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1 Introduction

Decomposition, the observation that a local quantum field theory is sometimes a disjoint
union of other local quantum field theories, has by now been extensively studied since its
initial observation in [1] in two-dimensional gauge theories with trivially-acting subgroups,
see for example [2–26]. A few reviews can be found in [27–31].

Although decomposition was originally observed in two dimensional theories, it has
also been observed in four-dimensional theories, see for example [7, 8]. The purpose of this
paper is to discuss examples in three dimensions, where it has not previously been studied.

Globally, decomposition is expected to take place in any theory in d spacetime dimen-
sions with a global (d−1)-form symmetry (possibly realized noninvertibly) [7, 8]. One way
to produce such a symmetry is via a suitable gauging. In broad brushstrokes, gauging a
trivially-acting n-form symmetry results in a theory with a global (n + 1)-form symme-
try (distinct from the quantum symmetry), so one can hope to produce a d-dimensional
theories with a decomposition by gauging a trivially-acting (d− 2)-form symmetry.

For example, ordinary gauge theories with trivially-acting subgroups are a source of
examples in two dimensions, as mentioned above, because such theories have a global one-
form symmetry (distinct from the quantum symmetry, and tied specifically to the fact that
the group acts trivially).

In this paper, we study three-dimensional gauge theories with gauged trivially-acting
one-form symmetries. Gauging the trivially-acting one-form symmetry leads to a global
two-form symmetry, hence, in three dimensions, a decomposition.

Specifically, in this paper we describe orbifolds of three-dimensional effective1 field
theories by 2-groups, which are extensions of ordinary (here, finite) groups by one-form
symmetries. (See for example [32] for a mathematical introduction to 2-groups. These
structures have a long history in both math and physics, see for example [33–58] for a few
older instances, and [59–72] for some more recent physics descriptions and applications of
2-groups.) When those one-form symmetries act trivially, gauging them results in a global
two-form symmetry, hence a decomposition as above, which we will check explicitly.

We begin in section 2 by reviewing two-dimensional orbifolds by central extensions of
G by trivially-acting K, and how a decomposition arises in such orbifolds. In particular,

1We emphasize that because we often discuss orbifolds of three-dimensional sigma models, we understand
those sigma models as effective field theories, not necessarily renormalizable theories. Our methods also
apply to more general three-dimensional theories, such as, for example, Chern-Simons theories.

– 1 –



J
H
E
P
0
9
(
2
0
2
2
)
0
3
6

decomposition implements a restriction on nonperturbative sectors. In an orbifold the
nonperturbative sectors are the twisted sectors, and in these orbifolds those twisted sectors
are restricted to those describing G bundles satisfying a condition. The restriction is
implemented physically by a sum over G orbifolds, namely the decomposition, realizing
a ‘multiverse interference effect’ between the constituent G orbifolds (‘universes’). An
important role in that decomposition is played by discrete torsion, so in section 3 we
review three-dimensional analogues of discrete torsion, counted by H3(G,U(1)).

In section 4 we turn to the main content of this paper: we define and study orbifolds
by 2-group extensions of ordinary (finite) groups G by trivially-acting one-form symmetry
groups BK. Just as in two-dimensional cases, the nonperturbative sectors correspond to G
bundles satisfying a condition. We argue that, also just as in two-dimensional cases, that
restriction implies (and is implemented by) a decomposition of the three-dimensional the-
ory, with universes indexed by irreducible representations of K, which we study explicitly
in several examples.

In section 5 we interpret this structure formally in terms of a sigma model whose target
is a 2-gerbe. In section 6 we outline higher-dimensional analogues and their interpretations.

In section 7 we briefly outline analogous decompositions in Chern-Simons theories with
gauged one-form symmetry group actions, which will be further addressed in other work
to appear.

In appendix A, we give mathematically rigorous derivations of statements about bun-
dles of 2-groups. In appendix B we formally discuss decomposition as a duality transform,
as a type of Fourier transform. Finally, in appendix C we collect some results on group
cohomology that are used in computations in the main text.

Higher-dimensional orbifolds by ordinary groups have also been discussed in
e.g. [73, 74]. However, so far as we can determine, those papers do not discuss orbifolds
by higher groups, and do not discuss decomposition. We believe our observations in this
paper (regarding orbifolds by 2-groups and decomposition) are novel.

2 Review: decomposition in ordinary orbifolds

In this section we will review decomposition of two-dimensional orbifolds in which a central
subgroup of the orbifold group acts trivially. The fact that such orbifolds are equivalent
to (‘decompose into’) disjoint unions of other theories was worked out in [1]; however,
our presentation of the phenomenon here has not been previously published, and is the
prototype for our discussion of decomposition in 2-group orbifolds later.

Let X be a space, and G a finite group acting on X. Let Γ be a central extension of
G by a finite abelian group K:

1 −→ K −→ Γ −→ G −→ 1. (2.1)

Such extensions are classified by elements of H2(G,K). Briefly, the statement of decom-
position here is that [1]

QFT ([X/Γ]) =
∐
ρ∈K̂

QFT
(
[X/G]ρ(ω)

)
, (2.2)

– 2 –
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where K̂ denotes irreducible representations of K, and ρ(ω) ∈ H2(G,U(1)) is the image
ρ◦ω of the extension class ω under ρ ∈ K̂. (Decomposition is also defined for more general
orbifolds [1–3], but for our purposes in this paper, the special case of central extensions
above will suffice.)

Next, we establish this decomposition, by computing partition functions. First, recall
that the extension Γ can be described set-wise as a product G×K, with product deformed
by an element [ω] ∈ H2(G,K). Let γ ∈ Γ, and write Γ set-wise as the product G × K,
then the product in Γ is defined by

γ1γ2 = (g1, k1) (g2, k2) = (g1g2, k1k2ω(g1, g2)) . (2.3)

In the partition function of a two-dimensional orbifold [X/Γ] on T 2, we sum over
commuting pairs of group elements in Γ, but clearly the condition for γ1 and γ2 to commute
is equivalent to g1 commuting with g2 and

ω(g1, g2)
ω(g2, g1) = 1. (2.4)

Define
ε(g1, g2) = ω(g1, g2)

ω(g2, g1) , (2.5)

then it is straightforward to demonstrate that

ε(a, bc) = ε(a, b)ε(a, c), (2.6)

(and symmetrically,) so as a consequence, ε is invariant under conjugation:2

ε(hah−1, hbh−1) = ε(hah−1, h) ε(hah−1, b) ε(hah−1, h−1),
= ε(hah−1, b),
= ε(h, b) ε(a, b) ε(h−1, b),
= ε(a, b). (2.7)

In particular, this descends to isomorphism classes of G bundles, which on T 2 are classified
by Hom(π1(T 2), G)/G. We can view ε as assigning a phase to each such bundle.

Thus, the partition function of a two-dimensional [X/Γ] orbifold looks like the partition
function of a [X/G] orbifold but with a restriction on the allowed sectors. We can implement
that restriction on allowed sectors by inserting an operator

δ(ε− 1) = 1
|K|

∑
ρ∈K̂

ερ(g1, g2), (2.8)

where ερ is the image of ω(g1, g2)/ω(g2, g1) under ρ : K → U(1). This is the origin of
decomposition [1].

2We restrict to the same h on each input because ε is only defined on commuting pairs.
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Now, let us assemble these pieces. The partition function of a Γ orbifold on T 2 is,
universally,

ZT 2 ([X/Γ]) = 1
|Γ|

∑
γλ=λγ

Z(γ, λ), (2.9)

where the sum is over commuting pairs γ, λ ∈ Γ, and Z(γ, λ) is the contribution from a
square with sides identified by γ, λ — known as the twisted sectors or partial traces. In
the present circumstances, since K ⊂ Γ acts trivially,

Z(γ, λ) = Z(g, h) (2.10)

where g = π(γ), h = π(λ), for π : Γ → G the projection. Taking this into account, we
then have

ZT 2 ([X/Γ]) = |K|
2

|Γ|
∑

gh=hg,ε=1
Z(g, h),

= |K|
2

|Γ|
|G|
|K|

∑
ρ∈K̂

ZT 2

(
[X/G]ρ(ω)

)
,

=
∑
ρ∈K̂

ZT 2

(
[X/G]ρ(ω)

)
, (2.11)

where
ZT 2

(
[X/G]ρ(ω)

)
= 1
|G|

∑
gh=hg

ερ(g, h)Z(g, h) (2.12)

is the partition function of the G orbifold on T 2 with discrete torsion ρ(ω) ∈ H2(G,U(1)).
Thus, we see that partition functions are consistent with the prediction of decomposi-
tion (2.2).

In passing, note that in the case G = Z2 = K, H2(G,K) = Z2 (and hence has
nontrivial elements), but for all [ω] ∈ H2(G,K), and all commuting pairs,

ω(g1, g2)
ω(g2, g1) = 1. (2.13)

Thus, triviality of the ratio of cocycles can happen even if ω is a nontrivial cohomology
class.

Our analysis above was specific to the case that the worldsheet is T 2, but it generalizes
easily to other genus. Before considering general genus, let us next walk through the case
of genus 2. Let γi = (ai, ki) ∈ Γ, λi = (bi, zi) ∈ Γ, i ∈ {1, 2}, obeying the condition

[γ1, λ1] [γ2, λ2] = 1, (2.14)

for
[g, h] = ghg−1h−1, (2.15)

and define
ξ1 = [a1, b1] = a1b1a

−1
1 b−1

1 . (2.16)

– 4 –



J
H
E
P
0
9
(
2
0
2
2
)
0
3
6

Then, using the fact that

γ−1
i =

(
a−1
i , k−1

i ω(ai, a−1
i )−1

)
, λ−1

i =
(
b−1
i , z−1

i ω(bi, b−1
i )−1

)
, (2.17)

it is straightforward to compute that

[γ1, λ1] =
(
[a1, b1], ω(a1, b1)ω(a1b1, a

−1
1 )ω(a1b1a

−1
1 , b−1

1 )

·ω(a1, a
−1
1 )−1 ω(b1, b−1

1 )−1
)
, (2.18)

[γ1, λ1] [γ2, λ2] =
(
[a1, b1][a2, b2], ω(a1, b1)ω(a1b1, a

−1
1 )ω(a1b1a

−1
1 , b−1

1 )

·ω(ξ1, a2)ω(ξ1a2, b2)ω(ξ1a2b2, a
−1
2 )

·ω(ξ1a2b2a
−1
2 , b−1

2 )
·ω(a1, a

−1
1 )−1 ω(a2, a

−1
2 )−1

·ω(b1, b−1
1 )−1 ω(b2, b−1

2 )−1
)
, (2.19)

so we see that the closure condition (2.14) holds if and only if both

[a1, b1] [a2, b2] = 1 (2.20)

and

1 = ω(a1, b1)ω(a1b1, a
−1
1 )ω(a1b1a

−1
1 , b−1

1 )
·ω(ξ1, a2)ω(ξ1a2, b2)ω(ξ1a2b2, a

−1
2 )ω(ξ1a2b2a

−1
2 , b−1

2 )
·ω(a1, a

−1
1 )−1 ω(a2, a

−1
2 )−1 ω(b1, b−1

1 )−1 ω(b2, b−1
2 )−1. (2.21)

Next, we generalize to arbitrary genus. Consider a Riemann surface of genus g, with
boundary conditions determined by γi = (ai, ki) ∈ Γ, λi = (bi, zi) ∈ Γ, i ∈ {1, · · · , g}.
Define ξi = [ai, bi], and

X =
[∏
i

ω(ai, a−1
i )

∏
i

ω(bi, b−1
i )
]−1

. (2.22)

The condition that the group elements must obey to define boundary conditions on the
Riemann surface is that

[γ1, λ1] [γ2, λ2] · · · [γg, λg] = 1, (2.23)

which implies that
[a1, b1] [a2, b2] · · · [ag, bg] = 1 (2.24)

(which are required for ai, bi ∈ G to close on the Riemann surface) as well as

ε(ai, bi) = 1 (2.25)

for

ε(ai, bi) ≡ Xω(a1, b1)ω(a1b1, a
−1
1 )ω(a1b1a

−1
1 , b−1

1 )ω(ξ1, a2)ω(ξ1a2, b2)ω(ξ1a2b2, a
−1
2 )

·ω(ξ1a2b2a
−1
2 , b−1

2 )ω(ξ1ξ2, a3) · · ·ω(ξ1 · · · ξg−1agbga
−1
g , b−1

g ).
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(This can be obtained either by direct multiplication or by triangulating the Riemann sur-
face into simplices and associating a factor of ω with each simplex, as in [75].) Thus, as
before, the data required to define a Γ orbifold on a genus g Riemann surface is a restric-
tion on the combinatorial data used to define a G orbifold on the same Riemann surface,
a restriction of the form ε(ai, bi) = 1. As for T 2, we can implement that restriction by
inserting a projection operator Π, of the same form as before, with ερ that are the image of
the genus-g ε under an irreducible representation ρ. The resulting phases are the same as
the phases defining discrete torsion on a genus g Riemann surface (see ([75], eq. (15)), [76]),
again for discrete torsion given by the image of H2(G,K) under the irreducible represen-
tation ρ : K → U(1). Thus, we see the story for T 2 generalizes immediately to other
Riemann surfaces.

For later use, we note that the discrete torsion here can equivalently be understood as
a coupling to a discrete theta angle, defined by a characteristic class x∗ω, for x : Σ→ BG

a map defining the twisted sector, in the notation of appendix A. One can rewrite such a
discrete theta angle coupling ∫

Σ
〈ρ, x∗ω〉 (2.26)

as a discrete torsion phase by triangulating the Riemann surface Σ and associating phases
to each simplex as reviewed above and in [75, 77].

So far we have considered central extensions. Decomposition also exists for orbifolds
by non-central extensions, see e.g. [1, 2]; however, its form is more complex. In this paper
we focus on (analogues of) central extensions.

3 Three-dimensional analogues of discrete torsion

We have seen that two-dimensional orbifolds with trivially-acting subgroups decompose into
disjoint unions of orbifolds with discrete torsion, a modular-invariant phase factor [1, 2].
Similarly, the three-dimensional version of decomposition will also generate theories twisted
by a three-dimensional version of discrete torsion. Such analogues of discrete torsion were
studied in [77] in the special case of orbifolds of points (forming Dijkgraaf-Witten theory),
and more generally in [78]. In this section, we briefly review those constructions here, in
both ordinary orbifolds and in orientifolds, to set up their appearance in three-dimensional
versions of decomposition.

3.1 Ordinary orbifolds

First, recall that in two dimensions, discrete torsion in a G orbifold is classified by group
cohomology, specifically H2(G,U(1)) with a trivial action on the coefficients. Similarly, in
three dimensions [77, 78], the analogue of discrete torsion in a G orbifold is classified by
H3(G,U(1)), again with a trivial action on the coefficients.

Furthermore, given [ω] ∈ H2(G,U(1)), one can derive coboundary-invariant phases
that weight Riemann surfaces. For example, on T 2, a twisted sector is defined by two
commuting elements g, h ∈ G, and the corresponding coboundary-invariant phase is

ω(g, h)
ω(h, g) . (3.1)

Analogous expressions on higher-genus Riemann surfaces can be found in [75].

– 6 –
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Analogous constructions exist in three dimensions, which use [ω] ∈ H3(G,U(1)) to
assign a coboundary-invariant phase to three-manifolds. One construction [77] proceeds as
follows. given a three-manifold Y , we pick a triangulation by simplices, and associate to
each simplex a cocycle. We then take an alternating product of those associated cocycles
(with exponent determined by orientation) to form a coboundary-invariant phase. For
example, the triangulation of a cube into six simplices can be visualized by viewing the
cube along a line through two corners, as

and then taking the tetrahedra cut out by the six interior lines projected through the
cube in the figure above. See also [78] for an alternative construction in terms of C field
holonomlies.

For example, on T 3, a twisted sector is defined by three commuting group elements
g1, g2, g3,

g1

g3

g2

and here one multiplies Z(g1, g2, g3) by the phase ([77], eq. (6.35)), [78]

ε3(g1, g2, g3) = ω(g1, g2, g3)
ω(g2, g1, g3)

ω(g3, g1, g2)
ω(g3, g2, g1)

ω(g2, g3, g1)
ω(g1, g3, g2) . (3.2)

corresponding to [ω] ∈ H3(G,U(1)). As noted in ([77], footnote 5), perhaps the simplest
example in which this phase is nontrivial is the group G = (Z2)3.

As discussed in [77, 78], this phase factor is invariant under both coboundaries as well
as SL(3,Z) transformations of T 3, just as the discrete torsion phase factor is invariant
under both coboundaries as well as SL(2,Z) transformations of T 2.

For another example, consider S1 ×Σ for Σ a genus-two surface. Here, the associated
phase is

ξ2 = ω(a1, b1, g)
ω(γb1, a1, g)ω(γ, b1, g)

ω(γ, a2, g)ω(γa2, b2, g)
ω(b2, a2, g)

·ω(γb1, g, a1)ω(γ, g, b1)
ω(a1, g, b1)

ω(b2, g, a2)
ω(γ, g, a2)ω(γa2, g, b2)

· ω(g, a1, b1)
ω(g, γb1, a1)ω(g, γ, b1)

ω(g, γ, a2)ω(g, γa2, b2)
ω(g, b2, a2) (3.3)

– 7 –
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where
γ = a1b1a

−1
1 b−1

1 , γa2b2a
−1
2 b−1

2 = 1. (3.4)

and g commutes with all ai, bi. It can be shown that this expression is invariant under
coboundaries.

This expression is motivated by the two-dimensional genus-two phase ([75], eq. (15))

ω(a1, b1)
ω(γb1, a1)ω(γ, b1)

ω(γ, a2)ω(γa2, b2)
ω(b2, a2) . (3.5)

Also, in the special case that γ = 1, it correctly factorizes into the product of two T 3

phases:

ξ2 = ω(a1, b1, g)
ω(b1, a1, g)

ω(b1, g, a1)
ω(a1, g, b1)

ω(g, a1, b1)
ω(g, b1, a1) ·

ω(a2, b2, g)
ω(b2, a2, g)

ω(b2, g, a2)
ω(a2, g, b2)

ω(g, a2, b2)
ω(g, b2, a2) , (3.6)

where without loss of generality we assume that the cocycle ω is normalized (so that ω = 1
if any of its arguments is the identity).

In fact, it is also straightforward to conjecture the corresponding phase factor for
S1 × Σh for Σh a genus-h Riemann surface. Following [75], define

γi = aibia
−1
i b−1

i , ζi = γ1γ2 · · · γi−1, (3.7)

then the two-dimensional discrete torsion phase is ([75], eq. (15))

ξh = ω(a1, b1)
ω(γ1b1, a1)ω(γ1, b1)

(
h−1∏
i=2

ω(ζi, ai)ω(ζiai, bi)
ω(ζiγibi, ai)ω(ζiγi, bi)

)
ω(ζh, ah)ω(ζhah, bh)

ω(bh, ah) (3.8)

and we conjecture that the analogous three-dimensional phase on S1 × Σh is

ξh = ω(a1, b1, g)
ω(γ1b1, a1, g)ω(γ1, b1, g)

ω(γ1b1, g, a1)ω(γ1, g, b1)
ω(a1, g, b1)

ω(g, a1, b1)
ω(g, γ1b1, a1)ω(g, γ1, b1)

·
(
h−1∏
i=2

ω(ζi, ai, g)ω(ζiai, bi, g)
ω(ζiγibi, ai, g)ω(ζiγi, bi, g)

ω(ζiγibi, g, ai)ω(ζiγi, g, bi)
ω(ζi, g, ai)ω(ζiai, g, bi)

· ω(g, ζi, ai)ω(g, ζiai, bi)
ω(g, ζiγibi, ai)ω(g, ζiγi, bi)

)

·ω(ζh, ah, g)ω(ζhah, bh, g)
ω(bh, ah, g)

ω(bh, g, ah)
ω(ζh, g, ah)ω(ζhah, g, bh)

·ω(g, ζh, ah)ω(g, ζhah, bh)
ω(g, bh, ah) (3.9)

where g ∈ G commutes with all ai, bi.
In passing, a general expression for S1 reduction of such phases is discussed in ([79],

supplementary section), ([80], section V).
In two dimensions, discrete torsion phases obey multiloop factorization (target space

unitarity), which is the following constraint. If Σ is any Riemann surface, corresponding
to a twisted sector of some orbifold, and Σ can degenerate into a product of Σ1 and Σ2

– 8 –
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connected at one point (compatibly with the orbifold structure, in the sense that there are
no twist fields at the connection), then the phase associated to Σ must equal the product
of the phases associated to Σ1 and Σ2.

In two dimensions, for the genus-one phase

ε2(g, h) = ω(g, h)
ω(h, g) , (3.10)

this is the property ([81], eq. (42))

ε2(x, ab) = ε2(x, a) ε2(x, b), (3.11)

which can be demonstrated simply using

(dω)(x, a, b) (dω)(a, b, x)
(dω)(a, x, b) = ε2(x, ab)

ε2(x, a) ε2(x, b) (3.12)

for x, a, b all mutually commuting. When combined with the fact that ε2(1,−) = ε2(−, 1) =
1, we see this means that ε2 is a bihomomorphism from commuting pairs in G to U(1).

In three dimensions, there is a simple analogue of multiloop factorization: if a three-
manifold S1 × Σ can degenerate into S1 × (Σ1

∐Σ2), the phase assigned to S1 × Σ must
match the product of the phases assigned to S1×Σ1, S1×Σ2. On such grounds, one then
expects

ε3(x, y, ab) = ε3(x, y, a)ε3(x, y, b). (3.13)

In fact, it is straightforward to check that this is a consequence of the identity

(dω)(y, x, a, b)
(dω)(x, y, a, b)

(dω)(a, b, y, x)
(dω)(a, b, x, y)

(dω)(y, a, b, x)
(dω)(x, a, b, y)

(dω)(x, a, y, b)
(dω)(y, a, x, b)

(dω)(a, x, b, y)
(dω)(a, y, b, x)

(dω)(a, y, x, b)
(dω)(a, x, y, b)

= 1. (3.14)

(See also ([77], section 6), where a different argument is given for the same result.)
One can use multiloop factorization to argue that discrete torsion(-like) phases descend

to conjugacy classes. For example, in the case of the genus-one phase ε2, from (3.11), it is
easy to show that3

ε2(aga−1, aha−1) = ε2(aga−1, a) ε2(aga−1, h) ε2(aga−1, a−1) = ε2(aga−1, h),
= ε2(a, h) ε2(g, h) ε2(a−1, h),
= ε2(g, h). (3.16)

Computing in exactly the same fashion, one can use (3.13) to show that

ε3(aga−1, aha−1, aka−1) = ε3(g, h, k). (3.17)
3In fact, formally both this expression and its three-dimensional analogue appear to generalize to inde-

pendent conjugation on the parameters, as

ε2(aga−1, bhb−1) = ε2(g, h). (3.15)

However, ε2(g, h) is only defined for commuting g, h, so we restrict to the case a = b. Identical remarks
apply to ε3.
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3.2 Manifolds with boundaries

For completeness, let us also quickly outline the case of manifolds with boundary, that will
be of use in our subsequent works.

Let’s begin with an overview of how this works in two-dimensional theories and ordi-
nary discrete torsion, before describing an example in three dimensions.

Consider a genus-one correlation function in an orbifold [X/G] with a single insertion of
an operator associated to g ∈ G. In effect, we have a T 2 with a puncture corresponding to g.
If we let a, b ∈ G denote group elements corresponding to the usual T 2 boundary conditions,
then we can sketch the construction of the punctured torus as in the diagram below:

a

b b

a
g

with a hole cut out in the upper right corner, or equivalently,

a

b
b

a

x

ax

bx

abx

bax g

In the presence of the puncture, a and b no longer commute, but instead obey

abg = ba. (3.18)

Alternatively, we can say that if Σ is a punctured T 2, then to specify an element of
Hom(π1(Σ), G) we can first assign a group element g to the loop circling the puncture,
and then the group elements a and b assigned to the non-contractible cycles of the torus
will need to satisfy (3.18), since the cycle associated to a−1b−1ab is homotopic to the cycle
circling the puncture. Then bundles on Σ are classified by Hom(π1(Σ), G)/G, as usual.

One more perspective comes from consideration of topological defect lines. The a and
b twists on the T 2 are implemented by wrapping a and b lines around the cycles. Saying
that our inserted operator is associated to g is equivalent to saying that it sits at the end
of a defect line labeled by g. The other end of that line must terminate somewhere on the
first two defect lines. The simplest possibility is to connect everything at a single junction
of degree five. In order for that junction to remain topological (i.e. to avoid an extra non-
topological insertion), we need the cyclic product of lines coming in to give the identity,
which again leads to (3.18).

In any event, the discrete torsion phase assigned to a punctured T 2 is not the same
as that assigned to T 2 itself — the contribution to the boundary conditions from the
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puncture modifies the phase. Applying methods of [75], we see that the phase associated
to this diagram is

ξ1,1 ≡
ω(a, b)
ω(b, a) ω(ab, g). (3.19)

Now, if we add a coboundary α, this phase changes:

ξ1,1 7→ ξ1,1 α(g). (3.20)

This is not quite invariant under coboundaries; however, the coboundary α(g) can be
absorbed into the operator at the puncture, so taking that into account, the phase is well-
defined. Proceeding in this fashion, one is led to correlation functions, see e.g. [82] for
examples in the case of orbifolds of a point (Dijkgraaf-Witten theory).

Now, let us turn to three-dimensional analogues. We consider a T 3 with a hole, of
boundary T 2. If we let the three primary sides be related by g1, g2, g3, and the new edge
defining the hole by k, then graphically,

g1

g3

g2

k

The cut-out corner, seen edge-on, is the square

g3

k k

g3

x

g3x

kx

g3kx = kg3x

In order for the diagram to close, the four group elements g1, g2, g3, k ∈ G obey

g1g3 = g3g1, g2g3 = g3g2, g1g2k = g2g1, g3k = kg3. (3.21)

Applying the same methods as [78], we find that the phase factor associated with this
diagram is

ω(g1, g2, g3)
ω(g2, g1, g3)

ω(g3, g1, g2)
ω(g1, g3, g2)

ω(g2, g3, g1)
ω(g3, g2, g1)

ω(g1g2, k, g3)ω(g3, g1g2, k)
ω(g1g2, g3, k) . (3.22)

As for the T 2 with boundary, this is not quite coboundary-invariant, but rather picks up a
phase

α(k, g3)
α(g3, k) , (3.23)

which has the same appearance as the phase one would assign to a T 2 with the same
boundary conditions. We interpret this as before, as a contribution that would be absorbed
by a defect inserted at the puncture, precisely in the spirit of anomaly inflow (see e.g. [83]).
It is also extremely reminiscent of the relationship between three-dimensional Chern-Simons
theories and WZW models on boundaries, see e.g. [84].
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3.3 Orientifolds

Now, consider the case that a subgroup of the orbifold group G acts, in part, by reversing
orientations, to form an orientifold. C fields on orientifolds were analyzed in [85], section 6),
in the same pattern as in [78] for C fields on ordinary orbifolds and [85] for B fields on
orientifolds. Briefly, the conclusion was that the analogue of C field discrete torsion on
orientifolds is counted by H3(G,U(1)) with a nontrivial action on the coefficients, encoded
in a homomorphism ε : G→ Z2 expressing whether a given element acts trivially.

One example discussed in ([85], section 6.2) is a cube, with sides identified by three
group elements g1, g2, g3 ∈ G, in which one of the group elements reverses the orientation.
The three group elements must be related by

g2g3 = g3g2, g1g3 = g3g1, g1 = g2g1g2, (3.24)

where of the three, g1 reverses orientation, but the other two do not. It was argued there
that the corresponding partition function phase factor is

ω(g1, g
−1
2 , g3)ω(g2, g3, g1)ω(g3, g1, g

−1
2 )

ω(g2, g1, g3)ω(g1, g3, g
−1
2 )ω(g3, g2, g1)

ω(g3, g2, g
−1
2 )ω(g2, g

−1
2 )

ω(g2, g3, g
−1
2 )

, (3.25)

which is invariant under coboundaries.
As another example, consider S1 × RP2. Let g ∈ G be orientation-reversing, with

g2 = 1, and h ∈ G any other element that commutes with g. It was argued in ([85],
section 5.2) that on the real projective plane RP2, with sides identified by g, the discrete
torsion phase is ω(g, g), which for g2 = 1 is easily checked to be coboundary-invariant. For
S1 ×RP2, where the real projective plane is again constructed with g, the C field discrete
torsion phase can be shown to be

ω(g, g, h)ω(h, g, g)
ω(g, h, g) , (3.26)

which is easily checked to be coboundary-invariant.

4 Orbifolds by 2-groups

In this section we will discuss three-dimensional4 orbifolds by 2-group extensions. We saw
in section 2 that an ordinary orbifold by a central group extension of G by trivially-acting
K involves a restriction on permitted G bundles, which is implemented by the sum over
universes. We shall see an analogous structure here: the 2-group orbifold will involve a
restriction on permitted G bundles, which is implemented by a sum over universes. In this
fashion we will derive a decomposition, which we will check in examples.

In passing, we should mention that just as Dijkgraaf-Witten topological field theory [77]
can be interpreted as an orbifold of a point, at least naively the Yetter model [33–38] appears
to be interpretable as a 2-group (or higher) group orbifold of a point. We will not pursue
that in this paper, however.

4As also noted in the introduction, throughout we have in mind effective field theories as prototypes,
though our methods also apply more generally.
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4.1 General aspects

4.1.1 Notions of 2-groups and their gauging

A 2-group is, roughly, a group in which associativity holds only up to isomorphisms. In
this section we will outline orbifolds by 2-groups, and their decomposition.

Briefly, from ([32], section 8.3), given a group G and an abelian group K, to specify a
(coherent) 2-group one specifies an action α : G → Aut(K) plus an element of H3(G,K),
where the group cohomology is defined with the action of G on K given by α. In this
section we will restrict to the analogue of a central extension, for which the map α is
trivial, and for which H3(G,K) is defined with trivial action on the coefficients.

We will describe 2-groups as extensions of the form

1 −→ BK −→ Γ̃ −→ G −→ 1, (4.1)

for finite abelian K. These are classified by [ω] ∈ H3(G,K).
In broad brushstrokes, to gauge a 2-group Γ̃ means that the path integral

• sums over K gerbes, and within that, for each K gerbe,

• sums over G bundles twisted by the action of the K gerbe, in the sense of e.g. [86].

(In general there may also be other mutual twistings, as in e.g. ([64], eqs. (1.10), (1.14)),
implementing a Green-Schwarz mechanism, in which case one would not have for example
precisely a path integral over ordinary K gerbes, but rather over slightly different objects
forming a torsor under K gerbes.) Examples in which the K gerbe acts nontrivially (via
the action of BK on line operators, for example) include the gauging that arose in [13],
and also in discussions of gauging BK in Chern-Simons theories for K the center of the
gauge group.

In this paper, we will be focused on the case in which the one-form symmetry group
being gauged acts completely trivially on the three-dimensional theory, meaning that line
operators are invariant5 under BK, meaning for example that associated line operators
have no braiding with one another or with any of the line operators in the theory being
gauged. In this case, relevant for us in this paper, we will see that gauging a 2-group Γ̃
means that the path integral (modulo mutual twistings subtleties as above),

• sums over K gerbes, and for each K gerbe,

• sums over ordinary G bundles — no longer twisted by K, as BK now acts trivially,
but with a more subtle restriction on allowed G bundles, a shadow of the fact that
we are gauging a nontrivial extension of G by BK.

5For example, consider SU(2) Chern-Simons theory in three dimensions. This has a BZ2 one-form
symmetry, inherited from the center of SU(2). However, that one-form symmetry multiplies Wilson lines
by phases, and so we would not characterize SU(2) Chern-Simons as invariant under this BZ2. One could
in principle consider a different BZ2, unrelated to the central Z2, which leaves all Wilson lines invariant.
In that case, that BZ2 could be said to act trivially.
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These two cases can be subsumed into a more general picture which is most conve-
niently related by describing the 2-groups differently, in terms of what are called crossed
modules. In any event, in this paper we will gauge finite 2-group extensions involving
trivially-acting BK, for which the second notion of gauging is a more apt description. We
will study more general cases in upcoming work.

4.1.2 Decomposition conjecture
Consider, as above, gauging a 2-group Γ̃ described formally as an extension of a finite group
G by BK for K finite and abelian,

1 −→ BK −→ Γ̃ −→ G −→ 1. (4.2)

This extension determines an element [ω] ∈ H3(G,K).
Because we are gauging a trivially-acting BK, one expects that the theory should

possess a global two-form symmetry (distinct from the quantum symmetry), and so should
decompose.

We conjecture that such three-dimensional theories decompose in the form

QFT
(
[X/Γ̃]

)
= QFT

∐
ρ∈K̂

[X/G]ρ(ω)

 , (4.3)

where ρ(ω) ∈ H3(G,U(1)) represents a discrete theta angle, formally involving a term in
the action of the form ∫

M
〈ρ, x∗ω〉, (4.4)

for x∗ω as defined in appendix A.2. As we will discuss later, at least on Seifert fibered
three-manifolds, this can be rewritten as a discrete-torsion-like phase (of the form discussed
in section 3) given by the image of ω under the map

H3(G,K) ρ−→ H3(G,U(1)). (4.5)

This is a three-dimensional version of decomposition [1], whose existence reflects the fact
that [X/Γ̃] has a 2-form symmetry, due to the trivially-acting BK.

Next, we will justify this decomposition conjecture by computing partition functions
for gauged finite 2-groups, and also studying operator spectra. In subsequent sections we
will check the details in examples.

4.1.3 Partition functions
In this section we will compute partition functions for Γ̃ orbifolds in three dimensions (for
Γ̃ a 2-group extension of a finite group G by a trivially-acting BK). These are (weighted)
sums over G bundles restricted so that an invariant vanishes (see appendix A.2). We will
see that the resulting partition functions are equivalent to sums of partition functions of
ordinary G orbifolds, weighted by C field analogues of discrete torsion,

Z
(
[X/Γ̃]

)
=
∑
ρ∈K̂

Z
(
[X/G]ρ(ω)

)
, (4.6)

in accordance with decomposition (4.3).
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In general terms, this is a consequence of the fact, explained in appendix A.2, that
Γ̃ bundles on three-manifolds M map to G bundles obeying the constraint x∗ω = 1 ∈
H3(M,K), where ω ∈ H3(G,K) determines the extension Γ̃, and x : M → BG determines
the G bundle. Such a constraint is implemented by a projector, proportional to∑

ρ∈K̂

exp
(∫

M
〈ρ, x∗ω〉

)
. (4.7)

Summing over ρ ∈ K̂ effectively cancels out contributions from any G bundle for which
x∗ω 6= 1. As we saw for ordinary central extensions in section 2, inserting such a projection
operator in a path integral is equivalent to working with a sum of theories, one for each
ρ ∈ K̂, each of which is modified by a discrete theta angle defined by ρ ∈ K̂ and coupling
to x∗ω ∈ H3(M,K). This gives rise to the present version of decomposition (4.3).

At least for Seifert fibered three-manifolds, it is straightforward to give this construc-
tion a much more concrete description, by describing x∗ω explicitly in terms of phases
derived from the group cocycle ω. To do so, we follow the same6 procedure used in ([77],
section 6.5). Briefly, given a triangulation of the three-manifold M , associate a phase
ω(g1, g2, g3) to each simplex, and use an ordering to determine whether to multiply or
divide the phase. (We specialize to Seifert fibered manifolds solely because of potential
practical difficulties in explicitly construction a triangulation. Given a triangulation, the
method of [77] is otherwise general.) The result is that 〈ρ, x∗ω〉 can be identified with a
discrete-torsion-like phase [78], as described in section 3, for a class in H3(G,U(1)) given
by the image of ω ∈ H3(G,K) under ρ, or schematically,

H3(G,K) ρ−→ H3(G,U(1)),
ω 7→ ρ ◦ ω = ρ(ω). (4.8)

We have that on a connected three-manifold M ,

ZM
(
[X/Γ̃]

)
=
∑
ρ∈K̂

ZM
(
[X/G]ρ(ω)

)
, (4.9)

matching the prediction of decomposition 4.3, with the sum over universes implementing
the restriction to G bundles such that x∗ω = 1.

Next, we specialize to the case of M = T 3. As everything can be computed explicitly
in this case, we will walk through all the details in order to better explain the idea.

Ordinarily, in a G orbifold on T 3, one would sum over commuting triples g1, g2, g3 ∈ G.
Here, however, because of the 2-group extension, only some triples are consistent, much
as we saw in the case of ordinary central extensions in section 2. As mentioned above,
and as described in detail in appendix A.2, the constraint on G bundles is that x∗ω = 1 ∈
H3(T 3,K).

6Our notations differ, but the procedure is identical. Specifically, the γ : M → BG used in [77] is the
same as x : M → BG here, and the α ∈ H3(G,U(1)) used there coincides with ω ∈ H3(G,K) here. Their
analysis is done for U(1) coefficients, but essentially because K is abelian and in both cases, the group
action on the coefficients is trivial, the argument is otherwise the same.
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To understand the result, we outline here a slightly sloppy computation for the special
case of T 3, which will reproduce the T 3 result derived rigorously in appendix A.3. To make
the 2-group Γ̃ more concrete, we imagine associating K-valued wavefunctions ψg to g ∈ G,
which can then be multiplied by K-valued cocycles, where associativity holds up to the
cocycle ω as

ψg1g2ψg3 = ω(g1, g2, g3)ψg1ψg2g3 . (4.10)

(Note that adding coboundaries to ω merely multiplies the products by phases.) Then, we
can derive a consistency condition on commuting triples, as follows.

ψg1g2ψg3 = ψg2g1ψg3 ,

= ω(g2, g1, g3)ψg2ψg1g3 ,

= ω(g2, g1, g3)ψg2ψg3g1 ,

= ω(g2, g1, g3)
ω(g2, g3, g1)ψg2g3ψg1 ,

= ω(g2, g1, g3)
ω(g2, g3, g1)ψg3g2ψg1 . (4.11)

It also equals

ψg1g2ψg3 = ω(g1, g2, g3)ψg1ψg2g3 ,

= ω(g1, g2, g3)ψg1ψg3g2 ,

= ω(g1, g2, g3)
ω(g1, g3, g2)ψg1g3ψg2 ,

= ω(g1, g2, g3)
ω(g1, g3, g2)ψg3g1ψg2 ,

= ω(g1, g2, g3)
ω(g1, g3, g2)ω(g3, g1, g2)ψg3ψg1g2 ,

= ω(g1, g2, g3)
ω(g1, g3, g2)ω(g3, g1, g2)ψg3ψg2g1 ,

= ω(g1, g2, g3)
ω(g1, g3, g2)

ω(g3, g1, g2)
ω(g3, g2, g1)ψg3g2ψg1 . (4.12)

In order for these two expressions to match, we must require

ω(g1, g2, g3)
ω(g1, g3, g2)

ω(g3, g1, g2)
ω(g3, g2, g1)

ω(g2, g3, g1)
ω(g2, g1, g3) = 1 (4.13)

as an element of K, which is the same condition derived mathematically in appendix A.3.
(We suspect it may also be possible to use topological defect lines to give a simple argument,
but we leave that for future work.)

We can therefore understand a Γ̃ bundle as a collection of K gerbes and G bundles on
T 3 defined by commuting triples (g1, g2, g3) subject to the constraint

ε(g1, g2, g3) = 1 (4.14)
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for
ε(g1, g2, g3) = ω(g1, g2, g3)

ω(g1, g3, g2)
ω(g3, g1, g2)
ω(g3, g2, g1)

ω(g2, g3, g1)
ω(g2, g1, g3) . (4.15)

For the same reasons as discussed for H3(G,U(1)) in section 3, it is straightforward to
demonstrate that

ε(g1, g2, g3g4) = ε(g1, g2, g3)ε(g1, g2, g4) (4.16)

(and symmetrically), hence using the same argument as in the two-dimensional case, ε is
invariant under simultaneous conjugation,7

ε(hg1h
−1, hg2h

−1, hg3h
−1) = ε(g1, g2, g3). (4.17)

The partition function of the Γ̃ orbifold on T 3 then takes the form8 [87]

ZT 3

(
[X/Γ̃]

)
= |H

0(T 3,K)|
|H1(T 3,K)|

1
|H0(T 3, G)|

∑
z1,z2,z3∈K

∑
g1,g2,g3∈G

′
Z(g1, g2, g3),

= 1
|K|2|G|

∑
z1,z2,z3∈K

∑
g1,g2,g3∈G

′
Z(g1, g2, g3), (4.18)

where the prime indicates that the sum over triples in G is constrained to commuting
triples such that ε(g1, g2, g3) = 1.

Now, we can enforce the condition that ε = 1 by inserting a projector

1
|K|

∑
ρ∈K̂

ερ(g1, g2, g3) (4.19)

where ερ is the image of ε under ρ : K → U(1). The partition function then has the form

ZT 3

(
[X/Γ̃]

)
= 1
|K|2|G|

|K|3
∑

g1,g2,g3∈G

1
|K|

∑
ρ∈K̂

ερ(g1, g2, g3)Z(g1, g2, g3),

=
∑
ρ∈K̂

ZT 3

(
[X/G]ερ)

)
, (4.20)

where
ZT 3

(
[X/G]ερ)

)
= 1
|G|

∑
g1,g2,g3∈G

ερ(g1, g2, g3)Z(g1, g2, g3), (4.21)

using a standard normalization (compare e.g. ([73], eq. (5.14))). Each factor ερ is precisely
a C field analogue of discrete torsion, as reviewed in section 3, and coincides with the
quantity we earlier labelled ρ(ω).

Thus, we see that for the special case of T 3, partition functions are consistent with the
decomposition conjecture 4.3. As outlined at the beginning, the same argument applies for

7We restrict to the same h on each factor because ε is only defined on commuting triples, meaning each
pair obeys gigj = gjgi.

8The overall factor of 1/|G| is standard in orbifolds and ultimately reflects the fact that the sum is
counting bundles with automorphisms, see e.g. ([73], eq. (5.14)). The factors involving K can be found in
e.g. ([38], eq. (5.20)), ([88], eqs. (2.31), (2.32)) ([89], eq. (9.1)).
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any three-manifold. The only real difference on other three-manifolds is that there may
be dilaton-type Euler counterterm shifts, as discussed in e.g. [1], which vanish on T 3 as
χ(T 3) = 0. Modulo such trivial counterterms, on any connected three-manifold,

Z
(
[X/Γ̃]

)
=
∑
ρ∈K̂

Z
(
[X/G]ερ

)
. (4.22)

This is precisely the statement of decomposition (4.3), at the level of partition functions.
To summarize, we see that inserting a projection operator to enforce the constraint

on G-twisted sectors makes manifest the statement that the partition function of the 2-
group orbifolds equals the partition function for a sum of three-dimensional orbifolds, each
twisted by an ερ which is [78] a three-dimensional analogue of discrete torsion. In this
fashion, we recover decomposition (4.3), at the level of partition functions, in close analogy
with the description in section 2 of decomposition in two-dimensional orbifolds.

As an aside, previously in two-dimensional theories with a one-form symmetry given by
a trivially-acting K, we saw universes enumerated by irreducible representations of K, see
e.g. [1]. Here, since we have a 2-form symmetry and trivially-acting BK, one might have
naively guessed that universes would be enumerated by representations of BK, at variance
with the conjecture above. However, we examine decomposition for both 1-form and 2-
form symmetries formally in appendix B, and observe there that in both cases, universes
appear to be enumerated by representations of K, so the form of the conjecture above is
consistent.

4.1.4 Local operators

So far we have given a general justification of the decomposition conjecture for gauged
2-groups using partition functions. Let us briefly outline an analogous argument using
local operators. In two dimensional orbifolds with trivially-acting subgroups, the twist
fields associated to trivially-acting group elements form dimension-zero operators, and the
projectors (onto universes) are constructed from linear combinations of those projectors.
In three dimensions, when gauging a one-form symmetry, from the general theory of topo-
logical defect lines, the theory contains monopole operators, which play an analogous role.
Briefly, the monopole operators are endpoints of real codimension two lines corresponding
to the gauged one-form symmetry, just as gauging an ordinary (zero-form) symmetry re-
sults in real codimension one walls. Two-spheres surrounding the monopole operators have
K gerbes, just as circles surrounding two-dimensional twist fields carry bundles.

In any event, given a trivially-acting gauged BK symmetry, the resulting three-
dimensional theory will contain monopole operators, which are closely analogous to two-
dimensional twist fields, and can be used to build projectors.

For example, in a gauged BZk, the monopole operators will generate Zk gerbes on
S2, which are classified by H2(S2,Zk) = Zk. As those gerbes on S2 are all generated by
powers of one gerbe, there will be one monopole operator which generates the others, call
it ẑ, and which obeys ẑk = 1. Given such operators, one can build projectors, as linear
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combinations of the form

Πm = 1
k

k−1∑
j=0

ξjmẑj , (4.23)

for ξ = exp(2πi/k), which from ẑk = 1 are easily checked to obey

ΠmΠn = Πmδm,n,
k−1∑
m=0

Πm = 1. (4.24)

4.2 Example: G = 1, K = Z2

Let us consider the orbifold [X/BZ2] for a moment, where the BZ2 acts trivially, in the
sense that all line operators in the theory are invariant under the BZ2.

Then, at a path integral level, the orbifold [X/BZ2] involves a sum over Z2 gerbes,
but each of the gerbe sectors is identical, much as in a two-dimensional orbifold by a group
that acts completely trivially.

At the level of operators, gauging the BZ2 results in monopole operators, which gen-
erate Z2 gerbes on spheres surrounding the operators, much as twist fields generate branch
cuts and hence bundles on surrounding circles in two-dimensional theories.

Since the BZ2 acts trivially, the monopole operators commute with all local operators
present in the original theory, we see that the full set of operators in the gauged theory is
just two copies of the operators of the original theory. Furthermore, since the monopole
operators generate Z2 gerbes on surrounding S2’s, and the product of a nontrivial Z2 gerbe
with itself is trivial, we see that if ẑ denotes a monopole operator, then ẑ2 = 1, and so we
can build projection operators

Π± = 1
2 (1± ẑ) , (4.25)

which implement a decomposition.
In particular, in these circumstances,

[X/BZ2] = X
∐

X, (4.26)

as expected from decomposition (4.3). (Here, we use the fact that ρ(ω) = 1 for all ρ ∈ K̂,
as ω itself is trivial.)

4.3 Example: G = Z2 = K

Let us begin with a very simple example. Consider the case of a two-group extension of
the form

1 −→ BZ2 −→ Γ̃ −→ Z2 −→ 1. (4.27)

As discussed in appendix C.1, H3(Z2,Z2) = Z2, so there is a nontrivial 2-group extension
Γ̃ of this form.

In this case, it is straightforward to check that ε(g1, g2, g3) is the identity in Z2 for all
triples g1−3 ∈ Z2, so there is no additional constraint on G bundles on T 3 (beyond pairwise
commutivity) to lift to a Γ̃ bundle.
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It is then straightforward to compute the T 3 partition function from (4.18), yielding

ZT 3

(
[X/Γ̃]

)
= 1
|K|2|G|

∑
z1,z2,z3∈K

∑
g1,g2,g3∈G

Z(g1, g2, g3),

= |K|
|G|

∑
g1,g2,g3∈G

Z(g1, g2, g3),

= ZT 3

∐
K̂

[X/G]

 , (4.28)

as expected from decomposition (4.3).
In this case, ρ(ω) = 1 for all ρ ∈ K̂. Although H3(G,U(1)) = Z2 for G = Z2, the group

G = Z2 is in some sense too small to have any nontrivial phases resulting from analogues
of discrete torsion.

The reader should also note that we get this decomposition for both 2-group extensions
Γ̃ indexed by H2(Z2,Z2) = Z2, implying that they are physically equivalent to one another.
(Analogous relations were seen in decomposition of two-dimensional theories with one-form
symmetries in [1], in which different gerbes are described by the same physical theory.)

4.4 Example: G = (Z2)3, K = Z2

Write G = (Z2)3 = 〈a, b, c〉. Let us pick an extension of G by BK corresponding to the
element of H3(G,K) given by (−)a1b2c3 in appendix C.3.

Then, the commuting triples g1−3 for which ε(g1, g2, g3) 6= 1 ∈ K include, for example,
(ax, by, cz) and their permutations, where

x ∈ {1, b, c, bc}, y ∈ {1, a, c, ac}, z ∈ {1, a, b, ab}. (4.29)

The partition function of [X/Γ̃] then has the form

ZT 3

(
[X/Γ̃]

)
= 1
|K|2|G|

∑
z1−3∈K

∑
g1−3∈G

′
Z(g1, g2, g3) = |K|

|G|
∑

g1−3∈G

′
Z(g1, g2, g3), (4.30)

where the prime indicates that some of the G-twisted sectors are omitted.
For the trivial representation 1 ∈ K̂, ε1(g1, g2, g3) = 1, but for the nontrivial representa-

tion 1 ∈ K̂, ερ(g1, g2, g3) corresponds to the discrete-torsion-like phase (3.2) corresponding
to the cocycle ω4 ∈ H3(G,U(1)) listed in appendix C.3, essentially because the ω4 cocycle
has the same form as the chosen element of H3(G,K) above: ω4(g1, g2, g3) = (−)a1b2c3 also.
That discrete-torsion-like phase equals −1 on precisely the triples that are omitted from
the [X/Γ̃] orbifold, namely sectors of the form (ax, by, cz) and their permutations, for x,
y, z as in (4.29). Sectors that are not omitted include (g, g, g) for g any element of (Z2)3.

Putting this together, we see

ZT 3

(
[X/Γ̃]

)
= ZT 3

(
[X/G]

∐
[X/G]ω4

)
, (4.31)

matching the prediction of decomposition (4.3) for this case. The sectors that are omitted
in the Γ̃ orbifold cancel out between the two G orbifolds, realizing a ‘multiverse interference
effect’ as usual.
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4.5 Example: G = (Z2)2 = K

In this case, it is straightforward to check that the discrete-torsion-like phase factors ω(ρ)
are all trivial for any extension class in H3(G,K) and any ρ ∈ K̂, hence in this case our
conjecture (4.3) predicts

QFT
(
[X/Γ̃]

)
= QFT

∐
ρ∈K̂

[X/G]

 . (4.32)

We can check this by computing the T 3 partition function. In this case, for G =
K = (Z2)2, it is straightforward to check that ε = 1 holds automatically for every [ω] ∈
H3(G,K), so there is no constraint on commuting triples (g1, g2, g3). Then, from the
general formula (4.18),

ZT 3

(
[X/Γ̃]

)
= 1
|K|2|G|

∑
z1,z2,z3∈K

∑
g1,g2,g3∈G

Z(g1, g2, g3),

= |K|
|G|

∑
g1,g2,g3∈G

Z(g1, g2, g3),

= |K|ZT 3 ([X/G]) , (4.33)

which is consistent with the prediction of decomposition.

5 Interpretation: sigma models on 2-gerbes

These orbifolds by 2-groups have a more formal description as realizations of sigma models
on 2-gerbes, closely analogous to sigma models on gerbes as described in [90–92].

Briefly, gerbes are closely analogous to principal bundles. A n-(G-)gerbe is essentially
a fiber bundle whose fibers are ‘groups’ BnG of higher-form symmetries. As a result, a
sensibly-defined sigma model with target such a gerbe should admit a global BnG symme-
try, corresponding to translations along the fibers of the gerbe.

Because the ‘group’ BG = [point/G], a G-gerbe — a fiber bundle with fiber BG —
can be locally presented as a quotient in which a subgroup acts trivially. This was utilized
in the previous work [90–92] to construct sigma models on gerbes, presented as orbifolds
and gauge theories with trivially-acting subgroups.

Now, this glosses over a number of subtleties, including questions about non-uniqueness
of presentations (dealt with by identifying a sigma model on a stack or gerbe with a uni-
versality class of RG flow), potential modular invariance and unitarity issues in orbifolds,
seeming moduli mismatches, and most important for decomposition, violations of the clus-
ter decomposition axiom, which were discussed in [1, 90–92].

In any event, from the same reasoning, orbifolds by 2-groups with trivially-acting one-
form symmetries appear to be presentations of sigma models on 2-gerbes, just as sigma
models on ordinary gerbes are realized in terms of gauge theories with trivially-acting
(ordinary) subgroups [90–92].
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As discussed in ([22], section 2), a map f : Y → G, for G a (banded) G-gerbe over M
(G assumed finite), defines9 a map f̃ : Y → M with a trivialization of f̃∗G. If dim Y = 2,
this gives a restriction on the degree of f̃ . Explicitly, let π : G → M be projection, then
f̃ = π ◦ f , and f̃∗G has a canonical trivialization. This trivialization may be clearer to the
reader in the closely related case of bundles. Given a map g : Y → E for some bundle
π : E →M , we can define g̃ = π∗g, and then as

g̃∗E = {(y, e) ∈ Y × E | g̃(y) = π(e)}, (5.1)

there is a trivialization Y → g̃∗E given by y 7→ (y, g̃(y)). The same analysis applies to
gerbes.

So, we have that a map f : Y → G defines a map f̃ : Y → M such that f̃∗G is
trivializable. As discussed in ([22], section 2), if dim Y = 2, this implies a restriction on
degrees. If the characteristic class of G is ω ∈ H2(M,G) (G finite), then f̃∗ω = 0 ∈
H2(Y,G). For example, if Y = P1 and M = PN , with f̃ : P1 → PN of degree d, and
G = Zk, then f̃∗ω = dω, and dω = 0 ∈ H2(PN ,Zk) means dω ≡ 0 mod k, that the
product of d and the characteristic class is divisible by k.

If the dimension of Y is not two, then one still has a constraint that f̃∗G is trivializable,
which does restrict the possible maps f̃ ; however, that restriction will not be describable
as simply as a restriction on map degrees.

Briefly, the same formal arguments apply to (banded analogues of) 2-gerbes. Just
as for ordinary gerbes, a map f : Y → G, for G a 2-(G-)gerbe over M , from essentially
the same argument as before, one gets a map f̃ : Y → M with a restriction on degrees,
following from the statement that f̃∗G is trivializable (and so has vanishing characteristic
class in H3(Y,G)).

6 Analogues in other dimensions and other degrees

6.1 Decomposition in higher-dimensional orbifolds

In this section, we make some conjectures for how this program could be continued into
higher dimensions, by observing that the arguments we have applied to ordinary central
extensions and 2-group extensions also apply, with only minor modifications, to higher-
group extensions.

Consider orbifolds in d dimensions. Specifically, consider gauging a higher-group ex-
tension

1 −→ Bd−2K −→ Γ̃ −→ G −→ 1, (6.1)

for K a finite abelian group, classified by an element [ω] ∈ Hd(G,K). The orbifold [X/Γ̃]
has the structure of a [X/G] orbifold but with a restriction on the G sectors, namely
that they trivialize a coboundary-invariant constructed from ω, or explicitly x∗ω = 1 in
the notation of appendix A. For example, on T d, we require that commuting d-tuples
g1, · · · , gd also obey

ε(g1, · · · , gd) = 1 ∈ K, (6.2)
9In fact, the map f is equivalent to the map f̃ plus a specific choice of trivialization of f̃∗G.
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for
ε(g1, · · · , gd) =

∏
perm′s σ

ω(gσ(1), · · · , gσ(d))sgnσ, (6.3)

as outlined in appendix A.3.
The reader should note in passing that the phase ε above, for coefficients in any abelian

group, obeys standard properties of discrete-torsion-like phases, specifically,

• the phase ε is invariant under coboundaries, and so is well-defined on cohomology
Hd(G,U(1)),

• the phase ε is a homomorphism in the sense that

ε(ab, g3, · · · , gd+1) = ε(a, g3, · · · , gd+1) ε(b, g3, · · · , gd+1), (6.4)

(and similarly for products in other positions, from the antisymmetry of ε), as can
be verified from the identity∏

perm′s σ

′ (dω)
(
gσ(1), · · · , gσ(d+1)

)sgn σ
= 1, (6.5)

for permutations of the (d + 1)-tuple (a, b, g3, · · · , gd+1), where the prime indicates
that we restrict to permutations preserving the order of a, b,

• the phase ε(g1, · · · , gd) is invariant under SL(n,Z) actions on the group elements, as
is straightforward to verify from the homomorphism property.

Returning to partition functions, the restriction above on G bundles can be imple-
mented by inserting a projector, which (as discussed previously) is equivalent to a decom-
position into universes [X/G] weighted by a discrete theta angle coupling to x∗ω, in the
notation of appendix A.

In the special case of T d, the restriction above to d-tuples obeying (6.2) is equivalent
to inserting a projection operator in an ordinary [X/G] orbifold, with projector which on
T d takes the form 1

|K|
∑
ρ∈K̂

ερ(g1, · · · , gd), (6.6)

where ερ ∈ U(1) is the image of ε under ρ : K → U(1). The resulting T d partition
function is the same as that of a sum of partition functions of [X/G] orbifolds, each with
a discrete-torsion-like phase factor defined by ερ.

Thus, in higher dimensions, based on the partition function analysis above, we expect
that the [X/Γ̃] orbifold decomposes:

QFT
(
[X/Γ̃]

)
= QFT

∐
ρ∈K̂

[X/G]ρ(ω)

 , (6.7)

(for ρ(ω) indicating a discrete theta angle ρ coupled to x∗ω,) which at least in special cases
can be expressed in the form

QFT
(
[X/Γ̃]

)
= QFT

∐
ρ∈K̂

[X/G]ρ(C)

 , (6.8)
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for ρ(C) expressing elements of higher-dimensional analogues of discrete torsion. (In-
terpreted literally as a sigma model, this theory should only be understood as a low-
energy effective action, of course, though this should also be a prototype for theories in d

dimensions.)
It is also straightforward to outline the origin of projectors in this language. In two

dimensional orbifolds, the projectors onto the universes are constructed as linear com-
binations of the twist fields associated to trivially-acting group elements. Now, in a d

dimensional theory, if we gauge a p-form symmetry, then in the language of topological
defect lines (see e.g. [93]), one gets a real codimension (p + 1) object that generalizes the
branch cuts of an orbifold, and which terminates on a real codimension (p + 2) object,
which is the analogue of a twist field.

So, work in d dimensions, and gauge a (trivially-acting) (d − 2)-form symmetry. In
principle, this should result in a theory with a global (d− 1)-form symmetry, and hence a
decomposition. Because we have gauged a (d−2)-form symmetry, we get a real codimension
(d− 1) object, an analogue of the two-dimensional branch cut, which terminates at a real
codimension d object (an analogue of a twist field), which in d dimensions is pointlike.
Those pointlike objects, those analogues of twist fields, could then be used to construct
projectors.

6.2 Interpretation: higher-dimensional sigma models

In this paper we have discussed how maps from 2-manifolds into ordinary gerbes and
maps from 3-manifolds into 2-gerbes define maps into spaces with restrictions on degrees
(following from the constraint that the pullback of the gerbe be trivial).

There is a very closely analogous story for higher gerbes, which we outline in this
section (slightly generalizing ([22], section 2)). Maps into (m-)G-gerbes are closely related
to maps into underlying spaces with restrictions on degrees. Consider a map f from a
space Y into a (m-)gerbe G →M . Composing with the projection gives a map f̃ : Y →M .
The map f defines a section of f̃∗G, almost by definition, hence it trivializes f̃∗G.

As a consequence, the map f̃ induces

f̃∗ : Hm+1(M,G) −→ Hm+1(Y,G). (6.9)

The characteristic class of the m-gerbe G must be in the kernel of that map, hence there
is a restriction on possible maps f̃ .

In particular, a map f : Y → G is equivalent to a map f̃ : Y → M , trivializing
the characteristic class of the gerbe, together with a specific choice of trivialization of the
m-gerbe f̃∗G, which is an (m− 1)-gerbe over B.

Depending upon the circumstances, this may imply a restriction on the map f̃ . For
example, if G is an m-gerbe and dim Y ≤ m, the map f̃ is unconstrained, since the pullback
of the characteristic class is an element of Hm+1(Y,G) = 0, so all maps are in the kernel.

On the other hand, suppose we have an m-gerbe and dim Y > m. (For example, a
four-dimensional low-energy effective sigma model mapping into a 1-gerbe, 2-gerbe, or 3-
gerbe.) In this case, the map f̃ is constrained, but depending upon the relative values of
m and dim Y , the restriction may be on e.g. lower homotopy.
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7 Analogues in Chern-Simons theories in three dimensions

It is well-known that gauging the BZ2 central symmetry of SU(2) Chern-Simons theory
in three dimensions results in an SO(3) Chern-Simons theory. Briefly, the path integral
sums over Z2 gerbes and gerbe-twisted SU(2) bundles with connection, for which bundle
transition functions only close up to gerbe transition functions on triple overlaps; the
resulting path integral is precisely a path integral over SO(3) bundles with connection, for
which the second Stiefel-Whitney class w2 coincides with the gerbe characteristic class, and
the third Stiefel-Whitney class is determined by a Steenrod square as w3 = Sq1(w2).

In that case, the BZ2 acted nontrivially on line operators, specifically as phases deter-
mined by the n-ality of the representation (partially) defining the Wilson line.

We could consider more general situations, in which the one-form symmetry group
maps to an action on the center, but with a nonzero kernel. In general, consider a 2-group
Γ defined by a crossed module {d : A → H}, where A is abelian and the image of d
is contained within the center of the group H. If we let K denote the kernel of d, and
G = H/imA, then

1 −→ K −→ A −→ H −→ G −→ 1, (7.1)

which defines an element ω ∈ H3(G,K). In principle, if G is, for example, a Lie group,
but we are only concerned with flat bundles, then the same homotopy computations of
appendix A.2 imply that (flat) Γ bundles map to (flat) G bundles obeying the constraint
that φ∗ω = 0.

Such a constraint can be implemented via a decomposition, and flat bundles arise in
Chern-Simons theories, so we have a prediction:

Chern-Simons(H)/BA =
∐
θ∈K̂

Chern-Simons(G)θ, (7.2)

where the θ are discrete theta angles coupling to φ∗ω, and for levels such that the Chern-
Simons theories are defined.

For example, consider an SU(2) Chern-Simons with an action of BZ4, which maps to
the central one-form symmetry of SU(2), with a BZ2 kernel which leaves all line operators
invariant. In this case, we predict

Chern-Simons(SU(2))/BZ4 = Chern-Simons(SO(3))+
∐

Chern-Simons(SO(3))−. (7.3)

This form of decomposition will be discussed in detail in upcoming work.

8 Conclusions

In this paper we have discussed 2-group orbifolds and their decomposition. Because these
theories involve the gauging of a trivially-acting one-form symmetry, they possess a global
two-form symmetry, implying a decomposition. The pattern followed is very similar to two
dimensions: the twisted sectors of the 2-group orbifolds look like twisted sectors of ordinary
orbifolds obeying a constraint, and that constraint is implemented by the decomposition.
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In our analysis, we specialized to 2-groups that were analogues of central extensions,
defined in part by trivial group actions of G on K. It would be interesting to consider more
general cases; such analyses are left for future work.

One direction that would be interesting to pursue would be to deform 2-group orbifolds
by turning on C field flux, in the same way that one can turn on discrete torsion to deform
ordinary two-dimensional orbifolds. Decomposition in orbifolds with discrete torsion was
discussed in [2]. A related direction that would be interesting to pursue would be analogues
of quantum symmetries in 2-group orbifolds, generalizing the results of [3].
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A Homotopy theory

In this section we will give more rigorous justifications of statements appearing in the main
text that various Γ bundles project to G bundles obeying a restriction, utilizing homotopy
theory. We first describe such restrictions in the case of ordinary central extensions, as a
warm-up exercise for the reader, then turn to 2-group extensions.

A.1 Classification of bundles for central extensions

Let ω ∈ H2(G,K), for G and K finite groups and K abelian, and associate a central
extension Γ:

1 −→ K −→ Γ −→ G −→ 1. (A.1)

We want to understand Γ bundles, which is to say, Map(M,BΓ).
Now, from the surjective map in the central extension, there is a map BΓ→ BG.
Furthermore, since Γ is a central extension of G by K, Γ→ G is a principal K bundle,

hence classified by a map G→ BK, meaning that Γ is the fiber product

Γ //

��

point

��
G // BK

(A.2)

Taking B, we get the fiber product

BΓ //

��

point

��
BG

ω // K(K, 2)

(A.3)
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Put another way, if we apply the functor B(−) to the short exact sequence (A.1) we get that
BΓ → BG is a BK principal bundle, and so classified by a map BG → B2K = K(K, 2),
which gives the diagram above.

In passing, if K is abelian but not central, then the G action on K gives a twisted form
of K, a sheaf of groups K → BG which is locally isomorphic to K × BG. The extension
class ω is then an element of H2(BG,K) (instead of H2(BG,K)), equivalently a section of
Γ(BG,K(K, 2)). In this case, BΓ is the homotopy intersection of this section and the zero
section of K(K, 2).

Returning to central extensions, one has the diagram

Map(M,BΓ) //

��

Map(M, point) = point

��
Map(M,BG) // Map(M,K(K, 2)) = H2(M,K),

(A.4)

where the bottom map sends x ∈ Map(M,BG) 7→ x∗ω. An element x ∈ Map(M,BG)
will be in the image of an element of Map(M,BΓ) precisely when x∗ω = 1 ∈ H2(M,K).
We will examine the implications of this on tori in section A.3.

It may be helpful to observe that x∗ω can also be understood as the image of the
isomorphism class of the G bundle in H1(M,G) under the Bockstein homomorphism

H1(M,G) −→ H2(M,K). (A.5)

If we momentarily drop the assumption that G be finite, then for G = SO(n), Γ = Spin(n),
the quantity we label x∗ω would coincide with the second Stiefel-Whitney class of the
G bundle.

A.2 Classification of 2-group bundles

Now, let us repeat that analysis for bundles of 2-groups constructed analogously as exten-
sions.

Let ω ∈ H3(G,K) = H3(BG,K). Associated to this is a 2-group, which we describe
as a crossed module Γ•,

Γ• = {Γ1
d−→ Γ0}, (A.6)

which sits in the sequence

1 −→ K −→ Γ1
d−→ Γ0 −→ G −→ 1. (A.7)

The classifying 2-stack BΓ· is connected, with homotopy groups

π0(BΓ•) = 0, π1(BΓ•) = G, π2(BΓ•) = K. (A.8)

Let M be a compact oriented manifold. We want to understand Map(M,BΓ•).
To that end, note that there is a map

BΓ• −→ BG, (A.9)
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arising as the first stage of the Postnikov tower of BΓ•, and in fact BΓ• is a fiber square

BΓ• //

��

point

��
BG

ω // K(K, 3),

(A.10)

(from the definition of BΓ• as a homotopy type). In the bottom map, we interpret ω ∈
H3(G,K) by writing

H3(G,K) = H3(BG,K) = Map (BG,K(K, 3)) . (A.11)

From the fiber square above, we derive the square

Map(M,BΓ•) //

��

Map(M, point) = point

��
Map(M,BG) // Map(M,K(K, 3)) = H3(M,K).

(A.12)

which constrains possible maps (hence possible G bundles on M).
Note that since

ω ∈ H3(G,K) = H3(BG,K) = Map (BG,K(K, 3)) , (A.13)

we see x∗ω ∈ Map(M,K(K, 3)) = H3(M,K), so the restriction above is that x∗ω is trivial
as an element of H3(M,K):

x∗ω = 1. (A.14)

We will examine the implications of this on tori in section A.3.
Furthermore, the fiber in Map(M,BΓ•) over such as x is just the fiber of the Postnikov

tower, namely
Map(M,K(K, 2)) = H2(M,K). (A.15)

Thus, fibered over every G bundle are the K gerbes, much as one would expect physically
when gauging a 2-group.

A.3 Computations on tori

So far we have argued that for both ordinary central extensions and 2-group central exten-
sions of a finite group G, for a G bundle to be in the image of a bundle whose structure
group is the extension, the G bundle must have the property that x∗ω = 1, where ω is an
element of group cohomology characterizing the extension, and x ∈ Map(M,BG) encodes
the G bundle.

In this section we will unpack that conclusion for the case that M is a torus.
Recall that for a torus T (of any dimension) we have

Hk(T,Z) = Hom(∧kH,Z), (A.16)
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where H = H1(T,Z), and the right hand side above can be viewed as skew-symmetric
abelian group maps from the direct product of k copies of H → Z.

Another way to say this is as follows. The cochains Ck(T,Z) are the group of poly
linear maps H×k → Z, and the cocycles Zk(T,Z) are the subgroup of maps killed by the
Hocschild differential. Each cocycle is cohomologous to a unique skew-symmetric cocycle
and that skew-symmetric cocycle gives a preferred representative in the corresponding
cohomology class.

This works up to torsion with arbitrary coefficients. In particular if K is a finite abelian
group we have the universal coefficient theorem short exact sequence

0 −→ Ext1(Hk−1(T,Z),K) −→ Hk(T,K) −→ Hom(∧kH,K) −→ 0. (A.17)

However, note that Hk−1(T,Z) is a free finitely generated abelian group and so

Ext1(Hk−1(T,Z),K) = 0, (A.18)

which implies
Hk(T,K) = Hom(∧kH,K). (A.19)

Thus, for a K-valued cocycle, on the torus T its cohomology class is uniquely determined
by its projection to its skew-symmetric part.

Now, let us consider particular examples. Earlier in section A.1 we argued that a
G bundle arose from a Γ bundle for Γ an (ordinary) central extension determined by
ω ∈ H2(G,K) if and only if x∗ω = 1 ∈ H2(M,K). From the analysis above, we see that if
M = T 2, x∗ω is trivial if and only if

ω(g1, g2)
ω(g2, g1) = 1 (A.20)

for commuting pairs g1, g2 ∈ G defining a G bundle (up to isomorphism). In this fashion
we recover the constraint described earlier in section 2.

For 2-groups and ω ∈ H3(G,K), we can proceed similarly for M = T 3, and see that
x∗ω = 1 implies that

ω(g1, g2, g3)
ω(g1, g3, g2)

ω(g3, g1, g2)
ω(g3, g2, g1)

ω(g2, g3, g1)
ω(g2, g1, g3) = 1 (A.21)

as previously outlined in section 4.1.
Concretely, given k and Γ defined by a central extension

1 −→ Bk−2K −→ Γ −→ G −→ 1, (A.22)

on a torus T k with H = H1(T k,Z), with central extension corresponding to a class [ω] ∈
Hk(G,K), we have

Hom(H,Γ) −→ Hom(H,G) −→ Hom(∧kH,K), (A.23)

where ∧kH ∼= Z, and so the homomorphism ∧kH → K is determined by the element of K
which is the image of 1 ∈ ∧kH = Z. That element of K is the total skew-symmetrization
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of the cocycle ω when evaluated on the commuting k-tuple of elements of G describing an
element of Hom(H,G). In other words, for k = 2, the image of the generator of ∧2H is

ω(g1, g2)
ω(g2, g1) , (A.24)

and for k = 3, the image of the generator of ∧3H is

ω(g1, g2, g3)
ω(g1, g3, g2)

ω(g3, g1, g2)
ω(g3, g2, g1)

ω(g2, g3, g1)
ω(g2, g1, g3) . (A.25)

We have focused on ordinary groups and 2-groups, but formally analogous results arise
for k > 3. In particular, for a k-torus T and a degree k cohomology class [ω] ∈ Hk(G,K),
we will have a similar statement. From the same analysis as above, for any k, the image
of the generator of ∧kH ∏

permutations σ
ω
(
gσ(1), gσ(2), · · · , gσ(k)

)sgn σ
, (A.26)

for [ω] ∈ Hk(G,K).
In mathematics, discussions of bundles for higher groups and related notions can be

found in e.g. [96] and references therein.

B Decomposition as duality

In this appendix we describe decomposition, formally, as a kind of Fourier transform, and
then apply that idea to three-dimensional examples to argue that in orbifolds [X/Γ̃], where
Γ̃ is an extension of G by BK, the universes are indexed by representations of K rather
than BK, which is what we observe physically.

B.1 Ordinary decomposition

In this section we will describe decomposition as a form of duality. This is a special case
of the duality discussed in [97]; see also [98].

Let Γ be a central extension

1 −→ K −→ Γ −→ G −→ 1, (B.1)

where both G and K are finite. Note [X/Γ]→ [X/G] is a K gerbe, a principal BK bundle.
Now, because K is abelian, BK = K[1] is a stacky abelian group, and so a principal BK
bundle is a torsor over BK, classified by a class in H1([X/G], BK) = Ext1

[X/G](Z, BK).
Hence the extension (B.1) can be interpreted as a complex of sheaves of abelian groups on
[X/G] which is an extension of Z by BK (over [X/G]).

Let X be that extension. It is a family of (complexes of) abelian groups over [X/G]
which sits in an exact sequence

1 −→ BK −→ X −→ Z −→ 1. (B.2)

– 30 –



J
H
E
P
0
9
(
2
0
2
2
)
0
3
6

Note that this means X , as a space (rather than an abelian group) is a disjoint union of
stacks Xn over [X/G], where Xn is the preimage of n ∈ Z. Each Xn is a K gerbe. For
example,

X0 = [X/G]×BK, X1 = [X/Γ], (B.3)

and for n > 1, Xn is the nth power of X1 = [X/Γ] as a K gerbe over [X/G].
Now, we can dualize, by taking homomorphisms into Z. (Note that the usual dual of K

is Hom(K,Z), whereas the Pontryagin dual of K is Hom(K,S1). Also note S1 =BZ=Z[1].)
So, take the short exact sequence (B.2), and dualize to BS1. This becomes

1 −→ Hom(Z, BS1) −→ Hom(X , BS1) −→ Hom(BK,BS1) −→ 1. (B.4)

(More generally, there are higher Ext’s on the right, which can be shown to vanish here.)
Define the dual group X̂ = Hom(X , BS1), and use the fact that

Hom(Z, BS1) = BS1, (B.5)
Hom(BK,BS1) = Hom(K,S1), (B.6)

to rewrite the sequence above as

1 −→ BS1 −→ X̂ −→ Hom(K,S1) −→ 1. (B.7)

Since Hom(K,S1) is just the characters of K, we see that X̂ is a family of abelian groups,
extending the characters by BS1, hence is decomposed by characters:

X̂ =
∐
λ

X̂λ, (B.8)

where X̂λ is an S1-gerbe on [X/G]× λ, for any character λ. The part corresponding to X1
is X̂λ for λ the tautological character.

So far we have discussed ordinary decomposition at a very formal level as a mathe-
matical duality. This description has two ingredients:

• The data labelling components of the dual, namely characters of K, and

• the classes of S1 gerbes on [X/G]× λ, which are

– images under λ of the original extension class of Γ,

– images under λ of the characteristic class of the principal BK bundle [X/Γ]→
[X/G], an element of H2(G,K),

– images under λ of the extension class of Z by BK, namely Ext1(Z, BK).

B.2 Decomposition for two-group extensions

In this section we will outline a formal understanding of the decomposition appearing
elsewhere in this paper. In particular, we will argue that, for at least one version of
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decomposition for two-group extensions, the universes should be classified by irreducible
representations of K, and not10 BK.

Consider the 2-group extension

1 −→ BK −→ Γ̃ −→ G −→ 1. (B.9)

Here, [X/Γ̃]→ [X/G] is a principal B2K bundle.
Note BK = K[1], B2K = K[2].
As in section B.1, the extension given by formula (B.9) is equivalent to specifying a

complex of abelian groups X̃ on [X/G] given as an extension

1 −→ K[2] −→ X̃ −→ Z −→ 1. (B.10)

Now, we can dualize, but there are several possible targets, such as Z, Z[1] = BZ = S1,
Z[2] = BS1, Z[3] = B2S1.

We will ‘dualize’ by taking Hom’s into Z[3]. Applying this to sequence (B.10), we get

1 −→ Hom(Z,Z[3]) −→ Hom(X̃ ,Z[3]) −→ Hom(K[2],Z[3]) −→ 1. (B.11)

Define ̂̃X = Hom(X̃ ,Z[3]), and note

Hom(Z,Z[3]) = Z[3], (B.12)
Hom(K[2],Z[3]) = Hom(K,Z[1]) = Hom(K,S1), (B.13)

to simplify that sequence to

1 −→ Z[3] −→ ̂̃X −→ Hom(K,S1) −→ 1, (B.14)

so we see that ̂̃X is fibered over characters of K, just as in the previous case. Note
furthermore that ̂̃X is an S1 2-gerbe over each component, exactly as expected.

In this section we have made one choice of dualization, dualizing by taking Hom’s to
Z[3], to understand decomposition. In principle, there exist other dualizations, to Z[k] for
other k. We leave an examination of the physical interpretation of such duals, if any, for
future work.

C Some results in group cohomology

In this appendix we collect some results on group cohomology of various groups, which are
used in the main text.

For reference, recall in group cohomology that coboundaries are determined in degree
two by

(δα)(g1, g2, g3) = g1 · α(g2, g3)
α(g1g2, g3)

α(g1, g2g3)
α(g1, g2) , (C.1)

10See e.g. ([52], appendix A), [94, 95] for perspectives on representations of BK.
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and in degree three by

(δω)(g1, g2, g3, g4) = g1 · ω(g2, g3, g4)
ω(g1g2, g3, g4)

ω(g1, g2g3, g4)
ω(g1, g2, g3g4)ω(g1, g2, g3). (C.2)

As most of the computations in this paper involve group cohomology with trivial action
on the coefficients, we will assume so unless otherwise noted. That said, orientifolds do
involve group cohomology with nontrivial action on the coefficients, so on occasion we will
use that group cohomology instead.

C.1 Z2

In this section we will collect some useful results on the group cohomology of Z2, which will
be useful in setting a pattern for results later in this appendix for more general products
of Z2’s.

First,
Hn(Z2,Z2) = Z2 (C.3)

for all (positive) n, where the group cohomology has trivial action on the coefficients,
which is assumed throughout this appendix. Writing the elements of Z2 as {0, 1}, the only
possibly nonzero normalized cochains are x = ω(1, 1, · · · , 1). In this case,

dω(1, 1, · · · , 1) =
{

2x n odd,
0 n even. (C.4)

However, for Z2 coefficients, 2x = 0, hence dω = 0 in all cases.
Note that for U(1) coefficients, for example, Heven(Z2,U(1)) = 0, so the existence of

these cocycles is tied to Z2 coefficients specifically.

C.2 Z2 × Z2

In this section we will collect some useful results on the group cohomology of Z2 × Z2.
First, consider the group

H2(Z2 × Z2,Z2) = (Z2)3. (C.5)

We represent the elements as Z2-valued normalized11 cocycles C(g, h), g, h ∈ Z2 × Z2.
Write

Z2 × Z2 = {1, a, b, ab}, (C.6)

and let x, y, z denote the generators of each of the three Z2’s in the cohomology group,
then normalized cocycles are listed in table 1.

In particular, for Z2 coefficients and normalized cocycles, C(g, g) is coboundary-
invariant, and from table 1, we see that

C(a, a) = x, C(b, b) = y, C(ab, ab) = z (C.7)

naturally encode the generators of each of the three Z2’s in H2(Z2 × Z2,Z2).
11Throughout this paper, a normalized cocycle is one which is the identity if any group element among

its arguments is the identity.
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1 a b ab

1 1 1 1 1
a 1 x 1 x

b 1 xyz y xz

ab 1 yz y z

Table 1. Representative normalized cocycles for H2(Z2 × Z2,Z2). For example, C(a, b) = 1,
C(b, a) = xyz.

The cohomology groups of Z2 × Z2 also include

H2((Z2)2,U(1)) = Z2, H3((Z2)2,U(1)) = (Z2)3, H4((Z2)2,U(1)) = Z2 × Z2. (C.8)

Degree three cohomology was recently discussed in detail in [4] and ([5], appendix A), giving
both representatives as well as invariants that distinguish different cohomology classes.

For use elsewhere, let us characterize the elements of H4(Z2×Z2,U(1)) more precisely.
Let α denote a normalized 4-cocycle, meaning α(g1, g2, g3, g4) = 1 if any gi = 1. (In effect,
this is a gauge choice, which requires in evaluating coboundaries that 3-cochains equal 1 if
any of their arguments is 1.)

If we write each g ∈ Z2 × Z2 as g = (x, y) for x, y ∈ {0, 1}, then normalized cocycles
α0,··· ,3 representing different elements of H4(Z2 × Z2,U(1)) are as follows:

α0((x1, y1), (x2, y2), (x3, y3), (x4, y4)) = +1, (C.9)
α1((x1, y1), (x2, y2), (x3, y3), (x4, y4)) = (−1)x1y2y3y4 , (C.10)
α2((x1, y1), (x2, y2), (x3, y3), (x4, y4)) = (−1)x1x2x3y4 , (C.11)
α3((x1, y1), (x2, y2), (x3, y3), (x4, y4)) = (−1)x1y4(x2x3+y2y3). (C.12)

As elements of Z2 × Z2, α0 is the identity and α3 = α1α2.
For any pair (g, h) ∈ Z2 × Z2, we can define an invariant A(g, h) of normalized 4-

cocycles, invariant under coboundaries, as

A(g, h) = α(g, g, g, h)
α(g, g, h, g)

α(g, h, g, g)
α(h, g, g, g) . (C.13)

Applying these invariants to the normalized cocycles above, and writing Z2 × Z2 =
{1, a, b, ab}, with a = (1, 0), b = (0, 1), we compute invariants corresponding to ele-
ments of H4(Z2 × Z2,U(1)) as in table 2. This can be useful in distinguishing elements of
H4(Z2 × Z2,U(1)), as cocycles are only defined up to coboundaries.

C.3 Z2 × Z2 × Z2

Write Γ = (Z2)3 = 〈a, b, c〉, G = Z2 = 〈a〉, K = (Z2)2 = 〈b, c〉.
Now,

H3(Γ,U(1)) = (Z2)7, (C.14)
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α A(a, b) A(a, ab) A(b, a) A(b, ab) A(ab, a) A(ab, b)
α0 +1 +1 +1 +1 +1 +1
α1 +1 +1 −1 −1 −1 −1
α2 −1 −1 +1 +1 −1 −1
α3 −1 −1 −1 −1 +1 +1

Table 2. Invariants computed from elements of H4(Z2 × Z2,U(1)).

which we can understand as arising from the Lyndon-Hochschild-Serre spectral se-
quence as12

H3(K,U(1)) = (Z2)3, (C.15)
H1(G,H2(K,U(1))) = H1(Z2,Z2) = Z2, (C.16)
H2(G,H1(K,U(1))) = H2(Z2, (Z2)2) = (Z2)2, (C.17)

H3(G,U(1)) = Z2. (C.18)

Thus three of the generators of H3(Γ,U(1)), call them ω1, ω2, ω3, are pullbacks from
H3(K,U(1)) under the projection Γ = G×K → K.

Another generator, call it ω7, is similarly a pullback from H3(G,U(1)), and is given by

ω7((a1, b1, c1), (a2, b2, c2), (a3, b3, c3)) = (−1)a1a2a3 (C.19)

where here we identify a, b, c ∈ {0, 1}.
One more generator, call it ω4, comes from H1(G,H2(K,U(1))) and can be repre-

sented as
ω4 = (−1)a1b2c3 . (C.20)

The final two generators of H3(Γ,U(1)), call them ω5,6, come from
H2(G,H1(K,U(1))), and can be represented as

ω5 = (−1)a1a2b3 , (C.21)
ω6 = (−1)a1a2c3 . (C.22)

One can check that all of the ωi’s are co-closed and that they are not cohomologous
(they differ on coboundary invariants ω(g, g, g) for some g ∈ Γ). Furthermore, it is also easy
to check that the C field discrete torsion phase (3.2) on T 3 are nontrivial for ω4 evaluated
on triples of the form (a1x, b2y, c3z)} and their permutations for

x ∈ {1, b1, c1, b1c1}, y ∈ {1, a2, c2, a2c2}, z ∈ {1, a2, b2, a2b2}. (C.23)

The group
H3((Z2)3,Z2) = (Z2)10. (C.24)

12Since Γ is just a direct sum, the extension class vanishes, and so all of the maps dn in the spectral
sequence are trivial and so the sequence stabilizes at Ep,12 .
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From Lyndon-Hochschild-Serre as before, we can write this as

H3(K,Z2) = H3((Z2)2,Z2) = (Z2)4, (C.25)
H1(G,H2(K,Z2)) = Hom(Z2, (Z2)3) = (Z2)3, (C.26)
H2(G,H1(K,Z2)) = H2(Z2, (Z2)2) = (Z2)2, (C.27)

H3(G,Z2) = Z2. (C.28)

C.4 (Z2)k

In this appendix we give a basis of cocycles for Hn((Z2)k,Z2) for any n, k.
Represent g ∈ (Z2)k as g = (x1, · · · , xk) with xi ∈ {0, 1}. Pick k nonnegative integers

m1, · · · ,mk such that
m1 + m2 + · · · + mk = n. (C.29)

There will be
N =

(
n+ k − 1
k − 1

)
(C.30)

possibilities, each of which corresponds to a cocycle. In particular, we will see that

Hn((Z2)k,Z2) = (Z2)N . (C.31)

Define a function
fm : {1, · · · , n} −→ {1, · · · , k} (C.32)

(m ∈ {1, · · · , N}) by
fm(a) = j (C.33)

for j such that
m1 +m2 + · · ·+mj−1 < a ≤ m1 +m2 + · · ·+mj (C.34)

(in conventions in which m0 = 0).
Then define

ωm(g1, · · · , gn) = (−)α (C.35)

for
α =

n∏
a=1

xfm(a)
a . (C.36)

For example, consider Hn(Z2,Z2). In this case, N = 1 for all n, and f1(a) = 1 for all
a ∈ {1, · · · , n}. In each case, if we write Z2 = 〈a〉, then a normalized cocycle for Hn(Z2,Z2)
is (−)a, for any n.

For another example, consider the group cohomology of (Z2)2 = 〈a, b〉, starting with
H2((Z2)2,Z2). Here, N = 3, corresponding to the three sums

1 + 1, 2 + 0, 0 + 2. (C.37)

Corresponding respectively to those three sums we have the functions

f1+1(1) = 1, f1+1(2) = 2,
f2+0(1) = 1, f2+0(2) = 1,
f0+2(1) = 2, f0+2(2) = 2,

(C.38)
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which correspond to the three cocycles

(−)a1b2 , (−)a1a2 , (−)b1b2 . (C.39)

One can computeH3((Z2)2,Z2) similarly. Here, N = 4, corresponding to the four sums

2 + 1, 1 + 2, 3 + 0, 0 + 3, (C.40)

and corresponding to those sums are the functions

f2+1(1) = 1, f2+1(2) = 1, f2+1(3) = 2,
f1+2(1) = 1, f1+2(2) = 2, f1+2(3) = 2,
f3+0(1) = 1, f3+0(2) = 1, f3+0(3) = 1,
f0+3(1) = 2, f0+3(2) = 2, f0+3(3) = 2.

(C.41)

The corresponding cocycles are

ω2+1 = (−)a1a2b3 , ω1+2 = (−)a1b2b3 , ω3+0 = (−)a1a2a3 , ω0+3 = (−)b1b2b3 . (C.42)

For another example, for (Z2)3 = 〈a, b, c〉, there is a basis of cocycles given by

H1((Z2)3,Z2) = {(−)a, (−)b, (−)c} (3 elements), (C.43)
H2((Z2)3,Z2) = {(−1)a1a2 , (−1)a1b2 , (−1)a1c2 , (−1)b1b2 , (−1)b1c2 , (−1)c1c2}

(6 elements), (C.44)
H3((Z2)3,Z2) = {(−1)a1a2a3 , (−1)a1a2b3 , (−1)a1a2c3 , (−1)a1b2b3 , (−1)a1b2c3 , (−1)a1c2c3 ,

(−1)b1b2b3 , (−1)b1b2c3 , (−1)b1c2c3 , (−1)c1c2c3}
(10 elements). (C.45)

Furthermore, Hn((Z2)3,Z2) has a basis of(
n+ 2

2

)
= (n+ 1)(n+ 2)

2 (C.46)

cocycles.

C.5 Dihedral groups

Let Dn denote the dihedral group of order 2n. Then,

H3(Dn,U(1)) =
{

Z2n n odd,
(Z2)2 × Zn n even. (C.47)

Below we give an explicit cocycle for H2(D4, Z2) = (Z2)3. The group D4 is presented
in terms of generators a, b, with relations

a2 = 1 = b4, aba = b−1 = b3, (C.48)

and the results are expressed in terms of x, y, z which generate each of three Z2’s in table 3.
The corresponding invariant phases ε(g, h) only depend on one of the generators, x, as
shown in table 4.
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1 b b2 b3 a ba b2a b3a

1 1 1 1 1 1 1 1 1
b 1 1 1 x 1 1 1 x

b2 1 1 x x 1 1 x x

b3 1 x x x 1 x x x

a 1 y x y z yz xz yz

ba 1 xy x y z xyz xz yz

b2a 1 xy 1 y z xyz z yz

b3a 1 xy 1 xy z xyz z xyz

Table 3. Table of cocycles representing elements of H2(D4,Z2) = (Z2)3. The variables x, y, z
generate the three Z2’s.

1 b b2 b3 a ba b2a b3a

1 1 1 1 1 1 1 1 1
b 1 1 1 1 − − − −
b2 1 1 1 1 x x x x

b3 1 1 1 1 − − − −
a 1 − x − 1 − x −
ba 1 − x − − 1 − x

b2a 1 − x − x − 1 −
b3a 1 − x − − x − 1

Table 4. Table of invariant phases ε(g, h) = C(g, h)/C(h, g) using the cocycles in table 3. An entry
‘−’ indicates a non-commuting pair.
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