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1 Introduction

The study of black hole information loss paradox has played a pivotal role in deepening
our understanding of the quantum structure of spacetime. The paradox occurs post Page
time when the fine grained entropy of the radiation emitted from a black hole becomes
larger than the coarse grained entropy of the black hole leading to a violation of unitarity.
Recent progress in this regard was initiated by the proposal of a novel island formula for
the fine grained entropy of subsystems in quantum field theories coupled to semi-classical
theories of gravity [1–5]. The crucial insight of the island formula involves certain regions
in the black hole geometry termed islands, whose contribution to the fine grained entropy
of a bath subsystem coupled to a black hole leads to the reproduction of the Page curve for
the Hawking radiation. This in turn led to a wide range of exciting developments through
the application of the island formula to a variety of black hole/bath systems and their
corresponding dual CFT s in the context of holography [6–109]. Substantial evidence for
the island formula for the entanglement entropy was provided by taking certain replica
wormhole contributions to the corresponding gravitational path integral in [5, 110–112].

Interestingly, it was recently demonstrated that the island formula naturally arises
for an AdS geometry dual to a conformal field theory on a manifold with a boundary
(BCFT) [37, 113]. The bulk geometry dual to the d dimensional BCFT on a manifold Σ
in this scenario, is described by a bulk AdSd+1 spacetime with a boundary Q ∪ Σ where
Q is a codimension one surface termed as the end-of-the-world (EOW) brane [114, 115].
The application of the RT/HRT prescription for the holographic entanglement entropy
in the above AdS/BCFT scenario is then expected to lead to results consistent with
the Island formulation. Consequently this implies that it should be possible to obtain
the Page curve for subsystems in the dual BCFT through the utilization of the usual
RT/HRT formula for the holographic entanglement entropy. Recently an intriguing model
involving a holographic moving mirror configuration, which mimics the Hawking radiation
from an evaporating black hole was explored in [33, 60] in the context of the AdS/BCFT
correspondence.1 The authors in [33, 60] considered various moving mirror profiles which
simulate the Hawking radiation from eternal and evaporating black holes and demonstrated
that the entanglement entropy of a subsystem in the radiation flux of such moving mirrors
described by BCFT s leads to unitary Page curves. Following this advancement several
interesting investigations have been explored in [78, 81, 120, 121].

In the light of the developments described above, the significant issue of the mixed
state entanglement structure between parts of the radiation/bath system arises naturally.
Since the entanglement entropy is not a valid measure for mixed state entanglement it is
required to investigate other appropriate quantum information theoretic measures in this
context. This is an active area of investigation in quantum information theory and several
such mixed state entanglement and correlation measures have been proposed to address
this critical issue [122–126]. Some of these measures such as the entanglement negativity,
the reflected entropy and the entanglement of purification have also been explored in the

1Note that historically, the radiation from a moving mirror was investigated in [116] (see also [117]
and [118, 119] for more recent discussions).

– 1 –



J
H
E
P
0
9
(
2
0
2
2
)
0
8
9

context of conformal field theories [126–131] and holography [126, 132–146]. Specifically the
reflected entropy and the entanglement negativity which are of interest in the present article
have been shown to possess rich entanglement phase structures and are expected to lead
to corresponding analogues of the Page curves [41, 147–149] for black hole/bath systems.
Furthermore, recently the island formulae for the reflected entropy and the entanglement
negativity have been proposed and explored in [19, 20, 48, 73, 150].

The holographic moving mirror configuration provides us with an interesting model
to investigate the structure of mixed state entanglement for the Hawking radiation with-
out any direct reference to the island formula as the holographic computations in the
AdS/BCFT scenario naturally encode the island contributions. Consequently the investi-
gation of the time evolution of measures such as the entanglement negativity and the re-
flected entropy to probe the mixed state entanglement structure of the radiation flux from
a moving mirror is expected to lead to interesting insights into the corresponding entangle-
ment structure of the Hawking radiation. In this context, we compute the reflected entropy
and the entanglement negativity of mixed state configurations involving disjoint and ad-
jacent intervals in the radiation flux of moving mirrors by utilizing the replica technique
for the corresponding BCFT1+1s. Subsequently these quantities are computed through
appropriate holographic techniques involving the bulk AdS3 spacetime with a EOW brane
utilizing a Banados map [60, 151–153]. We demonstrate that the holographic computations
involving the bulk geometry precisely match with the corresponding replica technique re-
sults in the BCFT1+1 for various phases in the moving mirror configurations. Finally we
determine the Page curves for the reflected entropy and the entanglement negativity of the
above mixed state configurations in the radiation flux of the kink and the escaping mirrors
which mimic the Hawking radiation from evaporating and eternal black holes respectively.

A brief outline of our article is as follows. In section 2 we review the computation of
entanglement entropy in the holographic moving mirror configuration. Subsequently, we
recapitulate the replica technique and the holographic proposals for the mixed state cor-
relation and entanglement measures involving the reflected entropy and the entanglement
negativity. Following this in section 3 we employ the replica technique in a BCFT1+1 to
determine the reflected entropy for the mixed state configurations of adjacent and disjoint
intervals in the radiation flux of a moving mirror. Furthermore, we determine the corre-
sponding holographic dual and demonstrate that the results from the AdS3 match exactly
with that obtained from the replica technique. Subsequently we determine the analogues
of the Page curves for the reflected entropy of the mixed state configurations in question
for various mirror profiles. In section 4 we determine the entanglement negativity of ad-
jacent and disjoint intervals through the corresponding replica technique in a BCFT1+1.
Following this, we compute the holographic entanglement negativity for several phases of
the required configurations and demonstrate that the results precisely match with those
obtained through the replica technique in the BCFT1+1. We then obtain the correspond-
ing Page curves for the entanglement negativity for different mirror profiles. Finally, in
section 5 we summarize the results of our article and present our conclusions.

– 2 –



J
H
E
P
0
9
(
2
0
2
2
)
0
8
9

2 Review of holographic moving mirror, reflected entropy and entangle-
ment negativity

In this section we review the salient features of the moving mirror setup and subsequently
the BCFT computations of the entanglement entropy of a subsystem which is placed in
the radiation flux from such a moving mirror. Subsequently, we provide a brief overview of
the replica techniques for reflected entropy and entanglement negativity and describe the
corresponding holographic proposals .

2.1 Moving mirror from a BCF T1+1

We begin with a brief review of the computation of the entanglement entropy in a moving
mirror model described in [33, 60]. The authors in [33, 60] considered a moving mirror in
two dimensions with the mirror trajectory given by the profile x = Z(t). In this model, the
region x ≥ Z(t) which is to the right of the mirror trajectory (see figure 1) is described by
a boundary conformal field theory. The authors employed light cone coordinates u = t−x,
v = t+ x and subsequently performed the following conformal transformations

ũ = p(u), ṽ = v, (2.1)

where ũ = t̃ − x̃ and ṽ = t̃ + x̃ are the light cone variables in the tilde coordinates. The
function p(u) is chosen such that the mirror trajectory is given by v = p(u) and may be
written in the original coordinates as

t+ Z(t) = p(t− Z(t)). (2.2)

Under the conformal transformation in eq. (2.1), the moving mirror trajectory in the orig-
inal coordinates u, v is mapped to that of a static mirror in the tilde coordinates, given as
ũ− ṽ = 0. Note that, as mentioned earlier, the right half plane (RHP) x̃ ≥ 0 is described
by a BCFT. Furthermore, in these tilde coordinates the BCFT is in its vacuum state, and
hence the stress energy tensor in the original coordinates may be obtained in terms of the
conformal anomaly described by the Schwarzian as given below

Tuu = c

24π

[
3
2

(
p′′(u)
p′(u)

)2
− p′′′(u)

p′(u)

]
. (2.3)

The authors in [33, 60] considered two distinct moving mirror profiles which mimic
Hawking radiation from black holes. These profiles are discussed below:

Escaping mirror. The trajectory of an escaping mirror is described by the profile

p(u) = −β log(1 + e
−u
β ). (2.4)

Note that this profile is such that in the far past t → −∞, the mirror is static Z(t) ' 0,
whereas at late times t → ∞ the trajectory is given by Z(t) ' −t − βe−2t/β . The energy
flux from this mirror mimics the Hawking radiation from an eternal black hole.
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Kink mirror. The authors in [33, 60] also investigated the radiation from a kink mirror
which is described by the following profile

p(u) = −β log(1 + e
−u
β ) + β log(1 + e

(u−u0)
β ), (2.5)

where β ≥ 0 and u0 ≥ 0. The mirror trajectory in the limit β → 0 is given by

Z(t) '


0, (t < 0)
−t (0 ≤ t ≤ u0

2 )
−u0

2 (t > u0
2 ).

(2.6)

The energy flux from the kink mirror mimics the Hawking radiation emitted during the
evaporation of a single sided black hole.

2.2 Entanglement entropy for moving mirrors from a BCF T1+1

Having reviewed the moving mirror setup we now briefly discuss the computation of the
entanglement entropy of a single interval in the presence of radiation from a moving mirror
described by a BCFT1+1 with a large central charge. To this end we consider a single
interval A ≡ [x0, x1] at a time slice t. It is well known that the entanglement entropy for
an interval A in a CFT may be expressed in terms of twist field correlators using the replica
technique described in [154, 155] as

SA = lim
n→1

1
1− n log 〈σn(t, x0)σ̄n(t, x1)〉 , (2.7)

where the conformal weights of the twist fields σn and σ̄n are given by

hn = h̄n = c

24

(
n− 1

n

)
. (2.8)

As described earlier, the moving mirror setup may be mapped to that of a static mirror
via the conformal transformation given in eq. (2.1) and hence the above two point twist
correlator is related to the two point function on the right half plane (RHP) as follows

〈σn(t0, x0)σ̄n(t1, x1)〉 = (p′(u0)p′(u1))hn
〈
σ̃n(t̃0, x̃0)˜̄σn(t̃1, x̃1)

〉
RHP . (2.9)

For holographic CFTs, the two point twist correlator on the RHP may be written in
terms of two different OPE channels of the four point function of a chiral CFT on the full
complex plane which can be re-expressed as the product of 2 two point correlators on R1,1

as follows [156]

〈σ̃n
(
t̃0, x̃0

) ˜̄σn
(
t̃1, x̃1

)
〉RHP =max

〈σ̃n
(
t̃0, x̃0

) ˜̄σn
(
t̃1, x̃1

)
〉R1,1〈σ̃n

(
t̃0,−x̃0

) ˜̄σn
(
t̃1,−x̃1

)
〉R1,1

e2(1−n)SbdyΠi∈{0,1} 〈σ̃n
(
t̃i, x̃i

) ˜̄σn
(
t̃i,−x̃i

)
〉R1,1 .

(2.10)

The Renyi entropy of the interval A was then obtained by using eq. (2.10), (2.9) in eq. (2.7)
as follows [33]

S
(n)
A = Min[S(n)dis

A , S
(n)con
A ], (2.11)

– 4 –
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where

S
(n)dis
A = c

12

(
1 + 1

n

)
log

[
(t+ x0 − p(t− x0))(t+ x1 − p(t− x1))

ε2
√
p′(t− x0)p′(t− x1)

]
+ 2Sbdy, (2.12)

S
(n)con
A = c

12

(
1 + 1

n

)
log

[
(x1 − x0) (p(t− x0)− p(t− x1))

ε2
√
p′(t− x1)p′(t− x0)

]
. (2.13)

where the superscripts dis and con will be explained shortly in the next subsection on holo-
graphic description. The entanglement entropy may be obtained from the above equation
by taking the replica limit n → 1. Following this, the authors in [33] demonstrated the
time evolution for entanglement entropy of a single interval for the escaping and the kink
mirror, follow the Page curves for eternal and evaporating black holes respectively.

2.3 Entanglement entropy for holographic moving mirrors

We now discuss the AdS/BCFT duality [114] which is utilized to construct the gravity dual
of CFTs in the presence of moving mirrors [33, 60]. In this context, consider a BCFT on
a d dimensional manifold Σ with a boundary ∂Σ. The gravity dual of the d dimensional
BCFT is constructed by extending the manifold Σ to a d + 1 dimensional bulk manifold
whose boundary is the surface Q ∪ Σ, such that Q is homologous to Σ. The surface Q is
called the end of the world brane (EOW) which obeys the following Neumann boundary
condition to preserve the conformal invariance in the BCFT ,

Kab − habK = −T hab, (2.14)

where hab is the induced metric, Kab is the extrinsic curvature and T is the tension of the
brane Q which depends on the boundary conditions on ∂Σ. The entanglement entropy for
a single interval A in a holographic BCFT1+1 can be expressed as follows [114, 115]

SA = Min[Scon
A , Sdis

A ], (2.15)

where Scon
A and Sdis

A are given by

Scon
A = L(Γcon

A )
4GN

, Sdis
A = L(Γdis

A )
4GN

. (2.16)

Here L(Γcon
A ) and L(Γdis

A ) are the lengths of the connected and disconnected geodesics
homologous to A. Having described the AdS/BCFT construction, we now review the
general procedure to construct the gravity dual of the moving mirror setup by utilizing the
Banados map which we discuss below.

The banados map. Consider the Poincare AdS3 metric which is given as

ds2 = dη2 − dU dV
η2 (2.17)

– 5 –
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The conformal transformations described in eq. (2.1) are dual to the following coordinate
map in the bulk, known as the Banados map [60, 151–153]

U = p(u) V = v + p′′(u)
2p′(u)z

2

η = z
√
p′(u) . (2.18)

Expressed in the above (u, v, z) coordinates the bulk dual of the BCFT2 describing the
moving mirror set up is given by the following plane wave geometries in asymptotically
AdS3 spacetimes [33, 60]:

ds2 = dz2

z2 + T+(u)du2 − 1
z2du dv . (2.19)

where T+(u) = 3 (p′′)2 − 2p′p′′′

4p′2 . (2.20)

As described in [136], the profile for the EOW brane Q is given by

v = p(u)− p′′(u)
2p′(u)z

2 − 2λz
√
p′(u) , (2.21)

where the constant λ is related to the tension T of the brane as

λ = T√
1− T 2

. (2.22)

Under, the Banados map eq. (2.18), the brane has an AdS2 geometry with the straight line
profile given by

V − U + 2λη = 0 . (2.23)

The authors in [33, 60] evaluated the entanglement entropy by computing the lengths of
the geodesics homologous to the subsystem in the above bulk dual geometry of the moving
mirror setup, and demonstrated that the results match exactly with those obtained through
the twist correlators in the corresponding dual BCFT1+1 given in eq. (2.12).

2.4 Reflected entropy

As described in the introduction, entanglement entropy is a unique entanglement measure
for pure states only and is neither a correlation nor an entanglement measure for mixed
states. In this context, here we review a mixed state correlation measure termed reflected
entropy. Consider a bipartite quantum system A ∪ B in a mixed state described by the
density matrix ρAB. It is possible to canonically purify a given mixed state ρAB into
|√ρAB〉 in a doubled Hilbert space HA⊗HB⊗HA?⊗HB? where A? and B? are the mirror
copies of A and B respectively.2 The reflected entropy SR(A : B) is then defined as [126]

SR(A : B) = S(AA∗)√ρAB . (2.24)
2See [126, 157] for more details about the construction of |√ρAB〉.
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Note that the reflected entropy is a measure of both classical and quantum correlations
between the subsystems A and B.

Consider the configuration of two disjoint intervals A ≡ [z1, z2] and B ≡ [z3, z4] in a
CFT1+1. The reflected entropy may then be obtained from the Rényi reflected entropy
through a replica technique described in [126], in terms of a four point twist field correlator
given as follows

SR(A : B) = lim
n→1

lim
m→1

Sn (AA∗)ψm

= lim
n→1

lim
m→1

1
1− n log

〈
σgA(z1)σg−1

A
(z2)σgB (z3)σg−1

B
(z4)

〉
CFT

⊗
mn(〈

σgm(z1)σg−1
m

(z2)σgm(z3)σg−1
m

(z4)
〉

CFT
⊗

m

)n , (2.25)

where the twist operators σgA and σgB are inserted at the endpoints of the intervals A and
B and m,n are the replica indices. The conformal dimensions for these twist operators are
given by

hg−1
A

= hgB = n c

24

(
m− 1

m

)
, hgBg

−1
A

= 2 c
24

(
n− 1

n

)
, hgm = c

24

(
m− 1

m

)
. (2.26)

Following this in [126], the authors also proposed a holographic construction for the
reflected entropy. They demonstrated that the holographic reflected entropy is dual to twice
the entanglement wedge cross section (EWCS) using gravitational path integral techniques,
as follows

SR(A : B) = 2EW (A : B) . (2.27)

The authors also showed that the holographic computation exactly matches with the field
theoretic replica technique results for the AdS3/CFT2 scenario.

2.5 Entanglement negativity

Another quantum information theoretic measure which will be discussed in this article is
the entanglement negativity introduced by Vidal and Werner in [122]. This non-convex
entanglement monotone [158] provides an upper bound to the distillable entanglement of
a given mixed state. In this subsection we recapitulate the definition and corresponding
replica technique to compute the entanglement negativity in CFT1+1s. Furthermore, we
discuss the holographic construction for the entanglement negativity in the context of
AdS/CFT correspondence. For a bipartite quantum system A∪B in a mixed state ρAB, the
entanglement negativity E(A : B) is defined as the trace norm of the partially transposed
density matrix ρTBA∪B expressed as follows

E(A : B) = log ||ρTBA∪B|| (2.28)

〈q1
i q

2
j | ρ

TB
A∪B | q

1
kq

2
l 〉 = 〈q1

i q
2
l | ρA∪B | q1

kq
2
j 〉.

Note that in the above equation the second line describes the partial transpose operation
with respect to the subsystem B. The trace norm in the first line denotes the absolute sum

– 7 –
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of the eigenvalues of ρTBA∪B. Following this, in [127–129] a replica technique was developed
to compute the entanglement negativity, which is expressed as follows

E(A : B) = lim
ne→1

ln Tr
(
ρTBA∪B

)ne
, (2.29)

where ne indicates that the limit has to be considered as an analytic continuation of the even
sequences of ne to ne = 1. This technique was then utilized to evaluate the entanglement
negativity for various mixed states in CFT1+1. Specifically, the entanglement negativity
for the mixed state configuration of disjoint intervals was described through the replica
technique by a four point correlator of twist operators τ, τ as follows

Tr(ρTBAB)ne = 〈τne(u1)τne(v1)τne(u2)τne(v2)〉 (2.30)

Following these developments, various holographic proposals for computing the entan-
glement negativity of the mixed state configurations involving adjacent and the disjoint
intervals in AdS3/CFT2 scenario was developed in [135, 137]. These proposals involved
specific algebraic sums of the holographic Renyi entropies of order half described by the
lengths of backreacting cosmic branes homologous to the subsystems [148, 150]. For the
mixed state of disjoint intervals in a CFT2, the holographic entanglement negativity is
expressed as follows

E = 1
2
[
S(1/2)(A ∪ C) + S(1/2)(B ∪ C)− S(1/2)(A ∪ C ∪B)− S(1/2)(C)

]
. (2.31)

In the context of AdS3/CFT2 and for spherical entangling surfaces in higher dimensions, the
effect of the backreaction of the bulk cosmic brane reduces to a numerical proportionality
factor (χd) such that3 S(1/2)(X) = χ2S(X) = 3

2S(X).4 Hence, the above expression reduces
to an algebraic sum of the lengths of the geodesics given below

E = 3
16GN

[LA∪C + LB∪C − LA∪C∪B − LC ] . (2.33)

where LX corresponds to the length of the geodesic homologous to the subsystem X. C
corresponds to the interval sandwiched between the disjoint intervals A and B. Note that
in the limit C → ∅ the two interval A and B become adjacent and the proposal reduces to

E = 1
2
[
S(1/2)(A) + S(1/2)(B)− S(1/2)(A ∪B)

]
. (2.34)

= 3
16GN

[LA + LB − LA∪B] . (2.35)

3Note that, for spherical entangling surfaces this backreaction pre-factor Xd is dependent on the space-
time dimensions, and may be expressed as follows [132, 159, 160]

Xd =
(1

2x
d−2
d

(
1 + x2

d

)
− 1
)
, xd = 2

d

(
1 +

√
1− d

2 + d2

4

)
. (2.32)

4Note that in the context of AdS/BCFT the relation between the length of the back reacted cosmic
brane and the length of the geodesic L1/2 = 3

2L is only for the dynamical part. This is because the
contribution from the boundary degrees of freedom contained in Sbdy to the Renyi entropy is independent
of the replica index n as evident from eq. (2.12).
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This completes our review of the results which we will utilize in the present article. We
now proceed to compute the reflected entropy in the moving mirror setup in the following
section.

3 Reflected entropy for moving mirrors

In this section, we begin by computing the reflected entropy of mixed states involving
two adjacent and disjoint intervals in the radiation flux of a moving mirror by employing
the replica technique in a BCFT1+1 in the large central charge limit. Following this,
we determine the holographic reflected entropy of the above configurations through the
entanglement wedge cross section in the corresponding dual bulk AdS3 geometry utilizing
the Banados map.

3.1 Reflected entropy in a BCF T1+1

In this subsection, we describe the field theoretic computations for the reflected entropy
for various bipartite mixed state configurations in a moving mirror setup. As described
in section 2.4, the replica technique for computing the reflected entropy of two disjoint
intervals A and B involves certain correlation functions of twist operators σgA and σgB
inserted at the endpoints of the two intervals, whose conformal dimensions are given in
eq. (2.26). In a BCFT1+1 such correlation functions may be evaluated utilizing the doubling
trick [161, 162]. In the large central charge limit, the BCFT1+1 correlators are expected to
have specific factorization in the respective channels [156]. In the following, after describing
the general method, we will systematically evaluate the twist correlators corresponding to
different phases depending on subsystem sizes.

3.1.1 Two disjoint intervals

In this section we begin with the computation of the reflected entropy between two disjoint
intervals A = [(t, x1), (t, x2)] and B = [(t, x3), (t,∞)] in the (1 + 1)-dimensional boundary
conformal field theory (BCFT) with a boundary described by the moving mirror x = Z(t).
The schematics of the setup is sketched in figure 1.

As discussed in [33, 60], it is convenient to employ the light cone coordinates (u, v). We
conformally map the static mirror setup described by the new set of coordinates (ũ, ṽ) as

ũ = p(u) , ṽ = v , (3.1)

which renders the mirror profile in the new coordinates as ṽ = ũ. The conformal transfor-
mation in eq. (3.1) maps the moving mirror to a static one described by a BCFT2 on the
right half plane (RHP) and the intervals are now given by

A = [(t̃1, x̃1), (t̃2, x̃2)] , B = [(t̃3, x̃3), (t̃4,∞)] .

Alternatively, in terms of the light-cone coordinates the intervals may be expressed as
follows

A = [(ũ1, ṽ1), (ũ2, ṽ2)] , B = [(ũ3, ṽ3), (∞,∞)] ,
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Figure 1. Schematics of two disjoint intervals A = [(t, x1), (t, x2)] and B = [(t, x3), (t,∞)] in the
moving mirror BCFT. Figure modified from [60].

Figure 2. Conformal transformation to the static mirror setup. Schematics of two disjoint inter-
vals A = [(t̃1, x̃1), (t̃2, x̃2)] and B = [(t̃3, x̃3), (t̃4,∞)] in the static mirror BCFT. Figure modified
from [60].

as shown schematically in figure 2. We may now employ the standard complex coordinates
z̃ = (t̃, x̃) to describe the BCFT2 on the RHP and denote the endpoints of the two intervals
as A = [z̃1, z̃2] and B = [z̃3,∞]. Furthermore, for simplicity we will put the intervals on
an equal time slice utilizing another conformal map:

A = [b1, b2] , B = [b3,∞] .

At the end of the computations, the final result for the reflected entropy is obtained in
the original coordinates (x, t) by inverting the above conformal transformations. There are
three possible phases of the reflected entropy for the present configuration which are moti-
vated from the structure of the corresponding bulk entanglement wedge. In the following,
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Figure 3. OPE channel corresponding to the present configuration.

we will systematically investigate these phases through appropriate replica techniques [126]
in the field theory.

Phase-I. In this phase, we consider the subsystem A to be very close to the boundary.
Utilizing eq. (2.25) the reflected entropy for this configuration may be obtained as [54]

SR(A : B) = lim
m,n→1

1
1− n log

〈
σgA(b1)σg−1

A
(b2)σgB (b3)

〉
BCFT

⊗
mn(〈

σgm(b1)σg−1
m

(b2)σgm(b3)
〉

BCFT
⊗

m

)n , (3.2)

For this channel, the OPE configuration is described in figure 3. Utilizing the doubling trick
described in [156],5 the three-point correlator of twist fields in the numerator of eq. (3.2)
may be recast into a six-point function in a chiral CFT2 defined on the full complex plane as〈

σgA(b1)σg−1
A

(b2)σgB (b3)
〉

BCFT
⊗

mn

=
〈
σgA(b1)σg−1

B
(−b1)σg−1

A
(b2)σgB (−b2)σgB (b3)σg−1

B
(−b3)

〉
CFT

⊗
mn (3.3)

Now, using the OPE channel sketched in figure 3, the above six-point twist correlator
may be seen to factorize in the following way:〈

σgA(b1)σg−1
B

(−b1)
〉

CFT
⊗

mn

〈
σg−1

A
(b2)σgB (−b2)σgB (b3)σg−1

B
(−b3)

〉
CFT

⊗
mn , (3.4)

where the corresponding OPE coefficient includes the boundary degrees of freedom in terms
of the boundary entropy Sbdy.6 The twist correlator in the denominator of eq. (3.2) admits
similar doubling and factorization in the specific channel under consideration and hence we
have the following expression for the reflected entropy between the two disjoint intervals as

SR(A : B) = lim
m,n→1

1
1− n log

〈
σg−1

A
(b2)σgB (−b2)σgB (b3)σg−1

B
(−b3)

〉
CFT

⊗
mn(〈

σg−1
m

(b2)σgm(−b2)σgm(b3)σg−1
m

(−b3)
〉

CFT
⊗

m

)n . (3.5)

The conformal block which provides the dominant contribution to the four-point function
in the numerator is given by [126, 157]

logF(mnc, h, hp, η) = −2h log(η) + 2hp log
(

1 +
√

1− η
2√η

)
, (3.6)

5For a more complete description of the doubling trick, see [161, 162].
6Note that the constant Sbdy encapsulates the boundary degrees of freedom and appears in the BOE

expansion coefficient [156, 161].
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where h is the conformal dimension of the external twist operators σgA , σgB , hp is the
conformal dimension of the intermediate operator providing dominant contribution to the
four-point function, and η is the cross ratio corresponding to the disjoint intervals. These
conformal dimensions are given as [126]

h = nc

24

(
m− 1

m

)
, hp = 2c

24

(
n− 1

n

)
(3.7)

Note that an overall factor of two is absent in the expression for the conformal block in
eq. (3.6), as the correlator on the full complex plane is chiral. Furthermore, to compute
the four-point twist correlator, we also need the OPE coefficient for the dominant channel,
which involves contributions from the boundary entropy as well as the usual OPE coefficient
determined in [126]:

Cn,m = e2(1−n)Sbdy (2m)−4h . (3.8)

Utilizing eqs. (3.6) and (3.7) and the above OPE coefficients, the final expression for the
reflected entropy between the two disjoint intervals may be written as

SR = c

3 log
(
b2 + b3 + 2

√
b2b3

b3 − b2

)
+ 2Sbdy (3.9)

where we have used the following expression for the cross ratio

η = (b3 + b2)2

(b3 − b2)2 . (3.10)

Now, for generic complex intervals A = [z̃1, z̃2] and B = [z̃3,∞] in the BCFT2 defined
on the RHP, we may write down the reflected entropy simply by modifying the cross ratio
η as

SR(A : B) = c

3 log
(

1 +
√

1− x̃√
x̃

)
+ 2Sbdy , (3.11)

where the modified cross ratio x̃ is given as

x̃ = (z̃3 − z̃∗2)(z̃∗3 − z̃2)
(z̃3 − z̃2)(z̃∗3 − z̃∗2) ≡

(ũ3 − ṽ2)(ṽ3 − ũ2)
(ũ3 − ũ2)(ṽ3 − ṽ2) , (3.12)

where z̃∗ denotes the complex conjugate of z̃. Finally, inverting the static mirror map, the
reflected entropy between the intervals A = [(t, x1), (t, x2)] and B = [(t, x3), (t,∞)] in the
moving mirror BCFT may be obtained as

SR(A : B) = lim
m,n→1

1
1− n log

〈
σg−1

A
(t, x2)σgB (t,−x2)σgB (t, x3)σg−1

B
(t,−x3)

〉
CFT

⊗
mn(〈

σg−1
m

(t, x2)σgm(t,−x2)σgm(t, x3)σg−1
m

(t,−x3)
〉

CFT
⊗

m

)n
= c

3 log
(

1 +
√

1− ζ1
2
√
ζ1

)
+ 2Sbdy , (3.13)

where the modified cross ratio involves the mirror profile as

ζ1 = (p(t− x3)− t− x3) (t+ x3 − p(t− x2))
(x3 − x2) (p(t− x3)− p(t− x2)) . (3.14)
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Figure 4. OPE channel corresponding to phase-II of the reflected entropy for two disjoint intervals.

Phase-II. In this subsection we are concerned with the case where the first interval A
is very small and close to the boundary of the moving mirror BCFT. For this phase the
corresponding OPE channels are shown in figure 4. In this channel upon utilizing the
doubling trick, the three-point twist correlator relevant to the calculation of the reflected
entropy reduces to the following chiral twist correlator in a CFT2 defined on the full complex
plane〈

σgA(b1)σg−1
A

(b2)σgB (b3)
〉

BCFT
⊗

mn =
〈
σgA(b1)σg−1

B
(−b1)σg−1

A
(b2)σgB (b3)

〉
CFT

⊗
mn

(3.15)

The dominant contribution to the four point function in eq. (3.15) is obtained from
the Virasoro conformal block given in eq. (3.6), with the cross ratio now given by

η = (b2 − b1)(b1 + b3)
(b3 − b1)(b1 + b2) . (3.16)

Therefore, the reflected entropy between the static intervals A and B for this phase is
obtained as

SR = c

3 log
(

1 +
√

1− η
√
η

)
, (3.17)

with the cross ratio η given in eq. (3.16). As discussed earlier, the reflected entropy for the
generic intervals A = [z̃1, z̃2] and B = [z̃3,∞] may be obtained similarly with the modified
cross ratio given by

x̃ = (z̃2 − z̃1)(z̃3 − z̃∗1)
(z̃3 − z̃1)(z̃2 − z̃∗1) ≡

(ũ2 − ũ1)(ũ3 − ṽ1)
(ũ3 − ũ1)(ũ2 − ṽ1) . (3.18)

Finally inverting the static mirror map in eq. (3.1), the reflected entropy in phase-II for
the two disjoint intervals A and B in the moving mirror BCFT is obtained to be

SR(A : B) = lim
m,n→1

1
1− n log

〈
σg−1

A
(t, x1)σgA(t,−x1)σgB (t, x2)σg−1

B
(t, x3)

〉
CFT

⊗
mn(〈

σg−1
m

(t, x1)σgm(t,−x1)σgm(t, x2)σg−1
m

(t, x3)
〉

CFT
⊗

mn

)n
= c

3 log
(

1 +
√

1− ζ2√
ζ2

)
, (3.19)

where the modified cross ratio involves the mirror profile p(u) as

ζ2 = (p(t− x2)− p(t− x1)) (p(t− x3)− t− x1)
(p(t− x3)− p(t− x1)) (p(t− x2)− t− x1) . (3.20)
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Figure 5. OPE channel corresponding to phase-III of the reflected entropy for two disjoint intervals.

Phase-III. This phase corresponds to the situation where the two intervals are in the
bulk of the moving mirror BCFT and are sufficiently separated. For this phase, the corre-
sponding OPE channels of the three-point correlator in eq. (3.3) is sketched in figure 5.

In this phase the twist correlator in the chiral CFT on the full complex plane factorizes
as follows 〈

σgA(b1)σg−1
A

(b2)σgB (b3)σg−1
B

(∞)
〉

CFT
⊗

mn

=
〈
σgA(b1)σg−1

A
(b2)

〉
CFT

⊗
mn

〈
σgB (b3)σg−1

B
(∞)

〉
CFT

⊗
mn (3.21)

Hence the reflected entropy for this phase vanishes as follows

SR = lim
m,n→1

1
1− n log

〈
σgA(b1)σg−1

A
(b2)

〉
mn

〈
σgB (b3)σg−1

B
(∞)

〉
mn(〈

σgm(b1)σg−1
m

(b2)
〉
m

〈
σgm(b3)σg−1

m
(∞)

〉
m

)n = 0 . (3.22)

3.1.2 Two adjacent intervals

We next focus on the case with two adjacent intervals A = [(t, 0), (t, x1)] and B =
[(t, x1), (t, x2)] in the moving mirror BCFT with the mirror profile given by x = Z(t).
As described before, we conformally map to the static mirror setup defined on the RHP
utilizing the transformation in eq. (3.1). The adjacent intervals under consideration are
then given in the transformed coordinates as

A ≡ [0, z̃1] = [(t̃0, 0), (t̃1, x̃1)] , B ≡ [z̃1, z̃2] = [(t̃1, x̃1), (t̃2, x̃2)]

The reflected entropy for the configuration of two adjacent intervals A = [0, z̃1] and B =
[z̃1, z̃2] is computed in the replica technique through certain correlators of twist operators
in the static BCFT2 as

SR(A : B) = lim
m,n→1

1
1− n log

〈
σg−1

A gB
(z̃1)σgB (z̃2)

〉
BCFT

⊗
mn〈

σgm(z̃2)
〉

BCFT
⊗

mn

, (3.23)

where the conformal dimensions of the twist fields σgB and σg−1
A gB

are given by

hB = nc

24

(
m− 1

m

)
, hAB = 2c

24

(
n− 1

n

)
. (3.24)

As earlier, the reflected entropy for the two adjacent intervals admit different phases which
we investigate below.

– 14 –



J
H
E
P
0
9
(
2
0
2
2
)
0
8
9

Figure 6. Schematics of two adjacent intervals A = [(t, 0), (t, x1)] and B = [(t, x1), (t, x2)] in the
moving mirror BCFT. Figure modified from [60].

Phase-I. This phase corresponds to the scenario where the second interval B is smaller
such that it is close to the boundary of the moving mirror BCFT. For this phase, the
two-point twist correlator in the numerator of eq. (3.23) is dominated by the boundary
channel7 and hence one obtains〈

σg−1
A gB

(z̃1)σgB (z̃2)
〉

BCFT
⊗

mn =
〈
σg−1

A gB
(z̃1)

〉
BCFT

⊗
mn

〈
σgB (z̃2)

〉
BCFT

⊗
mn

= e2(1−n)Sbdyε2(hA+hAB)

(2 Im z̃1)2hAB (2Im z̃2)hB , (3.25)

where Sbdy quantifies the boundary degrees of freedom and ε is the UV cut-off in the field
theory. Hence, utilizing eq. (3.25) the reflected entropy for this phase may be obtained
from eq. (3.23) as

SR = c

3 log
(2 Im z̃1

ε

)
+ 2Sbdy

= c

3 log
(
ṽ1 − ũ1

ε

)
+ 2Sbdy (3.26)

Inverting the static mirror map, the reflected entropy between the two intervals A =
[(t, 0), (t, x1)] and B = [(t, x1), (t, x2)] in the moving mirror BCFT is obtained as follows

SR(A : B) = c

3 log
[
t+ x1 − p(t− x1)
ε
√
p′(t− x1)

]
+ 2Sbdy . (3.27)

7Note that the conformal block for the BCFT two-point function admits two different types of channels,
namely the boundary operator expansion (BOE) and the bulk operator product expansion (OPE) [156].
The boundary channel refers to the BOE expansion for the BCFT two-point function.
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Phase-II. In this phase, the far endpoint of the second interval B is away from the
boundary and therefore the OPE channel is favored. Hence, the corresponding two-point
function in eq. (3.23) may be factorized as follows [54]〈
σg−1

A gB
(z̃1)σgB (z̃2)

〉
BCFT

⊗
mn =

〈
σg−1

A gB
(z̃1)σgB (z̃2)σg−1

B
(z̃∗2)

〉
CFT

⊗
mn

= (2m)−4hA(z̃1 − z̃2)−4hA(z̃1 − z̃∗2)−4hA(2 Im z̃2)4hA−4hAB

(3.28)

Subsequently, the reflected entropy between A and B is obtained as

SR = c

3 log
[2(z̃1 − z̃2)(z̃1 − z̃∗2)

ε(2 Im z̃2)

]
(3.29)

Finally, reversing the static mirror map, we obtain the reflected entropy in the moving
mirror BCFT as

SR(A : B) = c

3 log
[

2 (p(t− x1)− p(t− x2)) (p(t− x1)− t− x2)
ε
√
p′(t− x1) (p(t− x1)− t− x1)

]
. (3.30)

3.2 Entanglement wedge cross-section in holographic moving mirrors

In this section, we investigate the phase structure of the holographic reflected entropy for
bipartite mixed states involving two disjoint and two adjacent intervals, through the bulk
entanglement wedge cross section in the dual plane wave geometries. As described earlier,
the holographic dual of the BCFT2 with a boundary described by the moving mirror profile
v = p(u) is given by the metric in eq. (2.19). As described in [136, 163], the entanglement
wedge is a co-dimension one bulk region of spacetime dual to the reduced density matrix of
the bipartite state under consideration. It was further established in [126], that twice the
area of the minimal cross-section of the entanglement wedge (EWCS) is holographically
dual to the reflected entropy for the bipartite state. In the following, we proceed to compute
the EWCS corresponding to various bipartite state configurations in the moving mirror
BCFT2.

3.2.1 Two disjoint intervals

We begin with the configuration of two disjoint intervals A = [(t, x1), (t, x2)] and B =
[(t, x3), (t,∞)]. The schematics of the EWCS for A and B is depicted in figure 7 where the
EWCS ends on the EOW brane Q. In order to compute the bulk EWCS, we first utilize the
Banados map in eq. (2.18) to transform the geometry to that of the standard AdS3/BCFT2
setup as shown in figure 8. Note that, for simplicity we consider the intervals on an equal
time slice.

As described earlier in subsection 3.1.1, there are three possible phases of the bulk
EWCS for the two disjoint intervals under consideration. In the following, we systematically
investigate the EWCS for these three phases.
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Figure 7. Schematics of the bulk entanglement wedge for the mixed state configuration of the two
disjoint intervals in the dual moving mirror BCFT. The entanglement wedge is the region on the
bulk Cauchy slice at coordinate time t which is enclosed by the subsystems A and B and the RT
surfaces of A∪B. The EWCS for this configuration ends on the EOW brane which is holographically
dual to the moving mirror boundary. Figure modified from [60].

Figure 8. Schematics of the bulk entanglement wedge corresponding to the mixed state configu-
ration of the two disjoint intervals in the dual moving mirror BCFT. Figure modified from [54].

Phase-I. When the interval A is very close to the boundary, we have a connected entan-
glement wedge configuration. Furthermore, if A is large enough, the EWCS ends on the
EOW brane Q as shown in figure 7. In the following, we compute the EWCS for the two
disjoint intervals A = [b1, b2] and B = [b3,∞] in the dual BCFT2 for which the bulk dual
is described by Poincaré AdS3 geometry in eq. (2.17) as depicted in figure 9.

The EWCS is given by the length of a geodesic connecting the point M on the RT
surface and a point N on the EOW brane making an angle θ0 with the vertical, as shown
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Figure 9. Calculation of the bulk entanglement wedge corresponding to the mixed state configu-
ration of the two disjoint intervals A = [b1, b2] and B = [b3,∞] in the usual AdS3/BCFT2 setup.
Figure modified from [54].

in figure 9. The coordinates of the point M is given by

M : (x, t, z) ≡ (R+ r sinφ, 0, r cosφ) ,

where r = 1
2(b3 − b2) and R = 1

2(b3 + b2). Similarly, the coordinates of the point N on the
brane are given by

N : (x, t, z) ≡ (−a sin θ0, 0, a cos θ0) ,

where a denotes the distance of the point N on the EOW brane, from the origin. The
length of the geodesic connecting M and N is hence obtained as [164]

LMN = cosh−1


(
b2+b3

2 + b3−b2
2 sinφ+ a sin θ0

)2
+
(
b3−b2

2 cosφ
)2

+ a2 cos2 θ0

2
(
b3−b2

2 cosφ
)
a cos θ0

 (3.31)

The EWCS is obtained by extremizing the above expression with respect to the posi-
tions of the endpoints M and N . The extremization leads to the following values of the
unknown parameters a and φ:

a =
√
b2b3 , φ = sin−1

(
b3 − b2
b3 + b2

)
. (3.32)

Substituting these into eq. (3.31), the EWCS corresponding to the disjoint intervals may
be obtained as

Lmin
MN = cosh−1

[
sec θ0

(
b2 + b3 + 2

√
b2b3 sin θ0

)
b3 − b2

]

= cosh−1
( 1

cos θ0

)
+ log

(
b2 + b3 + 2

√
b2b3

b3 − b2

)
. (3.33)
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The first term in the above expression is related to the boundary entropy as [114, 115]

Sbdy = 1
4GN

tanh−1(sin θ0) . (3.34)

Hence the EWCS for the configuration of two disjoint intervals A = [b1, b2] and B = [b3,∞]
is given by

EW (A : B) = 1
4GN

Lmin
MN = 1

4GN
log

(
b2 + b3 + 2

√
b2b3

b3 − b2

)
+ Sbdy . (3.35)

The above expression for the EWCS matches exactly with half the reflected entropy com-
puted in eq. (3.9) upon utilizing the standard Brown-Henneaux relation in AdS3/CFT2 [165]
which serves as a consistency check. As in the field theoretic calculations, the above expres-
sion may be conveniently expressed in terms of the cross ratio involved. Therefore utilizing
the conformal symmetry of the dual BCFT2, we may obtain the EWCS corresponding to
the generic complex intervals A = [z̃1, z̃2] and B = [z̃3,∞] in the field theory as follows

EW (A : B) = 1
4GN

log
(

1 +
√

1− x̃√
x̃

)
+ Sbdy , (3.36)

where the modified cross ratio x̃ is given in eq. (3.12).
Finally, we may utilize the Banados map given in eq. (2.18), to transform back to

the original plane wave geometry dual to the moving mirror BCFT. From eqs. (2.18)
and (3.12) the cross ratio corresponding to the setup of two disjoint intervals in question
may be obtained as

ζ = (U3 − V2)(V3 − U2)
(U3 − U2)(V3 − V2)

= (p(t− x3)− t− x3) (t+ x3 − p(t− x2))
(x3 − x2) (p(t− x3)− p(t− x2)) , (3.37)

and hence, the EWCS is given by

EW (A : B) = 1
4GN

log
(

1 +
√

1− ζ
2
√
ζ

)
+ Sbdy . (3.38)

Once again, the holographic reflected entropy matches exactly with the field theoretic
replica technique calculations in the large central charge limit. This serves as a strong
consistency check for our holographic construction for the bulk entanglement wedge.

Phase-II. Now we consider the case where the first interval A is very small. In this phase
the bulk entanglement wedge is connected, but due to the small size of the subsystem A,
the EWCS ends on the RT surface of A. The configuration is similar to the one shown
in figure 7. Utilizing the Banados map in eq. (2.18), we may again transform the bulk
geometry to that of the standard Poincaré AdS3 with the metric given in eq. (2.17). The
schematics of the static geometry corresponding to the intervals A = [b1, b2] and B = [b3,∞]
on an equal time slice is depicted in figure 10.
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Figure 10. Schematics of the entanglement wedge cross section corresponding to phase-II confor-
mally mapped the static mirror setup. Figure modified from [54].

In this phase the EWCS resides entirely in the bulk Poincaré AdS3 geometry and hence
does not involve any contribution from the EOW brane Q. Therefore, using standard
AdS3/CFT2 results we obtain the EWCS as follows [136, 163]

EW = 1
4GN

log
(

1 + ξ + 2
√
ξ(ξ + 1)

)
, (3.39)

where the cross ratio ξ is given by

ξ = 2b1(b3 − b2)
(b2 − b1))(b1 + b3) . (3.40)

Note that, the above expression for the EWCS matches exactly with the reflected entropy
for this phase computed through the field theoretic replica technique. Now for generic
complex intervals A = [z̃1, z̃2] and B = [z̃3,∞], the EWCS may be obtained utilizing the
conformal symmetry of the dual BCFT with the modification of the cross ratio ξ̃ as

ξ̃ = (z̃1 − z̃∗1)(z̃3 − z̃2)
(z̃2 − z̃1)(z̃3 − z̃∗1) ≡

(ũ1 − ṽ1)(ũ3 − ũ2)
(ũ2 − ũ1)(ũ3 − ṽ1) . (3.41)

Under the Bandos map given in eq. (2.18), the EWCS for the disjoint intervals A and B
in phase-II for the moving mirror BCFT is therefore given by

EW (A : B) = 1
4GN

log
(

1 + ξ2 + 2
√
ξ2(ξ2 + 1)

)
, (3.42)

with

ξ2 = (U1 − V1)(U3 − U2)
(U2 − U1)(U3 − V1)

= (p(t− x1)− t− x1) (p(t− x3)− p(t− x2))
(p(t− x2)− p(t− x1)) (p(t− x3)− t− x1) , (3.43)

Once again this exactly matches with half of the reflected entropy given in eq. (3.19) which
serves as yet another consistency check of the holographic construction.
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Figure 11. Schematics of the entanglement wedge cross section corresponding to phase-III con-
formally mapped the static mirror setup. Figure modified from [54].

Phase-III. There exists another possible phase for the reflected entropy of the two dis-
joint intervals A and B. This trivial phase corresponds to the disconnected entanglement
wedge in the dual bulk geometry as shown in figure 11. Consequently, the cross section
vanishes, EW = 0, for this configuration.

3.2.2 Two adjacent intervals

We now proceed to compute the bulk EWCS for the mixed state configuration of two
adjacent intervals A = [(t, 0), (t, x1)] and B = [(t, x1), (t, x2)] described in subsection 3.1.2.

Phase-I. As shown in figure 12, the minimal cross section of the entanglement wedge
between A and B is given by the RT surface starting from the point z̃1 and ending on the
EOW brane .Hence, the EWCS is obtained through the length of this RT surface described
in [33, 60] as follows

EW (A : B) = 1
4GN

log
[
t+ x1 − p(t− x1)
ε
√
p′(t− x1)

]
+ Sbdy . (3.44)

Note that the holographic reflected entropy obtained from the above expression matches
exactly with the field theoretic replica technique computations in eq. (3.27).

Phase-II. In this phase, the EWCS ends on the RT surface corresponding to A ∪ B
as depicted in figure 13. As the EWCS resides entirely inside the bulk Poincaré AdS3
geometry away from the EOW brane, one may apply the EWCS computed in the context
of AdS3/CFT2 [136, 163] to obtain

EW (A : B) = 1
4GN

log
[(ũ1 − ũ2)(ũ1 − ṽ2)

ε (ũ1 − ṽ1)

]
. (3.45)

Finally, utilizing the Banados map in eq. (2.18), we obtain the EWCS for the two adjacent
intervals A and B in the moving mirror BCFT as

EW (A : B) = 1
4GN

log
[

2 (p(t− x1)− p(t− x2)) (p(t− x1)− t− x2)
ε
√
p′(t− x1) (p(t− x1)− t− x1)

]
(3.46)
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Figure 12. Schematics of the entanglement wedge cross section for the two adjacent intervals in
phase-I conformally mapped the static mirror setup.

Figure 13. Schematics of the entanglement wedge cross section for the two adjacent intervals in
phase-II conformally mapped the static mirror setup.

Once again, the above expression matches exactly with the field theoretic computation in
eq. (3.30) upon using the Brown-Henneaux formula [165].

3.3 Page curves for reflected entropy

In this subsection, we provide the analogues of the Page curves for the reflected entropy for
various bipartite states involving two disjoint and two adjacent intervals in a holographic
moving mirror BCFT2, computed in the previous subsections.

3.3.1 Escaping mirror

As described earlier, the radiation emitted by the escaping mirror mimics that of an eternal
black hole. We may now obtain the holographic reflected entropy or the bulk EWCS for the
mixed state configurations involving two disjoint and two adjacent intervals by substituting
the mirror profile given in eq. (2.4) into the expressions for the reflected entropies for the
various phases obtained in the earlier subsections. The behavior of the reflected entropy
with time for various scenarios are plotted in figures 14 and 15.
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(a) Fixed Intervals:
A = [10, 15] and B = [15.5,∞];
β = 0.5 , Sbdy = 3 , c = 1

5 10 15 20
t

0.10

0.15

0.20

0.25

0.30

0.35

SR (A :B )

(b) Co-moving intervals: A = [Z(t) + 10, Z(t) + 15]
and B = [Z(t) + 15.5,∞];
β = 0.5 , Sbdy = 3 , c = 1

Figure 14. Page curves for the reflected entropy between two disjoint intervals in a escaping mirror
BCFT2.

5 10 15 20
t

2.5

3.0

3.5

4.0

SR (A :B )

Figure 15. Page curve for the reflected entropy between two fixed adjacent intervals A = [0, 15]
and B = [15, 30] in a escaping mirror BCFT2 ; β = 0.5 , Sbdy = 0.2 , c = 1.

Disjoint intervals. We begin with the configuration of two disjoint intervals
A = [(t, x1), (t, x2)] and B = [(t, x3), (t,∞)] as described in subsection 3.1.1. The case
of two intervals A = [10, 15] and B = [15.5,∞] fixed with respect to the mirror is de-
picted in fig. 14a, while in fig. 14b we sketch the Page curve for two co-moving intervals
A = [Z(t) + 10, Z(t) + 15] and B = [Z(t) + 15.5,∞], with the mirror profile given as
x = Z(t). Note that the reflected entropy for both the case with fixed and co-moving inter-
vals follow very similar behavior, although the phase transitions occur at different times.

Adjacent intervals. Next we consider the case of two adjacent intervals A=[(t, 0), (t, x1)]
and B = [(t, x1), (t, x2)], described in section 3.1.2, in the escaping mirror BCFT2 with the
mirror profile given in eq. (2.4). The analogue of the Page curve for the reflected entropy
for this configuration is depicted in figure 15.
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(a) Fixed Intervals:
A = [10, 12] and B = [15.5,∞];
β = 0.5 , u0 = 20, Sbdy = 4 , c = 1.
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SR (A :B )

(b) Co-moving intervals: A = [Z(t) + 10, Z(t) + 15]
and B = [Z(t) + 15.5,∞];
β = 0.5 , u0 = 20, Sbdy = 2 , c = 1.

Figure 16. Page curves for the reflected entropy between two disjoint intervals in a kink mirror
BCFT.

3.3.2 Kink mirror

The kink mirror with the profile eq. (2.5) provides a toy model for an evaporating black hole.
Substituting eq. (2.5) into the various expressions for the holographic reflected entropies
obtained in the earlier subsections, we may obtain the corresponding Page like curves for
the evaporating black hole scenario as shown in figures 16 and 17.

Disjoint intervals. For the case of two disjoint intervals A = [(t, x1), (t, x2)] and B =
[(t, x3), (t,∞)] in the kink mirror BCFT2, the analogue of the Page curves for the reflected
entropy are depicted in figure 16. Once again the behavior of the reflected entropy for both
fixed and co-moving intervals follow very similar profiles.

Adjacent intervals. Finally, we consider the case of two adjacent intervals
A = [(t, 0), (t, x1)] and B = [(t, x1), (t, x2)] in a kink mirror BCFT, for which the ana-
logue of the Page curve for the reflected entropy is depicted in figure 17.

3.3.3 Discussion

Remarkably, the analogues of the Page curves obtained above follow very closely the ex-
pected curves8 obtained in [41] for another model of black hole evaporation involving JT
gravity coupled to end-of-the-world branes [110]. As described in [41], a phase transition
in the reflected entropy curve occurs due to a transition between the disconnected and
connected sets of replica geometries. In the disconnected phase of the replica geometry,
the radiation subsystems purify themselves, while in the connected phase the canonical
purification occurs through a closed universe. The dominance of the connected replica
geometries may be interpreted as the appearance of an island cross-section in the effective
lower dimensional picture.

8Note that similar curves were also obtained in [166] in the context of random tensor networks mimicking
a holographic duality.
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Figure 17. Page curve for the reflected entropy between two fixed adjacent intervals A = [0, 15]
and B = [15, 25] in a escaping mirror BCFT2 ; β = 0.5 , u0 = 20 , Sbdy = 0.4 , c = 1.

In a similar manner, the phase transition in the analogues of the Page curves obtained
above may be interpreted in terms of the transitions between the different phases of the
bulk EWCS. For example, for the case of two disjoint intervals in phase-I, the bulk EWCS
ends on the EOW brane as shown in figure 8 which corresponds to the presence of a
non-trivial island cross-section in the effective 2d setup. On the other hand, in phase-II
sketched in figure 10, the EWCS ends on the RT surface of A which is reminiscent of
the disconnected geometry in [41]. It will be interesting to explore such interpretations
in terms of the appearance of islands in the effective semi-classical picture, in the light of
the CFT modes radiated and reflected through the moving mirror boundary, similar to the
discussion in [60] for the case of entanglement entropy. We leave this exciting issue for
future explorations.

4 Entanglement negativity for moving mirrors

Having described the analogues of Page curves for reflected entropy, we now turn our
attention to entanglement negativity which is another significant mixed state entanglement
measure in quantum information theory. In this section we determine this quantity for
various mixed state configurations in the radiation flux of a moving mirror. We begin with
the computation of the entanglement negativity for mixed states involving two adjacent
and disjoint intervals by utilizing the replica technique in the large central charge limit of
a BCFT1+1. Following this, we apply the results obtained to compute the corresponding
entanglement negativity in for the moving mirror configurations. As described earlier,
here we first map the moving mirror scenario to the static mirror configuration where
we compute the entanglement negativity and finally transform back to the moving mirror
coordinates. Subsequently, we will utilize the holographic proposals described in [135, 137]
to compute the entanglement negativity of the above mixed state configurations in the
corresponding dual bulk AdS3 geometry utilizing the Banados map and demonstrate that
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Figure 18. Configuration involving two adjacent intervals away from the boundary in a BCFT1+1.

the results evaluated exactly agree with those obtained from the replica technique in a
BCFT .

4.1 Entanglement Negativity in a BCF T1+1

We now describe our computation of the entanglement negativity for adjacent and disjoint
intervals embedded in the radiation flux of the moving mirror by utilizing the replica
technique in a BCFT1+1 with large central charge.

4.1.1 Adjacent intervals

To begin with we compute the entanglement negativity for two adjacent intervals A =
[z̃1, z̃2] and B = [z̃2, z̃3] in a BCFT1+1. The entanglement negativity of the configuration
in question is described by the following three point twist field correlator

E = lim
ne→1

log
〈
τne (z̃1) τ̄2

ne (z̃2) τne (z̃3)
〉
BCFT⊗ne

(4.1)

The above three point twist correlator is given by a six point function in the chiral CFT
which can be obtained through the Cardy’s doubling trick [161]〈

τne (z̃1) τ̄2
ne (z̃2) τne (z̃3)

〉
BCFT⊗ne

=
〈
τ̄ne (z̃∗1) τ2

ne (z̃∗2) τ̄ne (z̃∗3) τne (z̃1) τ2
ne (z̃2) τne (z̃3)

〉
CFT⊗ne

(4.2)

Generically the above three point correlator (six point function in the chiral CFT) depends
on the full operator content of the theory and is difficult to determine. Furthermore, in the
large central charge limit the above three point correlator is then expected to factorize in
two different ways depending on the position of A and the size of B as we explain below.

A close to the boundary. When we take one of the end points of subsystem A close
to the boundary then the required three point function factorizes as follows in the large-c
limit〈

τne (z̃1) τ̄2
ne (z̃2) τne (z̃3)

〉
BCFT⊗ne

' 〈τne (z̃1)〉BCFT⊗ne

〈
τ̄2
ne (z̃2) τne (z̃3)

〉
BCFT⊗ne

(4.3)

The one point function above (two point twist correlator in the Chiral CFT) is completely
fixed by the conformal symmetry to be as follows

〈τne (z̃1)〉BCFT⊗ne = 〈τne (z̃1) τne (z̃∗1)〉CFT (4.4)

The two point twist correlator in eq. (4.3) lead to two different phases for entanglement
negativity resulting from the bulk and the boundary channels which we describe below.
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Phase-I: boundary channel (A close to the boundary and B large). We now consider the
boundary channel which corresponds to subsystem B being large and the two point function
described in eq. (4.3) factorizes into the product of two one point functions. This is
expressed as follows9〈

τ̄2
ne (z̃2) τne (z̃3)

〉
BCFT⊗ne

=
〈
τ̄2
ne (z̃2)

〉
BCFT⊗ne

〈τne (z̃3)〉BCFT⊗ne

= e2(1−ne/2)Sbdy(
2Imz̃2
ε2

)2∆(2)
ne

· e
(1−ne)Sbdy(
2Imz̃3
ε3

)2∆n
(4.5)

This leads to the following expression for the entanglement negativity

E = c

4 log
(2Im(z̃2)

ε2

)
+ Sbdy, (4.6)

where εi is the cut off10 at the point z̃i. Having obtained the result for the entanglement
negativity in a BCFT1+1 we may now reverse the static mirror map in eq. (3.1) as we did
in the computation of reflected entropy in section 3.1.1. Utilizing the reverse static mirror
map, the entanglement negativity may be expressed as,

E = c

4 log
[
t+ x2 − p(t− x2)
ε
√
p′(t− x2)

]
+ Sbdy . (4.7)

Phase-II: bulk channel (A close to the boundary and B small). In the bulk channel which
corresponds to the interval B being small, the two point function is given by the following
expression 〈

τ̄2
ne (z̃2) τne (z̃3)

〉
BCFT⊗ne

= 〈τ̄2
ne(z̃2)τne(z̃3)τ2

ne(z̃
∗
2)τ̄ne(z̃∗3)〉CFT⊗ne (4.8)

=
(

Im(z̃2) (z̃3 − z̃2)2

ε22 Im(z̃3)

)∆(2)
ne

(4.9)

Note that in order to obtain the last expression we have utilized the large central charge
limit of the above four point function which was determined in [167]. Using the above
expression in eq. (4.3) and substituting the result obtained in eq. (4.1), the entanglement
negativity may then be computed as follows

E = c

8 log
[

Im(z̃2) (z̃3 − z̃2)2

ε22 Im(z̃3)

]
(4.10)

As earlier we once again inverse the static mirror map in eq. (3.1) to obtain the following
expression for the entanglement negativity

E = c

8 log
[

(t+ x2 − p(t− x2))(p(t− x3)− p(t− x2))2

ε2(t+ x3 − p(t− x3))
√
p′(t− x2)p′(t− x3)

]
. (4.11)

9Note that the OPE coefficient for the one point function of τ2
ne

in eq. (4.5) can be obtained through an
analysis similar to that described in [156].

10Note that in this case, we allow for position-dependent cut-offs in the BCFT to incorporate the effects
of the non-trivial conformal map to the static mirror configuration.
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Figure 19. Configuration involving two disjoint intervals away from the boundary in a BCFT1+1.

A away from the boundary. For the case involving the subsystems away from the
boundary the three point function factorizes as follows〈
τne (z̃1) τ̄2

ne (z̃2) τne (z̃3)
〉
BCFT⊗ne

'
〈
τne (z̃1) τ̄2

nn (z̃2)
〉
BCFT⊗ne

〈τne (z̃3)〉BCFT⊗ne (4.12)

Once again the two point function on the r.h.s. of the above equation can be obtained in
the bulk and boundary channels which results in two different phases that are described
below.

Phase-III: boundary Channel (A away from the boundary and B large). In the boundary
channel, utilizing the factorizations as earlier we obtain the entanglement negativity to be
as follows

E = c

8 log
[

(z̃2 − z̃1)2 (2 Im z̃2)
ε22 (2 Im z̃1)

]
(4.13)

We then reverse the static mirror map in eq. (3.1), to obtain the following expression for
the entanglement negativity

E = c

8 log
[

(t+ x2 − p(t− x2))(p(t− x2)− p(t− x1))2

ε2(t+ x1 − p(t− x1))
√
p′(t− x1)p′(t− x2)

]
. (4.14)

Phase-IV: bulk channel (A away from the boundary and B small). In the bulk channel
on the other hand, the entanglement negativity is given by the following expression

E = c

4 log
[(z̃2 − z̃1) (z̃3 − z̃2)

ε22 (z̃3 − z̃1)

]
. (4.15)

As earlier, we use inverse static mirror map to obtain the entanglement negativity to be as
follows

E = c

4 log
[

(p(t− x2)− p(t− x1))(p(t− x3)− p(t− x2))2

ε2(p(t− x3)− p(t− x1))p′(t− x2)

]
. (4.16)

4.1.2 Disjoint intervals

Having obtained the entanglement negativity for two adjacent intervals in various chan-
nels, we now turn our attention to the entanglement negativity for two disjoint intervals
described by A = [z̃1, z̃2] and B = [z̃3, z̃4] by utilizing the replica technique. The entangle-
ment negativity for this mixed state configuration is described by the following four point
twist correlator

E = lim
ne→1

log[〈τne (z̃1) τ̄ne (z̃2) τ̄ne (z̃3) τne (z̃4)〉BCFT⊗ne ] (4.17)

– 28 –



J
H
E
P
0
9
(
2
0
2
2
)
0
8
9

Proximity limit: A, B large separated by C small. The above four point function
is described by a eight point twist correlator in the chiral CFT which is extremely difficult
to determine even in the large central charge limit. However, here we consider the two
intervals to be large compared to the length of the separation between them or in other
words we take the proximity limit z̃2 → z̃3. In such a scenario, the required four point
function factorizes as follows in the large-c limit

〈τne (z̃1) τ̄ne (z̃2) τ̄ne (z̃3) τne (z̃4)〉BCFT⊗ne ' 〈τne (z̃1)〉BCFT⊗ne 〈τ̄ne (z̃2) τ̄nn (z̃3)〉BCFT⊗ne

〈τne (z̃4)〉BCFT⊗ne (4.18)

The two point twist correlators in eq. (4.18) is given by a four point twist correlator in the
chiral CFT which can be obtained through the doubling trick

〈τ̄ne (z̃2) τ̄ne (z̃3)〉BCFT⊗ne = 〈τne (z̃∗2) τ̄ne (z̃2) τ̄ne (z̃3) τne (z̃∗3)〉CFT⊗ne (4.19)

In the large central charge limit, this four point twist correlator can be computed in the
t− channel using the monodromy technique [137] to be as follows,

〈τ̄ne (z̃2) τ̄ne (z̃3)〉BCFT⊗ne =
[

4 Im(z̃2) Im(z̃3)
(z̃3 − z̃2)2

]∆(2)
ne

(4.20)

Using the above result in eq. (4.1), the entanglement negativity may be computed to be as
follows

E = c

8 log
[

4 Im(z̃2) Im(z̃3)
(z̃3 − z̃2)2

]
(4.21)

In eq. (4.21), we apply the inverse static mirror map to obtain the following expression for
the entanglement negativity,

E = c

8 log
[(t+ x2 − p(t− x2))(t+ x3 − p(t− x3))

(p(t+ x3)− p(t− x2))2

]
. (4.22)

4.2 Holographic entanglement negativity for moving mirror

Having determined the entanglement negativity through replica technique in a BCFT1+1
we now proceed to obtain the holographic entanglement negativity for mixed state con-
figurations involving two adjacent and disjoint intervals by using the proposal described
by eq. (2.35) and eq. (2.33) in the dual bulk AdS3 geometry. To this end we utilize the
following expressions for the length of the back reacted cosmic branes L( 1

2 )
X corresponding

to the Renyi entropy of order half for a subsystem X = [zi, zj ]

L( 1
2 )
X = Min[L( 1

2 ), con
X ,L( 1

2 ), dis
X ] (4.23)

In the above equation con and dis denote the connected and disconnected lengths of the
cosmic branes respectively. In the AdS3 geometry dual to a BCFT1+1 these lengths are
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Figure 20. Geodesics contributing to the holographic entanglement negativity of adjacent intervals
in Phase-I.

given as follows

L( 1
2 ), con
X = 3

2 log[ (zi − zj)
2

εiεj
] (4.24)

L( 1
2 ), dis
X = 3

2 log
[

4 Im z̃i Im z̃j
εiεj

]
+ 2Sbdy (4.25)

In order to arrive at the above expression we have utilized the fact that in AdS3/CFT2
the effect of the backreaction reduced to a proportionality factor as described in section 2
which as follows

L( 1
2 )
X = 3

2LX . (4.26)

where LX is the length of the geodesic corresponding to the subsystem-X. Observe that for
the disconnected configuration the numerical factor is only for the dynamical part as the
contribution from the Sbdy to the length of the backreacting cosmic brane is independent
of the replica index n as described by eq. (2.12). As described in section 2 we then utilize
the Banados map to obtain the corresponding results for holographic moving mirrors.

4.2.1 Adjacent intervals

Here, we compute the holographic entanglement negativity for two adjacent intervals from
the dual bulk AdS3 utilizing the proposal described earlier in eq. (2.34) and eq. (2.35)

Phase-I: boundary channel (A close to the boundary and B large). In phase-I,
the interval A is close to the boundary and the interval B is large. In such a scenario, the
geodesics contributing to the holographic entanglement negativity are depicted in figure 20.
The length of the geodesics homologous to the various subsystems involved are as follows

LA = L1 + L2

LB = L2 + L3

LAB = L1 + L3 (4.27)
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Figure 21. Geodesics contributing to the holographic entanglement negativity of adjacent intervals
in Phase-I.

Substituting the above expressions in eq. (2.35), we obtain the holographic entanglement
negativity to be as follows

E = 3
8GN

L2

= 3
8GN

[
log 2 Im z̃2

ε2

]
+ Sbdy (4.28)

where Note that upon using the Brown-Henneaux formula [165], the above result exactly
matches with eq. (4.6) which we obtained using the replica technique in the dual BCFT1+1.
Furthermore, using the Banados map given in eq. (2.18) we obtain the following expression
for entanglement negativity

E = 3
8GN

log
[
t+ x2 − p(t− x2)
ε
√
p′(t− x2)

]
+ Sbdy . (4.29)

which matches identically with eq. (4.7).

Phase-II: bulk channel (A close to the boundary and B small). In this phase,
we consider an interval A which is away from the boundary with a small interval B. For
such a configuration, the geodesics leading to the holographic entanglement negativity are
shown in figure 21 and their lengths are as follows

LA = L1 + L2

LB = L3

LAB = L1 + L4 (4.30)

Utilizing the above expressions in eq. (2.35) we determine the holographic entanglement
negativity as

E = 3
16GN

[
L2 + L3 − L4

]
= 3

16GN
log

[
Im z̃2 (z̃3 − z̃2)2

ε22 Im z̃3

]
(4.31)
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Figure 22. Geodesics contributing to the holographic entanglement negativity of adjacent intervals
in Phase-I.

The above expression once again matches precisely with the replica technique result ob-
tained in eq. (4.10). Subsequently, we utilize the Banados map in eq. (4.31) to obtain the
following expression for the entanglement negativity

E = 3
16GN

log
[

(t+ x2 − p(t− x2))(p(t− x3)− p(t− x2))2

ε2(t+ x3 − p(t− x3))
√
p′(t− x2)p′(t− x3)

]
. (4.32)

Observe that once again the above expression obtained from holography agrees exactly
with the corresponding replica technique result given in eq. (4.11).

Phase-III: boundary channel (A away from the boundary and B large). In
phase-III, the interval A is away from the boundary and the interval B is small. As
illustrated in figure 22, the lengths of the geodesics contributing to the holographic entan-
glement negativity in this phase are as follows

LA = L1

LB = L2 + L3

LAB = L3 + L4 (4.33)

Using the above geodesic lengths in eq. (2.35) we determine the holographic entanglement
negativity to be as

E = 3
16GN

[
L1 + L2 − L4

]
= 3

16GN
log

[
(z̃2 − z̃1)2 Im z̃2

ε22 Im z̃1

]
(4.34)

Once again the above expression agrees with the corresponding result determined through
the twist correlators in a BCFT1+1 in eq. (4.13). Furthermore, upon using Banados map
we obtain the entanglement negativity

E = 3
16GN

log
[

(t+ x2 − p(t− x2))(p(t− x2)− p(t− x1))2

ε2(t+ x1 − p(t− x1))
√
p′(t− x1)p′(t− x2)

]
. (4.35)
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Figure 23. Geodesics contributing to the holographic entanglement negativity of adjacent intervals
in Phase-I.

The above expression precisely agrees with the corresponding replica technique result given
in eq. (4.14) upon using the Brown-Henneaux relation.

Phase-IV: bulk channel (A away from the boundary and B large). In phase-III,
the interval A is away from the boundary and the interval B is large. Note that here
none of the geodesics contributing to the holographic entanglement negativity intersect the
EOW brane as illustrated in figure 23. The length of the required geodesics are as follows

LA = L1

LB = L2

LAB = L3 (4.36)

Utilizing the above lengths in eq. (2.35) we obtain the holographic negativity to be

E = 3
8GN

[
L1 + L2 − L3

]
= 3

8GN
log

[(z̃2 − z̃1) (z̃3 − z̃2)
ε22 (z̃3 − z̃1)

]
(4.37)

The above expression once again agrees exactly with the entanglement negativity computed
in BCFT given in eq. (4.15). By using the Banados map given in eq. (2.18) we obtain the
following result for the holographic entanglement negativity

E = 3
8GN

log
[

(p(t− x2)− p(t− x1))(p(t− x3)− p(t− x2))2

ε2(p(t− x3)− p(t− x1))p′(t− x2)

]
. (4.38)

which once again exactly matches with the corresponding replica technique result in
eq. (4.16).

4.2.2 Disjoint intervals

We now determine the entanglement negativity for two disjoint intervals in the proximity
limit (A,B large separated by a small C) by utilizing the holographic proposal given by
eq. (2.31) and eq. (2.33) described in [137].
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Figure 24. Geodesics contributing to the holographic entanglement negativity of disjoint intervals
in proximity.

As depicted in the figure 24 the length of various geodesics homologous to the subsys-
tems involved are as follows

LAC = L1 + L4

LBC = L2 + L5

LC = L3

LABC = L1 + L5 (4.39)

Utilizing the above lengths in eq. (2.33) we obtain the holographic entanglement negativity
to be as follows

E = 3
16GN

[
LAC + LBC − LC − LABC

]
= 3

16GN
log

[
4 Im(z̃2) Im(z̃3)

(z̃3 − z̃2)2

]
(4.40)

The above expression once again precisely matches with that computed using the replica
technique in a BCFT1+1 given in eq. (4.21). Following this, utilising the Banados map in
eq. (4.40) , the holographic entanglement negativity may be computed as

E = 3
16GN

log
[(t+ x2 − p(t− x2))(t+ x3 − p(t− x3))

(p(t+ x3)− p(t− x2))2

]
. (4.41)

Note that the above result once again precisely agrees with that obtained through replica
technique in eq. (4.22).

4.3 Page curves for entanglement negativity in moving mirrors

In previous subsections we demonstrated that the entanglement negativity obtained through
the replica technique in a BCFT1+1 match precisely with the corresponding holographic
results for the mixed state configurations of two adjacent and disjoint intervals in various
phases. We also showed that upon using the required conformal transformation in the
BCFT and the Banados map in the dual bulk AdS3 we can get the corresponding results
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in the moving mirror setup. In this subsection we obtain the analogues of the Page curves
for the entanglement negativity through the holographic proposals described in eq. (2.34)
and eq. (2.31) for the mixed state configurations of adjacent and disjoint intervals in the
context of moving mirrors utilizing the results for the holographic entanglement entropy
obtained in [33, 60] and given by eq. (2.12). Note that in previous subsection we deter-
mined the entanglement negativity for various phases in different regimes of the lengths
of the subsystems involved. However, here we directly obtain the time evolution of the
holographic entanglement negativity for all the phases of the configurations in question
by directly substituting the expression for the length of a geodesic given by eq. (2.12) for
various subsystems in eq. (2.34) and eq. (2.31)

4.3.1 Kink mirror

As described in section 2, the radiation from a kink mirror mimics the Hawking radiation
emitted by an evaporating single sided black hole. The Page curves for the entanglement
entropy of a single interval in the radiation flux of the kink mirror was obtained in [33, 60].
Here, we determine the behaviour of entanglement negativity for adjacent and disjoint in-
tervals in the radiation flux of a moving kink mirror whose profile is given by eq. (2.5).
Substituting the kink mirror profile in eq. (2.12) we obtain the holographic entanglement
entropies for various subsystems involved in the combination occurring in the holographic
entanglement negativity proposal in eq. (2.35) and eq. (2.33). The behavior of the entan-
glement negativity for two adjacent and disjoint intervals is depicted in the plots given in
figures 25 and 26. Quite interestingly, the increasing part of the plots for the time evolu-
tion of the entanglement negativity for the adjacent intervals in figures 25a and 25b closely
resembles the expected curve from random matrix theory [147]. This was also reproduced
in the context of JT black hole coupled to a thermal bath described by a holographic 2d
CFT in [148] where the behavior was also interpreted in terms of the island contributions.
It would be very interesting to explore the island interpretation for this and the rest of the
cases listed below which is an open issue for future investigations.

4.3.2 Escaping mirror

As reviewed earlier in section 2, the radiation from an escaping mirror whose profile is
given in eq. (2.4) mimics the Hawking radiation from an eternal black hole. Utilizing this
mirror profile in eq. (2.12) and substituting the length of the geodesics (or the holographic
entanglement entropies) for various subsystems in eq. (2.35) and eq. (2.33) we obtain the
behavior for the holographic entanglement negativity for adjacent and disjoint intervals de-
picted in figures 27 and 28. We describe the analogues of Page curves for the entanglement
negativity for various scenarios below.

5 Summary and discussions

In this section we summarize and discuss the results of our computation. In this article
we have obtained the behavior for the reflected entropy and the entanglement negativity
of mixed state configurations involving two adjacent and disjoint intervals in the radiation
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(a) Fixed intervals: A = [0.1, 15], B = [15, 25],
β = 0.1, ε = 0.001, u0 = 20, Sbdy = 0,
c = 1
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(b) Co-moving intervals: A = [Z(t) + 0.1, Z(t) + 15],
B = [Z(t) + 15, Z(t) + 25], β = 0.1, ε = 0.001, u0 =
20, Sbdy = 2, c = 1

Figure 25. Adjacent intervals. Page curve for the entanglement negativity between two adjacent
intervals in a kink mirror BCFT.
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(a) Fixed intervals: A = [10, 12], B = [15.5, 80],
β = 0.5, ε = 0.001, u0 = 20, Sbdy = 0,
c = 1
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(b) Co-moving intervals: A = [Z(t) + 10, Z(t) + 15],
B = [Z(t) + 15.5, Z(t) + 80], β = 0.5, ε = 0.001,
u0 = 20, Sbdy = 2, c = 1

Figure 26. Disjoint intervals. Page curve for the entanglement negativity between two disjoint
intervals in a kink mirror BCFT.

flux of moving mirrors. These measures were computed for the configurations in the radi-
ation from kink and escaping mirror which mimic the Hawking radiation from evaporating
and eternal black holes respectively. In this context, the replica technique was utilized to
obtain the reflected entropy for required mixed states of adjacent and disjoint intervals in
the large central charge limit of a BCFT1+1 describing the moving mirror setup. In order
to ease our computation we considered one of the intervals to be semi-infinite. Following
this we evaluated the holographic reflected entropy in the corresponding bulk gravity dual
involving the AdS3 geometry by determining the entanglement wedge cross section corre-
sponding to the mixed states under consideration. It was demonstrated that the results
obtained from the replica technique in the large-c limit agree exactly with the holographic
computation of twice the EWCS for various phases of the required mixed states. Following
this, we obtained the Page curves corresponding to the reflected entropy of fixed and co-
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(a) Fixed intervals: A = [0.1, 15], B = [15, 30],
β = 0.5, ε = 0.001, u0 = 20, Sbdy = 0.4,
c = 1
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(b) Co-moving intervals: A = [Z(t) + 0.1, Z(t) + 15],
B = [Z(t) + 15, Z(t) + 25], β = 0.5, ε = 0.001, u0 =
20, Sbdy = 0, c = 1

Figure 27. Adjacent intervals. Page curve for the entanglement negativity between two adjacent
intervals in an escaping mirror BCFT.
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(a) Fixed intervals: A = [10, 15], B = [15.5, 50],
β = 0.5, ε = 0.001, u0 = 20, Sbdy = 0,
c = 1
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(b) Co-moving intervals: A = [Z(t) + 10, Z(t) + 15],
B = [Z(t) + 15.5, Z(t) + 80], β = 0.5, ε = 0.001,
u0 = 20, Sbdy = 2, c = 1

Figure 28. Disjoint intervals. Page curve for the entanglement negativity between two disjoint
intervals in an escaping mirror BCFT.

moving intervals for the corresponding mirror profiles. Quite interestingly, the behaviour
we obtained closely resembles the expected Page curve for the reflected entropy determined
from earlier investigations.

Subsequently, we have computed the entanglement negativity for mixed state configu-
rations involving two adjacent and disjoint intervals in the radiation flux of a moving mirror
through the corresponding replica technique in the large-c limit of a BCFT1+1. We then
obtained the corresponding entanglement negativity utilizing the holographic proposals in-
volving an algebraic sum of the lengths of backreacting cosmic branes. We demonstrated
that the holographic entanglement negativity matches precisely with the large-c result ob-
tained through twist field correlators in the BCFT1+1 for various phases of the mixed states
under consideration. Following this we obtained the Page curves for entanglement nega-
tivity of adjacent and disjoint intervals in the radiation flux of the kink and the escaping
mirrors for fixed and co-moving intervals.
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The structure of mixed state entanglement in Hawking radiation seems to contain rich
phase information which requires further investigations in the various black hole evapora-
tion models [9, 73, 94, 102, 110]. It would be quite interesting to investigate this significant
issue to elucidate our understanding of the information recovery from the black hole inte-
rior. It would also be fascinating to explore the behavior of the reflected entropy and the
entanglement negativity in the context of doubly holographic models and compare them
with those obtained through the AdS/BCFT duality. We would like to return to these
exciting issues in the near future.
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