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1 Introduction

Finding consistent Kaluza-Klein (KK) truncations of 10- and 11-dimensional supergravity
to lower dimensions is, in general, extremely complicated. One needs to truncate the
infinite tower of KK fluctuations on the compactification in such a way that a solution
of the lower-dimensional, highly non-linear, equations of motion also solves the higher-
dimensional ones [1, 2]. In practice, this means finding an inspired truncation ansatz
such that, upon substitution into the equations of motion, all the dependence on the
compactification coordinates factorises.

However, in recent years, a systematic approach to consistent truncations came from
the Exceptional Field Theory (ExFT) and Exceptional Generalised Geometry (EGG) ap-
proaches [3–10].1 These formalisms unify the metric and flux degrees of freedom of 10-
/11-dimensional supergravity, leading to an otherwise hidden Ed(d) symmetry group of the
theory. Consistent truncations can now be constructed using group theory and the lan-
guage of “G-structures”: a consistent truncation can be defined on a compactification that
admits a reduced generalised G ⊂ Ed(d)-structure, whose intrinsic torsion only contains
constant singlets under G [7, 9]. The truncation ansatz can then easily be constructed
by expanding the ExFT fields in terms of the generalised G-structure, while the intrinsic
torsion defines the embedding tensor of the lower-dimensional gauged supergravity.

For example, consistent truncations to maximal gauged supergravity arise from gen-
eralised identity structures. This means that one has a globally well-defined generalised
frame in ExFT. The intrinsic torsion condition in this case requires the generalised frame
to close into an algebra under the generalised Lie derivative. This leads to the generalised
Scherk-Schwarz ansatz [3, 4, 11–16]. Similarly, consistent truncations to lower-dimensional
gauged supergravities with less supersymmetry require a generalised G-structure, that sta-
bilises N spinors in ExFT, with N determining the amount of supersymmetry of the lower
dimensional supergravity. For example, consistent truncations preserving half of the su-
persymmetries in 11− d dimensions, d ≥ 7, are described by a generalised Spin(d− 1− n)
structure, with n labelling the number of vector multiplets [6, 7].

This new viewpoint both captures existing consistent truncations, such as of 11-
dimensional supergravity on S7 [17], and also yields many new ones [3–10, 18–26]. It
has also allowed us to rule out the higher-dimensional origin of large classes of gauged
supergravities. For example, there are universal upper bounds on the number of matter
multiplets in gauged supergravities that arise from consistent truncations [7, 9, 27].

The situation is quite different for consistent truncations to three dimensions. On
the one hand, the duality between scalars and vectors leads to a particularly large num-
ber of possible three-dimensional gauged supergravities. These can have enormous gauge
groups, including E8(8), SO(8) × SO(8), F4(4) × G2(2), SO(8,C) [28–31], which, unlike in

1For the purposes of this paper, the ExFT and EGG approaches coincide, since we will be solving the
“section condition” of ExFT globally. The only difference between the two formalisms arises, if one allows
for different solutions of the section condition in disparate patches ExFT, meant to model non-geometric
backgrounds, or if one allows for violations of the section condition. We will not consider these possibilities
here and instead focus on 10-/11-dimensional supergravity.

– 2 –



J
H
E
P
0
9
(
2
0
2
2
)
0
1
4

higher-dimensional gauged supergravities, cannot arise purely from the isometries of the
compactification. On the other hand, the E8(8) ExFT approach is less clear in three di-
mensions, since the algebra of the generalised Lie derivative does not close even upon
solving the section condition. Instead, one must include an additional gauge parameter,
the “covariantly-constrained” field Σ, which compensates the anomaly of the generalised
Lie bracket. The need for covariantly-constrained fields and lack of closure of the gener-
alised Lie derivative make it less clear how to define G-structures and their intrinsic torsion
in this setup. Nonetheless, there clearly should be a generalisations of these concepts to the
three-dimensional case. Indeed, [32] showed that a generalised Scherk-Schwarz ansatz of
O(8, 8) double field theory can be used to construct consistent truncations of half-maximal
10-dimensional supergravity to three dimensions.

In this paper, we will show how to use the E8(8) ExFT machinery to systematically
construct consistent truncations of maximally supersymmetric 10/11-dimensional super-
gravities to three dimensions, preserving different amounts of supersymmetry. We will
derive general results about which theories can be obtained by consistent truncations, plac-
ing restrictions on both the gaugings and matter contents. We classify the possible matter
content of all N > 4 theories with uplifts to 10-/11-dimensional supergravity and list their
associated structure groups. We also give a partial classification for N = 4, including the
structure groups and matter contents corresponding to all single quaternionic Kähler scalar
manifolds and for some examples of products of quaternionic Kähler manifolds.

We will construct several new examples of consistent truncations. These include trun-
cation of IIA/IIB supergravity preserving maximal supersymmetry with SO(8)nT 28 gaug-
ing, and different real forms thereof. We will also give an example of a consistent truncation
of type IIB on S5 twisted over a Riemann surface, leading to a N = 4 gauged supergravity
with scalar manifold SO(6,4)

SO(6)×SO(4) ×
SU(2,1)

S(U(2)×U(1)) and ISO(3) × U(1)4 gauging. When the
Riemann surface is a hyperboloid, this theory contain N = (2, 2) AdS3 vacua that arise
from the near-horizon limit of D5-branes compactified on a Riemann surface.

This paper is structured as follows. We begin with a review of the salient features
of E8(8) ExFT in section 2, before studying the generalised Lie derivative and its gener-
alised Killing vector fields in 3, since these play an important role in the gauging obtained
from consistent truncations. In section 4, we then describe how to construct consistent
truncations to 3-dimensional maximal gauged supergravity, and show that the form of the
generalised Lie derivative places strong constraints on the possible gaugings. In particu-
lar, the compact part of the gauging can be at most SO(9), and we also prove that we
cannot construct a consistent truncation on the 7- or 8-dimensional product of spheres,
such that the full isometry group is gauged, unlike in the 4-dimensional case. We then
show in section 5 how to construct consistent truncations from twist matrices valued in
one of two SL(8) ⊂ E8(8) subgroups, corresponding to IIA/IIB truncations. This allows us
to construct the consistent truncation of IIA/IIB on S7 to two different three-dimensional
N = 16 SO(8) n T 28 gauged SUGRAs, as well as IIA/IIB truncations on Hp,7−p. We also
discuss how the IIB truncation on S7 is related to the IIA one by an outer automorphism
of SO(8, 8) in subsection 5.3.
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Then, in section 6, we show how to describe consistent truncations to a gauged super-
gravity with less than maximal supersymmetry. In section 7, we classify all possible matter
contents that can arise for N > 4 gauged SUGRA and give the relevant structure groups.
For N = 4 gauged SURAs whose scalar manifold is a single quaternionic-Kähler manifold,
we again fully classify which can arise from a consistent truncation based on the structure
group, while we only partially classify those whose scalar manifolds are a product of two
quaternionic-Kähler manifolds. Finally, in section 8, we use this formalism to construct
the consistent truncation of IIB SUGRA on S5 fibred over a Riemann surface. The result-
ing theory has N = 4 supersymmetry with scalar manifold SO(6,4)

SO(6)×SO(4) ×
SU(2,1)

S(U(2)×U(1)) and
gauging ISO(3)×U(1)4. We conclude with a discussion and outlook in section 9.

2 E8(8) exceptional field theory

2.1 Review of E8(8) gauge structure and Lagrangian

The E8(8) ExFT [33] consists of the following bosonic fields{
gµν ,MMN , Aµ

M , BµM
}
, µ, ν = 0, . . . , 2 , M,N = 1, . . . , 248 , (2.1)

with appropriate fermionic fields [34] in its supersymmetric completion, which will not be
of importance to us here. Here gµν is the 3-dimensional metric andMMN ∈ E8(8)/SO(16)
the generalised metric containing all the fully internal bosonic fields. The gauge fields
Aµ

M and BµM come from the bosonic fields with one external leg and transform in the
248-dimensional adjoint representation of E8(8).

The gauge structure of the E8(8) ExFT is encoded via the generalised Lie deriva-
tive. However, unlike for higher-dimensional ExFTs, the parameters for the generalised Lie
derivative consist not just of a generalised vector field, ΛM , transforming in the 248, but
also of a “covariantly constrained” parameter ΣM transforming in the 248. In terms of the
parameters

(
ΛM , ΣM

)
, the generalised Lie derivative of a generalised vector field VM of

weight λ is given by

L(Λ,Σ)V
M = ΛN∂NVM − 60 (P248)M N

K
LV

N∂KΛL + λVM∂NΛN + fMN
KΣNV

K . (2.2)

Here we have used the E8(8) structure constants fMN
K and the projector onto the adjoint,

P248, defined in (A.3). The adjoint indices of E8(8) are raised/lowered throughout with the
Cartan-Killing metric, ηMN , normalised as in (A.1).

The derivatives ∂M , the parameters ΣM appearing in the generalised Lie deriva-
tive (2.2) and the gauge fields BµM appearing in (2.1), are “covariantly constrained”,
meaning that

(P1+248+3875)MN
KLCK ⊗ C ′L = 0 , (2.3)

for any CM , C ′M ∈ {∂M , ΣM , BµM} and where the projectors are defined in (A.3)
and (A.4). The derivatives are constrained in a similar way to (2.3) in higher-dimensional
ExFTs, where the analogous constraint is known as the section condition. This implies
that not all 248 coordinates appearing in ∂M are physical, but only a subset. There are
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two inequivalent maximal solutions to this section condition, where only 8 or 7 coordinates
are kept, as we will review in further detail in 2.2. The E8(8) ExFT then reduces to 11-
dimensional/IIB supergravity. By contrast, the constraints (2.3) on ΣM and BµM are new
to E8(8) ExFT and reflect the fact that to make the E8(8) symmetry manifest, additional
unphysical degrees of freedom transforming in the fundamental of E8(8) are included in the
field content (2.1) which are removed by the additional symmetries associated to ΣM [33].

The gauge structure parameterised by
(
ΛM , ΣM

)
is more conveniently formulated in

terms of the combined object [32]
Υ = (Λ, Σ) , (2.4)

where Λ is a generalised vector field of weight 1 and Σ is a covariantly constrained field of
weight 0. The generalised Lie derivative can now be defined on such combined objects as
follows

LΥ1Υ2 =
(
LΥ1Λ2

M , LΥ1Σ2M + Λ2
N∂MRN (Υ1)

)
, (2.5)

with
RM (Υ) = fMN

K∂NΛK + ΣM . (2.6)

This allows us to write an action for the bosonic fields of the E8(8) ExFT as

S =
∫
d3x d248Y

√
|g|
(
R̂+ 1

240g
µνDµMMNDνMMN + Lint(M, g) + 1√

|g|
LCS

)
, (2.7)

where |g| denotes the determinant of the 3-dimensional metric gµν . R̂ its E8(8)-covariantised
Ricci scalar, constructed as usual but replacing 3-dimensional partial derivatives ∂µ by the
3-dimensional E8(8)-covariant derivatives Dµ, defined as

Dµ = ∂µ − L(Aµ,Bµ) , (2.8)

while

Lint(M, g) = 1
240M

MN∂MMKL∂NMKL −
1
2M

MN∂MMKL∂LMNK

− 1
7200f

NQ
P f

MS
RMPK∂MMQKMRL∂NMSL

+ 1
2∂M ln |g|∂NMMN + 1

4M
MN (∂M ln |g|∂N ln |g|+ ∂Mg

µν∂Ngµν) .

(2.9)

The Chern-Simons term is given by [32]

LCS = εµνρ
(
〈Aµ, ∂νAρ〉 −

1
3〈Aµ, LAνAρ〉

)
, (2.10)

in terms of the 3-dimensional alternating tensor density εµνρ = ±1 and the E8(8) invariant
inner product

〈A1, A2〉 =
∫
d248Y

(
A1

MRM (A2) +A2
MB1M

)
, (2.11)

where A = (A, B) denotes as before a generalised vector field of weight 1 and a covariantly
constrained field of weight 0.
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As usual, LCS is only gauge invariant up to a total derivative (in the external 3-
dimensional spacetime). Equivalently, the Chern-Simons term can be written as an integral
over four external spacetime dimensions but in a manifestly gauge-invariant manner in
terms of the field strengths of AµM , BµM , which can be computed from

[Dµ, Dν ]VM = −L(Fµν ,Gµν)V
M , (2.12)

for any generalised vector field VM . The Chern-Simons term is given in terms of FµνM

and Gµν M by

SCS = 1
4

∫
d4x d248Y

(
FM ∧ GM −

1
2fMN

KFM ∧ ∂KGN
)
. (2.13)

The ∧ in (2.13) denotes the four-dimensional wedge product.

2.2 Solutions of the section condition

The dependence of the E8(8) ExFT fields on the 248 coordinates is constrained by the
“section condition” (2.3)

(P1+248+3875)MN
KL∂K ⊗ ∂L = 0 , (2.14)

where the ∂M act on any single or product of fields of the E8(8) ExFT. There are two
inequivalent (up to E8(8) transformations) maximal solutions of (2.14), corresponding to
11-d and IIB supergravity.

A convenient way to solve the section condition to recover 11-d SUGRA comes by
breaking E8(8) → SL(9), such that

248→ 80⊕ 84⊕ 84 ,
3875→ 80⊕ 1215⊕ 240⊕ 1050⊕ 240⊕ 1050 .

(2.15)

Decomposing further under SL(8)×R+, we obtain for the representations appearing in the
248

80→ 630 ⊕ 10 ⊕ 83 ⊕ 8−3 ,

84→ 561 ⊕ 28−2 ,

84→ 56−1 ⊕ 282 ,

(2.16)

with the additional representations in the 3875 decomposing as

240→ 36−2 ⊕ 1681 ⊕ 8−5 ⊕ 28−2 ,

240→ 362 ⊕ 168−1 ⊕ 85 ⊕ 282 ,

1050→ 420−2 ⊕ 5041 ⊕ 561 ⊕ 704 ,

1050→ 4202 ⊕ 504−1 ⊕ 56−1 ⊕ 70−4 ,

1215→ 2163 ⊕ 630 ⊕ 7200 ⊕ 216−3 .

(2.17)

– 6 –
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We can now solve the section condition by restricting the coordinate dependence to lie solely
in the 8−3 of the 80 of SL(9) [33]. Since the 1⊕ 248⊕ 3875 do not contain any represen-
tations with charge −6 under R+, see (2.16), (2.17), these 8 coordinates solve the section
condition. In turn, E8(8) ExFT reduces to 11-dimensional supergravity in a 3 + 8 split.

An alternative solution [33] of the section condition comes by instead breaking SL(9)→
SL(7)× SL(2)× R+, so that we have

80→ (48,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (7,2)3 ⊕
(
7,2

)
−3 ,

84→ (7,1)−4 ⊕ (21,2)−1 ⊕ (35,1)2 ,

84→
(
7,1

)
4 ⊕

(
21,2

)
1 ⊕

(
35,1

)
2 ,

(2.18)

for the representations in the 248 and

240→ (28,2)−1⊕(112,1)2⊕(7,3)−4⊕(7,1)−4⊕(21,2)−1⊕(1,2)−7 ,

240→
(
28,2

)
1⊕
(
112,1

)
−2⊕

(
7,3

)
4⊕
(
7,1

)
4⊕
(
21,2

)
1⊕(1,2)7 ,

1050→ (140,1)−4⊕(224,2)−1⊕(21,2)−1⊕(210,1)2⊕(35,3)2⊕(35,1)2⊕
(
35,2

)
5 ,

1050→
(
140,1

)
4⊕
(
224,2

)
1⊕
(
21,2

)
1⊕
(
210,1

)
−2⊕

(
35,3

)
−2⊕

(
35,1

)
−2⊕(35,2)−5 ,

1215→
(
140,2

)
−3⊕(392,1)0⊕(48,3)0⊕(48,1)0⊕(140,2)3⊕(7,2)3⊕(21,1)6

⊕
(
21,1

)
−6⊕

(
7,2

)
−3⊕(1,1)0 . (2.19)

for the additional representations in the 3875. Again, we can solve the section condition by
allowing only coordinate dependence on the

(
7,1

)
4, since the 1⊕248⊕3875 do not contain

any representations with charge +8 under R+, as can be seen from (2.18) and (2.19). The
E8(8) ExFT then reduces to IIB supergravity in a 3 + 7 split.

3 Generalised Killing vector fields

We begin by establishing some facts about the action of generalised Killing vector fields,
since these play a key role in consistent truncations. Just as in higher-dimensional ExFTs,
we wish to define a generalised Killing vector as one which annihilates the generalised metric
under the generalised Lie derivative. However, in E8(8) ExFT we also need to specify a
covariantly-constrained field Σ. Therefore, we say that

(
VM ,ΣM

)
is a generalised Killing

vector field if
L(V,Σ)MMN = 0 . (3.1)

Using an explicit parameterisation of the generalised metric [33], we can now determine
what (3.1) implies for the components of V and Σ. Let us label by i, j = 1, . . . , n, the
coordinates satisfying the section condition, with n = 8 or n = 7, depending on whether
we are looking at a solution of the section condition corresponding to 11-d or type IIB
supergravity. Consider now the rescaled generalised metric M̃MN = MMN |g|1/3, where
|g| refers to the determinant of the external 3-dimensional metric. Then the following
component of this rescaled generalised metric

M̃ij = hij , (3.2)

– 7 –
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always encodes the inverse of the internal spacetime metric, hij . Moreover, the generalised
Lie derivative on this component always reduces to the action of the ordinary Lie derivative

L(V,Σ)
(
M̃ij

)
= Lvh

ij , (3.3)

where v denotes the vector field component of VM and Lv is the ordinary Lie derivative
with respect to the vector field v. Therefore, for a generalised Killing vector field, the
vector component corresponds to an ordinary Killing vector:

Lvh
ij = 0 . (3.4)

Moreover, by studying the remaining components of the generalised Killing vector action,
we see that on the (p+ 1)-form potentials, C(p+1), we must have

LvC(p+1) = dλ(p) , (3.5)

where λ(p) correspond to the p-form components of the generalised vector fields VM . There-
fore, the Killing vector fields v are isometries of the background which also preserve the
field strengths of the background, just as in higher dimensions.

Moreover, since Σ is covariantly constrained as in (2.3), the only non-vanishing part of
Σ is the 1-form. Using (3.4) and (3.5), the generalised Killing vector condition (3.1) now
imposes

Σi = ∂jτ
j
i + ∂iτ , (3.6)

where τ ij and τ parameterise the adjoint- and singlet-valued components of the gener-
alised vector field V , respectively. This can, for example, be seen by looking at the follow-
ing component when solving the section condition in a way that recovers 11-dimensional
supergravity:(
L(V,Σ)M̃

)i,j
k = (P63)jklmhim (Σl − ∂nτnl − ∂lτ) + 3

8δ
j
kh

il (Σl − ∂mτml − ∂lτ) . (3.7)

Requiring (3.7) to vanish, as for a generalised Killing vector field, immediately yields (3.6),
and a completely analogous consideration leads to (3.6) in IIB. Note that Σi, τ ij and τ

only ever appear in the generalised Lie derivative through the combination (Σi − ∂jτ j i −
∂iτ). Therefore, (3.6) implies that Σi, τ ij and τ necessarily drop out of the action of the
generalised Lie derivative for generalised Killing vector fields. Finally, the remaining parts
of the generalised vector field, which also do not have a clear geometric origin, drop out of
the action of the generalised Lie derivative.

We now note that if we have a generalised Killing vector field
(
V t,Σt

)
, whose vector

part vanishes identically, i.e. v = 0, then (3.5) implies that the p-forms in VM must be
closed. As a result, the action of

(
V t,Σt

)
under the generalised Lie derivative is trivial on

any tensor. Therefore, we identically have

L(V t,Σt) = 0 , (3.8)

when acting on any generalised tensor. We call such
(
V t,Σt

)
trivial generalised Killing

vector fields.

– 8 –
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4 Generalised Scherk-Schwarz reduction

We will now show how to construct consistent truncations to 3-dimensional gauged super-
gravity which preserve all supersymmetries. In higher-dimensional ExFTs, such consistent
truncations arise from a generalised Scherk-Schwarz ansatz [3, 4, 14, 16], consisting of an
Ed(d)-valued matrix UM

M , known as a twist matrix, and a scalar density ρ ∈ R+ subject to
a differential condition. The twist matrix UM

M and scalar field ρ can be used to construct
a set of generalised vector fields UM

M = ρ−1UM
M . In terms of these generalised vector

fields, the differential condition is given by

LU
M
UN

M = XMN
PUP

M , (4.1)

with XMN
P constant. The condition (4.1) implies that the manifold on which the trunca-

tion is performed is generalised Leibniz parallelisable [3].
Similarly, consistent truncations to 3-dimensional maximal gauged SUGRA are cap-

tured in E8(8) ExFT by a generalised Scherk-Schwarz ansatz parameterised by a twist
matrix UM

M ∈ E8(8) and a scalar field ρ ∈ R+. However, the generalised parallelisable
condition (4.1) is modified since the gauge structure of E8(8) requires a covariantly con-
strained field in addition to a generalised vector field. Therefore, we need to also specify
a covariantly constrained field in order to define a consistent truncation. In a similar way
to consistent truncations in O(d + 1, d + 1) double field theory [32], such a covariantly
constrained field can actually be constructed from the twist matrix UM

M and ρ as

ΣMM = 1
60ρ

−1fM
PQUPP∂MUQ

P = 1
60ρ

−1fM
PQTr

(
UP∂MUQ

)
. (4.2)

The generalised Leibniz parallelisability condition can now be expressed in terms of

UM = (UM , ΣM ) , (4.3)

with ΣM given in (4.2) and UM
M = ρ−1UM

M , as

LU
M
UN

M = XMN
PUP

M . (4.4)

However, due to the form of ΣM and the coefficient 1
60 in (4.2), the generalised Leibniz

parallelisability condition (4.4) furthermore implies that the full UM =
(
UM , ΣM

)
forms

an algebra under the generalised Lie derivative:

LU
M
UN = XMN

PUP , (4.5)

with the additional condition in (4.5), i.e.

L(U
M
,Σ
M

)ΣMM + UN
N∂MRN (UM ,ΣM ) = XMN

PΣP M , (4.6)

automatically satisfied.
Equation (4.5) plays an important role in constructing a consistent truncation, since it

allows us to expand the constrained field BµM of E8(8) ExFT in terms of ΣMM . Another
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important feature of the condition (4.4) with (4.2) is that the constants XMN
P satisfy the

linear constraint of maximal 3-dimensional gauged supergravities [28, 29], i.e. that XMN
P

only lives in the representations

XMN
P ∈ 1⊕ 248⊕ 3875 . (4.7)

In particular, the linear constraint (4.7) is automatically satisfied if we have a twist matrix
UM

M and scalar density ρ, due to the form of ΣM and the precise coefficient 1
60 in (4.2).

4.1 Truncation ansatz

We can now give the consistent truncation ansatz for the generalised Scherk-Schwarz re-
duction. For this, we simply expand the E8(8) fields in terms of the generalised frame UM

M ,
ρ and ΣM as follows

gµν(x, Y ) = ρ−2(Y )Gµν(x) ,

MMN (x, Y ) = UMM (Y )UNN (Y )MMN ,

Aµ
M (x, Y ) = UM

M (Y )AµM (x) ,

BµM (x, Y ) = ΣMM (Y )AµM (x) .

(4.8)

The condition (4.5) now ensures that the Y -dependence of all these objects factorises under
the generalised Lie derivative. In particular, we have that

Dµgνρ(x, Y ) = ρ−2(Y )
(
∂µGνρ(x)−AµM (x) θM Gνρ(x)

)
≡ ρ−2(Y )DµGνρ(x) ,

DµMMN (x, Y ) = UM
M (Y )UNN (Y )

(
∂µMMN (x)− 2AµP (x)XP (M

QMN)Q(x)
)

≡ UMM (Y )UNN (Y )DµMMN (x) ,

LAµAν(x, Y ) = UP (Y )XMN
P AµM (x)AνN (x) ≡ UM (Y ) JAµ,AνKM (x) .

(4.9)

This ensures that the above truncation ansatz (4.8) is consistent and we obtain a three-
dimensional gauged supergravity with embedding tensor XMN

P defined by (4.4).

4.2 Largest possible compact gauge group

Equation (4.4) links the gauging, encoded in the embedding tensor XMN
P , to the gener-

alised Lie derivative acting on the internal space. As a result, the E8(8) ExFT geometry
imposes restrictions on which gauged supergravities can arise from consistent truncations.
In particular, as we will now show, the largest compact subgroup of the gauging is SO(9).
While we focus here on maximally supersymmetric truncations, the same argument also
holds for less supersymmetric truncations, so that also for these the largest compact gaug-
ing is SO(9).

To begin, let us denote the generalised vector fields associated to compact generators
by UI =

(
UI , ΣI

)
, such that

LU
I
UM

M = XIM
N UN

M , (4.10)
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and
XI(M

P δN)P = 0 . (4.11)

As a result, these “compact” generalised vector fields leave invariant the generalised metric
MMN = UM

M UN
N δMN , since

LU
I
MMN = 2U(M

M δMN LUIUN)
N

= −2UMM UN
P XI(P

N δM)N

= 0 .

(4.12)

Thus, the UI are generalised Killing vector fields, as discussed in 3.
We thus see that the compact gauging is generated by Killing vector fields of the

background which preserve the field strengths as well. Moreover, the gauging is always
realised by the vector fields, i.e. if we denote by i = 1, . . . , n the internal coordinates
satisfying the section condition, with n = 8 or 7 depending on whether we are looking at
the 11-d or type II supergravity solutions, then we have

LU
M
UN

i = Lv
M
vN

i = XMN
P vP

i . (4.13)

In particular, this means that the vector fields vM are valued in the adjoint of the gauge
group. Moreover, the compact gauging is realised by the Lie bracket of Killing vectors
of the backgrounds. However, there can be at most 1

2n(n + 1) Killing vector fields on a
n-dimensional manifold, which would then have to be a maximally symmetric space, in
this case the S8 or S7. The trivial generalised Killing vector fields, which have vanishing
vector components, have a trivial action under the generalised Lie derivative and, therefore,
cannot contribute to the gauging. As a result, the largest possible compact gauging is
SO(9), which would have to be a S8 for 11-d supergravity, and SO(8), corresponding to a
S7 for IIB supergravity.

However, it should be noted that SO(9) cannot be gauged in three dimensions, because
the embedding tensor representations (4.7) do not contain SO(9) singlets. On the other
hand, SO(8) is realised in both IIA and IIB supergravity via a consistent truncation of S7

leading to two different 3-dimensional SO(8)nT 28 gauged supergravity, as we will explicitly
construct in section 5.

Since we have shown that the largest compact group that can be gauged is SO(9), this
immediately rules out large numbers of N = 16 gauged SUGRAs. In particular, three-
dimensional gauged supergravity admits large gaugings, such as all of E8(8), different real
forms of SO(8)×SO(8), and so on [29]. Indeed, none of the gauged supergravities analysed
in [29] can arise from consistent truncations of 10-/11-dimensional supergravity.

Moreover, our argument for the largest compact gauge group just relies on the fact
that the gauging is realised by the vector fields, i.e. (4.13). This is also true for less than
maximally supersymmetric consistent truncations, which we discuss in 6. Therefore, also
for N < 16 gauged SUGRAs, only those whose compact gauging is smaller than SO(9)
can be uplifted by a consistent truncation to 10-/11-dimensional supergravity. This strong
results rules out, for example, almost all the half-maximal gaugings with N = (8, 0) AdS3
vacua constructed in [35].
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4.3 No-go theorem for truncations on products of spheres

We can use the fact that the vector fields generate the gauging, see (4.13), and therefore
are valued in the adjoint representation of the gauge group, to rule out further consistent
truncations. For example, in four dimensions, an interesting class of gauged supergravities
are those with “dyonic gaugings” that arise from consistent truncations of type II super-
gravity on products of two spheres Sp × S6−p, as well as by replacing one or both of the
spheres by hyperboloids [23]. This is not possible in higher dimensions, but requires the
electric-magnetic duality inherent to four dimensions. In the ExFT language, it is related
to the fact that in the decomposition of E7(7) → SL(8), the 56 coordinates decompose into
the 28⊕28. Under SL(8)→ SL(p)×SL(8−p), the 28 and 28 naturally contain the SO(p)
and SO(8 − p) adjoints. Moreover, and crucially, we can solve the section condition with
p−1 coordinates that are part of the adjoint of SO(p) coming from the 28 and 7−p coordi-
nates that are part of the adjoint of SO(8−p) coming from the 28. Therefore, it is possible
to have vector fields (which are dual to the coordinate representations and therefore also
satisfy the section condition) transforming in the adjoint of SO(p)× SO(8− p). The same
logic holds for non-compact gaugings. We refer the reader to [23] for more details on the
construction of the gauging.

A natural question is whether we can similarly define consistent truncations to 3-
dimensional gauged supergravities on the 7-/8-dimensional product of several spheres, Sp×
Sq× . . ., leading to the gauging of the isometry groups G = SO(p+ 1)×SO(q+ 1)× . . ., or
hyperboloids with the respective non-compact gaugings. Here we are strictly interested in
the case where for each sphere factor the full isometry group is gauged, and thus exclude
the case where, for example, we have a trivial S1 reduction that does not lead to an
additional SO(2) gauging. We will show here that these types of product truncations to
three-dimensions are not consistent.

Let us focus on the spherical case. Since the gauging is compact, it is necessarily
a subgroup of SO(16), the maximal compact subgroup of E8(8). To have a consistent
truncation on a product of spheres, such that all of the isometries are gauged, we need all of
the vector fields to transform in the adjoint of the isometry groups, i.e. G = SO(p)×SO(q)×
. . . ⊂ SO(16). However, just like the coordinates on the products of the spheres, the vectors
must satisfy the section condition of the E8(8) theory. In particular, this means that if we
consider a compactification on Sp×S7−p, a subset of the adjoints of SO(p+1) and SO(8−p),
must satisfy the section condition. This subset corresponds precisely to so(p + 1) 	 so(p)
and so(8 − p) 	 so(7 − p), which is in one-to-one correspondence with the coordinates on
Sp × S7−p. This extends in the obvious way to products of more than two spheres.

Let us now study the section condition of the E8(8) ExFT with respect to SO(16) ⊂
E8(8). Recall that the section conditions (2.14) requires that the product of coordinates
in the 1 ⊕ 248 ⊕ 3875 must vanish. Under SO(16) ⊂ E8(8), the 3875, in particular,
decomposes as

3875→ 135⊕ 1920′ ⊕ 1820 . (4.14)

Importantly, the 1820 corresponds to the totally antisymmetric product of four fundamen-
tals of SO(16). Therefore, for any product of subgroups of SO(16), the 1820 will always
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contain the tensor product of the adjoint of two of these subgroups. As a result, we see
that the section condition is never satisfied by vectors which transform as the adjoint of
the gauging G = SO(p) × SO(q) × . . . ⊂ SO(16), and therefore such product truncations
are not possible. The only way to avoid this no-go theorem is by placing the vectors in the
adjoint of the gauge group G but also transforming in a non-trivial representation of the
commutant of the gauge group G inside SO(16). There are only a handful of ways of doing
this, by considering gaugings within SU(8)×U(1) ⊂ SO(16), USp(8)× SU(2) ⊂ SO(16) or
USp(4)×USp(4) ⊂ SO(16). However, it is straightforward to study these cases individually
and to see that the section condition always forbids having vector fields transforming in
adjoint representations of G such that G corresponds to the full isometry group of a 7-
or 8-dimensional product of spheres. Therefore, we conclude that there are no consistent
truncations on a product of spheres from 10/11 dimensions to 3 dimensions in which the
full isometry group is gauged.

Our no-go theorem can likely be extended to non-compact gaugings corresponding to a
product of hyperboloids, possibly with some spheres, by considering appropriate gaugings
inside SO(8, 8) ⊂ SO(16).

5 S7 and Hp,q truncations of IIA/IIB

Using the formalism described in section 4, we can now construct the consistent truncation
of IIA and IIB supergravity on S7 and hyperboloids Hp,q. In the case of S7, the truncation
leads to two different 3-dimensional SO(8)nT 28 gauged supergravities, with T 28 the group
of 28 translations. In this case, the SO(8) is embedded differently in E8(8) for the IIA/IIB
case [30]. In the case of Hp,q, the truncations lead to the same 3-dimensional theories with
gauging CSO(p, q, 8 − p − q) n Tp,q,8−p−q, where Tp,q,8−p−q is a group of translations of
dimension 1

2(15− p− q)(p+ q).
These consistent truncations can be constructed in terms of two different SL(8) sub-

groups of E8(8), which we will denote as SL(8)IIA and SL(8)IIB. The SL(8)IIA is embedded
in E8(8) as follows:

E8(8) → E7(7) × SL(2)→ SL(8)IIA × SL(2) , (5.1)

with the 248 decomposing under SL(8)IIA × SL(2) as

248→ (28,2)⊕
(
28,2

)
⊕ (63,1)⊕ (1,3)⊕ (70,1) . (5.2)

On the other hand, the SL(8)IIB is embedded as

E8(8) → SL(9)→ SL(8)IIB × R+ , (5.3)

with the 248 decomposing as

248→ 8−3 ⊕ 28−2 ⊕ 56−1 ⊕ 630 ⊕ 10 ⊕ 561 ⊕ 282 ⊕ 83 . (5.4)

For both the SL(8)IIA and SL(8)IIB, we can solve the section condition as follows. Let
the coordinates lie in just one of the 28’s and let us denote these by Y IJ with I, J = 0, . . . , 7.
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Note that for SL(8)IIA, this requires breaking the SL(2) commutant to select one of the
doublets of 28. Then, the section condition reduces on the chosen 28 to

∂[IJ ⊗ ∂KL] = 0 , (5.5)

which can be solved by identifying the 7 IIA/IIB physical coordinates as Y i0, with i =
1, . . . , 7.

In doing this for SL(8)IIA, we are picking the 7 coordinates as the standard “11-
dimensional” solution of the section condition inside the 56 of the E7(7) subgroup. By
restricting to just these 7 coordinates in the E8(8) theory, it is clear that we have a IIA
solution of the section condition and that fields can depend on one further coordinate while
still obeying the section condition. This additional coordinate is in the (1,3) representation,
specifically if one breaks SL(2)→ R+, such that the 2 = (+,−), the eighth coordinate can
then be taken to be either Y ++ or Y −− depending on whether the other 7 coordinates live
in the 56+, i.e. Y A+, or 56−, i.e. Y A−, respectively, where A = 1, . . . , 56 of E7(7).

On the other hand, for SL(8)IIB we are considering the same SL(8) decomposition as
when we discussed the 11-dimensional solution to the section condition in 2.2. However,
unlike for the 11-dimensional solution of the section condition, we are now solving the
section condition with antisymmetric coordinates in the 28−2 coming from the 3-vector
coordinates in the 84 of SL(9). This allows us to keep at most 7 coordinates whilst obeying
the section condition. By contrast, the 8 coordinates corresponding to the 11-dimensional
solution to the section condition sit inside the adjoint of SL(9).

Now that we have chosen our 7 IIA/IIB coordinates as sitting inside a 28 of SL(8)IIA or
SL(8)IIB, we can construct an ansatz for the twist matrix UM

M and ρ. We do this by param-
eterising the E8(8) twist matrix in terms of a SL(8) matrix VI I , as well as a scalar function.

5.1 SL(8)IIA twist equations

For SL(8)IIA, we follow the embedding SL(8)IIA ⊂ E7(7)×SL(2) ⊂ E8(8), and parameterise
the E8(8) twist matrix in terms of the SL(8) matrix VI I and the diagonal SL(2) matrix

vi
i =

σ 0
0 σ−1

 , (5.6)

with i = 1, 2 and i = 1, 2. Moreover, we take the E8(8) scalar density to be ρ = σ2. This
will be required for the trombone to vanish. To analyse the generalised parallelisability
condition (4.4), let us decompose the embedding tensor representations 1 ⊕ 248 ⊕ 3875.
Firstly, we find that the 1 automatically vanishes. Decomposing the 3875 and 248 under
SL(8)IIA × R+ ⊂ E7(7) × SL(2), we find that only the components

36+ ⊕ 420+ ⊂ (912,2) ⊂ 3875 ,
28+ ⊂ (56,2) ⊂ 248 ,

(5.7)
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are non-vanishing. Thus, the generalised parallelisability condition (4.4) reduces to

σ−1∂IJ
(
V −1

)
(I
I
(
V −1

)
J)
J = −7

2θIJ ,

σ−1
(
V −1

)
IJK

IJK∂IJVK
L − 1

6σ
−1∂IJ

(
V −1

)
[IJ

IJδK]
L = θIJK

L ,

σ−1∂IJ
(
V −1

)
IJ

IJ − 2σ−1
(
V −1

)
IJ

IJ∂IJ ln σ = ϑIJ .

(5.8)

Here θIJ corresponds to the 36+, θIJK
L the 420+ and ϑIJ the 28+.

We note that (5.8) are precisely the SL(n) twist equations discussed in [4], with n = 8.
In particular, we can use the form of VI I given in [4] to constructing consistent truncations
on S7 and Hp,q to three-dimensional gauged supergravities with gaugings SO(8)nT 28 and
CSO(p, q, 8− p− q) n Tp,q,8−p−q.

Finally, we can more generally construct a consistent truncation using the SL(2)
ansatz (5.6) and any E7(7)-valued twist matrix (not necessarily SL(8)IIA-valued) satisfying
the E7(7) twist equations. This would correspond to dimensionally reducing a consistent
truncation to 4-dimensional supergravity on S1 to 3 dimensions. In particular, we can thus
embed any of the 4-dimensional dyonic gaugings of [23] into E8(8).

5.2 SL(8)IIB

For SL(8)IIB, the E8(8) twist matrix is similarly constructed from an SL(8) matrix VI
I and

scalar function ϕ, via the embedding E8(8) → SL(9) → SL(8)IIB × R+. Accordingly, we
parameterise each power of R+ with ϕ, and construct each SL(8) representation from VI

I .
This immediately causes the 1 representation in the embedding tensor to vanish.

The function ϕ can be fixed by requiring the E8(8) trombone to be proportional to
ϑIJ of the SL(8) twist equations described in [4]. More specifically, we can start from the
ansatz ρ = σλ, ϕ = σω where we take σ to be the R+ function in the SL(8) ansatz of [4] and
λ, ω are arbitrary powers that we can solve for. Then, the only non-vanishing component
of the 248 representation is the 28 of SL(8), given by

1
2ΘIJ = σ−λ−6ω(∂IJ(V −1)IJ

IJ − (6ω + 2λ)(V −1)IJ
IJ∂IJ ln σ) . (5.9)

In order to have ΘIJ ∝ ϑIJ , the trombone of the SL(8) twist equations (5.8), we must take

λ = 2 , ω = −1
6 . (5.10)

Substituting this ansatz into (4.4), we find that the embedding tensor in the 3875 contains
only the representations 36 ⊂ 240 and 420 ⊂ 1050 as SL(8)IIB ⊂ SL(9). Moreover,
these equations reduce to precisely the SL(8) twist equations (5.8) of [4]. As a result, we
immediately have the consistent truncations of IIB supergravity on S7 and Hp,q to three
dimensions with gaugings SO(8) n T 28 and CSO(p, q, 8− p− q) n Tp,q,8−p−q.

5.3 Relation of IIA/IIB truncations via an outer automorphism

Having explicitly constructed the truncations of IIA/IIB on S7 in terms of two different
SL(8) subgroups of E8(8), we will now highlight a different aspect of the relationship be-
tween them. Firstly, the NS-NS sector of ten-dimensional supergravity admits a consistent
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truncation on S7 to 3-dimensional N = 8 gauged supergravity [32]. This is a half-maximal
subtruncation of the two truncations we constructed above. Let us now investigate how
the IIA/IIB truncations differ from the perspective of this half-maximal subtruncation.

Therefore, let us consider the subgroup SO(8, 8) ⊂ E8(8) controlling the half-maximal
theory. Then we have the following decompositions

248→ 120⊕ 128′ ,
3875→ 135⊕ 1820⊕ 1920′ .

(5.11)

The half-maximal gauged supergravities only have the embedding tensor representations
1⊕120⊕135⊕1820 out of the representations lying in the 1⊕248⊕3875 allowed by the
maximal theory. In particular, the S7 truncations lead to half-maximal embedding tensors
valued in the 135 and gives rise to a SO(8) n T 28 gauging in the half-maximal theory.

Let us first understand the difference between the 3-dimensional theories obtained from
IIA/IIB. Generically, one would expect that by considering the same truncation in the
maximal theory, we would find new couplings between vector fields and generators which
are in the 128′ ⊂ 248, and hence have a larger gauging in the maximal theory, and one that
distinguishes between IIA/IIB. However, this is not the case here. Let us write the 248
vector fields of the N = 16 theory as AµM =

(
Aµ

AB, Aµ
İ
)
, with A,B = 1, . . . , 16 labelling

the fundamental and İ = 1, . . . , 128 the 128′ of SO(8, 8), and similarly for the generators
tM =

(
tAB, tİ

)
. The only possible coupling in the maximal theory to an embedding tensor

in the 135 of SO(8, 8) is
Aµ

M XMN t
N = Aµ

AB tCB θAC , (5.12)

where we have lowered the SO(8, 8) fundamental indices with the SO(8, 8)-invariant metric
ηAB. We see explicitly that the coupling in the maximal theory does not involve either Aµİ

or tİ and thus theN = 16 andN = 8 gauge groups coincide. In both cases, it is just SO(8)n
T 28. The fact that the gauge group does not change between the IIA/IIB truncations is
different from what occurs in truncations of IIA/IIB on S3 [18] and S3 ×H1,2 [24].

If the gauge group is identical, then how do we see the difference between the 3-
dimensional theories? This comes by looking at the decomposition of SO(8, 8) → SL(8).
As we discussed above, there are two different SL(8)’s in E8(8), leading to the IIA/IIB trun-
cations. Since there is a unique SL(8)×R+ in SO(8, 8), we have the common decomposition

120→ 282 ⊕ 630 ⊕ 10 ⊕ 28−2 . (5.13)

However, the two different SL(8)’s inside E8(8) now manifest themselves by two different
decompositions of the 128′. With respect to SL(8)IIA, we have

128′ → 14 ⊕ 282 ⊕ 700 ⊕ 28−2 ⊕ 1−4 , (5.14)

while with respect to SL(8)IIB, we have

128′ → 8−3 ⊕ 56−1 ⊕ 561 ⊕ 83 . (5.15)

This implies that the 128′ has different decompositions under the SO(8) factor of the
gauge group. Therefore, while the fields in the half-maximal theory couple identically
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to the generators of SO(8) n T 28, the fields of the N = 16 theory, which also transform
in the 128′, will have different couplings to SO(8) n T 28, depending on whether we are
looking at the IIA or IIB truncation. Another way to see the difference between the
N = 16 theories is to see the SO(8) gauge groups as different diagonal embeddings of
SO(8) ⊂ SO(8)× SO(8) ⊂ SO(16) [30].

With respect to the SO(8, 8) group, the different decompositions of the 128′ under
the SL(8) ⊂ SO(8, 8) in (5.14), (5.15) can equivalently be viewed as arising from an outer
automorphism of SO(8, 8) which exchanges the 128 with the 128′. Therefore, the IIA/IIB
truncations on S7 are related by the outer automorphism of SO(8, 8), analogous to similar
consistent truncations of IIA/IIB on the same background in four and seven dimensions [18,
24]. Therefore, we can relate the IIA/IIB twist matrices by the outer automorphism of
SO(8, 8), which exchanges the 128 and 128′ representations. One way to do this would
be to decompose the IIA/IIB twist matrices with respect to E8(8) → SO(8, 8) and identify
the 120 and 128′ parts. Instead, since we have the construction of the twist matrices with
regards to the SL(8)IIA and SL(8)IIB groups, let us show how the outer automorphism acts
withing these SL(8)’s and exchanges the appropriate representations.

Firstly, let us look at the E8(8) coordinates, which transform in the 120 ⊕ 128′ of
SO(8, 8). The coordinates in the 120 are constrained by the section condition to satisfy [32]

∂[AB ⊗ ∂CD] = ∂AC ⊗ ∂BC = 0 . (5.16)

We can solve (2.14) with 7 coordinates sitting in either the 28, 28 or 63 coordinates of
SL(8) ⊂ SO(8, 8). If we write I, J = 0, . . . , 7 for the SL(8) fundamental and i = 1, . . . , 7,
then these solutions correspond to taking the coordinates to be either one of the following
choices {

Y 0i}, {Y0i
}
,
{
Y 0

i
}
,
{
Y0

i} . (5.17)

All of these choices are equivalent up to O(8, 8) transformations, but not SO(8, 8). For
example, if we let the coordinates be in the 282, corresponding to Y 0i, (or equivalently
28−2 and thus Y0i) and use the decomposition of 128′ according to SL(8)IIA (5.14), then
we find that the section condition allows us include one of the singlets in 128′ as an
extra coordinate. On the other hand, if we had chosen the coordinates to be in the 630,
corresponding to Y 0

i or Y0
i, and taken the IIA decomposition (5.14), we would have found

that the section condition does not allow us to keep dependene on any further coordinate.
Therefore, in the SL(8)IIA decomposition (5.14), the coordinates in the 282 (or 28−2)
correspond to IIA coordinates, where the section condition allows us to keep dependence
on one extra coordinate, while the coordinates in the 630 correspond to IIB coordinates,
with no extra coordinate allowed by the section condition. On the other hand, if we had
chosen the SL(8)IIB decomposition, the story would have been reversed: the coordinates
in the 282 would have been the IIB ones and those in the 630 would have been IIA.

We can now describe the action of the outer automorphism of SO(8, 8) in terms of the
SL(8)IIA and SL(8)IIB subgroups. In order to do this, we break to the common subgroup
SL(8)IIA ⊃ SL(7) ⊂ SL(8)IIB. As discussed above, the outer automorphism should take
the 28 of SL(8)IIA into the 63 of SL(8)IIB and vice versa. Moreover, it should swap the
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decompositions (5.14) and (5.15). This is realised by the following transformation

VA → V A = ηAB VB , (5.18)

and similarly on any other SO(8, 8) tensor, with ηAB the SO(8, 8) invariant written in terms
of the SL(7) subgroup as

ηi
j = δi

j , ηij = δij , η00 = 1 , η00 = −1 , (5.19)

with all the other elements vanishing. The effect of the transformation (5.18) is to swap
the 7 ↔ 7 of SL(7) everywhere. It is straightforward to check that this indeed swaps the
representations in (5.14) and (5.15). Finally, the transformation (5.18) maps the IIA/IIB
twist matrices into each other.

6 Consistent truncations preserving less supersymmetry

We will now show how to construct consistent truncations of type II and 11-dimensional
supergravity to a 3-dimensional N ≤ 16 supergravity. The setup is similar as in higher di-
mensions [6, 7, 9, 27], i.e. rather than having a globally well-defined frame UM

M ∈ E8(8), we
have just a set of globally well-defined generalised vector fields stabilised by some G ⊂ E8(8).
This set of well-defined generalised vector fields therefore define a generalised G-structure
in the E8(8) ExFT. The number of spinors, transforming in the 16 of SO(16) ⊂ E8(8), which
are stabilised by G defines the number of supersymmetries preserved by the truncation.2

Since the generalised vector fields transform in the adjoint of E8(8), the set of well-
defined generalised vector fields defining the G-structure will transform in the adjoint
representation of the commutant of G ∈ E8(8), which we denote as ComG(E8(8)). Let us
here label the adjoint representation of ComG(E8(8)) by A = 1, . . . , dimComG(E8(8)), and
the set of well-defined generalised vector fields by{

JAM
}
. (6.1)

Since the JAM are the generators of ComG(E8(8)), they satisfy the following algebraic
relations

1
60 Tr (JA JB) = ρ−2 κAB ,

[JA, JB] = ρ−1 fAB
C JC ,

(6.2)

where the trace is taken in E8(8) and [ , ] denotes the commutator. κAB and fABC are the
Cartan-Killing form and structure contants of ComG(E8(8)), respectively, and ρ is an E8(8)
scalar density of weight −1, just as in the maximally supersymmetric case. With explicit
E8(8) indices, we can write (6.2)

JAM JBN ηMN = ρ−2 κAB ,

fMN
P JAM JBN = ρ−1 fAB

C JCP ,
(6.3)

2Throughout this paper we are assuming that our manifold is Spin, so that there is no obstruction to
lifting to the double cover SO(16) of SO(16)/Z2, which is the true subgroup of E8(8).
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where ηMN and fMN
P are the Cartan-Killing form and structure constants of E8(8). Note

the factor of 1
60 due to the conventions (A.1). The conditions (6.2) are the less supersym-

metric analogues of the condition that UM
M ∈ E8(8). Note that for consistent truncations

that preserve some supersymmetry, ComG(E8(8)) is semi-simple, so that κAB is invertible.
Therefore, we will use κAB and κAB to raise and lower the adjoint ComG(E8(8)) indices
A,B freely.

The differential condition that ensures consistency of the truncation is now modified
from the maximally supersymmetric case (4.4) to

L(JA,ΣA)JBM = XAB
C JCM , (6.4)

where now ΣAM is defined in terms of JAM and ρ as

ΣAM = 1
60 ρ fA

BC Tr (JB ∂MJC) . (6.5)

For a consistent truncation, we must have that XAB
C is constant. Note that we can in-

terpret (6.4) as the condition that the intrinsic torsion of the G-structure contains only
singlets under G, so that it is the E8(8) analogue of this condition in higher-dimensional
ExFTs [9]. As in the maximally supersymmetric case, the form of the constrained com-
pensator field (6.5) implies that

LJAJB = XAB
C JC , (6.6)

with JA = (JA, ΣA).

6.1 Truncation ansatz

Using the G-structure JAM and ρ, we can now write down the consistent truncation ansatz
to N < 16 gauged supergravity. It is given as follows for the metric and vector fields

gµν(x, Y ) = ρ−2(Y )Gµν(x) ,
Aµ

M (x, Y ) = JAM (Y )AµA(x) ,
BµM (x, Y ) = ΣAM (Y )AµA(x) .

(6.7)

Here Gµν is the metric and AµA the vector fields of the N ≤ 16 gauged supergravity.
For the scalar fields, we need to express the generalised metric MMN ∈ E8(8)/SO(16) in
terms of the GS-singlets JAM and ρ. While this is always possible since GS ⊂ SO(16), the
resulting expression depends on the particular amount of supersymmetry kept.

For example, as we discuss in more detail in the next section, for N = 12 supersymme-
try, we have GS = SU(2) such that the JAM correspond to the generators of E7(−5) ⊂ E8(8)
which commutes with SU(2) ⊂ E8(8). Let us further decompose E7(−5) under its maximal
compact subgroup E7(−5) ⊂ SO(12)× SO(3), so that

133→ (66,1)⊕ (32,2)⊕ (1,3) . (6.8)

Accordingly we write for a generator of E7(−5),

tA =
(
tIJ , tαu, tuv

)
, (6.9)
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with I, J = 1, . . . , 12 denoting the vector of SO(12), α, β = 1, . . . , 32 the spinor of SO(12)
and u, v = 1, 2 the 2 of SO(3). We can now write the generalised metric as

MMN (x,Y ) = 1
19 ρ

−2(Y )J AM (Y )J BN (Y )
(
40M (66,1)

AB (x)+17M (32,2)
AB (x)−56M (1,3)

AB (x)
)

+ 1
19ρ

−2(Y )J AMP (Y )J BNP (Y )
(
320M (66,1)

AB (x)+250M (32,2)
AB (x)+160M (1,3)

AB (x)
)

−ηMN , (6.10)

where J AMN = fMN
PJ AP and we have defined the scalar-dependent inner products

M
(66,1)
AB (x) = bIJA(x) bKLB(x) δIK δJL ,

M
(32,2)
AB (x) = bαuA(x) bβ vB(x) Ωαβ εuv ,

M
(1,3)
AB (x) = buvA(x) bwxB(x) εuw εvx .

(6.11)

Here Ωαβ is the symplectic inner product on the 32, εuv the SU(2)-invariant alternating
symbol and bIJA(x), bαuA(x) and buvA(x) are the scalar fields parameterising the coset
spaceMscalar = E7(−5)

SO(12)×SO(3) .
The condition (6.6) now ensures that the Y -dependence of all these objects factorises

under the generalised Lie derivative. For example, we have that

Dµgνρ(x, Y ) = ρ−2(Y )
(
∂µGνρ(x)−AµA(x) θAGνρ(x)

)
≡ ρ−2(Y )DµGνρ(x) ,

LJµJν(x, Y ) = JC(Y )XAB
C AµA(x)AνB(x) ≡ JA(Y ) JAµ,AνKA ,

(6.12)

and similarly for generalised metric, using its explicit expression such as (6.11). We thus
find that the E8(8) generalised Lie derivative reduces to the gauge-covariant derivative of
the N < 16 gauged supergravity, specified by the embedding tensor.

7 Classifying N < 16 gauged supergravities with higher-dimensional
origin

We can now use the fact that we must have a structure group GS ⊂ E8(8) that sta-
bilises N < 16 spinors, transforming in the 16 of SO(16), to algebraically classify which
3-dimensional gauged supergravities have a higher-dimensional origin. There will, however,
be further constraints, in order to have a consistent truncation which we will not address
here. In particular, in order to ensure the consistency of the truncation, the intrinsic torsion
must only contain singlets under GS and these must be constant. This will impose differ-
ential conditions and restrict the allowed backgrounds, and the possible three-dimensional
gaugings that can arise. For example, as discussed in 4.2, the largest possible compact
gauging is SO(9), and in 4.3 we cannot have consistent truncations on products of spheres
where the full isometry group is gauged, even though these are clearly allowed from the
perspective of the generalised structure group.

For the purposes of this paper, we will limit ourselves to finding the possible matter
contents that can arise from consistent truncations of type II/11-dimensional supergravity,
and not discuss the gaugings. We will list the generalised structure groups GS required for
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the truncations and the scalar manifolds that arise in separate sections, divided according
to the various amounts of supersymmetry preserved by the truncation. Moreover, we will
only consider Lie structure groups and there may be some additional possibilities coming
from discrete GS .

Finally, we will also limit ourselves to the case where we have exactly N stabilised
spinors leading to a gauged supergravity with N supersymmetries. We could, in principle,
also consider truncations with more than N spinors stabilised by the structure group.
However, in this case, the N gauged supergravity necessarily arises as a subtruncation of
the larger supersymmetric gauged supergravity. The reason for this is identical to the one
in higher dimensions and we refer the interested reader to [27].

Our results for which N > 4 gauged supergravities can arise from consistent trunca-
tions are summarised in table 1. There we list the relevant scalar manifolds, the structure
groups GS and the maximum number of matter multiplets pmax that can be kept in a con-
sistent truncation. Note that throughout this section we will denote the scalar manifold by
Mscalar, which should not be confused with the generalised metric used elsewhere in this
paper.

We also study which N = 4 gauged supergravities can arise from consistent trunca-
tions. N = 4 supersymmetry in three dimensions imposes that the scalar manifold must be
a quaternionic-Kähler space, or a product of two quaternionic-Kähler spaces, which need
not be symmetric spaces. However, by the analogous argument as in five dimensions [27],
a higher-dimensional origin via a consistent truncation imposes that these scalar manifolds
must be symmetric spaces. We list in table 2 all the N = 4 gauged supergravities with
scalar manifolds that are a single quaternionic-Kähler manifold that can arise from consis-
tent truncations. In table 3, we also list some of the possible N = 4 gauged supergravities
whose scalar manifolds are the product of two quaternionic-Kähler manifolds that can arise
from a consistent truncation. However, we will not be exhaustive in this last classification.

In the following subsections, we explain in detail the cases listed in tables 1 – 3 arise.

7.1 N = 12, 10, 9

The structure groups for N = 12, 10, 9 are easily identified. These require GS ⊂ SO(16)
such that there are exactly N singlets in the 16. Moreover, the commutants of GS inside
E8(8) and SO(16), which we denote as ComGS (E8(8)) and ComGS (SO(16)), respectively,
must give rise to the numerator and denominator of the scalar manifold of the supergravity,
as for example summarised in [31]. These considerations lead to the structure groups listed
in the first three rows of table 1.

The GS in table 1 arise from the following decomposition of SO(16).

SO(16)→ SO(12)× SU(2)× SU(2) ,
SO(16)→ SO(10)× SU(4)→ SO(10)× SU(3)×U(1) ,
SO(16)→ SO(9)× SO(7)→ SO(9)×G2 ,

(7.1)

where in the N = 12 case, the GS = SU(2) corresponds to one of the two SU(2) factors in
the first line of (7.1)
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N Mscalar GS Restrictions

12 E7(−5)
SO(12)×SU(2) SU(2)

10 E6(−14)
SO(10)×U(1) SU(3)

9 F4(−20)
SO(9) G2

8 SO(8,p)
SO(8)×SO(p) GS(p) = SO(8− p) p ≤ 8

6 SU(4,p)
S[U(4)×U(p)]

GS(0) = SO(10)

GS(1) = SU(5)

GS(1 < p ≤ 4) = SU(5− p)×U(1)

p ≤ 5

5 USp(4,2p)
USp(4)×USp(2p)

GS(0) = SO(11)

GS(1) = SU(2)×G2

GS(2) = SU(2)

p ≤ 2

Table 1. Summary of the possible truncations to N > 4 gauged supergravities. GS denotes the
structure group, with the notation GS(p) for p matter multiplets,Mscalar the scalar manifold and
the restrictions on the number of matter multiplets that can be kept in a truncation, where relevant.

7.2 N = 8

The scalar manifold in this case is

Mp = SO(8, p)
SO(8)× SO(p) , (7.2)

where p denotes the number of matter multiplets coupled to the theory. The associated
structure groups are

GS(p) = SO(8− p) . (7.3)

Note that for p > 6, the structure group would have to be discrete, or the identity. The
structure groups (7.3) are embedded in SO(16) as

SO(16)→ SO(8)× SO(8)→ SO(8)× SO(p)× SO(8− p) , (7.4)

such that the 16 decomposes as

16→ (8v,1)⊕ (1,8s)→ (8v,1,1)⊕ (1,1,8) . (7.5)
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Mscalar GS Embedding Restrictions

E6(6)
SU(6)×SU(2) U(1) (Br.1)

F4(4)
USp(6)×SU(2) SU(2) (Br.1)

G2(2)
SO(4) USp(6) (Br.1)

SO(4,p)
SO(4)×SO(p) SO(8− p)× SU(2) (Br.2) p ≤ 6

SU(2,p)
S[U(2)×U(p)]

GS(1) = SU(6)

GS(1 < p ≤ 5) = SU(6− p)×U(1)
(Br.3) p ≤ 5

USp(2,2p)
SU(2)×USp(2p)

GS(1) = SO(7)× SU(2)

GS(2) = SU(2)× SU(2)
(Br.4) p ≤ 2

Table 2. Summary of the possible truncations to N = 4 gauged supergravities, leading to a single
quaternionic-Kähler manifold. GS denotes the structure group, with the notation GS(p) where
there is a family of scalar manifolds, labelled by p andMscalar is the scalar manifold. We also list
the embeddings of GS ⊂ SO(12) and give restrictions on the integer p, where relevant.

Mscalar GS Embedding Restrictions

G2(2)
SO(4) ×

SU(2,1)
S(U(2)×U(1)) SU(3) (Br.5)

G2(2)
SO(4) ×

G2(2)
SO(4) SO(3) (Br.6)

SO(4,p)
SO(4)×SO(p) ×

SO(4,q)
SO(4)×SO(q) SO(4− p)× SO(4− q) (Br.7) p, q ≤ 2

SU(2,1)
S(U(2)×U(1)) ×

SO(4,p)
SO(4)×SO(p)

GS(p ≤ 4) = SO(6− p)×U(1)

GS(p = 5, 6) = U(1)
(Br.8) p ≤ 6

SU(2,1)
S(U(2)×U(1)) ×

SU(2,p)
S(U(2)×U(p))

GS(1) = SU(3)× SU(3)

GS(p = 2, 3) = S[U(2)×U(4− p)]
(Br.9) p ≤ 3

Table 3. Summary of a subset of possible truncations to N = 4 gauged supergravities, leading
to a product of quaternionic-Kähler manifold. GS denotes the structure group, with the notation
GS(p) where there is a family of scalar manifolds, labelled by p andMscalar is the scalar manifold.
We also list the embedding of GS in SO(12) and the restrictions on the matter that can be kept in
a truncation, where relevant.
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Note that here we crucially rely on the SO(8) triality, to replace the 8v with 8s in the
decomposition of the 16 under SO(8) × SO(8). While the 8v contains further singlets
under SO(8 − p) ⊂ SO(8), the 8s does not. This ensures that the 16 contains precisely 8
singlets under GS = SO(8− p).

The largest subgroup SO(8, p) of E8(8) is SO(8, 8), corresponding to p = 8. Therefore,
we can keep at most p = 8 matter multiplets in the 3-dimensional N = 8 supergravity via
a consistent truncation.

7.3 N = 6

The scalar manifolds and structure groups for 3-dimensional N = 6 gauged supergravity
with p matter multiplets are

Mp = SU(4, p)
S(U(4)×U(p)) ,

GS(0) = SO(10) ,
GS(1) = SU(5) ,

GS(p > 1) = SU(5− p)×U(1) .

(7.6)

Note that there is no Lie structure groups that gives p = 5 and that SU(4, p) * E8(8) for
p > 5. Therefore, we can keep at most p = 5 matter mutliplets in a consistent truncation
to N = 6 supergravity. The GS is embedded in SO(16) as

SO(16) p=0−−→SU(4)×SO(10) p=1−−→SU(4)×SU(5)×U(1) 1<p≤4−−−−→SU(4)×S[U(5−p)×U(p)]×U(1).
(7.7)

7.4 N = 5

The relevant scalar manifolds are

Mp = USp(4, 2p)
USp(4)×USp(2p) . (7.8)

Firstly, notice that this scalar manifold can only arise for p ≤ 2 since E8(8) does not contain
a USp(4, 6) subgroup. For p = 0, 1 we have GS(0) = SO(11) and GS(1) = SU(2) × G2
embedded as

SO(16) p=0−−→ USp(4)× SO(11) ,

SO(11) p=1−−→ SU(2)× SU(2)× SO(7)→ SU(2)× SU(2)×G2 .
(7.9)

To get p = 2 multiplets, we break

SU(2)×G2 → SU(2)× SU(2)× SU(2)→ SU(2)× SU(2)D , (7.10)

and take GS(2) = SU(2)D where SU(2)D is the diagonal subgroup of the first and third
SU(2)’s.
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7.5 N = 4

Whereas the scalar manifolds for N > 4 came in single families, corresponding to p mat-
ter multiplets, the N = 4 supergravities are richer, with the scalar manifolds being any
product of quaternionic-Kähler manifolds. This also means that the classification is more
involved. We will first consider scalar manifolds consisting of only one quaternionic-Kähler
manifold, and fully classify all possibilities. We will then study some examples of products
of quaternionic-Kähler manifolds.

We begin with truncations leading to single quaternionic-Kähler manifolds. Since we
want to have N = 4 supersymmetry, all the structure groups arise from the decomposition

SO(16)→ SO(4)× SO(12) ,
16→ (2,2,1)⊕ (1,1,12) ,

120→ (3,1,1)⊕ (1,3,1)⊕ (1,1,66)⊕ (2,2,12) ,
128′ → (2,1,32′)⊕ (1,2,32) ,

(7.11)

with GS ⊂ SO(12). In particular, the truncation with no matter multiplets corresponds to
structure group GS(0) = SO(12). Notice that the number of scalar fields in a truncation
can be deduced by counting the singlets of GS in the 128′, more specifically

#scalars = 2
(
{#singlets ∈ 32}+ {#singlets ∈ 32′}

)
. (7.12)

We find the relevant structure groups by looking for subgroups of SO(12) such that the right
hand side of (7.12) matches the dimension of the various quaternionic-Kähler manifolds we
are interested in. The GS structure groups leading to single quaternionic-Kähler manifolds
now come from the following decompositions.

Br.1: The U(1) structure group commuting with E6(6) ⊂ E8(8) (see the first row of table 2)
is obtained by breaking

SO(12)→ SU(2)×USp(6)→ SU(2)× SU(3)×U(1) . (7.13)

From this we can also identify the following two structures in table 2, in particular
choosing the SU(2) that commutes with USp(6) gives us the F4(4) ⊂ E8(8) commutant,
while USp(6) itself commutes with G2(2).

Br.2: The structure group for the first family are obtained by breaking

SO(12)→ SU(2)× SU(2)× SO(8)→ SU(2)× SU(2)× SO(8− p) , (7.14)

in analogy to the N = 8 case we must use the triality to exchange 8v ↔ 8s before
going to SO(8 − p), this way we make sure to have exactly four stabilised spinors
and thus get N = 4 supergravity. The vector representation of SO(12) branches
according to

12→ (2,2,1)⊕ (1,1,8) . (7.15)
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Br.3: For the second family the relevant breaking is
SO(12)→ SU(6)×U(1) (p = 1) ,
SU(6)→ SU(p)× SU(6− p)×U(1) (1 < p ≤ 6) .

(7.16)

Br.4: To understand the final family we first note that the p = 1 quaternionic-Kähler is the
same as SO(4,1)

SO(4) and therefore the structures also agree. The remaining case arises from

SO(12)→ SU(2)×USp(6)→ SU(2)× SU(2)×USp(4). (7.17)

We now turn to the case of two quaternionic-Kähler manifolds.

Br.5: This arises by breaking

SO(12)→ SU(2)×USp(6)→ SU(2)× SU(3)×U(1) , (7.18)

so we break to an SU(3) subgroup of the USp(6) structure that commutes with
G2(2) × SU(2) ⊂ E8(8).

Br.6: The SO(3) structure that commutes with G2(2) ×G2(2) comes from

USp(6)→ SO(3)× SU(2) . (7.19)

Br.7: The third structure comes from

SO(12)→ SO(4)× SO(8)→ SO(4)× SO(4)× SO(4) , (7.20)

we then use the identifications SO(4) ' SU(2)× SU(2), SO(3) ' SU(2)

so(12)→ su(2)⊕ su(2)⊕ su(2)⊕ su(2)⊕ su(2)⊕ su(2) . (7.21)

The SO(3) × SO(3) structure associated to p, q = 1 comes from identifying the first
SO(3) with the su(2) diagonal of the second and fourth factors in (7.21) and the
second with the diagonal of the fifth and sixth.

Br.8: We break

SO(12)→ SU(6)×U(1)→ SU(4)× SU(2)×U(1)×U(1) , (7.22)

and then for p = 1 we set GS = SO(5) × U(1) where we use SO(5) ' USp(4) and
take USp(4) ⊂ SU(4), the appropriate U(1) factor is the one arising from SU(6) →
SU(4)× SU(2)×U(1). The structures for 1 < p < 6 are obtained by breaking SO(5)
to the relevant subgroups while for p = 6 we only keep the U(1).

Br.9: For p = 1 we simply break the SU(6) structure associated to the single quaternionic
Kähler SU(2,1)

S(U(2)×U(1)) as

SU(6)→ SU(3)× SU(3)×U(1) . (7.23)

Similarly, for p = 2 consider

SU(6)→ SU(2)× SU(2)× SU(2)×U(1) , (7.24)

and put GS = SU(2) × SU(2) × U(1), note that the choice of SU(2) facors depends
on how the U(1) charges are assigned. Finally the p = 3 case can be obtained from

SU(6)→ SU(3)× SU(2)×U(1) . (7.25)
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8 S5 × Σ truncations of IIB

Using the above formalism, we can construct consistent truncations of IIB supergravity
on S5×Σ2, with Σ2 a constant-curvature Riemann surface, preserving various amounts of
supersymmetry. Because IIB supergravity on S5 is generalised parallelisable (i.e. has GS =
1), the S5×Σ2 compactification has a U(1) structure from the Riemann surface. By identi-
fying this U(1)Σ on the Riemann surface with a U(1) ⊂ SO(6) isometry of S5, we can embed
the GS = U(1) structure group in different ways into SO(16) ⊂ E8(8) and hence have differ-
ent numbers of invariant spinors. This is the generalised geometry equivalent of performing
a “topological twist” and results in three-dimensional gauged supergravities with different
amounts of supersymmetry, see for example [9]. A particularly interesting example is where
Σ2 is a hyperbolic space and we can embed U(1) in such a way to obtain N = 4 gauged su-
pergravity with an N = (2, 2) AdS3 vacuum, corresponding to the IIB AdS3 vacuum of [37].

8.1 Matter content

Here we will focus on this N = 4 case and describe the scalar manifold and gauging of the
3-dimensional gauged supergravity that arises. However, it is a straightforward exercise to
compute the truncation obtained by identifying the U(1)Σ with U(1) ⊂ SO(6) differently,
for example to find the truncations around the vacua of [38]. The N = 4 gauged supergrav-
ity is obtained by identifying U(1)Σ with U(1)D ⊂ SO(6) whose commutant inside SO(6) is

ComU(1)D(SO(6)) = SU(2)×U(1)×U(1) . (8.1)

This U(1) can be identified with the following branching

SU(4)→ SU(2)× SU(2)×U(1)→ SU(2)×U(1)D ×U(1) , (8.2)

where the U(1) we are interested in is U(1)D ⊂ SU(2).3 Under this branching, the 4 of
SU(4) decomposes as

4→ 20
1 ⊕ 11

−1 ⊕ 1−1
−1 , (8.3)

with the superscript representing the U(1)D charge and the subscript the charge under
the other U(1).

To obtain an N = 4 supergravity, we take a diagonal of the U(1)D ⊂ SO(6) with U(1)Σ
of the Riemann surface. To make this explicit, consider the decomposition

SO(16)→ USp(8)× SU(2)Σ → SU(4)×U(1)× SU(2)Σ

→ SU(2)×U(1)D ×U(1)×U(1)× SU(2)Σ

→ SU(2)×U(1)D ×U(1)×U(1)×U(1)Σ ,

(8.4)

such that the 16 spinors of SO(16) branch as

16→ (8,2)→ (4,2)1 ⊕ (4,2)−1

→ (2,2)0
1,1 ⊕ (1,2)1

1,−1 ⊕ (1,2)−1
1,−1 ⊕ (2,2)0

−1,−1 ⊕ (1,2)−1
−1,−1 ⊕ (1,2)1

−1,1

→ 20,1
1,1 ⊕ 20,−1

1,1 ⊕ 11,1
1,−1 ⊕ 11,−1

1,−1 ⊕ 1−1,1
1,−1 ⊕ 1−1,−1

1,−1

⊕ 20,1
−1,−1 ⊕ 20,−1

−1,−1 ⊕ 1−1,1
−1,−1 ⊕ 1−1,−1

−1,−1 ⊕ 11,1
−1,1 ⊕ 11,−1

−1,1 ,

(8.5)

3The subscript D on U(1)D refers to the fact that we can equivalently describe this U(1)D as the diagonal
U(1) of the Cartan torus of SU(4).
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where the first superscript is the U(1)D charge, qD, the second superscript is the charge
qΣ under U(1)Σ, i.e. the Riemann surface holonomy group, and the subscripts refer to the
charges under the other two U(1) subgroups. We now see that by taking U(1)S as the
diagonal of U(1)D and U(1)Σ, with the charges

qS = qD + qΣ , (8.6)

we have exactly 4 invariant spinors under U(1)S , so that the truncation will yield an N = 4
supergravity.

To compute the scalar manifold of the 3-dimensional supergravity, we need to deter-
mine the commutant of this U(1)S inside E8(8) and SO(16). To do this, we consider the
branching

E8(8) → E6(6) × SL(3) , (8.7)

and further break

E6(6) → SL(6)× SL(2) ,
SL(3)→ SL(2)Σ × R+ .

(8.8)

The U(1)D is embedded as U(1)D ⊂ SO(6) ⊂ SL(6), while U(1)Σ ⊂ SL(2)Σ. Us-
ing (8.2), (8.3) and (8.6), we find the following commutant of U(1)D ⊂ SL(6)

ComU(1)D(SL(6)) = U(1)D × SO(3, 1)× SO(2, 1)× R+ , (8.9)

and hence
ComU(1)D(E6(6)) = U(1)D × SO(5, 3)× R+ , (8.10)

which comes from the branching

E6(6) → SO(5, 5)× R+ → SO(5, 3)×U(1)D × R+ . (8.11)

By identifying U(1)S as the diagonal of U(1)D with U(1)Σ, we now find the commutant in
E8(8)

ComU(1)S (E8(8)) = SU(2, 1)× SO(6, 4)×U(1)S . (8.12)

Similarly, the commutant inside SO(16) is given by

ComU(1)S (SO(16)) = SU(2)×U(1)× SO(6)× SO(4)×U(1)S . (8.13)

Note that this U(1)S also precisely corresponds to the breaking (Br.8) with p = 6.
Hence we find that our consistent truncation has 28 scalar fields, parameterising the

coset space

Mscalar =
ComU(1)S (E8(8))

ComU(1)S (SO(16)) = SU(2, 1)
S(U(2)×U(1)) ×

SO(4, 6)
SO(4)× SO(6) . (8.14)

The 53 generators of the numerator are associated to globally well-defined generalised
vector fields in the 248 of E8(8). To identify these, let us decompose E8(8) → E6(6)×SL(3)

248→ (78,1)⊕ (1,8)⊕ (27,3)⊕ (27,3) . (8.15)
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The 53 generators of SU(2, 1) × SO(4, 6) now transform in the following representations
under E6(6) × SL(3)→ SO(5, 3)×U(1)D × SL(2)Σ such that they form singlets of U(1)S :(

27,3
)
−→ (8v, 1)0 ⊕ (1,2)2 ⊕ (1,2)−2 ⊕ (1,1)0 ,(

27,3
)
−→ (8v, 1)0 ⊕ (1,2)2 ⊕ (1,2)−2 ⊕ (1,1)0 ,

(1,8) −→ (1,3)0 ⊕ (1,1)0 ,

(78,1) −→ (28,1)0 ⊕ 2 · (1,1)0 .

(8.16)

Note that from each of the (1,2)±2 ⊂ (27,3), (1,2)±2 ⊂ (27,3) and (1,3)0 ⊂ (1,8)
there is exactly one singlet of U(1)S . Using the E6(6) generalised parallelisation of type IIB
on S5 [3, 4], we can explicitly construct these 53 generators and compute the truncation
Ansatz, but we will not do so here.

8.2 Gauging

We can compute the gauging by utilising that IIB supergravity admits a consistent trunca-
tion on S5 to an SO(6) ⊂ E6(6) gauged supergravity. There are three effects that we need
to take into account to obtain the gauging in three dimensions.

1. The SO(6) gauging gets enhanced due to the dimensional reduction from five to three
dimensions. In the E8(8) framework, this arises because the E6(6) embedding tensor
can couple the 248 generators and vector fields of E8(8) in new ways, beyond the
couplings that would arise in the E6(6) theory in five dimensions.

2. The gauging in three dimensions obtained this way gets broken because we only want
to couple to the N = 4 sector, i.e. to the U(1)S singlets that we keep in the consistent
truncation.

3. A non-trivial fibration of S5 over the Riemann surface Σ induces additional 3-
dimensional embedding tensor components, which we need to compute.

Let us now determine each of these effects in turn.
We begin by studying how the SO(6) gauging of the five-dimensional theory enhances

upon dimensional reduction to three dimensions. The SO(6) gauging in five dimensions
is due to an embedding tensor component in the 351 of E6(6). To understand the
three-dimensional gauging that is induced, we decompose E8(8) → E6(6) × SL(3), upon
which we have

248→
(
27,3

)
⊕
(
27,3

)
⊕ (78,1)⊕ (1,8) ,

3875→
(
351,3

)
⊕
(
351,3

)
⊕
(
27,6

)
⊕
(
27,6

)
⊕
(
27,3

)
⊕
(
27,3

)
⊕ (78,8)⊕ (650,1)⊕ (1,8)⊕ (1,1) .

(8.17)

The SO(6) gauging corresponds to a particular element of the
(
351,3

)
. Let us write

M,N = 1, . . . , 248 for the fundamental of E8(8), A,B = 1, . . . , 27 for the fundamental
representation of E6(6) and i, j = (α, 3) for the fundamental of SL(3) with α, β = 1, 2.
Then the SO(6) gauging corresponds to the embedding tensor components(

XSO(6)
)
AB

C,i = ΘAB
C δi3 , (8.18)

with ΘAB
C the E6(6) embedding tensor corresponding to the SO(6) gauging.
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This SO(6) embedding tensor now couples in the E8(8) theory as

Aµ
M XMN t

N ∼ AµAiXAB
C,i tBC +Aµ

B
C XAB

C tAi +AµC
iXAB

C,jtD
k dABD εijk

= Aµ
A

3 ΘAB
C tBC +Aµ

B
C ΘAB

C tA3 +AµA
α ΘAB tB

β εαβ ,
(8.19)

where we have used the E6(6) invariant to define ΘAB = ΘCD
A dBCD. In the first term

of (8.19), we recognise the coupling between the 27 vector fields of five-dimensional gauged
supergravity and the E6(6) generators that we already had in the E6(6) theory. Therefore,
the first term reproduces the SO(6) gauging. On the other hand, the second and third
terms are new, since they involve vector fields and generators outside E6(6) that do not
exist in the five-dimensional gauged supergravity. One can easily check that these extra
terms enhance the SO(6) gauging by sets of commuting generators tranforming in the 6
of SO(6). This would be the gauging that arises by reducing the five-dimensional SO(6)
gauged supergravity on T 2.

However, the gauging (8.19) is broken by going to the N = 4 gauged supergravity with
scalar coset spaceMscalar = SO(6,4)

SO(6)×SO(4) ×
SU(2,1)

S(U(2)×U(1)) . This is because the N = 4 gauging
arises from the coupling to vector fields and generators that are singlets of U(1)S . As a
result, this breaks the semi-simple SO(6) part of the gauging to its commutant with U(1)D,
which is given by ComU(1)D(SO(6)) = SO(3)×U(1)×U(1)D. Moreover, of the commuting
generators in the second and third term of (8.19), only those which are singlets of U(1)S
contribute.

The singlets of U(1)S form representations SO(5, 3) × R+ = ComU(1)D(E6(6)). Let us
therefore decompose E6(6) → SO(5, 5)× R+ → SO(5, 3)× R+ ×U(1)D, such that

27→ 102 ⊕ 16−1 ⊕ 1−4 → 8v
0
2 ⊕ 12

2 ⊕ 1−2
2 ⊕ 8s

1
−1 ⊕ 8c

−1
−1 ⊕ 10

−4 , (8.20)

where the superscript refers to the U(1)D charge, while the subscript refers to the R+

charge. Accordingly, we write for a vector in the 27 of E6(6)

V A =
(
V I , V a, V I , V İ , V z

)
, (8.21)

with I = 1, . . . , 8 labelling the 8v, I = 1, . . . , 8 the 8s and İ = 1, . . . , 8 the 8c of SO(5, 3),
a = 1, 2 the U(1)D doublet that comes from the 10 of SO(5, 5) and z the SO(5, 3)×U(1)D
singlet. By looking at U(1)S invariants and knowing that the SO(6) gauging is compact
and therefore does not couple to the R+ generator tzz, the gauging descending from (8.19)
in the N = 4 theory must be of the form

Aµ
M XMN t

N ∼ AµI3 ΘIJK t
JK +Aµ

I
3 ΘI ab t

ab +Aµ
z

3 Θz IJ t
IJ +Aµ

z
3 Θz ab t

ab

+Aµ
JK ΘIJK t

I
3 +Aµ

ab ΘI ab t
I

3 +Aµ
IJ θz IJ t

z
3 +Aµ

ab Θz ab t
z

3

+Aµa
α Θab tb

β εαβ .

(8.22)

We can now evaluate (8.22) for the SO(6) gauging. To do this, let us decompose
SO(5, 3) → SO(3, 1) × SL(2) × SL(2), so that we can identify the common subgroup of
SO(5, 3)×U(1)D×R+ with SL(6)×SL(2), which is SO(3, 1)×U(1)D×SL(2)×SL(2)×R+.
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Table 4 summarises how the 27 of E6(6) decomposes under these three subgroups, allowing
us to match representations between SO(5, 3)×U(1)D × R+ and SL(6)× SL(2).

Immediately, we can see that the final term in (8.22) vanishes. This is because it only
couples to vector fields and generators in the 1±2

2 of SO(5, 3)×U(1)D×R+. However, from
table 4, we see that these representations are only part of the (15,1) of SL(6) × SL(2).
However, for the SO(6) gauging, ΘAB vanishes in the (15,1)⊗antisym (15,1) since there is
no appropriate SO(6) invariants. Therefore, the final term of (8.22) gives no contribution
for the case of SO(6).

Similarly, the first line gauges whatever SO(6) is broken to by U(1)D, thus the commu-
tant ComU(1)D(SO(6)), thus allowing us to also determine the second line of (8.22). Let us
therefore further break SO(5, 3) → SO(5, 3) ∩ (SO(6)× SL(2)) = SO(3) × SO(2) × SL(2).
Then we have the relevant decomposition

8v → (3,1)0 ⊕ (1,1)0 ⊕ (1,2)±1 . (8.23)

Let us denote by u, v = 1, . . . , 3 the (3,1)0, by 0 the (1,1)0. Similarly, let us denote by y
the SO(2) generator within the 28 of SO(5, 3). Then, (8.22) reduces to

Aµ
MXMN t

N ∼Aµu3εuvw t
vw+Aµ0

3εabt
ab+Aµz3t

y+Aµvwεuvw tu3+Aµabεabt03+Aµy tz3

=Aµ
u

3εuvw t
vw+Aµ0

3t
0+Aµz3t

y+Aµvwεuvw tu3+Aµ0t03+Aµy tz3 , (8.24)

where t0 = 1
2εabt

ab and Aµ0 = 1
2εabAµ

ab.
Finally, we need to take into account the fibration of S5 over the Riemann surface Σ,

which is required to have a supersymmetric AdS vacuum in the three-dimensional theory.
The effect of the fibration in the generalised geometry is that the E8(8) generalised tangent
bundle is not given by a direct sum of E6(6) generalised tangent bundles tensored with
appropriate factors of TΣ, etc, see for example [9]. Rather, the E8(8) generalised tangent
bundle is twisted, i.e. it is given by an extension of the E6(6) bundles by those on Σ. To
be more precise, the E8(8) generalised tangent bundle is twisted by the following element:

eΥ , Υ = v ⊗ E0 , (8.25)

where v is the local connection 1-form on Σ and E0 is the generalised vector field in the
27 of E6(6) corresponding to the U(1)D ⊂ SO(6) isometry that is identified with U(1)Σ.

As usual, the twist by Υ yields a new component of the E8(8) embedding tensor, in this
case proportional to the Riemann surface curvature κ = dv, with d the exterior derivative
on Σ. Instead of computing the contribution of Υ to the embedding tensor directly, we
can use group theory to fully determine it. We begin by nothing that the generalised
vector field generating the U(1)D ⊂ SO(6) is the element of the 27 of E6(6) that transforms
in 8v under SO(5, 3) ⊂ E6(6). Explicitly, E0 is the (1,1)0 component of the 8v after
breaking SO(5, 3) ∩ (SO(6)× SL(2)) = SO(3) × SO(2) × SL(2), see (8.23). Inside E8(8),
E0 ∈ (27,2)2 ⊂ (27,3) with respect to E6(6) × SL(2)Σ × R+ ⊂ E6(6) × SL(3).

Moreover, since v is a 1-form on Σ, it should be thought of as transforming in the 2−3 ⊂
8 of SL(2)Σ×R+ ⊂ SL(3) = ComE6(6)(E8(8)). Because the Riemann surface derivatives are
valued in (1,2)−3 ⊂ (1,8) with respect to E6(6)×SL(2)Σ×R+ ⊂ E6(6)×SL(3), its Riemann
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SO(3, 1)× SL(2)× SL(2)×U(1)D × R+ SO(5, 3)×U(1)D × R+ SL(6)× SL(2)

(1,2,2)0
2 8v

0
2 (6,2)

(2⊗ 2,1,1)0
2 8v

0
2 (15,1)

(1,1,1)0
−4 10

−4 (15,1)

(1,1,1)2
2 12

2 (15,1)

(1,1,1)−2
2 1−2

2 (15,1)

(2,1,2)−1
−1 8c

−1
−1 (6,2)

(2,2,1)−1
−1 8c

−1
−1 (15,1)

(2,1,2)1
−1 8s

1
−1 (6,2)

(2,2,1)1
−1 8s

1
−1 (15,1)

Table 4. A dictionary relating representations of SL(6) × SL(2) ⊂ E6(6) and SO(5, 3) × U(1)D ×
R+ ⊂ E6(6) via their common subgroup SO(3, 1) × SL(2) × SL(2) × U(1)D × R+. We focus on
the representations appearing in the 27 of E6(6), which under SL(6)× SL(2) decomposes as 27→
(15,1) ⊕ (6,2), while under SO(5, 3) × U(1)D × R+ decomposes as 27 → 8v

0
2 ⊕ 1±2

2 ⊕ 8c
−1
−1 ⊕

8s
1
−1⊕10

−4. Under SO(3, 1)×SL(2)×SL(2)×U(1)D×R+, these representations further decompose
into the irreducible representations listed in the first column. In the second and third columns,
we list the origin of the SO(3, 1) × SL(2) × SL(2) × U(1)D × R+ representations with respect to
SO(5, 3) × U(1)D × R+ and SL(6) × SL(2). In the first and second columns, the subscripts refer
to the R+ charge, while the superscripts refer to the U(1)D charge. We denote by 2 and 2 the
fundamental and complex conjugate representations of SO(3, 1).

surface exterior derivative κ will be valued in (1,1)−6 under E6(6)×SL(2)Σ×R+ ⊂ E6(6)×
SL(3). On the other hand, as discussed above, E0 transforms as the (27,1)2 ⊂ (27,3) of
E6(6)× SL(2)Σ×R+ ⊂ E6(6)× SL(3). Therefore the embedding tensor component sourced
by ∂Υ ∼ (dv)⊗E0 must transform in the representation (27,1)−4 of E6(6)×SL(2)Σ×R+.
Comparing with (8.17), upon decomposing E8(8) → E6(6) × SL(3)→ E6(6) × SL(2)Σ ×R+,
we see there is only one such component in the 3875 of E8(8): the (27,6) of E6(6)×SL(3).
Hence, we have that the embedding tensor component sourced by the non-trivial fibration
of S5 over Σ corresponds to

Xnew ∈ (27,6) ⊂ 3875 . (8.26)

Viewing this as the symmetric tensor product of two 248 representations of E8(8), we see
that it must come from

(27,3)⊗sym (27,3) ⊃ (27,6) . (8.27)

Therefore, this embedding tensor component couples to vectors and generators of the N = 4
supergravity as follows

Aµ
M (Xnew)MN tN = θ′I

(
Aµ

I
3 t
z

3 +Aµ
z

3 t
I

3
)
, (8.28)
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where
θ′I = g κ δ0

I . (8.29)

Here the index 0 again denotes the (1,1)0 direction in the 8v of SO(5, 3) under the branch-
ing (8.23) to SO(3)×SO(2)×SL(2), corresponding to the U(1)D ⊂ SO(6) isometry. More-
over, g is a numerical factor that can be determined either by computing explicitly the
embedding tensor by constructing the generalised U(1) structure (8.16) and evaluating its
generalised Lie derivative, or by studying the 3-dimensional supergravity and ensuring that
it has an N = (2, 2) AdS vacuum.

We can now put everything together to present the gauging of the 3-dimensional N = 4
supergravity obtained. We have

Aµ
M XMN t

N = Aµ
u

3 εuvw t
vw +Aµ

0
3 t

0 +Aµ
z

3
(
ty + g κ t03

)
+Aµ

vw εuvw t
u

3 +Aµ
0 t03 +

(
Aµ

y + g κAµ
0

3
)
tz3 .

(8.30)

From the E8(8) commutation relations, we can easily determine the gauging of the N = 4
gauged supergravity. We find that the gauging is ISO(3) × U(1)4 gauging, where the tuv

generate the SO(3), the tu3 generate the three translations in the adjoint of SO(3), and the
t[ab], t03, ty+g κt03 and tz3 generate the U(1)4. We can also easily compute the embedding
of the gauging within the isometries of the scalar coset space SO(6, 4) × SU(2, 1). To do
so, let us first identify the SO(6, 4) and SU(2, 1) generators in terms of the SO(5, 3) basis
used in (8.30). We have

so(6, 4) =
{
tIJ , tI3, tI

3,
1
3 t
z
z + 2

3 t
3

3

}
, (8.31)

and upon decomposing SU(2, 1)→ SU(2)×U(1), we have

su(2, 1)→ su(2)⊕ u(1)⊕ 23 ⊕ 2−3 ,

su(2) =
{1

3 t
z
z −

1
3 t

3
3, t

z
3, tz

3
}
,

u(1) =
{
−3

4 t
0 + 3

4 t
y
}
,

23 ⊕ 2−3 = {taα, taα} .

(8.32)

Thus, we see that the gauging embeds as SO(3) ⊂ SO(5) ⊂ SO(6) ⊂ SO(6, 4) and the three
translations are tu3 ⊂ 8v of SO(5, 3) ⊂ SO(6, 4). Similarly, the U(1)4 can be identified with
appropriate U(1)’s in SO(6, 4) and SU(2, 1) using (8.31) and (8.32).4

4Recall that I, J = 1, . . . , 8 denote the 8v of SO(5, 3), so that tIJ are the 28 of SO(5, 3) which come from
the (78, 1) of E6(6)×SL(3) ⊂ E8(8), tI3 are the 8v of SO(5, 3) coming from the (27, 3) of E6(6)×SL(3) ⊂ E8(8)

and tI
3 the 8v of SO(5, 3) coming from the (27, 3) of E6(6) × SL(3). On the other hand, tzz is the R+

generator that commutes with SO(5, 3)×U(1)D ⊂ E6(6) and comes from the (78, 1) of E6(6)×SL(3), while
t3

3 is the R+
Σ generator that comes from the (1, 8) of E6(6) × SL(3) upon breaking SL(3)→ SL(2)Σ × R+

Σ .
Finally, tz3, tz

3, taα and ta
α correspond to the 10 and 1±2 of SO(5, 3)×U(1)D coming from the (27, 3) and

(27, 3) of E6(6) × SL(3), respectively. Finally, t0 and ty are the U(1) generators within ComU(1)D
(SO(6)).
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While we determined the gauging completely by group-theoretic means, it is also
straightforward to explicitly construct the generalised vector fields of E8(8) that are sta-
bilised by U(1)S using (8.16) and computing their generalised Lie derivative to determine
the embedding tensor with precise coefficients.

9 Conclusions

In this paper, we showed how to construct consistent truncations of 10-/11-dimensional su-
pergravity to 3-dimensional gauged supergravities with various amounts of supersymmetry.
Key to this was the use of E8(8) ExFT, and the construction of constrained compensator
fields from the G-structure underlying the truncation so that the generalised Lie derivative
can be defined. The G-structures then have to close into an algebra under the gener-
alised Lie derivative, providing the equivalent of the “constant singlet intrinsic torsion”
condition used in higher dimensions. In the maximal case, the resulting embedding tensor
transforms in exactly the representations allowed by the linear constraint of 3-d gauged
supergravity. We obtain different amounts of supersymmetry, depending on how many
spinors are stabilised by the G-structure of the truncations.

Using the E8(8) setup, we proved various general results about which 3-dimensional
gauged supergravities can be uplifted by consistent truncations. In particular, the largest
possible compact subgroup is SO(9), although this cannot be realised due to the linear con-
straint of 3-dimensional gauged supergravity. This rules out many gauged supergravities,
with large gauge groups, including E8(8), SO(8)× SO(8), etc, constructed in [29]. We also
showed that we cannot define a consistent truncation on the 7- or 8-dimensional product
of spheres, in which all the isometries are gauged. Moreover, we also analysed which less
supersymmetric 3-dimensional supergravities can arise from consistent truncations, and
derived upper bounds on the number of matter multiplets.

Finally, we also constructed several new classes of consistent truncations of IIA/IIB
supergravity to 3 dimensions. In the maximal case, we constructed the consistent trunca-
tions of IIA/IIB on S7, which are related by an outer automorphism of SO(8, 8) and lead to
two different SO(8)nT 28 gauged supergravities. These were constructed by making use of
two different SL(8) subgroups of E8(8), upon which the analysis reduces to the SL(n) twist
equations of [4] with n = 8. These truncation ansätze also capture consistent truncations
of IIA/IIB on hyperboloids, leading to CSO(p, q, r)n T p,q,r gaugings. We also constructed
a consistent truncation of IIB supergravity on S5 times a Riemann surface. This results in
a N = 4 3-dimensional supergravity with scalar coset space SO(6,4)

SO(6)×SO(4) ×
SU(2,1)

SU(2)×U(1) and
contains an N = (2, 2) AdS3 vacuumm.

Our work opens up the possibility to systematically construct consistent truncations
to 3-dimensional gauged supergravities, leading to many possible future routes of inves-
tigation. For example, which 3-dimensional N < 16 supergravities can be uplifted and
what are their uplifts? Similarly, which of the N = (8, 0) AdS3 vacua constructed in [35]
uplifted to the 10-d vacua of [36]? Our results already prohibit a higher-dimensional origin
for most of the gauged supergravities in [35] and it would be interesting to study the uplift
of the remaining handful of possibilities. Moreover, the analysis presented here is a crucial
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first step to computing the full Kaluza-Klein spectrum around any vacua of the N = 16
theories that can be uplifted by generalising [39, 40] and the 3-dimensional half-maximal
version thereof [41]. We leave these exciting questions for future work.
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A E8(8) conventions

Throughout we raise/lower E8(8) indices using the Cartan-Killing metric defined in terms
of the E8(8) structure constants as

ηMN = 1
60f

MK
Lf

NL
K . (A.1)

The E8(8) ExFT makes use of various projectors of the tensor product of two 248
representations

248⊗ 248 = 1⊕ 248⊕ 3875⊕ 27000⊕ 30380 . (A.2)

The projectors needed in the E8(8) ExFT are the projector onto the adjoint

(P248)M N
K
L = 1

60f
M
NP f

PK
L , (A.3)

as well as

(P1)MN
KL = ηMN η

KL ,

(P3875)MN
KL = 1

7δ
M
(Nδ

K
L) −

1
56η

MKηNL −
1
14f

P
N

(MfPL
K) .

(A.4)
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