generators of the duality group, which in the case of 7 dimensions is
SL(5), which will form the gauge group of the specified theory. Once this tensor is fixed, the
Lagrangian and supersymmetry transformations follow, according to the analysis in [26].
We can write the new generators of the gauge group as

XMN = ΘMN,P
QtPQ, (2.1)
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where tPQ are the SL(5) generators, satisfying tMM = 0 and the algebra[
tMN , t

P
Q

]
= δPN t

M
Q − δMQ tPN . (2.2)

In seven space-time dimensions, the embedding tensor lives in the product of representa-
tions 10 ⊗ 24 = 10 + 15 + 40 + 175. However, supersymmetry constrains it to lie in
the 15 + 40, therefore it is possible to parameterize it as:

ΘMN,P
Q = δQ[MYN ]P − 2εMNPRSZ

RS,Q . (2.3)

Where YMN = Y(MN) and ZMN,P = Z [MN ],P with Z [MN,P ] = 0, that live respectiveley
in the 15 and 40 representations of SL(5). Gauge symmetry imposes further constraints,
these are in particular quadratic constraints that ensure the closure of the gauge algebra.
They can be expressed in terms of the Y and Z tensors as

ZMN,PYPQ = 0 , ZMN,PXMN = 0 . (2.4)

These 15+40 representations can also be decomposed under the maximal compact sub-
group of SL(5), that is, USp(4) ' SO(5). Under USp(4) they decompose as

15 + 40 −→ (1 + 14) + (5 + 35) . (2.5)

Defining the scalar matrix VMab, anti-symmetric in a and b (a,b=1,. . . ,4), which mediates
from SL(5) to USp(4), normalised by

VP abVabQ = δQP , VabPVP cd = δcdab −
1
4ΩabΩcd, (2.6)

we have:

YMN = VMabVNcdYab,cd , ZMN,P =
√

2VabMVcdNVefPΩbdZ(ac)[ef ]. (2.7)

We call B, B[ab]
[cd], C[ab] and C [ab]

(cd) the irreducible components that live in 1, 14, 5 and
35 of USp(4), respectively. In particular, they satisfy

Cab = C [ab], ΩabC
ab = 0,

Bab
cd = B[ab]

[cd], Bab
cb = 0, ΩabB

ab
cd = 0 = ΩabBcd

ab,

Cabcd = C [ab]
(cd), Cabcb = 0, ΩabC

ab
cd = 0.

(2.8)

In terms of these, the Y and Z tensors become

Yab,cd = 1√
2

[
(Ω[a|[c|Ωb]d] −

1
4ΩabΩcd)B + Ω[a|e|Ωb]fB

[ef ]
[cd]

]
, (2.9)

Z(ab)[cd] = 1
16Ωa[cCd]b + 1

16Ωb[cCd]a − 1
8ΩaeΩbfCcdef . (2.10)

Mapping the Θ-tensor from SL(5) to USp(4) we get the T-tensor defined as:

T(ef)[ab]
[cd] =

√
2Ωh[cδ

d]
(eV

M
f)hVNabYMN − 2

√
2εMNPQRZ

PQ,SVMegVNfhVab RVScdΩgh .

(2.11)
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In terms of these new tensors, it is possible to rewrite the quadratic constraints as follows.

Z(ab)[ef ]
[
ΩceΩdfB + ΩegΩfhB

[gh]
[cd]
]

= 0,

Z(ab)[cd]T(ab)ef
gh = 0.

(2.12)

Let us now come to the core of our analysis: the scalar potential and the mass matrices.
As usually happens in gauged supergravities, the scalar potential can be expressed as the
difference of the squared fermion shifts, the latter are defined to be:

Aab1 ≡ −
1

4
√

2

(1
4BΩab + 1

5C
ab
)

, (2.13)

Ad,abc2 ≡ 1
2
√

2

[
ΩecΩfd

(
Cabef −Bab

ef

)
+ 1

4

(
CabΩcd + 1

5ΩabCcd + 4
5Ωc[aCb]d

)]
. (2.14)

Then, the scalar potential is given by:

V = 1
8 |A2|2 − 15|A1|2 = − 1

128
(
15B2 + 2CabCab − 2Bab

cdB
cd
ab − 2C [ab]

(cd)C[ab]
(cd)
)
.

(2.15)
From this we can compute the variation of the scalar potential under a variation of the
scalar fields given by δΣVMab = Σab

cdVMcd, where Σab
cd is a variation along the scalar

manifold SL(5)/USp(4), living in the 14 representation.

δΣV =− 1
16B

[ab]
[cd]B

[cd]
[ef ]Σ[ef ]

[ab] + 1
32BB

[ab]
[cd]Σ[cd]

[ab] −
1
64C

[ab]C[cd]Σ[cd]
[ab]

+ 1
32C

[ab]
(ef)C[cd]

(ef)Σ[cd]
[ab] −

1
8C

[ce]
(af)C

[df ]
(be)Σ[ab]

[cd] .
(2.16)

In order to find the vacua of the theory, we need to solve this equation of motion together
with the quadratic constraints (2.12) or (2.4). Once we obtained the solutions to these
quadratic equations, we studied the gauging, the residual gauge group, the residual amount
of supersymmetry preserved by each vacuum, the mass spectra, and the values of the
cosmological constant.

On the vacuum, residual supersymmetry is given by the number of non-vanishing εa
parameters satisfying

A2a,bcdε
a = 0 . (2.17)

On the other hand, for what concerns the masses, we have computed the various mass
matrices. For the gravitinos, we have:

M3/2
ij = 5

2A1ij . (2.18)

The mass matrix for the fermions is given by

Lm−1/2 = 1
4
√

2

[ 3
32δ

b
dδ
c
eB + 1

8δ
b
dΩefC

fc +Bbc
de − Cbc de

]
χabcχ

ade, (2.19)

in order to compute the masses for the fermions, we must recall that χabc transforms in
the 16 of Usp(4)

χabc = χ[ab]c, Ωabχ
abc = 0, χ[abc] = 0, (2.20)
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and therefore also the mass matrix must lie in the 16× 16 representation of Usp(4). The
vector mass matrix is contained in the scalar kinetic term 1

2Pµab
cdPµcd

ab, where Pµabcd is
defined by the gauge covariant space-time derivative of the scalar fields

VabM (∂µVMcd − gAPQµ XPQ,M
NVcd) ≡ Pµabcd + 2Qµ[a

[cδ
d]
b] . (2.21)

The Pµabcd lies in the 14 representation of usp(4), while Qµac in the 10, (these must be
imposed before computing the masses). Analogously, the mass term for the 2-forms arises
from the kinetic term of the vectors, namely ΩacΩbdHµνabHcdµν , where Hµνab is given by
the modified field strength tensor:

HPQµν = FPQµν + gZPQ,RBµνR, (2.22)

Similarly, the mass term for the 3-forms, SNµνρ, arises from the kinetic term of the 2-forms,
ΩacΩbdHµνρabHµνρcd . The covariant field strength for the 2-forms is given by:

HµνρM = 3D[µBνρ]M + 6εMNPQRA
NP
[µ

(
∂νA

QR
ρ + 2

3gXST,U
QARUν ASTρ]

)
+ gYMNS

N
µνρ.

Note that the kinetic term for the 3-forms

e−1Lkin = −1
9ε

µνρλστκgYMNS
M
µνρDλS

N
στκ (2.23)

is linear in the derivative, so what one really obtains from this procedure is the mass matrix,
not the square mass matrix. Furthermore, this kinetic term is not canonically normalised,
in fact it is in the schematic form YMNS

MDSN , so the true masses are obtained once one
multiplies the mass matrix that arises from the kinetic term of the 2-forms by Y −1

MN . For
the scalar masses, we note that it is possible to parameterise the scalar fields in terms of
the USp(4)-invariant, symmetric unimodular matrixMMN defined by

MMN ≡ VM abVN cdΩacΩbd. (2.24)

The scalar potential, written in terms ofMMN , is

V = 1
64

(
2MMNYNPMPQYQM −

(
MMNYMN

)2
)

+ ZMN,PZQR,S (MMQMNRMPS −MMQMNPMRS) .
(2.25)

Therefore, by means of δΣVMab = Σab
cdVMcd, it is possible to calculate the second vari-

ation of the potential and, therefore, the scalar mass matrix, always recalling that Σab
cd

belongs to the 14 representation of USp(4). Eq. (2.6) has been widely used to calculate the
masses. A complete study of the field content, Lagrangian, and symmetries for maximal
supersymmetric gauged supergravities in 7 space-time dimensions is given in [27].

3 Scanning for vacua: methodologies

The approach we propose to chart the vacua of the theory is based on optimisation tech-
niques, some of the methods we adopted are not unknown to the string theory community.
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Figure 1. En(n) transformations (U) mapping any point to the origin of homogeneous space
En(n)/H.

Indeed, we used a combination of analytical and numerical tools; our starting point will
be the analysis performed in [15]. There, the authors showed how every vacuum found in
an explicit gauging of the theory can be mapped, by means of a duality transformation, to
the origin of the scalar manifold, as shown in figure 1. This procedure is allowed by the
homogeneous nature of the coset manifold, which in the case of maximal supergravities is
of the form En(n)/H (we do not include the Trombone symmetry in our analysis), with n
the number of internal dimension and H the maximal compact subgroup of En(n). Due
to this method, we will be able to scan the entire space of all gaugings at once. At the
origin, the physical scalars are all set to 0, but the parameters of the embedding tensor
are not fixed, so in addition to considering the minimisation conditions δΣV = 0, with
δΣV given in eq. (2.16), we must also impose the quadratic constraint, eq. (2.4) or (2.12),
(the linear constraint has been imposed when choosing to work with the representations
(1 + 14) + (5 + 35) in (2.8)). The maximal compact subgroup of SL(5), SO(5), can be
used to remove part of the variables, in this case 10, from the global system. In particular,
we can always use local SO(5) to diagonalize YMN . This leads to the problem of solving
systems of multivariate quadratic equations ((MQ) problem), which is known to be a NP
complete task. Indeed, various cryptosystems relies on this problem in some way, MQ is
also considered a possibility for potentially post-quantum cryptosystems, namely, it is be-
lieved not to be solved by quantum algorithms as well. Therefore, we introduce a different,
related, problem: we are going to solve the systems with a certain approximation, and this
can always be done in polynomial time. Indeed, optimisation techniques have been widely
used by physicists and mathematicians to find solutions to systems of equations. In order
to transform our problem, recalling that we have a system of homogeneous equations of
the form ∑n

i di = 0, we introduce a fit function ffit defined as

ffit =
n∑
i

(di)2 (3.1)

– 6 –
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where i runs over the length of the system and di represents the polynomials in the sys-
tem. Obviously, the global minima of the fit function correspond to ffit = 0 and are the
solutions to our system. This also implies that verifying that a minimisation point is also
a solution takes no time. The first approach invented to solve a set of equations simul-
taneously is the Gradient Descent algorithm (GD), created by A. Cauchy, and since then
many other attempts have been tried. Genetic Algorithms (GA), which are an instance of
the broad class of Evolutionary Strategies algorithms, have already been widely used by
theoretical physicists [28–32], they have the advantage to work with ill-behaved functions,
while methods such as GD or stochastich GD work only on differentiable fitness functions.
In this work, we are going to introduce yet another method in the set of tools used for
the research of supergravity vacua, the Covariance Matrix Adaptation Evolutionary Strat-
egy (CMA-ES). In our search of minima of the scalar potential, we used a combination of
GAs and CMA-ES, we will not dive into the explanation of GAs, since they are already
known by the community, a nice introduction about these topics and other Data Science
applications to String Theory can be found in [33]. Instead, we present the new technique,
based on CMA-ES. CMA is an Evolutionary Strategy algorithm, therefore, it consists of a
series of steps (generations), at each of them some operations are carried out before going
to the next step. CMA is based on the adaptation of the covariance matrix associated with
the multivariate normal distribution, from which we draw a new set of candidate solution
points at each generation. The covariance matrix is not the only object that needs to be
adapted at each step; the procedure implies the computation of the new mean and the
overall step size as well. To compute the mean, we order the candidate solution points,
based on the fitness function, and select the best µ, which results in a higher “evolution
pressure”. On the other hand, the Covariance Matrix is adapted in order to maximise the
likelihood of precedent successful steps. Thus, CMA performs an iterated analysis of the
principal components at every generation, while retaining all the principal axes. A deeper
analysis of the algorithm is presented in appendix A. Let us now describe some details of
the analisis. Parallelisation proved to be fundamental in making the process faster and
allowing for a more global search scan. Indeed, with CMA-ES we need to choose a starting
mean m0 and step size σ0, together with some hyperparameters such as the time allowed
to carry the computations (‘timeout’ parameter), the minimum value accepted for the fit-
ness function in order to declare that a minimum was achieved (‘ftarget’ parameter), the
precision of this result (‘tolfun’), the population size λ and whether or not to activate
elitist research. Parallelisation gave us the opportunity to choose more initial means m0

at a time, thus scanning a larger area of the parameter space. Some useful techniques have
been used to adapt the algorithms to our specific problem and to render the analysis of
numerical results faster.

First of all, we are dealing with systems of homogeneous quadratic equations, therefore,
their solutions always pass from the origin, which helps us to restrict the area of research
when setting the initial mean for the multivariate normal distribution. On the other hand,
we must pay attention because the origin of the reference system is a trivial solution for
any homogenous system of equations and, therefore, starting close to it may lead us always
there. This could be avoided by modifying the fitness function. We found the following

– 7 –



J
H
E
P
0
9
(
2
0
2
2
)
0
9
6

(a) Example of fitness function Ffit without modi-
fication.

(b) Example of fitness function with a Gaussian
modification.

Figure 2. Modification of the fitness function after the algorithm has found a minimum.

definition to be very efficient:

Ffit =

ffit for ∑n
i x

2
i > threshold,

10000 for ∑n
i x

2
i ≤ threshold.

(3.2)

Basically, we created a step function to avoid the algorithm from always converge in 0.
The threshold must be chosen in such a way as to leave enough parameter space near the
origin to complete a full scan without hitting the barrier too often. A technique has also
been implemented to avoid the algorithm from returning to the previously found minima.
It consisted of adding a multivariate normal distribution function centred on the minima
on top of the fitness function, as illustrated in figure 2. Basically what one does is to add a
series of umbrellas on top of the fitness function to stop the algorithm from going in those
directions already analised. In our case, though, the solutions to the systems are manifolds
in the parameter space, so an infinite number of umbrellas would be needed to prevent the
algorithm from finding again the vacuum structure under consideration. Imagine having a
straight line in 2-dimensions and starting to cover it with 2-dimensional multivariate normal
distributions. In 7 space-time dimensions, we were interested, above all, in (Anti)-de Sitter
vacua, and this information can be used to further simplify the numerical search. Indeed,
taking into account the potential in (2.15) written in terms of the fermion shifts (2.14), we
can see that the potential is written as the difference between 2 squared terms. For AdS we
want to impose V = −k, with k constant, we can always normalise k to be 1, so we need
to add another equation (quadratic) to our system, analogously for dS we need to solve
V = 1. We can always make a change of variables to completely solve this new constraint,
for example, considering the case of AdS vacua, calling zi the variables contained in Ad,abc2
and xi the ones in Aab1 : 

zi → sinh[ψ]wi√∑
j
w2

j

,

xi → cosh[ψ]ui√∑
j
u2

j

.
(3.3)

– 8 –
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This change of variables introduces one more variable, ψ, but solves the constraint V = −1,
thus removing a bunch of solutions from the system. By doing so, we will be certain that
the algorithm will look only for vacua with a negative cosmological constant and that
the other vacua disappeared from its landscape. Analogously, we can solve the constraint
V = 1 for dS vacua by exchanging sinh with cosh in eq. (3.3). For the Minkowski vacua
we just add one more homogeneous quadratic equation (V = 0) to the system. The initial
points have been chosen as follows, for what concerns the variables wi and ui in (3.3),
we draw them from a normal distribution with mean 0 and standard deviation σ = 4,
instead, the starting points for ψ have been evenly displaced in an interval from 0.1 to
0.5 (note that the initial variables scale exponentially with ψ, so there is no need to reach
high values for the latter). We used GA techniques, such as mutation and crossing over,
when the algorithm CMA got stuck in a local minimum, in order to add some noise to
the candidate solution points and move them away from the local minima. Let us now
describe the analysis of the results. First, we remove the solution points that are close to
each other, up to a certain threshold that we set to be equal to 3σ, thus 3 times the step
size, removing all candidate solutions corresponding to vacua already present in the set of
solutions. Then, we studied the residual amount of supersymmetry, the gravitini masses,
the signature of the Cartan matrix (providing information about the number of compact
and non-compact generators of the gauge group of the theory), and the rank of XPQ

R giving
us the dimension of the gauge group. The latter will provide us with everything that is
needed to understand what gauging the vacuum belongs to. With all this information, it is
possible to group the solution points and extract some very useful relations among them.
Indeed, by plotting a variable xi or zi, against all other variables, it has been possible to
reconstruct some analytical relations, as shown in figure 3, even by means of linear fitting.
This is mainly possible when the number of unknowns is small, on the other hand, once
we know the residual symmetry group of the solution, we can always use the technique of
restricting the scan only to those variables which are present when that particular residual
gauge symmetry has been imposed. This can lead to a new system that may be solved
completely analytically, or we can always iterate the previous steps. The pseudocode for
the search for AdS vacua is reported in Algorithm 1.
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(a) Uncorrelated Variables. (b) No dependance among the variables.

(c) variables linearly related. (d) Galois couple.

Figure 3. Correlation among the variables.
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Algorithm 1 Scanning for AdS Vacua.
. Initialize the number of variables, the population size, the number of values for ψ and

the Step-size for CMA-ES
Input # variables , popSize , psiSize , StepSize

ui, wi ← N (µ = 0, σ = 3, size = (popSize, # variables))
ψi ← [0.1, 1, size = psiSize] . Linearly spaced array between 0.1 and 1

function ffit(ui, wi, ψi)
return

∑
j pj(ui, wi, ψi)2

. Sum of squared polynomials with the variables defined as in 3.3
end function
function CMA_minimization(function, ui, wi, ψi, StepSize)

return Candidate Solution Points in Rn

. Hyperparameters, such as ‘ftarget’, ‘seed’, ‘timeout’, etc., must be set as well
end function

Good_ui, Good_wi ← {}
while j ≤ psiSize do

if ffit(ui, wi, ψj) ≤ threshold then
Good_ui.insert(ui)
Good_wi.insert(wi)

. Accept only starting points with a fitness function lower than a certain threshold
end if
Candidate_Solution← CMA_minimization(ffit, Good_ui, Good_wi, ψj , StepSize)
if Candidate_Solution is a local minimum then

Use GA techniques
end if

end while
for < k = 1, k + +, k ≤ Length(Candidate_Solution) > do

for < j = k + 1, j + +, j ≤ Length(Candidate_Solution) > do
if |Candidate_Solution[k]− Candidate_Solution[j]|2 ≤ 3 · StepSize then

Candidate_Solution.remove(j)
end if

end for
end for
return Candidate_Solution
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vacuum susy Ggauge Gres ref.

A1 4 SO(5) SO(5) [34]
A2 0 SO(5) SO(4) [35]
M1 0 U(1)nR4 U(1) here
M2 0 U(1)nR6 U(1) here

Table 1. Summary of vacua.

L2m2
3/2

[
25
16

]
×4

L2m2
vec [0]×10

L2m2
2−forms [0]×5

L2m2
3−forms [1]×5

L2m2
1/2

[
9
16

]
×16

L2m2
scal [8]×14

Table 2. Masses for the AdS vacuum A1.

L2m2
3/2

[
27
16

]
×4

L2m2
vec

[
3
4

]
×4

, [0]×6

L2m2
2−forms [0]×5

L2m2
3−forms

[
3
4

]
×4

, 3×1

L2m2
1/2 [0]×4,

[
3
16

]
×12

L2m2
scal [−12]×1, [12]×9, [0]×4

Table 3. Masses for the AdS vacuum A2.

4 Results

In this section we are going to present the vacua found through the methods presented
before. As has been explained, we have been able to reconstruct directly or obtain ana-
lytical solutions from residual symmetry considerations starting from numerical ones. We
found the two well-known AdS vacua, the maximal supersymmetric one [34] and the non-
supersymmetric one [35], of which we present the mass spectrum. In addition, we found 2
new Minkowski vacua. The summary of the vacua is presented in table 1.

All AdS vacua appear in the SO(5) theory, which is a consistent truncation of M-theory
compactified on S4.

4.1 Mass spectra

In this section we present some of the masses for all the vacua listed in table 1. The masses
for the AdS backgrounds, tables 2 and 3, are normalised in terms of the squared AdS radius
L2 = |15/V |, so that supersymmetric gravitinos have a normalised squared mass of 25/16.

The spectrum for the vacuum A1 agrees with the one found in [34], and it is determined
by the representation of the superconformal algebra in six dimensions [36, 37]. The scalar
masses for the A2 case are the same as those in [35], ensuring that this is the same non-
supersymmetric AdS vacuum. In order to compute the masses for the fermions, we note that
in the A2 case supersymmetry is completely broken, therefore a super-Higgs mechanism is
in action there. Consequently, 4 fermions, which correspond to the Goldstinos, must be
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m2
3/2 [m2]×2, [0]×2

m2
vec [(2m)2]×2, [(m)2]×2, [0]×6

m2
2−forms [0]×3, [m2]×2

m2
3−forms [m2]×2, [0]×3

m2
scal [−(4m)2]×4, [−(2m)2]×2, [0]×8

Table 4. Masses for the Minkowski vacuum M1.

m2
3/2

[
1
4(m2

1 −m2
2)
]
×4

m2
vec [(m1)2]×2, [(m1 ±m2)2]×2, [0]×4

m2
2−forms [0]×3, [m2

2]×2

m2
3−forms [m2

1]×2, [0]×3

m2
scal [0]×8, [−(4m1)2]×2, [−(4m2)2]×2, [−(2m2)2]×2

Table 5. Masses for the Minkowski vacuum M2.

eaten by the corrisponding gravitinos. The relevant part of the Lagrangian is

Lmass = −5
2gA

ab
1 ΩbcψµaΓµνψcν + 1

4gA
d,abc
2 ΩdeχabcΓµψeµ + g

4M
abc

defχabcχ
def . (4.1)

where Γµ are the 7-dimensional Dirac Gamma matrices and

Mabc
def = 1√

2
δad

[ 3
32δ

b
eδ
c
fB + 1

8δ
b
eΩfgC

gc +Bbc
ef − Cbc ef

]
(4.2)

obtained from (2.19). We can do a field redefinition for the gravitinos

ψaµ → ψaµ + 1
120ΩabA−1

1bcA
c,efg
2 Γµχefg (4.3)

in order to gauge away the interaction term between fermions and gravitinos, this will
add a new term to the mass matrix of the fermions, (2.19), rendering the Goldstinos null
eigenvectors. The supersymmetric AdS vacuum, (A1), is perturbatively stable, respecting
the Breitenlohner-Freedman bound [38–40]

m2 ≥ −(d− 1)2

4 , (4.4)

for scalar degrees of freedom in AdSd. On the other hand, (A2), is pertubatively un-
stable, as already found in [35], thus corroborating the hypothesis about the instability
of non-supersymmetric AdS spacetimes formulated in the contest of the Swampland pro-
gramme [41]. For the Minkowski vacua, the spectra are shown in tables 4 and 5.

In appendix B we present the form of the representations that make up the T-tensor,
for each vacua we found. It is clear that this is not an exaustive analysis, indeed some
vacua are missing from this scan, for example the Scherk-Schwarz Minkowski vacuum, with
gauge group U(1) × R6, first found in [27], did not appear in our scan. In any case, it is
possible to find it, once one limits the analysis to the vacua preserving a residual symmetry,
in this case U(1).
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D Duality Group ΘM
α

9 GL(2) 2−3 + 3+4

8 SL(2)× SL(3) (2,3) + (2,6′)
7 SL(5) 15 + 40′

6 SO(5,5) 144c

5 E6(6) 351′

4 E7(7) 912
3 E8(8) 1 + 3875

Table 6. Representations of the Embedding Tensor.

5 Outlook and future directions

In section 3 we presented a new method, based on Evolutionary Strategies optimization
techniques. The power of these tools combined with the thorough analysis of the numerical
data allowed the reconstruction of analytical solutions and their mass spectra. The analysis
has been carried out for D = 7 space-time dimensions, for reasons already explained in the
introduction, but it would be interesting to see whether our procedure can be used also for
different number of dimensions and for fewer amount of supersymmetry. The number of
parameters in the embedding tensor, and therefore of variables, and the number of equa-
tions grow as the number of dimensions get lower. This is illustrated in table 6, where
the representations of the embedding tensor for maximal theories in each dimension are
presented, giving the number of variables in the system of equations (there is the possibility
to remove some of them using the H-redundancy of the scalar coset manifold). This implies
that numerical methods are necessary when dealing with lower dimensional theories, be-
cause analytical results can be achieved in very special cases, either by fixing the gauging or
restricting the analysis to vacua preserving some residual symmetry. Numerical methods,
instead, would allow for a more general scan. On the other hand, with a large number of
non-vanishing parameters in the vacua it is no longer possible to use the reconstruction
techniques presented in section 3 and more subtle ways are needed if we want to obtain
analytical results. We also compared our method to some optimization tools available from
TensorFlow libraries (Adam optimizer) and to other algorithms as well, finding CMA-ES
and our implementations more efficient, given the cospicuous extension of the literature in
Optimization it has been impossible to test our problem against many of the optimization
techniques. Another interesting step for the future is to compare our methodology with
other numerical approaches; maximal supergravities in D = 7 space-time dimensions are a
good testbed due to the small number of variables and the interesting physical features.

A Covariance Matrix Adaptation — Evolutionary Strategy (CMA-ES)

In this appendix, we present some details about the CMA-ES algorithm and its operational
mode. CMA-ES, in short, CMA, is an evolution strategy (ES) algorithm that, as in the case

– 14 –



J
H
E
P
0
9
(
2
0
2
2
)
0
9
6

of GA, only needs the fitness function as accessible information [25, 42, 42–48]. Therefore,
differently from GD or stocastic GD, we do not require the function to be differentiable, it
can also be not continuous. CMA, as the name suggests, is based on the “adaption” of a
normal distribution to the fitness function under consideration (with its level curves). Let us
analyse the algorithm in depth and consider a multivariate normal distribution, N (m,C),
which is determined by the mean m ∈ Rn (in our case, n is the number of free parameters in
the embedding tensor) and by the symmetric, positive definite covariance matrix C ∈ Rn×n.
Covariance matrices are associated with the ellipsoid {x ∈ Rn|xTC−1x = 1}, where the
principal axis of the latter are the eigenvectors of C, and the lengths of the squared axis
are the eigenvalues of the covariance matrix. We can always diagonalize the covariance
matrix by means of an orthogonal matrix B whose columns are the eigenvectors of C with
unit length, C = B(D)2BT . Then, it is also possible to write the normal distribution as

N (m,C) ∼m +N (0,C) ∼m + C−1/2N (0, I) ∼m + BDBTN (0, I), (A.1)

with I the n×n identity matrix. At each step of the process, we generate a new population
of points (which in GA are called offsprings) by drawing them from a multivariate normal
distribution:

xg+1
j ∼ N

(
mg, (σg)2Cg) with j = 1, . . . , λ (A.2)

Superscripts g, g + 1, etc. label the generations, λ is the population size, and σg ∈ R+ is
the “overall” standard deviation (step size) at generation g. Now we need to explain how
the mean, the covariance matrix, and the standard deviation are computed for the next
generation g + 1.

The mean. The new mean mg+1 is simply selected with a weighted average of the µ
best points of the population:

mg+1 =
µ∑
j=1

wjxg+1
j:λ , with

µ∑
j=1

wj = 1 and wj > 0. (A.3)

wj ∈ R+ with j = 1, . . . , µ are positive ordered weights, that is, w1 ≥ w2 ≥ . . . ≥ wµ > 0.
If wj = 1/µ for each j, we obtain the mean value for the best µ points. xg+1

j:λ represents the
j-th best individual of the population, meaning, f(xg+1

1:λ ) ≤ f(xg+1
2:λ ) ≤ . . . ≤ f(xg+1

λ:λ ). An
essential quantity is the variance effective selection mass

µeff =
( µ∑
j=1

w2
j

)−1
. (A.4)

It is possible to show, from the definition of wj that 1 ≤ µeff ≤ µ and that µeff = µ only
in the case where all the weights are the same and equal to 1/µ. Usually, µ ≈ λ/2 and
wi ∝ µ− i+ 1.

The covariance matrix. First, let us define the empirical covariance matrix Cg+1
emp,

which is nothing more than an estimate of the covariance matrix Cg:

Cg+1
emp = 1

λ− 1

λ∑
i=1

(
xg+1
i − 1

λ

λ∑
j=1

xg+1
j

)(
xg+1
i − 1

λ

λ∑
j=1

xg+1
j

)T
. (A.5)
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This estimator has to be modified to obtain a maximum likelihood estimator of Cg, by
defining

Cg+1
λ = 1

λ

λ∑
j=1

(
xg+1
j −mg)(xg+1

j −mg)T . (A.6)

The difference between Cg+1
emp and Cg+1

λ is what is used as the mean value. The former uses
the mean obtained from the entire population, thus estimating the variance of the sampled
points, and the latter instead uses the mean obtained by (A.3), therefore estimating the
sampled steps, xg+1

j −mg. We are going to modify this estimator again and define

Cg+1
µ =

µ∑
j=1

wj
(
xg+1
j:λ −mg

) (
xg+1
j:λ −mg

)T
. (A.7)

Cg+1
µ is an estimator of the variance of selected steps (the best / successful steps µ). We

have some conditions on µeff in order for Cg+1
µ to be a reliable estimator. Indeed, µeff has

to be large enough to prevent the condition numbers (given a matrix A and a linear system
Ax=b, with x unknown, they measure how sensitive the solution of the system to a change
in b is, high condition numbers imply that small changes in b generate huge modifications
in the solution) of Cg+1

µ to be smaller than 10 for the fitness function of the sphere:
fsphere(x) = ∑n

i=1 x
2
i ; empirically, it is seen that µeff ≈ 10n is a good choice. To avoid

this problem for a small population, we will modify the update of the covariance matrix
again. In order to obtain an algorithm that converges faster, we need a small population,
on the other hand, to obtain a more global search the population has to increase. For a
small population, also µeff ≈ λ/4 (which is the choice to take to have reasonable wj) has
to be small, then Cg+1

µ is not a reliable estimator, in order to circumvent this, we define a
new covariance matrix that takes into consideration the information we have from previous
generations. Defining C0 = I and the learning rate 0 < ccov ≤ 1, then

Cg+1 = (1− ccov)Cg + ccov

( 1
σg

)2
Cg+1
µ

= (1− ccov)Cg + ccov

µ∑
j=1

wj

xg+1
j:λ −mg

σg

xg+1
j:λ −mg

σg

T . (A.8)

Step sizes σg have been integrated to ensure that Cg
µ from different generations are compa-

rable. If ccov = 1 the covariance matrix collapses to Cg+1
µ and no information from previous

generations is retained, on the other hand, if ccov = 0, Cg+1 = C0 and there is no learning.
This kind of update, represented in (A.8) update, is called rank-µ update, because the sum
goes from 1 to µ. Eq. (A.8) is iterative and can be expanded as

Cg+1 = (1− ccov)g+1C0 + ccov

g∑
j=0

(1− ccov)g−j
( 1
σj

)2
Cj+1
µ . (A.9)

Picking high values for ccov leads to degenerate covariance matrices, while small values
imply slow learning, a good choice is ccov ≈ µeff/n

2. Small population sizes λ lead to a
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large number of generations and therefore to a faster adaptation for the covariance matrix.
A final step is necessary to update the covariance matrix: cumulation. In fact, information
about “signs” of the steps the strategy took generation after generation has not been used
so far. To do so, we introduce the evolution path. An evolution path is any sequence of
succesive steps taken by the strategy, taking the sum of these steps is referred as cumulation;
for instance, for three steps we have

mg+1 −mg

σg
+ mg −mg−1

σg−1 + mg−1 −mg−2

σg−2 . (A.10)

Defining the 0-th order evolution path p0
c = 0, we use the exponential smoothing and

define iteratively

pg+1
c = (1− cc)pgc +

√
cc(2− cc)µeff

mg+1 −mg

σg
, (A.11)

with 0 ≥ cc ≤ 1 a new learning rate for the evolution path, the normalisation factor√
cc(2− cc)µeff is dictated by the demand that pg+1

c be extracted from a normal distribution
N (0,C). When cc = 0 there is no learning and pgc = 0. Putting everything together, we
obtain the update of the covariance matrix:

Cg+1 = (1− ccov)Cg + ccov
µcov

pg+1
c pg+1T

c

+ ccov

(
1− 1

µcov

) µ∑
j=1

wj

xg+1
j:λ −mg

σg

xg+1
j:λ −mg

σg

T , (A.12)

with µcov ≥ 1 and should be µcov = µeff . Eq. (A.12) reduces to eq. (A.8) in the case
µcov →∞, so information from the last generation is taken into consideration by the rank-
µ update and information from previous generations, instead, is exploited by the evolution
path update, which is relevant above all for small population sizes.

The step size. An evolution path is also used to update the step size σ with a method
called cumulative step size adaptation:

• Whenever the evolution path is long, the steps are going in the same direction (ap-
proximatively), so they are correlated. Consequently, we can cover the same distance
with longer but fewer steps, and the step size must be increased.

• When the evolution path is short, the steps cancel among each other, and the step
size should be decreased.

• The optimal situation is that the steps are totally uncorrelated and orthogonal with
respect to the previous and following ones.

We need to define what long- and short-evolution paths mean. In this respect, we compare
the latter with the expected length under random selection, which means that the steps
are not correlated with each other. If our strategy finds that the evolution paths are longer
than the uncorrelated ones, σ has to be increased, and vice versa.
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The evolution path pg+1
c depends on its direction, therefore we define the conjugate

path

pg+1
σ = (1− cσ)pgσ +

√
cσ(2− cσ)µeff(Cg)−

1
2

mg+1 −mg

σg
, (A.13)

with 0 < cσ < 1 a learning rate and (Cg)− 1
2 ≡ Bg(Dg)−1Bg T . Whenever (Cg)− 1

2 6= I it
aligns step mg+1 −mg with the coordinate system produced by Bg. In particular, Bg T

rotates the system so that the columns of Bg become the axis. (Dg)−1 rescales the length
of the axis so that they measure the distances in the same way. Bg rotates everything back,
allowing us to compare the directions of the various steps. By adding the matrix (Cg)− 1

2

in eq. (A.13) we ensure the independence of pg+1
σ from the direction of the steps. Then we

compare the length of pg+1
σ with the expected length of the evolution path obtained from

random selection E [||N (0, I)||] and define the step size

σg+1 = σg exp
(
cσ
dσ

(
||pg+1

σ ||
E [||N (0, I)||] − 1

))
, (A.14)

where dσ ≈ 1 is a damping parameter and E [||N (0, I)||] =
√

2Γ
(
n+1

2

)
/Γ
(
n
2
)
≈

√
n + O(1/n) is the expectation value of the Euclidean norm for a multivariate normal

distribution with the identity matrix as the covariance matrix. From eq. (A.14) we can
see that, whenever ||pg+1

σ || > E [||N (0, I)||], σg increases and viceversa when ||pg+1
σ || <

E [||N (0, I)||].
It has been proved, in a survey about Black-Box optimizations [49], that CMA-ES

outranks other 31 optimisation algorithms and that its performance is outstanding for
rugged and ill-conditioned functions with large search spaces.

B T-tensor at the vacuum in the 7 dimensional theory

In this appendix we provide an instance of the value of the irreducible USp(4) represen-
tations composing the T-tensor generating the vacua of table 1. For all the examples, we
have chosen a basis where

Ω = 1⊗ iσ2. (B.1)

A1. The maximal supersymmetric Anti de Sitter vacuum has

Bs = κ, Bab
cd = Cabcd = Cab = 0. (B.2)

A2. The SO(4) non-supersymmetric AdS vacuum is given by the following representa-
tions:

Bs = κ, Cabcd = Cab = 0, (B.3)

B12
12 = B12

43 = B34
21 = B34

34 = κ

6 ,

B13
31 = B14

41 = B23
32 = B24

42 = κ

12 .
(B.4)

There are other non-vanishing entries in the 14 representation, which are related by sym-
metries in the indices and therefore have not been reported here.

– 18 –



J
H
E
P
0
9
(
2
0
2
2
)
0
9
6

M1.

Bs = κ, C12 = C43 = 5
4κ, (B.5)

B12
21 = B12

34 = B34
12 = B34

43 = 1
4κ,

B13
13 = B14

14 = B23
23 = B24

24 = 1
8κ,

B13
41 = B14

13 = B23
24 = B24

32 = 5i
8 κ,

(B.6)

C14
13 = C23

24 = C31
14 = C42

23 = 5i
8 κ. (B.7)

Here, one needs always to keep in mind that there are other, non-reported, entries of these
tensors which are related to the ones above by symmetries of representations.

M2.

Bs = κ1, C14 = C23 = 4iκ2, (B.8)

B12
21 = B12

34 = B34
12 = B34

43 = 1
4κ1,

B13
13 = B24

24 = 3
4κ1,

B14
41 = B23

32 = κ1
2 ,

(B.9)

C14
12 = C21

14 = C21
23 = C23

43 = C32
12 = C34

14 = C34
23 = C41

34 = iκ2,

C13
11 = C13

33 = C42
22 = C42

44 = 2iκ2.
(B.10)

Again, symmetries must be imposed on these tensors.
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