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1 Introduction

Recent efforts to understand the holographic nature of quantum gravity for vanishing
cosmological constant have led to an exciting merger of techniques from the relativity,
conformal bootstrap, and amplitudes communities [1]. If we attempt to replicate existing
holographic dictionaries [2, 3] from the ground up by matching symmetries [4, 5], we are
naturally led to broaden our scope from the Poincaré isometries of Minkowski space to the
asymptotic symmetries of asymptotically flat spacetimes [6–8]. These include extensions of
the Lorentz group to a Virasoro symmetry [9–13] and hint at a CFT living on the night
sky. We can realize this by recasting the S-matrix program in terms of a dual ‘celestial
CFT’ (CCFT), wherein 4D S-matrix elements are mapped to 2D correlators of primary
operators. The act of bootstrapping correlators based on the symmetries and OPE data
amounts to bootstrapping amplitudes from their soft and collinear limits. Discovering an
intrinsic description of this dual would be tantamount to determining rules for the on-shell
data of ‘consistent’ bulk theories [14–17].

The holographic map is implemented by a change of basis from plane-wave scattering
to boost eigenstates. Let us briefly set up our conventions for what follows. Throughout
this paper we will consider massless scattering in four spacetime dimensions. The n external
momenta take the form

pµi = εiωi
(
1 + ziz̄i, zi + z̄i, −i(zi − z̄i), 1− ziz̄i

)
(1.1)

where the sign εi = ±1 determines if the particle is incoming or outgoing. Recall that the
n-point scattering amplitude An(pi) is a distribution containing the momentum-conservation
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Figure 1. Kinematic constraints on massless 12→ 34 scattering as viewed from the celestial sphere.
Because of momentum conservation, the scattering process can be embedded in a three-dimensional
surface. If we look at how this surface intersects the celestial sphere, we find that there are non-trivial
constraints on the operator positions.

delta function δ4(
∑n
i=1pi). If we now view the Lorentz group in 4D as conformal transfor-

mations of the celestial sphere, the helicity of an external scattering state determines the
2D spin Ji. We can further trade the energy variable ωi for a conformal dimension ∆i by
performing a Mellin transform1

Ãn(∆i, zi, z̄i) =
(

n∏
i=1
N∆i,εi

∫ ∞
0

dω ω∆i−1
)
An(pi). (1.2)

In what follows we will take our normalization factor to be N∆i,εi = 1. We will see in
section 3.1 below that this choice has nice crossing properties. While this map guarantees
that the external scattering states transform as quasi-primaries in a 2D CFT, these get
promoted to Virasoro primaries upon coupling to gravity [12, 13, 22, 23]. The resultant
‘celestial CFT’ seems to posses rich and intriguing properties unfamiliar from regular two-
dimensional CFTs. For example, its spectrum involves states with complex conformal
dimensions, with finite energy scattering is captured by conformal dimensions on the
principal series ∆i = 1 + iλi [18, 24].

Another fundamental feature is that correlators are supported only on certain well-
defined patches of the celestial sphere. Let us illustrate how this celestial geometry works
for 12→ 34 massless scattering understood as a 4-pt correlator [25]. As shown in figure 1,
momentum conservation restricts the kinematics to a hyperplane in momentum space,
and our task is to see how this surface intersects the celestial sphere. Let us start with
the momentum space amplitude. In the center-of-mass frame, the scattering process is
parameterized by two invariants: the total incoming energy

√
s = E and the scattering

1Throughout this paper we will use the term ‘celestial amplitude’ to refer to the Mellin transformed
amplitude (1.2). There are generalizations [18–21] which involve integral transforms on the celestial sphere
that act as intertwiners, taking us between Weyl reflected SL(2,C) representations. The lessons we learn
about amplitudes in the Mellin basis can be translated to their smeared analogs by applying the respective
additional transformations. Some historical context for this Lorentz basis and other options that have yet to
be explored in the modern celestial literature can be found in appendix B.
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angle θ. Upon performing a rotation we can take the two incoming particles to enter at the
north and south poles

p1 = E(1, 0, 0, 1), p2 = E(1, 0, 0,−1). (1.3)

By a further rotation around the polar axis we can put the outgoing particles in the φ = 0
plane

p3 = E(−1, sin θ, 0, cos θ), p4 = E(−1,− sin θ, 0,− cos θ). (1.4)

Going to the celestial basis amounts to holding all angles fixed while integrating over the
relative energy scales. In this 12→ 34 context this means we are integrating over a family
of center-of-mass frames. We also see that for any such E we have an in-out-in-out ordering
on the great circle φ = 0. To make this more explicit, let us introduce the cross-ratio z of
the vertex operators

z = (z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4) . (1.5)

Simple geometry tells us that z = 2/(1 − cos θ). Reality of θ implies that the celestial
correlator for the 12→ 34 scattering has support only on the interval z ∈ (1,∞). Since this
is a Lorentz-invariant statement, the same ordering has to hold in any frame. By such an
overall boost/rotation, the great circle considered above can be mapped to any other circle
on the celestial sphere.

The story becomes even more interesting when we consider the crossed processes, e.g.,
14̄ → 2̄3 and 13̄ → 2̄4, where the bar denotes an anti-particle (particle decays, such as
1 → 2̄34, are not allowed kinematically for massless particles). Applying the in-out-in-
out rule immediately tells us that the two processes only have support on the intervals
z ∈ (−∞, 0) and (0, 1) respectively. This picture is an imprint of the fact that scattering
amplitudes in different crossing channels do not have overlapping support in the kinematic
space, though this is normally phrased in terms of the plane-wave basis.

At this stage we are faced with two natural, interconnected, problems. The first question
is how the support of CCFT correlators generalizes to higher-multiplicity processes. The
second is how the correlators in different crossing channels with overlapping support are
related to one another. In this paper we will tackle both of these questions in turn. In
section 2 we explore the celestial geometry at n-point, identifying the support for each
crossing channel and demonstrating how the different channels tile the celestial sphere. We
then use this perspective to revisit how we present the invariant data for celestial correlators
in section 3, focusing in particular on the 4-pt case as a familiar example that can help
clarify how crossing symmetry in momentum space manifests itself in CCFT.

Understanding these points becomes vital to the cohesive picture of celestial amplitudes
and crossing in both the CFT and amplitudes sense. From a CCFT perspective, our ability
to extract symmetries from OPEs relies on going to complexified points zi [26–29], making
it crucial to understand how to analytically continue from the celestial sphere to a signature
where the in/out labels are no longer invariant. From an amplitudes perspective, our ability
to go between signatures [20, 23, 30, 31] should be intimately connected to the prescriptions
for analytic continuations between channels that avoid Landau singularities (see [32–34]
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for recent progress). It would be quite interesting if consistency conditions in CCFT could
inform how to prescribe such crossing continuations in the massless case, though we leave
such investigations to future work. Some highlights of the results herein are as follows.

Selection rules. The support of n-point correlation functions on the celestial sphere is
most cleanly phrased in terms of celestial circles. Namely, scattering in a given crossing
channel is disallowed if there exists a circle that separates all the in from all the out
punctures. This geometric picture not only explains the in-out-in-out constraint on the
4-point function, but also can be applied to a general n-point process, where the analytic
expressions for the constraints are much more intricate. For example, consider what happens
when we hold n−1 punctures fixed and look at the domain of support of the n-th puncture
for different crossing channels. At n = 5 the different crossing channels uniformly tile the
celestial sphere once. Starting at n = 6, the celestial sphere is covered multiple times by
scattering amplitudes in different channels, so that there will be a fixed number of channels
with support for a given configuration of punctures on the celestial sphere. The degree of
this covering deg(n) is given by

n 5 6 7 8 9 10 11 12 · · ·
deg(n) 1 6 22 64 163 382 848 1816 · · ·

(1.6)

and is combinatorially related to the cake-cutting problem in R3. It grows exponentially
with n. Codimension-1 boundaries of the allowed regions correspond to valid 4-point
processes and the channels on either side of such boundaries have signs of the energies for
the remaining n−4 particles flipped. In other words, the allowed regions are glued together
at (n−4)-fold simultaneous soft limits.

Invariant data. As discussed in [35, 36], for n = 4, any celestial correlator can be
expressed in terms of the following invariant data: the cross-ratio z and the sum of the
conformal dimensions ∆. Here, we identify a generalization of this statement to n-point
correlators. For n ≥ 5, the invariant data can be labeled by n−3 algebraically-independent
complex cross ratios

rijkl = (zi − zj)(zk − zl)
(zi − zk)(zj − zl)

, (1.7)

as well as n conformal dimensions, with translation invariance imposing 4 differential
constraints among them. The latter is spelled out in (3.44). This analysis gives the total
of 3n−10 real degrees of freedom, agreeing with the number of independent Mandelstam
invariants for any Poincaré-invariant plane-wave amplitude.

Exchange symmetry. In addition to the continuous data accounted for above, the
operators come with a discrete label specifying whether the particle is incoming or outgoing.
The selection rules for channel support highlight the effect of this label on the celestial
correlators. However, this is only part of the story since two channels supported on the same
puncture configuration will still probe different regions of phase space. Nonetheless, there is
a simpler aspect of crossing that more readily carries over to the celestial basis. Whenever
we start with a plane-wave amplitude invariant under the exchange of two particles, the
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corresponding CCFT correlator will inherit this symmetry. For instance, the 4-point MHV
amplitude of gravitons can be written as

A4(1+2−3+4−) ∝ 〈24〉2[13]2

[24]2〈13〉2 f(s, t)δ4(p1+p2+p3+p4), (1.8)

where f(s, t) = GN
u3

st + . . . . The corresponding CCFT correlator takes the form

Ã4(1+2−3+4−) ∝ δ̂(Im z)Θ(εi)
z2

24z̄
2
13

z̄2
24z

2
13

∏
i<j

|zij |
∆
3 −∆i−∆jg(∆, z), (1.9)

where δ̂(Im z) is the crossing-symmetric delta function imposing the support on the celes-
tial circle and Θ(εi) are channel-dependent step-functions implementing the in-out-in-out
constraint. The 1↔ 3 exchange symmetry of the plane-wave amplitude implies crossing
symmetry of the CCFT correlator, i.e.,

f(s, t) = f(t, s) ⇔ g(∆, z) = g(∆, 1−z). (1.10)

We generalize this statement to n-point functions. This exchange symmetry of the CCFT
data follows directly from the extrapolate dictionary [37, 38], whereby the celestial operators
can be expressed as limits of local bulk operators smeared along null generators of the
conformal boundary.

2 Kinematic constraints on massless scattering

In this section we will consider how translation invariance turns into constraints on the
support of celestial amplitudes for generic n. The low point n ≤ 4 cases have been examined
in [25, 35], while the form of the higher point integrand has been investigated in [39]. The
focus here is to set up the problem in a more geometric manner so that we can understand
the indicator functions that appear in those references.

2.1 Crossing channel support

Let us start by writing the massless momenta (1.1) in terms of the in/out label εi = ±1,
the energy ωi > 0, and a reference null vector qi

pi = εiωiqi, qi =
(
1 + ziz̄i, zi + z̄i, −i(zi − z̄i), 1− ziz̄i

)
. (2.1)

The vector ~ε of the signs of energies labels a crossing channel (we equate ~ε and −~ε which
are indistinguishable for our purposes). The momentum conserving delta function enforces

n∑
i=1

pi =
n∑
i=1

εiωiqi = 0, (2.2)

which we can rewrite in the suggestive form

Qω :=
(
ε1q

µ
1 · · · εnq

µ
n

)
ω1
...
ωn

 = 0. (2.3)
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The celestial amplitude (1.2) integrates over all positive ωi. A set of phases and punctures
{(εi, zi, z̄i)} is an allowed configuration of celestial operators if the linear equation (2.3) has
a positive solution in ω. To see when this is the case, we can use the following theorem
from [40], whose proof is included in appendix A.

Theorem 1 (Jackson (2.2) [40]). For an m× n matrix Q, the following are equivalent

(i) Qω = 0 has no positive solution ω ≥ 0.

(ii) There exist v such that vQ > 0.

For our configuration matrix Q in (2.3) we need to take n to be the number of external
scattering states and m = 4, matching the bulk spacetime dimension. We now make the
following claim about when a given configuration is disallowed.

Theorem 2. A configuration {(εi, zi, z̄i)} is kinematically disallowed if and only if there is
a celestial circle dividing the incoming and outgoing particles.

This follows directly from the proof of Jackson’s theorem once we can show that for our
class of Q’s, the requirement (ii) in theorem 1 is equivalent to the existence of a celestial
circle dividing the incoming and outgoing particles. We will do this in three steps. First, we
will need to argue that for our type of Q the only vµ which can exclude it will be spacelike.
Then we will construct an isomorphism between oriented circles on the celestial sphere and
spacelike co-vectors vµ. Finally, we will show that vQ > 0 if this circle divides the incoming
and outgoing particles.

While we do not need to attach a Lorentzian metric to R4 to use Jackson’s theorem, for
visualization it is useful to split the space of co-vectors vµ into the three kinds we get in R1,3:
spacelike, timelike, or null. The null case can be thought of as a limiting version of either,
and will eventually correspond to the limit of shrinking the celestial circle corresponding
to a spacelike v down to a point. There is a one-to-one map between these co-vectors and
hyperplanes through the origin in momentum space R1,3. Meanwhile, the columns of Q
are vectors lying on the forward or past ‘lightcones’ in this space. The statement that
vQ > 0 means that all of the columns of Q lie on the appropriate side of this hyperplane.
As illustrated in figure 2, any spacelike hyperplane (with timelike normal) through the
origin in momentum space (grey) will intersect these cones only at the origin. Thus the only
configurations they can exclude are the all-in and all-out scattering processes. However, we
will see that these cases can also be excluded by hyperplanes with spacelike normal (blue),
so it is sufficient to focus on spacelike v’s. This completes step 1.2

For step 2 we can write down an explicit isomorphism between celestial circles and
spacelike co-vectors vµ. Recall that the choice of reference momenta qµ(z, z̄) in (2.1) amounts
to an embedding of the celestial sphere into the canonical section q0 + q3 = 2 of the forward
light cone. If we now let z = x+ iy, the circle

(x− x0)2 + (y − y0)2 = R2 (2.4)
2For a spacetime perspective wherein spacelike-normal hyperplanes appear in the definition of currents

and their corresponding charges in radially quantized CCFT see [41].
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Figure 2. Left: hyperplanes through the origin of momentum space with spacelike normal (blue)
divide the set of on-shell momentum-directions in two (orange and green). A dual vector vµ will
satisfy vQ > 0 if all of the rays are on the same side of this hyperplane. Right: the antipodal
identification of the incoming and outgoing celestial spheres implies the corresponding circle divides
the incoming (orange) from the outgoing (green) particles.

can be written as the intersection of this canonical section and a hyperplane through the
origin whose normal vector is proportional to

vµ = α

(1
2(R2 − 1− x2

0 − y2
0), x0, y0,

1
2(R2 + 1− x2

0 − y2
0)
)
. (2.5)

Only the sign of α matters from the point of view of condition (ii) and we can use this to
assign an orientation to this circle which we will use to distinguish points inside the circle
from points outside the circle on the celestial sphere. From the point of view of R1,3, this
sign flips us between the two half spaces divided by the corresponding hyperplane. Noting
that (2.5) sweeps out a hyperboloid of radius v2 = α2R2 > 0 completes step 2.

For step 3 we just need to verify that the configuration where all of the rows of Q are
on the same side of the hyperplane corresponding to (2.5) indeed implies that the incoming
and outgoing particles are on opposite sides of the circle (2.4). This is straightforward since

vQ > 0 ⇔ εivµq
µ
i > 0 (2.6)

for all i. Thus, all the outgoing particles will have vµqµi > 0 while all the incoming particles
will have vµqµi < 0, which by our isomorphism between hyperplanes and circles puts them
on opposite sides of the celestial circle corresponding to v.

Revisiting low-point kinematics. Let us now use this theorem to re-derive the familiar
constraints on celestial correlators [25]. First of all, for any n, theorem 2 immediately
excludes any 0↔ n and 1↔ n−1 process, because in either case one can simply draw a
celestial circle that separates all the in from out states, unless two of them are collinear.3

Returning to the remaining 2 → 2 processes at n = 4, we expect the punctures to be
restricted to a circle by momentum conservation. The in-in-out-out ordering of the punctures
on the circle is easily excluded, which leaves us with in-out-in-out as the only valid option.

3This caveat allows for the contact term 2-point function we get from Mellin transforming the familiar
momentum space inner product from the single particle Hilbert space, corresponding to a 1→ 1 process.
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Figure 3. A geometric route to the in-out-in-out ordering and celestial circle support of allowed
2→ 2 scattering processes. After placing punctures with (ε1, ε2, ε3) = (+,+,−), the additional −
puncture cannot be placed in any of the grey regions by theorem 2. Translating and dilating the
circles leaves the only allowed position on the arc between the two + punctures.

Even if we did not know that all four punctures have to be aligned on a circle, we could
have arrived at this result as follows. For any 3 points on the celestial sphere we can draw
a circle through them. Consider the circle through two + and one − puncture illustrated in
figure 3, as well as two deformations of this circle designed so that the + and − particles
are on opposite sides. By a Lorentz transformation we can map any three punctures to
points of our choice, so this drawing is generic for non-degenerate configurations. In the
case where we take these deformations to be infinitesimal these two circles exclude all
but the arc between the two + punctures for the position of the fourth point which is a
− puncture. This expediently reproduces both the celestial circle and the in-out-in-out
ordering we reviewed in the introduction.4

2.2 Tiled covering of the celestial sphere

In the interest of understanding what happens when we analytically continue the position
of one of the external operators, we will now turn to the following question:

For a given crossing channel ~ε and the positions of punctures i = 1, 2, . . . , n−1
fixed, what is the region of support for puncture n?

In the four-point case this is given by the unique arc on the circle through punctures {1, 2, 3}
that obeys the in-out-in-out ordering. We claim that, more generally, the excluded region
of the celestial sphere has the following properties:

1. The disallowed region can be written as union of a finite number of disks whose
boundaries are circles through 3 of the fixed punctures.

2. The arcs that make up the boundary of this union corresponds to allowed 2 → 2
scattering processes.

4This story can be generalized to (2, 2) signature, in which case the celestial circles are replaced by
corresponding celestial hyperbolae.
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Since the channels ~ε and −~ε have the same support, without loss of generality we can set the
final particle to be outgoing, i.e., εn = −1. We note that if the n−1 particle configuration
is allowed, there is no restriction on the placement of the n-th puncture. We can see this by
the fact that theorem 2 tells us there is no circle separating the in particles from the out
particles within the n−1 particle process. By contrast, if the n−1 particle configuration
is not allowed, we know that we can draw a celestial circle that divides the in particles
from the out particles. If the n-th particle is placed anywhere on the side of circle with the
εi = −1 punctures, the corresponding n-particle configuration will be disallowed too.

What, then, are the allowed n-particle configurations? Since we want to attach an
orientation that distinguishes the inside from the outside, we will label such circles with a
cyclically-ordered triplet (jkl) which defines a hyperplane via

v(jkl)
µ = εµνσρεjq

ν
j εkq

σ
k εlq

ρ
l , (2.7)

where εµνσρ is the totally-antisymmetric tensor. For later reference, we note that the dot
product with one of the columns of Q

v(jkl)
µ εiq

µ
i = detQijkl = εiεjεkεl|zikzjl|2 Im(rijkl) (2.8)

is the corresponding 4× 4 minor of Q whose sign is determined by the crossing channel and
the imaginary part of the cross ratio (1.7)

rijkl = zijzkl
zikzjl

, (2.9)

which flips when we cross the circle, as illustrated in figure 4. In what follows we will
consider the situation where the first n−1 punctures are at generic positions. In this case
only triplets will be co-circular. Phrased more mathematically, the moduli space for the
‘generic’ n-point celestial correlators we are considering is(CP1)n −

⋃
i,j,k,l

{Im rijkl = 0}

 / SL(2,C) (2.10)

for n ≥ 5, where the action of SL(2,C) allows us to freeze three punctures. It seems to be a
non-linear cousin of the moduli spaceM0,n familiar from string perturbation theory, which
can be obtained by removing “Im” from (2.10). It would be fascinating to further explore
combinatorial and topological aspects of this moduli space, such as its compactification.

Now let us start with one of the circles separating the in from the out particles among
the first n−1 fixed punctures. We will refer to the interior as the side which contains the
εi = −1 punctures. For any such circle on the celestial sphere we will be able to continuously
deform it to some subset of these (jkl) without crossing any of the fixed punctures. If
particle n is in any of these deformed circles, the configuration is again disallowed. We thus
confirm property 1.

The circles defining the boundary of this region correspond to extreme rays of the cone
satisfying vQi > 0 for all i < n. The interior of this cone is open. Correspondingly, we
see by our construction that all the εi = −1 punctures are in the interior of the disallowed
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Figure 4. Sign of Im(rijkl) as determined by the position of particle i given the oriented circle
connecting particles (jkl).

region for puncture n. Meanwhile the εi = +1 punctures are either in or on the boundary
of the allowed region. Combined with property 1, the boundary of this region is thus a
union of circular arcs through two εi = +1 punctures. Let j and k refer to an adjacent pair
of punctures on this boundary. If the third puncture l defining this circle had the same
sign εl = +1, it would circumscribe the allowed region by construction, since a circle that
intersects the boundary transversely cannot correspond to a vector inside or on this cone.
We can do a continuous deformation of this circle on the Riemann sphere that keeps points
j and k fixed and moves away from the third point l towards the εi = −1 punctures (any
element of this family can be infinitesimally deformed to a circle satisfying theorem 2.). The
arc between j and k on the original circle will be in the interior of region disallowed by the
deformed circle and thus cannot be a boundary of the disallowed region. We thus see that
the boundary is a union of (+,+) arcs on an (−,+,+) circle, demonstrating property 2.

So far we have kept the channel fixed. Let us now generalize to the case where we keep
the n−1 puncture locations fixed and look at all crossing channels. In the 4-point case
we saw that different channels tiled the celestial circle. Here we will see that the different
crossing channels tile a covering of the celestial sphere. The degree of this covering, i.e., the
number of crossing channels allowed for a given point on the sphere, as a function of n is
related to the so-called cake numbers

deg(n) = 2n−1 − cake(n− 1) (2.11)

where

cake(n− 1) =
(
n

3

)
+ n =

(
n− 1

0

)
+
(
n− 1

1

)
+
(
n− 1

2

)
+
(
n− 1

3

)
. (2.12)

This grows rapidly with n. For n = 1, 2, 3, . . . the degree is

0, 0, 0, 0, 1, 6, 22, 64, 163, 382, 848, 1816, . . . (2.13)

for generic puncture configurations. In particular the 5-point channels tile the celestial
sphere exactly once. This is illustrated for two different puncture configurations in figure 5.
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1 3

2

4

1

2

4

3

(+,+,−,+,−)
(+,−,−,+,−)
(+,−,+,+,−)
(+,+,−,−,−)
(−,−,+,+,−)
(−,+,+,+,−)
(+,+,+,−,−)
(−,+,+,−,−)
(−,+,−,+,−)
(+,−,+,−,−)

Figure 5. Tiling of the celestial sphere for n = 5, holding {z1, z2, z3, z4} fixed in two different
puncture configurations, together with the corresponding channel labels ~ε/Z2.

A priori there are 2n−1 possible assignments of ~ε/Z2. To verify (2.11), we want to show
that the number of disallowed channels over a given point is the cake number cake(n− 1).
Now the cake number cake(n− 1) is the maximum number of pieces of cake you can get by
cutting a 3D cake with n− 1 planes. In order to prove (2.11) we will relate the question
we are after to a problem that is amenable to a generalization of the standard a 3D cake
cutting problem’s proof.

By theorem 1, the n particle configuration is disallowed if there is a v such that vQ > 0.
In the same manner that the vµ define hyperplanes in momentum space, the qµi cut up
the dual momentum space into chambers. For every such chamber v ∈ V the entries
νi = sgn(vµqµi ) have definite sign. Taking εi = νi gives a configuration that is disallowed
for each chamber. Among the pairs {V,−V } one of them will have εn = −1 matching our
choice for reducing the Z2 redundancy. We thus want to count the number of pairs of
chambers {V,−V }.

We can now turn this into a 3D cake cutting problem by restricting to an affine subspace
which will hit only one of the pair {V,−V }. We need to take care with this choice. For
instance the subspace v0 = 1 will intersect both chambers when n = 1. Instead consider
the 3D slice vµqµ1 = 1. This lies strictly on one side of the first hyperplane. The remaining
n − 1 hyperplanes will cut up this volume, which will only hit one of the two chambers
{V,−V } since the sign of the first entry is fixed. While the hyperplanes defined by the qi
are not generic, their intersections with the vµqµ1 = 1 hypersurface still satisfy the necessary
criteria for the number of ‘slices’ to be cake(n− 1). Namely, the fact within this 3-volume
no two planes are parallel, no two of their intersection lines are parallel, and there is no
point in common to four or more planes follows from the nature of the 4D uplift and we
can use the standard proof [42].

Finally, we note that some of these channels will cover a full copy of the Riemann
sphere. Because a channel will have full support for the n-th puncture only when the n− 1
configuration is allowed we have

full(n) = 2deg(n− 1) (2.14)

corresponding to the two relative signs of ~εi<n.
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CP1

CP1

CP1

×

×

...

1
3

2 4
5

(−,+,+,−,+,−)
(+,−,−,+,+,−)
(+,+,−,−,+,−)
(+,−,+,+,−,−)
(+,−,+,−,+,−)
(+,+,+,−,−,−)
(−,+,+,+,−,−)
(−,−,+,+,+,−)
(+,+,−,+,−,−)
(−,+,−,+,+,−)

Figure 6. Tiling of the celestial sphere for scattering with n = 6 holding {z1, z2, . . . , z5} fixed. The
support of the various 3→ 3 channels are shown, along with the corresponding ~ε/Z2.

The remaining channels will tile together into copies of CP1. From our investigation at
the beginning of this section, we know that the boundaries of each channel correspond to
allowed 2→ 2 processes. We can thus attempt to tile together these channels, gluing across
boundaries corresponding to (n− 4)-fold multi-soft limits. The n = 6 case is illustrated in
figure 6. The channels on either side of a given boundary arc flips the signs of all but these
4 particles whose punctures define that arc. Because this operation maps 3→ 3 and 2↔ 4
properties amongst themselves we have restricted to the former in the figure. We see that
there are three disconnected components of this cover. We can move around within each
region without hitting a soft limit of scattering. While we need to understand multi-soft
limits in order to cross between regions within a fixed CP1, these region boundaries are
different within each sheet of the cover. As such, being able to relate amplitudes in the
channels supported over a fixed configuration on the sphere would inform a prescription for
how to approach these multi-soft limits from either side. We will turn to the topic of such
channel dependence next.

3 Invariant data and crossing

We will now turn to the analytic properties of CCFT correlators for general n. An
important first step is to strip off the kinematics from the dynamics. Recall that a Lorentz
transformation implements the following map on the momentum space data

zi → z′i = azi + b

czi + d
, ωi → ω′i = |czi + d|2ωi (3.1)

while the crossing channel label εi is a Lorentz invariant in (1, 3) signature. The n-point
amplitude is Lorentz covariant, not invariant. If we start in the plane wave basis, the little
group transformation properties of massless single particle states implies that the amplitude

– 12 –
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for n massless particles with helicity Ji transforms as follows

An(εi, ω′i, z′i, z̄′i) =
n∏
i=1

(
czi + d

c̄z̄i + d̄

)2Ji
An(εi, ωi, zi, z̄i). (3.2)

Noting that z′ij = zij
(czi+d)(czj+d) , we can strip off a kinematical factor that captures the little

group covariance

An(εi, ωi, zi, z̄i) =
∏
i<j

(
zij
z̄ij

) 1
n−2 ( J

n−1−Ji−Jj)

δ4(
∑n
i=1 p

µ
i )An(sij) (3.3)

leaving us with a Lorentz invariant amplitude An(sij). Here J =
∑n
i=1 Ji is the total

helicity, sij = (pi + pj)2 are the Mandelstam invariants, and translation invariance implies a
distributional support on the locus of momentum conservation, which we’ve stripped off as
well. The dynamics is encoded in the dependence of An on the Mandelstam variables. These
sij are free variables for n ≤ 5, but more generally are constrained by Gram determinant
conditions, whereby every 5× 5 minor of sij (treated as a matrix) must vanish.

The CCFT correlator is defined as a Mellin transform in the energy variables ωi as
in (1.2). This has the effect of diagonalizing boosts in the direction of the four-momentum,
so that under SL(2,C) this object transforms as follows

Ãn(εi,∆i, z
′
i, z̄
′
i) =

n∏
i=1

(czi + d)2hi(c̄z̄i + d̄)2h̃iÃn(εi,∆i, zi, z̄i) (3.4)

where hi = 1
2(∆i + Ji) and h̃i = 1

2(∆i − Ji). From our discussion in the previous section,
we saw that this amplitude has restricted support as a function of the cross ratios rijkl that
depends on the channel ~ε. Together with the SL(2,C) transformations, this implies that we
can write

Ãn(εi,∆i, zi, z̄i) = Θn(εi, rijkl)
∏
i<j

(
z

2
n−2 ( h

n−1−hi−hj)
ij z̄

2
n−2 ( h̃

n−1−h̃i−h̃j)
ij

)
Ãn(εi,∆i, rijkl),

(3.5)
where h =

∑n
i=1 hi and h̃ =

∑n
i=1 h̃i and the dynamics is encoded in the Lorentz invariant

amplitude Ãn(εi,∆i, rijkl). We can cleanly extract this invariant amplitude as follows.
Starting from the spinor helicity products

〈ij〉 = −2εiεj
√
ωiωjzij , [ij] = 2√ωiωj z̄ij (3.6)

we recognize the spin dependent factor in (3.3) as the following ratio of the angle and square
spinor products

∏
i<j

(
zij
z̄ij

) 1
n−2 ( J

n−1−Ji−Jj)

=
∏
i<j

(
εiεj
〈ij〉
[ij]

) 1
n−2 ( J

n−1−Ji−Jj)
. (3.7)

We can do the same thing for the ∆i dependence by introducing appropriate factors of

sij = 〈ij〉[ij] = −4εiεjωiωj |zij |2. (3.8)
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This leads us to the compact expression5

ΘnÃn =
∫ n∏

i=1

dωi
ωi

∏
i<j

(−εiεj2 〈ij〉
)− 2

n−2 ( h
n−1−hi−hj)

(1
2[ij]

)− 2
n−2 ( h̃

n−1−h̃i−h̃j)
An, (3.9)

where An is the full momentum-conservation included amplitude. The factors of ω∆i
i in the

Mellin transform come from the sij-dependence of this kernel. Meanwhile the remaining
d logωi measure for each particle is the natural scale-invariant measure on R+. The goal of
this section is to establish a good basis for the invariant data ∆i, rijkl describing a general
correlator. We start with the well-understood special case of n = 4 [25, 35, 36, 44], in order
to clarify some basic points and set stage for the case of general n.

3.1 Four particles

For n = 4 we can write the celestial amplitude as follows

Ã4(εi,∆i, zi, z̄i) =
∏
i<j

(
zij
z̄ij

)1
2 (J3−Ji−Jj)

( 4∏
i=1

∫ ∞
0

dωi ω∆i−1
i

)
δ4(
∑4
i=1 p

µ
i )A4(s, t). (3.10)

As discussed in the introduction, a special feature of scattering at 4-point is that it has
codimension-1 support on the celestial sphere due to the fact that four pi’s satisfying
the momentum conservation constraint cannot themselves span the full four-dimensional
momentum space. The way this manifests itself at the level of how one evaluates the n = 4
correlator is that δ4(

∑4
i=1 p

µ
i ) cannot be used to localize all four ωi’s. Instead, the best we

can do is to localize three of the energy variables, writing

δ4(
∑4
i=1p

µ
i ) = 1

2ω4|z13z24|2
δ(Imz)

3∏
i=1

δ(ωi − ω∗i ) (3.11)

with

ω∗1 = −ε1ε4ω4
z

∣∣∣∣z34
z13

∣∣∣∣2 , ω∗2 = ε2ε4ω4(1−z)
z

∣∣∣∣z34
z23

∣∣∣∣2 , ω∗3 = ε3ε4ω4(z−1)
∣∣∣∣z24
z23

∣∣∣∣2 . (3.12)

The constraint Imz = 0 on the cross-ratio (1.5)

z = z12z34
z13z24

(3.13)

5This form has a couple of nice features. First, we see that the choice N∆i,εi = 1 in (1.2) is equivalent to
using an integration kernel that involves the crossing invariant combinations εiεj〈ij〉. Moreover, this form is
more amenable to changing signature. Namely, we can reintroduce the little group phase as in [43] so that
the spinor helicity products become

〈ij〉 = −2εiεjuiujzij , [ij] = 2ūiūj z̄ij

while replacing each d logωi with ∫
dui
ui
∧ dũi
ũi

, ui =
√
ωie

iθi .

In R1,3 the contour is taken by setting ũi = ūi (complex conjugate of ui) and integrating over the complex
plane. Changing to Klein space R2,2 amounts to replacing the contour for ũi by treating it as an independent
real variable.
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means the four punctures have to be aligned along a great circle. The constraint δ(Imz)
survives the Mellin transform. Meanwhile the energy delta functions δ(ωi − ω∗i ) are only
saturated when their arguments are positive ω∗i > 0. This puts an additional constraint on
z as a function of the channel labels εi. Namely,

Θ4(εi, z) =


θ(z−1) for ~ε/Z2 = (+,+,−,−) [s−channel],
θ(−z) for ~ε/Z2 = (−,+,+,−) [t−channel],
θ(z)θ(1−z) for ~ε/Z2 = (+,−,+,−) [u−channel],

(3.14)

where θ(z) is the Heaviside step function. This is the only source of kinematic constraints
depending on the crossing channel.

Putting this together we have

Ã(εi,∆i, zi, z̄i) = Θ4(εi, z)δ(Imz)
2|z13z24|2

∏
i<j

(
zij
z̄ij

)1
2 (J3−Ji−Jj) 3∏

i=1

(
ω∗i
ω4

)∆i−1

×
∫ ∞

0
dω4 ω

∆−5
4 A4(s∗, t∗).

(3.15)

where ∆ =
∑4
i=1 ∆i and the Mandelstam invariants (s∗, t∗, u∗) evaluated on the support of

the delta functions read

(s∗, t∗, u∗) = 4(z − 1)ω2
4

∣∣∣∣z24z34
z23

∣∣∣∣2 (1, 1− z
z

, −1
z

)
. (3.16)

Note that all the explicit εi-dependence has dropped out. As a cross check, it is easy to
check momentum conservation, s∗ + t∗ + u∗ = 0, and that each channel selects correct signs
for the Mandelstam invariants, e.g., s∗ > 0, t∗, u∗ < 0 in the s-channel with z > 1.

At this stage we would like to put the expression (3.15) into the form (3.5) with the
overall SL(2,C)-covariance factored out. To this end we first note that

ω∗1
ω4

= 1
|z|

∣∣∣∣z34
z13

∣∣∣∣2 , ω∗2
ω4

= |1−z|
|z|

∣∣∣∣z34
z23

∣∣∣∣2 , ω∗3
ω4

= |1−z|
∣∣∣∣z24
z23

∣∣∣∣2 , (3.17)

is valid in every crossing channel. Moreover, we can rescale the integration variable ω4 to

ω4 = ωf(z)
|z − 1|

∣∣∣∣ z23
z24z34

∣∣∣∣ , (3.18)

so that Mandelstam invariants are parameterized by functions with zero SL(2,C) weight.
Here we have introduced an arbitrary positive function f(z), which will be chosen later on
so as to manifest certain crossing properties. Collecting all the factors, we find

Ã4(εi,∆i, zi, z̄i) = 1
2Θ4(εi, z)

∏
i<j

(
z
h
3−hi−hj
ij z̄

h̃
3−h̃i−h̃j
ij

)
Ã4(∆, z), (3.19)

where all the non-trivial content of the correlator is captured by the function

Ã4(∆, z) = δ(Imz) |z(1−z)|2−
∆
3 f(z)∆−4

∫ ∞
0

dω ω∆−5A4(s∗, t∗), (3.20)
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which depends only on the sum of conformal dimensions ∆ =
∑n
i=1 ∆i and the real cross-ratio

z. In terms of the new variables, we have

(s∗, t∗, u∗) = 4ω2f(z)2
( 1
z−1 , −

1
z
, − 1

z(z−1)

)
. (3.21)

The above expression is independent of the crossing channel and evaluating it in different
regions (3.14) will result in the CCFT correlator in a given crossing channel for any valid
choice of f(z). It is worth emphasizing that this discussion has been using the normalization
N∆i,εi = 1 in (1.2). Namely, the object with nice crossing properties at 4-point has no
relative phase for the in versus out particles. We will see that this discussion generalizes to
n-point in what follows. By contrast, it is common in the literature (see ex. [18, 23]) to
introduce a phase of the form N∆i,εi = Γ(∆i)−1(iεi)∆i , since this gives a bulk conformal
primary wavefunction where the only difference between incoming and outgoing is the iε
prescription: X0 7→ X0 − iεεi for infinitesimal ε.

Crossing. Let us now explore how we can exploit the freedom in choosing f(z) to manifest
crossing properties of Ã4(∆, z). Because we expect singularities from the collinear behavior
at z = {0, 1,∞} we will start with the ansatz f(z) = |z|a|1−z|b with a, b undetermined.
Recall that by crossing of the plane-wave amplitude A(s, t), we simply mean switching of
all the labels (εi, Ji,∆i, ωi, zi, z̄i) of a particle i with those of j. For instance, to go from
the s-channel to t-channel we relabel 1↔ 3. At the level of the CCFT, this corresponds to
z → 1− z. Under this change, we would like to impose

(s∗, t∗, u∗) z → 1−z−−−−−→ (t∗, s∗, u∗). (3.22)

This fixes a = b. Similarly, to go from the s-channel to u-channel we use z → 1/z, under
which we demand

(s∗, t∗, u∗) z → 1/z−−−−−→ (u∗, t∗, s∗). (3.23)

This yields a = b = 1/3. With this choice, we find

Ã4(∆, z) = δ̂(Imz)
∫ ∞

0
dω ω∆−5A4

(
4ω2|z(1−z)|2/3

z − 1 ,−4ω2|z(1−z)|2/3

z

)
, (3.24)

where we have defined the crossing-symmetric delta function

δ̂(Imz) = |z(1−z)|2/3 δ(Imz), (3.25)

which is invariant under the transformations z → 1−z and z → 1/z.
The expression (3.24) makes manifest the fact that the CCFT correlator Ã4(∆, z)

inherits crossing properties of the plane-wave amplitude A4(s, t). For instance, when
scattering four identical particles we have

A4(s, t) = A4(t, s) = A4(u, t). (3.26)

The above derivation shows that this is reflected in the CCFT crossing via

Ã4(∆, z) = Ã4(∆, 1−z) = Ã4(∆, 1/z). (3.27)

While this property holds independently of the choice of f(z), for the choice used in (3.24)
it also holds for the δ̂-stripped part, which we will turn to next.

– 16 –



J
H
E
P
0
9
(
2
0
2
2
)
0
4
5

Analyticity in z. At this stage one may wonder if the function Ã4(∆, z), after stripping
away the overall δ̂(Imz), can be analytically extended from the real line to a holomorphic
function of z ∈ CP1 on the whole celestial sphere. One motivation for pursuing this
question is to exploit complex-analytic properties to derive new constraints on the correlator
analogous to dispersion relations in the plane-wave basis. Alternatively, one might want to
aim for an analytic extension of the whole function Ã4(∆, z) to (z, z̃) ∈ CP1 × CP1, where
the celestial sphere corresponds to the locus z̃ = z̄ and the circle to z = z̄. This is the type
of continuation needed to understand the connection to (2, 2) signature amplitudes (see,
e.g., [30]). It is inherently non-unique, because a given choice of analytic continuation can
depend on arbitrarily-complicated functions of the difference z − z̃.

While various versions of analytic continuations were studied in [36, 44, 45], there are
essentially two sources of problems that need to be understood before making a general
statement beyond tree-level toy models. The first is that upon complexifying z, the ω-
integral is multi-valued because A4(s, t) has poles and branch cuts. Actually, this causes
problems even at tree-level, because the ω-integrand itself has a branch cut for ∆ /∈ Z (the
spurious square-root branching between ω and the Mandelstam invariants can be removed
by a change of variables ω →

√
ω prior to analytic continuation). The second issue comes

from the overall monodromies of the prefactor, such as the ones in (3.20).

Analyticity in ∆. The analyticity in z is simplest in the case of tree-level scattering in
a purely-massless theory. In this case, the stripped amplitudes are rational in the spinor
helicity variables, so that the only monodromies can come from the prefactor we have
stripped out when defining Ãn. However it is also the case that these stripped amplitudes
are homogeneous in the overall energy scale. For example,

A4(λ2s, λ2t) = λdA4(s, t), (3.28)

for some scale degree d set by the mass dimensions of the external particles. The price we
pay for good analyticity in z is a non-analyticity in the remaining invariant quantity ∆,
since for such amplitudes

Ã(∆, z) ∝ δ(i(∆− 4 + d)) (3.29)

where the distribution δ, studied in [46], reduces to a Dirac delta function for real values of
the argument. Going beyond tree level we return to the more complicated z-dependence,
but land on an object that is analytic in ∆ whose pole structure can be matched onto
low-energy effective field theory coefficients if one ignores IR problems related to massless
exchanges [36, 44].

3.2 More particles

We would now like to extract an explicit form for the invariant quantity Ãn(εi,∆i, rijkl)
in (3.5) for generic n, and discuss how to represent the independent invariant data, paying
attention to the εi dependence. We will start by generalizing the construction in [39] in a
manner that makes contact with our celestial circle story.
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For five or more particles, we are able to solve the momentum conservation con-
straints (2.2) for four of the energy variables ωI . In (2.8) we encountered the 4× 4 minors

Uijkl = detQijkl, Qijkl :=
(
εiqi εjqj εkqk εlql

)
(3.30)

which evaluate to
Uijkl = 8εiεjεkεl|zikzjl|2 Imrijkl. (3.31)

We also saw that the signs of these minors depend upon the 3-particle celestial circles, as
illustrated in figure 4. The momentum conserving delta function constraint then reduces to

δ4(
∑n
i=1pi) = 1

|U1234|

4∏
I=1

δ(ωI − ω∗I ), ω∗I = − 1
U1234

n∑
i=5

ωiU1234/.I→i, (3.32)

where we have chosen I = 1, 2, 3, 4 as a spanning set of reference momenta. More generally
we can pick any set of four particles with linearly independent qi and use the momentum
conserving constraints to localize the corresponding ωi. Using (3.32), the celestial amplitude
Ãn(εi,∆i, zi, z̄i) reduces to

Ãn = 1
|U1234|

∏
i<j

(
zij
z̄ij

) 1
n−2 ( J

n−1−Ji−Jj)
(

n∏
i=5

∫ ∞
0

dωiω∆i−1
i

) 4∏
I=1

(ω∗I )∆i−1An(s∗ij)Θ(ω∗I ). (3.33)

Note that ω∗I ’s are still a function of the ωi’s with i > 4. The support of the correlator in
the zi-space is not obvious at the level of the integrand precisely because the constraints
Θ(ω∗i ) still have this ωi dependence. The integral in (3.33) is over all such ωi≥5 such that
ω∗I > 0. From our discussion of the channel support in section 2 we know that the final
result is proportional to the constraint Θn(εi, rijk), since this defines the region of puncture
configurations for which there exists any such solution.

One drawback of this presentation of the celestial amplitude is that the frequency
variables appearing in (3.33) transform non-trivially under SL(2,C). We can strip off the
canonical powers of zij and z̄ij in (3.5) to extract the Lorentz invariant part Ãn by making
the following change of variables to a set of SL(2,C)-invariant ‘energies’ Ωi

ωi = Ωi

n∏
j,k=1
j 6=k 6=i

∣∣∣∣ zjkzjizki

∣∣∣∣
1

(n−1)(n−2)
. (3.34)

This symmetric prescription avoids making a choice of particular reference punctures by
taking a geometric mean of all possible choices of reference punctures. One can check that

n∏
i=1

ω∆i
i =

(
n∏
i=1

Ω∆i
i

)∏
i<j

∣∣zij∣∣ 2
n−2 ( ∆

n−1−∆i−∆j). (3.35)

Comparing (3.5) and (3.33) we find

Ãn(εi,∆i, rijkl) = 1
|U1234|

n∏
i=5

∫ ∞
0

dΩi Ω∆i−1
i

4∏
I=1

(Ω∗I)∆i−1
(

Ω∗I
ω∗I

)
An(s∗ij)Θ(Ω∗I). (3.36)
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Here the ratio Ω∗I/ω∗I only depends on the |zij | and serves to modify the Jacobian |U1234|−1

that comes from using the momentum conservation delta function to localize the ω∗I , to the
one appropriate for localizing the Ω∗I . Since it is straightforward to introduce the change of
variables (3.34) in the s∗ij , we are set to start analyzing the invariant amplitude Ãn.

Before doing so, we note that other choices of Lorentz invariant energy variables that
differ from Ωi by functions of the invariant cross ratios, such as the ones in [39], can
also be used to define an invariant amplitude. These amount to stripping off different
kinematical factors. More explicitly, the choice of Ωi in (3.34) is appropriate for the
canonical form (3.5), used here and in [25, 36, 43], while other choices of kinematical factors
are common in the CFT literature and can be useful for examining the celestial conformal
block decomposition [20, 47–51].

Invariant data. We would now like to identify the free data and crossing channel
dependence of Ãn. Plugging (3.3) into (3.9), we see that besides the d logωi measure and
the momentum conserving delta function, everything is phrased in terms of the Mandelstam
invariants6

ΘnÃn =
∫ n∏

i=1

dωi
ωi

∏
i<j

(
−εiεj4 sij

)− 2
n−2 ( ∆

n−1−∆i−∆j)
An(sij) δ4(

∑n
i=1pi). (3.37)

Recall that the number of independent kinematic invariants in four space-time dimensions
is 3n− 10: starting from the 4n Lorentz-vector components of the external momenta pµi we
impose n on shell conditions, in addition to 10 constraints coming from Poincaré invariance
(6 for the choice of Lorentz frame and 4 from momentum conservation). Alternatively, one
can start with the matrix of n(n− 3)/2 Mandelstam invariants sij and impose the vanishing
of every 5× 5 minor, leading to the same number 3n− 10.

This degree of freedom counting should of course carry over to the celestial basis, and we
would like to express Ãn as a function of 3n− 10 independent variables. Since this stripped
celestial amplitude is SL(2,C)-invariant, it can written as a function of n− 3 complex cross
ratios rijkl for n ≥ 5. In addition, the conformal dimensions ∆i give n continuous variables.
Finally, there are 4 constraints coming from translation invariance. Note that these can be
convoluted constraints since translation invariance is no longer manifest on the celestial
sphere. In total, this counting leaves us with 3n− 10 degrees of freedom (rijkl,∆i), which
are the counterparts of the independent Mandelstam invariants on the celestial sphere.

Let us now return to the problem of reducing the ∆i dependence down to n − 4
parameters for n ≥ 5.7 Again this is all coming from the fact that translation invariance

6We can also recast this constraint in terms of Lorentz invariants. Imposing momentum conservation
amounts to demanding that (1, 1, . . . , 1) is in the right null space of the 4× n matrix pµj . This is at most
rank four, so if we can form an invertible 4× 4 matrix from a choice of pµ,I , requiring (1, 1, . . . , 1) to be in
the kernel of the 4× n sub-matrix sIj is equivalent.

7The independent variables are distributed slightly differently for n = 4 because the external momenta
do not span the whole 4D space. As we have seen in section 3.1, the momentum conserving delta function
restricted the complex cross ratio z to be real, and provided a constraint on the ∆i dependence such that
only ∆ =

∑4
i=1 ∆i appeared as the invariant datum. This gives the expected 3n − 10 = 2 real degrees

of freedom.
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imposes 4 constraints on the ωi dependence while we are still performing an n-dimensional
integral transform to the ∆i. Noting that the translation generators act on our conformal
primaries as follows [52]

Pµ =
n∑
i=1

εiq
µ
i e

∂∆i , where e∂∆i : ∆i 7→ ∆i + 1, (3.38)

we can define the action on the invariant amplitude via

PµAn = Θn(εi, rijkl)
∏
i<j

(
z

2
n−2 ( h

n−1−hi−hj)
ij z̄

2
n−2 ( h̃

n−1−h̃i−h̃j)
ij

)
P̃µÃn(εi,∆i, rijkl), (3.39)

where

P̃µÃn =
n∑
k=1

εkq
µ
k

n∏
i,j=1
i 6=j 6=k

∣∣∣∣ zij
zjkzik

∣∣∣∣
1

(n−1)(n−2)
e∂∆k Ãn. (3.40)

The product of |zij |’s comes from commuting the weight shifting operator through the
kinematical prefactor. From this expression we see that the frequency variables act like
weight shifting operators

e∂∆k Ãn = ωkÃn 7→ e∂∆k Ãn = ΩkÃn. (3.41)

This is consistent with the fact that the energy variables Ωi are Mellin-conjugate to the ∆i

dependence of the invariant amplitude Ãn as in (3.36).
Let us now simplify these constraints, keeping in mind that we would like to write

them in a Lorentz invariant form that manifestly reduces the invariant data Ãn depends on.
Given this goal, it is easier to start with the Mandelstam invariants

sijÃn = −4εiεj |zij |2e∂∆i+∂∆j Ãn (3.42)

whose action on the stripped data Ãn we can deduce from step similar to those above

sijÃn = −4εiεj |zij |2
n∏

k,l=1
k 6=l 6=i

∣∣∣∣ zklzkizli

∣∣∣∣
1

(n−1)(n−2) n∏
p,q=1
p 6=q 6=j

∣∣∣∣ zpq
zpjzqj

∣∣∣∣
1

(n−1)(n−2)
e
∂∆i+∂∆j Ãn (3.43)

which we can further simplify to an expression involving the cross-ratios:

sijÃn = −4εiεj

(
n∏

k,l=1
k 6=l 6=i

|rijkl|
2

(n−1)(n−2)

)
e
∂∆i+∂∆j Ãn. (3.44)

Holding i fixed and summing over j gives us a differential constraint on Ãn as a function
of the ∆i and cross ratios. Picking four punctures such that Ui1i2i3i4 is non-vanishing is
enough to give us the necessary 4 constraints on the ∆i dependence, reducing us to the
expected n− 4 free weights.
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Imprints of crossing symmetry. Finally, let us discuss imprints of crossing symmetry
of the momentum space amplitude in the celestial basis. As outlined in the introduction,
there are two distinct notions of crossing symmetry. In the S-matrix literature it refers to an
analytic continuation between crossing channels [53], which has not been demonstrated for
massless theories. This question seems more difficult to analyze in the CCFT setup, mainly
because our understanding of analyticity of the momentum stripped amplitude An as a
function of the Mandelstam invariants does not automatically translate to statements about
the analyticity of the celestial stripped amplitude as a function of complexified (∆i, zi, z̄i).
Most likely, a good notion of holomorphic factorization, or conformal-block decomposition,
will be needed. For recent progress on CCFT conformal blocks, see, e.g., [20, 47–51].

From the CFT perspective, we might alternatively ask about invariance of correlation
functions under exchange of operators. It is rather straightforward to see that CCFT
correlators always have this symmetry: if it was present in the momentum space amplitude
An(sij), it is also in the celestial correlator Ãn(εi,∆i, rijkl), because the integration kernel
in (3.37) already manifests this symmetry. To be more precise, if the former is invariant
under exchanging all the labels of the j-th and k-th particle, then so is the latter. It is an
exact statement, not relying on perturbation theory, that is manifest in the extrapolate
dictionary [37, 38], where it follows from the way the correlators are constructed from the
same bulk field pushed to the conformal boundary. A simple example was given in (1.10).
Note that under this symmetry, the support of the celestial correlator Θn(εi) will change,
because we have exchanged εj ↔ εk. For n ≥ 6, we can consider correlators related by
exchange symmetry that have the same support. However, we stress that in general, even
though deg(n) different correlators can have support at the same point on the celestial
sphere, they will be given by distinct functions labelled by ~ε. This is consistent with the
different OPEs between in-in, out-out, and in-out operators, which leads us to think of the
εi as an additional label for celestial operators in Lorentizan signature.
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A Proving a useful theorem

Here we will review the proof of theorem 2.2 from [40], making an effort to emphasize here
that we can phrase everything in terms of vector spaces and dual vector spaces rather than
equipping Rm with a Euclidean metric. This is useful because in the context of momentum
conservation, n corresponds to the number of external particles while m = 4 is the spacetime
dimension.

Theorem 1 (Jackson (2.2) [40]). For an m× n matrix Q, the following are equivalent

(i) Qω = 0 has no positive solution ω ≥ 0.

(ii) There exist v such that vQ > 0.

Proof. Let us verify this equivalence in steps.

¬(i)⇒ ¬(ii). This direction is straightforward. Say that there exists a positive ω ≥ 0
that is not identically 0 such that Qω = 0. Then for any v in the dual space we have
vQω = 0. Namely there is no v such that vQ > 0 since ω will always be in the null space.

(i)⇒ (ii). Consider a basis for Rn defining the positive orthant

ei = (0, . . . , 1, . . . , 0) (A.1)

with a 1 in the i-th slot. Any ω ≥ 0 is a positive sum of the ei. The image of the positive
orthant under Q is also a convex set

U = {u| for some ω ≥ 0, u = Qω} (A.2)

which is clear by linearity since if u1 = Qω1 and u2 = Qω2 then

λu1 + (1− λ)u2 = Q(λω1 + (1− λ)ω2). (A.3)

This set is also closed under positive rescalings and thus is a closed convex cone. The fact
that Qω = 0 has no positive solutions means that no non-zero point in the orthant gets
mapped to 0.

It also implies that this cone does not contain a linear subspace. If U contained a linear
subspace then there would be a point u ∈ U such that −u ∈ U , or equivalently u ∈ −U as
well. By linearity, the negative orthant maps to −U . If there were a u such that u ∈ U and
u ∈ −U , there would exist an ω in the positive orthant and an $ in the negative orthant
such that

Qω = Q$ ⇒ Q(ω −$) = 0 (A.4)

where ω −$ > 0. This is disallowed by (i). Such a convex cone U ∩ −U = {0} is called
salient.
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The next step uses a theorem from Gerstenhaber [54]. To prove (ii) we need to show
that the dual cone

U∗ = {v| vu ≥ 0, ∀ u ∈ U} (A.5)

contains an interior point. This is guaranteed to be the case if U∗ is full-dimensional, which
we can show by using the fact that (U∗)∗ = U for a closed convex cone. If U∗ were not full
dimensional there would be a nonzero x such that

vx = 0 ∀ v ∈ U∗. (A.6)

Thus x ∈ (U∗)∗. However we also have −x ∈ (U∗)∗. This cannot be the case if (U∗)∗ = U

since U is salient.
Intuitively this is saying that we can find a hyperplane through the origin in Rm which

only intersects this cone at 0, so that U is contained in a half space. The dual vector
defining this hyperplane will give us the v we need for (ii) since if vu > 0 for all u in this
cone, then vQx > 0 for all x in the positive orthant of Rn. In particular vQei > 0 for all i
and so vQ > 0.

B The Lorentz basis: then and now

In this appendix we give a guide to the old literature on expressing the S-matrix in the
Lorentz basis, which provides a representation-theoretic perspective complementary to
the modern work on celestial amplitudes. It dates back to the work of Joos who consid-
ered different bases for one-particle states [55], before the plane-wave basis diagonalizing
translations became ubiquitous in quantum field theory computations.

Recall that the universal cover of the Poincaré group in four dimensions is the semi-
direct product R1,3 o SL(2,C) of the group of translations and the Lorentz group. Its
(unitary) irreducible representations are one-particle states. The classification of starts with
distinguishing between orbits of the first Casimir, PµPµ = m21, giving the usual massive
(m2 > 0), massless (m2 = 0), tachyon (m2 < 0), and zero-momentum (Pµ = 0) states. Each
of these states has additional quantum numbers, which are eigenvalues of the corresponding
little group: SU(2), ISO(2) ∼= R2 o U(1), SU(1, 1), and SL(2,C) respectively, see [56] for
the standard reference. The idea is to study particle states as induced representations of
the Poincaré group, but instead of R1,3 (definite-momentum states), using SL(2,C) as the
basis (definite-boost states). For this purpose, let us first briefly recall the representation
theory of SL(2,C) itself. See, e.g., [57, 58] for classic textbooks.

Calling Lµν the generators of SL(2,C), its two Casimirs are given by

1
2LµνL

µν = [J2 + (∆− 1)2 − 1]1, (B.1)
1
4!ε

µνρσLµνLρσ = [J(∆− 1)]1. (B.2)

The unitary representations then fall into three classes with the spin: the principal series
(J ∈ 1

2Z and ∆ = 1 + iλ with λ ∈ R), supplementary series (J = 0 and ∆ ∈ (0, 2) \ {1}),
discrete series (J = 0 and ∆ ∈ Z \ {1}), and the trivial representation (J = 0 and ∆ = 1).
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Only the last two can be finite-dimensional. In order to construct a basis of SL(2,C), we
need to choose a subgroup, such as SU(2), ISO(2), or SU(1, 1). The most common choice
are representations induced from the Borel subgroup B = ISO(2)⊗D of SL(2,C) (i.e., the
subgroup of matrices of the form

(
a 0
c d

)
with ad = 1), where D is the group of dilations.

Following Gel’fand and Neimark’s z-basis construction [59], representations in this basis
are understood as operators acting on the space of wavefunctions ψ∆,J(z, z̄) defined on the
homogeneous space SL(2,C)/B. Under the action of the Lorentz group U [g], they transform
according to

U [g]ψ∆,J(z, z̄) = (cz + d)∆+J(c̄z̄ + d̄)∆−Jψ∆,J

(
az + b

cz + d
,
āz̄ + b̄

c̄z̄ + d̄

)
(B.3)

where g =
(
a b
c d

)
∈ SL(2,C) with ad− bc = 1.

Returning back to the Poincaré group, the idea is to represent one-particle states as
induced representation from SL(2,C). Those associated to the ISO(2)⊗D subgroup seem
particularly convenient for massless states because ISO(2) is already the little group of
massless particles and D leaves the direction of the null momentum unaffected. This means,
in the modern language, that points z are identified with coordinates on the celestial sphere.
These ideas were applied to the S-matrix by Chakrabarti et al. [60, 61] (for SU(2)-induced
basis), as well as MacDowell and Roskies [62] (see also [63]), who computed matrix elements
and integral transforms to the plane-wave basis. Unfortunately, no explicit scattering
amplitudes were studied in the Lorentz basis at that stage. An operator formalism unifying
the principal, supplementary, and discrete series was described in [64]. Textbooks on
relevant topics include [57, 58, 65–67].

Of course, ISO(2) ⊗D is only one choice for constructing a Lorentz basis. It seems
natural, for example, to consider SU(2) when scattering massive particles. For future
reference, here we collect references involving explicit results for particular choices of bases:

Basis of SL(2,C) References
ISO(2)⊗D [62, 64, 68–71]

SU(2) ∼= SO(3) [60, 61, 63, 72–83]
SU(1, 1) [84–86]

(B.4)

It would be fascinating to further study the physical significance of these bases in light of
the renewed interest in the Lorentz basis.
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