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1 Introduction

We universally think of general relativity as the low energy effective field theory of a quantum
theory of gravity. More precisely, we think of the Einstein-Hilbert action as the first term of a
higher-derivative expansion where infinitely many operators are suppressed at low energy by
inverse powers of the Planck mass. Gravitational interactions are mediated by the exchange
of spin-2 gravitons, and performing a perturbative expansion in } one determines graviton
vertices as well as vertices of gravitons interacting with matter [1–5]. Using the tools of
effective field theory, one can then for instance compute quantum scattering amplitudes
involving massive particles and determine } corrections to the gravitational potential [6, 7].

The most remarkable outcome of this analysis is that by performing a loop expansion
one obtains at any loop order not only quantum corrections, but also terms that are zeroth
order in }, i.e. entirely classical [7–14]. In particular, while the Schwarzschild metric at first
order in the post-Minkowskian expansion arises from the scattering amplitude of a massive
scalar emitting a graviton at tree level, the analysis of [9] shows that the next order arises
from a 1-loop amplitude containing a three-graviton vertex. Similarly, one reproduces at
second post-Minkowskian order the Kerr metric by computing loop amplitudes involving
spinors [9], as well as the terms proportional to the electric charge of the Reissner-Nordström
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and Kerr-Newman metrics by considering the 1-loop scattering of charged particles with
photons running in the loop [15].

More recently, a systematic procedure to extract the classical contribution of loop
amplitudes of massive scalars interacting with gravitons in any dimension was given in [12],
which also shows how such computations coincide with the original work of [16] at sec-
ond post-Minkowskian order. Applying these techniques, the Schwarzschild-Tangherlini
metric [17] at fourth order in the post-Minkowskian expansion was shown to arise from
gravitational scattering amplitudes of massive scalars up to three loops [18].1 The com-
putations of the amplitudes in [18] are performed in de Donder gauge, and in order to
compare the results with the classical metric one has to write down the latter in the same
gauge, in which logarithmic terms appear in the post-Minkowskian expansion starting from
second order in five dimensions and from third order in four dimensions. Correspond-
ingly, the amplitudes develop ultraviolet divergences [18, 20] which are renormalised by
the inclusion of specific higher-derivative couplings [18],2 and as a result one obtains the
remormalised energy-momentum tensor which gives exactly the logarithmic terms of the
Schwarzschild-Tangherlini metric in de Donder gauge.3

In this paper we want to repeat the analysis of [18] for the case of charged scalars in
any dimension. We will show that the long-distance metric derived from the amplitude
computation matches the Reissner-Nordström-Tangherlini metric [17]. We will make use of
the prescription of [12] to isolate the classical contribution from each Feynman diagram.
We will perform the analysis up to two loops, and we will show that the terms of the metric
proportional to the electric charge are exactly reproduced up to third post-Minkowskian
order by the diagrams in which photons circulate in the loop. In de Donder gauge there
are also logarithmic terms proportional to the charge, and these are exactly reproduced
by renormalising the divergent terms in the amplitude adding higher-derivative couplings.
Remarkably, these couplings are precisely the same as in the chargeless case, but the
coefficient in front of them is modified by the addition of a term proportional to a given
power of the charge.

The techniques to extract the classical contribution of loop amplitudes can also be
applied to diagrams in which the scalar field emits a photon. We compute such contributions
up to two loops, and we derive from the resulting current the first three terms in the post-
Minkowskian expansion of the electromagnetic potential. We compare the result with
the post-Minkowskian expansion of the potential in the Reissner-Nordström-Tangherlini
solution, finding again perfect agreement. In five dimensions the amplitudes develop an
ultraviolet divergence, which is renormalised by the same counterterm that renormalises
the metric. We compute the logarithmic terms that arise and we show that again they
match exactly the logarithms in the post-Minkowskian expansion of the Reissner-Nordström-
Tangherlini potential.

1At tree-level and one loop the agreement between the Schwarzschild-Tangherlini metric and the amplitude
results in any dimension was earlier shown in [19, 20].

2Higher-derivative couplings had already been introduced in [21] in the context of the world-line formalism.
3There are additional renormalised terms in the energy-momentum tensor that do not affect the metric [18].

We will not discuss this any further in this paper.
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The paper is organised as follows. In section 2 we determine the post-Minkowskian
expansion of the Reissner-Nordström-Tangherlini solution in de Donder gauge. In section 3
we show how to relate the post-Minkowskian expansion of the metric and the gauge potential
to the loop expansion of the amplitude for the emission of either a graviton or a photon
from a massive charged scalar. We use these results to compute in section 4 and section 5
the metric and the gauge potential respectively from scattering amplitudes up to two loops.
In section 6 we discuss how non-minimal couplings are included to cancel the ultraviolet
divergences, producing logarithmic terms in the metric. The final outcome is that also the
terms containing the electric charge in the post-Minkowskian expansion of the metric in de
Donder gauge, as well as the electromagnetic potential, are exactly reproduced by scattering
amplitude computations. Finally, section 7 contains a discussion and our conclusions.
The paper also contains three appendices. In appendix A we give all the expressions for
the propagators and vertices that are used in the paper. In appendix B we derive for
completeness the Fourier transforms that are used to determine the metric and the potential
from the amplitudes given in momentum space. Finally in appendix C we list all the results
for the loop integrals that are needed to evaluate all the amplitudes in sections 4 and 5.

2 The Reissner-Nordström-Tangherlini solution in de Donder gauge

The Reissner-Nordström solution gives the metric and the electromagnetic potential of a
spherically symmetric charged mass distribution in four dimensions. Its generalisation to
arbitrary dimension D = d+ 1 was given by Tangherlini in [17], and the resulting metric
has the expression

ds2 =
(

1− µm
rd−2 + µQ

r2(d−2)

)
dt2 − dr2

1− µm
rd−2 + µQ

r2(d−2)
− r2dΩ2

d−1 , (2.1)

where µm and µQ are related to the mass m and charge Q of the black hole by

µm = 16πGNm
(d− 1)Ωd−1

and µQ = 8πGNQ2

(d− 2)(d− 1)Ω2
d−1

, (2.2)

while the electromagnetic potential is

Aµ(r) = δ0
µ

1
(d− 2)Ωd−1

Q

rd−2 , (2.3)

where Ωd−1 = 2πd/2

Γ(d/2) is the area of the (d− 1)-sphere.
In this section we want to perform the post-Minkowskian expansion of the metric and

the electromagnetic potential in de Donder gauge. As far as the metric is concerned, the
analysis is the same as the one performed in [18] for the case of the Schwarzschild-Tangherlini
solution, and we refer to that paper for further details. Given in general a metric of the form

ds2 = C(r)dt2 − dr2

C(r) − r
2dΩ2

d−1 , (2.4)
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its expression in cartesian coordinates becomes

ds2 = C(r)dt2 − d~x2 − 1− C(r)
C(r)

(~x · d~x)2

r2 . (2.5)

We want to determine the change of coordinates such that the transformed metric satisfies
the de Donder gauge condition

ηµν(gβν,µ + gµβ,ν − gµν,β) = 0 . (2.6)

Given that the metric in (2.5) only depends on r, we look for transformations that rescale
the spatial coordinates by an r-dependent (positive) function, namely

(t, ~x)→ (t, f(r)~x) with r =
√
xixi . (2.7)

The metric in the new coordinates becomes

ds2 = h0(r)dt2 − h1(r)d~x2 − h2(r)(~x · d~x)2

r2 , (2.8)

where h0(r), h1(r) and h2(r) are determined in terms of C(r) and f(r) as

h0(r) = C(f(r)r)
h1(r) = f(r)2

h2(r) = −f(r)2 + (f(r) + rf ′(r))2

C(f(r)r) .

(2.9)

The de Donder condition (2.6) then leads to the equation

r
d

dr

(
h0(r) + (d− 2)h1(r)− h2(r)

)
= 2(d− 1)h2(r) , (2.10)

that substituting the relations in (2.9) becomes a differential equation for f(r) [18].
We want to write down the metric (2.1) in de Donder gauge, which means that we

want to solve eq. (2.10) for

C(r) = 1− µm
rd−2 + µQ

r2(d−2) . (2.11)

Following [18], we define

ρ(r) =
Γ
(
d
2 − 1

)
π1−d/2

rd−2 , (2.12)

so than substituting eq. (2.11) in (2.9), one gets

h0(r) = 1− 4mGN
d− 2
d− 1

ρ(r)
f(r)d−2

(
1− α

2m
ρ(r)

f(r)d−2

)
h1(r) = f(r)2

h2(r) = −f(r)2 +

(
f(r) + (2− d)ρ(r)df(r)

dρ

)2

1− 4mGN d−2
d−1

ρ(r)
f(r)d−2

(
1− α

2m
ρ(r)

f(r)d−2

) ,
(2.13)
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where we have introduced for convenience the fine structure constant α = Q2

4π in natural
units. We plug these expressions into eq. (2.10), which we rewrite as an equation dependent
on the variable ρ [18],

(2− d)ρ d
dρ

(
h0(r) + (d− 2)h1(r)− h2(r)

)
= 2(d− 1)h2(r) , (2.14)

and we want to solve this equation perturbatively for f(r) as a power expansion in ρ,

f(r) = 1 +
∞∑
n=1

anρ(r)n , (2.15)

that is order by order in the post-Minkowskian expansion.4 We have done this numerically
and although we have managed to determine all the coefficients of the metric up to eighth
order in the post-Minkowskian expansion, here we give the expression for f(r), and therefore
for h0(r), h1(r) and h2(r), up to ρ3, which is the order needed for comparison with the
2-loop calculation in the next sections. The result is

f(r) = 1 + 2mGN
d− 1 ρ(r)− αGN

(
d2 − 4d+ 3

)
+ 4

(
d2 − 4d+ 5

)
m2G2

N

(d− 4)(d− 1)2 ρ(r)2

+ 2mGN
3(d− 1)3 (d2 − 7d+ 12)

(
αGN

(
6d4 − 53d3 + 167d2 − 223d+ 103

)
+ 2

(
7d4 − 57d3 + 172d2 − 232d+ 122

)
m2G2

N

)
ρ(r)3 +O

(
ρ(r)4

)
.

(2.16)

Plugging this into (2.13) and expanding up to order ρ3 one finally obtains

h0(r) = 1− 4(d−2)
d−1 mGNρ+

(
2(d−2)
d−1 αGN + 8(d−2)2

(d−1)2 m
2G2

N

)
ρ2

+
(
−4(d−2)2(3d−11)

(d−4)(d−1)2 mαG2
N + 8(7−3d)(d−2)3

(d−4)(d−1)3 m3G3
N

)
ρ3 +O(ρ4)

h1(r) = 1+ 4
d−1mGNρ+

(
− 2(d−3)

(d−4)(d−1)αGN + 4
(
−2d2 +9d−14

)
(d−4)(d−1)2 m2G2

N

)
ρ2

+
(

8(3d3−25d2 +69d−65)
3(d−4)(d−3)(d−1)2 mαG2

N + 8
(
7d4−63d3 +214d2−334d+212

)
3(d−4)(d−3)(d−1)3 m3G3

N

)
ρ3

+O(ρ4)

h2(r) =
(

2(d−2)2

(d−4)(d−1)αGN + 4(d−2)2(3d−2)
(d−4)(d−1)2 m2G2

N

)
ρ2

+
(

4(d−2)2 (−3d3 +19d2−33d+17
)

(d−4)(d−3)(d−1)3 mαG2
N

+8(d−2)2 (−2d3 +13d2−25d+10
)

(d−4)(d−3)(d−1)3 m3G3
N

)
ρ3 +O(ρ4) . (2.17)

4In this paper we define the post-Minkowskian expansion as an expansion in ρ(r), which due to the
presence of the charge does not coincide with an expansion in GN .
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As it is obvious on dimensional grounds, for each power n of ρ there are terms proportional
to (mGN )n−j(αGN )

j
2 for each non-negative and even j such that n− j is non-negative.

The metric obtained using this procedure is not well defined in four and five dimensions,
that is when d = 3 and d = 4, in which eqs. (2.17) are singular [18]. This means that the
ansatz in eq. (2.15) has to be changed. Proceeding perturbatively, every time there is a
divergent coefficient we have to add to the term at that order all the terms with a power
of logarithm permitted by the order of the polynomial. Every new term comes with a
new coefficient in the expansion. The outcome is that by implementing this new ansatz in
eq. (2.14) all the coefficients will be fixed apart from the first divergent one. In the case
d = 3 the first divergent coefficient is at the third power of ρ, so the new ansatz for f(r) is

f(r)d=3 = 1 + a1ρ+ a2ρ
2 + (a3,2 log(ρ)2 + a3,1 log(ρ) + a3)ρ3 +O(ρ4) . (2.18)

Plugging this into eq. (2.14) one solves for all the coefficients up to a constant. The result is

f(r)d=3 = 1 +mGNρ+ 2m2G2
Nρ

2 + 2
3mGN

(
2αGN log

(2mGNρ
c

)
−m2G2

N log
(2mGNρ

c

))
ρ3 +O

(
ρ4
)
,

(2.19)

which shows that a3,2 in (2.18) vanishes, while a3 is not determined. We have placed the
undetermined constant inside the logarithm for convenience. The other constants in the
argument of the logarithm have been inserted for dimensional reasons.

Using (2.13) with d = 3, the resulting metric is

h0(r)d=3 = 1− 2mGN
r

+
(
αGN + 2m2G2

N

) 1
r2 +

(
−2mαG2

N + 2m3G3
N

) 1
r3 +O

( 1
r4

)
h1(r)d=3 = 1 + 2mGN

r
+ 5m2G2

N

r2

+
(8

3mαG
2
N log

(2mGN
cr

)
+ 4

3m
3G3

N

(
3− log

(2mGN
cr

))) 1
r3 +O

( 1
r4

)
h2(r)d=3 =

(
−αGN − 7m2G2

N

) 1
r2 +

(2
3mαG

2
N

(
−12 log

(2mGN
cr

)
− 7

)
+2

3m
3G3

N

(
6 log

(2mGN
cr

)
− 19

)) 1
r3 +O

( 1
r4

)
. (2.20)

In the case d = 4 we have a divergence already at second order in ρ, and the ansatz for
f is

f(r)d=4 = 1 +a1ρ+ (a2,1 log(ρ) +a2)ρ2 + (a3,2 log(ρ)2 +a3,1 log(ρ) +a3)ρ3 +O(ρ4) . (2.21)

Again, solving for f gives

f(r)d=4 = 1 + 2
3mGNρ+ 1

18GN
(
−20 log

(8mGNρ
3c

)
GNm

2 − 3α log
(8mGNρ

3c

))
ρ2

+ 1
81mG

2
N

(
180 log

(8mGNρ
3c

)
GNm

2 + 32GNm2 + 66α+ 27α log
(8mGNρ

3c

))
ρ3

+O
(
ρ4
)
, (2.22)
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and plugging the result in eq. (2.13) one gets

h0(r)d=4 = 1− 8mGN
3πr2 +

(
4αGN

3π2 + 32m2G2
N

9π2

)
1
r4 +

(
−8mαG2

N

9π3

(
log
(8mGN

3cπr2

)
+4
)

+32m3G3
N

27π3

(
−5 log

(8mGN
3cπr2

)
−3
)) 1

r6 +O

( 1
r8

)

h1(r)d=4 = 1+ 4mGN
3πr2 +

(
−αGN3π2 log

(8mGN
3cπr2

)
+ 4m2G2

N

9π2

(
1−5 log

(8mGN
3cπr2

))) 1
r4

+
(

4mαG2
N

27π3

(
3 log

(8mGN
3cπr2

)
+11

)
+ 16m3G3

N

81π3

(
15 log

(8mGN
3cπr2

)
+4
)) 1

r6 +O

( 1
r8

)

h2(r)d=4 =
(

2αGN
3π2

(
2 log

(8mGN
3cπr2

)
−1
)

+ 40m2G2
N

9π2

(
2 log

(8mGN
3cπr2

)
+1
)) 1

r4

+
(
−8mαG2

N

9π3

(
log
(8mGN

3cπr2

)
+13

)
+ 32m3G3

N

27π3

(
−5 log

(8mGN
3cπr2

)
−4
)) 1

r6

+O

( 1
r8

)
. (2.23)

Having determined the post-Minkowskian expansion of the metric in de Donder gauge,
we now proceed to compute the same expansion for the potential. We thus have to perform
the coordinate transformation (2.7) on the potential in eq. (2.3). The potential satisfies
the Lorentz gauge condition, and in particular only its time component is non-vanishing
and only depends on r. This implies that the only effect of the change of coordinates is to
rescale r, so that the potential in de Donder gauge becomes

AdD
0 (r) = 1

(d− 2)Ωd−1

Q

(f(r)r)d−2 . (2.24)

Plugging eq. (2.16) into this equation and expanding up to cubic order in ρ one gets

AdD
0 (r) = Q

4π

(
ρ− 2(d− 2)

(d− 1) mGNρ
2

+
(

2(d− 2)2(3d− 7)
(d− 4)(d− 1)2 m2G2

N + (d− 3)(d− 2)
(d− 4)(d− 1)αGN

)
ρ3
)

+O(ρ4) .
(2.25)

The electromagnetic potential in this gauge is not well defined at third post-Minkowskian
order in five dimensions (i.e. d = 4) because of the divergence in eq. (2.25) which is inherited
from the divergence of f(r). Plugging in (2.24) the function f(r)d=4 in eq. (2.22) one gets

AdD
0 (r)d=4 = Q

4π

(
1
π

1
r2 −

4
3π2GNm

1
r4 (2.26)

+
(

4G2
Nm

2

9π3

(
5 log

(8GNm
3πcr2

)
+3
)

+ αGN
3π3 log

(8GNm
3πcr2

)) 1
r6

)
+O

( 1
r8

)
.
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In the rest of the paper we will show how all the expressions we have derived in
this section for the metric and the eletromagnetic potential of the Reissner-Nordström-
Tangherlini solution in de Donder gauge up to third post-Minkwskian order can be obtained
from amplitude computations up to two loops.

3 Classical limit from scattering amplitudes

In this section we will review the procedure discussed in [12, 18] to extract classical
contributions from loop amplitudes. The procedure will be applied to amplitudes describing
the emission of either a graviton or a photon, with gravitons and photons circulating in the
loop. In order to set up the conventions, we first write down the classical action

S =
∫
dd+1x

√
−g

(
− 2
κ2R−

1
4FµνFαβg

µαgνβ + (Dµφ)∗(Dνφ)gµν −m2φ∗φ

)
, (3.1)

where κ2 = 32πGN and the covariant derivative is defined as Dµφ = (∂µ + iQAµ)φ. In
our conventions the Ricci tensor is defined as Rµν = Rαµαν and the metric has signature
(+,−, . . . ,−).

From (3.1) we can derive the Einstein equations in generic dimension

Rµν −
1
2gµνR = κ2

4 Tµν , (3.2)

where Tµν(x) is the stress-energy tensor. We want to derive the metric that solves pertur-
batively this equation plugging in as a source the classical stress-energy tensor that results
from the quantum emission of a graviton by the scalar field. As we will review later in this
section, the perturbative loop expansion coincides with the post-Minkowskian expansion
with respect to the variable ρ defined in eq. (2.12), and as explained in the previous section
for each power n of ρ we expect for dimensional reasons terms proportional to α with
power up to bn2 c. At tree level, one gets a pointlike source on mass m which generates
the Newton potential, while the loop corrections generate precisely the contributions to
the stress-energy tensor resulting from the self-interactions of the graviton and from the
electromagnetic potential [9, 15]. Following the notation of the previous section, we expand
the stress-energy tensor as

Tµν =
+∞∑
n=0

n∑
j=0
j even

T (n,j)
µν , (3.3)

and correspondingly we expand the metric as

gµν = ηµν + κhµν = ηµν + κ
+∞∑
n=1

n∑
j=0
j even

h(n,j)
µν . (3.4)

We impose the de Donder gauge condition (2.6), which by linearity holds separately for
each term h

(n,j)
µν in the expansion:

∂λh
λ
ν

(n,j) − 1
2∂νh

(n,j) = 0 . (3.5)

– 8 –
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In the same gauge we compute the amplitudes. Substituting the expansions above in (3.2),
one gets at any order the equation

�h(n,j)
µν (x) = −κ2

(
T (n−1,j)
µν (x)− 1

d− 1ηµνT
(n−1,j)(x)

)
, (3.6)

which says that the n−1-th post-Minkowskian term of the stress-energy tensor is the source
of the n-th post-Minkowskian term of the metric. The interpretation of this phenomenon
is due to the non-linear nature of gravity. Indeed, as already mentioned above, while the
first post-Minkowskian order of the metric is reconstructed by the matter contribution of
the stress-energy tensor, higher orders correspond to terms in which the gravitational field
interacts with itself [9]. This explains also that the non linearity of gravity is translated to
self-interaction terms of the gravitons, which are encoded in loop diagrams.

In the very same way, it is possible to work out a similar expression for the electro-
magnetic potential. From the action in (3.1), the field equations of the electromagnetic
potential in Feynman gauge are

�Aµ(x) = jµ(x) , (3.7)

where jµ(x) is the electromagnetic current. Expanding the electromagnetic current and the
potential in a post-Minkowskian series like

jµ =
+∞∑
n=0

n∑
j=0
j even

j(n,j)
µ and Aµ =

+∞∑
n=1

n∑
j=0
j even

A(n,j)
µ , (3.8)

the field equations at each order are

�A(n,j)
µ (x) = j(n−1,j)

µ (x) . (3.9)

We now review the techniques to extract the classical contributions of loop amplitudes
and apply them to diagrams with photons and gravitons in the loops, describing the emission
of either a graviton or a photon. Following [18], considering the matrix element of the
gravitational source

Tµν(q2) ≡ 〈p2|Tµν(0) |p1〉 , (3.10)

where q = p1 − p2 is the transferred momentum and the non-covariant normalization of
particle states is implied,5 we know that the classical contribution of the stress-energy
tensor in momentum space can be computed from processes of the kind

p1

...

...

p2

q
µν

j

{

n− j

{

tree = − i κ2
√

4E1E2 T
(l,j)
µν (q2) , (3.11)

5In particular we use the normalization in which 〈p2|p1〉 = (2π)dδ(d)( ~p1 − ~p2).
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where n − j gravitons and an even number j of photons are attached to a massive line,
and a tree internal structure ends up with a graviton emission. Therefore, the number of
loops in the amplitude is l = n − 1, which relates the loop order with the order in the
post-Minkowskian expansion. As a consequence, considering the static limit, eq. (3.6) can
be rewritten as

h(l+1,j)
µν (~x) = −κ2

∫
dd~q

(2π)d
ei~q·~x

~q2

(
T (l,j)
µν (~q2)− 1

d− 1ηµνT
(l,j)(~q2)

)
, (3.12)

where T (l,j)
µν (~q2) is the Fourier transform of T (l,j)

µν (~x).
In order to recover the post-Minkowskian expansion of the metric, we can infer that

the classical limit of T (l,j)
µν (~q2) must be

T (l,j)
µν (~q2) ∝

∫ l∏
i=1

dd ~̀i
(2π)d

~q2(∏l
i=1

~̀
i
2) (

~q − ~̀1 − . . .− ~̀l
)2 = J(l)(~q2) , (3.13)

where J(l)(~q2) is the massless l-loop ‘sunset’ master integral, as shown in appendix B. From
this last expression, exploiting the fact that the stress-energy tensor is conserved and Lorentz
covariant, we can express it in terms of form factors c(l,j)

1 (d) and c(l,j)
2 (d) as

T (l)
µν (~q2) =

l+1∑
j=0
j even

T (l,j)
µν (~q2)

=
l+1∑
j=0
j even

mπl
(
c

(l,j)
1 (d)δ0

µδ
0
ν + c

(l,j)
2 (d)

(
−qµqν

~q2 − ηµν
))

(GNm)l−j(αGN )
j
2J(l)(~q2) .

(3.14)

Substituting this relation in eq. (3.12), one gets order by order in l and j

κ h(l+1,j)
µν (~x)

= −16πl+1
∫

dd~q

(2π)d
ei~q·~x

~q2

(
c

(l,j)
1 (d)

(
δ0
µδ

0
ν −

ηµν
d− 1

)
+ c

(l,j)
2 (d)

(
−qµqν

~q2 + ηµν
d− 1

))
× (GNm)l+1−j(αGN )

j
2J(l)(~q2) .

(3.15)
Using the master integral identities (B.10) and (B.12) one then determines h(l+1,j)

00 (r) and
h

(l+1,j)
ij (r), which are the only non-vanishing components of the metric. From these, one

extracts the functions h(l+1,j)
i (r) defined in (2.8), obtaining [18]

h
(l+1,j)
0 (r) = − 16

d− 1
(
(d− 2)c(l,j)

1 (d) + c
(l,j)
2 (d)

)(ρ
4

)l+1
(GNm)l+1−j(αGN )

j
2

h
(l+1,j)
1 (r) = 16

d− 1

(
c

(l,j)
1 (d)−

(
1 + d− 1

2− l(d− 2)

)
c

(l,j)
2 (d)

)
×
(
ρ

4

)l+1
(GNm)l+1−j(αGN )

j
2

h
(l+1,j)
2 (r) = 16(d− 2)(l + 1)

2− l(d− 2) c
(l,j)
2 (d)

(
ρ

4

)l+1
(GNm)l+1−j(αGN )

j
2 .

(3.16)
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These expressions impose an explicit relation between the metric and the amplitude calcu-
lation of processes like (3.11), from which the form factors are derived.

We now discuss how the form factors in (3.14) can be extracted from the amplitudes
in (3.11). Using the Feynman rules in appendix A, the stress-energy tensor is given by

− i κ

2
√

4E1E2 T
(l,j)
µν (q2)

=
∫ l∏

i=1

dd+1`i
(2π)d+1

(i)l
(∏l+1−j

i=1 i
(
τφ2h

)
µiνi

Pµiνi,λiσi
)(∏j

i=1−i
(
τφ2A

)αi)
∏l
i=1

((
p1 −

∑i
k=1 `k

)2
−m2 + iε

)
×
Mλ1σ1,...,λl−j+1σl−j+1,α1,...,αj ,µν(p1, p2, `1, . . . , `l)∏l+1

i=1
(
`2i + iε

) ,

(3.17)

whereM parametrises the tree structure of the amplitude, and in which the momentum
conservation implies p1 − p2 = q = `1 + . . .+ `l+1. Following [12, 18], we can integrate out
the temporal component of each internal momentum, fixing `0i = 0 for any i = 1, . . . , l + 1
in the argument of the loop integral, and considering a combinatorial factor 1

(l+1)! in front.
Moreover, the vertices attached to the massive line, due to the static and long range limit,

q0 = E1 − E2 = 0 and |~pi| � m, (3.18)

take the form
(
τφ2h

)
µν
' −i κm2δ0

µδ
0
ν and

(
τφ2A

)
α
' −2 iQmδ0

α , (3.19)

acting essentially like projectors on the temporal component. From these considerations,
eq. (3.17) becomes

− i κ2 2mT (l,j)
µν (~q2) = 1

(l + 1)!

∫ l∏
i=1

dd ~̀i
(2π)d (−1)j+l+12j−lml+2−jκl−j+1Qj

∏l−j+1
i=1 P 00,λiσi∏l+1

i=1
~̀
i
2

×Mλ1σ1,...,λl−j+1σl−j+1,0,...,0,µν(p1, p2, `1, . . . , `l)
∣∣∣
`0i=0

,

(3.20)
where

P00,µν = δ0
µδ

0
ν −

ηµν
d− 1 . (3.21)

Comparing this expression with eq. (3.13), one finally concludes that the classical limit is
obtained extracting from (3.20) all the pieces proportional to the master integral J(l)(~q2).

This analysis can be easily repeated in order to compute the classical limit of the elec-
tromagnetic potential. Following the same procedure as before, defining the electromagnetic
current as

jµ(q2) ≡ 〈p2| jµ(0) |p1〉 , (3.22)
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its classical contribution in momentum space can be computed from an l-loop expansion of
photon emission scattering amplitudes,

p1

...

...

p2

q
µ

j + 1

{

n− j − 1

{

tree = −i
√

4E1E2 jµ
(l,j)(q2) , (3.23)

in which the current is expanded in a loop series as well. Attached to the massive line,
we have n− j − 1 gravitons and an odd number j + 1 of photons, and analogously to the
previous case a tree internal structure ends up with a photon emission. In the static limit,
eq. (3.9) therefore becomes

A(l+1,j)
µ (~x) =

∫
ddq

(2π)d
ei~q·~x

~q2 j(l,j)
µ (~q2) , (3.24)

where again j(l,j)
µ (~q2) is the Fourier transform of j(l,j)

µ (~x). Following the same argument
discussed in the metric case, one concludes that the classical limit of the electromagnetic
current must be proportional to the master integral J(l)(~q2), from which an expansion in
terms of form factors c(l,j)(d) leads to

j(l)
µ (~q2) =

l+1∑
j=0
j even

j(l,j)
µ (~q2) =

l+1∑
j=0
j even

Qδ0
µ c

(l,j)(d)(GNm)l−j(αGN )
j
2J(l)(~q2) . (3.25)

Using the Fourier transform of the master integral in eq. (B.10), one finally obtains

A(l+1,j)
µ (r) = Qδ0

µc
(l,j)(d)(GNm)l−j(αGN )

j
2

(
ρ

4π

)l+1
. (3.26)

We observe that only the temporal component of the potential is non vanishing. The
outcome of this analysis is that one obtains an explicit relation between the photon emission
amplitudes in (3.23) and the classical electromagnetic potential.

All manipulations performed to extract the classical contribution to the stress-energy
tensor apply for the electromagnetic current as well. The electromagnetic current can be
directly written as

−i 2mj(l,j)
µ (~q2) = 1

(l + 1)!

∫ l∏
i=1

dd ~̀i
(2π)d (−1)l+j2j+1−lml+1−jκl−jQj+1

∏l−j
i=1 P

00,λiσi∏l+1
i=1

~̀
i
2

×Mλ1σ1,...,λl−j+1σl−j+1,0,...,0,µ(p1, p2, `1, . . . , `l)
∣∣∣
`0i=0

,

(3.27)

where again M parametrises the tree structure of the amplitude. The classical limit is
obtained selecting out of (3.27) the contribution proportional to J(l)(~q2), from which the
form factors can be read.
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Figure 1. Tree-level diagram for graviton emission.

4 Metric from scattering amplitudes

In the following, we compute the interaction of massive charged scalar fields with the
gravitational field in an arbitrary number of dimensions D = d+ 1. By means of Feynman
rules, we perform quantum computations up to 2-loop order and from the resulting stress-
energy tensor we recover the metric perturbation components in de Donder gauge computed
in section 2. We show the appearance of divergences at 1 and 2 loops in d = 4 and at 2
loops in d = 3, which will be treated in detail in section 6.

Tree level. For completeness, we first consider the tree level amplitude, corresponding to
l = 0, j = 0 in (3.11), given in figure 1. We consider on-shell particles, p2

1 = p2
2 = m2, with

transferred momentum q = p1 − p2. The stress-energy tensor arising at tree-level is

−iκ
2
√

4E1E2T
(0,0)
µν (q2) = (τφ2h)µν , (4.1)

where (τφ2h) is the 2 scalars — 1 graviton vertex in (A.6). Using (3.19) one gets

T (0,0)
µν (~q2) = mδ0

µδ
0
ν . (4.2)

Therefore, comparing this result with eq. (3.14), the coefficients c(0,0)
1 and c(0,0)

2 are

c
(0,0)
1 (d) = 1

c
(0,0)
2 (d) = 0

(4.3)

and from (3.16) one gets the metric components

h
(1,0)
0 (r) = −4d− 2

d− 1GNmρ

h
(1,0)
1 (r) = 4

d− 1GNmρ

h
(1,0)
2 (r) = 0 ,

(4.4)

where ρ is defined in (2.12). These results are in agreement with the post-Minkowskian
expansion of the metric (2.17) for the terms proportional to mGNρ.

1-loop order. We now compute the contribution to the stress-energy tensor that arises
at 1-loop order. There are two diagrams that contribute, i.e. l = 1, j = 0 and l = 1, j = 2.
The first one is obtained evaluating the diagram that involves a 3-gravitons vertex, as in
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Figure 2. 1-loop diagram for graviton emission with 2 internal gravitons.

figure 2. The amplitude of this diagram is
−iκ

2
√

4E1E2T
(1,0)
µν (q2)

=
∫

dd+1`

(2π)d+1

−iPαβ,λκP γδ,ρσ
(
τφ2h

)
αβ

(
τφ2h

)
γδ

(τh2h)µν,ρσ,λκ (`, q)

(`2 + iε)((`− q)2 + iε)((`− p1)2 −m2 + iε)

(4.5)

where Pαβ,γδ is defined in (A.4) and the 3 graviton vertex (τh2h) is defined in eq. (A.10).
The resulting coefficients of the stress-energy tensor are [18]

c
(1,0)
1 (d) = −24d2 − 15d+ 10

(d− 1)2

c
(1,0)
2 (d) = −2(d− 2)(3d− 2)

(d− 1)2

(4.6)

and from (3.16) we get

h
(2,0)
0 (r) = 8(d− 2)2

(d− 1)2 (GNm)2ρ2

h
(2,0)
1 (r) = −4(2d2 − 9d+ 14)

(d− 4)(d− 1)2 (GNm)2ρ2

h
(2,0)
2 (r) = 4(d− 2)2(3d− 2)

(d− 4)(d− 1)2 (GNm)2ρ2 .

(4.7)

These components are in any dimension in agreement with the post-Minkowskian expansion
of the metric (2.17) for the terms proportional to m2G2

Nρ
2. In particular, h(2,0)

1 and h(2,0)
2

are divergent in five dimensions.
The other contribution at 1-loop order is given by the diagram that contains two

photons drawn in figure 3. The resulting contribution to the stress-energy tensor is
−iκ

2
√

4E1E2T
(1,2)
µν (q2)

=
∫

dd+1`

(2π)d+1

−i
(
τφ2A

)
α

(
τφ2A

)
β

(τA2h) µνα,β(`, `− q)

(`+ iε)2((`− q)2 + iε)((p1 − `)2 −m2 + iε) ,
(4.8)

where (τφ2A) is the 2 scalars — 1 photon vertex in (A.5) and (τA2h) is the 2 photons — 1
graviton vertex in (A.7). Following the procedure in section 3 one gets

T (1,2)
µν (~q2) = i

Q2

κ

∫
dd`

(2π)d
(τA2h)µν 0,0(`, `− q)

∣∣∣
`0=0

~̀2(~q − ~̀)2
, (4.9)
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Figure 3. 1-loop diagram for graviton emission with 2 internal photons.

where the numerator is explicitly

(τA2h)µν 0,0(`, `−q)
∣∣∣
`0=0

= iκ

((
δ0
µδ

0
ν −

ηµν
2

)
` · (`− q) + `µ`ν −

1
2(qµ`ν + qν`µ)

)
. (4.10)

Then the resulting component of the stress-energy tensor, using the identities in appendix C,
are

T
(1,2)
00 (~q2) = −Q

2

4 J(1)(~q2) , (4.11)

and
δijT

(1,2)
ij (~q2) = Q2

4 (2− d)J(1)(~q2) . (4.12)

From eqs. (4.11) and (4.12) one finally gets

c
(1,2)
1 (d) = −2d+ 3

d− 1

c
(1,2)
2 (d) = 2− d

d− 1

(4.13)

and again using eq. (3.16) one obtains

h
(2,2)
0 (r) = −(−2d+ 4)

d− 1 GNαρ
2

h
(2,2)
1 (r) = −2d+ 6

(d− 1)(d− 4)GNαρ
2

h
(2,2)
2 (r) = 2 (d− 2)2

(d− 1)(d− 4)GNαρ
2 .

(4.14)

These metric perturbations are for any d in agreement with the post-Minkowskian expansion
of the metric (2.17) for the terms proportional to αGNρ2, and h(2,2)

1 and h(2,2)
2 are divergent

in five dimensions, as expected.

2-loop order. The third order post-Minkowskian contributions to the metric are given by
the 2-loop diagrams of the type in (3.11). Some of these diagrams give the same contribution
since in the classical limit the amplitude is invariant under the exchange of photon and
graviton lines. Since all the vertices in appendix A are defined with the right symmetry
factor inside, we have to add to each diagram the corresponding multiplicity factor. At
2-loop order (n = 3) one gets the diagrams in (3.11) for j = 0 and for j = 2, which give
correspondingly the metric contributions h(3,0)

µν and h(3,2)
µν .
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Figure 4. 2-loop diagrams for graviton emission with j = 0, i.e. only graviton internal lines.

The first case (j = 0) corresponds to the diagrams in which there are only graviton
internal lines, which are given in figure 4. The computation of these diagrams was carried
out in [18] and we report here the result for the coefficients c1(d) and c2(d):

c
(2,0)
1 (d) = 32

3(d− 4)(d− 1)3

(
9d4 − 70d3 + 203d2 − 254d+ 104

)
c

(2,0)
2 (d) = 64(d− 2)

3(d− 4)(d− 1)3

(
2d3 − 13d2 + 25d− 10

)
.

(4.15)

From these, one computes the metric components

h
(3,0)
0 (r) =8(7− 3d)(d− 2)3

(d− 4)(d− 1)3 m3G3
Nρ

3

h
(3,0)
1 (r) =8

(
7d4 − 63d3 + 214d2 − 334d+ 212

)
3(d− 4)(d− 3)(d− 1)3 m3G3

Nρ
3

h
(3,0)
2 (r) =8(d− 2)2 (−2d3 + 13d2 − 25d+ 10

)
(d− 4)(d− 3)(d− 1)3 m3G3

Nρ
3 .

(4.16)

These results are in agreement with the post-Minkowskian expansion of the metric (2.17) for
the terms proportional to m3G3

Nρ
3. In particular, they are all divergent in five dimensions,

while h(3,0)
1 and h(3,0)

2 are also divergent in four dimensions.
In the case j = 2 we have to consider diagrams with two photons and one graviton

emitted from the scalar line. There are in total three diagrams and we will compute the
stress-energy tensor of each diagram with the right multiplicity and then sum all of them.
The first diagram is given in figure 5, and its contribution to the energy-momentum tensor is

− iκ

2
√

4E1E2T
(2,2)(a)
µν (q2)

= 6×
∫

dd+1`1
(2π)d+1

dd+1`2
(2π)d+1

(
τφ2A

)α (
τφ2A

)β (
τφ2h

)ρσ
((p1 − `1)2 −m2 + iε) ((p1 − `1 − `2)2 −m2 + iε)

×
Pρσ,ηχ (τA2h)µν,γ,α (k, k′) (τA2h)ηχ βγ(p, p′)(

`21 + iε
) (
`22 + iε

)
((`1 + `2)2 + iε) ((`1 + `2 − q)2 + iε) ,

(4.17)

where we introduced the new momenta

p = `1 k = `1 + `2

p′ = `1 + `2 k′ = `1 + `2 − q .
(4.18)
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Figure 5. 2-loop diagram for graviton emission with 1 internal graviton and 3 internal photons.

The factor multiplying the integral is the multiplicity of the diagram in figure 5. From the
analysis of section 3 one obtains

T (2,2)(a)
µν (~q2) =mQ2

∫
dd~̀1
(2π)d

dd~̀2
(2π)d

(τA2h)µν,γ,0 (k, k′)P00,ηχ (τA2h)ηχ 0
γ(p, p′)

∣∣
`0i=0

~̀2
1
~̀2
2(~̀1 + ~̀2 − ~q)2(~̀1 + ~̀2)2

. (4.19)

Using the definition (A.7) of the vertex (τA2h) the numerator becomes

(τA2h)µν,γ,0 (k, k′)P00,ηχ (τA2h)ηχ 0
γ(p, p′)

∣∣
`0i=0=

− κ2d− 2
d− 1p · p

′
(
k · k′

(
δ0
µδ

0
ν −

1
2ηµν

)
+ 1

2(kµk′ν + kνk
′
µ)
)
.

(4.20)

Substituting this in eq. (4.19) and using the identities in appendix C, one obtains that the
time-like component of the stress-energy tensor is

T
(2,2)(a)
00 (~q2) = 1

12
d− 2
d− 1mQ

2κ2J(2)(~q2) , (4.21)

while for the trace of the space-like components one gets

δijT
(2,2)(a)
ij (~q2) = 1

12
(d− 2)2

d− 1 mQ2κ2J(2)(~q2) . (4.22)

The second diagram that we consider is the one in figure 6, which gives the contribution
to the stress-energy tensor

− iκ

2
√

4E1E2T
(2,2)(b)
µν (q2)

= 3×
∫

dd+1`1
(2π)d+1

dd+1`2
(2π)d+1

i
(
τφ2A

)α (
τφ2A

)β (
τφ2h

)ρσ
((p1 − `1)2 −m2 + iε) ((p1 − `1 − `2)2 −m2 + iε)

× Pρσ,γδ (τA2h2) µνγδα,β(p, p′)(
`21 + iε

) (
`22 + iε

)
((`1 + `2 − q)2 + iε) ,

(4.23)

where we defined the momenta p = `2 and p′ = `1 +`2−q and where (τA2h2) is the 2 photons
— 2 gravitons vertex in (A.8). Applying (3.18) and integrating the temporal component of
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Figure 6. 2-loop diagram for graviton emission with 2 internal photons and 1 internal graviton.

the loop momenta we have

T (2,2)(b)
µν (~q2) = imQ2

2

∫
dd~̀1
(2π)d

dd~̀2
(2π)d

P00,γδ (τA2h2) µνγδ0,0(p, p′)
∣∣
`0i=0

~̀2
1
~̀2
2(~̀1 + ~̀2 − ~q)2

. (4.24)

Using the vertex (A.8) the numerator of the stress-energy tensor is

P00,γδ (τA2h2) µνγδ0,0(p, p′)
∣∣
`0i=0

= − iκ
2

4

(2(d− 3)
d− 1

(
pµp
′
ν + pνp

′
µ − p · p′ηµν

)
+ 2(3d− 7)

d− 1 p · p′δ0
µδ

0
ν

)
,

(4.25)

and substituting back in eq. (4.24), the resulting components of the stress-energy tensor are

T
(2,2)(b)
00 (~q2) =− 1

12
d− 2
d− 1Q

2mκ2J(2)(~q2) , (4.26)

and
δijT

(2,2)(b)
ij (~q2) =− 1

24
(d− 3)(d− 2)

d− 1 mQ2κ2J(2)(~q2) . (4.27)

The last diagram for the emission of a graviton at 2-loop order is the one in figure 7.
The corresponding stress-energy tensor is

− iκ

2
√

4E1E2T
(2,2)(c)
µν (q2)

= 3×
∫

dd+1`1
(2π)d+1

dd+1`2
(2π)d+1

−
(
τφ2A

)α (
τφ2A

)β (
τφ2h

)ρσ
((p1 − `1)2 −m2 + iε) ((p1 − `1 − `2)2 −m2 + iε)

×
Pρσ

ηχPθξ
γδ (τA2h)θξ α,β(p, p′) (τh2h)µν,γδ,ηχ (k, k′)(

`21 + iε
) (
`22 + iε

)
((`1 + `2)2 + iε) ((`1 + `2 − q)2 + iε) ,

(4.28)

where we have introduced the new momenta

p = `1 k = `1 + `2

p′ = −`2 k′ = q .
(4.29)

– 18 –



J
H
E
P
0
9
(
2
0
2
2
)
0
1
3

c

`1

`2

q − `1 − `2

q
`1 + `2

p1

p1 − `1

p1 − `1 − `2

p2

Figure 7. 2-loop diagram for graviton emission with 2 internal gravitons and 2 internal photons.

Integrating over the time-like components of the loop momenta gives

T (2,2)(c)
µν (~q2) =−mQ

2

2

∫
dd~̀1
(2π)d

dd~̀2
(2π)d

(τA2h)αβ 0,0(p,p′)PαβγδP00
ρσ (τh2h)µν,γδ,ρσ (k,k′)

∣∣
`0i=0

~̀2
1
~̀2
2(~̀1 + ~̀2−~q)2(~̀1 + ~̀2)2

.

(4.30)
Introducing the vertex τ̃h2h defined in (A.11) the numerator of the integrand can be
written as

(τA2h)αβ 0,0(p, p′)PαβγδP00
ρσ (τh2h)µν,γδ,ρσ (k, k′) = (τA2h)αβ 0,0(p, p′) (τ̃h2h)µν,αβ,00 (k, k′) .

(4.31)
Using the vertexes (A.13) and (A.7) we obtain the expression of the numerator to be

(τA2h)αβ 0,0(p, p′) (τ̃h2h)00,αβ,00 (k, k′)
∣∣
`0i=0=

κ2

4
1

d− 1

(
p · p′

(
−dk′2 + (3d− 3)(d− 2)

d− 1 k2 + (d− 2)(k − k′)2
)

+ (4d− 8)(k′ · p)(k′ · p′)
)

(4.32)
for the 00-component and

δij (τA2h)αβ 0,0(p, p′) (τ̃h2h)ij,αβ,00 (k, k′)
∣∣
`0i=0=

− κ2

4
d− 2
d− 1

(
p · p′

(
(d− 2)k2 + (d− 4)(k − k′)2 + 3dk′2

)
+ 4(k′ · p)(k′ · p′)

) (4.33)

for the trace of the spatial components. Substituting in (4.30), inserting the momenta (4.29)
and using the master integral identities in appendix C (in particular (C.12)) we have

T
(2,2)(c)
00 (~q2) = (3d2 − 19d+ 32)

24(d− 4)(d− 1)mQ
2κ2J(2)(~q2) , (4.34)

and
δijT

(2,2)(c)
ij (~q2) = (d− 2)(5d2 − 27d+ 30)

24(d− 4)(d− 1) mQ2κ2J(2)(~q2) . (4.35)

Finally, summing all the contributions, we obtain the total energy-momentum tensor

T (2,2)
µν (~q2) =

∑
i=a,b,c

T (2,2)(i)
µν (~q2) (4.36)
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with

T
(2,2)
00 (~q2) = (3d2 − 19d+ 32)

24(d− 4)(d− 1)mQ
2κ2J(2)(~q2) (4.37)

and

δijT
(2,2)
ij (~q2) = (d− 2)(3d2 − 16d+ 17)

12(d− 4)(d− 1) mQ2κ2J(2)(~q2) , (4.38)

from which we can compute the coefficients c(l,j)
i (d), obtaining

c
(2,2)
1 (d) = 16

(
9d3 − 66d2 + 149d− 100

)
3(d− 4)(d− 1)2

c
(2,2)
2 (d) = 32(d− 2)

(
3d2 − 16d+ 17

)
3(d− 4)(d− 1)2 .

(4.39)

From these coefficients, using eq. (3.16) we finally obtain the metric components h(3,2)
i

h
(3,2)
0 (r) = −4(d− 2)2(3d− 11)

(d− 4)(d− 1)2 mαG2
Nρ

3

h
(3,2)
1 (r) = 8(3d3 − 25d2 + 69d− 65)

3(d− 4)(d− 3)(d− 1)2 mαG2
Nρ

3

h
(3,2)
2 (r) = −4(d− 2)2(3d3 − 19d2 + 33d− 17)

(d− 4)(d− 3)(d− 1)3 mαG2
Nρ

3 .

(4.40)

We can compare this result with the part proportional to mαG2
N of (2.17) and observe that

they match exactly. In particular, all these terms diverge in d = 4, and h(3,2)
1 and h(3,2)

2 also
diverge in d = 3.

As a summary, we have shown that the loop computations give exactly the expression
for the metric of the Reissner-Nordström-Tangherlini solution in de Donder gauge given
in eq. (2.17). At third post-Minkowskian order, in d = 3 only h1 and h2 diverge while
in d = 4 all the components diverge. To obtain the values of the metrics component in
these dimensions we need to perform a renormalisation process which will be described
in section 6. In the next section, we first proceed to compute the gauge potential from
scattering amplitudes.

5 Electromagnetic potential from scattering amplitudes

In this section we perform the computation of the photon emission process in (3.23)
up to 2-loop order, and we recover the expression of the electromagnetic potential by
directly evaluating eq. (3.24) from the electromagnetic current. We show the appearance
of divergences at 2 loops in d = 4, which will be treated in detail in section 6. As already
noticed in section 3, only the time component of the gauge potential is non vanishing, so in
the following it will be the only component taken into account.
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Figure 8. Tree-level diagram for photon emission.

`

q − `

q

p1

p1 − `

p2

ν

Figure 9. 1-loop diagram for photon emission.

Tree level. As for the metric, we start the analysis at tree level for completeness. In
the notation of section 3, the tree-level diagram corresponds to the term l = 0, j = 0 in
the expansion (3.23). Evaluating the matrix element of the current due to the diagram in
figure 8, and using the Feynman rules in section A, one obtains

− i
√

4E1E2 j
(0,0)
ν (~q2) =

(
τφ2A

)
ν
. (5.1)

Considering the classical limit, the tree level electromagnetic current is simply the charge,

j
(0,0)
0 (~q2) = Q , (5.2)

and replacing it inside eq. (3.24) and using the Fourier transform idendities of the master
integral in appendix B, we get

A
(1,0)
0 (r) = Q

4πρ , (5.3)

which is exactly the first order of the expression in (2.25).

1-loop. At this loop order we can only have j = 0. So the 1-loop process is given by the
amplitude in figure 9. The electromagnetic current associated to this process reads

−i
√

4E1E2 j
(1,0)
ν (q2) = 2×

∫
dd+1`

(2π)d+1

i Pαβ,σρ
(
τφ2A

)µ (
τφ2h

)αβ
(τA2h)σρ µ,ν (`, q)

((p1 − `)2 −m2 + iε) (`2 + iε) ((q − `)2 + iε) , (5.4)

where a factor 2 is implied in order to consider the multiplicity of the diagram. Performing
the classical limit to obtain an expression like eq. (3.27), one gets

j
(1,0)
0 (~q2) = − i2κQm

∫
dd`

(2π)d
P00,αβ (τA2h)αβ 0,0 (`, q)

∣∣
`0=0

~̀2(~q − ~̀)2
. (5.5)

Considering the tensorial contraction

P00,αβ (τA2h)αβ 0,0 (`, q)
∣∣
`0=0 = −iκd− 2

d− 1
~̀ · ~q , (5.6)
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Figure 10. 2-loop diagram for photon emission with 2 internal photons and 2 internal gravitons.

we can express the current in term of the master integral through the identities in appendix C.
In particular using (C.2) one end up with the compact expression

j
(1,0)
0 (~q2) = −1

4mQκ
2d− 2
d− 1J(1)(~q2) , (5.7)

recovering eq. (3.25), from which it is possible to extract the form factor c(1,0)(d). Replacing
the above expression inside the (3.24), exploiting the property (B.10), one obtains

A
(2,0)
0 (r) = − Q4π

2(d− 2)
d− 1 mGNρ

2 , (5.8)

which shows, at this order, a perfect agreement with the expression (2.25).

2-loop. At 2 loops we can have either j = 0 or j = 2. We first discuss the case j = 0,
for which there are three different diagrams, which differ by the internal tree structure.
The first amplitude we consider is the one in figure 10, which has 2 internal photons and 2
internal gravitons. The associated electromagnetic current to this process is

− i
√

4E1E2 j
(2,0)(a)
ν (q2) = 6×

∫
dd+1`1
(2π)d+1

dd+1`2
(2π)d+1

−Pσρ,αβPγδ,ηχ
(
τφ2A

)
λ

(
τφ2h

)ηχ (
τφ2h

)σρ
(
`21 + iε

) (
`22 + iε

)
((q−`1−`2)2 + iε)

× (τA2h)γδ,µ,λ (`1, `1 +`2) (τA2h)αβ µ,ν(`1 +`2, q)
((`1 +`2)2 + iε) ((p1−`1)2−m2 + iε)((p1−`1−`2)2−m2 + iε) . (5.9)

Exploiting the procedure outlined in section 3, one gets

j
(2,0)(a)
0 (~q2) = −κ

2Qm2

4

∫
dd`1
(2π)d

dd`2
(2π)d

Pαβ,00P σρ,00

~̀1
2 ~̀2

2(~q − ~̀1 − ~̀2)2( ~̀1 + ~̀2)2

× (τA2h)0µ,αβ(`1, `1 + `2)(τA2h)0µ
σρ(`1 + `2, q)

∣∣
`0i=0 ,

(5.10)

where the tensor contraction gives

Pαβ,00P σρ,00(τA2h)0,µ,αβ(`1, `1 + `2)(τA2h)0,µ
σρ(`1 + `2q)

∣∣
`0i=0

= −κ2 (d− 2)2

(d− 1)2 ( ~̀1 + ~̀2) · ~q ( ~̀1 + ~̀2) · ~̀1 .
(5.11)

– 22 –



J
H
E
P
0
9
(
2
0
2
2
)
0
1
3

b

`1

`2

q − `1 − `2

q

p1

p1 − `1

p1 − `1 − `2

p2

ν

Figure 11. 2-loop diagram for photon emission with 1 internal photon and 2 internal gravitons.

Then using the reduction identities in appendix C, one gets the current in term of the
master integral as

j
(2,0)(a)
0 (~q2) = κ4Qm2

12
(d− 2)2

(d− 1)2J(2)(~q2) , (5.12)

from which, due to the usual relations of the Fourier transform of the master integral, one
recovers

A
(3,0)(a)
0 (r) = Q

4πm
2G2

N

16
3

(d− 2)2

(d− 1)2 ρ
3 . (5.13)

The second amplitude we consider is the one in figure 11, which has 1 internal photon
and 2 internal gravitons. The electromagnetic current associated to the diagram is

−i
√

4E1E2 j
(2,0)(b)
ν (q2) = 3×

∫
dd+1`1
(2π)d+1

dd+1`2
(2π)d+1

−iPσρ,αβPγδ,ηχ
(
τφ2A

)µ (
τφ2h

)ηχ (
τφ2h

)σρ(
`21 + iε

) (
`22 + iε

)
((q−`1−`2)2 + iε)

× (τA2h2)αβ,γδ µ,ν(`1, q)
((p1−`1)2−m2 + iε)((p1−`1−`2)2−m2 + iε) .

(5.14)
Performing the classical limit, one gets

j
(2,0)(b)
0 (~q2) = i

8κ
2m2Q

∫
dd`1
(2π)d

dd`2
(2π)d

P00,µνP00,αβ(τA2h2)0,0,µν,αβ(`1, q)
∣∣
`0i=0

~̀1
2 ~̀2

2 (
~q − ~̀1 − ~̀2

)2 , (5.15)

where the tensorial contraction of the numerator leads to

P00,µνP00,αβ(τA2h2)0,0,µν,αβ(`1, q)
∣∣
`0i=0= i

κ2

2
(d− 2)(3d− 7)

(d− 1)2
~̀1 · ~q . (5.16)

Then using the relation (C.5), the current in term of the master integral reads

j
(2,0)(b)
0 (~q2) = −m

2Qκ4

48
(d− 2)(3d− 7)

(d− 1)2 J(2)(~q2) , (5.17)

from which considering the usual Fourier transform one gets

A
(3,0)(b)
0 (r) = − Q4πm

2G2
N

4
3

(d− 2)(3d− 7)
(d− 1)2 ρ3 . (5.18)
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Figure 12. 2-loop diagram for photon emission with 1 internal photon and 3 internal gravitons.

The last diagram that contributes to the process with l = 2, j = 0 is the one with an
internal 3 graviton vertex, as shown in figure 12. Since the 3 graviton vertex is internal, we
must use the expression given in (A.9) as discussed in appendix A. The current associated
to this diagram is

− i
√

4E1E2 j
(2,0)(c)
ν (q2) = 3×

∫
dd+1`1
(2π)d+1

dd+1`2
(2π)d+1

Pα1β1,γδPα2β2,ηχPα3β3,σρ

(
τφ2A

)µ(
`21 + iε

) (
`22 + iε

)
((q − `1 − `2)2 + iε)

×

(
τφ2h

)γδ (
τφ2h

)ηχ
(τh3)α1β1,α2β2,α3β3 (`1, `2,−`1 − `2) (τA2h)σρ µ,ν(q − `1 − `2, q)

((`1 + `2)2 + iε) ((p1 − `1)2 −m2 + iε)((p1 − `1 − `2)2 −m2 + iε) .

(5.19)
Referring to eq. (3.27), one gets

j
(2,0)(c)
0 (~q2) = 1

8κ
2Qm2

∫
dd`1
(2π)d

dd`2
(2π)d

P00,µνP00,αβPγδ,σρ

~̀1
2 ~̀2

2(~q − ~̀1 − ~̀2)2( ~̀1 + ~̀2)2

× (τh3)µν,αβ,γδ (`1, `2,−`1 − `2) (τA2h)σρ 0,0(q − `1 − `2, q)
∣∣
`0i=0 ,

(5.20)

where considering from the beginning the fact that all the expressions that contain internal
momenta are symmetric under the exchange of `1 ↔ `2, the tensor contraction at the
numerator reads

Pγδ,σρPµν,00Pαβ,00 (τh3)µν,αβ,γδ (`1, `2,−`1 − `2) (τA2h)σρ 0,0(q − `1 − `2, q)
∣∣
`0i=0

= −κ
2

4
d− 2

(d− 1)2

(
4(d− 1) ~̀1 · (~q − ~̀1 − ~̀2) ~̀1 · ~q + 2(d− 1) ~̀1 · (~q − ~̀1 − ~̀2) ~̀2 · ~q

+ (d− 5)~q · (~q − ~̀1 − ~̀2) ~̀1 · ~̀2
)
.

(5.21)

Exploiting the expressions in appendix C, the current finally reads

j
(2,0)(c)
0 (~q2) = κ4m2Q

96
(d− 2)(34− 29d+ 7d2)

(d− 4)(d− 1)2 J(2)(~q2) , (5.22)

from which
A

(3,0)(c)
0 (r) = Q

4πm
2G2

N

2
3

(d− 2)(34− 29d+ 7d2)
(d− 4)(d− 1)2 ρ3 . (5.23)
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Figure 13. 2-loop diagram for photon emission with 3 internal photons and 1 internal graviton.

At the end we can sum up all the j = 0 pieces to obtain

A
(3,0)
0 (r) =

∑
i=a,b,c

A
(3,0)(i)
0 (r) = Q

4πm
2G2

N

2(d− 2)2(3d− 7)
(d− 1)2(d− 4) ρ3 , (5.24)

which is exactly the contribution that appears in (2.25). In this last expression a divergence
in d = 4 arises. These singularities have to be renormalised, and in section 6 the general
procedure to cure them will be shown.

Finally, the only process that contributes at l = 2, j = 2 is the one which has 3 internal
photons and 1 internal graviton, shown in figure 13. The electromagentic current associated
to this process is then

−i
√

4E1E2 j
(2,2)
ν (q2) = 3×

∫
dd+1`1
(2π)d+1

dd+1`2
(2π)d+1

Pγδ,σα
(
τφ2A

)β (
τφ2A

)σ (
τφ2A

)ρ(
`21 + iε

) (
`22 + iε

)
((q − `1 − `2)2 + iε)

× (τA2h)σα β,σ(`1,−`2) (τA2h)γδ ρ,ν(q − `1 − `2, q)
((`1 + `2)2 + iε) ((p1 − `1)2 −m2 + iε)((p1 − `1 − `2)2 −m2 + iε) ,

(5.25)
which in the classical regime reads

j
(2,2)
0 (~q2) = 1

2Q
3
∫

dd`1
(2π)d

dd`2
(2π)d

Pµν,αβ (τA2h)µν 00(`1,−`2) (τA2h)αβ 00(q − `1 − `2, q)
∣∣
`0i=0

~̀1
2 ~̀2

2(~q − ~̀1 − ~̀2)2( ~̀1 + ~̀2)2
.

(5.26)
Computing the tensor contraction in the numerator as

Pµν,αβ (τA2h)µν 0,0(`1,−`2) (τA2h)αβ 0,0(q − `1 − `2, q)
∣∣
`0i=0

= κ2

2

(
d− 3
d− 1

~̀1 · ~̀2 ~q · (~q − ~̀1 − ~̀2) + 2 ~q · ~̀2 ~̀1 · (~q − ~̀1 − ~̀2)
)
,

(5.27)

in which again we exploited the symmetry `1 ↔ `2, and using the expressions in appendix C,
we obtain

j
(2,2)
0 (~q2) = Q3κ2

8
(d− 3)(d− 2)
(d− 4)(d− 1)J(2)(~q2) . (5.28)

From this we get the contribution to the electromagnetic potential

A
(3,2)
0 (r) = Q

4παGN
(d− 3)(d− 2)
(d− 4)(d− 1)ρ

3 . (5.29)
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This last expression matches perfectly the corresponding term of eq. (2.25). As before, we
notice a divergence for d = 4 which must be renormalised.

To summarise, we have shown that from the loop computations in this section one
recovers exactly the expression for the electromagnetic potential of the Reissner-Nordström-
Tangherlini solution in de Donder gauge given in eq. (2.25).

6 Divergences and higher-derivative couplings

In section 4 and 5 we noticed the appearance of divergences in d = 3 and d = 4. In this
section we show how such divergences are renormalised by non-minimal couplings. After
showing how to regularise the divergences, in the first subsection we analyse the structure of
the non-minimal couplings that are needed and the variation of the metric and the potential
that they produce, while in the second subsection we use these results to renormalise
the divergences.

Regularisation in d = 3. In this dimension the only divergences that appear are at
2-loop order for the metric, while the electromagnetic potential is well defined. From
the explicit expression of the 2-loop contribution of the metric in d = 3, we notice that
h

(d=3)
0

∣∣
2−loop is non divergent and can be already compared with the (2.20) with a perfect

match. The other two components are equal up to a multiplicative constant, in particular
we have h(d=3)

2
∣∣
2−loop= −3h(d=3)

1
∣∣
2−loop. So we will renormalise only the h

(d=3)
1

∣∣
2−loop

component and then obtain the other one using this relation. We perform a dimensional
regularisation using d = 3 + ε, where ε is a small parameter. Neglecting terms that vanish
when ε→ 0, the result is

h
(d=3)
1

∣∣
2−loop = 1

ε

(
4
3
mαG2

N

r3 − 2
3
m3G3

N

r3

)
+ m3G3

N

r3

(
2 log (2CEr)−

4
3

)
−

− 4mαG
2
N

r3 log (2CEr) ,
(6.1)

where following [18] we defined the constant C2
E ≡ πeγEM , with γEM the Euler-Mascheroni

constant.

Regularisation in d = 4. In d = 4 dimension the metric is divergent at both 1-loop
and 2-loop order, while the potential is divergent at 2-loop. Again, from the explicit form
of the metric, we can see that at 1-loop order the h(d=4)

0
∣∣
1−loop component is non divergent

and no renormalisation procedure has to be carried on. The h(d=4)
1

∣∣
1−loop and h(d=4)

2
∣∣
1−loop

components are related by the identity h(d=4)
2

∣∣
1−loop= −4h(d=4)

1
∣∣
1−loop and so we can focus

just on one component. Regularizing in d = 4 + ε, and neglecting again terms that vanish
when ε→ 0, the result at 1-loop is

h
(d=4)
1

∣∣
1−loop = 1

ε

(
−2

3
αGN
π2r4 −

40
9
G2
Nm

2

π2r4

)
+ m2G2

N

π2r4

(
− 4

27 + 40
9 log

(
C2
Er

2
))

+ αGN
π2r4

(
−4

9 + 2
3 log

(
C2
Er

2
))

.

(6.2)
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For what concerns the 2-loop order, we can focus just on the h(d=4)
1

∣∣
2−loop component since

the relation h(d=4)
0

∣∣
2−loop= h

(d=4)
2

∣∣
2−loop= −2h(d=4)

1
∣∣
2−loop holds. We obtain

h
(d=4)
1

∣∣
2−loop = 1

ε

(
8
9
mαG2

N

π3r6 + 160
27

m3G3
N

π3r6

)
+ m3G3

N

π3r6

(208
81 −

80
9 log

(
C2
Er

2
))

+ αmG2
N

π3r6

(64
27 −

4
3 log

(
C2
Er

2
))

,

(6.3)

Finally, the potential regularised at 2-loop is

A
(d=4)
0

∣∣
2−loop = 1

ε

(
10
9
Q(GNm)2

π4r6 + 1
6
QGNα

π4r6

)
− 1

27
Q(GNm)2

π4r6

(
−28 + 45 log(C2

Er
2)
)

− 1
36
QGNα

π4r6

(
−7 + 9 log(C2

Er
2)
)
.

(6.4)

6.1 Non-minimal couplings

As shown in [18], the previous divergences can be renormalised considering non-minimal
coupling terms linear in the Riemann tensor and quadratic in the scalar field. Since we are
considering charged scalars, we generalise their non-minimal couplings to the following form

δ(n)Sct =
+∞∑
k=0

(GNm)
2(n−k)
d−2 (αGN )

k
d−2

∫
dd+1x

√
−g
(
α(n,k)(d)(D2)n−1RDµφD

µφ

+
(
β

(n,k)
0 (d)DµDν(D2)n−2R+ β

(n,k)
1 (d)(D2)n−1Rµν

)
DµφDνφ

) (6.5)

where Dµ is the covariant derivative, and where we consider only positive integer powers of
the gravitational and electromagnetic coupling.

Due to properties of Fourier transform, terms with n ≥ 2 and terms proportional to
β

(n,k)
0 and β(n,k)

1 do not contribute to the classical limit of the metric [18]. We have verified
that this statement is valid also for the potential. For the sake of simplicity of notation,
we define

α(n)(d) =
+∞∑
k=0

(GNm)
−2k
d−2 (αGN )

k
d−2α(n,k)(d) , (6.6)

and, in the same way, we can define β(n)
0 and β

(n)
1 . Thus, the only contribution to the

non-minimal coupling action that will renormalise the metric and the potential is

δ(1)Sct = (GNm)
2
d−2α(1)(d)

∫
dd+1x

√
−g RDµφD

µφ . (6.7)

In the following, we compute the Feynman rules associated with the counter-terms only in
the case n = 1, but for the sake of completeness we give the complete relations considering
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p2

q
µν1

Figure 14. Insertion of non-minimal coupling at tree level.

also the term proportional to β(1)
1 . Then one gets [18]

µν1 =
(
τ ctφ2h

)
µν

(q)

= (GNm)
2
d−2 iκ

(
α(1)(d)

(
−qµqν + ηµνq

2
)
p1 · p2 + β

(1)
1 (d)q

2

2 p1µp2 ν

)
(6.8)

whose classical limit is

(
τ ctφ2h

)
µν

(q) ' −(GNm)
2
d−2 iκm2

(
α(1)(d)

(
qµqν + ηµν~q

2
)

+ β
(1)
1 (d)~q

2

2 δ
0
µδ

0
ν

)
. (6.9)

Another possible vertex is constituted by two photons and one graviton. It arises since we
must take into account the electromagnetic gauge symmetry into the covariant derivative.
Its contribution is

ν

µ

αβ1 =
(
τ ctA2h

)
αβ,µ,ν

(q) =−(GNm)
2
d−2Q2iκ

(
α(1)(d)(−qαqβ+ηαβq

2)2ηµν

+β(1)(d)q
2

2 (ηµαηνβ+ηναηµβ)
)

(6.10)

However, we find that the 1-loop insertion of this vertex is vanishing in the classical
limit, both with an external photon and an external graviton, and it will be no longer
considered in this paper. Now, we can use the counter-term in (6.9) to compute the diagrams
that will be necessary to the renormalisation process.

Following [18], the insertion of the non minimal coupling at tree level gives the process
in figure 14. The associated contribution to the stress-energy tensor is given by

−iκ
2
√

4E1E2 δ
(1)T (0)

µν (q2) =
(
τ ctφ2h

)
µν

(q) . (6.11)
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`

q − `

q

p1

p1 − `

p2

µν

1

Figure 15. Insertion of non-minimal coupling at 1-loop with an external graviton.

Considering the relation between the stress-energy tensor and the metric perturbation, as
in [18], we obtain the contributions to the metric components

δ(1)h
(1)
0 (r) = 0

δ(1)h
(1)
1 (r) =

16α(1)(d)Γ
(
d
2

)
π
d−2

2

(GNm)
d
d−2

rd

δ(1)h
(1)
2 (r) =

−32α(1)(d)Γ
(
d+2

2

)
π
d−2

2

(GNm)
d
d−2

rd
,

(6.12)

where α(1)(d) is defined in (6.6). Then, we can consider the insertion in the 1-loop diagram
as in figure 15. The corresponding contribution to the stress-energy tensor is

− i κ

2
√

4E1E2 δ
(1)T (1)

µν (q2)

= 2×
∫

dD`

(2π)D
−i Pρσ,αβPηξ,γδ

(
τφ2h

)
ρσ

(
τ ctφ2h

)
ηξ

(q − `) (τh2h) µναβ,γδ(l, q)

((p1 − `)−m2 + iε)(`2 + iε)((q − `)2 + iε)

(6.13)

from which using the property in (B.13), we determine the contributions to the metric [18]

δ(1)h
(2)
0 (r) = 64α(1)(d)

(d− 2)Γ
(
d
2

)2

(d− 1)πd−2

(GNm)
1
d−2

r

2(d−1)

(6.14)

δ(1)h
(2)
1 (r) = −64α(1)(d)

(d− 2)Γ
(
d
2

)2

(d− 1)πd−2

(GNm)
1
d−2

r

2(d−1)

(6.15)

δ(1)h
(2)
2 (r) = 128α(1)(d)

(d− 2)Γ
(
d
2

)2

(d− 1)πd−2

(GNm)
1
d−2

r

2(d−1)

. (6.16)

In addition to the previous diagrams, we compute the insertion in the 1-loop diagram with
an external photon, as in figure 16, since it will be necessary in order to renormalise the
electromagnetic potential. The contribution to the electromagnetic current is

− i
√

4E1E2 δ
(1)j(1)

ν (q2)

= 2×
∫

dd+1`

(2π)d+1

iPαβγδ
(
τφ2A

)µ (
τ ctφ2h

)γδ
(q − `) (τA2h)αβ µν(`, q)

((p1 − `)2 −m2 + iε)(`2 + iε)((q − `)2 + iε)
.

(6.17)
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Figure 16. Insertion of non-minimal coupling at 1-loop with an external photon.

Considering the classical limit we get

− i 2mδ(1)j
(1)
0 (~q2) = −iQ

∫
dd`

(2π)d
Pµν,αβ

(
τ ctφ2h

)µν
(q − `) (τA2h)αβ 00(`, q)

∣∣
`0=0

~̀2(~q − ~̀)2
, (6.18)

from which computing

Pµν,αβ
(
τ ctφ2h

)µν
(q − `) (τA2h)αβ 00(`, q)

∣∣
`0=0

= − κ2

2(d− 1)(GNm)
2
d−2
(
β(1)(d)(d− 2)(~̀2 ~̀ · ~q − 2~̀ · ~q ~̀ · ~q + ~̀ · ~q ~q2)

− 2α(1)(d)m2~̀ · ~q(~q2 + ~̀2)− 2α(1)(d)(d− 3)m2~̀ · ~q ~̀ · ~q
)
,

(6.19)

and exploiting eqs. (C.3) and (C.4), one finally obtains the contribution to the electromag-
netic current

δ(1)j
(1)
0 (~q2) = 1

4Qκ
2mα(1)(d)(GNm)

2
d−2 ~q2J(1)(~q2) . (6.20)

Then using eq. (B.13), we obtain the contribution to the electromagnetic potential

δ(1)A
(2)
0 (r) = −4GNm(GNm)

2
d−2Qα(1)(d)

Γ
(
d
2

)2

πd−1r2(d−1) . (6.21)

6.2 Renormalisation

Renormalisation in d = 3. In four dimensions, the only values of k that respect the
constraints described in the previous section are k = 0, 1, 2. However, the case k = 2 does
not have a match in the post-Minkowskian expansion and will not be considered. As a
consequence, eq. (6.6) becomes

α(1)(3) = α(1,0)(3) + αGN
(GNm)2α

(1,1)(3) . (6.22)

In order to cure the divergences, α(1)(3) must have the form

α(1)(3) = ω(3)
d− 3 + Ω(3) , (6.23)

where ω(3) is the coefficient that we need to fix in order to renormalise the metric, while
Ω(3) is a finite term. In d = 3, the 2-loop corrections to the metric are given by the
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diagram in figure 14 and, expanding the metric contributions (6.12) in d = 3 + ε, we find
the renormalised metric component

h
(d=3)
1

∣∣renorm
2-loop = h

(d=3)
1

∣∣
2-loop+δ(1)h

(1)
1

= 8G3
Nm

3

εr3

(
ω(3)− 1

12 + α

6GNm2

)
− 4G3

Nm
3

3r3 + 8G3
Nm

3

r3 ω(3) + 8G3
Nm

3

r3 Ω(3)

+ 2G3
Nm

3

r3 log (2CEr)−
4αG2

Nm

r3 log (2CEr)−
8G3

Nm
3

r3 ω(3) log
(
2CErG2

Nm
2
)
.

(6.24)

We can fix the ω(3) in order to cancel the divergent term in the metric component above.
Imposing this condition we obtain for the divergent contribution

ω(3) = 1
12 −

αGN
6(GNm)2 . (6.25)

For the term independent of α we recognise the coupling already found in [18], while the
other is the new piece due to electromagnetic interaction. With this choice the metric
components become

h
(d=3)
1

∣∣renorm
2-loop = 2G3

Nm
3

3r3

(
2 log

(2CEr
GNm

)
+ 12 Ω(3)− 1

)
− 4G2

Nmα

3r3

(
1 + 2 log

(2CEr
GNm

))
.

(6.26)

Now it is straightforward to see that this expression matches the metric in (2.23) up to
finite terms. In fact, although we cannot fix the finite part Ω(3), since it belongs to the
high energy regime, we can keep trace of it, and imposing a strict agreement between the
renormalised metric and the one computed classically, the condition

Ω(3) = 2ω(3) log
(

c

4CE

)
− ω(3) + 2

3 (6.27)

must hold, which relates the freedom in the quantum computation with the gauge freedom
in the classical one.

Renormalisation in d = 4. Referring to (6.5), in five dimensions the only allowed
values of k are k = 0, 2. Then the expression in (6.6) reads

α(1)(4) = α(1,0)(4) + αGN
(GNm)2α

(1,2)(4) . (6.28)

As we already did in the previous case, in order to cancel the divergences we write

α(1)(d) = ω(4)
d− 4 + Ω(4) , (6.29)

where ω(4) is the coefficient we need to fix in order to renormalise the divergences in d = 4
and Ω(4) is a finite contribution. In d = 4 + ε the metric is renormalised at one loop adding
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the contribution of the diagram in figure 14. Then we can set the constant ω(4) in order to
vanish the divergence of the metric. The value obtained is

ω(4) = 5
18π + GNα

(GNm)2
1

24π , (6.30)

and again we can match the purely gravitational result with [18]. As done for d = 3 we
can obtain a perfect match with the classical expression (2.23) fixing the finite contribution
Ω(4), finding

Ω(4) = ω(4)
2 log

(
3πc
8C2

E

)
+ ω(4)

6 − 4
27π . (6.31)

Finally the renormalised metric component with this choice of coupling constants is

h
(d=4)
1

∣∣renorm
1−loop= h

(d=4)
1

∣∣
1−loop + δ(1)h

(1)
1 = 56G2

Nm
2

27π2r4 −
αGN
9π2r4 + 16G2

Nm
2

πr4 Ω(4)

+ 20G2
Nm

2

9π2r4 log
(
C2
Er

2

GNm

)
+ αGN

3π2r4 log
(
C2
Er

2

GNm

)
.

(6.32)

For the 2-loop computation the steps are the same of the case above but using the 1-loop
diagram in figure 15. The computations are independent from the previous case and lead
to the same constants ω(4) and Ω(4) defined above. At this order the renormalised metric
component is found to be

h
(d=4)
1

∣∣renorm
2-loop = h

(d=4)
1

∣∣
2-loop + δ(1)h

(2)
1 = −112G3

Nm
3

81π3r6 + 16αG2
Nm

9π3r6 − 64G3
Nm

3Ω(4)
3π2r6

− 80G3
Nm

3

27π3r6 log
(
C2
Er

2

GNm

)
− 4αG2

Nm

9π3r6 log
(
C2
Er

2

GNm

)
.

(6.33)

Then the exact same considerations lead to the computation of the renormalised
electromagnetic potential, whose considering (6.21), the 2-loop renormalised contribution is

A
(d=4)
0

∣∣renorm
2-loop = A

(d=4)
0

∣∣
2-loop+δ(1)A

(2)
0 = Q

4π

(
− 8

27
(GNm)2

π3r6 + 1
9
GNα

π3r6 +

− 16(GNm)2

π2r6 Ω(4) + 20
9

(GNm)2

π3r6 log
(
GNm

C2
Er

2

)
+ 1

3
GNα

π3r6 log
(
GNm

C2
Er

2

))
, (6.34)

in which the very same counter term in (6.30) is used in order to cancel the divergences.
Finally using the relation (6.31) the renormalised electromagnetic potential perfectly match
the classical calculation in section 2.

7 Discussion

In this paper we have shown that the Reissner-Nordström-Tangherlini solution, describing
the metric and the potential generated by a static and spherically symmetric object of charge
Q and mass m in any dimension, can be derived from scattering amplitudes describing the
emission of either a graviton or a photon from a scalar field with the same charge and mass.
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Our analysis was carried out up to third post-Minkowskian order, that is up to 2 loops.
This generalises to the case of charged scalars the work of [20] and [18], where the chargeless
case was considered at one loop and up to three loops respectively. All these works extend
the original results of [15] and [9], where amplitude computations were applied to derive the
metric of all black hole solutions in four dimensions up to second post-Minkowskian order.

We have used the techniques outlined in [12] to extract the classical contributions
from the scattering amplitudes. Considering the mass of the scalar to be much larger than
the transferred momentum and the loop momenta, one can integrate over the time-like
components of the latter in such a way that the propagator of the massive internal scalar
drops out of the integral. This projects the quantum scattering amplitude on a tree graph
similar to the one considered in earlier work [16].

The amplitude computations in this paper are performed in de Donder gauge. In
extracting the metric and the potential from the amplitudes, one finds that in this gauge
they both develop singularities. In particular, both the metric and the potential are singular
at two loops in five dimensions, and the metric is also singular at one loop in five dimensions
and at two loops in four dimensions [18, 20]. In order to cure such divergences, one adds
counter-terms from non-minimal couplings. In [18] it was shown that a specific higher-
derivative coupling, namely the one given in eq. (6.7), generates all the counter-terms
that are needed to cancel all the divergences coming from graviton loops up to fourth
post-Minkowsian order. We show that by simply adding to the coefficient in front of this
term a contribution proportional to the square of the charge, one cancels all the divergences
arising from amplitudes in which both photons and gravitons run in loops up to third
post-Minkowskian order.

After the renormalisation procedure, logarithmic terms are produced both in the metric
and the potential. These terms exactly match the logarithms that one generates performing
a post-Minkowskian expansion of the Reissner-Nordström-Tangherlini solution in de Donder
gauge, implying that their occurrence is purely an artifact of the gauge choice. In particular,
one can perform the same expansion in a gauge in which such terms do not occur, and in [20]
it was indeed shown that extracting the metric from scattering amplitudes in this gauge
there are no divergences at one loop in five dimensions. In the context of the world-line
formalism, these higher-derivative couplings had already been introduced in [21], and shown
not to contribute to any physical observable. The equivalence between the scattering
amplitude and world-line approaches was shown in [22].

There are various ways in which this work can be extended. As mentioned in section 6,
the vertex in eq. (6.10) does not contribute to the renormalisation process up to 2 loops,
and extending our analysis at higher loops would reveal whether this property is general or
it is an artifact of the order of the computation. It would also be interesting to perform
these higher loop computations in different gauges, generalising the 1-loop analysis of [20].
In particular, we expect that in the gauge in which no divergences arise, the non-minimal
coupling in eq. (6.7) does not contribute to the classical limit. Finally, one could extend
the analysis to the emission of gravitons and photons from fermionic matter, extending the
four-dimensional 1 loop analysis of [9, 15], in order to explore the richer structure of black
hole solutions in higher dimensions [23].
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The techniques to extract classical contributions from quantum processes have been
widely applied in the last few years to determine the dynamics of massive objects from
two-body scattering amplitudes [14, 22, 24–34], and they have also been extended to higher-
dimensions [19, 35] (for a review see [36]). This research program can be applied to make
high-precision computations for the post-Minkowskian dynamics of binary bound systems,
which could lead to predictions in the context of gravitational-wave emission [37].
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A Feynman rules

In this section we list all the Feynman rules used in the paper. We also write down explicitly
some of the expressions for the contraction of the 3-graviton vertex with two propagators.

• Scalar propagator of mass m:
q = i

q2 −m2 + iε
. (A.1)

• Photon propagator in the Feynman gauge:
q

µ ν = − iηµν

q2 + iε
. (A.2)

• Graviton propagator in de Donder gauge:
q

αβ µν = i
Pαβ,µν
q2 + iε

, (A.3)

with Pαβ,µν defined by

Pαβ,µν ≡
1
2

(
ηµαηνβ + ηµβηνα −

2
d− 1ηµνηαβ

)
. (A.4)

• 2 scalars — 1 photon vertex:

p

p′

µ =
(
τφ2A

)µ
(p, p′) = −iQ

(
p+ p′

)µ
. (A.5)

• 2 scalars — 1 graviton vertex [38]:

p

p′

µν =
(
τφ2h

)µν
(p, p′,m) = − iκ2

((
pµp′ν + pνp′µ

)
− ηµν

(
p · p′ −m2)) .

(A.6)
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• 2 photons — 1 graviton vertex [38]:

p

p′

q

α

β

µν = (τA2h)µν,α,β (p, p′)

= iκ

(
Pµναβ(4) (p · p′) + 1

2

(1
2η

µν(pαp′β + pβp′α) + ηαβ(pµp′ν + pνp′µ)

−1
2
(
ηβν(pµp′α + pαp′µ) + ηαν(pµp′β + pβp′µ) + ηαµ(pνp′β + pβp′ν)

+ηβµ(pνp′α + pαp′ν)
)))

,

(A.7)

where Pµν,αβ(4) is (A.4) in four space-time dimensions, i.e. for d = 3.

• 2 photons — 2 graviton vertex [38]:

p

p′

α

β

ρσ

µν

= (τA2h2) µν,ρσ,α,β(p, p′)

= − iκ
2

4
((
pβp
′
α − ηαβp · p′

)
(ηµρηνσ + ηµσηνρ − ηµνηρσ) + ηµρ

(
ηαβ

(
pνp
′
σ + pσp

′
ν

)
−ηανpβp′σ − ηβνpσp′α − ηβσpνp′α − ηασpβp′ν + p · p′ (ηανηβσ + ηασηβν)

)
+ ηµσ

(
ηαβ

(
pνp
′
ρ + pρp

′
ν

)
− ηανpβp′ρ − ηβνpρp′α − ηβρpνp′α − ηαρpβp′ν

+p · p′ (ηανηβρ + ηαρηβν)
)

+ ηνρ
(
ηαβ

(
pµp
′
σ + pσp

′
µ

)
− ηαµpβp′σ − ηβµpσp′α

−ηβσpµp′α − ηασpβp′µ + p · p′ (ηαµηβσ + ηασηβµ)
)

+ ηνσ
(
ηαβ

(
pµp
′
ρ + pρp

′
µ

)
−ηαµpβp′ρ − ηβµpρp′α −ηβρpµp′α − ηαρpβp′µ + p · p′ (ηαµηβρ + ηαρηβµ)

)
− ηµν

(
ηαβ

(
pρp
′
σ + pσp

′
ρ

)
− ηαρpβp′σ − ηβρpσp′α − ηβσpρp′α − ηασpβp′ρ

+p · p′ (ηαρηβσ + ηβρηασ)
)
− ηρσ

(
ηαβ

(
pµp
′
ν + pνp

′
µ

)
− ηαµpβp′ν − ηβµpνp′α

−ηβνpµp′α − ηανpβp′µ + p · p′ (ηαµηβν + ηβµηαν)
)

+ (ηαρpµ − ηαµpρ)
(
ηβσp

′
ν − ηβνp′σ

)
+ (ηασpν − ηανpσ)

(
ηβρp

′
µ − ηβµp′ρ

)
+ (ηασpµ − ηαµpσ)

(
ηβρp

′
ν − ηβνp′σ

)
+ (ηαρpν − ηανpρ)

(
ηβσp

′
µ − ηβµp′σ

))
.

(A.8)
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• 3 graviton vertex [3, 39]:

p1

p2
p3

µ1ν1

µ2ν2

µ3ν3 = (τh3)µ1ν1,µ2ν2,µ3ν3 (p1, p2, p3)

= −2iκSym
(
−1

4P3
(
p1 · p2η

µ1ν1ηµ2ν2ηµ3ν3
)
− 1

4P6
(
pµ2

1 pν2
1 η

µ1ν1ηµ3ν3
)

+ 1
4P3

(
p1 · p2η

µ1µ2ην1ν2ηµ3ν3
)

+ 1
2P6

(
p1 · p2η

µ1ν1ηµ2µ3ην2ν3
)

+ P3
(
pµ2

1 pν3
1 η

µ1ν1ην2µ3
)
− 1

2P3
(
pν2

1 p
µ1
2 ην1µ2ηµ3ν3

)
+ 1

2P3
(
pµ3

1 pν3
2 η

µ1µ2ην1ν2
)

+ 1
2P6

(
pµ3

1 pν3
1 η

µ1µ2ην1ν2
)

+ P6
(
pµ2

1 pν3
2 η

ν2µ1ην1µ3
)

+ P3
(
pµ2

1 pµ1
2 ην2µ3ην3ν1

)
− P3

(
p1 · p2η

ν1µ2ην2µ3ην3µ1
))

. (A.9)

Here “Sym” indicates that a symmetrisation has to be performed on each index
pair, while “P” indicates that a summation has to be performed on all the dis-
tinct permutations of the momentum-index triplets (the subscript gives the number
of terms).6

• Expanding the Einstein-Hilbert action around a background field, one can derive the
vertex for 2 internal and 1 external gravitons [7]:

l

l − q

q

αβ

γδ

µν = (τh2h) µναβ,γδ(l, q)

= iκ

2

(
P

(4)
αβ,γδ

(
lµlν + (l − q)µ(l − q)ν + qµqν − 3

2η
µνq2

)
+ 2qλqσ

(
Iαβ

λσIγδ
µν + Iγδ

λσIαβ
µν − IαβλµIσνγδ − IαβσνIγδλν

)
+ qλq

µ
(
ηαβI

λν
γδ + ηγδI

λν
αβ

)
+ qλq

ν
(
ηαβIγδ

λµ + ηγδIαβ
λµ
)

− q2 (ηαβIγδµν + ηγδIαβ
µν)− ηµνqλqσ (ηαβIγδλσ + ηγδIαβλσ)

+ 2qλ
(
Iαβ

σλIγδσν(l − q)µ + Iαβ
λσIγδσ

µ(l − q)ν − IγδλσIαβσν lµ − IγδλσIαβσµlν
)

6For example:

Sym
[
P3
(
pµ2

1 pµ1
2 ην2µ3ην3ν1

)]
= pµ2

1 pµ1
2 ην2µ3ην3ν1 + pµ3

1 pµ1
3 ην3µ2ην2ν1 + pµ3

2 pµ2
3 ην3µ1ην1ν2 .
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+ q2 (IαβσµIγδ,σν + Iαβ,σ
νIαδ

σµ) + ηµνqλqσ (IγδρσIαβ,λρ + Iαβ
ρσIγδ,λρ)

+
(
l2 + (l − q)2

)(
Iαβ

σµIγδ,σ
ν + IσναβIγδ,σ

µ − 1
2η

µνP
(4)
αβ,γδ

)
− l2ηγδIαβµν − (l − q)2ηαβIγδ

µν
)
, (A.10)

where we have introduced the tensor Iµναβ ≡ 1
2(ηµαηνβ + ηµβηνα). The µν graviton

line corresponds to the external graviton, and the vertex is symmetric under exchange
of the two internal lines.

It is useful to derive an analytical expression of the vertex in eq. (A.10) contracted
with two graviton propagators, which can be then used directly to compute the amplitudes
in which such vertex occurs. Defining

(τ̃h2h) µναβ,γδ ≡ PαβρσPγδηξ (τh2h) µνρσ,ηξ (A.11)

and using the proprieties

Pαβ,γδP
γδ,µν
(4) = Iµναβ ηαβPαβ,µν = − 2

d− 1ηµν

Pαβ,γδI
γδ
µν = Pαβ,µν Pαβ,γδPρσ,µνP

γδ,ρσ
(4) = Pαβ,µν ,

(A.12)

we obtain

(τ̃h2h)µναβ,γδ(l, q) = iκ

2

(
Pαβ,γδ

(
lµlν +(l−q)µ(l−q)ν +qµqν− 3

2η
µνq2

)
+2qλqσ

(
Pαβ

λσPγδ
µν +Pγδ

λσPαβ
µν−PαβλµP σνγδ−PαβσνPγδλν

)
− 2
d−1qλq

µ
(
ηαβP

λν
γδ+ηγδP

λν
αβ

)
− 2
d−1qλq

ν
(
ηαβPγδ

λµ+ηγδPαβ
λµ
)

+ 2
d−1q

2 (ηαβPγδµν +ηγδPαβ
µν)+ 2

d−1η
µνqλqσ (ηαβPγδ,λσ+ηγδPαβ,λσ)

+2qλ
(
Pαβ

σλPγδ,σ
ν(l−q)µ+Pαβ

λσPγδ,σ
µ(l−q)ν−PγδλσPαβ,σν lµ−PγδλσPαβ,σµlν

)
+q2 (PαβσµPγδ,σν +Pαβ,σ

νPαδ
σµ)+ηµνqλqσ (PγδρσPαβ,λρ+Pαβ

ρσPγδ,λρ)

+
(
l2 +(l−q)2

)(
Pαβ

σµPγδ,σ
ν +P σναβPγδ,σ

µ− 1
2η

µνPαβ,γδ

)
+ 2
d−1

(
l2ηγδPαβ

µν +(l−q)2ηαβPγδ
µν
))

. (A.13)

For instance, to compute the 1-loop amplitude in figure 2 one needs (τ̃h2h) µν00,00, and from
eq. (A.13) one gets [18]

(τ̃h2h)µν00,00(l, q) = iκ

2
1

d−1

(
(d−2)

(
lµlν +(l−q)µ(l−q)ν +qµqν + 3

2η
µν~q2

)
− 2(d−2)

(
~l2 +

(
~l+~q

)2
)(

δµ0 δ
µ
0 −

1
4η

µν
)
−2(d−3)~q2δµ0 δ

µ
0

)
.

(A.14)
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B Master integrals

We derive here all the identities needed for the evaluation of (3.15) and (3.24). These
computations involve the Fourier transform with respect to the transferred momentum ~q of
the master integral J(l)(~q2). The relevant integrals are

∫
dd~q

(2π)d
J(l)(~q2)
~q2 ei~q·~x (B.1)

and ∫
dd~q

(2π)d
qiqj
~q2

J(l)(~q2)
~q2 ei~q·~x . (B.2)

The sunset master integral with l-loop has been defined in (3.13) and it can be rewritten as
([18], eq. (2.31))

J(l)(~q2) =
Γ
(
l + 1− ld

2

)
Γ
(
d−2

2

)l+1

(4π) ld2 Γ
(

(l+1)(d−2)
2

) (~q2)
l(d−2)

2 , (B.3)

and substituting it inside (B.1) we have

∫
dd~q

(2π)d
J(l)(~q2)
~q2 ei~q·~x =

Γ
(
l + 1− ld

2

)
Γ
(
d−2

2

)l+1

(4π) ld2 Γ
(

(l+1)(d−2)
2

) ∫
dd~q

(2π)d |~q|
l(d−2)−2ei~q·~x . (B.4)

To solve (B.1) we can compute the inverse Fourier transform F (r) for a generic
spherically symmetric function f(q), defined as

F (r) ≡
∫

ddq

(2π)d f(q)ei~x·~q . (B.5)

Rewriting both ~q and ~x in hyper-spherical coordinates, we can decompose the d-dimensional
plane wave in Bessel functions Jν(qr) [40], and assuming spherical symmetry one gets

F (r) = (2π)−
d
2 r1− d2

∫ ∞
0

qdq q
d
2−1f(q)J d

2−1(qr) . (B.6)

Using the definition of the ν-th order inverse Hankel transform of a generic function g(q)
(defined for q > 0)

Hν{g(q)} ≡
∫ ∞

0
qdq g(q)Jν(qr) , (B.7)

eq. (B.6) becomes
F (r) = (2π)−

d
2 r1− d2 H d

2−1{q
d
2−1f(q)} , (B.8)

which relates a generic spherically symmetric function F (r) with his Fourier transform f(q).
The (d2 − 1)-th order inverse Hankel transform of a generic power α of the momentum is

H d
2−1{q

α} = 2α+1

rα+2

Γ
(
d+2α+2

4

)
Γ
(
d−2α−2

4

) , (B.9)
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obtained inverting Item (2) of the table 9.2 of [41]. In our case f(q) = ql(d−2)−2 as can be
seen from (B.4) and therefore α = d

2 + l(d− 2)− 3. From (B.9) and (B.8) we find

∫
dd~q

(2π)d
J(l)(~q2)
~q2 ei~q·~x =

Γ
(
d−2

2

)
4π d2

1
rd−2

l+1

=
(
ρ

4π

)l+1
. (B.10)

Analogously, in order to solve (B.2) we make the same computation for α = d
2+l(d−2)−5,

obtaining the identity

∫
dd~q

(2π)d
J(l)(~q2)
~q4 ei~q·~x =

Γ
(
d−2

2

)
4π d2

l+1
rd−4+l(d−2)

(2− l(d− 2))(d− 4 + l(d− 2)) .
(B.11)

Applying the operator ∂i∂j on both sides we finally obtain
∫

dd~q

(2π)d
qiqj
~q2

J(l)(~q2)
~q2 ei~q·~x = 1

2− l(d− 2)

(
δij + (l + 1)(2− d)xixj

r

)(
ρ

4π

)l+1
. (B.12)

In both the identities (B.10) and (B.12) the relation between the post-Minkowskian and
the loop expansions is explicit.

From the analysis above one can also derive the identity [18]

∫
dd~q

(2π)dJ(1)
(
~q2
)
ei~q·~x = −

Γ
(
d
2

)2

2πdr2(d−1) , (B.13)

which is needed for the evaluation of the momentum integrals in section 6.

C Loop integral reduction

The classical limit of both the stress-energy tensor and the electromagnetic current arise
extracting from the loop integrals the contributions proportional to the master integral. In
this appendix we list such contributions for all the loop integrals that occur in the amplitude
computations in sections 4 and 5. For some of these relations we made use of the LiteRed
package of Mathematica [42].

1-loop ∫
dd`

(2π)d
~̀2

~̀2(~q − ~̀)2
= 0 , (C.1)

∫
dd`

(2π)d
~̀ · ~q

~̀2(~q − ~̀)2
= 1

2J(1)(~q2) , (C.2)

∫
dd`

(2π)d
~̀ · ~q ~̀2

~̀2(~q − ~̀)2
= 0 , (C.3)

∫
dd`

(2π)d
~̀ · ~q ~̀ · ~q
~̀2(~q − ~̀)2

= 1
4~q

2 J(1)(~q2) , (C.4)
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2-loop

∫
dd`1
(2π)d

dd`2
(2π)d

~̀1 · ~q
~̀1

2 ~̀2
2 (
~q − ~̀1 − ~̀2

)2 = 1
3J(2)

(
~q2
)

(C.5)

∫
dd`1
(2π)d

dd`2
(2π)d

~̀1 · ~̀2
~̀1

2 ~̀2
2 (
~q − ~̀1 − ~̀2

)2 = 1
6J(2)

(
~q2
)

(C.6)

∫
dd`1
(2π)d

dd`2
(2π)d

~̀1 · ~q ~̀1
2

~̀1
2 ~̀2

2 (
~q − ~̀1 − ~̀2

)2 (
~̀1 + ~̀2

)2 = 0 (C.7)

∫
dd`1
(2π)d

dd`2
(2π)d

~̀2 · ~q ~̀1
2

~̀1
2 ~̀2

2 (
~q − ~̀1 − ~̀2

)2 (
~̀1 + ~̀2

)2 = 0 (C.8)

∫
dd`1
(2π)d

dd`2
(2π)d

~̀1 · ~̀2 ~q · ~̀1
~̀1

2 ~̀2
2 (
~q − ~̀1 − ~̀2

)2 (
~̀1 + ~̀2

)2 = 1
6J(2)

(
~q2
)

(C.9)

∫
dd`1
(2π)d

dd`2
(2π)d

~̀1
2
~q2

~̀1
2 ~̀2

2 (
~q − ~̀1 − ~̀2

)2 (
~̀1 + ~̀2

)2 = 0 (C.10)

∫
dd`1
(2π)d

dd`2
(2π)d

~̀1 · ~̀2 ~q2

~̀1
2 ~̀2

2 (
~q − ~̀1 − ~̀2

)2 (
~̀1 + ~̀2

)2 = 1
2J(2)

(
~q2
)

(C.11)

∫
dd`1
(2π)d

dd`2
(2π)d

~̀1 · ~q ~̀2 · ~q
~̀1

2 ~̀2
2 (
~q − ~̀1 − ~̀2

)2 (
~̀1 + ~̀2

)2 = 2d− 7
6(d− 4)J(2)

(
~q2
)

(C.12)

∫
dd`1
(2π)d

dd`2
(2π)d

~̀1 · ~q ~̀1 · ~q
~̀1

2 ~̀2
2 (
~q − ~̀1 − ~̀2

)2 (
~̀1 + ~̀2

)2 = d− 3
3(d− 4)J(2)

(
~q2
)
. (C.13)
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