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1 Introduction

Understanding the duality between black holes and conventional quantum mechanical
systems remains an important problem in quantum gravity. The idea behind this holographic
program [1–3] is to consider known features of quantum mechanical systems, and to
determine whether black holes follow similar rules. Much progress has been made in
this direction in recent years by studying non-perturbative wormhole contributions to the
Euclidean gravitational path integral. For example, trying to replicate the Page curve [4]
has taught us the importance of considering spacetime wormhole contributions in the
gravitational path integral in order to find a unitary process of black hole evaporation [5–7].
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Whilst the existence of spacetime wormholes has shed light on some important problems
in quantum gravity, it has also introduced puzzles. The goal of this paper is to address two
such puzzles:

1. The factorization puzzle. The existence of wormholes in quantum gravity imme-
diately raises a tension with the dual quantum theory [8]. In the dual theory, when
we want to calculate moments of the partition function Z(β), we trivially find the
product of partitions functions, thus obtaining a factorizing answer. On the bulk side,
there is an asymptotic boundary for each Z(β) and we are instructed to integrate over
all spacetimes consistent with these boundary conditions. This includes spacetimes
with wormholes that connect different asymptotic boundaries, which results in a
non-factorizing answer Z(β1, β2) 6= Z(β1)Z(β2).1 Thus the bulk and the boundary
appear to be in disagreement.

2. The discreteness puzzle. In known models in which the sum over bulk geometries
can be computed exactly, the gravitational partition function does not produce a
discrete energy spectrum.2 A consequence of this lack of discreteness can be observed
for boundary correlation functions. Correlation functions in the dual quantum
mechanics with a discrete spectrum oscillate heavily around a non-zero averaged
value [13, 14]. Connected geometries and in particular spacetime wormholes explain
this non-zero averaged value [15–18] but do not explain the erratic oscillations in the
dual quantum mechanics. So again, the bulk and the boundary appear to disagree.

One way around both puzzles is to interpret gravity as dual to an ensemble of quantum
mechanical systems, instead of a single boundary theory [5, 6, 11, 16, 18–40]. Simple models
of gravity, like JT gravity and generalizations thereof, and pure three-dimensional gravity
or even supergravity, are all seemingly dual to ensembles.

However these simple models are not realistic theories of the universe. There is a widely
held believe that all UV complete theories of quantum gravity in AdS do factorize, and that
they are each dual to individual discrete quantum mechanical systems. For example the
Strominger-Vafa microstate counting [41] is evidence of the discreteness of the spectrum,
and recent work of Eberhardt [42–44] addresses the factorization puzzle in a particular
tensionless AdS3 string theory. Furthermore, in AdS/CFT, starting from the boundary
perspective, in conventional CFT examples whose bulk duals are better understood (such
as N = 4 super Yang-Mills) it is unclear what couplings one could even average over in
order to get answers consistent with multi-boundary wormholes.

1In supergravity there are exceptions where the wormhole contribution to various supersymmetry-protected
observables happens to vanish [9].

2Here, one should distinguish two toy models in which the geometric expansion is (at least somewhat)
under control. The first is JT gravity where one can include the contribution of all wormholes (and
geometries) to still find a continuous density of states for the single-boundary partition function. The second
is pure 3d gravity, where all black hole geometries can be included, but some more complicated topologies
have yet to be accounted for [10–12]. Both models appear to have continuous spectra.
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We would like to understand how factorization and discreteness arise in the UV, by
modifying the tractable toy models discussed above. For this, we consider JT gravity
enriched with additional effective UV ingredients.

Suppose we start with some UV complete theory of quantum gravity that has a low
energy JT sector. For instance, we can consider one realization of the SYK model [45] which,
in its full glory, has string corrections in the bulk [46]. Alternatively, we can consider the
AdS2 near-horizon region of a near-extremal black hole in a higher dimensional UV complete
theory, for which JT gravity is a good effective theory [47–54] but string corrections need to
be considered in order to determine the full spectrum of black hole microstates. Now, instead
of making any approximation that results in JT, suppose one can integrate out exactly all
the degrees of freedom, except for the metric and dilaton. For low enough temperatures one
should find JT gravity but with complicated deformations in the action. Those deformations
would include deformations in the dilaton potential like those considered in [12, 55, 56], but,
in general, one also expects to get nonlocal deformations, such as nonlocal dilaton potential
terms. We can then apply a form of open-closed string duality (but applied to spacetimes)
where we interpret the deformed dilaton gravity as JT gravity with spacetime branes [20]
inserted.3 Similarly, nonlocal deformations turn out to correspond to inserting correlated
(or coupled) spacetime branes in JT theory.4

The key point is that in the above thought experiment we have made no approximation
whatsoever. Therefore, if it is true that UV theories do factorize and are discrete, then there
must be versions of JT gravity with correlated spacetime branes or nonlocal corrections in
the action which also factorize, and have a discrete energy spectrum. Because UV complete
theories are quite scarce and special, we only expect this to be true for very specific values
for the correlation between spacetime branes and equivalently, for the nonlocal deformations
of the action.

Summary and structure. We thus set out to find spacetime brane correlators which
result in a factorizing and discrete boundary dual. Our main results are the following:

1. In section 2, we introduce JT gravity with correlated spacetime branes and explain
why these correlated branes are equivalent to nonlocal deformations in the action
which, in turn, can arise when integrating-out UV degrees of freedom. We spell out the
precise rules for including the contribution of (correlated) branes to the gravitational
partition function. The point is there are additional boundaries for spacetimes to
end on, and there can be correlation between those additional boundaries. For
example, the following surfaces are a representative sample for the contribution to

3For example, JT gravity with FZZT branes (open string picture) is equivalent to JT gravity with a
deformed potential (closed string picture) [57].

4As compared to [58], who also introduced branes with the motivation to address the factorization puzzle,
the critical new ingredient that we introduced, and which actually result in a factorizing theory of gravity, is
precisely this nontrivial coupling between the spacetime branes.
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the partition function

Z(β) =

(1.1)
where the blue wiggly lines represent the correlations (or couplings) between the
additional brane boundaries.

2. Factorization happens because the brane interactions can cancel the contribution of
wormholes. For instance, in section 3.1 we find that the brane two-point interaction
must be tuned such that

= 0 . (1.2)

This phenomenon was also observed by Saad, Shenker, Stanford and Yao [40, 45] who
investigated factorization to leading order in the genus expansion.5 In our setup, this
brane two-point function implies factorization to all orders in the genus expansion and
for an arbitrary number of boundaries. Additionally, we show that three or higher-
point interactions between branes need to vanish. In the UV setting, these brane
interactions, or more generally the interactions between geometrically disconnected
components of the spacetime, can be thought of as highly stringy, non-geometric
connected configurations, non-geometric wormholes. These cancel the geometric
wormholes so that the full answer factorizes.

3. The brane two-point interaction (1.2) results in massive cancellations in the eS0

expansion. The only contributions to the one-boundary gravitational partition func-
tion which do not cancel, are the disk, and the geometry with precisely one brane
boundary inserted

Z(β) = Tr e−βH0 =

black hole one-point function

. (1.3)

The one-point function of this brane encodes the microstructure of the dual quantum
mechanics: each Hamiltonian H0 determines the one-point function such that the

5Leading order factorization was also discussed in [59].

– 4 –



J
H
E
P
0
9
(
2
0
2
2
)
0
8
0

above equation is exactly satisfied. As shown in section 3.3, this answer is very
similar to the half-wormhole picture [45], with that crucial distinction that (1.3) is
exact, to all perturbative and non-perturbative orders in eS0 . For typical draws of
H0, the contribution of the half-wormhole in (1.3) is sub-leading compared to the
black hole. This is the reason why the classical black hole is oftentimes a good
approximation. The partition function in (1.3) can be viewed as analogous to the
whole expansion of strings on the disk background. This includes configurations that
look like classical geometries (with wormholes) but also includes highly non-geometric
configurations, some of which again cancel the geometric wormholes.

4. Wormholes re-emerge when we average over H0, since they are encoded in the statistical
properties of the brane one-point function. Denoting the ensemble average over H0 by
〈 . . . 〉conn. we find that

… >> conn

=
…

+ higher genus .

(1.4)
This equality shows that the expectation value of self-averaging observables6 in the
theory (1.3) (where wormholes cancel), are well approximated by computations in
the original JT gravity theory, where branes are absent but wormholes are present.
In section 3.4 and 5, we exemplify how this occurs for some known self-averaging
quantities: the time-averaged spectral form factor and matter two-point function, the
volume of the black hole interior, and the entanglement entropy of Hawking radiation
(which follows the Page curve).

5. In the dual matrix integral description of JT gravity [19], we use the map between
FZZT branes and determinants to investigate the effect of our correlated branes. We
find that the branes deform the ensemble partition function to

Z(H0) = lim
q→∞

L∏
i=1

ˆ
C

dλi exp

q L∑
i,j=1

I(λi, Ej)


=

L∏
i=1

ˆ
C

dλi

 L∏
j=1

δ(λj − Ej) + permutations

 ,

6Self-averaging quantities are defined by having variances that are much smaller than their expecta-
tion values.
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where the parameter q is found to be large from a solution to a simple Schwinger-Dyson
equation. The large q saddle-points of the emergent action that we find are indeed

∂

∂λi

L∑
i,j=1

I(λi, Ej) = 0 ⇔ λ1 . . . λL = permutations of E1 . . . EL . (1.5)

This localizes the eigenvalues (up to permutations) to λi = Ei, the eigenvalues of the
Hamiltonian H0 of the dual quantum system. Thus, JT gravity with correlated branes
is discrete and factorizing, even non-perturbatively. We discuss this matrix integral
perspective in section 4.

6. In section 5 we include bulk matter and explain that factorization is again resolved
by fixing the brane two-point function. UV divergences associated to wormholes with
small necks are absent in our model. We then compute the probe matter correlators,
accounting for the full backreaction on the metric and, for instance, find the expected
two-point function for a theory with a discrete spectrum. This addresses the puzzle
posed in [13] concerning the decay of the two-point function in the eternal black hole
geometry.

7. In section 6, we rewrite our model in several equivalent ways: as a theory with
correlated branes, a theory with some nonlocal dilaton potential, or a theory in which
the dilaton potential is picked from an ensemble average distribution. Through these
re-writings we emphasize that the critical ingredient that is necessary to obtain a
factorizing gravitational theory, is the correlations between different disconnected
components of spacetime. This entices us to propose a similar mechanism for resolving
the factorization puzzle in higher dimensional theories, and forces us to question what
the origin of such correlations between disconnected components is in string theory.

2 JT gravity with correlated spacetime branes

In this section we introduce JT gravity with correlated spacetime branes, this sets the stage
for section 3 where we will fine-tune these brane correlations to ensure factorization and
discreteness.

2.1 JT gravity

JT gravity is a two-dimensional gravity theory that involves a dilaton Φ and metric g, with
action [60, 61]

I[g,Φ] = −1
2

ˆ
Σ

d2x
√
gΦ (R+ 2)−

ˆ
∂Σ

du
√
hΦ (K − 1)− S0χ(Σ) . (2.1)

With this boundary action one needs to impose Dirichlet boundary conditions on the metric
huu = 1/ε2 and dilaton Φ = 1/2ε, which fixes the length of the Euclidean boundary circle
to β/ε [62–64]. The extremal entropy S0 multiplies the Euler character χ(Σ) = 2− 2g − n,
and thus suppresses higher genus geometries. Path integrating out the bulk dilaton Φ (after
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a contour rotation Φ→ iΦ) localizes the geometries to hyperbolic Riemann surfaces (with
boundary) with constant curvature R+ 2 = 0. We must include all surfaces consistent with
the boundary conditions [19].

A convenient way to organize the calculations, say for the case with one asymptotic
boundary, is by viewing the higher genus surface as consisting of two parts: the trumpet,
which has one asymptotic fixed length boundary, and one geodesic boundary with fixed
length b; and the remaining genus g Riemann surface, which has one geodesic boundary of
identical length b. We must then integrate over the moduli space of genus g Riemann surfaces
with geodesic boundary b, which produces the Weil-Petersson volume Vg,1(b) [65, 66], and
glue the trumpet to the genus g Riemann surfaces, by integrating over b. This gives the
genus expansion of the JT gravity partition function [19]

Z(β) = Zdisk(β) +
∞∑
g=1

eS0(1−2g)
ˆ ∞

0
db b Vg,1(b)Ztrumpet(β, b), (2.2)

where the disk and trumpet partition function can be computed by integrating over boundary
modes [62–64, 67]

Zdisk(β) = eS0

4π1/2β3/2 e
π2
β , Ztrumpet(β, b) = 1

2π1/2β1/2 e
− b

2
4β . (2.3)

This generalizes to the multi-boundary case (Weil-Petersson volumes count connected
Riemann surfaces)

Z(β1, . . . ,βn)conn. =
∞∑
g=0

eS0(2−2g−n)
ˆ ∞

0
db1b1 . . .

ˆ ∞
0

dbnbnVg,n(b1 . . . bn)Ztrumpet(β1, b1) · · ·Ztrumpet(βn, bn) .

(2.4)

This decomposition also makes it clear that JT gravity has a dual description as a double
scaled matrix integral [19], because the Vg,n(b1 . . . bn) satisfy the topological recursion
relations (or loop equations) for a double scaled Hermitian matrix integral with genus zero
spectral density [65, 68]

ρ0(E) = eS0

4π2 sinh 2π
√
E , (2.5)

which crucially matches also the spectrum associated with the JT gravity disk partition
function (2.3). Multi-boundary partition functions are computed in the matrix integral as
ensemble averages

〈Z(β1) · · ·Z(βn)〉 = 1
Z

ˆ
dH e−LTrV (H) Tr eβ1H · · ·Tr eβnH = Z(β1, . . . , βn) , (2.6)

where the last equality states the JT-matrix integral duality. The potential V (H) will be
specified when needed in section 4.

As stressed in [19], an important point is that we can really think of H in the matrix
integral as the Hamiltonian of the boundary quantum mechanics. This means that here we
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have a version of AdS/CFT that involves JT gravity theory in the bulk and an ensemble
of boundary Hamiltonians on the boundary. Consequently, the JT gravity fixed thermal
length gravitational partition function (with an arbitrary number of boundaries) are dual to
ensemble averages of partition functions of quantum mechanical systems (with an arbitrary
number of Tr e−βH insertions within the ensemble).

As motivated in the introduction, we now introduce additional ingredients in gravity
that eliminate this average, whilst retaining a geometric description.

2.2 Spacetime branes

Spacetime branes are natural candidates for these effective new UV ingredients. They
introduce extra boundaries for spacetimes to end on, and (as mentioned in section 1) are
known to have a dual description as deformations in the JT gravity action [57, 58]. In
this dual description, there are no extra boundaries, this is essentially open-closed universe
duality (similar to open-closed string duality).

As in string theory, different boundary conditions define different spacetime branes
(branes simply from hereon), see [69] for a semiclassical classification. We will encounter
two types in particular.

First we have FZZT branes, the most commonly studied brane in minimal string
theory [19, 69–78]. Here we should view the worldsheets as spacetimes, so the FZZT
branes are really spacetime branes. Classically in JT gravity they correspond to fixed
energy boundaries (and fixed dilaton). In the dual matrix integral, one FZZT boundary
corresponds to7

OFZZT(E) = −
ˆ ∞

0

dβ
β
eβE Z(β) = Tr log(E −H)− L

2 V (E) , (2.7)

and FZZT branes are exponentials of boundaries, and so correspond in the matrix ensemble
to [19, 22, 70, 77]

ψFZZT(E) = exp
(
−
ˆ dβ

β
eβEZ(β)

)
= det(E −H) exp

(
− L

2 V (E)
)
. (2.8)

Another semiclassical interpretation of FZZT boundaries, that we will use in this work,
was worked out in [77]. The basic idea is to decompose the FZZT boundary in a complete
set of geodesic boundaries. To do this, we need the expansion coefficients, which can be
found by Laplace transforming the trumpet [34]

−
ˆ ∞

0

dβ
β
eβEZ(β,β1, . . . ,βn)conn. =

n∑
g=1

eS0(1−2g−n)
ˆ ∞

0
dbbME(b)

ˆ ∞
0

db1b1 . . .
ˆ ∞

0
dbnbnVg,n+1(b,b1 . . . bn) (2.9)

Ztrumpet(b1,β1) . . .Ztrumpet(bn,βn) ,

7The significant potential term is related with the small β divergence in the Laplace transform [19].
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where the expansion coefficient or wavefunction explicitly becomes

ME(b) = −
ˆ ∞

0

dβ
β
eβE Ztrumpet(b, β) = −1

b
e−b(−E)1/2

. (2.10)

This has a branchcut for positive real energies. The two values above and below the cut
define the two different FZZT boundary conditions for positive energies, indeed this feature
was already there in (2.7).

Formula (2.9) means that one can view the FZZT boundary as consisting of fixed
geodesic length b boundaries with a wavefunction ME(b). In semiclassical JT variables
this wavefunction implements the Legendre transform from geodesic boundary conditions
to fixed energy boundary conditions [69]. The wavefunction can be thought of as coming
from a cosmological constant on the geodesic boundary. Semiclassically, with this extra
boundary term in the action, there is saddle for b which depends on E.8

The second type of branes in which we are interested are inserting geodesic boundaries.
In the dual matrix integral, it was found in [69] that inserting one geodesic boundary
corresponds with the operator9

OG(b) = 2
b

Tr cos
(
bH1/2

)
−
ˆ ∞

0
dE ρ0(E) 2

b
cos
(
bE1/2

)
. (2.11)

The second term subtracts the naive disk contribution as there are indeed no disk shaped
geometries with these geodesic boundary conditions [69], in particular

〈OG(b)〉 =
∞∑
g=1

eS0(1−2g) Vg,1(b) , 〈OG(b1) . . .OG(bn)〉conn =
∞∑
g=0

eS0(2−2g−n) Vg,n(b1 . . . bn) .

(2.12)
Formula (2.11) can be checked from the matrix side directly, by computing the inverse
Laplace transform of the FZZT operator O(E), see formula (2.7). Geodesic branes are
exponentials of this operator

ψG(b) = exp
(2
b

Tr cos
(
bH1/2

)
−
ˆ ∞

0
dE ρ0(E) 2

b
cos
(
bE1/2

))
. (2.13)

The fact that ensemble averages of (2.11) return connected geometries (2.12) will be
important in section 3.4.

So far we mostly focused on the definition of branes in the open-string picture and
their natural appearance in the matrix integral. To get a better sense of these branes in the
closed-string picture, we need to understand what their effect is on the dilaton potential.
For the FZZT brane we already have formula (2.9), which is a nice expansion in terms of
additional geodesic boundaries with a wavefunction on them, but we can also recast it in

8The saddle-point can generically be at arbitrary complex b. This is an important observation that we
discuss more in section 3.5.

9Here we are using a hybrid notation, where the second term is a double scaled expression. However it
is just a function of b and can easily be written in a finite L form just as the first term as we also do in
section 4.
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terms of a change in the dilaton potential. The dilaton potential Υ(Φ) is defined in the
usual way (ignoring the boundary and topological term),

I[g,Φ] = −1
2

ˆ
Σ

d2x
√
g (Φ(R+ 2) + Υ(Φ)) . (2.14)

The effect of adding an FZZT spacetime brane on the dilaton potential was worked out
in [57, 77]. They found

UFZZT(Φ) = −e−S0e−2πΦ 2z
z2 + Φ2 , (2.15)

with z2 = −E and where the non-zero shift in the threshold energy E0 has been taken into
account. For our purposes, we actually need to generalize the notion of an FZZT brane
slightly to a smeared version (see [12, 56] for the defect case), which in the matrix integral
corresponds to inserting

ψFZZT(λ) = exp
(ˆ

C

dz λ(z)OFZZT(z)
)
, (2.16)

with λ a function (or distribution) integrated along some contour C and again z2 = −E. All
we do here is smear the brane in target space, something we often do in higher-dimensional
string theories as well. The deformation in the dilaton potential changes then to

UFZZT(Φ, λ(z)) = −e−S0e−2πΦ
ˆ
C

dz λ(z) 2z
z2 + Φ2 . (2.17)

Throughout this work we will mostly focus on insertions of OG(b). Geometrically, these
correspond to an expansion like (2.9), but where the wavefunction ME(b) is replaced by a
more general wavefunction that we denote by Zbrane(b). This wavefunction is essentially
the inverse Laplace transform of the FZZT smearing function λ(z)

Zbrane(b) =
ˆ
C

dzMz(b)λ(z) = −1
b

ˆ
C

dz e−bz λ(z) . (2.18)

The deformation in the dilaton potential corresponding to insertions of (smeared) OG(b)
operators is then

UG(Φ, Zbrane(b)) = e−S0

ˆ ∞
0

db bZbrane(b) e−2πΦ 2 cos(bΦ) . (2.19)

Indeed, inserting (2.18) and doing the integral over b returns (2.17). In summary, inserting
smeared geodesic branes in the gravitational path integral corresponds with the deformation

exp
(ˆ ∞

0
dbbZbrane (b) OG (b)

)
⇔ exp

(
e−S0

ˆ ∞
0

dbbZbrane (b)
ˆ

Σ
d2x

√
g (x)e−2πΦ(x) cos(bΦ(x))

)
. (2.20)

We expand on this relation in appendix A.
Notice that this looks similar to inserting smeared defects [12, 56], but with the defect

angle analytically continued, and including both analytic continuations to ib and to −ib. This
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was to be expected, because defects and geodesic boundaries act as analytic continuations
of one another, this can be appreciated from several angles [12, 55, 56]. We elaborate on
this further in appendix A. Notice also that we worked to order e−S0 , going to higher order
would require working with the string equation machinery. Since this is beyond the scope
of this paper, we will not pursue that here, but it would be interesting to consider smeared
branes in that setting.10

2.3 Why correlated spacetime branes?

As explained in the introduction, we expect on general grounds that integrating out UV
degrees of freedom introduces nonlocal deformations in our low-energy effective theory. In
QFT, such nonlocalities can be typically neglected in the low-energy effective theory since
their effect is suppressed by the energy scale of the original degrees of freedom; thus, at
least in a perturbative expansion around each saddle in the low-energy effective QFT such
nonlocal terms in the action play no role. In the low-energy effective theory of gravity
however, such terms need a more careful treatment; as we will explain in the next section,
the perturbative expansion of nonlocal terms in the black hole saddle can have a competing
effect to the sum over topologies that occurs in the gravitational path integral. Thus, it
will prove important to keep track of such nonlocal deformations in the low-energy effective
theory. Below we will exemplify how such deformations can be re-expressed as insertions of
correlated or nonlocal spacetime branes. We now give an intuitive explanation for why this
is the case, and explain what we mean with correlated spacetime branes.

Consider introducing the simplest nonlocal interaction in the dilaton gravity path
integral: a bilocal deformation of the dilaton potential. Making use of the mapping of OG(b)
to metric variables one reads off from (2.20) that we have

exp
(1

2

ˆ ∞
0

db1b1 OG(b1)
ˆ ∞

0
db2b2 OG(b2)Zbrane(b1, b2)

)
⇔ exp

(
− Inonlocal[g,Φ]

)
= exp

(1
2 e
−2S0

ˆ ∞
0

db1b1
ˆ ∞

0
db2b2 Zbrane(b1, b2)

ˆ
Σ

d2x1

√
g(x1) e−2πΦ(x1) cos(b1Φ(x1))

ˆ
Σ

d2x2

√
g(x2) e−2πΦ2(x2) cos(b2Φ(x2))

)
,

(2.21)

for some arbitrary function Zbrane(b1, b2) whose meaning we now discuss. When we expand
out (2.21), what happens is that we are inserting extra geodesic brane boundaries in the
gravitational path integral, but now there is a two-brane wavefunction component, which
correlates two different smeared spacetime branes through the function Zbrane(b1, b2). The
function Zbrane(b1, b2) can thus be viewed at the connected component of the two-brane

10Furthermore, it would be worthwhile to understand these potentials in more detail from the geometric
point of view. Their oscillatory behavior signals possible phase transitions [79].
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correlator, and the deformation to the JT action (2.21) is manifestly bilocal whenever this
brane correlation is non-zero.11

The first effect of this deformation is that when computing the partition function we
have geometries with two extra correlated geodesic boundaries

Z(β) ⊃ 1
2

ˆ ∞
0

db1b1
ˆ ∞

0
db2b2 Zbrane(b1, b2)

b1

b2

= 1
2

= 1
2

ˆ ∞
0

db1b1
ˆ ∞

0
db2b2 Zbrane(b1, b2)

ˆ ∞
0

db bZtrumpet(β, b)V0,3(b1, b2, b) .

(2.22)

In the second picture we introduced the notation that we will use for correlated branes
henceforth. Because this bilocal operator is in the exponential in (2.21), there will also be
contributions where the coupled boundaries are inserted multiple times, for example

Z(β) ⊃ 1
8 . (2.23)

One might expect that the UV theory generates all kinds of multi-local interactions,
not just bilocal deformations (2.21) but also n-local deformations of the type

Inonlocal[g,Φ] ⊃ −
ˆ

Σ
d2x1

√
g(x1) . . .

ˆ
Σ

d2xn

√
g(xn)Unonlocal(Φ(x1) . . .Φ(xn)) . (2.24)

These correspond to higher-point brane interactions, which we should thus allow too.
For example, the simplest effect of trilocal deformations are geometries with three extra
correlated geodesic boundaries

Z(β) ⊃ 1
6

ˆ ∞
0

db1b1 . . .

ˆ ∞
0

db3b3 Zbrane(b1, b2, b3)

b1

b2

b3

= 1
6

= 1
6

ˆ ∞
0

db1b1 . . .

ˆ ∞
0

db3b3 Zbrane(b1, b2, b3)
ˆ ∞

0
db bZtrumpet(β, b)V0,4(b1, b2, b3, b) .

(2.25)

We will show in section 3 that actually, factorization (to all orders in e−S0) requires
Zbrane(b1 . . . bn) = 0 whenever n > 2, but the two-point function Zbrane(b1, b2) crucially
must be nonzero.

11The correlation we mention here is a correlation between boundaries or in the universe field theory
language correlators of (geodesic) boundary creating operators, but we will often use the terminology brane
correlators, even though these are exponentials of boundaries and live in a more abstract target space.
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One important consequence of having nonlocal interactions in the gravitational path
integral is that closed universes12 no longer trivially cancel. For example, in (2.21) we could
have x1 being a point on the disk and x2 being a point on a separate torus. Without this
bilocal interaction the torus would be an irrelevant vacuum diagram, but here it can become
part of the connected Feynman graph. The first correction of this type is

Z(β) ⊃ . (2.26)

Throughout section 3 we do not include degenerate cylindrical surfaces stretching between
two geodesic boundaries. This makes sense, just because re-introducing those cylinders just
renormalizes the brane correlators Zbrane(b1 . . . bn), as we discuss in section 4.2, where we
will need the renormalized correlators.

More generally, taking into account all possible brane correlators, the full expansion for
Z(β) becomes

Z(β) = Zdisk(β) +
∞∑
g=1

eS0(1−2g)
ˆ ∞

0
db b Vg,1(b)Ztrumpet(β, b) +

ˆ ∞
0

db bZtrumpet(β, b)X(b) ,

(2.27)
where X(b) encodes all corrections from the spacetime brane correlators13

X(b) =
∞∑
g=0

∞∑
n=1

1
n! e

S0(1−2g−n)
ˆ ∞

0
db1b1 . . .

ˆ ∞
0

dbnbnVg,n+1(b,b1, . . . , bn)Zbrane(b1, . . . , bn)

+
∞∑
g=0

∞∑
n=1

∞∑
gc=0

∞∑
nc=1

1
n!

1
nc! e

S0(1−2g−2gc−n−nc)
ˆ ∞

0
db1b1 . . .

ˆ ∞
0

dbnbnVg,n+1(b,b1, . . . , bn)

ˆ ∞
0

dbc1bc1 . . .
ˆ ∞

0
dbcnbcnVgc,nc(bc1, . . . , bcn)Zbrane(b1, . . . , bn, bc1, . . . , bcnc)

+branes connecting to multiple closed universes (2.28)

The first line are all cases where the brane correlators do not connect to closed universes,
on the second line we have all contributions connected to one closed universe (hence the
superscript c), etcetera. Therefore, the brane correlator Zbrane(b1, . . . , bn, bc1, . . . , bcnc) should
be read as having at least one connected contribution between a brane on the surface with
the asymptotic boundary and a brane on the extra closed universe.

2.4 Geometric setup

To summarize, the rules for constructing all geometries such that we account for the
contribution of the correlated branes are as follows:

12By closed universes we mean geometries without an asymptotic boundary. They could still have a
geodesic boundary, like the torus with one geodesic boundary.

13We implicitly exclude the degenerate cylinders gc = 0, nc = 2 from the sums on the second line, as
mentioned above.
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1. Besides the asymptotic boundary, the partition function includes a sum over an arbi-
trary number of geodesic boundaries, for example one more contributing geometry is

Example of new geometry with multiple one-point functions: .

(2.29)

2. The extra brane boundaries are smeared with wavefunctions, and the joint con-
nected wavefunction for n boundaries is Zbrane(b1, . . . , bn). We denote this connected
component of the brane-correlator, as in for example (2.25) and (2.26).

Notation for connected brane correlators: Zbrane(b1, . . . , bn) =

(2.30)
These wavefunctions are integrated over b1, . . . , bn using the Weil-Peterson measure.

3. Brane correlators can connect spacetime components with asymptotic boundaries
(open universes) to closed Euclidean spacetime components (closed universes), which
would otherwise factor out of boundary observables. In addition to the closed universe
connected through the brane correlator to an open universe as in (2.26), this also
generates extra connected contributions, where closed universes connect to multiple
open universes (and potentially also to each other).

Examples how closed universes contribute: . (2.31)

The closed universes can alternatively be absorbed in a renormalization of the brane
correlations, see section 3.5.

3 Factorization and discreteness from correlated spacetime branes

The purpose of this section is the present the bulk gravitational description of one quantum
mechanical system with Hamiltonian H0.14 The dual gravitational theory has a discrete
spectrum (the eigenvalues E1, . . . , EL of H0) and factorizes

Z(β1, . . . , βn) = Z(β1) . . . Z(βn) . (3.1)

We claim that the sought-after gravitational theory is nothing but JT gravity with correlated
spacetime branes, where the connected spacetime brane correlators take the specific values

Factorization ⇔ Zbrane(b1, b2) = − 1
b1
δ(b1 − b2) , and Zbrane(b1 . . . bn) = 0 for n > 2

Discreteness ⇔ Zbrane(b) =
L∑
i=1

2
b

cos
(
bE

1/2
i

)
−
ˆ ∞

0
dE ρ0(E) 2

b
cos
(
bE1/2

)
. (3.2)

14Earlier work in this direction includes [18, 22, 40, 45, 57, 59, 80].
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The first line follows from demanding factorization, and the second line from the requirement
that the theory has the discrete spectrum Ei of H0.

We will first prove that (3.2) is a solution to the factorization puzzle, after which, in
section 3.2, we prove it is the unique solution. In section 3.3, we derive the formula for
the one-point function that is needed to observe a discrete spectrum, and we quantify the
magnitude of this one-point function in section 3.4. In section 4 we further stack this up by
proving that these brane correlators also have the desired effect in the dual matrix integral
description non-perturbatively in e−S0 .

3.1 All orders factorization

To understand why (3.2) resolves factorization, notice first that in Z(β1, β2) the genus zero
wormhole is precisely canceled by two trumpets connected by a brane two-point function

= 0 , (3.3)

or explicitly in formulas (the trumpet partition function is in (2.3) and the wormhole
partition function is equation (135) in [19])

Zwormhole(β1, β2) +
ˆ ∞

0
db1b1

ˆ ∞
0

db2b2 Ztrumpet(β1, b1)Ztrumpet(β2, b2)Zbrane(b1, b2) = 0 .

(3.4)
This indeed vanishes when we insert (3.2) and compute the integrals.

We can prove that (3.2) is a solution to the factorization puzzle to all orders in the
genus expansion, for two boundaries, by noticing that one can group together geometries
in such a way that partition functions that include branes on cycles which are homotopic
to the asymptotic boundary, cancel the contributions of geometries that have no brane on
these same cycles.

Explicitly, using (3.2) (and gluing branes to the asymptotic boundary using the Weil-
Peterson measure) one can remark that, for any surface Σ, which may or may not have
extra branes, and which may or may not connect the two asymptotic boundaries (either via
geometries or via extra brane correlators on geometries), we have the cancellation

(3.5)

All surfaces having two asymptotic boundaries are among those listed in (3.5), and therefore
Z(β1, β2) = Z(β1)Z(β2) indeed.

To show that the gravitational path integral factorizes when considering n-asymptotic
boundaries, we can generalize (3.5) by grouping geometries in essentially the same way.
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When the boundaries have temperatures β1, . . . , βn, then, for any geometry Σ which might
include handles or an arbitrary number of brane correlators, we have the cancellation

n∑
k=0

∑
σn
k

=
n∑
k=0

(−1)k
(
n

k

)
= 0 . (3.6)

Above, the sum over σnk is over all combinations diving the set of n boundaries of Σ into k
boundaries that end on an asymptotic boundary and n− k boundaries ending on a brane.
Generically all boundaries can have different inverse temperatures βi. The first equation
follows by inserting Zbrane(b1, b2) as given in (3.2) for all the blue brane correlators, and
gluing the branes using the Weil-Petersson measure. One finds that each term in the sum is
proportional to the same gravitational partition function, and the prefactors add up to zero.
Notice that the case n = 1 implies that all higher genus corrections to Z(β) are canceled.

The only exceptions to these enormous cancellations are the genus zero disk, and the
disk with a brane one point function (3.15), which do not have geodesic (that are not a
boundary) homotopic to the asymptotic boundary, therefore the above argument does not go
through. In summary, when we include an exponential of brane two-point function (3.2) in
JT gravity, all wormhole geometries are cancelled to all orders in e−S0 , and only factorizing
contributions remain.

3.2 Uniqueness of the factorizing solution

Let us now prove that (3.2) is the unique solution for the brane correlators, if we demand
factorization. In this section we put Zbrane(b) = 0, as the one-point function does not
impact the factorization discussion.

To have a genus expansion that still makes sense, it will be important to think of the
brane correlators as having an e−S0 expansion too

Zbrane(b1 . . . bn) = =
2−n∑
k=−∞

( )
k

, (3.7)

where the terms on the right side are assumed to scale as ekS0 . The upper bound kmax = 2−n
is fixed by demanding that the connected n-point partition function vanishes at order O(ekS0)
when k > 2− n.15

The idea is now to impose factorization, order per order in the e−S0 expansion, and
for any number of boundaries, and use this to find the expansion coefficients in (3.7).

15Since the leading brane-free connected geometry is O(eS0(2−n)), we indeed can not have n-brane vertices
for k > 2− n.
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Demanding Z(β1, β2) = 0 at order O(1) gives the equation (3.3), which in our current
mindset fixes the leading order propagator to( )

0
= − 1

b1
δ(b1 − b2) . (3.8)

Continuing to focus on the two-boundary gravitational partition function, at next order
O(e−S0) we have no contributions other than that coming from subleading contributions to
the two-brane correlator, and so factorization of Z(β1, β2) at order O(e−S0) demands that( )

−1
= 0 . (3.9)

At order O(e−2S0) there are several diagrams that can contribute, so factorization becomes
less trivial16

(3.10)

The other six diagrams involve only leading order brane two-point correlators. Using (3.5),
we learn that most diagrams cancel, except the first on the first line and the second on
the second line. To determine the O(e−2S0) contribution to the two-brane correlator, we
must hence first determine the leading order 3-brane correlator. Setting Z(β1, β2, β3) = 0
at (first non-trivial) order O(e−S0) gives

(3.11)

Using (3.6) for n = 3, this equation imposes that the leading order brane 3-point vertex
vanishes, which, in turn, can be inserted in (3.10) to prove that the second-subleading order

16Here we will write symmetry factors as if all asymptotic boundaries have the same temperature, to avoid
cluttering. Furthermore, the brane correlators in drawings always denote the leading order ones, unless
explicitly specified otherwise.
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propagator also vanishes( )
−1

= 0 ,
( )

−2
= 0 . (3.12)

Similarly, demanding that Z(β1 . . . βn) = 0 at leading non-trivial order, and using (3.6),
we prove (by induction) that the leading non-trivial order n-point brane vertices must all
vanish in a factorizing theory


2−n

= 0 for n > 2 . (3.13)

This can in turn be used (again in combination with (3.6)) to prove inductively that
subleading lower-point brane vertices must all vanish. In summary, we have proven that
demanding factorization uniquely fixes the brane correlators to be Gaussian (3.2), all higher
point brane correlators must vanish

= − 1
b1
δ(b1 − b2) , = 0 for n > 2 . (3.14)

3.3 Discreteness and exact half-wormholes

We now turn on some non-zero brane one-point function Zbrane(b). For most geometries
with one-point functions we can still use equation (3.6), the only new exception is the
geometry with only one Zbrane(b) inserted.17 Therefore our theory remains extremely simple,
the partition function becomes exactly

Z(β) = Zdisk(β) +
ˆ ∞

0
db bZtrumpet(β, b)Zbrane(b) =

black hole one-point function

.

(3.15)

The disk captures the contribution of the black hole saddle. The only other remaining
contribution can be identified as the half-wormhole discussed in Saad, Shenker, Stanford
and Yao [40, 45] with the important distinction that here we proved that the partition
function receives no other perturbative contributions in e−S0 . We will prove in section 4
that this remains exactly true non-perturbatively in e−S0 .

In this sense what we have done is prove that in this setup the half-wormhole approxi-
mation is exact.

17Remember from section 2.3 that we do not allow degenerate cylinders. Including them does not affect
this argument, it only renormalizes the brane correlators, see section 4.2.
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We now want to check that the expression for Zbrane in (3.2) results indeed in a theory
with discrete spectrum E1, . . . , EL. Using the Gaussian integral
ˆ ∞

0
db bZtrumpet(β, b)

2
b

cos
(
bE1/2

)
= 1

2π1/2β1/2

ˆ +∞

−∞
db exp

(
− b

2

4β + ibE1/2
)

= e−βE ,

(3.16)
we find that the half-wormhole geometry in (3.15) contributes
ˆ ∞

0
db bZtrumpet(β, b)Zbrane(b) =

L∑
i=1

eβEi −
ˆ ∞

0
dE ρ0(E) e−βE = Tr e−βH0 − Zdisk(β) ,

(3.17)
and hence this gravitational theory indeed has a discrete spectrum determined by the
eigenvalues of H0

Z(β) = Tr e−βH0 . (3.18)

Multi-boundary partition functions become just products of this, because all the wormholes
still cancel.

Note that using (3.16), we can alternatively write the full partition function of the
gravity theory as

Z(β) =
ˆ ∞

0
db bZtrumpet(β, b)

L∑
i=1

2
b

cos
(
bE

1/2
i

)

= −
ˆ ∞

0
db bZtrumpet(β, b)

L∑
i=1

(
MiE1/2

i

(b) +M−iE1/2
i

(b)
)
. (3.19)

In particular we recognize (both sheets of) the wavefunction of FZZT boundaries (2.10) in
the allowed region. Hence, the full partition function can be viewed as a sum of cylinder
geometries ending on FZZT boundaries, and the wavefunction MiE1/2

i

(b) +M−iE1/2
i

(b) can
be interpreted as preparing the microstate with energy Ei. Pictorially

Tr e−βH0 = −
L∑
i=1

ˆ ∞
0

db b


MiE1/2

i

(b)
+

M−iE1/2
i

(b)

 . (3.20)

This has similar flavor to the eigenbranes picture of [22], with the important distinction
that here we have a semiclassical interpretation without complicated sum over geometries.
We have thus found that for each Hamiltonian H0 there is a correspondence

H0 ⇐⇒ Zbrane(b) , (3.21)

which, in turn, can be understood as a linear combination of FZZT wavefunctions.

3.4 Magnitude of UV corrections

We want to understand when the half-wormhole or brane one-point function in (3.15) is
a small correction to the leading black hole (as expected of UV corrections). We can
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distinguish two situations, depending on whether H0 is a typical (realistic) draw of the
original JT gravity ensemble, or an atypical draw.

For typical draws we can accurately estimate the importance of the half-wormhole or
brane one-point function by computing ensemble averaged over H0, using the same measure
as in the original JT gravity ensemble. We denoted these averages by 〈 . . . 〉, to distinguish
from the original matrix ensemble. Notice now that Zbrane(b) as given by (3.2) plays exactly
the same role in the ensemble average over H0, as the role played by OG(b) in (2.11) in the
original ensemble average. In particular, ensemble averaging over H0 one recovers the exact
analogue of (2.12)

〈Zbrane(b)〉=
∞∑
g=1

eS0(1−2g)Vg,1(b) ,

〈Zbrane(b1) . . .Zbrane(b2)〉conn =
∞∑
g=0

eS0(2−2g−n)Vg,n(b1 . . . bn) . (3.22)

The last equation can graphically be represented as

… >> conn

=
…

+ higher genus .

(3.23)
Thus, even though the wormholes have canceled in the geometric expansion of the

partition function Z(β), they are still encoded in the statistics of the brane one-point
function (or half-wormhole). From (3.23) we see that all the moments of the one-point
function are suppressed by powers of e−S0 when we compute the partition function, so we
conclude that for any typical draws H0 the UV corrections to the partition function are
indeed suppressed as compared to the black hole geometry Z(β)− Zdisk(β) ∼ O(1), which
is nontrivial since both terms on the left are ∼ O(eS0).

For atypical draws H0 there is no such cancellation occurring, and Z(β)− ZDisk(β) ∼
O(eS0). This implies that the brane one-point function scales as ∼ O(eS0), thus the half-
wormhole contribution is not parametrically smaller than the disk contribution. This is no
surprise, atypical draws are simply poorly described by JT gravity, so for those matrices
H0, this construction makes little sense from the get-go. In summary,

H0 typical member of the JT ensemble ⇐⇒ brane corrections suppressed by ∼O
(
e−S0

)
H0 atypical member of the JT ensemble ⇐⇒ brane corrections never suppressed .

We note that for typical H0 and self-averaging quantities, the red average in (3.23) can
essentially be dropped. The wormhole computation for such observables approximates the
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answer in each member of the ensemble, which itself is captured by only the black hole
and the half-wormhole geometries (3.15). As a concrete example, consider the spectral
form factor [14]. At exponentially late times t > tramp, the spectral form factor is not
self-averaging, but a smeared version where we time average over an interval ∆T � 1 is
self-averaging.18 This implies the following approximate equality19

1
∆T

ˆ t+∆T

t−∆T
dτ Z(β − iτ)Z(β + iτ)

= 1
∆T

ˆ t+∆T

t−∆T
dτ
∣∣∣∣ ∣∣∣∣2 (3.24)

≈



∣∣∣∣ ∣∣∣∣2 ∼ eS0
t3 e

4πβ
t2 for t < tramp

∼ t
β for tramp < t < tplateau

In going from the second to the third line, we used the fact that the time averaged spectral
form factor in quantum systems with (typical) Hamiltonians H0 is self-averaging, such that
one can effectively apply (3.23). So, at early times one sees that both the half-wormhole (in
our model) and geometric wormhole (in JT gravity) are subleading but, when t > tramp, the
half-wormhole contribution starts dominating in the time-averaged spectral form factor, and
crucially the result is well approximated by the JT gravity wormhole. This is why simple
gravity models, with wormholes, but without branes, are oftentimes good approximations.

3.5 Additional comments

A few comments are in order.

1. An important ingredient that has led to the simple expression for the brane cou-
plings (3.14) comes from allowing correlations between branes on closed universes and
branes on geometries that include an asymptotic boundary. One could attempt to
absorb the closed universes in dressed brane correlators (black) that only attach to

18This is because at times on the ramp both the standard deviation of the spectral form, and the spectral
form factor itself, scale as ∼ t/β. After time averaging, the standard deviation scales as ∼ t/(β∆T ), and
the averaged signal as ∼ t/β.

19The figure above involves an analytic continuation from Euclidean to Lorentzian geometry which here
we consider occurs along a geodesic in the geometry. For the contribution of the half-wormhole we take this
geodesic to be located along a geodesic that separates the spacetime into a region that contains a brane and
one that does not. Thus, with our choice, the brane is located entirely in the Euclidean preparation region
of the bra or the ket states. This choice however does not appear to be unique and it would be interesting
to explore other possible continuations to Lorentzian signature.
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asymptotic universes, which would be non-Gaussian

(3.25)
However, some of the terms in this expansion are divergent, which suggests that the
more natural expansion is the original one, which does allow branes connecting closed
and asymptotic universes. We believe that the closed universes are an important
conceptual ingredient in this story. From the perspective of dilaton gravity with
nonlocal interactions (2.21) it also makes most sense to think about things in terms
of there being closed universes as well.

2. Tracing the presence of the brane correlators back to the nonlocal deformations of
the action, we see that the cancellation of all wormholes is due to the perturbative
expansion of these nonlocal deformations around the leading black hole saddle. For
example, the cancellation of the leading two-boundary wormhole is obtained by
expanding the nonlocal deformation around the two copies of the black hole saddle-
point (3.3). This re-emphasizes the importance of tracking such non-local terms in the
low-energy effective theory of gravity. We will further discuss the possible meaning of
such nonlocal terms in the discussion in section 6.

3. It is essential for the arguments of section 3.1 to work, that there is an exponential
of two-brane correlators in our theory which results in a sum over all possible brane
insertions. In these points, we go substantially beyond [40], and it is why we obtain
factorization to all orders in the e−S0 expansion.

4. The simplicity of the result is a consequence of the fact that the integration measure
and integration range when gluing trumpets to any surface Σ in (3.6), is independent
of the topology and moduli of Σ. This is because gluing a trumpet to Σ changes the
mapping class group just by introducing an extra factor MCGΣ × Z.

5. The brane correlators are independent of the parameters that determine the leading
black hole geometry, indeed (3.14) is independent of eS0 and β. This suggests a
possible non-geometric origin for the brane correlators, consistent with our intuition
about the stringy realization of these UV corrections in the section 1 and section 6.

6. Factorization implies null-states in the baby-universe Hilbert space. One might worry
that the negativity of the connected brane correlator Zbrane(b1, b2) might lead to a
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lack of reflection positivity in the gravitational Hilbert space of the theory. To show
that this is not the case we will use the baby universe Hilbert space formalism of [20].
In this Hilbert space, states are obtained from boundary creation operator, which we
can take to create asymptotic boundaries with boundary length β and fixed dilaton.
The norm of any such state can be expressed as20

〈Ψ|Ψ〉 = α†Zα , where |Ψ〉 =
nbdies∑
i=1

αi |Z(β)i〉 , (3.26)

where nbdies is the maximum number of boundaries involved in the state |Ψ〉. Fac-
torization implies that the inner product matrix Zij = Z(β)i+j (whose dimension is
nbdies × nbdies) has rank 1 with its one non-zero eigenvalue being positive and equal
to
∑nbdies
i=1 Z(β)2i. This implies that 〈Ψ|Ψ〉 ≥ 0 for all α, and thus reflection positivity

is not violated in this baby universe Hilbert space. Furthermore, the fact that Z is
rank 1 is a signature of the existence of null-states which are associated to imposing
factorization within in our model. In the usual GNS construction these are then
modded out and the final Hilbert space is one-dimensional, consistent with being
in a single α-state. The geodesic boundaries can be thought of as an additional set
of universe creating operators ÔG(b), with correlations (3.2). These correlations are
only accessible to observers with access to different universes, and are inaccessible
to observers within a single universe. Observers within a single universe can only
measures the total correlation (which vanishes), see section 6.

7. The b integral in (3.20) has saddlepoints. The integrand of (3.20) is even, so we
can extend the integral to the entire real axis and deform the contour through the
saddlepoint at bi = 2βiE1/2

i (3.16). Thus for Ei > 0 (which is the set of energies we
focus on) this saddle is at imaginary b. This means we can actually view it (on-shell)
as a defect geometry with defect angle

αi = 2π + ibi = 2π − 2βE1/2
i . (3.27)

It would be interesting to understand the precise meaning of the emergence of defect
geometries here and in particular its fate upon analytic continuation to Lorentzian
signature. In particular how we cut the Euclidean geometry and glue it to a Lorentzian
section.

All statements thus for hold to all orders in e−S0 perturbation theory. We now prove that
actually (3.2) yields (3.19) even non-perturbatively, the correlated branes truly fix the
eigenvalues of the theory to Ei.

4 Factorization and discreteness from matrix integral localization

Here we explain from the matrix integral description of two dimensional dilaton gravity
why introducing extra bilocal interactions in the spacetime action is sufficient to obtain
factorizing gravity systems, and how the brane one point functions discretize the spectrum.

20We thank D. Stanford and Z. Yang for useful comments in this direction.
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The partition functions of the relevant matrix ensembles are defined as [19, 81]

Z =
L∏
i=1

ˆ
C

dλi exp
(
−L

L∑
i=1

V (λi)
)

L∏
i<j

(λi − λj)2

=
L∏
i=1

ˆ
C

dλi exp

−L L∑
i=1

V (λi) +
L∑
i 6=j

log (λi − λj)

 , (4.1)

where the potential V (E) determines which dilaton gravity we are studying. Typical
observables in this matrix integral are products of spectral densities

ρ(E) =
L∑
i=1

δ(E − λi). (4.2)

This corresponds in gravity with computing amplitudes with fixed energy boundaries, which
are inverse Laplace transforms of the typical fixed length partition functions Z(β). The
equations of motion from varying the action in (4.1) with respect to λi relate the potential
with the large L leading order spectrum ρ0(E) [82]

LV (λ) = 2
 

Γ
dE log(λ− E) ρ0(E) + constant ⇒ LV ′(λ) = 2

 
Γ
dE

1
λ− E

ρ0(E) ,

(4.3)
where Γ is the cut along which ρ0(E) has non-zero support. This principal value integral can
be inverted to determine ρ0(E) in terms of the potential [83]. The constant is the Lagrange
multiplier which is used to fix the normalization of ρ0(E) in the collective field formulation;
its integral over the region Γ is L. Subleading corrections and higher point correlators of
ρ(E) can be calculated by expanding around the saddle ρ0(E). The Vandermonde encodes
non-trivial correlation between different eigenvalues [14].

The gravitational dual of correlated eigenvalues are connected geometries (i.e. worm-
holes) between different asymptotic regions. For example the leading order variance of the
spectral density is computed in gravity by computing the wormhole between two different
asymptotic regions [19]

ρ(E1, E2)conn = − 1
4π2

E1 + E2

E
1/2
1 E

1/2
2

1
(E1 − E2)2 + subleading higher genus corrections. (4.4)

Converting this to fixed β, one simply sums over the wormhole geometry, with any number
of handles.

4.1 Localization concept

In section 3 we saw that one can obtain a factorizing gravitational theory by including branes
with specific correlation functions. In particular, we saw that bilocal interactions between
different branes can conspire to precisely cancel the geometric wormhole correlation between
different asymptotic boundaries. It is surprising that bilocal interactions are sufficient to
attain factorization, since a priori there seems little gravitational reason to expect that
generic multi-local interactions would not feature.
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However from the matrix model side this has a simple explanation. Introducing
bilocal interactions in gravity, corresponds in the matrix integral with introducing a double-
trace deformation,

exp

 ∞∑
m,n=0

fmn2 TrHm TrHn

 = exp

 L∑
i,j=1

f2(λi, λj)

 . (4.5)

This modifies the repulsive force between eigenvalues. The basic intuition how a discrete
spectrum then arises is that we will tune the repulsive interactions and the potential in
such a way that the eigenvalues are frozen at the locations of the eigenvalues of a matrix H0,
drawn from the JT ensemble. Since the undeformed matrix integral itself is comprised of
just single-and double trace terms, it is not necessary to include higher-trace deformations
to achieve this.

More concretely, we will prove that the deformation corresponding to the brane insertions
discussed in section 3, result in a deformed matrix integral of the form

Z (H0) = lim
q→∞

L∏
i=1

ˆ
C

dλi exp

q L∑
i,j=1

I(λi, Ej)

 , (4.6)

where q is a parameter, larger than any other quantity in the matrix integral, whose origin
we explain shortly. Because q →∞ the integrals over λi localize onto the stationary points
of the “action” I(λi, Ej), given in (4.28). We will prove that, with the brane deformations
of section 3, the stationary points are21

∂

∂λi

L∑
i,j=1

I(λi, Ej) = 0 ⇔ λ1 . . . λL = permutations of E1 . . . EL . (4.7)

Therefore, indeed, the set of random eigenvalues λi are frozen to the energy spectrum Ei of
H0.22 Thus, for all purposes, the matrix integral (4.6) reduces for q →∞ to

Z(H0) =
L∏
i=1

ˆ
C

dλi

L∏
j=1

L∑
ij=1

δ(λij − Ej) . (4.8)

This same result was obtained with the eigenbrane picture [18, 22] and the proposal in [57],
but notably the gravitational description we presented in section 3 is much simpler; we
never lose control of gravity as the full theory (1.3) has a good semiclassical interpretations.

We note that already in [57], there were signs that nonlocal interactions should become
important in a factorizing theory of gravity, as pointed out for example in the discussion
there. For large 1/σ2, which is analogous to large q here, multi-trace deformations in the
Harish-Chandra integral become important. We believe that a more careful analysis of

21There can be other saddles, but we will prove below that these are the dominant ones, to which the
integral localizes.

22There are different ways of achieving this localization, here we use the single-and double-trace deforma-
tions of section 3. This differs from the matrix integral action used in [57], which involved a deformation
that broke the Υ(L) invariance.
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the Harish-Chandra integral in the double scaling limit, should reveal the same Gaussian
double-trace deformation as the one which we shall discuss in the next section. It would be
interesting to make that precise.

We now derive the form of I that follows from inserting the correlated branes of
section 3, and prove that it indeed satisfies (4.7).

4.2 Argument

Based on the gravity setup of section 2, we are led to the following deformation of the JT
matrix integral

exp
( ˆ ∞

0
db bOG(b) zbrane(b) + 1

2

ˆ ∞
0

db1b1
ˆ ∞

0
db2b2 OG(b1)OG(b2) zbrane(b1, b2)

)
.

(4.9)

Recall from section 2 that FZZT boundaries corresponds in the matrix integral to insertions of

OFZZT(z) =
L∑
i=1

log
(
λi + z2

)
− L

2 V (−z2) , (4.10)

where z2 = −E. Notice also the potential term for FZZT branes. Furthermore, as discussed
in section 2, we can write a smeared FZZT brane as an operator that creates geodesic
boundaries in the spacetime23

OG(b) = − 1
2πi

ˆ +i∞

−i∞
dz ebz OFZZT(z) =

L∑
i=1

2
b
e−bε cos

(
bλ

1/2
i

)
− L

2W (b) , (4.11)

where we introduced the inverse Laplace transformed potential

W (b) = 1
2πi

ˆ +i∞

−i∞
dz ebz V (−z2). (4.12)

Here, the regulator ε appears because FZZT branes are actually located an ε left of the
imaginary axis, resolvents have small imaginary parts in their energy arguments [19]. This
regulator was not important in section 3, but here we should properly keep track of it.

One important point is that, in equation (4.9), we should be inserting renormalized
brane correlators

lim
q→∞

1
1 + q

zbrane(b) =
L∑
j=1

2
b

cos
(
bE

1/2
j

)
− L

2W (b) , lim
q→∞

1
q
zbrane(b1, b2) = − 1

b1
δ(b1 − b2)

(4.13)
where q is a parameter that relates the renormalized brane correlator to the bare brane cor-
relator whose origin we will explain shortly. This expression for the propagator zbrane(b1, b2)
follows from the geometric propagator Zbrane(b1, b2) of section 3. To understand how this
renormalization comes by, notice that in the undeformed JT matrix integral one finds

〈OG(b1)OG(b2)〉 = 1
b1
δ(b1 − b2) +O(e−S0) . (4.14)

23To see that this is indeed equivalent to (2.11), note the relation of the potential with the genus zero
spectrum (4.3).
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Geometrically this term represents the connected degenerate cylinder, which we explicitly
excluded from our geometric model. However, in the matrix integral we have no choice,
these amplitudes do exist. The full two-point function of OG(b) in the model with the double
trace interaction is then a Dyson series, because we can insert pairs of OG(b) which are
correlated via the brane two-point function zbrane(b1, b2). One should view zbrane(b1, b2) as a
bare brane propagator, and Zbrane(b1, b2) as the dressed propagator, obtained by resumming
a Dyson series of zbrane propagators connected through degenerate cylinders

.

(4.15)
Note that no other closed universe geometries appear in (4.15); they are already included
in the topological expansion defined in section 3, which was expressed in terms of blue
correlators. In (4.15), all diagrams contribute at the same order in eS0 . This is similar
to how in QFT one would treat a mass term perturbatively by resumming diagrams. In
formulas, the above Dyson equation reads

Zbrane(b1, b2) = zbrane(b1, b2) +
ˆ ∞

0
db3b3 zbrane(b1, b3)zbrane(b3, b2)

+
ˆ ∞

0
db3b3

ˆ ∞
0

db4b4 zbrane(b1, b3)zbrane(b3, b4)zbrane(b4, b2) + . . .

(4.16)

As Zbrane(b1, b2) = −δ(b1 − b2)/b1, the solution is zbrane(b1, b2) = −qδ(b1 − b2)/b1, where q
must satisfy

− 1 = −q + q2 − q3 + · · · = − q

1 + q
. (4.17)

This has two solutions q → ±∞, but since we want the matrix integral including the
deformation (4.9) to localize we choose q → +∞. One might additionally be concerned
that (4.17) is only convergent for q → +∞ upon analytic continuation in q. However, (4.17)
is solely used to determine which operator deformation in the matrix integral is equivalent
to the brane insertions discussed in section 3; in the resulting matrix integral, no such
convergence issues are encountered.

The renormalization of the bare propagator by a factor q also affects the first term
in (4.9), i.e. the full one-point function of OG(b) in the deformed matrix model. Comparing
this again with our finding in section 3, we see that including degenerate cylinders results
in the series

,

(4.18)
which, concretely, can be rewritten as

Zbrane(b) = zbrane(b) +
ˆ ∞

0
db1 b1zbrane(b, b1)zbrane(b1)

+
ˆ ∞

0
db1 b1db2 b2zbrane(b, b1)zbrane(b1, b2)zbrane(b2) + . . . . (4.19)
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Plugging in the result for zbrane(b1, b2) that we just derived, this equation becomes

Zbrane(b) = lim
q→∞

1
1 + q

zbrane(b) , (4.20)

and so we need zbrane(b) = (q + 1)Zbrane(b) modulo subleading terms in q which will not
be of importance. We emphasize that requiring consistency with results from section 3,
which demanded factorization and discreteness, forces q →∞. Finite q does not result in a
factorizing or discrete system, not only because the matrix integral does not localize, but
this also simply would not match with our geometric derivation. To summarize, the factors
of q come from taking into account the degenerate cylinders.

We now prove that (4.9) indeed gives the localization described around (4.7). The
workhorse formula which we use to compute all integrals in (4.9) is

− 4
ˆ ∞
δ

db
b
e−bε cos

(
bE

1/2
1

)
cos
(
bE

1/2
2

)
= P (E1, E2) + 4 log δ . (4.21)

Here δ regulates the small b divergence of this integral, which will drop out of all observables,
and P (E1, E2) is given by

P (E1, E2) = log
( (
E

1/2
1 − E1/2

2

)2
+ ε2

)
+ log

( (
E

1/2
1 + E

1/2
2

)2
+ ε2

)
(4.22)

=

 2 log |E1 − E2| for E1 6= E2

log ε2 + log(4|E1|) for E1 = E2
. (4.23)

The quadratic term in OG(b) in (4.9) can now be immediately evaluated

−q2

ˆ ∞
δ

db bOG(b)OG(b) = q

2

L∑
i,j=1

P (λi, λj) + qL
L∑
i=1

ˆ ∞
δ

dbW (b) e−bε cos
(
bλ

1/2
i

)
− q

2
L2

4

ˆ ∞
δ

db bW (b)W (b) + 2qL2 log δ

= q

2

L∑
i,j=1

P (λi, λj)− qL
L∑
i=1

V (λi) + constant. (4.24)

The constant on the second line is independent of λi, and thus cancel when normalizing our
matrix integral. Subsequently we drop such terms. On the last line we used the definition
of the inverse Laplace transformed potential W (b) in (4.12), and did the integrals over b
and z explicitly. Similarly, the linear in OG(b) part in (4.9) evaluates to

ˆ ∞
0

dbbOG(b)zbrane(b) = −(1 + q)
L∑

i,j=1
P (Ei, λj) + (1 + q)L

L∑
i=1

V (λi) . (4.25)

Combining the these two expressions, we find that (4.9) results in the insertion of

exp

q
2

L∑
i,j=1

P (λi, λj)− (1 + q)
L∑

i,j=1
P (Ei, λj) + L

L∑
i=1

V (λi)

 . (4.26)
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The last term cancels the potential in the original matrix integral, so we end up with the
matrix integral

Z(H0) = lim
q→∞

L∏
i=1

ˆ
C

dλi exp

 L∑
i 6=j

log(λi−λj)+ q

2

L∑
i,j=1

P (λi,λj)−(q+1)
L∑

i,j=1
P (Ei,λj)



= lim
q→∞

L∏
i=1

ˆ
C

dλi exp

q+1
2

L∑
i 6=j

log(λi−λj)+ q

2

L∑
i=1

P (λi,λi)−(q+1)
L∑

i,j=1
P (Ei,λj)

 .

(4.27)

Here we have used (4.23) to identify the off-diagonal terms as changing the power of the
Vandermonde. The second and third term on the second line can be viewed as the new
potential of the matrix integral, which now depends on the spectrum of H0. The action
in (4.6) for q →∞ becomes

L∑
i,j=1

I(λi, Ej) = 1
2

L∑
i,j=1

P (λi, λj)−
L∑

i,j=1
P (Ei, λj) +O(1/q) . (4.28)

The O(1/q) terms just get evaluated on-shell in the q →∞ limit.
We can now check that the equations of motion (4.7) indeed have the solution λ1 . . . λL =

permutations of E1, . . . , EL, by noticing that for ε→ 0 (one should only take ε→ 0 at the
very end)

∂

∂λi
P (λi, λi) = 1

λi
,

∂

∂λi
P (Ej , λi) = 1

2Ej
when λi = Ej . (4.29)

Note that the solution is independent of the regulator ε needed in order to regulate the
integral in (4.11). The on-shell action of this solution is large and scales with both − log(ε)
and q, making it the dominant solution, and the variance is small, therefore the matrix
integrals localizes on these solutions for q →∞.

To compute observables such as Z(β1 . . . βn) in this deformed matrix integral, we have
to normalize the answer by the matrix integral partition function (4.6), to find

Z (β1 . . . βn) = 1
Z (H0) lim

q→∞

L∏
i=1

ˆ
C

dλi exp

q L∑
i,j=1

I (λi, Ej)

 L∑
i1=1

e−β1λi1 · · ·
L∑

in=1
e−βnλin

=
L∑

i1=1
e−β1Ei1 · · ·

L∑
in=1

e−βnEin = Tr e−β1H0 . . .Tr e−βnH0 . (4.30)

We emphasize that the q-dependent one-loop determinants, the L! factor coming from
the total number of solutions, and constants such as that in (4.24) drop out between the
numerator and the denominator. Thus, our matrix integral computation confirms that,
even non-perturbatively, our model (that involves correlated spacetime branes) has resolved
the factorization puzzle and yields a discrete spectrum.
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4.3 Additional comments

Several comments are in place:

1. Factorization and discreteness are intimately linked. It is interesting to see what
becomes of the theory with only the bilocal deformation, so with zbrane(b) = 0 and
Zbrane(b) = 0. According to the discussion of section 3, this should be sufficient to
obtain a factorizing theory of gravity. For this we consider the matrix integral with
only the deformation (4.24). One sees that the localization argument still applies, but
now the saddle point equations feature the original potential V (E)

∂

∂λi

L∑
i,j=1

I(λi, Ej) = 0 ⇔ 1
λi

+
∑
j 6=i

1
λj − λi

= LV ′(λi) . (4.31)

These are the equations of motion for some (α,β) ensemble with α = 1 + 2β with
β → ∞ [21, 84]. In the limit q → ∞ and in particular q � L the usual techniques
for solving matrix models break down. In particular, one can no longer make the
approximation that the spectrum is continuous, and the loop equations collapse in
this regime to the above discrete set of equations.24 The limit q → ∞ freezes the
eigenvalues to one classical solution of (4.31) (up to permutations). Even though
we fixed Zbrane(b) = 0, the eigenvalues are fixed non-perturbatively, away from
the continuous leading density of states ρ0, to the solutions of the saddle-point
equation (4.31) (once again, well-approximated by ρ0). A similar localization in the
context of the β → ∞ limit of the β ensembles (with a Gaussian potential) was
discussed in [85], where the matrix integral localized on the zeros of the L-th Hermite
polynomial.25 In summary, turning on only the bilocal deformation (which is sufficient
to obtain factorization), already discretizes the spectrum non-perturbatively. The
parameter q did not make any immediate appearance in section 3, but here we see
that treating the limit q →∞ non-perturbatively, gives an intimate relation between
factorization and discreteness.

2. Large deformations can lead to small changes. Consider H0 to be a typical matrix in
the JT matrix integral ensemble. While the deformations performed in the matrix
integral are very large (since we were forced to take the q → ∞ limit), typical
observables in the matrix integral are only affected at subleading order in e−S0 . This
is so because the leading order density of states ρ0(E) remains unaffected after turning
on the deformation. This is equivalent to our observation in section 3.4 that the
half-wormhole correction is subleading to the black hole solution.

24In the standard large L saddle-point, the equations of motion are imposed for all λ in some to-be-
determined spectral cut. One can interpret the discrete set here as the matrix integral having L cuts around
the eigenvalues, with width going to zero for q →∞. This behavior of nearly-factorized matrix integrals
was also observed using different techniques in [57].

25The matrix model action in that case looks like β
∑

i 6=j log(λi − λj) − βL
∑

i
λi and so at large β it

localizes on the solutions of
∑

i 6=j(λi − λj)
−1 = 2Lλj , which are the equations for the zeros of the Hermite

polynomial HL(
√
Lx). The solutions for large β in our case (α,β) = (1 + 2β,β) would then again be the

roots of the relevant orthogonal polynomial.
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3. Notice that (4.8) is consistent with the fact that observables in the gravity theory
dual to the fixed quantum mechanics, reproduce the observables in the original
dilaton gravity upon ensemble averaging again over the spectrum Ei of the fixed
Hamiltonian H0

1
Z

L∏
i=1

ˆ
C

dEi exp
(
− L

L∑
i=1

V (Ei)
) L∏
i<j

(Ei − Ej)2

L!
Z(H0)

L∏
i=1

ˆ
C

dλi

L∏
j=1

δ(λj − Ej)O(H) = 〈O(H0)〉 = 〈O(H)〉 . (4.32)

This is trivial and boring here, but has interesting gravity consequences, namely
that, as mentioned before in section 3.4, more complicated geometries like wormholes
are effectively encoded in the statistical properties of the brane one-point functions,
the coupling constants in the spacetime action. This is the whole reason why the
original dilaton gravity theory which includes wormhole serves an extremely good
approximation to the gravity dual of one quantum system drawn from the ensemble.

5 Including bulk matter

So far, we have focused on effective field theories that did not include any matter fields
in the 2d bulk. The inclusion of such fields introduces two complications. First, we don’t
know an exact matrix model that is dual to JT gravity plus matter fields. Second, there
are divergences due to Casimir energies associated to spacetime wormholes with narrow
necks. In this section we will address the latter problem, and show that even with matter
one can obtain a discrete and factorizing theory.

5.1 Factorization

In our model with additional (correlated) boundaries, the inclusion of matter requires us to
put certain boundary conditions for the matter fields on those additional boundaries (on
the asymptotic boundaries we use the usual Dirichlet boundary condition). At this point
we will be agnostic about what boundary conditions we impose at the branes, and label
some basis of matter boundary conditions by B.

From the discussion in section 3 it is then clear that we can essentially run the argument
again with matter fields present, one finds that the only non-zero brane correlator is (because,
by definition, the set of all boundary conditions B form an orthonormal basis)

Factorization ⇔ Zbrane matter((b1,B1), (b2,B2)) = − 1
b1
δ(b1 − b2) δ(B1 −B2) .

(5.1)
Following the same arguments that resulted in (3.15), the total partition function reduces to

Z(β) = Zdisk(β) +
∑
B

ˆ ∞
0

db bZtrumpet matter(β, b,B)Zbrane matter(b,B) . (5.2)

Here the trumpet partition function is that of matter-coupled JT gravity. Knowing this
trumpet partition function, and the eigenvalues Ei of the Hamiltonian H0 of the putative
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exact quantum mechanical dual, one could in principle determine Zbrane matter(b,B) explicitly,
which will again depend on Ei. Ensemble averaging over H0 with the appropriate measure
(which as mentioned above, for matter coupled JT gravity, is not currently known) gives
back the genus expansion of wormholes plus matter.

This immediately raises the question what happens in our model to the ea/b (with a
constant a > 0) divergence from the Casimir energy of the matter fields, which features in
the trumpet partition function Ztrumpet matter(β, b,B). In a full UV complete model of JT
gravity with matter, these divergence should not be there, some (unknown) matrix model
description should presumably resolve it. From our perspective, we are imposing that (5.2)
is finite (with some given discrete spectrum). This means that this would-be divergence will
by construction be cancelled by a factor e−a/b in Zbrane matter(b,B). This is independent of
the precise set of typical eigenvalues that one chooses for H0 and so upon averaging this
divergence will remain absent, just as one would expect from a UV complete description of
JT plus matter. Additionally, we expect that when averaging over H0 the contribution of
geometries which have all moduli sizes sufficiently large is however well approximated by
simply coupling JT gravity to matter fields. It would be interesting to make this precise,
should a dual of JT plus matter ever become available.

5.2 Probe matter

To be more concrete, let us consider probe matter, so we ignore any backreaction on
the matter fields but we entirely include the backreaction of such probes on the metric.
Consider a free bulk matter field. In the boundary this corresponds to some operator
O with dimension ∆. Since this is probe matter we can use the techniques developed
in [16, 52, 86–91] and we can use the fact that the free propagator on a hyperbolic disk is
e−∆` with ` the (regularized) geodesic length between the two boundary points.

Let us assume for now that the extra boundaries due to the branes are not allowed to
cut the geodesic between boundary operators. This means we don’t include contributions
coming from geodesics starting on the asymptotic boundary, and ending on the extra brane
boundaries. Our claim is that the two-point function is then given by the sum of four
geometries (we consider the un-normalized two-point function)

〈O(x1)O(x2)〉 = + + + .

(5.3)
From the discussion in section 3 it is clear that the first three geometries contribute, these
are just the disk and half-wormhole contributions, but now with a geodesic one them. The
fourth geometry can not be cancelled by other contributions, and thus remains as well. All
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other geometries cancel, for example (3.3) implies that

+ = 0 . (5.4)

This is because the presence of the geodesic effectively reduces the mapping class group of
the disk with a handle to that of the cylinder [16–18]. Similarly, the mapping class group of
a surface of genus g and one boundary is effectively reduced by the presence of the geodesic
to either that of a connected surface with two boundaries and genus g − 1, or that of two
surfaces, each with one boundary, whose genera sum to g [16–18, 92]. One can then use the
same arguments as in section 3 to prove that only (5.3) remains.

In terms of formulas, the disk geometry in (5.3) contributes [16, 52, 86–91]

〈O(x1)O(x2)〉disk =
ˆ +∞

−∞
d`e` ψ∗disk(`, β − x2 + x1)ψdisk(`, x2 − x1) e−∆`

=
ˆ ∞

0
dE1 ρ0(E) e−(β−x2+x1)E1

ˆ ∞
0

dE2 ρ0(E2) e−(x2−x1)E2 |OE1E2 |
2 ,

(5.5)

with

ψdisk(`, z) =
ˆ ∞

0
dEρ0(E)e−

z
2E
(
4e−`/2Ki

√
8E

(
4e−`/2

))
, ρ0(E) = eS0 sinh 2π

√
E

4π2 ,

(5.6)
and |OE1E2 |2 given by

|OE1E2 |2 = |Γ(∆ + i(
√
E1 +

√
E2))Γ(∆− i(

√
E1 −

√
E2))|2

22∆+1Γ(2∆) . (5.7)

The two half-wormhole diagrams contribute [16]

〈O(x1)O(x2)〉half-wormhole =
ˆ ∞

0
db bZbrane(b)

ˆ +∞

−∞
d`e` ψ∗disk(`, β − x2 + x1)ψtrumpet(`, b, x2 − x1) e−∆`

+
ˆ ∞

0
db bZbrane(b)

ˆ +∞

−∞
d`e` ψ∗trumpet(`, b, β − x2 + x1)ψdisk(`, x2 − x1) e−∆` , (5.8)

where

ψtrumpet(`, b, z) =
ˆ ∞

0
dEρ(E, b)e−

z
2E
(
4e−`/2Ki

√
8E(4e−`/2)

)
, ρ(E, b) = cos b

√
E

π
√
E
(5.9)
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and the fourth diagram (which we will call the nose geometry) contributes26

〈O(x1)O(x2)〉nose =
ˆ ∞

0
db1b1 Zbrane(b1)

ˆ ∞
0

db2b2 Zbrane(b2)
ˆ +∞

−∞
d`e` ψ∗trumpet(`, b1, β − x2 + x1)ψtrumpet(`, b2, x2 − x1) e−∆` .

(5.10)

Adding up these contributions, and writing everything in terms of energy variables as
in (5.5), one finds

〈O(x1)O(x2)〉 =
ˆ ∞

0
dE1 ρ(E) e−(β−x2+x1)E1

ˆ ∞
0

dE2 ρ(E2) e−(x2−x1)E2 |OE1E2 |
2 ,

(5.11)
where the combined spectral density is that of the discretized system (using the explicit
expression (3.2) for Zbrane(b) in the second equality)

ρ(E) = ρ0(E) +
ˆ ∞

0
db bZbrane(b) ρtrumpet(E, b) =

L∑
i=1

δ(E − Ei) (5.12)

Therefore, the full probe matter two-point function becomes a sum over energies, instead of
an integral

〈O(x1)O(x2)〉=
L∑

i,j=1
e−(β−x2+x1)Eie−(x2−x1)Ej

∣∣∣OEiEj ∣∣∣2 = Tr
(
e−(β−x2+x1)H0 Oe−(x2−x1)H0 O

)
.

(5.13)
This is precisely what one would expect from a system with a discrete spectrum, and it is a
non-trivial check to see that our model also works in the case of probe matter. Explicitly, if
we again consider an ensemble average as in section 3.4, we find that after averaging the
two-point function (5.13), the result is identical to the two-point function of probe matter
fields in JT gravity to all orders in e−S0 [16–18, 92], and also non-perturbatively in e−S0

(since this is the operator one would insert in the matrix ensemble). One comment here
is that our assumption about the geodesic boundaries not intersecting the probe geodesic
wordlines seems to be justified, because it gives the correct final result (5.13).

The nose geometry can also be interpreted in a slightly different way. Specifically,
we can think of it as giving an additional contribution to the brane one-point function
Zbrane matter(b,B) as shown below

(5.14)

26There is a subtlety that now one has to quotient the path-integral over gµν by the mapping class group
of the three-holed sphere, which is non-trivial. However, because in the two-point 〈O(x1)O(x2)〉 we are
implicitly summing over all geodesics going from x1 to x2 on the three-holed spherical geometry, including
geodesics that wind around the branes, the quotient by the group can be traded-off with the sum over all
such geodesics as pointed out in [16, 18, 92].
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Here we have cut the nose geometry along its waist, and the detached three-holed sphere
part now encodes the coupling between the matter and the degrees of freedom on the
brane boundary. What we mean with that is that, because in the right figure we now have
geodesics ending on the brane boundary, the detached three-holed sphere now is an operator
insertion on the yellow boundary. Or in other words, this yields a non-trivial boundary
state of the matter on the geodesic boundary. Going back to the case of fully dynamical
matter, we expect this non-trivial state on the geodesic boundary to become the state B

we mentioned above. Moreover, the full two-point function in that case will be given by a
sum over geodesics that not only start and end on the same (asymptotic) boundary (like in
the first three figures in (5.3)) but also a sum over (pairs) of geodesics that start on the
asymptotic boundary and end on the geodesic one (like the figure on right of (5.14)).

5.3 Why wormholes are oftentimes good approximations

As in section 3.4, let us explain why wormholes are good approximations for self-averaging
observables, here including matter or other geometric probes, even in the regime when they
dominate over the (typically leading) black hole geometries.

The time-averaged probe matter two-point function. Just like the spectral form
factor discussed in section 3.4, the probe matter two-point function (5.13) is not by itself
self-averaging, but its time-averaged version over the time-interval ∆T � 1 is. For early
times t < tramp, the time-averaged correlator is dominated by the black hole, the first
diagram in (5.3). This quantity decreases with time forever, which poses a problem for
black hole unitarity [13]. At later times t > tramp, the nose geometry in (5.3) dominates.
Crucially, because the variance of the time-averaged two-point function is small, it is well
approximated by evaluating the correlator on a disk with a handle, the left diagram in (5.4).
As shown in [16], this quantity grows with time. Furthermore, while in JT gravity the linear
growth of the probe two-point function is exact, in our model the exact two-point function
(without a time-average) has additional erratic noise, characteristic of discrete quantum
systems. So, the contribution of the half-wormhole addresses the apparent lack of unitarity
in the black hole geometry [13].

The volume of the black hole interior. A second self-averaging quantity which we
can discuss is the volume of the two-sided black hole interior [92]. This can be evaluated
by inserting `, instead of e−∆` in (5.5) to (5.10). Up to unimportant multiplicative factors,
one finds that the length of the Einstein-Rosen bridge

〈`(t)− `(0)〉 ∼ e−S0
L∑
i<j

e−
β
4 (Ei+Ej)

(
cos

(
t(Ei−Ej)

2

)
− 1

)
(Ei − Ej)

(
cosh

(
2π
√
Ei
)
− cosh

(
2π
√
Ej
)) , (5.15)

which agrees with the length operator computed in [92], after taking an ensemble average
over H0.

As opposed to the spectral-form factor, this volume is self-averaging up to very-long
times t ∼ e2S0 , so no time-average needs to be considered up to very long times. The black
hole dominates when computing the volume up to t ∼ eS0 , a time until which the volume
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experiences a period of linear growth. Past this time, the contribution of the half-wormholes
in (5.3) (or the doubly non-perturbative contributions in the spectral correlator 〈ρρ〉 in
the ensemble average) becomes comparable to the black hole saddle. As observed in [92],
this precisely cancels the linear growth in the black hole saddle, and results in a plateau
∼ eS0 . Thus, the plateau for the volume of the black hole interior, which is typically
attributed to a breakdown of GR [93], can be concretely attributed in our model to the
brane corrections in (5.3).

The Page curve. Finally we can discuss the computation of the Page curve in our model.
For concreteness we will focus on the setup of [5], which couples a patch of spacetime where
gravity is dynamical to a bath where the metric is fixed; within the patch where gravity
is dynamical we will consider our two-dimensional model of gravity with the two-point
correlator between branes given by (5.1). The coupling between the two region is realized
by introducing a common set of matter fields that live in both parts of the spacetime. The
goal is to compute the entanglement entropy of these matter fields along a segment located
in the bath region, as a function of Lorentzian time t.

While we will not go through all the details of computing the Page curve in our model
due to the similarity to [5], we will focus on two points which are necessary in our setup:
(i) understanding why the Page curve is self-averaging in the model of JT gravity coupled
to matter which includes wormholes, and (ii) understanding why the backreaction from
matter fields make half-wormholes geometries dominate over configurations that involve
the standard black hole saddle past the Page time, in the same way in which in the setup
discussed in [5] replica wormholes become the dominant saddle. To this end one considers
n-replicas of the system (sewed in the proper manner) and computes the n-th Renyi entropy
Sn = tr ρnR for the density matrix ρR of the matter fields along the segment in the reservoir;
finally, one takes the analytic continuation n→ 1 to obtain the entanglement entropy.

(i) The Page curve is self-averaging if σSn � 〈Sn〉. To check this inequality we consider
two copies of the n-replicated system, with each of the two replicated sets of baths glued
in the proper manner needed to compute the Renyi entropy, in order to compute 〈(Sn)2〉.
Importantly, note that while each of the n-replicas are connected along the cuts in the
reservoir regions, the two distinct copies of the n-replicas are not connected through the
cuts (this is thus different than considering the 2n-replicas of the system that compute
S2n). At early times (t < tPage) the Renyi entropy is dominated solely by the black hole
saddle and the two copies of the n-replicated system are completely separated. At later
times, there are replica wormhole saddles that dominate. In contrast to the case of pure
JT gravity where no wormhole saddles can be found (since there is nothing that fixes the
modulus b of each wormhole), these saddles exist due to the backreaction of the matter
fields. This backreaction can be understood from the contribution of closed worldlines for
the matter fields that propagate through the wormhole in between different replicas of
the reservoir, finally forming a closed loop by traveling through the cuts in the reservoir.
Denoting the length of such loops by `L, it is the balance between

∑
L e
−∆`L (where the

sum over L involves a sum over all such possible loops including those that wind multiple
times in each one of the n-replicas) and the JT gravity action which stabilizes the moduli of
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the wormhole. Since the two distinct copies of the n-replicated system are not glued along
any of the cuts in the reservoir, then there is no new saddle that involves a replica wormhole
geometry that connects the two distinct n-replicated copies. Therefore, we have that

〈(Sn)2〉 = 〈Sn〉2 +O
(
e−S0

)
=



 …


2

+O
(
e−S0

)
for t < tPage ,

 …


2

+O
(
e−S0

)
for t > tPage .

(5.16)

where the e−S0 corrections comes from configurations that are not necessarily associated to
a saddle-point, such as geometries that connect the two n-replicated copies. Consequently,
we find that

σSn � Sn , for all t , (5.17)

which implies that the Renyi entropies are self-averaging quantities.
(ii) As discussed below (5.14), the matter states B on the brane can be recast through

the insertion of operators (formed out of the matter fields) on the brane. Thus, rewriting
the integral over fields as a sum over worldlines there will be worldlines propagating between
the branes of the half-wormholes living on different replicas. (5.14) can then be extended to
rewrite the interaction between the worldline of the particles in the theory and the brane in
terms of geometries where the worldline never intersect a brane boundary. For instance, for
the n = 2 replicated system, we can take the average over H0 for the correlator of a pair of
operators inserted on the two branes, to obtain>> conn

= , (5.18)

where the right-hand side represents the closed particle worldline which stabilizes the
modulus b of the wormhole. As discussed above, such closed worldlines are necessary to
obtain the replica wormhole saddle-point for n = 2. For higher values of n one can similarly
evaluate the correlation functions of matter operators inserted on the branes. Once again,
after averaging over H0 one can rewrite this correlator in terms of the closed worldlines that
are necessary to stabilize the moduli of the replica wormhole with n asymptotic boundaries.
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In our model, we thus have that the n-th Renyi entropy is computed by

Sn =
…

+ · · ·+
…

+ · · ·+
…

≈



…
+O

(
e−S0

)
for t < tPage ,

…
+O

(
e−S0

)
for t > tPage ,

(5.19)

where in going between the first and second line we have taken the average over H0, used
the fact that the matter backreaction is the same in the half-wormhole as in the replica
wormhole, and then used (5.17) to study each member of the ensemble.

To summarize, at times t < tPage the black hole saddles dominate and the entanglement
entropy along the segments in (5.19) grows with time. At times t > tPage, the backreaction
of matter fields cause the half-wormhole configuration (the last diagram on the first line
in (5.19)) to become dominant. Due to self-averaging, for a typical choice of H0, such a
half-wormhole configuration is well approximated (up to e−S0 corrections) by the replica
wormhole configuration in (5.19). Analytically continuing in n to n → 1, such a replica
wormhole saddle was shown to correctly reproduce the expected time-dependence for the
entanglement entropy in the Page curve. Consequently, the same analytic continuation in
the half-wormhole geometry reproduces the Page curve.

One might wonder whether, when it comes to the density matrix of the Hawking
radiation ρR, our model has a computational advantage compared to the models which
include replica wormholes. The main issue with the replica wormhole computation is that
it is difficult to imagine how to compute individual elements of the radiation density matrix
(ρR)ij , in place of the Renyi entropies Tr(ρnR). In other words, it is unclear whether it is
possible to compute the entanglement entropy in the JT gravitational theory coupled to
matter, without performing the replica trick and taking the analytic continuation to n→ 1.
In our model however, the computation of the Renyi entropy is much closer to that in a
standard QFT; there is no unexpected topology changes when one considers the n-replica
geometry as in the first line of (5.19). Thus, there is, at least in principle, no obstruction
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to computing (ρR)ij for a given choice of Zbrane(b, B). While it is difficult to do such a
computation when our model is coupled to matter fields since we don’t know the precise
matrix integral dual from which typical energies Ei are picked from, such a computation
might be greatly simplified by incorporating the correlated branes discussed in this paper
within the EOW brane model of [6, 80]. We leave such an analysis to future work.

Additionally, it would be interesting to explore the effect of brane insertions for other
self-averaging observables. For instance it would be interesting to explain how the presence
of the brane should explicitly break any global symmetry present for matter fields in the bulk
(as proposed in [94]), analyze how correlated branes play a role in the state reconstruction
for the black hole interior [6] or how they can drastically reduce the dimension of the matter
Hilbert space [94].

6 Discussion

In this work we considered an effective geometric model with correlated spacetime branes.
Those, as we have argued, would arise from integrating our UV degrees of freedom. If
the original UV theory factorizes, this heavily constrains the resulting low-energy effective
theory, which by construction should factorize too. We showed that imposing factorization
completely constrains all correlations between the branes, except for the brane one-point
function. This one-point function is instead completely determined by the discrete spectrum
of the putative dual quantum mechanics. We have shown that these statements uphold
non-perturbatively, by studying the dual of the spacetime brane insertions in the JT gravity
matrix integral.

Our brane correlator Zbrane(b1, b2) is similar in spirit to the two-boundary component of
the baby-universe wavefunction in [40], and to the linked half-wormhole [45], but for one key
difference. Namely that we have an exponential of this correlator (2.21). The exponential
enables us to resolve factorization and discreteness to all orders in the genus expansion, and
non-perturbatively, where the mechanisms proposed in [40, 45] were designed to resolve
factorization to leading order.

In the remainder of this section, we discuss multiple interpretations for these brane
correlators, propose a possible higher-dimensional extensions of the mechanism found to
restore factorization and analyze the UV implications of our findings.

Fight ensemble with ensemble. The mechanism for factorization described here boils
down to having the correct Gaussian correlation between different disconnected components
of the spacetime. To emphasize that this is the key ingredient, rather than describing our
model in terms of branes per se, we discuss several alternative perspectives.

Combining (2.20) and (2.21), and inserting the appropriate value (3.2) for Zbrane(b1, b2),
one can rewrite our bilocal deformation of the dilaton gravity action as a local deformation,
by introducing an auxiliary Hubbard-Stratanovich field Q(b) (a normalization constant
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cancels in all observables)

exp
( ˆ ∞

0
db bOG(b)Zbrane(b)−

1
2

ˆ ∞
0

db bOG(b)OG(b)
)

=
ˆ

DQ(b) exp
(1

2

ˆ ∞
0

db (Q(b)− Zbrane(b))2 +
ˆ ∞

0
db bQ(b)OG(b)

)
⇔
〈

exp
(1

2

ˆ
Σ

d2x
√
g Ulocal(Φ, Q(b))

)〉
couplings

, (6.1)

where we also used the dictionary (2.20) between OG(b) and a local deformation in the JT
path integral. The average in the last equality is over Q(b), using the Gaussian measure
from the second line. The field Q(b) thus introduces random coupling constants, since it
does not depend on the spacetime coordinates x.27 We see therefore that we can interpret
our model as having a dilaton potential picked from an ensemble average. In other words,
an ensemble average in the bulk theory can potentially lead to a factorizable answer in the
boundary theory. To see how this is possible, we need to remember that when computing
the gravitational partition function (with let’s say one asymptotic boundary) one should
also in principle include a sum over all possible disconnected spacetimes. Typically, if
the bulk interactions are fixed, this multiplicative factor is removed when normalizing the
gravitational partition function with one asymptotic boundary by the gravitational path
integral, this time, with no asymptotic boundaries. However, the ensemble average over
Q(b) implies that the contribution of disconnected closed universes is no longer removed by
factorization; this is simply due to the typical observation that the average of a product in
an ensemble is different than the product of averages.

This trick of writing nonlocal interactions as random local interactions is similar to
how Giddings-Strominger and Coleman thought about wormholes [95, 96]. Here though,
we are introducing random coupling constants that cancel wormholes. The point is that all
random couplings can be viewed as generating some type of connection between far-away
regions of spacetime, but only in certain cases does that connection resemble a semiclassical
wormhole. Other random couplings create non-geometric connections, which we believe
encode details about the UV completion, examples are the tiny wormholes of [97].28 We
have shown that those non-geometric connections can completely undo the contribution of
connected geometries (real wormholes) to the gravitational path integral.

Alternatively, as advertised in section 2, one can view our model as having explicit
nonlocal spacetime interactions (the potential can be obtained explicitly from (2.21) and (3.2)
by doing the integrals over b1 and b2)

−Inonlocal = e−2S0
n∑

i,j=1

ˆ
Σi
d2x1

√
g(x1)

ˆ
Σj
d2x2

√
g(x2)Unonlocal(Φ(x1),Φ(x2)) , (6.2)

where Σ = Σ1 ∪ · · · ∪ Σn, and the disconnected components can be closed universes or
surfaces with an asymptotic boundary. Thanks to the sum over i, j there are once again

27The field Q(b) lives in the target space in string theory language. The relevance of target space in this
setup is unclear.

28See the discussion of [57].
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interactions between closed universes and the asymptotic boundary, and between different
asymptotic boundaries: in this case the interaction will be manifest by correlating the profile
of the dilaton on these different components. As emphasized before, these correlations were
key for factorization.29

What are the experiences of some observer in this theory? Even though the bilocal
potential (6.2) seems to induce interactions that might violate causality, the equivalence
to the Hubbard-Stratanovich formulation (describing the boundary theory with fixed
Hamiltonian as an ensemble average over dilaton couplings in the bulk (6.1)), and to
the half-wormhole picture (3.15) reassure us that, at least as far as we can see, there
is no violation of causality. Furthermore, the half-wormhole picture (3.15) implies that
from the perspective of a boundary observer there is no real indication of the correlation
between different spacetime components (since all spacetime wormholes precisely cancels
the contributions of the correlated closed universes): the observer’s only possible “clues” are
simply the existence of a discrete spectrum and the factorization of all boundary observables.

Implications for higher dimensions. The fact that factorization boils down to corre-
lating disconnected components of the spacetime, appears to be independent of the number
of spacetime dimensions and is not uniquely tied to our model of correlated branes. It
is therefore not unreasonable to expect a similar mechanism to also hold in spacetime
dimensions D = d+ 1 > 2.

In the two dimensional case we studied in this paper, the boundary is always a circle
and is the only boundary topology one needs to worry about. The resolution of factorization
was then to just include branes such that manifolds with topology I×S1 are included in the
path integral. Spacetimes with other topologies are always canceled with closed universes
that are Gaussian correlated with the spacetime on which the asymptotic boundary resides.
In higher dimensions, the boundary topology can be much more complicated and we would
have a more general manifold Md−1 as the spatial manifold. Extending our logic, it would
then be enough to factorize topologies of the form I × S1 ×Md−1, which is always true
sufficiently close to the asymptotic boundary. However, since the spectrum depends on the
spatial manifold Md−1, each Md−1 needs to be factorized and discretized seperately. From
the gravitational theory we would then include a similar bilocal term to the action, just
like (6.2). Again this can be decoupled using a Hubbard-Stratonovich field and would again
have the interpretation of averaging over bulk couplings. Notice that this is independent
of whatever is going on in the bulk (i.e. there could be fluxes, strings or branes wrapping
cycles), just as our arguments were independent of what Σ was in (3.5).

Non-geometric wormholes in string theory. In full-fledged string theory, there should
be configurations of strings that correspond with including wormholes on an asymptotic
spacetime, because all allowable metric configurations should be included in the (non-
perturbative) string description. Here, with wormholes, we mean the pure gravitational
configurations, like the ones discussed in this work that are also include in JT gravity. If

29It would be interesting to understand this nonlocal theory classically (not treating (6.2) as a deformation
that we expand). The one-point function (2.20) with (3.2) seems to introduce a type of raggedness (or
discretization) in the classical metric, but the classical role of the nonlocal interactions is more obscure.
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there are wormholes on an asymptotic spacetimes, there are also wormholes connecting
asymptotic regions.30 Therefore, even in full-fledged string theory, there is a factorization
puzzle, as something needs to cancel these wormholes, such that the full answer factorizes.
This “something” would be the UV degrees of freedom which after being integrated-out
results in the nonlocal deformation which we rewrote in terms of correlated branes.

What could those UV degrees of freedom be? We suspect that the analogue of the
brane two-point function are very non-geometric string configurations that connect two
separated regions in spacetime.31 Indeed, many string configurations have no semiclassical
gravity interpretation, but they can still be important. To make progress on this, one would
have to find some string theory for which there are some more-or-less classical wormhole
configurations (unlike in the model of [44]), and find other string configurations that
cancel those wormholes. For instance, it would be interesting to understand whether the
mechanism of tachyon condensation, discussed in [98, 99], which results in a spacetime with
disconnected components, leaves behind non-trivial correlation between those components.
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A Branes versus defects

In this appendix we will discuss in a bit more detail the defect and trumpet geometry, and
their analytic relation. Let us consider 2d hyperbolic metrics in Fefferman-Graham gauge
(with constant B)

ds2 = dρ2 +
(
eρ −B e−ρ

)2 du2 , u ∼ u+ 2π (A.1)

Depending on the value of B we have different geometries: B = 1/4 is the disk, B positive
(but unequal to 1/4) are conical defect geometries and finally negative B are trumpet
geometries. The defect geometry has a conical singularity at the origin (we can always
choose this to be at the origin) with deficit angle 2π(1−2

√
B), therefore it is the solution to32

R+ 2 = 4π
(
1− 2

√
B
)
δ2(x). (A.2)

30For example, one could imagine take a pinching limit of some higher genus boundary to obtain
disconnected boundaries, as in [17, 37], then some wormholes that were originally attached to the same
asymptotic boundary will connect two different asymptotic regions, you can therefore not have one type of
wormholes without having the other type too.

31One piece of evidence in favor of non-geometric configurations is that our brane two-point function is
independent of β and eS0 as discussed in section 3.5.

32Here we follow [79] and normalize the delta function as
´

d2x
√
g δ2(x) = 1.
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The trumpet geometry with B < 0 has one asymptotically AdS boundary, and one
geodesic boundary of fixed length b and is related to the defect geometry by analytic
continuation. To understand this a bit more, notice that for the trumpet geometry guu will
be positive for all ρ and has a minimum at some ρ = ρ0. The trumpet is then obtained by
restricting the range of ρ from ρ0 to ∞ (or from −∞ to ρ0). For negative B the coefficient
of the delta function in (A.2) becomes complex

R+ 2 = 2(2π ± ib)δ2(x) , (A.3)

where we used that the size of the neck b is related to B as b = 4π
√
−B. So we get the

familiar relation b = ±i(2π − α) [79] where the different signs correspond with the two
choices of branch

√
−B = ±i

√
B. The imaginary defect (A.3) is located at ρ0 ± iπ/2,

which is why we see no curvature singularity in the trumpet geometry. When we insert an
imaginary defect, we can choose the contour for the ρ coordinate along the real axis from
∞ to ρ0, and then along the imaginary axis until we reach the defect, analogous to how an
expanding dS transitions to the semisphere. So, imaginary defects are the same as geodesic
boundaries, they are only distinguished by where we imagine cutting off the geometry (at
ρ0 or ρ0 ± iπ/2).

In (2.20) we also secretly encountered (A.3). Namely, if we take the dilaton potential
corresponding to the insertion of an exponential of geodesic boundaries, we found the
dilaton action

I[g,Φ] = −1
2

ˆ
Σ

d2x
√
g
(
Φ(R+ 2) + 2e−S0 cos(bΦ)e−2πΦ

)
(A.4)

As with the usual defect calculation [56], we now expand the part of the exponential e−I

containing the non-trivial dilaton potential. This gives the correction to the usual JT
partition function of the form

δZ(β) = e−S0

2

ˆ
d2y

√
g(y)

ˆ
DgDΦ
Vol exp

(
−1

2

ˆ
Σ

d2x
√
g(Φ(R+2)−2(2π−ib)Φδ2(x−y))

)

+ e−S0

2

ˆ
d2y

√
g(y)

ˆ
DgDΦ
Vol exp

(
−1

2

ˆ
Σ

d2x
√
g(Φ(R+2)−2(2π+ib)Φδ2(x−y))

)
+multiple defects. (A.5)

The equations of motion associated to each branch are precisely those we had found before
by analytically continuing the defect geometry (A.2). The deformed dilaton potential takes
both defects with ±b into account with equal weight. This is also what one expects from
the BF perspective; the holonomies with ±b are conjugate by an SO(2) rotation (so then
all physical observables are an even function of b) [55].
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