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1 Introduction

Fermion zero modes on solitons have played an important role in the study of quantum
field theories and string/M theory. For example, the spin and the flavor charge of an
’t Hooft-Polyakov monopole in an SU(2) gauge theory are determined by quantizing the
fermion zero modes around it; its analysis goes back to Jackiw and Rebbi [1]. To quantize
the fermion zero modes on a soliton, we usually regroup them into creation and annihilation
operators, but this requires that the number of such zero modes should be even, when
counted in a Majorana basis. The quantization of 2n Majorana fermion zero modes leads
to a Hilbert space of 2n dimensions.

A more exotic possibility of having an odd number of Majorana fermion zero modes
was noticed and popularized by Kitaev [2] in 1+1 dimensions. In this case, there is no way
to quantize the fermion zero modes locally on a single soliton to assign a local Hilbert space.
For example, a single Majorana fermion would lead to a Hilbert space of dimension

√
2,

which is absurd. Instead, what happens is that when there is a pair of such solitons, there
is a Hilbert space C2 associated to the pair, acted on by two Majorana fermion zero modes
ψ1 and ψ2 localized at each of the solitons. One natural question then is whether the same
situation of having an odd number of Majorana fermion zero modes on a soliton is possible
in higher dimensions.

In this short note, we argue that the answer is no in 3+1 dimensions and above, i.e. that
having an odd number of Majorana fermion zero modes on a dynamical point-like soliton
in a theory with 3+1 dimensions or above signifies an inconsistency. We then examine this
condition in a few examples, both in quantum field theory and in string/M theory. We will
see that this condition is satisfied in a nontrivial manner.
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Before proceeding, we note that the existence of a single Majorana fermion zero mode
in 3+1 dimensions in a point-like configuration with a position-dependent mass term was
originally discussed in [3]. These configurations however carry additional orientational
degrees of freedom which allow nontrivial statistics to emerge, as studied in detail in [4];
see also [5]. In this paper we restrict our attention to the cases where there are no such
orientational degrees of freedom.1

The rest of the paper is organized as follows. In section 2 we provide the reasoning
behind our consistency condition. In section 3 we discuss quantum field theory examples,
namely solitons in SU(2) gauge theories with charged fermions; the content of this section
was already discussed in more detail in [6] and we only include a brief summary. In section 4
we study a couple of examples in string/M theory, by analyzing solitons arising from
wrapped branes. In section 5 we conclude this paper by listing possible future directions.

2 Majorana fermion zero modes and consistency

2.1 A consistent model in 1 + 1 dimensions

Let us start by recalling a model in 1+1 dimensions which has an odd number of Majorana
fermion zero modes on a dynamical soliton. We take a model with a real scalar φ and a
non-chiral Majorana fermion ψ in 1+1 dimensions. We add a double-well potential V (φ)
with two degenerate minima at φ = ±φ0, and assume the coupling mφψψ, where m is a
non-zero parameter. In this model there is a dynamical domain wall connecting two vacua
at φ = −φ0 and φ = +φ0. Furthermore, it is well-known that there exists a single Majorana
fermion zero mode on such a domain wall.

This makes it impossible to assign a local Hilbert space associated to a single domain
wall. This is due to the following: a well-separated pair of a kink and an anti-kink has two
nearly-degenerate ground states, coming from the quantization of two Majorana fermion
zero modes. If a local Hilbert space H can be assigned to each of the solitons, its dimension
has to satisfy (dimH)2 = 2, making dimH =

√
2, which is impossible.

When the scalar φ is made non-dynamical and the space is made discrete, the model
reduces to Kitaev’s quantum wire [2]. We also note that in [1] Jackiw and Rebbi already
studied a closely related model where ψ is taken to be a complex Dirac fermion of charge
±1 rather than a real Majorana fermion. In this case, there is a complex conjugate pair of
fermion zero modes on a kink, whose quantization assigns the charge ±1/2 to the soliton.

2.2 A consistent model in 2 + 1 dimensions

Let us next recall a consistent model in 2 + 1 dimensions, where a Majorana fermion
zero mode arises on a dynamical soliton. We simply consider a U(1) gauge theory with a
Dirac fermion ψ of charge +1 and a complex scalar φ of charge −2, with the interaction
φψψ + c.c.. We further introduce a potential V (φ) so that it has a minimum at |φ| 6= 0.
The U(1) gauge symmetry is broken to Z2, and there are vortex solutions. Furthermore, it

1The authors thank J. McGreevy for the information contained in this paragraph.
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is known that there is a single Majorana fermion zero mode on the vortex with the minimal
winding number.

This is a classic result going back to [7, 8], whose importance in the physics of topological
superconductors was recognized more recently. A nice summary can be found in section 3
and in appendix B of [9]. As discussed there, the presence of an odd number of Majorana
fermion zero modes leads to the non-Abelian statistics possessed by the vortices.2

2.3 Inconsistency in 3 + 1 dimensions and above

Let us now present an argument that one can never have an odd number of Majorana
fermion zero modes on a point-like dynamical soliton in a consistent quantum theory in
d+ 1 dimensions, when d ≥ 3. Suppose, on the contrary, that we have a soliton with an
odd number, say n, of Majorana fermion zero modes, which we denote by ψ1,...,n. It is
impossible to assign a local Hilbert space associated to the soliton. We can still assign a
Hilbert space to a pair of such solitons. As there are 2n Majorana fermion zero modes in
total, this Hilbert space has dimension 2n. Up to this point, there is no difference whether
d = 1, 2 or d ≥ 3.

We now consider semi-classical quantization of this pair of solitons. When we hold them
at a large distance L from each other, the configuration space has the topology Sd−1/Z2,
where the quotient comes from our assumption that we consider two identical solitons.
Recall that we assumed d ≥ 3. Then π1(Sd−1/Z2) = Z2, and the wavefunction can be
thought of as a wavefunction on Sd−1 invariant under a Z2 operation P . As is well known,
this was why there is the boson-fermion dichotomy3 when d ≥ 3, depending on whether P
is realized as +1 or −1.

Let us first consider the case n = 1 for simplicity. The Majorana fermion zero modes
ψ(1,2) supported at each soliton act on C2, as σx and σy, say. We then need an order-2
operation P satisfying

Pψ(1)P−1 = ψ(2), Pψ(2)P−1 = ψ(1). (2.1)

But this is clearly impossible,4 since any such P has eigenvalues ±i and therefore is of order
4. This is against our requirement5 that P is of order 2.

More generally, such P exchanging two sets of n Majorana fermion zero modes has
eigenvalues (±i)n, and therefore it is of order 4 when n is odd. This means that we cannot
consistently form the wavefunction of a system of two identical solitons, each having an odd
number of Majorana fermion zero modes, if the spacetime has dimension 3 + 1 or higher.

2This observation goes back to [10].
3Anyons are allowed in d = 2 because the representation of π1(Sd−1) = Z is parameterized by a spin

∈ U(1). In d = 1 we do not have a concept of spin, since π1(Sd−1) is trivial.
4Note that such a P needs to exchange σx and σy, and therefore is a 180◦ rotation around the line x = y,

z = 0. This squares to −1 when acting on a spinor. See also section 3.4 of [9] for the review of exchange
statistics of vortices, each carrying an odd number of Majorana fermion zero modes.

5Another more geometrical way to state the issue is the following. We have a bundle of Clifford algebras
generated by ψ(1,2) over the configuration space Sd−1/Z2. We then ask whether there is a bundle of
two-dimensional representations of these Clifford algebras over Sd−1/Z2. What we showed here is that there
is no such bundle of representations when d ≥ 3.
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3 Field theory examples

In this section we first study an example in 3 + 1 dimensions, and then discuss an analogue
in 4 + 1 dimensions. Both cases involve SU(2) gauge theories with fermions in the doublet
representation. The content of this section was discussed more thoroughly by McGreevy
and Swingle in [6]; we only include a brief summary.

3.1 An example in 3 + 1 dimensions

We consider an SU(2) gauge theory in 3+1 dimensions coupled to a scalar φ in the triplet,
and introduce n Weyl fermions ψ1,...,n in the doublet with the coupling φψψ, where the
color indices are contracted appropriately.

We give a vacuum expectation value to φ so that we have ’t Hooft-Polyakov monopoles.
As was already computed in [1], there is a single Majorana fermion zero mode localized
at the monopole for each Weyl fermion in the doublet. In total, there are n Majorana
fermion zero modes. Therefore, the system becomes inconsistent when n is odd, due to our
condition in section 2.3.

Of course this is in agreement with the well-known fact that there is the SU(2) global
anomaly of Witten associated to π4(SU(2)) = Z2 when n is odd [11]. Our analysis shows
how the same anomaly can manifest in a rather different manner.6 This point was discussed
in detail in [6].

Note that this example also shows that it is perfectly possible to have an odd number of
Majorana fermion zero modes on static, external point-like solitons. Indeed, we can simply
consider the same model where only the fermion field is considered dynamical, while the
SU(2) gauge field and the scalar in the triplet are considered as background fields. We can
still introduce an ’t Hooft-Polyakov monopole background in such a theory, which would
have an odd number of Majorana fermion zero modes when n is odd.

It is also of interest to consider the model with the same field content where we make
the triplet scalar field dynamical but keep SU(2) symmetry non-dynamical. In this case,
the solitons are dynamical, but the hedgehog scalar field configuration carries additional
orientational degrees of freedom. Then the configuration space of the two-soliton system is
no longer S2/Z2 and is more complicated. This allows a more complicated non-Abelian
statistics which comes with an odd number of Majorana fermionic zero modes per soliton.
For more details, see [3, 4].

Before proceeding, let us make a small digression, which might be of some interest to
those familiar with the Seiberg-Witten theory. Let us pretend that we did not know Witten’s
SU(2) anomaly, and try to analyze 4d N=2 SU(2) gauge theory with n half-hypermultiplets
in the doublet. We analyze the monodromy matrix M associated to a loop around u ∼ ∞
in the u-plane, which is determined by the one-loop beta function thanks to the holomorphy.
The computation for even n was given in the classic paper [13], which can be carried over

6A paper by Wang, Wen, and Witten [12] noted that there is a new SU(2) anomaly which is also Z2-valued.
We could not find connections between the new SU(2) anomaly and our argument.
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to the more general case. The result is

M =
(
−1 0

4− n/2 −1

)
, (3.1)

which fails to be integer-valued when n is odd. This inconsistency can be traced back to the
problem of assigning electric charges to dyons when there is an odd number of Majorana
fermion zero modes on a monopole.7

3.2 An example in 4 + 1 dimensions

Let us next consider an analogue in 4 + 1 dimensions. Namely, let us take an SU(2) gauge
theory with n fermions ψ in the doublet with the symplectic-Majorana condition. Here, the
symplectic-Majorana condition on a fermion field ψaα in the doublet is imposed by

ψaα = εabJαβ(ψ∗)bβ (3.2)

where a, b = 1, 2 are the SU(2) indices, α, β = 1, 2, 3, 4 are the spinor indices, and εab and
Jαβ are the antisymmetric invariant tensors which exist because 2 of SU(2) and 4 of SO(4, 1)
are pseudo-real.

We now note that an SU(2) instanton configuration on R4 can be regarded as a point-
like soliton in a (4 + 1)-dimensional theory. In this background, the index theorem tells us
that there are n Majorana fermion zero modes. When n is odd, there is an inconsistency
discussed in section 2.3. At the same time, the theory is afflicted with a global anomaly,
this time associated with π5(SU(2)) = Z2 instead of π4(SU(2)) = Z2. Therefore, we again
find that the number of Majorana fermion zero modes is even in a consistent theory.

To connect more directly with the discussions in section 3.1, we can add a triplet
scalar field φ and give it a vacuum expectation value, breaking SU(2) to U(1). The ’t
Hooft-Polyakov monopole solution now gives rise to a string-like soliton, on which there
are n Majorana-Weyl fermion zero modes. We can now compactify the entire setup on S1

with a periodic spin structure, around which we wrap the string-like soliton. We now find
a point-like soliton with n Majorana fermion zero modes. Again we find that n needs to
be even.

4 String/M theory examples

Let us next study solitons in compactifications of string/M theory. In this section, we only
discuss the case of point-like solitons arising from compactifying a string-like soliton in
higher dimensions, as we saw at the end of section 3.2.

The condition that there cannot be an odd number of Majorana fermion zero modes on
a point-like soliton in d+ 1 dimensions then translates to the condition that there cannot be
an odd number of Majorana-Weyl fermions on a string-like soliton in (d+ 1) + 1 dimensions.
For simplicity, we assume that the worldsheet theory is almost free at some scale along the

7For a careful and pedagogical introduction to the effect of fermion zero modes on monopoles in both
non-supersymmetric and supersymmetric contexts, see [14].
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renormalization group flow, with scalars and fermions. Then, the number of Majorana-Weyl
fermions is even or odd depending on whether the difference of central charges cL − cR is
an integer or an integer plus 1/2.

Let us study our condition in the case of a single M5-brane wrapped on 4-cycles in
spin manifolds. The number of Majorana-Weyl fermions on the resulting string-like solitons
can be counted by explicitly counting the zero modes, as was originally considered by
Maldacena, Strominger and Witten in [15] when the manifold was further assumed to be
Calabi-Yau. Here we adopt a quicker approach of integrating the anomaly polynomial over
the 4-cycle.

The anomaly polynomial of a single M5-brane is [16, 17]

I8 = 1
48

[
p2(NW )− p2(TW ) + 1

4(p1(TW )− p1(NW ))2
]

+ 1
2 ι

∗(G)2, (4.1)

where W is the worldvolume of the M5-brane; N and T are for the normal and tangent
bundles, G is the background 4-form flux of the spacetime, and ι∗ denotes the pull-back to
the worldvolume.

Let us now integrate it over the 4-cycle P within a 6-manifold M . The 6d worldvolume
theory reduces to the 2d worldsheet theory. Denoting the Chern roots to TP by ±λ1, ±λ2
and those to NW by ±n1, ±n2, 0, we have

I8 = 1
48

[
n2

1n
2
2 − λ2

1λ
2
2 − (λ2

1 + λ2
2)p1(TΣ) + 1

4(λ2
1 + λ2

2 + p1(TΣ)− n2
1 − n2

2)2
]

+ 1
2 ι

∗(G)2.

(4.2)

Here, TΣ is the tangent bundle of the worldsheet. Therefore, the anomaly polynomial of
the worldsheet theory is given by

I4 = −p1(TΣ)
96

∫
P

[
λ2

1 + λ2
2 + n2

1 + n2
2

]
. (4.3)

Here G2 did not contribute, since we assume that the flux is only along M .
Recalling that cL − cR and the anomaly polynomial of a worldsheet theory are related

as

I4 = cL − cR
24 p1(TΣ) (4.4)

in general, we see that

cL − cR = −1
4

∫
P

(λ2
1 + λ2

2 + n2
1 + n2

2) = −1
4

∫
P
ι∗p1(TM). (4.5)

When M is a Calabi-Yau 3-fold, cL − cR = 1
2
∫
P ι

∗c2(TM) for an M5-brane because of the
relation p1 = c2

1 − 2c2 on a complex manifold and the Calabi-Yau condition c1(TM) = 0.
This can then be compared with the cL, cR found in [16] and we find a nice agreement.

– 6 –
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Our question is whether this cL − cR given in (4.5) is an integer. For a spin manifold
M , p1(TM)/2 is known to be an integral class.8 Therefore, cL − cR given in (4.5) is at
worst a half-integer. To see that this is actually an integer, we use two facts about M-theory.
The first is the shifted quantization law of the G-flux, originally found in [18]:

[G]−
[
p1(TM)

4

]
∈ H4(TM,Z) (4.6)

and the second is the Bianchi identity [19–21]

− dH = ι∗G (4.7)

on the worldvolume of the M5-brane, where H is the flux of the self-dual 2-form defined
globally on it. These two conditions mean that[

ι∗p1(TM)
4

]
∈ H4(TP,Z), (4.8)

which was what we wanted to show.9

Before proceeding, let us make a digression on the relation to the SU(2) gauge theory
discussed in section 3. Although string/M theory is usually thought to be consistent, it
is difficult to show that it is actually the case in every case imaginable. For example,
establishing that no string/M theory construction gives a 4d SU(2) gauge theory afflicted
with Witten’s SU(2) anomaly has been a difficult problem.

This question was studied in the string/M-theory compactifications to four dimen-
sions with N=2 supersymmetry in [23]. It was also studied in the context of general
heterotic compactifications in [24], which depended on a well-motivated but unproved
mathematical conjecture.

Our analysis in this section can be thought of as providing another indirect piece of
evidence that Witten’s anomaly does not arise in the type IIA frame, where the SU(2)
gauge group arises from the C2/Z2 singularity. In such cases, the spontaneous breaking of
symmetry to U(1) would be given by a resolution of the singularity, making the internal
manifold smooth. Then the ’t Hooft-Polyakov monopole would be given by a wrapped
D4-brane. Lifting the IIA setup to the M-theory, we find that the question of the number
of Majorana fermion zero modes on ’t Hooft-Polyakov monopoles is mapped to the question
of the number of Majorana fermion zero modes on M5-branes wrapped on 4-cycles, further
compactified on S1.

5 Conclusions

In this paper we studied the effect of having an odd number of Majorana fermion zero
modes on dynamical point-like solitons. We saw that it is perfectly consistent in 1 + 1 and

8This is because p1 = w2
2 mod 2 for any orthogonal bundles, and w2 of a spin bundle is zero.

9We note that when M is simply-connected, spin and has no torsion in cohomology, Wall’s theorem [22]
says that

∫
M

(4P 3 − P · p1(TM)) ∈ 24Z. This then means that p1(TM)/4 is an integral class when pulled
back to P . The argument in the main text is applicable more generally, in that M may not be necessarily
simply-connected, may have torsion, and may be of any dimensions.
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2 + 1 dimensional models, while we argued that it signals an inconsistency if the models are
in 3 + 1 dimensions or higher.

As an explicit field-theoretical example, following [6], we considered the 4d SU(2)
gauge theory with n Weyl fermions in the doublet representation. There, we have n
Majorana fermion zero modes on the ’t Hooft-Polyakov monopole, rendering the system
inconsistent when n is odd. This gives the same consistency condition as the one from
Witten’s SU(2) anomaly.

We then studied the point-like solitons in string or M-theoretic constructions, which
arise from compactifications of string-like solitons of higher dimensional theories. Our
concrete example was the case of M5-branes wrapped on 4-cycles in spin-manifolds. The
number of Majorana fermion zero modes always turned out to be even, thanks to various
previously-known consistency conditions of M-theory backgrounds. We note that our M-
theoretic analysis predicts an even number of zero modes for compactifications down to
2+1 dimensions or less, for which our general argument allowed an odd number.

One possible future direction is to study many other explicit constructions in string/M
theory in order to check that there is always an even number of Majorana fermion zero
modes. In this paper we only studied the cases where the point-like solitons in question
come from the S1 compactification of string-like solitons. There is in general no guarantee
that point-like solitons in string/M theory is given in this manner. In those cases, we would
need to use mod-2 index theorems on the worldvolume of the branes to analyze the number
of fermionic zero modes.

Another possible future direction is to give a better general argument for our condition
than the one given in section 2.3. As is the case for any general no-go theorems in quantum
field theory, we might have used some implicit assumptions, and there might still be some
loophole. Although unlikely, it would be worthwhile to look for such a loophole, since
point-like solitons with an odd number of Majorana fermion zero modes would lead to
particles whose statistics is neither fermionic nor bosonic.
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