PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: June 23, 2022
ACCEPTED: August 18, 2022
PUBLISHED: September 8, 2022

Microstructure in matrix elements

Andreas Blommaert® and Mykhaylo Usatyuk®°¢
@ Stanford Institute for Theoretical Physics,
Stanford University, Stanford, CA 94305, U.S.A.

bCenter for Theoretical Physics and Department of Physics,
Berkeley, CA, 94720, U.S.A.

¢ Kavli Institute for Theoretical Physics, University of California,
Santa Barbara, CA 93106, U.S.A.

E-mail: ablommae@stanford.edu, musatyuk@berkeley.edu

ABSTRACT: We investigate the simple model of Pennington, Shenker, Stanford and Yang
for modeling the density matrix of Hawking radiation, but further include dynamics for
EOW branes behind the horizon. This allows interactions that scatter one interior state to
another, and also allows EOW loops. At strong coupling, we find that EOW states are no
longer random; the ensemble has collapsed, and coupling constants encode the microscopic
matrix elements of Hawking radiation. This suggests strong interior dynamics are important
for understanding evaporating black holes, without any ensemble average. In this concrete
model the density matrix of the radiation deviates from the thermal state, small off-diagonal
fluctuations encode equivalences between naively orthogonal states, and bound the entropy
from above. For almost evaporated black holes the off-diagonal terms become as large as
the diagonal ones, eventually giving a pure state. We also find the unique analytic formula
for all Renyi entropies.

KEYWORDS: 2D Gravity, AdS-CF'T Correspondence, Matrix Models, Models of Quantum
Gravity

ARX1v EPRINT: 2108.02210

OPEN AccCESS, © The Authors.

Article funded by SCOAP?. https://doi.org/10.1007/JHEP09(2022)070


mailto:ablommae@stanford.edu
mailto:musatyuk@berkeley.edu
https://arxiv.org/abs/2108.02210
https://doi.org/10.1007/JHEP09(2022)070

Contents

1 Introduction 1
1.1 Summary, structure and main lessons

2 Gravitational description 5
2.1 Replica wormholes )
2.2 Interior dynamics 7
2.3 Dual matrix integral 12
2.4 Strong coupling and non-random states 17

3 Matrix elements without ensemble average 19
3.1 Density matrix 20
3.2 Higher moments 21
3.3 Entropy and planar resummation 23

4 Concluding remarks 26

A Gravitational amplitudes 30
A.1 Pinwheels 30
A.2 Modeling interactions 32
A.3 Computing amplitudes 34

1 Introduction

Hawking argued that black holes evaporate into a mixed state of radiation [1], even those
formed from pure states. However, AdS/CFT implies that all black holes act as normal,
unitary quantum mechanical systems when viewed from the outside [2]. Hawking’s notion
of black hole evaporation must therefore be incomplete; black holes formed from pure states
cannot evaporate into mixed states within AdS/CFT.

There has been significant recent progress on reconciling black hole evaporation with
the constraints of unitarity [3, 4]. Instead of computing the state of Hawking radiation and
evaluating its von Neumann entropy, the entropy can be computed using the replica trick
and the gravitational path integral [5, 6]. Replica wormholes contribute to the gravitational
path integral, and give a unitary Page curve [7].

However, in these recent developments, the state of the radiation appears to be the same
state that Hawking computed. Naively it seems inconsistent to have both a mixed state and
a unitary Page curve. The reason is that, naively, gravity is dual to an ensemble average
of unitary quantum systems; not one quantum system [5, 6, 8-30]. This gravity /ensemble
duality [31] occurs when considering simple models of gravity, like pure JT gravity.
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Figure 1. Normalized version of the density matrix (1.2) for & = 20 and > = 50,5, 1 (left, middle,
right). Orange is positive and blue negative. Intensity of colors reflects the magnitude of individual
matrix elements. Off-diagonal elements are less/not suppressed for black holes that have almost
evaporated (middle/right).

We believe that more realistic models of quantum gravity, like those typically imagined
in AdS/CFT, require no ensemble averaging. The price for unitarity, is a less simple bulk
description. See [32-34] for a concrete recent example that averaging over string theories is
not required.

In those realistic models, the Page curve is unitary, and the density matrix of the
radiation follows the standard rules of quantum mechanics; therefore the state does not
remain mixed. We would like to understand the bulk phenomena that explain the deviations
of the density matrix from being maximally mixed. To accomplish this, we study the gravity
description of one member of the ensemble dual to JT gravity with non-dynamical EOW
branes [6], focusing on the description of density matrix elements.

The partition function for the ensemble dual to JT gravity with non-dynamical EOW
branes, is [6]*

Z = ij’dCT exp ( T <0T0)> de exp ( ~LTr <V(H))> . (1.1)

One member of this ensemble is described by a L x L Hamiltonian Hg, describing the bulk
gravitational degrees of freedom; and furthermore by a L x k matrix Cy, describing the
interior states [6]. In section 3 we explain that in one member of the ensemble the density
matrix of the radiation is essentially

k k
= Dyl iy Gl = ), Z Conj Coas I1) (il = CSZ iy (il + O(e?). (1.2)
t,j=1 ij=1a=1

Here we took the microcanonical ensemble with e® black hole states. We want to understand
the gravity dual to a theory with fixed Cy, which produces this density matrix; this is
described in section 2. The numerical structure of these matrix elements is discussed in
section 3. The state is plotted for fixed Cy in figure 1.2

!See appendix D of [6].
2Similar plots were made for SYK with fixed couplings [11], using a different representation for the
density matrix (1.2).



The gravity interpretation of fixing the random Hamiltonians to Hg is a decoupled
problem, aspects of which have been understood in [12, 13, 35, 36]. This is not the focus
of the present paper; nevertheless we include a short discussion on the associated extra
ingredients in section 4.

1.1 Summary, structure and main lessons

In section 2 we are invited by gravity considerations to investigate deformations of the
matrix integral (1.1)3

Z:JdC’dCTeXp<—(1;Tr (CTC) AT (cgc+cTco)>. (1.3)

The actual model for which we construct the gravitational dual in section 2 is slightly more
complicated; here we simplify for presentation purposes. The gravitational interpretation of
this deformation is to introduce scattering interactions from one EOW state into another,
with coupling constants g;; that depend on 7 and Cq. See section 2.2 and figure 2 for gravity
and section 2.3 for the matrix integral.

Matrix elements are computed in this simplified description as ensemble averages of

(bjlipiy = D7 CkiCly (1.4)
a=1

We are particularly interested in the models where the propagator G takes the value
1/G =1+ ~. This interpolates between JT gravity with non-dynamical EOW branes (1.1)
for weak coupling v =0

Z = JdCdCT exp ( Ty ((JVJ)) ; (1.5)

and a gravity model with the matrix C fixed to one member of the ensemble for strong

coupling v = o0,

szdCdCTexp(—Tr (CT0)>5(C—CO)5(CT—CS). (1.6)

The stronger the interactions the less random the matrix C, and the more realistic the
quantum gravity model under consideration. This is one key lesson of this work; in these
two dimensional models, realistic gravity systems involve strong interior dynamics. See
section 2.4.

Furthermore, the microscopic data of the theory, here represented by the non-random
matrix Cp, are encoded in the specific coupling constants g;; for the EOW brane interactions.
See section 2.3.

3This is technically rather similar to deformations considered recently in [35]. We briefly suppress the H
matrix integral.
4Overall constants are irrelevant.
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Figure 2. In the model of section 2 the off-diagonal terms come from EOW interactions where
boundary particles can change flavor, the associated coupling constants depend on v and Cy and
the summations are over different flavors of the intermediate boundary particles (external flavor
labels ¢ and j were left implicit).

For weak coupling v « 1, the matrix elements acquire small off-diagonal components

S

_ 0ij 72 3 *
<¢J’wl> - (1 +J')’) + (1 T 7>2 0;1 COaj COai : (17)

The first term, J;;, corresponds to the usual rule for summing over EOW branes connected
to asymptotic boundaries. If the brane flavor is the same on both ends of the boundary, the
EOW particle can freely propagate. The second term accounts for scattering interaction
between branes of different flavor, this leads to nonzero off-diagonal matrix elements [6, 11,
37, 38]. See section 2.2 and figure 2.

In the strong coupling regime v » 1, one recovers the non-random density matrix (1.2).
Although it may not be obvious, the off-diagonal terms are small relative to the diagonal
ones in (1.2) when e> » 1. In realistic gravity models, without averaging, the density
matrix (1.2) is not mazimally mized. The matrix Cy has dimensions e° x k, which means
that the rank of the density matrix is upper bounded by both k and e° [10]; this suffices to
understand the Page curve. See section 3.1 and section 3.2.

When we are ignorant about the microstructure of our system, we believe the states
|1;) are linearly independent; but in reality there are equivalence relations between them,
there are null states. This is captured by numerical plots in figure 1. The leading order
approximation to the density matrix retains only the dominant diagonal in figure 1 (left)
and suggests a maximally mixed state; however the smaller off-diagonal matrix elements
become competitive when koce® and encode equivalence relations. When the black hole has
almost evaporated e>ocl1, the off-diagonal matrix elements are actually no longer suppressed,
and the density matrix is far from being maximally mixed. Ultimately, for e> = 1 the state
becomes pure again. See figure 1 (right) and section 3.2.

The Page transition is caused by the collective behavior of many small off-diagonal
matrix elements of order O(e™>/2) [6, 11, 37, 38], but the fact that the density matrix
becomes pure again actually relies on the off-diagonal matriz elements ultimately becoming
large at the end of evaporation.

In section 3.3 we obtain the unique analytic continuation for the Renyi entropies within
the planar approximation, as an aside. In section 4 we summarize our main findings, and

discuss generalizations.



2 Gravitational description

In section 2.1 we review the simple model of [6] both from the gravity and matrix model
perspective. In section 2.2 brane interactions are introduced on the gravitational side, and it
is shown that previously orthogonal inner products receive small overlaps due to these new
interactions. In section 2.3 the matrix model deformation that gives the brane interactions
is introduced and analyzed, and in 2.4 the strong coupling limit is considered where the
matrix C is fixed to Cp.°

2.1 Replica wormholes

Following [6], let |1;) be the state of a black hole with a non-dynamical EOW brane with
flavor ¢ behind the horizon. We would like to think of this state as modeling an interior
mode of the radiation. Furthermore, let |i) be a basis of an auxiliary system, modeling the
early outgoing Hawking modes.
Evaporating black holes can be emulated by considering the entangled, unnormalized
state [6]
k

Dy ® iy (2.1)

i=1

Naively [1;) form a k dimensional basis; and concordantly this state is maximally mixed.
Black hole evaporation is modeled by increasing k. Naively, increasing k can make the
entanglement between the black hole and radiation arbitrarily large, even exceeding the
Bekenstein-Hawking entropy S — this is the maximal entanglement the black hole can have
with the exterior. This contradiction is a version of the information paradox, similar to the
Page curve.

The resolution is that the states [¢;) are not a k dimensional basis; they have small
nonzero overlaps that conspire to put an upper bound e® on the dimension of their
span [6, 11, 39, 40]. The way this gets diagnosed in [6], is by computing the Renyi entropies
associated with the reduced density matrix of the radiation®

pij = {Pjli) - (2.2)

The state [1);) is prepared by shooting in an EOW particle with flavor ¢ and mass p at
the boundary and then evolving for a thermal time /2, giving the black hole some finite
temperature. The bra works similarly, and because the EOW branes are non-dynamical
there is no way for them to change flavors along their trajectory. To calculate inner products
we apply the rules of the gravitational path integral. The inner product (2.2) introduces
boundary conditions consisting of an asymptotic boundary of length 8 connected to two
EOW branes of flavors ¢ and j. We sum over all geometries consistent with these boundary

5The Hamiltonians H remains random throughout this section, see section 4.
SThroughout this section the density matrix is unnormalized.



conditions. This results in the following gravitational amplitude, to leading order in e°

Pij = 5ij aoc (52']' €S. (2.3)

The black circle denotes an asymptotic JT gravity boundary of length 3, and the orange
line denotes the EOW particle with mass ;.” These amplitudes significantly simplify in
the microcanonical ensemble, the black circle then denotes a microcanonical boundary
condition [41]. Details about gravitational amplitudes are gathered in appendix A.1.8

This looks like a maximally mixed state with the states |1);) spanning a k dimensional
basis due to the ¢;;. However, this conclusion changes when considering higher moments of
matrix elements

pij Pl = {5 |vi) Wk - (2.4)

The particle with flavor i can end up where one detects the outgoing particle with flavor
j, however it could also end up where one detects the flavor [. Therefore we have two
contributing Feynman diagrams

Pij Prl = 0ij Okt C ) + 040k < > o 81 Oy €25+ 03y O 5.

(2.5)
This is not simply the square of (2.3), because JT gravity with EOW branes is not one
quantum system, but an ensemble of unitary quantum systems (1.1).

The expectation value for off-diagonal elements (1;|1;) vanishes, but their standard
deviation does not, as captured by the second geometry in (2.5). These smaller off-diagonal
terms become important and severely constrain the span of |¢;) when k exceeds e°.

Consider for example the purity, which in the leading order approximation be-

comes [7]%10
1 1
Ry=—+—.
>k * eS

The second term stems from the replica wormhole in (2.5) and dominates when k£ >» e

(2.6)

S

Y

this effectively places an upper bound e® on the dimension of the span of interior states
|t;>. The ensemble averaged theory knows about the finite dimensionality of the interior
state space.

The ensemble in question consists of a random k x L matrix C, describing the EOW
brane degrees of freedom; and some random L x L Hamiltonian H describing the bulk

"We exclude brane labels on most gravitational diagrams for presentation purposes.

8We suppress subleading higher genus wormholes for reader comfort throughout.

9There are corrections in the denominators from contracting with the normalization of the density
matrix [42].

10We define R, = Tr(p™) throughout, with p normalized. These are not quite the Renyi entropies but
play the same role.



gravitational degrees of freedom (1.1). In this ensemble language, the random interior states
and corresponding matrix elements are [6]'!

L
) = MZ_1 (e—ﬁH/Qr (u 124 iH1/2) )ab Oy lad

(¢ (u-1/2% iH1/2>1/2 T (p-1/2% iH1/2>1/2 c)

Pij i
J

i c (...)ab ;. (2.7)

a,b=1

The vectors |a) represent a fixed rigid basis, analogous to the spin basis in SYK [43], the
Hamiltonian H in this basis is a matrix of random numbers. The brane states |1);) are
some random linear combination of the fixed basis states, specified by the matrix C. Wick
contractions of C' are EOW branes in gravity, see section 2.3.

2.2 Interior dynamics

In a unitary gravity theory the density matrix elements are just numbers without any
variance. This raises the question of what the gravity interpretation of these numbers is.
We partially address this, by describing a gravity model where the ensemble over random
matrices C' collapses to a fixed matrix Cy.

The simple model of JT gravity with EOW branes, has mass p boundary particles
representing the branes, with action and boundary conditions [6]

Sz,ufds, on®=p, K=0. (2.8)

The pieces of thermal boundary have fixed length boundary conditions [44—46], see also
appendix A.1. We now enrich this model by allowing EOW interactions. EOW branes are
boundaries on which two dimensional spacetimes end. This severely limits the set of EOW
brane dynamics that we can introduce:

1. There can be interaction vertices for 1 — 1 EOW particle scattering where a particle
of flavor 7 scatters to a particle of flavor j, potentially accompanied by the emission
or absorption of particles into the bulk spacetime. We restrict ourselves to one type
of interaction, weighted with coupling constant g;;

gij < or g do~—”y> . (2.9)

Our specific choice for interaction vertices, which is of the first kind above, is detailed
below and in appendix A.2.

1The + means we multiply both signed gamma functions. We implicitly use the double scaled Hamilto-
nian throughout.



2. An EOW particle can propagate between two distinct points, these are either interac-
tion vertices or points where the EOW particle ends on a bra or ket. We have the
liberty to include an extra overall factor G weighting every EOW propagator

Q

G ; (2.10)

o

which corresponds to adding a constant to the EOW brane action (2.8). This is
somewhat ad-hoc, but entirely similar to the introduction of Sp in [10]. One can
imagine more complicated quantum systems living on EOW branes which give these
extra factors. We forsake the details since we are only interested in constructing a
proxy for more general dynamical interiors.

3. When 1 — 1 interactions are included, there exist clearly also 0 — 2 creation events,
and 2 — 0 annihilation events with the same coupling constants g;;. Furthermore
there is nothing preventing dynamical EOW branes from forming closed vacuum loops,
making holes in the spacetimes. This exhausts all options for EOW brane interac-

tions.!2

Let us summarize the ingredients of our theory. There are k flavors of EOW particles with
the same mass p, and we have black hole states |¢;) for each particle flavor. There are
interaction vertices where a particle of flavor ¢ turns into a particle with flavor j. Because
this theory is dynamical, any number of interactions is allowed, and we must sum over all
possible interactions when calculating amplitudes. Also, there are closed loops of EOW
particles, with and without [47] interaction vertices on them.

The main new ingredient are interaction vertices where branes can change flavor; we
must choose a specific way to model these interactions and deduce the corresponding JT
gravity boundary conditions. For this it helps to think of JT gravity from the minimal
string perspective [8, 41, 48-53].

Then each flavor of EOW particles corresponds with a D-brane, and interaction
vertices correspond naturally with insertions of boundary operators 7, ;;; these are open
string Tachyons stretching between D-branes, with Chan-Paton indices ¢ and j. Only the
simplest of the chiral vertex operators 77 ,;, known as marking operators, have a known JT
gravity interpretation [51, 54-56] when stretching between D-branes with FZZT boundary
conditions [8, 57-59].1% Marking operators then correspond with the 8 = 0 limit of a fixed
length boundary. This extends to mass u boundary particle segments, relevant for EOW
particles, since these are linear combinations of FZZT segments. See appendix A.2.

We have obtained sensible JT gravity boundary conditions for the EOW interaction
vertices. This allows us to calculate any desired amplitude. We consider two examples to
clarify the rules.

12For example 1 — 2 brane scattering interactions clearly cannot represent the boundary of some
nonsingular spacetime.
13Recently an educated guess was made for the interpretation of the other boundary operators [54].



Brane partition function. We first consider something we call the D-brane partition
function, consisting of all interacting EOW brane loops, and all spacetimes ending on them.
These are the vacuum fluctuations of our system, they are modded out in all interesting
calculations of matrix elements. Going through this first, lightens the presentation of matrix
elements later.

The D-brane partition function Z has the following expansion'#
0.
k k 1 k
logZ = ) P + > P +3 om P2
p1=1 p1=1 p1,p2=1
O e}
Q
1 k
+3 Z_ P/ \P2 ... (2.11)
P1,p2,p3=1
e o

P3

This is a sum over the number n of scattering interactions, within each closed EOW particle
loop. The 1/n symmetry factor is because cyclic permutations of the flavors describe the
same Feynman diagram, which should be counted only once. The log reflects the fact
that in the D-brane partition function Z, we can have any number m, of those closed
EOW particle loops with n interactions and an identically ordered set of flavors; which are
therefore indistinguishable.

To compute the full D-brane partition function we must exponentiate the disks (2.11)
and then fill in bulk geometries; this includes cylinders connecting disks and more general
wormhole topologies.

It is no accident that we use the same notation Z as for the matrix integral partition
function, these are the same modulo disconnected spacetimes, like the sphere, which can be
ignored; see section 2.3.

To compute these diagrams we must first isolate the EOW brane Feynman rules,
meaning the factors G and g;;, from the basic JT gravity amplitudes; then simply compute
the latter.

We find it convenient to denote gravitational boundary conditions by their matrix
integral counterparts. The JT gravity calculation is insensitive to the flavors of the EOW
particles, and only depends on the number of interactions n. In that case there are n
segments of mass p boundary particles, separated by marked points; as explained in
appendix A.2 this corresponds with the operator insertion

Tr (r (u 124 iH1/2>n) . (2.12)

The particle flavor indices are p1, p2 etcetera. The holes indicate that one should fill in these diagrams
with all Riemann surfaces with any number of handles after taking the exponential, as discussed below (at
this point we are describing the boundary conditions). We remark that there are no contributions from
disk topologies filling out the first three diagrams, because those genus zero Riemann surfaces bordered by
geodesics do not exist (or are degenerate in the third case). This is not important for what follows, because
these diagrams (which do not connect to probes because they are disks) cancel out of observables, much like
vacuum loops without interaction vertices in QFT.



The double scaled matrix integral dual of the loop without marking operators was deduced
in [47] and reads®®

Trlog (r (u L1224 iH1/2>> . (2.13)

When translating the partition function (2.11) to gravity calculations, the EOW
particle Feynman weights come out as prefactors for the gravity amplitudes. Because of the
summation over flavor indices, the couplings g;; combine nicely into traces, and we obtain
the gravitational “boundary conditions”

0
G" n
log Z = kG Trlog(F (u v 12+ iHl/z)) + 3 T <g”) Tr(F (u 12+ 1H1/2) ) .
n
n=1
(2.14)
There is an exponential of JT gravity boundaries in Z, represented by the traces, we should
sum over all spacetimes ending on them. The way to proceed with the gravity calculations

is to use the general identity for expectation values of observables in any theory, crucial to
understand D-branes [8, 60]

log (exp(x)) = Z %@m%onn . (2.15)
m=1 """

To good approximation one can then only include the exponential of disk shaped topologies,
and annulus shaped topologies connecting to EOW particle boundaries [8].16 Because we
will not need any detailed answers for the point we are trying to make in this paper, we
omit the resulting expression.

Matrix elements. Next consider matrix elements p;; = (1j]1;), which give the gravita-
tional boundary conditions discussed in [6]

jliy = : (2.16)

As always we should sum over all possible Feynman diagrams ending on the boundary
conditions. This includes EOW particle dynamics, and all gravitational spacetimes ending
on the resulting diagrams.

Let us first consider the leading order amplitudes in small g;; perturbation theory,
ignoring vacuum loops of EOW particles. For diagonal matrix elements one obtains up to

15This looks remarkably similar up to signs to the relation of the FZZT loops with and without a
marking operator.

16The others topologies have negative Euler character and therefore contribute negligibly assuming
that €% » 1.

~10 -



order g;;
ilviy = + 4 +...

—GTr (r (u— 1/2iiH1/2> e—ﬁH) + G2 gy T (r (u— 1/2iiH1/2)26—5H) b
(2.17)

where in the second equality we applied the EOW particle Feynman rules, and rewrote
the gravity amplitudes by the corresponding observables in random matrix theory. For
off-diagonal matrix elements, there is no leading contribution; however, crucially, there are
contribution starting at linear order in g;;

Wyl = 4 +o=G%g; Tr (r (u —1/2+ iH1/2>26—5H) +.. (218)

So off-diagonal elements in the interacting theory are nonzero, unlike in the non-interacting
model (2.3). This is the first sign that EOW particle interactions are important for
understanding matrix elements in any non-random gravitational theory.

Higher orders in g;; are obvious; ignoring the vacuum loops this is an expansion in the
number of scattering interactions on the EOW brane

ilbiy = 6ij :> D )
kl 1 kl,kg 1
2 19

Note that unlike in (2.11) there is no 1/n for the diagram with n interactions, because
the bra and the ket break the cyclic permutation symmetry. We translate this to pure
gravity amplitudes by extracting the EOW particle Feynman weights. The JT gravity
amplitudes are insensitive to the flavors, the sum over intermediate flavor indices combines
the couplings into traces

(WPjlhi) = i G Tr (F <,u —1/2+ iH1/2> efBH)
" 21 @ (gn>ij Ir <F <M —l/2s 1H1/2>n+1 6_ﬁH> (2:20)

We should also include the effects of the EOW particle loops Z. These are only truly
vacuum loops if they are not connected to the probe boundaries (2.19) via spacetime worm-
holes. In random matrix theory, denoting (2.20) by O, matrix elements are really computed
as (OZ)/{(Z); and thus boundaries in (2.20) can connect, via spacetime wormholes, to
boundaries in (2.14).

- 11 -



This means we will have contributions to (2.19) with extra holes in the spacetimes;
these holes are the EOW particle loops that the spacetime wormholes are connecting to, for
example!”

k k
Wilbosz N T ) (2.21)

k1,k2=1p1,p2,p3=1 d ©

There can be any number such holes in each portion of spacetime; if some of those have the
same labels they are again indistinguishable. Notably one should not include the possibility
of EOW particle loops that connect via spacetimes to each other, but not to any probe
boundaries; those are normalized away with the 1/{(Z).

It is straightforward to compute the matrix elements order by order in small g;;
perturbation theory; these are JT gravity amplitudes, which are known exactly. One
all-encompassing example is discussed in appendix A.3.

The generalization to products of matrix elements like p;; pri = (j]1:) (i|1g), relevant
for Renyi entropies, is clear. There are scattering interactions on all the EOW branes, and
a nonzero answers for all values of i, j,k and [. Furthermore, there can be holes due to
EOW loops in all pieces of spacetime.

The Lorentzian interpretation is that there are interactions in the interior, where these
EOW branes reside [6, 43, 47]; schematically the associated Lorentzian spacetimes are

o——
q I
Wiy > d o . (2.22)

Qo

Holes in the Euclidean spacetime (2.21) are interpreted as associated with the spontaneous
emission and absorption of open baby universes, ofcourse there is also still the spontaneous
emission and absorption of closed baby universes; associated with the spacetime wormholes
which encode eigenvalue correlation [9].

2.3 Dual matrix integral

We next discuss the matrix integral dual of this model of JT gravity with interaction EOW
particles. Using this, we can consider large g;;. This strong coupling limit selects one
member Cy of the ensemble.

Consider first the matrix dual to JT gravity with non-dynamical EOW branes with
partition function (1.1), and with matrix elements (2.7)

Z= ij dCt exp ( T (c@)) de exp ( LTy <V(H))> (2.23)

Wyleiy = (CT r (u —1/2+ iHl/?)l/2 e PHT (u —1/2+ iH1/2>1/2 C)j@- . (229

7The labels p1, p2 and ps on the sides of the inner triangle are suppressed for presentation purposes, and
idem for 4 and j.

- 12 —



The Gaussian integral over the complex matrix C reduces to standard Wick contractions
|

CaiCl; = B30 (2.25)

For one matrix elements p;; = (1j]1);), the ensemble average over C therefore gives

(jlhi) = i TI"<F (u -1/2+ iHl/Z) e_BH) . (2.26)

For two copies of the matrix element p;; pr; = {1j|v:) (¥i|1g), summing over Wick contrac-

tions gives!'®

;1) (Wil tpey = 65 Oy Tr (F (u— 1/2iiH1/2) e BH ) T&«(F (u— 1 /2iiH1/2) e BH )
+ 6464 Tr(F (u— 1/2iiH1/2) e BHT (u— 1/2iiH1/2> e*ﬁH) . (2.27)

As explained in appendix A.1, these operator insertions in the H matrix integral correspond
in gravity with the EOW brane geometries shown in formula (2.3) and (2.5) respectively.
Fach I (,u —1/2+iH 1/ 2) represents a geodesic boundary segment with a mass y EOW
particle, and each factor e ## corresponds with a fixed length § segment. Segments inside
each trace form a closed loop. We see that every Wick contraction of matrix elements of C
becomes an EOW particle propagator in gravity. Therefore, (2.23) and (2.24) corresponds
indeed with JT gravity with non-dynamical EOW branes, see appendix D in [6].

We claim that the model of section 2.2 corresponds with the deformed matrix integral

Z- dedOT exp (-é Tr (CTC) 4 Tr (cgr (u 12+ iH1/2)1/2 0) + c.c.>

x JdH exp < ~LTr (V(H))) : (2.28)

where the coupling constants for EOW particle scattering are determined by g and Cg

9ij = ’}/2% (C(]; CO)ji . (229)
For now the matrix Cy are just complex numbers parameterizing the coupling constants,
but eventually it will represent the matrix that the C' ensemble collapses to, see section 2.4.
We next prove that (2.28) is equivalent to the gravity model of section 2.2, by computing
the same quantities and matching them.

Brane partition function. We start with the brane partition function Z. The integral

over C'in (2.28) remains a simple Gaussian, this can immediately be computed by completing

the square'®

Z= de exp ( _LTr (V(H)>) exp (nyQ Tr(CO cir (u —1/2+ iH1/2>)> . (2.30)

18

W= ¥ 05 () Cumss 3 () —ume(..)
a,b=1 a=1
Lo o \ Lo — \
@l ilvey = Y. c::j(...)abcbicz(...)cdcm 3 c:f].(...)abcbic:;(...)cdcdk:...
a,b,c,d=1 a,b,c,d=1

19We discard some irrelevant overall normalization constant which depends only on G.
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Note that the exponential in the integrand is not U(L) invariant because of the presence of
the matrices Cq, C(T). Concordantly, the gravitational interpretation of this insertion is not
immediately clear; the dictionary between operator insertions in random matrix theory and
gravitational boundary conditions concerns only U(L) invariant operators. To transform
the above into U(L) invariant operator insertions we can diagonalize the random matrix H
with random unitaries U [61]%°

L
H=UAU", A=diag(\i,...,\r), dH=dUdM\...d\; [[(ha—2s)?,  (2:31)

a<f

with dU the Haar measure on U(L); and then explicitly compute the integral over the
random unitaries. We are led in (2.30) to calculate the following integral over Haar random
unitaries

de exp <G V2Tt <c0 clUuFA) UT>> , F(A)=T (u —1/2+ iAl/Q) L (232)

This Harish-Chandra integral can be computed exactly [62, 63]. However, to link
with the expansion of section 2.2, it is actually more practical to instead apply (2.15) to
correlators in the Haar ensemble [35]

log <exp (G7 Tr (Co clU F(A) UT >> Z G’.l 2n<ﬂ (Co ChUF(A) UT)">

conn

(2.33)

The unitary group integrals on the right evaluate to a double sum over permutations?!

de Tr (cocgUF(A)UT)": 3 Tra(<C0C(TJ)n) Tr, (F(H)”) We(o/r,L). (2.34)

o,TESy

This sum over permutations is weighted with Weingarten functions Wg(o, L), which are
known explicitly [64, 65], see figure 3. We are interested in continuum JT gravity, where
L = oo. Using the leading large L behavior of Weingarten functions; one checks that these
correlators of Haar unitaries reduce, for large L, to the Wick contractions ¢ = 7 generated
by a Gaussian complex matrix U with variance L [13]. Explicitly

de Tr (co clur) Ut )" large L % Tr, ((co cg)") Tr, (F(H)") . (2.35)
c€ES,

n

In this Gaussian approximation one therefore finds

(m(@curmu?)) =g ((Goe)) (e (w12 5m7)").

conn
(2.36)

20The following manipulations follow those previously used in [35], where more details can be found.
21

Tr, (A") = HTr (Ae(oi)> ,  £(0;) length cycles of o

— 14 —



[F(D)] CoCd|

[F(D)| ICoCd|

[F(D)| CoCd]

Figure 3. Haar random unitaries. Wires contract indices, integrating over Haar random unitaries
corresponds with inserting complete sets of wire states, Weingarten functions weight each bra-ket
combination. Dominant terms for large L have identical bra and ket (middle), the subleading terms
have different bra and ket (right).

The combinatorial prefactor counts the cycles of length n in S,,, only these contribute to
the connected correlator. Combining this with (2.33) and using the dictionary between the
couplings (2.29), the brane partition function (2.30) becomes

0 n
z - JdH exp ( ~LTr (V(H))) exp < 3 % Tr (g") Te(T (0 —1/2% 1H1/2)")> .
i (2.37)
This matches the D-brane partition function of our JT gravity theory with interacting
EOW particles (2.14), modulo the first term in (2.14), which represents EOW loops without
interactions. Those have nothing to do with the C' matrix integral, and are therefore of
little interest here. We can include them by deforming the potential V (H) by the first term
in (2.14), before doing the C or U integrals in (2.28).

In summary, we have shown that the deformed matrix integral partition function (2.28)
is equivalent for weak coupling v, with the D-brane partition function of JT gravity with
interacting EOW branes discussed in section 2.2. At strong coupling there are modification
to this picture, as the approximation (2.36) breaks down; we discuss in the discussion
section 4 how this affect the gravitational description. We define the strongly coupled
version of the gravity theory in section 2.2 as the gravity dual to (2.28).

Matrix elements. We now check that the matrix model (2.28) also reproduces the matrix
elements (2.20) that we computed in the gravitational theory, hence establishing the full
fledged duality of the matrix and gravity models.

These matrix elements are computed in the deformed matrix integral (2.28) via the
dictionary (2.24)

(jlepiy = éJdCdCT exp (—é Tr (CT(J) +yTr (CBP (u— 1/2iiH1/2> 2 C) +C.c.>

x JdH exp (-LT&«(V(H)))

x <0Tr (u— 1/24_riH1/2)1/26—5Hr (u— 1/2iiH1/2) 2 C) : (2.38)

Jt
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We first calculate the Gaussian integral over the matrix C. The two matrices C' and CT in
the operator insertion can either contract with one another, or with the C' and CT in the
deformation term in (2.28). The first Wick contraction gives

Wil = 5 [t exp ( LT (v<H>)> exp (GVQ Tr(Coc)T (- 1/2+ iH1/2>)>
x 8 G Tr (r (M 12+ iH1/2> e PH ) , (2.39)

where Z represents (2.30). The Wick contraction with the exponential deformation gives

Wjli) = ;JdH exp ( — LTr (V(H))) exp <G72 Tr(Co cir <u ~1/2+ iH1/2>)>

x G2 2 (cgr (u 12+ iH1/2> e BHT (u 12+ 1H1/2) co) . (2.40)
ji
Neither of these integrands is U(L) invariant, to give this integral a gravitational
interpretation we again diagonalize the Hamiltonian as in (2.31), and compute the resulting
integral over random unitaries U via the Gaussian large L approximation as explained
around (2.36). For the first contribution (2.39) this is the same calculation as (2.32) because
the operator insertion on the second line of (2.39) is U(L) invariant, therefore we find

jliy > ;JdH exp (—LTr <V(H))> exp ( i %Tr <gn> Tr<F (u—l/QiiHm)n))
x 6;; G Tr (r (u— 1/2iiH1/2) e*ﬁH) , (2.41)

with Z representing (2.37). The second contribution (2.40) requires the large L Gaussian
approximation for the integral

JdU (cg UF(A) e A F(A)UT co) Cexp <G V2T (co clurm) Ut )) L (242)
7t

We need to account for Wick-contractions between the operator insertion and the exponential,

in other words this calculation can be rewritten as

m! "
m=0 '

3 2m<(cgUF(A) AR UTC) T (CoChU F(A) UT)m> (243)

J conn

<exp (G72 Tr (co cluF@) UT)>> :

the first line includes contractions between the insertion and the exponential, while the
second line are the vacuum loops computed above. Summing over all large L Gaussian
Wick contractions one obtains

e p—

conn

ol —— (o)™ e (e (=121 158Y2)"TY) . (2.44)
ji
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Combining everything one finds that the second contribution (2.40) becomes

n

(sl = ;JdH exp (—LTr <V(H))> exp ( i %Tr (97) (T (- 1/2iiH1/2>”>>

n=1

x i}o Gm+2 <gm+1)ji Tr (e—ﬁH r (u 12+ iH1/2>m+2 ) : (2.45)

Combining with (2.41), we see that the matrix elements are indeed computed via the
gravitational rules discussed in section 2.2; since we precisely recover (2.20). The exponential
within this H integral, and the corresponding normalization with 1/Z reflects the fact
that we also include geometries where EOW particle loops are connected with the probe
boundaries; as discussed below (2.20). These calculations generalize in an obvious way to
products of matrix elements like (t);|1);) (|t ).

In summary, we have shown that all observables in the deformed matrix integral (2.28)
are equivalent for weak coupling ~, with those of JT gravity with interacting EOW branes;
establishing their duality.

2.4 Strong coupling and non-random states

Next we consider particular versions of our model, with propagator 1/G = v + 1. For these,

the partition function becomes??

Z = ij dCt exp ( ~ Ty (CTC) AT ((C - F(H)1/2CO) (CT - C(T)F(H)lﬂ))) .
(2.46)

This matrix model is very similar to the matrix model recently considered in [35]; it inter-
polates between JT gravity with non-dynamical EOW branes (1.1) at weak coupling v = 0

Z = JdC dCt exp < Ty (CVJ)) , (2.47)

and a gravity model with the matrix C fixed to one member of the ensemble at strong
coupling v = o0

z = JdC dCt exp ( Ty (CT0)> 5(0 - F(H)1/2C0>5(CT - ch(H)l/Q) . (248)

The stronger the interactions, the less random the matrix €', and the more realistic the
quantum gravity model under consideration. This is one key lesson of this work, in these
two dimensional models, realistic gravity systems appear to feature strong interactions/have
strongly interacting interiors g;; » 1.

Equally important, the microscopic details of the theory, here represented by the
non-random matrix Cop, are encoded in the specific coupling constants g;; for the interior

22In this section we are only interested in the C' matrix integral and suppress the H ensemble for
presentation purposes.
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mode interactions, via (2.29). These coupling constants take typical values respecting the
fact that Cq is a typical draw of the ensemble.

Concordantly, one can also interpret the completely random theory (2.47) as an ensemble
of gravity theories, with the ensemble average over the specific coupling constants of the
theory. The interpretation of (2.47) as bulk models with random couplings constants agrees
with ideas of Coleman and company [10, 24, 66—68]. Here too, the theory with random
couplings is “simpler” than that with fixed couplings.

In the most realistic models, where v = o0, the matrix elements of Hawking radia-
tion (2.24) become

Wyl = (Ch F(H) e F(H) co)ji. (2.49)
This is obvious from (2.48), but can also be seen explicitly in (2.39) and (2.40). The
contribution of the first Wick contraction (2.39) vanishes, because in this double scaling
regime the propagator vanishes G = 0. The contribution of the second Wick contraction
survives, because in the same regime G242 = 1.

This extends to products of matrix elements, EOW branes without any interaction
vertices on them are suppressed because G = 0; for the product of two matrix elements one
obtains for example

Qi) ki) = (Co P(H) e P F() Co) (CRE(H)e ™ P(H)Go) o (2:50)
where H remains random but Cg is non-random. The non-randomness of Cy does not imply
that (2.50) is numerically close to factorizing, or to the matrix elements in a completely non-
random gravity theory. Since H remains random there remains large correlation between
two density matrix elements. This is largely because of the random unitaries U; not so

much the more common eigenvalue correlation.??

The bulk gravity description of the matrix elements of Hawking radiation in realistic
incarnations of these two dimensional quantum gravity models, described by non-random
matrices Hy and Cg, involves at minimum these interior mode interactions.

On top of that, these involve extra ingredients that capture the non-random matrix Hg.
What these ingredients are is an orthogonal question that goes beyond our current scope;
progress has been made in this regard in [12, 13, 35, 36], see section 4. Regardless of the
specific details of those extra ingredients, the result is some gravity theory whose matrix
elements are good-old-fashioned non-random numbers

sl = (CLF(Ho) M0 F(Ho) Co) . (2.51)

Ji

The structure in these numbers for a typical draw of the ensemble deserves some attention.

ZThese random unitaries did not play any role for the non-dynamical theory (2.28), because its action is
U(L) invariant. However this U(L) invariance is broken by the deformation (2.46) because Cy is some fixed
matrix not proportional to the identity.
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3 Matrix elements without ensemble average

In this section we examine the consequences of collapsing the theory to a single member of
the ensemble, by studying numerical features of the matrix elements (2.51), and how they
reproduce the Page curve.

Throughout this section, we work in a microcanonical ensemble centered around E,
with e states. Since F(Hp) is approximately constant for eigenvalues of Hy within the

microcanonical window we have
eS
(jloiy = F(E)* Y Coltj Cogy (3.1)
a=1

The kernel F'(E) drops out of the normalized density matrix and all derivative quantities
like the Renyi entropies and the von Neumann entropy, this means we can immediately
drop it and continue with

(i) = Z Conj Cogi - (3.2)
a=1

Crucially, the matrix Cy must be interpreted as typical representative of the undeformed
C ensemble (2.47). This means the entries of Cy are complex numbers with typical norm-

squared one.?*

Formula (3.2) is a toy model for the matrix elements of evaporating black holes in
quantum gravity. The ensemble is an incredibly powerful tool that simplifies calculations
and presents a simpler effective picture, but is has also caused confusion. Mistaking the
ensemble for proper quantum mechanics, one apparently finds that the density matrix is
maximally mixed, as in Hawking’s calculation [1].

In realistic theories, represented by the toy model (3.2), the density matrix is not
maximally mixed. The complex matrix Cy has dimensions e> x k, and concordantly the
rank of the matrix is upper bound by both k and e [10]; this suffices to understand the
Page curve. The point is that when we are ignorant about the microstructure of our
system, that we believe the states |1/;) are linearly independent; where in reality there are
equivalence relations between them, there are null states. The remaining question is then

how microstructure gets realized in the bulk, this work has been a step in that direction.?’

We plotted the density matrix in figure 4, the purity in figure 5, and the von Neumann
entropy in figure 6 for one single matrix Cy. Comparison with the averaged answers confirms
the latter are self-averaging. In the remainder of this section we explain analytically
why (3.2) produces these plots.

2Fixing to non-typical members is physically non-sensible, since those systems are not even remotely
accurately described by the ensemble to begin with.

ZFactorization is another interesting question, this remains geometrically nontrivial even in microscopic
realizations; we have not investigated that here [6, 8, 11-13, 30, 36, 69, 70].
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Figure 4. Normalized density matrix with & = 20 and e> = 50 (left). Orange is positive and blue
negative. The diagonal is removed (right) and the intensity is rescaled to probe typical sizes 1/k e>/2.
This reproduces similar plots obtained within SYK, with notably a different realization for the
density matrix than (3.3) [11].

3.1 Density matrix

The unnormalized density matrix of radiation is plotted in figure 1 and figure 4, and reads

explicitly .
k ke
p= D Wil il = Y} Y] Cosj Coas [ Gl - (3-3)
i,j=1 ij=1a=1

To understand this figure, let us estimate the typical size of the matrix elements. The
entries of Cy are complex numbers with typical norm squared one, which means that the
diagonal matrix elements

@ilhiy = > Coki Coni (3.4)
a=1

are real numbers with typical size €%, because they are the sum of e real numbers of typical
size one.
The off-diagonal matrix elements

pjliy = Y Cokj Cons (3.5)

a=1

are complex numbers with a “random” phase, and typical amplitude of size e>/2. This is
because they are the sum of e> complex numbers with random phases and typical amplitudes
of size 1, combined they are to be interpreted as a “random” walk in the complex plane
with unit step length and e steps.26 The typical radial distance traveled by this random
walk is the square root of the number of steps /2.

The off-diagonal terms correspond to sums over random complex numbers that do not
constructively interfere, the phases in (3.4) align but those in (3.5) do not, hence they give

small contributions relative to the diagonal terms as long as €5 » 1.

26Random is quoted because there is nothing uncertain about the number in (3.5), “typical” might be
more appropriate.
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Alternatively one could directly estimate the norm squared for the off-diagonal matrix

elements
S

€
[Kilearl? = >0 Cokj Conyi Cotiai Cony, - (3.6)
aq,aa=1

The most sizable contribution comes from the terms with «; = ag. These are e° real
numbers of typical size one, adding up to give some real contribution of typical size e>.
There are other terms that pair up to form real numbers, combining terms where we
exchange a1 and as. The typical size of the sum of such two terms is 1/2; but there is
typically the same number of terms with overall positive sign, and overall negative sign.
Therefore these are subleading. Crucially, the leading contributions always come from terms
where the phases precisely cancel.

Typical values of matrix elements are most efficiently estimated by using the ensemble
average, this is what typicality means. In the ensemble averaged description, one indeed
computes

{hiltpyy =5 65 €, [Kslin]” " 6y €% + €2, (3.7)
reproducing the above typical estimates. These formulas also highlight the discussion
below (3.2). The leading order approximation for the density matrix is the maximally
mixed diagonal Hawking state; but there are subleading non-self-averaging contributions of

s/2

order e>“ in the unnormalized density matrix

k
p=e> Y [yl + O(e>?). (3.8)
=1

We cannot emphasize enough that these subleading corrections can, and do save unitary [6,
11, 37, 38]. We will show in the following section that these subleading corrections are
important for observables. Their effect is to cause linear relations between the different

vectors |¢;)
k

Dailgy =0. (3.9)

i=1
The off-diagonal matrix elements do not need to be leading order for such linear relations
to exist. The density matrix (3.3) shown in figure 4 and figure 1, is an extremely concrete
example of how this happens. The leading order approximation is diagonal, but by
construction the dimension of the span of the [¢;), which equals the rank of Cy; is upper
bound by both k and e3. The off-diagonal matrix elements are therefore responsible for the
Page transition at late times.

Circling back to the gravitational picture of section 2.2, notice in (2.29) that the typical
off-diagonal couplings g;; are subleading compared to the diagonal couplings g;;. This
intuitively explains why the diagonal matrix elements remain bigger than the off-diagonal
ones, even in the interacting theory.

3.2 Higher moments

Next we examine how calculations of various entropies in a typical member of the ensemble
are consistent with the answers given by the replica wormhole calculations of [6]. We will
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Figure 5. Purity Ry as function of k with > = 50, showing (3.10) (black dots) and the planar
approximation 1/k 4+ 1/L (orange), log-log representation.

find that off-diagonal matrix elements constructively add up and give large contributions to
observables, corresponding to the effects of replica wormhole geometries.
The simplest entropy observable is the purity, which is plotted in figure 5 and reads

explicitly
eS
Ry = Z (i) (bileps) = T Z D7 Cokij Coni Colyi Coyjr  (3.10)
Tl"(p) 3,7=1 I' i,j=1a1,020=1

here Tr(p) is computed using (3.3). As explained below (3.6) the leading contributions come
from terms in the sums where two phases align, meaning that complex matrix elements of
Co pair up as
est
Coaz Coaz =1. (311)
In the purity summation (3.10), this happens if ¢ = j and or a; = ag. Using the leading
order estimate Tr(p) = k e° one then estimates the typical purity?’

;1 1 1
k k &S I —
~ k2 Z Z COOHJ COOM Coom Cooczy k2 Z Z Coam Coani Coazz COazJ
i,j=1a1,a2=1 i,j=1o1,00=1

The first contribution in (3.12) comes from terms with ¢ = j, corresponding with
diagonal matrix elements or the disk geometries in (2.6). By itself these diagonal terms
claim the purity of the radiation decreases forever as 1/k. However, there is another
important contribution from the terms with a1 = as. This term counts the norm squared
of the non-self-averaging fluctuations in all of the matrix elements p;;, represented by the

2TThese orange “Wick contractions” represent the ways that complex matrix elements can pair up in real
numbers (3.11).
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final contribution in (3.7). The noise in the off-diagonal elements constructively interferes
when computing the purity, this corresponds with the replica wormhole in (2.6) [6, 11].

There are k% matrix elements with fluctuations, whereas there are only k diagonal
matrix elements whose self-averaging behavior gives the Hawking answer. For late enough
times k the non-self-averaging fluctuations win over the self-averaging terms and cause the
Page transition [6, 11, 37, 38]. Here this is represented by the second contribution in (3.12)
winning over the first one [6], see also figure 5.

These corrections actually become much more important when constructing a more
standard Page curve, keeping the dimension of the Hilbert space of the total system fixed
ke = d, whilst increasing k. For extremely old black holes e>ocl, the off-diagonal terms
are not small anymore; the size of the non-self-averaging fluctuations in (3.7) becomes
comparable to the size of the signal itself, as in figure 1. It is hence not true that small
corrections save unitarity [37, 38], large off-diagonal matrix elements do.

The last term in (3.12) estimates the size of non-self-averaging fluctuations, it comes
from terms in the sum where a; # a9 and i # j. Each term in this sum is a “random”
complex number with typical norm squared one. There are roughly k% e2S such terms,
therefore the sum represents a “random” walk that travels a typical radial distance k e>.
For large k and e° these fluctuations are small, meaning that the purity is self-averaging.
Ensemble averages accurately compute entropies, but not matrix elements.

This generalizes to the other moments R,, = Tr(p™)/ Tr(p)"

1 k
R, = D1 Wil Winlthin)
i =1

n
Te(p)" , S
1 k ¢
= Tr(p)n Z 2 C()Zlil COOlliQ e COZnZn Coanil . (313)

i1.in=1ai...an=1

For n > 2 there are more ways the matrix elements Cy can pair with their complex
conjugates (3.11), corresponding with the sum over Wick contractions in the ensemble
averaged calculation, and with the different replica wormhole geometries in the model of [6].
For example for n = 3, 4, one estimates

e 13 1 et 1 6 6 1

Bs = mtpestos M= gtpstpstas (3:14)

Here we are no longer tracking the non-self-averaging fluctuations and we dropped terms of
subleading order in either k or e>. This corresponds with using the planar approximation
in replica wormholes [6].

3.3 Entropy and planar resummation

Using (3.3) we can directly compute the von Neumann entropy, by literally computing the
log of matrix, using henceforth the normalized version of the density matrix (3.3)

S =—Tr(plogp). (3.15)
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k

Figure 6. Entropy S as function of k with > = 50, showing (3.15) (black dots) and the planar
approximation (3.25) (orange).

This entropy is plotted in figure 6. We now reproduce this figure using the planar approxi-
mation for the moments discussed above, by explicitly applying the replica trick

S =—0nRnl, _,- (3.16)

This is nontrivial as it requires finding the unique analytic expression for the Renyis as
function of n.

The first difficulty is computing R,, for arbitrary positive integer n by summing all
planar diagrams. This is in principle a difficult counting problem, the key to solving this
implicitly was discussed in [6], following [71, 72]. To obtain the Renyi entropies as function
of n one should instead compute a generating function, for example the resolvent of the

density matrix
0

R(\) =Tr <)\ip> = ; + nz::l % Tr(p"). (3.17)

Its Taylor expansion around infinite A encodes the moments R,,, and hence also the Renyi
entropies. This expansion, along with the structure of the planar geometries that contribute,
makes it possible to write down a Schwinger-Dyson equation for R(\); in our microcanonical
setup this becomes [6]

S k,2 eS

ROV? + (e ;’“ - k:es> R(\) + =~ =0. (3.18)

According to (3.17) the solution must behave as k/X near A\ = oo; furthermore recognizing

the generating functional of Gegenbauer polynomials one then obtains the unique solution

1/2
1, s 15—k 1( 4k2eS [(S—k | s\
k kL 1 (L—EK\" L+k
_F Ry L LR papy (LR
v S () e () 320)
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Using the relation between Gegenbauer polynomials and Jacobi polynomials,?® we can
rewrite this into

k - 1 ¢ F(’I’L— 1)F(n) st+1—n -5
3T Z‘ an ; T(n—s+ O)l(n—s)T(s + DI(s) RO (3an)

From the expansion coefficients one therefore finds the moments?’

n+1 C(n)(n+ 1) R
Rn:;)F(n—s+2)F(n—s+1) (s + DI(s) E(s—n) o(1=5)S
S P(m)T(n 1 1)

= k(=P o(P—m)S 3.99
M= p + 2T(n—p + DI+ DTE) (3:22)

where changing coordinates as p = n + 1 — s highlights the symmetry under exchange of
k and e3. This reproduces the correct answer for any integer n. One easily checks the
simplest cases (3.12) and (3.14).

The second, we believe generally less appreciated difficulty, is finding a unique analytic
continuation of this formula away from integer n. Usually, one hopes that one obvious
analytic continuation presents itself; however here there are two obvious and inequivalent
options. As 1/T(n+1—s) =0 for s > n+ 1 one can extend the range of the first sum from
s = 0 to s = 0. Via the same argument one may extend the second sum from p = 0 to
p = o0, for positive integers n.?0 Both procedures give a hypergeometric function,3' these
agree on the positive integers but disagree elsewhere; resulting in fwo possible analytic
continuations (as function of n)

1 1

] oF1(—n,1—n,2,k/e®) or R, = 18 oF1(—n,1—n;2:e3/k), (3.23)

R, = prcssy) o(n—1

which are swapped when exchanging k and e°. Then which of these is the correct analytic
continuation? We need a theorem that specifies uniqueness of analytic continuation, given
data at the positive integers.

The only such theorem that we know of is due to Carlson, see [75]. If there is a function
f(2) that is analytic for Re(z) = 0, that takes assigned values f,, on the positive integers,
that grows exponentially slower than sin(7z) for imaginary z, and no faster than exponential
elsewhere; then this function f(z) is the unique one with these properties.

Conversely, the data f, is insufficient to uniquely specify an analytic function f(z)
without further constraints, and Carlson’s theorem gives the necessary constraints that
uniquely select one function. It is not a priori obvious why the moments R(z) should satisfy

U2y 2 ey 2 o (n=l)(n=1) fa -1\ [z 1\"
Cn (@) nflpn (@) nl%(ns)( s 2 2

29This formula was also recently derived in [73, 74].
39This corresponds with extending the first sum from s = —o0 to s = n + 1, doing both does not yield a

28

convergent sum.
31 Hypergeometric functions are defined as semi-infinite sums, tread carefully with Mathematica here.
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these constraints, but Carlson’s theorem proves that if they do not, then there is no unique
function R(z); and therefore no unique von-Neumann entropy. That is clearly nonphysical,
therefore we conclude that R(z) must satisfy Carlson’s theorem.*?

The first function in (3.23) satisfies this theorem as function of n when k < €3, however
it grows too quickly on the negative imaginary axis when k > e%; the second function

in (3.23) satisfies the theorem for the same reason only when k > e°. Therefore the unique

analytic continuation in n is3?
1 1
R, = Tt o F1(—n,1 —n, 2, k/e®) 0(k < €) + e(nT)SQFl(_m 1—n;2;e%/k)0(k > e°).

(3.24)
With this, one computes the entropy using the replica trick (3.16). This reproduces the
Page curve [7]*4

S = (log(k) — k/2e%) 0(k < €°) + (S — €3/2k) 0(k > €°). (3.25)

This agrees excellently with a direct calculation of the entropy (3.15) using our density
matrix (3.3), see figure 6. It is not surprising that the Page curve is self-averaging, the
point is that we have produced it using the density matrices in figure 1, confirming the
claims made about off-diagonal matrix elements in section 3.2. More importantly, we have
given a gravitational interpretation for these matrix elements in section 2.2.

4 Concluding remarks

In this work we made progress towards understanding the bulk gravity dual to one quantum
system. We investigated how the density matrix elements of evaporating black holes are
computed in non-random gravity theories, and in particular what explain small off-diagonal
density matrix components.

For this we investigated an enrichment of the model of Pennington, Shenker, Stanford
and Yang, by including dynamics for EOW branes; namely brane flavor changing interaction
vertices and loops of EOW branes; and discovered a dual description as a deformed matrix
integral

z = de dCt exp < Ty (CTC) AT ((c - F(H)1/2C0> (CT - ch(H)1/2))> . (4.1)

where the coupling constants for the interaction vertices are related to the matrix deformation
as

9ij = 72% (<3 CO)ji . (4.2)

320therwise we can just add the function csin(mz) to the moments with arbitrary ¢, which contributes mc
to the entropy.

33The Heavisides also conveniently save us from evaluating the hypergeometric on the branchcut it has in
the last variable.

34 Analytically, using the representation of the hypergeometric as infinite sums (3.22) from s = 0 to s = 0,
one takes the derivatives of the Gamma functions, then uses the poles and residues of the Gamma and
Digamma functions to prove that only one term in the sum contributes. It is crucial that in the analytic
continuation the sums are semi-infinite, otherwise the derivative is not well defined.
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For increasing values of the coupling constant v, and hence g;;, the random matrix C
gets gradually fixed to a non-random matrix Cy. This means that the interior states |¢;)
are becoming less random.

Our main conclusions are the following.

1. Strong interactions behind the horizon are essential for understanding the microstruc-

ture of matrix elements of evaporating black holes, within this simple model.

2. The microscopic details of the theory, here represented by the non-random matrix Cg,
are encoded in gravity as coupling constants for interior interactions.

3. Large amounts of tiny off-diagonal matrix elements eventually overtake the bigger
diagonal matrix elements, these correspond with replica wormholes and cause the

Page curve transition.

4. For nearly evaporated black holes off-diagonal matrix elements are large, and the
state approaches some pure state as required for unitarity.

In a gravity model where the density matrix of Hawking radiation is described by (2.49)

pi = (CLP(H)e " F(H) Cy) (4.3)
Jt

one immediately sees that there are nontrivial off-diagonal matrix elements, without having
to compute their variance. The raison d’étre for the simplified ensemble averaged gravity
theories is they are simple to compute with, this is the whole philosophy behind random
matrix theory [61, 76]. They were never meant to describe the microstructure of individual
systems, we should not forget this. Random matrices are sufficiently smart to understand
that the off-diagonal matrix elements are nonzero. But they are not a microscopic description
of the theory, where we can actually understand why they are nonzero. The real universe
is clearly not an ensemble average; no one would claim Navier-Stokes is the fundamental
description of fluids, neither are random matrices the fundamental description of the bulk.

Simple effective description like JT gravity with non-dynamical EOW branes, Brownian
motion, and pure Einstein-Hilbert gravity in higher dimensions [18, 69] are ensembles.
However, real fundamental description like deformed JT gravity [35] with dynamical EOW
particles, atoms, and full-fledged string theory [33] are factorizing and unitary quantum
systems without ensembles.

That being said, ensemble averaged descriptions are clearly extremely useful, precisely
because they corresponds with simple gravitational duals; those simple duals suffice for
many calculations.

We end this work with several comments, first and foremost about higher dimensional

implications.

General lessons. We believe our findings are evidence that strong interactions in the
interior will generically be important to capture the microstructure of higher dimensional
black holes. These interactions factorize (replica) wormholes, because they collapse the
ensemble, and because without the ensemble everything factorizes. Knowing how to calculate
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Wjli) = bij +

O

Figure 7. Picture for (two-sided) matrix elements that generalizes to higher dimensions. One
could imagine creating orthogonal states by preparing states with particles of different flavors.
In microscopic models the particles could interact heavily in the interior, perhaps close to the
singularity, resulting in off-diagonal matrix elements. This conclusion is similar to the effective
half-wormholes for eigenvalue correlation in [30, 36] and also to the picture of [12, 13, 35]. Strong
interior interactions encode microstructure. This also applies in [5].

the microscopic out-state of the radiation is equivalent to understanding how to factorize
(replica) wormholes.

In our model factorization is less geometrically obvious than is the case with eigenvalue
correlation [12, 13], where there is some exclusion rule and concordantly a diagonal =
cylinder identity [30]. In this setup, when we calculate in gravity the product of two matrix
elements, there is the replica wormhole; but also other connected components, from both
matrix elements connecting to the D-brane partition function (or EOW loops). They can
both be connected to EOW loops via wormholes, or via the nonlocal interactions discussed
below. Since the replica wormholes are not related to eigenvalue correlation, we believe
that the nonlocal interactions might be the key. Somehow the replica wormholes should
then be canceled by nonlocal interactions between different copies, restoring factorization.
This must happen, because the ensemble is collapsed, nevertheless it would be interesting
to make this more precise.

This picture we obtain here is, perhaps surprisingly, morally related to the one advocated
in [30, 36], where they discuss an effective description for (eigenvalue) microstructure. The
information about that microstructure is located in the interior, perhaps even near the
singularity. We have a different setup here, and are describing different aspects of black hole
microstructure, namely the out-state of radiation. Nevertheless the overall lesson is similar:
strong interior interactions encode microstructure. This is also one possible interpretation
of [12, 13, 35|, which gives a precise description of eigenvalue microstructure. See figure 7

The EOW branes studied in this paper are behind the horizon [43, 47]. But one could
consider an alternative version of this same model, with negative energy dynamical branes
modeling random states, but these are outside of the horizon [47]. Their coupling constants
would still encode microstructure, but that information would now be outside. Perhaps
this is a sensible toy model for fuzzballs; it would be interesting to connect that literature
better with the current developments concerning wormholes and ensembles [77-79].

Concerning the dependence of the couplings on Cy we believe the generalized picture is
the following. Consider a UV complete theory of quantum gravity, like string field theory.
These theories are probably rather unique and special, concordantly the couplings between
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the matter fields in the spectrum would take rather specific values. One could imagine
integrating out most fields in the spectrum, leaving some “simplified” model with fewer
fields; like dilaton gravity with EOW branes.

However integrating out the matter fields would leave its imprint, it would not leave
something nice and simple like ordinary JT gravity, with non-dynamical EOW branes.
Rather, one would obtain some highly deformed JT gravity with complicated dilaton gravity
interactions, and dynamical EOW branes. The details about the UV microstructure would
get imprinted in all these interactions, see also [35].

Concerning the off-diagonal matrix elements there should obviously be a generalization
to arbitrary black holes. States describing the interior of black holes should acquire nontrivial
overlaps as the black holes grow old, to ultimately restore unitarity.

The mechanism by which these states become equivalent is an important open question,
our results suggest that strong interior interactions are relevant for understanding this

phenomenon.?®

Strong coupling. At strong coupling when g;; become big, the gravitational picture of
section 2.2 is modified, since in the approximation from (2.34) to (2.36) and (2.44), we assume
that terms with n of order L are suppressed. When the coupling become big, that assumption
is no longer valid; and so neither is the approximation. This Gaussian approximation fails
because for nocL, the contributions from subleading Weingarten functions are not obviously
suppressed [35]. For example, we can no longer trust the scaling formula

Wg(af ™)oL #87) (4.4)

which validated the Gaussian approximation. The combinatoric prefactors may also enhance
naively subleading contributions at high order in the coupling constant.

This means that the multi-trace contribution in (2.34) might become relevant at strong
coupling. One would obtain multi-trace terms in the brane partition function (2.37). These
are clearly interpreted in gravity as corresponding with multi-local interaction vertices, we
could then represent these by also allowing dotted lines connecting dotted vertices and
multiple local interaction vertices; which makes the gravitational expansion more involved.
Feynman rules for those dotted diagrams contain further information on Cgy since these
rules depend on multi-trace combinations of Cg.

It would be interesting to obtain analytic control over these multi-trace deformations
by scaling the couplings in certain specific ways.

Fixed Hamiltonians. Finally, we briefly mention the gravitational interpretation of fixing
the random Hamiltonians H to one single Hamiltonian matrix Hy. This was investigated
in [35] using a deformed matrix integral similar to (2.46), but where H is coupled to an
external matrix Hy with coupling constant 1/02.

Whilst not our focus, the gravitational interpretation of non-random matrix ele-
ments (2.51) involves understanding how Hy gets encoded in gravity in addition to Co.

35 Another option is that the states only become equivalent as perceived by outside observers, as required
by the central dogma [2], but perhaps interior observers could still distinguish them?
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Therefore we briefly summarize the results of [35]. The gravity interpretation for the
eigenvalues of Hy only affects the bulk JT gravity spacetime description, not the behavior of
EOW branes discussed throughout this work. This is why our discussion in earlier sections
decoupled from fixing Hy.

For weak coupling 1/0? one finds a deformation of the JT gravity action which can be
interpreted as inserting many local defects [51, 52, 80-82]. These are the analogue of the
interaction vertices discussed in this work. The associated coupling constants depend on
Ho, in line with point 2 of the main conclusion.

When the coupling increases, nonlocal bulk spacetime interactions become important,
for precisely the same Weingarten reasons, giving a nonlocal dilaton gravity action. The
analogue of terms with nocL becoming important, is that macroscopic operator insertions
appear. These tear up the smooth spacetime with large holes [83].

For strong coupling we approach the eigenbrane picture [12, 13] with many extra
macroscopic holes in spacetime. The boundary conditions on these extra holes [41] encode
the eigenvalues of Hy. However, the theory with infinitely many eigenbranes is not under good
control, and something far more drastic probably happens. Signs were found [35, 84] of some
branched polymer phase of gravity, where smooth spacetime is completely broken. Then
the question is what replaces smooth spacetime; what is the true microscopic description of
gravity? These works build towards deriving a concrete microscopic picture.

What remains is the more illusive gravitational interpretation of the random unitaries
U. These are irrelevant for observables like partition functions, or the spectral form factor;
but crucial for correlation functions [9, 11, 13, 85, 86] and density matrix elements. This is
an important open problem [42].
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A Gravitational amplitudes

Here we gather some gravitational details relevant in the main text.

A.1 Pinwheels

First consider the pinwheel geometry Z,(3) of [6], which is a disk geometry with n pieces
of asymptotic boundary of length 3, separated by n boundary segments that describe the
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geodesic trajectory of some particle of mass u; these represent the EOW branes. For example

e
.

This amplitude was computed using the techniques of [9, 87] and gives

+ 1
_ S0 o n . 1/2
Zn(B)=ce L dE exp(—nBE) F(E) yPe) sinh (27rE ) ,

(A.2)
F(E)=T (u 12+ 1E1/2)
We note in passing that this formula is also easily derivable in the BF formalism of [88, 89,
where the mass p boundary particles are represented by Wilson lines and one recognizes
F(F) as the 35 symbols with one trivial representation; because there is nothing on the
other side of the particle.
In the matrix integral this pinwheel corresponds with the observable
+00
Tr(e’BH F(H)...e 8 F(H)) - f dE exp(—nBE) F(E)" Tv6(E — H).  (A.3)
—00
The leading order expectation value of Tr0(E — H) equals the disk amplitude with fixed
energy boundary conditions [8, 12]

(Tré(E — H)) = Z:; sinh<27rE1/2> = o(E), (A.4)

which indeed reproduces (A.2). Including handles on the pinwheel replaces the genus zero
disk answer (A.2) with

+00
| 4B e(-nsE) FEY G(E)) | (A.5)
—Q0
where (p(E)) is the exact spectral density in the matrix integral. This can be calculate
order per order in the genus expansion using Weil-Peterson volumes, and nonperturbatively
using D-branes [8, 12].

When there are two pinwheels, we must include spacetime wormholes that connect
them. Summing over all genus gives rise to the full spectral correlation (p(E)p(E2)) of
random matrix theory [8, 12, 61]

(Zn, (B)Zny (B)) (A.6)
0 400
= f dEy exp(—n1SEy) F(Ey)™ f_ dEj; exp(—n2fE2) F(E2)™ {p(E1)p(E2)) ,
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which, for all intents and purposes, can be approximated as

sin(rp(E)(Ey — EZ))2 ‘

(P(Er)p(E2)) = p(E1)p(E2) +6(Er — E2)p(Er) — m(Ey — Ep)?

(A7)

The generalization to multiple pinwheels is obvious [12].

Though these expressions are very explicit, it is more practical to work in a micro-
canonical ensemble, where things simplify even further. In some microcanonical ensemble
centered around E, one computes for example3%

(Zons(B) Zy () = jE B, F(Ey)™ fE B, F(E2)™ (p(Er)p(E)) = FE™+ ¢35 | (A8)

where the total number of eigenvalues in this microcanonical bin computes the microcanonical
entropy

JE dE; p(Ey) = €°. (A.9)

The second equality in (A.8) follows from the definition of the microcanonical ensemble,
the width of the energy bin is much smaller than 1 but much bigger than the typical level
spacing 1/p(F). The function F'(FE) varies on energy scales of order 1 and can therefore
be approximated as constant within the bin. Furthermore, on energy scales bigger than
1/p(E) the sine kernel in (A.7) is essentially indistinguishable from the Dirac delta term;
and these two contributions therefore cancel out, and to good approximation

| B [ 4k oBopEn) = [ B [ aBip(E) == (a0)
E E E E
Using these results one computes, with the rules explained in section 2.1

Pij = 6ij F(E) €S y  Pig Pkl = (51‘]‘ 5kl F(E)2 625 + (51'1 5kj F(E)2 es . (A.ll)

These are the results mentioned in (2.3) and (2.5). Notice that the details of the EOW brane
boundary conditions, captured by the kernel F'(E), are just overall normalization constants
in these amplitudes; all this dependence drops out when we consider normalized density
matrices, and compute normalizes quantities like Renyi entropies. Life in the microcanonical
ensemble is simple.

A.2 Modeling interactions

We gather formulas about disk amplitudes with marking operators in minimal strings and
in JT gravity, more details are contained in [51, 54-56].

First consider a circular FZZT boundary [8, 57-59], without marked points, which
corresponds in random matrix theory with

Tr(log(E — H)) = Q . (A.12)

36We have in mind some implicit Gaussian weight centered around E which defines the energy bin smoothly.
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The random matrix observable includes a sum over genus in gravity, which we suppress for
presentation purposes. Now consider the minimal string boundary three point function of

marking operators®”

(e BB T EE,) - (A.13)

As written the marking operators intertwine between segments with FZZT boundary states
respectively E1, Ey and F3.3® This corresponds in random matrix theory with the following
observable [51, 54-56]

1 1 1
T - . A.14
r(El—HEQ—HEg—H> (A.14)

Now consider a disk with thermal boundary length oy + 81 + as + B2 + as + 83, which
corresponds in random matrix language with Tr(exp(—(ay1 + 1 + ag + B2 + as + f3)H)).
Laplace transforming some segment of thermal boundary gives a segment of FZZT bound-
ary, this is obviously true from the matrix integral formulas. Therefore we have the

Correspondence

1 1 1
—B1H —B2H —BsH | _ ) A.15
|I‘ (1 e 3 e Eg f[e - ( )

The gravity amplitude mimics the pinwheel amplitude considered in appendix A.1 and
in [6], but with FZZT boundary conditions instead of mass y boundary conditions. FZZT
and mass p boundary states are linear combination of each other; one checks that their JT
boundary wave functions form complete sets for certain complex ranges of F respectively
w6, 9], hence there is a basis transform between them.

Now we see that taking the thermal length of one of the segments in the pinwheel
to zero reproduces amplitudes of the type (A.14). The random matrix dual clarifies that
this is indeed the correct limit to take, if you send 1, 52 and f3 to zero in (A.15), you
recover (A.14). This proves that the dilaton gravity interpretation of a marking operator
Ti E, E, corresponds with a piece of thermal boundary sandwiched between FZZT boundary
segments with boundary conditions £ and Es, where the thermal length of the sandwiched
segments is taken to zero.

The generalization to mass p boundaries is straightforward, since these are just linear
combinations of FZZT boundaries. We can consider for example the minimal string boundary

3"Boundary chiral vertex operators have three labels [90], the two extra labels denote the boundary states
between which they intertwine. In string language these are the Chan-Patton indices for the two D-branes
between which the open string operator stretches, generalized to non-coincident D-branes.

38FZZT boundary conditions are technically a double cover of the energy axis and should be labeled by z
with E = —z2, there is a unique Liouville primary corresponding with each z; this is not relevant here so we
suppress it for reader comfort.
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three point function®’

T T T - (A.16)

Following the above, this corresponds in random matrix theory with the observable

Q
Tr (r (u 12+ iH1/2) T (u 12+ iHl/Z) T (u 12+ 1H1/2> ) - :
0
(A.17)
and therefore in gravity with the § = 0 limit of the pinwheel diagrams studied in ap-
pendix A.1.

Notice that taking the 8 = 0 limit of the pinwheels, gives a finite answer for the second
diagram in (2.11); representing a disk ending on a mass p particle with a single marking
operator inserted. Naively one might have thought that amplitude would vanish, since the
boundary is a geodesic, but it does not.

In summary, if we model interactions by insertions of marking operators, we know
the corresponding observables in random matrix theory and the corresponding boundary
conditions in gravity, and we can compute all amplitudes we want. One could consider
modeling interactions by more general minimal open string Tachyons 7, ,,,, however the
random matrix dual of the corresponding boundary correlators is not actually known,*°
and concordantly neither are the precise boundary conditions in dilaton gravity. We expect
the conclusions of this work to hold when working with these other models for interactions.

A.3 Computing amplitudes

Here we go through the JT gravity calculation for one amplitude that contributes to
the matrix element. The example which we choose is sufficiently complex so that the
generalization to all amplitudes should be straightforward. We consider (2.21)

Q
o

Wity 2364 (¢"), ¢ (o) @ o ) (A18)

where we already extracted the EOW particle Feynman rules, such that the diagram reflects
a pure JT gravity calculation. The way to proceed is to first treat each boundary loop
as analogous to a standard fixed length boundary; chopping up the surface by cutting off
“trumpets” ending on each boundary [8], and on the unique geodesic inside the Riemann
surface homologous to the boundary in question.

The remaining amputated amplitude with geodesic boundaries computes the Weil-
Petersson volume, which can be calculated by further chopping up this Riemann surface
into three holed spheres. This is explained in great detail in [8, 9, 13, 25, 85, 91, 92], and

391In stringy language the k flavors of interior modes are ordinary Chan-Paton indices, because all D-branes
coincide at p.
4ORecently an educated guess was made in [54] which perhaps deserves further study.
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will not be repeated here. The newer ingredient is computing the trumpet ending on a
boundary circle that includes interacting EOW branes.

Let us work through this in the above example. Cutting the Riemann surface on the
blue geodesic of length b leaves two trumpets, here there remains no amputated surface
and we need no Weil-Petersson volumes

: :J;] dbb }Q—io o . (Alg)

Each of the remaining pieces is a trumpet with one geodesic boundary and one boundary
that involves segments of EOW particles.

As explained in appendix A.1 and appendix A.2, without geodesic boundary, the
amplitudes could be easily calculated using the boundary particle formalism [9, 87] or the
BF formulation [80, 88, 89, 93, 94]

+00
D j dE exp(—BE) F(E)* —smh(Qﬂ'El/Q) (A.20)

Including the geodesic boundary is easy within the BF or first order formulation, where it
is interpreted as introducing a hyperbolic defect; amplitude wise this simply replaces the
sinh factor with a cosine [80]

} fHOdE exp(—BFE) F(E )4 ! E1/2 cos(bE1/2> (A.21)

The trumpet with one geodesic boundary and one triangle boundary therefore becomes

Q +00 1

1
_ 3 1/2
T o JO AEF(E) o s cos(bE ) (A.22)

[o}

We can now immediately compute the b integral using

1 1/2 1 1 1/2 __i Ei1+ Es 1
fo dbb27r E1/2 (bEl ) o 1 cos(bE2 ) T T a2 ERELVR (Br — Bo)?
= {p(Er)p(E2))q (A.23)

which is the genus zero contribution to the spectral correlation [8]. Combining the elements,

we obtain

+00

q f 0 = JJFOO dE1 eXp(—ﬁEl) F(E1)4 L dE2 F(E2)3 <p(E1)p(E2)>O . (A24)
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Including any number of handles and nonperturbative effects in that genus expansion
simply replaces the genus zero connected spectral correlator with the full correlator (A.7)
of random matrix theory [9, 13, 85]. The generalization to arbitrary amplitudes should now
be obvious.

Another new application of the BF formulation is the calculation of [47], which considers
a trumpet with mass p particle on the geodesic boundary. In the BF formulation, massive
particles become Wilson lines, and the mass p labels discrete series irreducible representations
of SL(2,R). The geodesic length b, over which is integrated, labels hyperbolic conjugacy
class elements of SL(2,R), and Wilson lines in the conjugacy class element basis contribute
characters to BF amplitudes [88, 89, 93, 95]. One then finds

Q J db x,(b) LHOdE exp(— ﬁE) cos(bE1/2> (A.25)

and the discrete series characters evaluated on hyperbolic conjugacy class elements are in

this convention [96]
_ exp(—ub)
Xulb) = 5 ah(b2)

This therefore indeed reproduces formula (2.47) of [47], there obtained via direct canonical

(A.26)

quantization. This character formula is also relevant when exactly computing the contribu-
tions of matter loops around handles in JT gravity. Inserting it as an extra kernel in the
double trumpet gives the annulus with one matter loop going around. More loops are annoy-
ing since the particles can then cross, giving potential SL(2,R) 65 symbols [88, 89, 94, 97].
Could these be used to study deviations from random matrices [42]?
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