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1 Introduction

The Standard Model (SM) has been extremely successful in describing strong and elec-
troweak interactions and passed almost all the tests of precision measurements [1]. However,
tiny neutrino masses and the particle candidates for dark matter cannot be accommodated
in the SM, implying that the SM is actually incomplete and serves as only an effective
field theory (EFT) at the low-energy scale. In the Standard Model Effective Field Theory
(SMEFT) [2, 3], the effective operators of mass dimension higher than four composed of
the SM fields are introduced and the SM gauge symmetry is preserved. Therefore, the low-
energy observables computed in the SMEFT framework contain the effects of new physics
but are independent of any specific ultraviolet (UV) model, offering a useful way to search
for new physics beyond the SM.

Great progress in various aspects of the SMEFT has been made in recent years [4–
18] (see, e.g., ref. [19], for a comprehensive review) and several interesting extensions of
the SMEFT (e.g., νSMEFT as the SMEFT extended with sterile neutrinos) have been
developed [20–25]. On the other hand, if a specific renormalizable UV model is known, one
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can match it onto the SMEFT by integrating out the heavy degrees of freedom to study its
low-energy consequences. But, generally speaking, not all of the effective operators of mass
dimension larger than four in the SMEFT can be induced. In ref. [26], all the tree-level
contributions to the Wilson coefficients of the dimension-six SMEFT operators in any UV
completions with general scalar, spinor and vector field content and arbitrary interactions
have been derived. However, the one-loop matching is in general more complicated and
more technical than the tree-level matching. So far there have been only a few examples
of complete or partial one-loop matching for the simple extensions of the SM, such as the
SM extended with a charged scalar singlet [27], a real scalar singlet [28–33], a real scalar
triplet [34–36], a vector-like quark singlet [37], a light sterile neutrino and heavy fermions
and a scalar singlet [38], two scalar leptoquarks [39], and singlet right-handed neutrinos [40]
by either diagrammatic calculations or the functional approach [29, 32–36, 41–48] (see, e.g.,
refs. [49–51], for earlier works).

In this paper, we aim to carry out the complete one-loop matching for the effective op-
erators up to dimension-six by integrating out heavy Majorana neutrinos in the canonical
type-I seesaw model [52–56] with the functional approach. The type-I seesaw model is the
simplest and most natural one among various extensions of the SM to accommodate tiny
neutrino masses [57]. Thus it is important and necessary to explore its phenomenological
consequences, especially at low-energy scales where precision measurements are performed.
From the EFT point of view, the impact of the heavy Majorana neutrinos on low-energy
observables is completely encoded in the Wilson coefficients of effective operators of dimen-
sion higher than four. This observation indicates that the complete one-loop matching is
unavoidable to obtain the effective operators and the associated Wilson coefficients in the
era of precision measurements. The tree-level matching for the type-I seesaw model has
been performed before [58, 59] and only one dimension-five operator and one dimension-six
operator appear up to dimension-six (the operators of dimension-seven can be found in
ref. [60]), where the former one is the unique Weinberg operator generating tiny Majo-
rana masses of ordinary neutrinos [61] and the latter one is a linear combination of two
dimension-six operators in the Warsaw basis [3]. The dimension-six operator modifies the
coupling of neutrinos with weak gauge bosons and then induces the unitarity violation of
lepton flavor mixing [58–60, 62–65]. Nevertheless, the complete one-loop matching for the
type-I seesaw model up to dimension-six is still lacking though partial results have been
discussed in previous works [40, 66, 67]. This is the main motivation for a complete one-
loop matching of the type-I seesaw model onto the SMEFT. Moreover, such calculations
exemplify the complete one-loop matching for some UV models.

The functional approach based on the so-called covariant derivative expansion
(CDE) [49–51] will be utilized to perform the one-loop matching. Compared with diagram-
matic calculations, the functional approach does not involve the evaluation of a large set of
Green functions governed by corresponding Feynman diagrams both in the UV model and
in the EFT, where a generic basis of operators in the EFT (i.e., the Green’s basis [30, 39])
is required to be constructed first. With the functional approach, one can obtain directly
the complete set of effective operators and the corresponding Wilson coefficients in the
EFT without any prior knowledge of the EFT. Due to these advantages, the functional
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approach is more suitable for computer programming. Recently, two such Mathematica
packages, i.e., STrEAM [47] and SuperTracer [48], have been made available publicly. Both
of them follow the prescription proposed in ref. [32] and calculate the supertraces (which
will be introduced in detail in section 2) by means of the CDE method. Since the package
SuperTracer allows for the substitution of interaction terms in a specific UV theory and
partially simplifies the resulting operators, we adopt it to evaluate the relevant supertraces
in the type-I seesaw model. The operators obtained by SuperTracer are redundant, and
one needs to apply algebraic, Fierz identities, integration by parts and the equations of
motion (EOMs) of fields to convert these operators into those in the Warsaw basis. Such
a procedure is cumbersome and gives threshold corrections to the coefficients of operators
of dimension less than six, including those of the renormalizable operators in the SM [69].
To make this procedure in order and the results traceable, we first reduce these operators
into those in the Green’s basis by using only algebraic, Fierz identities and integration by
parts, then with the help of EOMs of fields convert them into the operators in the Warsaw
basis. Besides the one-loop matching, we also carry out the tree-level matching for the
type-I seesaw model and list the induced operators up to dimension-six, which have been
obtained in refs. [58, 59]. Actually, the latter is not only for completeness but also neces-
sary, since we also take into consideration the threshold corrections to the coefficients of the
renormalizable and dimension-five operators, and the redefinitions of relevant fields give
rise to additional one-loop contributions to the Wilson coefficients of two dimension-six
operators in the Warsaw basis.

The remaining part of this paper is organized as follows. In section 2, we introduce
the general formalism and explain how to make use of the functional approach to perform
the tree-level and one-loop matchings for an UV model. In section 3, we recall the type-I
seesaw model and carry out the tree-level and one-loop matchings, where the operators
appearing at the tree level together with the associated Wilson coefficients and the super-
traces resulting from the one-loop matching are given. After evaluating the supertraces by
using SuperTracer and simplifying the results, we list all the operators and their Wilson
coefficients, as well as the corrections to the couplings in the SM and the Wilson coefficient
of the dimension-five operator in the Green’s basis in section 4. In section 5, we present the
corresponding results in the Warsaw basis which are converted from those in the Green’s
basis by applying the fields’ EOMs, where the threshold corrections are also taken into
account. Finally we summarize our main conclusions in section 6.

2 Matching via the functional approach

In this section, we set up the framework of the functional approach to perform the tree-level
and one-loop matchings between the low-energy EFT and an UV theory by integrating
out the heavy degrees of freedom. This framework has been first presented in ref. [43].
The main idea to match a given UV theory to the low-energy EFT is to equate the one-
light-particle-irreducible (1LPI) effective action (i.e., ΓL,UV) in the UV theory with the
one-particle-irreducible (1PI) effective action (i.e., ΓEFT) in the low-energy EFT at the
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matching scale, namely,
ΓL,UV [φB] = ΓEFT [φB] , (2.1)

where both effective actions are the functionals of the light background fields φB and can
be calculated by using the background field method (see [68] for more details and earlier
references). Here, for simplicity, we consider the case where the heavy fields Φ and the
light fields φ in the UV theory are real scalar fields. For other types of fields, the relevant
results can be easily generalized.

2.1 Calculation of ΓL,UV

The generating functional of correlation functions in the UV theory is given by

ZUV

[
JΦ, Jφ

]
=
∫
DΦDφ exp

{
i
∫

ddx
(
LUV [Φ, φ] + JΦΦ + Jφφ

)}
, (2.2)

in which JΦ and Jφ are external sources for Φ and φ, respectively, d ≡ 4− 2ε is the space-
time dimension (i.e., we always work in the d-dimensional space-time), and the integrations
over the heavy fields Φ and the light fields φ have been separated explicitly. One can split all
heavy and light fields into classical background parts ΦB and φB, and quantum fluctuations
Φ′ and φ′, namely

Φ = ΦB + Φ′ , φ = φB + φ′ , (2.3)

with the background fields satisfying the classical EOMs in the presence of external
sources, i.e.,

δLUV
δΦ [ΦB, φB] + JΦ = 0 ,

δLUV
δφ

[ΦB, φB] + Jφ = 0 . (2.4)

With the help of eqs. (2.3) and (2.4), one can expand the Lagrangian of the UV theory
LUV together with the source terms around the classical background fields up to the second
order of quantum fields, and thus obtain

LUV [Φ, φ] + JΦΦ + Jφφ ' LUV [ΦB, φB] + JΦΦB + JφφB −
1
2
(
Φ′T φ′T

)
QUV

(
Φ′
φ′

)
, (2.5)

where higher-order terms have been neglected and

QUV ≡


−δ

2LUV
δΦ2 [ΦB, φB] −δ

2LUV
δΦδφ [ΦB, φB]

−δ
2LUV
δφδΦ [ΦB, φB] −δ

2LUV
δφ2 [ΦB, φB]

 ≡
(

∆Φ XΦφ
XφΦ ∆φ

)
. (2.6)

Notice that when there are several components of the heavy and light fields, Φ and φ (and
the corresponding background and quantum fields) should be viewed as column vectors.
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Then, by making use of eqs. (2.3) and (2.5), we can recast the generating functional in
eq. (2.2) into the following approximate form

ZUV

[
JΦ, Jφ

]
' exp

{
i
∫

ddx
(
LUV [ΦB, φB] + JΦΦB + JφφB

)}

×
∫
DΦ′Dφ′ exp

{
− i

2

∫
ddx

(
Φ′T φ′T

)
QUV

(
Φ′
φ′

)}

∝ exp
{

i
∫

ddx
(
LUV [ΦB, φB] + JΦΦB + JφφB

)}
× (detQUV)−cs , (2.7)

with cs accounting for the spin statistics and the number of degrees of freedom of the
fields integrated over. For instance, cs = 1/2 for real bosonic fields in the case under
consideration, cs = 1 for complex bosonic fields, and cs = −1 (or −1/2) for Dirac (or
Majorana) fermionic fields.

The 1LPI effective action ΓL,UV [φB] is defined as the Legendre transformation of the
generating functional of connected correlation functions with JΦ = 0, i.e.,

ΓL,UV [φB] ≡ −i lnZUV

[
JΦ = 0, Jφ

]
−
∫

ddxJφφB

'
∫

ddxLUV [Φc [φB] , φB] + i
2 ln detQUV [Φc [φB] , φB] , (2.8)

where eq. (2.7) with cs = 1/2 is taken into account in the last step, and the classical heavy
field Φc [φB] ≡ ΦB

[
JΦ = 0, Jφ

]
satisfies

δLUV [Φ, φ]
δΦ

∣∣∣∣
Φ=Φc[φB], φ=φB

= 0 . (2.9)

The first and second terms in the last line of eq. (2.8) stand for the tree- and one-loop-
level contributions to ΓL,UV [φB], respectively. But at this point, it should be noticed that
ΓL,UV [φB] is in general non-local due to the non-locality of Φc [φB] determined by eq. (2.9).
To obtain the local functionals, one can expand Φc [φB] to a given order in 1/M and denote
the local one by Φ̂c [φB], whereM represents the mass scale of heavy fields that is considered
to be extremely high. Substituting Φ̂c [φB] into eq. (2.8), one obtains the local ΓL,UV [φB]
at a given order in 1/M , i.e.,

Γtree
L,UV [φB] =

∫
ddxLUV

[
Φ̂c [φB] , φB

]
,

Γ1-loop
L,UV [φB] = i

2 ln detQUV

[
Φ̂c [φB] , φB

]
. (2.10)

It is worthwhile to mention that the separation of the tree- and one-loop-level contributions
and the loop counting in the UV theory are unambiguous.

2.2 Calculation of ΓEFT

As the matching between the UV theory and the low-energy EFT is performed order by
order (i.e., that in eq. (2.1)), one can formally split the effective Lagrangian of the EFT
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also into the tree- and loop-level parts,

LEFT [φ] ' Ltree
EFT [φ] + L1-loop

EFT [φ] , (2.11)

in which the higher-loop contributions have been neglected. In eq. (2.11), Ltree
EFT [φ] and

L1-loop
EFT [φ] are composed of tree- and one-loop-level effective operators and the associated

Wilson coefficients, respectively. Similar to the computation of ΓL,UV, one can easily derive
the generating functional of correlation functions up to one-loop level in the low-energy EFT

ZEFT

[
Jφ

]
=
∫
Dφ exp

{
i
∫

ddx
(
LEFT [φ] + Jφφ

)}
∝ exp

{
i
∫

ddx
(
Ltree

EFT [φB] + L1-loop
EFT [φB] + JφφB

)}
× (detQEFT)−1/2 , (2.12)

with
QEFT ≡ −

δ2Ltree
EFT

δφ2 [φB] , (2.13)

where only the tree-level Lagrangian is applied to calculate QEFT since the contributions
from the one-loop part result in a higher-order functional determinant. With the help of
eq. (2.12), we can derive the 1PI effective action ΓEFT up to the one-loop order, viz.

ΓEFT [φB] = −i lnZEFT

[
Jφ

]
−
∫

ddxJφφB

'
∫

ddx
(
Ltree

EFT [φB] + L1-loop
EFT [φB]

)
+ i

2 ln detQEFT , (2.14)

whose tree-level and one-loop parts can be clearly separated,

Γtree
EFT [φB] =

∫
ddxLtree

EFT [φB] ,

Γ1-loop
EFT [φB] =

∫
ddxL1-loop

EFT [φB] + i
2 ln detQEFT . (2.15)

It is now evident that the one-loop effective action of the EFT consists of two different
parts. One is the one-loop effective operators contained in L1-loop

EFT , and the other one is
contained in ln detQEFT, taking account of the contributions from the tree-level effective
Lagrangian Ltree

EFT via one-loop corrections.

2.3 Matching

With the help of eqs. (2.1), (2.10) and (2.15), one can accomplish the matching order by
order and then arrive at

Ltree
EFT [φB] = LUV

[
Φ̂c [φB] , φB

]
, (2.16)

and ∫
ddxL1-loop

EFT [φB] + i
2 ln detQEFT [φB] = i

2 ln detQUV

[
Φ̂c [φB] , φB

]
, (2.17)

where Φ̂c [φB] satisfies the classical EOM given in eq. (2.9) and has been localized. As
shown in eq. (2.16), the tree-level matching can be performed by simply substituting the
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localized solutions of the classical EOMs for the heavy fields into the Lagrangian of the
UV theory. To find out the one-loop Lagrangian of the EFT, we have to first deal with the
second term on the left-hand side of eq. (2.17), namely,

QEFT [φ] = −δ
2Ltree

EFT [φ]
δφ2 = − δ

δφ

δLUV

[
Φ̂c [φ] , φ

]
δφ


= − δ

δφ

(
δLUV
δφ

[Φ̂c [φ] , φ] + δΦ̂c [φ]
δφ

δLUV
δΦ

[
Φ̂c [φ] , φ

])

= −δ
2LUV
δφ2

[
Φ̂c [φ] , φ

]
− δΦ̂c [φ]

δφ

δ2LUV
δΦδφ

[
Φ̂c [φ] , φ

]
= ∆φ

[
Φ̂c [φ] , φ

]
+ δΦ̂c [φ]

δφ
XΦφ

[
Φ̂c [φ] , φ

]
, (2.18)

where eqs. (2.6) and (2.9) have been used. Then, considering the identity

0 = δ

δφ

(
δLUV
δΦ

[
Φ̂c [φ] , φ

])
= δ2LUV

δφδΦ
[
Φ̂c [φ] , φ

]
+ δΦ̂c [φ]

δφ

δ2LUV
δΦ2

[
Φ̂c [φ] , φ

]
= XφΦ

[
Φ̂c [φ] , φ

]
+ δΦ̂c [φ]

δφ
∆Φ

[
Φ̂c [φ] , φ

]
, (2.19)

we have
δΦ̂c [φ]
δφ

= −
(
XφΦ∆̂−1

Φ

) [
Φ̂c [φ] , φ

]
, (2.20)

in which ∆̂−1
Φ is the local expansion of ∆−1

Φ . Inserting eq. (2.20) into eq. (2.18), one gets
i
2 ln detQEFT [φ] = i

2 ln det
(
∆φ −XφΦ∆̂−1

Φ XΦφ

) [
Φ̂c [φ] , φ

]
= i

2 ln det ∆φ

[
Φ̂c [φ] , φ

]
+ i

2 ln det
(
1−∆−1

φ XφΦ∆̂−1
Φ XΦφ

) [
Φ̂c [φ] , φ

]
= i

2 ln det ∆φ

[
Φ̂c [φ] , φ

]
+ i

2 ln det
(
1− ∆̂−1

Φ XΦφ∆−1
φ XφΦ

) [
Φ̂c [φ] , φ

]
= i

2 ln det ∆φ

[
Φ̂c [φ] , φ

]
− i

2 ln det ∆̂Φ

[
Φ̂c [φ] , φ

]
+ i

2 ln det
(
∆̂Φ −XΦφ∆−1

φ XφΦ

) [
Φ̂c [φ] , φ

]
. (2.21)

Note that QUV on the right-hand side of eq. (2.17) can be block-diagonalized by the trans-
formation with unit Jacobian determinant [36], i.e.,(

1 0
−∆−1

φ XφΦ 1

)†
QUV

(
1 0

−∆−1
φ XφΦ 1

)
=
(

∆Φ −XΦφ∆−1
φ XφΦ 0

0 ∆φ

)
, (2.22)

with which one can further obtain
i
2 ln detQUV

[
Φ̂c [φ] , φ

]
= i

2 ln det
(
∆Φ −XΦφ∆−1

φ XφΦ

) [
Φ̂c [φ] , φ

]
+ i

2 ln det ∆φ

[
Φ̂c [φ] , φ

]
. (2.23)
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Substituting eqs. (2.21) and (2.23) into eq. (2.17), we have∫
ddxL1-loop

EFT [φB] = i
2 ln det

(
∆Φ−XΦφ∆−1

φ XφΦ

) [
Φ̂c [φB] , φB

]
+ i

2 ln det ∆̂Φ

[
Φ̂c [φB] , φB

]
− i

2 ln det
(
∆̂Φ−XΦφ∆−1

φ XφΦ

) [
Φ̂c [φB] , φB

]
.

(2.24)
As expected, the contributions from pure light loops contained in ln det ∆φ are cancelled out.

Usually, the calculations of the functional determinants in eq. (2.24) involve the loop
integrals. To calculate these loop integrals, one can implement the method of expansion by
regions [70–72]. More explicitly, the loop integrals can be split into hard- (i.e., k ∼M � p

with k and p standing for the loop and external momenta, respectively) and soft-momentum
(i.e., k ∼ p � M) regions in the dimensional regularization with the modified minimal
subtraction (MS) scheme. In each region, the integrand of the loop integral is expanded
as a Taylor series with respect to the parameters that are considered small, and then the
integrand should be integrated over the whole d-dimensional space of the loop momentum
(i.e., k). In this way, the functional determinants can be separated into the so-called hard
and soft parts as the loop integrals, leading to

ln det
(
∆Φ−XΦφ∆−1

φ XφΦ

)
= ln det

(
∆Φ−XΦφ∆−1

φ XφΦ

)
|hard + ln det

(
∆Φ−XΦφ∆−1

φ XφΦ

)
|soft ,

ln det
(
∆̂Φ−XΦφ∆−1

φ XφΦ

)
= ln det

(
∆Φ−XΦφ∆−1

φ XφΦ

)
|soft ,

ln det ∆̂Φ = ln det ∆Φ|soft = 0 .
(2.25)

In the last line of eq. (2.25), one should notice the fact that ln det ∆Φ involves only heavy
field propagators (i.e., pure heavy loops) and its soft part gives rise to scaleless integrals,
which are vanishing in the end. Plugging eq. (2.25) into eq. (2.24), we can obtain∫

ddxL1-loop
EFT [φB] = i

2 ln det
(
∆Φ −XΦφ∆−1

φ XφΦ

) [
Φ̂c [φB] , φB

]∣∣∣∣
hard

. (2.26)

Starting with eq. (2.26), one can directly carry out the one-loop matching by calculating
the hard part of ln det

(
∆Φ −XΦφ∆−1

φ XφΦ

)
, as described in ref. [36].

However, there is an alternative way that is more suitable to be implemented in a
computer program [47, 48]. Considering that ln det ∆φ contains pure light loops and then its
hard part is scaleless (i.e., vanishing after integration), then by virtue of eqs. (2.10), (2.23)
and (2.26), we have∫

ddxL1-loop
EFT [φB] = Γ1-loop

L,UV [φB]
∣∣∣
hard

= i
2 ln detQUV

[
Φ̂c [φB] , φB

]∣∣∣∣
hard

. (2.27)

Generally speaking, QUV can be decomposed into an inverse-propagator part K and an
interaction part X, such that [32]∫

ddxL1-loop
EFT [φ] = i

2 ln Sdet (−K + X)
∣∣∣∣
hard

= i
2STr ln (−K + X)

∣∣∣∣
hard

= i
2STr ln (−K)

∣∣∣∣
hard
− i

2

∞∑
n=1

1
n

STr
[(

K−1X
)n]∣∣∣∣∣

hard
, (2.28)
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where the superdeterminant “Sdet” denotes the generalization of the regular determinant
providing fermionic blocks with an inverse power while leaving bosonic blocks as usual,
and similarly, the supertrace “STr” is the generalization of the trace over both the internal
degrees of freedom and the functional space giving fermionic blocks a minus sign. Moreover,
in the last step in eq. (2.28), the fact that K−1X ∼M−1 [48] has been taken into account
to expand the logarithmic term, i.e., ln

(
1−K−1X

)
. As one can see in eq. (2.28), there

are two types of terms constituting the one-loop EFT Lagrangian: the log-type and power-
type supertraces corresponding to the first and second terms in the last line of eq. (2.28),
respectively. Some comments are in order.

• The log-type supertrace is universal and depends on the representations of heavy
particles in the UV theory, since it comes from the kinetic and mass terms and
only those of the heavy particles contribute to the log-type term. Therefore, the
log-type term generally leads to the pure gauge-field operators. Nevertheless, if the
heavy particles are singlets in the UV theory, the log-type term is trivial and will not
induce any operators at all.

• The power-type terms depend on the interactions of both heavy and light particles
contained in the interaction part X. Thanks to the relation K−1X ∼ M−1 in the
hard-momentum region, the power-type terms can be truncated according to the
desired order of 1/M in the EFT Lagrangian, so the number of these power-type
terms will be finite.

In order to gain the inverse-propagator part K and the interaction part X in eq. (2.28),
one has to calculate the second functional derivative of the Lagrangian with respect to all
fields and their conjugates as well for complex fields in the UV theory. Hence it is quite
useful to arrange the fields together their conjugates into field multiplets:

ϕS =
(
S

S∗

)
, ϕF =

(
F

F c

)
, ϕV =

(
Vµ
V ∗µ

)
, (2.29)

for complex scalars, Dirac fermions and complex vectors, respectively, where F c ≡ CFT

with C ≡ iγ2γ0 being the charge-conjugation matrix. For later convenience, one can define
ϕS = ϕ†S , ϕV = ϕ†V and ϕF = ϕ†Fγ

0 for the conjugated field multiplets. In addition, if S
(or V ) is a real scalar (or vector) and F is a Majorana fermion, then we have ϕS(V ) = S(V ),
ϕS(V ) = ST(V T) and ϕF = F , ϕF = F . Consequently, K and X can be extracted via

δ2LUV

∣∣∣
Φ=Φ̂c[φ]

= 2LUV [ϕ+ δϕ]|Φ=Φ̂c[φ] ⊃ δϕi
(
Kiδij −Xij

)
δϕj , (2.30)

where only the relevant terms O
(
δϕ2) are retained and i, j = 1, . . . , nS , nS + 1, . . . , nS +

nV , nS + nV + 1, . . . , nS + nV + nF with nS , nV and nF being the numbers of scalars,
vectors and fermions. The inverse-propagator part K is a block-diagonal matrix and its
sub-blocks are

Ki =


P 2 −m2

i (scalar)
/P −mi (fermion)
−gµν(P 2 −m2

i ) + (1− ξ−1)PµP ν (vector) ,
(2.31)
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where Pµ ≡ iDµ with Dµ being the covariant derivative. Here, as in the background field
approach, one can choose the Feynman-’t Hooft gauge for the quantum gauge fields (i.e.,
ξ = 1 in the vector propagators) but still the general Rξ gauge for the classical gauge fields.
As for the interaction part X, they can be generally cast into the form [48]

X
(
Pµ, φ

)
=
∞∑
n=0

X
µ1···µn
n (φ)Pµ1

· · ·Pµn
, (2.32)

where all the “open” covariant derivatives Pµ are arranged to be rightmost and Xµ1···µn
n (φ)

are actually functionals of light fields, while the “closed” covariant derivatives are usually
written as the commutators, e.g.,

[
Pµ, φ

]
= i

(
Dµφ

)
.

After the inverse-propagator part K and the interaction part X in the UV theory
are obtained with the help of eq. (2.30), the functional supertraces given in eq. (2.28) can
be evaluated by means of the CDE method [49–51]. The technical details of the CDE
method can be found in refs. [41, 46, 48]. The aforementioned Mathematica packages,
i.e., SuperTracer [48] and STrEAM [32], have implemented the CDE method to evaluate all
functional supertraces appearing in eq. (2.28). In the present work, we utilize the package
SuperTracer to calculate the functional supertraces, as it allows for the substitution of the
X interactions from a specific theory and can partially simplify the resulting operators.

3 The type-I seesaw model

As emphasized in section 1, the canonical type-I seesaw model [52–56] is a natural ex-
tension of the SM to generate tiny neutrino masses. In this model, three right-handed
neutrino singlets NR are introduced and a huge Majorana mass term for them is allowed.
Another salient feature of this model is to offer an elegant explanation for the cosmological
matter-antimatter asymmetry via the CP-violating and out-of-equilibrium decays of heavy
Majorana neutrinos [73]. More explicitly, the Lagrangian of the type-I seesaw model is
given by

LUV = LSM +NRi/∂NR −
(1

2N
c
RMNR + `LYνH̃NR + h.c.

)
, (3.1)

with the SM Lagrangian

LSM = −1
4G

A
µνG

Aµν − 1
4W

I
µνW

Iµν − 1
4BµνB

µν

+
∑
f

f i /Df −
(
QYuH̃UR +QLYdHDR + `LYlHER + h.c.

)

+
(
DµH

)†
(DµH)−m2H†H − λ

(
H†H

)2
, (3.2)

where f = QL, UR, DR, `L, ER refer to the SM fermionic doublets and singlets, the covariant
derivative Dµ ≡ ∂µ − ig1Y Bµ − ig2T

IW I
µ − igsλAGAµ has been defined, and the other

notations should be self-evident. In the basis where the Majorana mass matrix of right-
handed neutrinos is diagonal, i.e., M = Diag{M1,M2,M3}, one can obtain the EOMs of
the heavy Majorana neutrinos from eq. (3.1), namely,(

i/∂ −M
)
N −

(
Y †ν H̃

†`L + Y T
ν H̃

T`cL

)
= 0 , (3.3)
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where N ≡ N c
R + NR denotes heavy Majorana neutrinos in the mass basis. The solution

for above EOMs leads us to

N ' −
(
M−1 +M−2i/∂

) (
Y †ν H̃

†`L + Y T
ν H̃

T`cL

)
, (3.4)

where only the terms up to O
(
M−2) are kept since we are concerned about the effective

operators up to dimension six in the low-energy EFT, namely, the seesaw EFT (SEFT).

3.1 Tree-level matching

Guided by the matching condition in eq. (2.16), one can easily obtain the tree-level part of
the Lagrangian in the SEFT by substituting eq. (3.4) into eq. (3.1), i.e.,

Ltree
SEFT = LSM +

[1
2C

(5)
αβO

(5)
αβ + h.c.

]
+ C

(6)
αβO

(6)
αβ , (3.5)

with
O(5)
αβ = `αLH̃H̃

T`cβL , O(6)
αβ =

(
`αLH̃

)
i/∂
(
H̃†`βL

)
, (3.6)

where the corresponding Wilson coefficients are C
(5)
αβ =

(
YνM

−1Y T
ν

)
αβ

and C
(6)
αβ =(

YνM
−2Y †ν

)
αβ

. Therefore, the tree-level matching only induces two effective operators
up to dimension six, coinciding with the results in the previous works [58, 59]. One is the
unique dimension-five operator O(5), or the Weinberg operator, generating the Majorana
masses of the ordinary neutrinos after the spontaneous gauge symmetry breaking [61].
The other one is a dimension-six operator which modifies the couplings of neutrinos to
gauge bosons and then causes the unitarity violation of the lepton flavor mixing matrix.
The dimension-six operator O(6) can be rewritten as a combination of two dimension-six
operators in the Warsaw basis of the SMEFT [3]:

O(6)
αβ = 1

4

[(
`αLγ

µ`βL

)(
H†i
↔
DµH

)
−
(
`αLγ

µτ I`βL

)(
H†i
↔
DI
µH

)]
, (3.7)

where
↔
Dµ ≡ Dµ −

←
Dµ and

↔
DI
µ ≡ τ IDµ −

←
Dµτ

I with τ I (for I = 1, 2, 3) being the Pauli
matrices and

←
Dµ acting on the left.

3.2 One-loop matching

To proceed with the one-loop matching, one needs to calculate the matrices K and X in
the type-I seesaw model. In this case, the field multiplet ϕ can be identified as

ϕi ∈ {ϕN , ϕ`, ϕE , ϕQ, ϕU , ϕD, ϕH , ϕW , ϕB} , (3.8)

where

ϕN = N , ϕF =
(
F

F c

)
, ϕH =

(
H

H∗

)
, ϕV = V , (3.9)

with F = `, E,Q,U,D and V = W,B. Notice that here the SU(3) gauge fields in the SM
and all ghost fields have been omitted, since they do not take part in the one-loop matching
by integrating the heavy Majorana neutrinos. The sub-blocks of the inverse-propagator
matrix K take the form with entries given in eq. (2.31). It is worth pointing out that the
inverse propagators of the heavy Majorana neutrinos, i.e.,

(
i/∂ −Mi

)
, do not involve any

gauge bosons. This means that the corresponding log-type supertrace in eq. (2.28) gives

– 11 –



J
H
E
P
0
9
(
2
0
2
1
)
1
6
3

only a constant and does not lead to any operators in the SEFT. As for the entries of the
interaction matrix X, they can be extracted by making use of eq. (2.30) and written in
the form given in eq. (2.32):

XHN =
(
`LYνε

`cLY
∗
ν ε

)
, XNH =

(
εTY †ν `L εTY T

ν `
c
L

)
,

X`N =
(
YνH̃PR
Y ∗ν H̃

∗PL

)
, XN` =

(
H̃†Y †ν PL H̃TY T

ν PR

)
,

X`H =
(

YlER εYνPRN

εY ∗ν PLN Y ∗l E
c
R

)
, XH` =

(
ERY

†
l εTNY T

ν PR
εTNY †ν PL EcRY

T
l

)
, (3.10)

and

XHH =

m2 + 2λ
(
|H|2 +HH†

)
2λHHT

2λH∗H† m2 + 2λ
(
|H|2 +H∗HT

)
Xν
HB = ig1

− (DνH)(
DµH

)∗
+ g1

2

(
−H
H∗

)
iDν ,

Xµ
BH = ig1

2

((
DµH

)†
−
(
DµH

)T
)

+ g1
2
(
−H† HT

)
iDµ ,

XνJ
HW = ig2

(
−τJ (DνH)
τJ∗ (DνH)∗

)
+ g2

2

(
−τJH
τJ∗H∗

)
iDν ,

XµI
WH = ig2

2

((
DµH

)†
τ I −

(
DµH

)T
τ I∗
)

+ g2
2
(
−H†τ I HTτ I∗

)
iDµ . (3.11)

Note that ε is the two-dimensional antisymmetric tensor with ε12 = −ε21 = 1, where the
indices of this tensor are referring to the weak isospin space. The X terms in eq. (3.10)
(partly) denote the new contributions from the interactions of heavy Majorana neutrinos,
and the heavy Majorana neutrino field N in X terms should be replaced by the terms on
the right-hand side of eq. (3.4). The corresponding X terms for the SM interactions can be
found in the appendix B of ref. [32], whereas the X terms for the interactions between the
Higgs boson and gauge bosons, as well as those among the Higgs bosons, should take the
forms given in eq. (3.11) due to different conventions used in the package SuperTracer [48]
and in ref. [32]. In addition, different conventions of the quartic Higgs coupling in the
literature should be noted.

With the inverse-propagator matrix K in eq. (2.31), as well as the interaction matrix
X given in eqs. (3.10), (3.11) and the appendix B of ref. [32], up to dimension six, we can
use eq. (2.28) to derive the effective Lagrangian∫

ddxL1-loop
EFT = − i

2

{
STr

(
K−1
N XNHK

−1
H XHN

)
+ STr

(
K−1
N XNψK

−1
ψ XψN

)
+ STr

(
K−1
N XNHK

−1
H XHHK

−1
H XHN

)
+ STr

(
K−1
N XNψK

−1
ψ XψψK

−1
ψ XψN

)
+ STr

(
K−1
N XNHK

−1
H XHVK

−1
V XV HK

−1
H XHN

)
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+ STr
(
K−1
N XNHK

−1
H XHψK

−1
ψ XψHK

−1
H XHN

)
+ STr

(
K−1
N XNψK

−1
ψ XψVK

−1
V XV ψK

−1
ψ XψN

)
+ STr

(
K−1
N XNψK

−1
ψ XψHK

−1
H XHψK

−1
ψ XψN

)
+ STr

(
K−1
N XNψK

−1
ψ XψψK

−1
ψ XψψK

−1
ψ XψN

)
+ STr

(
K−1
N XNψK

−1
ψ XψψK

−1
ψ XψψK

−1
ψ XψψK

−1
ψ XψN

)
+ STr

(
K−1
N XNψK

−1
ψ XψψK

−1
ψ XψψK

−1
ψ XψψK

−1
ψ XψψK

−1
ψ XψN

)
+
[
STr

(
K−1
N XNHK

−1
H XHψK

−1
ψ XψN

)
+ STr

(
K−1
N XNHK

−1
H XHVK

−1
V XV ψK

−1
ψ XψN

)
+ STr

(
K−1
N XNHK

−1
H XHHK

−1
H XHψK

−1
ψ XψN

)
+ STr

(
K−1
N XNHK

−1
H XHψK

−1
ψ XψψK

−1
ψ XψN

)
+ STr

(
K−1
N XNHK

−1
H XHVK

−1
V XV HK

−1
H XHψK

−1
ψ XψN

)
+ STr

(
K−1
N XNHK

−1
H XHVK

−1
V XV ψK

−1
ψ XψψK

−1
ψ XψN

)
+ STr

(
K−1
N XNHK

−1
H XHψK

−1
ψ XψψK

−1
ψ XψψK

−1
ψ XψN

)
+ STr

(
K−1
N XNψK

−1
ψ XψVK

−1
V XV HK

−1
H XHψK

−1
ψ XψN

)
+ STr

(
K−1
N XNψK

−1
ψ XψVK

−1
V XV ψK

−1
ψ XψψK

−1
ψ XψN

)
+ STr

(
K−1
N XNψK

−1
ψ XψHK

−1
H XHψK

−1
ψ XψψK

−1
ψ XψN

)
+ h.c.

]}∣∣∣∣
hard

− i
2

{1
2STr

[(
K−1
N XNHK

−1
H XHN

)2
]

+ 1
2STr

[(
K−1
N XNψK

−1
ψ XψN

)2
]

+ 1
2STr

[(
K−1
N XNψK

−1
ψ XψψK

−1
ψ XψN

)2
]

+ 1
3STr

[(
K−1
N XNψK

−1
ψ XψN

)3
]

+ STr
(
K−1
N XNψK

−1
ψ XψNK

−1
N XNHK

−1
H XHN

)
+ STr

(
K−1
N XNψK

−1
ψ XψψK

−1
ψ XψNK

−1
N XNHK

−1
H XHN

)
+ STr

(
K−1
N XNψK

−1
ψ XψNK

−1
N XNψK

−1
ψ XψψK

−1
ψ XψN

)
+ STr

(
K−1
N XNψK

−1
ψ XψNK

−1
N XNψK

−1
ψ XψψK

−1
ψ XψψK

−1
ψ XψN

)
+
[
STr

(
K−1
N XNψK

−1
ψ XψNK

−1
N XNHK

−1
H XHψK

−1
ψ XψN

)
+ h.c.

]}∣∣∣∣
hard

,

(3.12)

where ψ = (`, E,Q,U,D) and V = (W,B) collectively denote the SM fermions and weak
gauge bosons. It is worthwhile to stress that the terms in the second braces in eq. (3.12)
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involve at least two heavy-neutrino propagators, so 1/2 and 1/3 in front of some super-
traces are actually the symmetry factors counting the power of repeated blocks in a given
supertrace. Therefore, in order to find out the effective operators at the one-loop level in
the SEFT, one has to evaluate the long list of supertraces in eq. (3.12), which is obviously
tedious but can be achieved by using the package SuperTracer in a straightforward way.

4 Green’s basis

After the supertraces in eq. (3.12) are calculated by using the package SuperTracer, one
needs to further convert the resultant operators into the independent operators in the
Warsaw basis of the SMEFT. But, before doing so, we first convert these operators into
those in a redundant basis, the so-called Green’s basis [30, 39], by taking advantage of
algebraic, Fierz identities and integration by parts. Then, applying the EOMs of fields, we
can obtain the independent operators in the Warsaw basis from those in the Green’s basis.

4.1 Threshold corrections

Generally, the one-loop matching can result in threshold corrections to the renormalizable
terms already existing in the SM, i.e.,

δL = δZGG
A
µνG

Aµν + δZWW
I
µνW

Iµν + δZBBµνB
µν

+
∑
f

fδZf i /Df +
(
QδYuH̃UR +QLδYdHDR + `LδYlHER + h.c.

)
+δZH

(
DµH

)†
(DµH) + δm2H†H + δλ

(
H†H

)2
. (4.1)

where f = QL, UR, DR, `L, ER. For a given UV model, not all the above terms are induced,
which is of course dependent on the interactions of the heavy fields. In the type-I seesaw
model, the one-loop matching leads to

(4π)2 δZG
H = 1

2
(
Y †ν Yν

)
ii

(1 + 2Li) ,

(4π)2
(
δZG

`

)
αβ

= 1
4 (Yν)αi

(
Y †ν

)
iβ

(
1 + 2m

2

M2
i

)
(3 + 2Li) ,

(4π)2
(
δm2

)G
= −2

(
Y †ν Yν

)
ii
M2
i (1 + Li) ,

(4π)2 δλG = −
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki

(1 + Li)M2
i − (1 + Lk)M2

k

M2
i −M2

k

+
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

MiMkLik
M2
i −M2

k

,

(4π)2
(
δY G

`

)
αβ

= − (Yν)αi
(
Y †ν Yl

)
iβ

(
1 + m2

M2
i

)
(1 + Li) (4.2)

with
Li ≡ ln

(
µ2

M2
i

)
+ 1
ε
− γE + ln (4π) , Lij ≡ ln

(
M2
i

M2
j

)
, (4.3)

– 14 –



J
H
E
P
0
9
(
2
0
2
1
)
1
6
3

up to O
(
M−2) in the Green’s basis, where the other terms in eq. (4.1) do not appear, the

superscript “G” signifies the results in the Green’s basis, and γE in eq. (4.3) is the Euler
constant. It is worth pointing out that the divergences in Li come from the hard part
of loop integrals and usually consist of both the UV and infrared (IR) divergences in the
dimensional regularization. The UV divergences can be absorbed by the renormalization
constants in the UV model but with heavy fields replaced with their classical EOMs, such
as eq. (3.4) in the type-I seesaw model, while the IR divergences can be regarded as part
of the counterterms of the EFT to cancel corresponding UV divergences of the EFT [33].
Here, one can simply remove the 1/ε − γE + ln (4π) terms in Li to get the renormalized
couplings or Wilson coefficients in the MS scheme [27, 33].

In addition, there also exist one-loop corrections to the Wilson coefficient of the
dimension-five operator 1/2

(
δC(5)

)G

αβ
O(5)
αβ in eq. (3.6), namely,

(4π)2
(
δC(5)

)G

αβ
=
[
2λ (1 + Li) + g2

1 + g2
2

4 (1 + 3Li)
]

(Yν)αiM
−1
i

(
Y T
ν

)
iβ
. (4.4)

This result will be important for us to find the threshold correction to the Wilson coefficient
of the Weinberg operator in the Warsaw basis.

4.2 Dimension-six operators

The dimension-six operators in the Green’s basis induced by heavy Majorana neutrinos in
the type-I seesaw at the one-loop level are listed in table 1 and the associated one-loop-level
Wilson coefficients up to O

(
M−2) are collected in the remaining part of this subsection,

where an overall loop factor 1/ (4π)2 is not explicitly indicated in all one-loop-level Wilson
coefficients. To make a distinction with the Wilson coefficients in the Warsaw basis, we
shall denote the Wilson coefficients by “G”, with different superscripts and subscripts, for
the operators in the Green’s basis.

• X2H2

GHB = g2
1

24tr
(
YνM

−2Y †ν

)
, (4.5)

GHW = g2
2

24tr
(
YνM

−2Y †ν

)
, (4.6)

GHWB = g1g2
12 tr

(
YνM

−2Y †ν

)
. (4.7)

• H2XD2

GBDH = − g1
36
(
Y †ν Yν

)
ii
M−2
i (5 + 6Li) , (4.8)

GWDH = − g2
36
(
Y †ν Yν

)
ii
M−2
i (5 + 6Li) . (4.9)

• H2D4

GDH = 1
3tr

(
YνM

−2Y †ν

)
. (4.10)
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X2H2 H2D4 H6

OHB BµνB
µνH†H ODH

(
DµD

µH
)†

(DνD
νH) OH

(
H†H

)3

OHW W I
µνW

IµνH†H H4D2 ψ2D3

OHWB W I
µνB

µν
(
H†τ IH

)
OH�

(
H†H

)
�
(
H†H

)
Oαβ`D

i
2`αL

(
D2 /D + /DD2

)
`βL

H2XD2 OHD
(
H†DµH

)∗ (
H†DµH

)
ψ2XH

OBDH DνB
µν

(
H†i
↔
DµH

)
O′HD

(
H†H

) (
DµH

)†
(DµH) OαβeB

(
`αLσ

µνEβR

)
HBµν

OWDH (DνW
µν)I

(
H†i
↔
DI
µH

)
O′′HD

(
H†H

)
Dµ

(
H†i
↔
DµH

)
OαβeW

(
`αLσ

µνEβR

)
τ IHW I

µν

ψ2HD2 ψ2DH2 ψ2H3

OαβeHD1 `αLEβRD
2H O(1)αβ

H`

(
`αLγ

µ`βL

)(
H†i
↔
DµH

)
OαβeH

(
`αLHEβR

) (
H†H

)
OαβeHD2 `αLiσµνDµEβRDνH O′(1)αβ

H`

(
`αLi

↔
/D`βL

)(
H†H

)
Four-lepton

OαβeHD3 `αLD
2EβRH O′′(1)αβ

H`

(
`αLγ

µ`βL

)
Dµ

(
H†H

)
Oαβγλ``

(
`αLγ

µ`βL

) (
`γLγµ`λL

)
OαβeHD4 `αLD

µEβRDµH O(3)αβ
H`

(
`αLγ

µτ I`βL

)(
H†i
↔
DI
µH

)
Oαβγλ`e

(
`αLγ

µ`βL

) (
EγRγµEλR

)
ψ2XD O′(3)αβ

H`

(
`αLi

↔
/D
I
`βL

)(
H†τ IH

)
Semileptonic

OαβB`
(
`αLγ

µ`βL

)
DνBµν OαβHe

(
EαRγ

µEβR

)(
H†i
↔
DµH

)
O(1)αβγλ
`Q

(
`αLγ

µ`βL

) (
QγLγµQλL

)
OαβW`

(
`αLγ

µτ I`βL

) (
DνWµν

)I
O′αβHe

(
EαRi

↔
/DEβR

)(
H†H

)
O(3)αβγλ
`Q

(
`αLγ

µτ I`βL

) (
QγLγµτ

IQλL

)
Oαβγλ`U

(
`αLγ

µ`βL

) (
UγRγµUλR

)
Oαβγλ`D

(
`αLγ

µ`βL

) (
DγRγµDλR

)
Table 1. Dimension-six operators at the one-loop level induced by heavy Majorana neutrinos in
the type-I seesaw model in the Green’s basis, where the Hermitian conjugates of the operators in
the classes ψ2HD2, ψ2XH and ψ2H3, as well as those of the four-fermion operators, have not been
listed explicitly.

• H4D2

GH� = 1
2
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki

M4
i − 2M2

iM
2
kLik −M4

k(
M2
i −M2

k

)3 − 1
4
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

×M
6
i − (7− 2Lik)M4

iM
2
k + (7 + 2Lik)M2

iM
4
k −M6

k

MiMk

(
M2
i −M2

k

)3 , (4.11)

GHD = −1
2
(
Y †ν YlY

†
l Yν

)
ii
M−2
i (1 + 2Li)−

1
2
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki

Lik
M2
i −M2

k

−
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

(1 + Lk)M2
i − (1 + Li)M2

k

MiMk

(
M2
i −M2

k

) , (4.12)

G′HD = 1
2
(
Y †ν YlY

†
l Yν

)
ii
M−2
i (1 + 2Li)−

(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki

Lik
M2
i −M2

k

−1
2
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

(1 + 2Lk)M2
i − (1 + 2Li)M2

k

MiMk

(
M2
i −M2

k

) , (4.13)

G′′HD = − i
4
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

M4
i − 2M2

iM
2
kLik −M4

k

MiMk

(
M2
i −M2

k

)2 . (4.14)
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• H6

GH = 2
3
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
kj

(
Y †ν Yν

)
ji

M2
iM

2
j Lji +M2

iM
2
kLik +M2

jM
2
kLkj(

M2
i −M2

k

) (
M2
i −M2

j

) (
M2
k −M2

j

)
−2MiMj

(
Y †ν Yν

)
ik

(
Y †ν Yν

)
kj

(
Y †ν Yν

)
ij

M2
i Lkj +M2

j Lik +M2
kLji(

M2
i −M2

k

) (
M2
i −M2

j

) (
M2
k −M2

j

) .
(4.15)

• ψ2D3

Gαβ`D = −1
3
(
YνM

−2Y †ν

)
αβ

. (4.16)

• ψ2XH

GαβeB = g1
8
(
YνM

−2Y †ν Yl

)
αβ

, (4.17)

GαβeW = g2
8
(
YνM

−2Y †ν Yl

)
αβ

. (4.18)

• ψ2HD2

GαβeHD1 =
(
YνM

−2Y †ν Yl

)
αβ

, (4.19)

GαβeHD2 = 1
4 (Yν)αiM

−2
i

(
Y †ν Yl

)
iβ

(3 + 2Li) , (4.20)

GαβeHD3 = 1
2
(
YνM

−2Y †ν Yl

)
αβ

, (4.21)

GαβeHD4 = 1
4 (Yν)αiM

−2
i

(
Y †ν Yl

)
iβ

(7 + 2Li) . (4.22)

• ψ2XD

GαβB` = g1
72 (Yν)αiM

−2
i

(
Y †ν

)
iβ

(11 + 6Li) , (4.23)

GαβW` = − g2
72 (Yν)αiM

−2
i

(
Y †ν

)
iβ

(11 + 6Li) . (4.24)

• ψ2DH2

G
(1)αβ
H` = g2

1 + 3g2
2

32 (Yν)αiM
−2
i

(
Y †ν
)
iβ

(11 + 6Li)−
1
8 (Yν)αiM

−1
i

(
Y T
ν Y

∗
ν

)
ik
M−1
k

(
Y †ν
)
kβ

× (1 +Li +Lk)− 1
2 (Yν)αi

(
Y †ν Yν

)
ik

(
Y †ν
)
kβ

Lik
M2
i −M2

k

−1
8 (Yν)αi

(
Y T
ν Y

∗
ν

)
ik

(
Y †ν
)
kβ

M2
i (1 + 2Lk)−M2

k (1 + 2Li)
MiMk (M2

i −M2
k ) , (4.25)
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G
′(1)αβ
H` = 3λ

4 (Yν)αiM
−2
i

(
Y †ν
)
iβ

(3 + 2Li)−
1
8 (Yν)αiM

−1
i

(
Y T
ν Y

∗
ν

)
ik
M−1
k

(
Y †ν
)
kβ

× (3 +Li +Lk)− 1
4 (Yν)αi

(
Y †ν Yν

)
ik

(
Y †ν
)
kβ

Lik
M2
i −M2

k

−1
8 (Yν)αi

(
Y T
ν Y

∗
ν

)
ik

(
Y †ν
)
kβ

M2
i (3 + 2Lk)−M2

k (3 + 2Li)
MiMk (M2

i −M2
k ) , (4.26)

G
′′(1)αβ
H` = i

4 (Yν)αi
(
Y †ν Yν

)
ik

(
Y †ν
)
kβ

M2
i (2−Lik)−M2

k (2 +Lik)
(M2

i −M2
k )2

+ i
4 (Yν)αi

(
Y T
ν Y

∗
ν

)
ik

(
Y †ν
)
kβ

M4
i − 2M2

iM
2
kLik −M4

k

MiMk (M2
i −M2

k )2 , (4.27)

G
(3)αβ
H` = g2

2 − g2
1

32 (Yν)αiM
−2
i

(
Y †ν
)
iβ

(11 + 6Li) + 1
8 (Yν)αiM

−1
i

(
Y T
ν Y

∗
ν

)
ik
M−1
k

(
Y †ν
)
kβ

× (1 +Li +Lk) , (4.28)

G
′(3)αβ
H` = −λ4 (Yν)αiM

−2
i

(
Y †ν
)
iβ

(3 + 2Li) + 1
8 (Yν)αiM

−1
i

(
Y T
ν Y

∗
ν

)
ik
M−1
k

(
Y †ν
)
kβ

× (3 +Li +Lk) , (4.29)

GαβHe = 1
8

(
Y †l Yν

)
αi
M−2
i

(
Y †ν Yl

)
iβ

(1− 2Li) , (4.30)

G′αβHe = 1
8

(
Y †l Yν

)
αi
M−2
i

(
Y †ν Yl

)
iβ

(3 + 2Li) . (4.31)

• ψ2H3

GαβeH = −2λ (Yν)αiM
−2
i

(
Y †ν Yl

)
iβ

(1 + Li) + (Yν)αi
(
Y †ν Yν

)
ik

(
Y †ν Yl

)
kβ

Lik
M2
i −M2

k

+ (Yν)αi
(
Y T
ν Y

∗
ν

)
ik

(
Y †ν Yl

)
kβ

M2
i (1 + Lk)−M2

k (1 + Li)
MiMk

(
M2
i −M2

k

) . (4.32)

• Four-lepton

Gαβγλ`` = −1
8 (Yν)αiM

−2
i

[(
Y †ν

)
iβ

(
YlY

†
l

)
γλ
−
(
Y †ν

)
iλ

(
YlY

†
l

)
γβ

]
(3+2Li)

−1
8 (Yν)αi

(
Y †ν

)
iλ

(Yν)γk
(
Y †ν

)
kβ

Lik
M2
i −M2

k

− 1
4 (Yν)αk (Yν)γk

(
Y †ν

)
iβ

(
Y †ν

)
iλ

×M
2
i (1+Lk)−M2

k (1+Li)
MiMk

(
M2
i −M2

k

) , (4.33)

Gαβγλ`e = 1
8 (Yν)αiM

−2
i

(
Y †ν

)
iβ

(
Y †l Yl

)
γλ

(3+2Li) . (4.34)

• Semileptonic

G
(1)αβγλ
`Q = 1

16 (Yν)αiM
−2
i

(
Y †ν

)
iβ

(
YuY

†
u − YdY

†
d

)
γλ

(3 + 2Li) , (4.35)

G
(3)αβγλ
`Q = 1

16 (Yν)αiM
−2
i

(
Y †ν

)
iβ

(
YuY

†
u + YdY

†
d

)
γλ

(3 + 2Li) , (4.36)
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Gαβγλ`U = −1
8 (Yν)αiM

−2
i

(
Y †ν

)
iβ

(
Y †u Yu

)
γλ

(3 + 2Li) , (4.37)

Gαβγλ`d = 1
8 (Yν)αiM

−2
i

(
Y †ν

)
iβ

(
Y †d Yd

)
γλ

(3 + 2Li) . (4.38)

It is worth pointing out that the contributions from multiple heavy Majorana neu-
trinos in the loops to above Wilson coefficients may be symmetrized with respect to the
generation index of heavy Majorana neutrinos. This is naturally expected, since heavy
Majorana neutrinos appear as intermediate particles and must play an identical role when
they are integrated out simultaneously at the matching scale µ ∼ O (Mi). However, to
maintain the results as concise as possible, we have not put the Wilson coefficients in a
completely symmetric form. Additionally, the Wilson coefficient of Oαβγλ`` , i.e., Gαβγλ`` , can
be symmetrized with respect to the former and latter two flavor indices due to the flavor
structure of Oαβγλ`` .

As mentioned before, these results in the Green’s basis are not indispensable. One can
directly convert the operators obtained by calculating the supertraces in eq. (3.12) into the
independent operators in the Warsaw basis by making use of algebraic, Fierz identities,
integration by parts and the EOMs of relevant fields, but such a procedure is cumbersome
and muddling. From this perspective, the above results in the Green’s basis should be
useful to make the simplification process smooth and the results trackable. In addition, it
is convenient to compare the results with those derived by calculating Feynman diagrams,
as an efficient cross-check. In the diagrammatic calculations the matching is usually done
first with the operators in the Green’s basis, which are then converted into those in the
Warsaw basis, as in refs. [39, 40].

5 Warsaw basis

To convert the operators in the Green’s basis into those in the Warsaw basis, the EOMs of
relevant fields are needed. From eqs. (3.1) and (3.2), we can find the EOMs as follows

i /DER = H†Y †l `L ,

i /D`L = YlHER +YνH̃PRN ,

DνBµν = 1
2g1

H†i↔DµH+2
∑
f

Y (f)fγµf

 ,
(DνWµν)I = 1

2g2

(
H†i
↔
DI
µH+QLτ

IγµQL +`Lτ
Iγµ`L

)
,(

D2H
)a

= −m2Ha−2λ
(
H†H

)
Ha−ERY

†
l `

a
L−DRY

†
dQ

a
L +εabQbLYuUR +εab`bLYνPRN ,

(5.1)

where Y (f) is the hypercharge for f = QL, UR, DR, `L, ER, and I = 1, 2, 3 and a, b = 1, 2.
Again, the heavy fields N in eq. (5.1) should be replaced with the terms on the right-hand
side of eq. (3.4).
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5.1 Threshold corrections

Applying the EOMs in eq. (5.1) to the dimension-six operators in the Green’s basis, one
obtains one-loop corrections to the renormalizable terms in the Warsaw basis:

δZH = δZG
H ,

δZ` = δZG
` ,

δm2 =
(
δm2

)G
+m4GDH ,

δλ = δλG + 2g2m
2GWDH + 4λm2GDH +m2G′HD ,

(δYl)αβ =
(
δY G

`

)
αβ

+m2
[
(Yl)αβ GDH −G

αβ
eHD1 −

1
2G

αβ
eHD2 + 1

2G
αβ
eHD4

]
,

(δYu)αβ = m2 (Yu)αβ GDH ,

(δYd)αβ = m2 (Yd)αβ GDH . (5.2)

One can see that δYu and δYd absent in the Green’s basis now appear in the Warsaw basis.
They are induced by the operator ODH in the Green’s basis after applying the EOM of
H. ODH also gives an additional one-loop contribution to the Wilson coefficient of the
dimension-five operator

(
δC(5)

)
αβ

=
(
δC(5)

)G

αβ
− 2µ2C

(5)
αβGDH , (5.3)

but this contribution is of the order of O
(
M−3) and will be omitted. Then the kinetic

terms of H and ` need to be normalized via

H →
(

1− 1
2δZH

)
H , `→

(
1− 1

2δZ`
)
` , (5.4)

where only the leading-order terms are kept. These redefinitions of fields give additional
one-loop contributions to the effective couplings in the EFT via the tree-level terms. From
eqs. (5.2)–(5.4) and the results in section 4, we obtain the effective couplings in the EFT

m2
eff = m2 (1− δZH)− δm2

= m2 − 1
(4π)2

(
Y †ν Yν

)
ii

[
m2

2 (1 + 2Li) + m4

3M2
i

− 2M2
i (1 + Li)

]
,

λeff = λ (1− 2δZH)− δλ

= λ+ 1
(4π)2

{(
Y †ν Yν

)
ii

[
−λ (1 + 2Li)−

4λm2

3M2
i

+ g2
2m

2

18M2
i

(5 + 6Li)
]

− m2

2M2
i

(
Y †ν YlY

†
l Yν

)
ii

(1 + 2Li) +
[
m2Lik +M2

i (1 + Li)−M2
k (1 + Lk)

]
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×

(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki

M2
i −M2

k

+
[
m2M2

i (1 + 2Lk)−m2M2
k (1 + 2Li)− 2M2

iM
2
kLik

]

×

(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

2MiMk

(
M2
i −M2

k

)
 ,

(
Y eff
l

)
αβ

=
[
Yl

(
1− 1

2δZH
)
− 1

2δZ`Yl − δYl
]
αβ

= (Yl)αβ −
1

(4π)2

{
(Yl)αβ

(
Y †ν Yν

)
ii

[
1
4 (1 + 2Li) + m2

3M2
i

]
− 1

8 (Yν)αi
(
Y †ν Yl

)
iβ

×
[
5 + 6m2

M2
i

+ 2
(

3 + 2m2

M2
i

)
Li

]}
,

(
Y eff

u

)
αβ

=
[
Yu

(
1− 1

2δZH
)
− δYu

]
αβ

= (Yu)αβ −
1

(4π)2 (Yu)αβ
(
Y †ν Yν

)
ii

[
1
4 (1 + 2Li) + m2

3M2
i

]
,

(
Y eff

d

)
αβ

=
[
Yd

(
1− 1

2δZH
)
− δYd

]
αβ

= (Yd)αβ −
1

(4π)2 (Yd)αβ
(
Y †ν Yν

)
ii

[
1
4 (1 + 2Li) + m2

3M2
i

]
, (5.5)

up to O
(
M−2). Similarly, the Wilson coefficient of the dimension-five operator is given by(

C
(5)
eff

)
αβ

=
[
C(5) (1− δZH)− 1

2δZ`C
(5) − 1

2C
(5)δZT

` + δC(5)
]
αβ

= C
(5)
αβ −

1
(4π)2

{
1
2C

(5)
αβ

(
Y †ν Yν

)
ii

(1 + 2Li) + 1
8 (Yν)αi

(
Y †ν C

(5)
)
iβ

(3 + 2Li)

+1
8C

(5)
αγ (Yν)βi

(
Y †ν

)
iγ

(3 + 2Li)−
[
2λ (1 + Li) + g2

1 + g2
2

4 (1 + 3Li)
]

× (Yν)αiM
−1
i

(
Y T
ν

)
iβ

}
, (5.6)

up to O
(
M−2). These are the complete one-loop matching results, which can be used

together with the two-loop RGEs of relevant Wilson coefficients in the SEFT.

5.2 Dimension-six operators

In the type-I seesaw model, O(1)αβ
H` and O(3)αβ

H` can already be obtained from the tree-level
matching as shown in eq. (3.7). Their Wilson coefficients at the tree level are given by[

C
(1)
H`

]αβ
tree

= −
[
C

(3)
H`

]αβ
tree

= 1
4C

(6)
αβ = 1

4
(
YνM

−2Y †ν

)
αβ

. (5.7)
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X2H2 ψ2DH2 Four-quark

OHB BµνB
µνH†H O(1)αβ

HQ

(
QαLγ

µQβL

)(
H†i
↔
DµH

)
O(1)αβγλ
QU

(
QαLγ

µQβL

) (
UγRγµUλR

)
OHW W I

µνW
IµνH†H O(3)αβ

HQ

(
QαLγ

µτ IQβL

)(
H†i
↔
DI
µH

)
O(8)αβγλ
QU

(
QαLγ

µTAQβL

) (
UγRγµT

AUλR

)
OHWB W I

µνB
µν
(
H†τ IH

)
OαβHU

(
UαRγ

µUβR

)(
H†i
↔
DµH

)
O(1)αβγλ
Qd

(
QαLγ

µQβL

) (
DγRγµDλR

)
H4D2 OαβHd

(
DαRγ

µDβR

)(
H†i
↔
DµH

)
O(8)αβγλ
Qd

(
QαLγ

µTAQβL

) (
DγRγµT

ADλR

)
OH�

(
H†H

)
�
(
H†H

)
O(1)αβ
H`

(
`αLγ

µ`βL

)(
H†i
↔
DµH

)
O(1)αβγλ
QUQd

(
QaαLUβR

)
εab
(
QbγLDλR

)
OHD

(
H†DµH

)∗ (
H†DµH

)
O(3)αβ
H`

(
`αLγ

µτ I`βL

)(
H†i
↔
DI
µH

)
Four-lepton

H6 OαβHe
(
EαRγ

µEβR

)(
H†i
↔
DµH

)
Oαβγβ``

(
`αLγ

µ`βL

) (
`γLγµ`λL

)
OH

(
H†H

)3
ψ2H3 Oαβγλ`e

(
`αLγ

µ`βL

) (
EγRγµEλR

)
ψ2XH OαβUH

(
QαLH̃UβR

) (
H†H

)
OαβeB

(
`αLσ

µνEβR

)
HBµν OαβdH

(
QαLHDβR

) (
H†H

)
OαβeW

(
`αLσ

µνEβR

)
τ IHW I

µν OαβeH
(
`αLHEβR

) (
H†H

)
Semi-leptonic

O(1)αβγλ
`Q

(
`αLγ

µ`βL

) (
QγLγµQλL

)
Oαβγλ`U

(
`αLγ

µ`βL

) (
UγRγµUλR

)
Oαβγλ`edQ

(
`αLEβR

) (
DγRQλL

)
O(3)αβγλ
`Q

(
`αLγ

µτ I`βL

) (
QγLγµτ

IQλL

)
Oαβγλ`d

(
`αLγ

µ`βL

) (
DγRγµDλR

)
O(1)αβγλ
`eQU

(
`aαLEβR

)
εab
(
QbγLUλR

)
Table 2. Dimension-six operators induced by the type-I seesaw model at the one-loop level in the
Warsaw basis, where the Hermitian conjugates of the operators in classes ψ2XH and ψ2H3, as well
as those of the four-fermion operators, have not been listed explicitly.

These tree-level Wilson coefficients result in extra one-loop contributions to the total Wilson
coefficients of O(1)αβ

H` and O(3)αβ
H` via the normalizations of the kinetic terms of H and `

given in eq. (5.4), i.e.,

δC
(1)αβ
H` = −δC(3)αβ

H` = −1
4

(
C(6)δZH + 1

2δZ`C
(6) + 1

2C
(6)δZ`

)
αβ

= − 1
8 (4π)2

[(
YνM

−2Y †ν

)
αβ

(
Y †ν Yν

)
ii

(1 + 2Li) + 1
4 (Yν)αi

(
Y †ν YνM

−2Y †ν

)
iβ

× (3 + 2Li) + 1
4
(
YνM

−2Y †ν Yν

)
αi

(
Y †ν

)
iβ

(3 + 2Li)
]
, (5.8)

which will be added into the total one-loop-level Wilson coefficients of O(1)αβ
H` and O(3)αβ

H` .
All dimension-six operators in the Warsaw basis induced by the type-I seesaw model at

the one-loop level are listed in table 2 and the associated one-loop-level Wilson coefficients
up to O

(
M−2) are explicitly given in the remaining part of this subsection, where an

overall loop factor 1/ (4π)2 is implied in all Wilson coefficients.

• X2H2

CHB = GHB = g2
1

24tr
(
YνM

−2Y †ν

)
, (5.9)

CHWB = GHWB = g1g2
12 tr

(
YνM

−2Y †ν

)
, (5.10)

CHW = GHW = g2
2

24tr
(
YνM

−2Y †ν

)
. (5.11)
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• H4D2

CH� = GH� + 3g2
2 GWDH + g1

2 GBDH + 1
2G
′
HD

= −g
2
1 + 3g2

2
72

(
Y †ν Yν

)
ii
M−2
i (5 + 6Li) + 1

4

(
Y †ν YlY

†
l Yν

)
ii
M−2
i (1 + 2Li)

+1
2
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki

M4
i (1−Lik)−M4

k (1 +Lik)
(M2

i −M2
k )3 −

(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

2MiMk (M2
i −M2

k )3

×
[
M6
i (1 +Lk)−M4

iM
2
k (5 + 2Li +Lk) +M2

iM
4
k (5 +Li + 2Lk)

−M6
k (1 +Li)

]
, (5.12)

CHD = GHD + 2g1GBDH

= −g
2
1

18
(
Y †ν Yν

)
ii
M−2
i (5 + 6Li)−

1
2

(
Y †ν YlY

†
l Yν

)
ii
M−2
i (1 + 2Li)−

Lik
2 (M2

i −M2
k )

×
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki
−
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

M2
i (1 +Lk)−M2

k (1 +Li)
MiMk (M2

i −M2
k ) . (5.13)

• H6

CH = GH +4g2λGWDH +4λ2GDH +2λG′HD

= λ

3M2
i

(
Y †ν Yν

)
ii

[
4λ− g

2
2
3 (5+6Li)

]
+λ

(
Y †ν YlY

†
l Yν

)
ii
M−2
i (1+2Li)

−2λ
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki

Lik
M2
i −M2

k

−λ
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

×M
2
i (1+2Lk)−M2

k (1+2Li)
MiMk

(
M2
i −M2

k

) + 2
3
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
kj

(
Y †ν Yν

)
ji

×
M2
iM

2
j Lji+M2

iM
2
kLik+M2

jM
2
kLkj(

M2
i −M2

k

)(
M2
i −M2

j

)(
M2
k −M2

j

) −2MiMj

(
Y †ν Yν

)
ik

(
Y †ν Yν

)
kj

(
Y †ν Yν

)
ij

×
M2
i Lkj +M2

kLji+M2
j Lik(

M2
i −M2

k

)(
M2
i −M2

j

)(
M2
k −M2

j

) . (5.14)

• ψ2XH

CαβeB = GαβeB −
g1
8 (Yl)γβ G

αγ
`D −

g1
8 G

αβ
eHD2 −

g1
2 G

αβ
eHD3 + g1

8 G
αβ
eHD4

= g1
24
(
YνM

−2Y †ν Yl

)
αβ

, (5.15)

CαβeW = GαβeW + g2
8 (Yl)γβ G

αγ
`D −

g2
8 G

αβ
eHD2 + g2

8 G
αβ
eHD4

= 5g2
24

(
YνM

−2Y †ν Yl

)
αβ

. (5.16)
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• ψ2DH2

C
(1)αβ
HQ = g1

6 δ
αβGBDH = − g2

1
216δ

αβ
(
Y †ν Yν

)
ii
M−2
i (5 + 6Li) , (5.17)

C
(3)αβ
HQ = g2

2 δ
αβGWDH = −g

2
2

72δ
αβ
(
Y †ν Yν

)
ii
M−2
i (5 + 6Li) , (5.18)

CαβHU = 2g1
3 δαβGBDH = −g

2
1

54δ
αβ
(
Y †ν Yν

)
ii
M−2
i (5 + 6Li) , (5.19)

CαβHd = −g1
3 δ

αβGBDH = g2
1

108δ
αβ
(
Y †ν Yν

)
ii
M−2
i (5 + 6Li) , (5.20)

C
(1)αβ
H` = G

(1)αβ
H` − g1

2 δ
αβGBDH + g1

2 G
αβ
B` + δC

(1)αβ
H` − 1

8

[(
Y †l

)
γβ
GαγeHD2 + (Yl)αγ G

∗βγ
eHD2

]
+1

4

[(
Y †l

)
γβ
GαγeHD3 + (Yl)αγ G

∗βγ
eHD3

]
− 1

8

[(
Y †l

)
γβ
GαγeHD4 + (Yl)αγ G

∗βγ
eHD4

]
= (Yν)αiM

−2
i

(
Y †ν
)
iβ

[
−1

8
(
Y †ν Yν

)
kk

(1 + 2Lk) + 11g2
1 + 27g2

2
288 (11 + 6Li)

]
− 1

32 (3 + 2Li)
[
(Yν)αi

(
Y †ν YνM

−2Y †ν
)
iβ

+
(
YνM

−2Y †ν Yν
)
αi

(
Y †ν
)
iβ

]
− 1

16 (3 + 2Li)
[
(Yν)αiM

−2
i

(
Y †ν YlY

†
l

)
iβ

+
(
YlY

†
l Yν

)
αi
M−2
i

(
Y †ν
)
iβ

]
+g2

1
72δ

αβ
(
Y †ν Yν

)
ii
M−2
i (5 + 6Li)−

1
8 (Yν)αiM

−1
i

(
Y T
ν Y

∗
ν

)
ik
M−1
k

(
Y †ν
)
kβ

× (1 +Li +Lk)− 1
2 (Yν)αi

(
Y †ν Yν

)
ik

(
Y †ν
)
kβ

Lik
M2
i −M2

k

−1
8 (Yν)αi

(
Y T
ν Y

∗
ν

)
ik

(
Y †ν
)
kβ

M2
i (1 + 2Lk)−M2

k (1 + 2Li)
MiMk (M2

i −M2
k ) , (5.21)

C
(3)αβ
H` = G

(3)αβ
H` + g2

2 δ
αβGWDH + g2

2 G
αβ
W` + δC

(3)αβ
H` − 1

8

[(
Y †l

)
γβ
GαγeHD2 + (Yl)αγ G

∗βγ
eHD2

]
+1

4

[(
Y †l

)
γβ
GαγeHD3 + (Yl)αγ G

∗βγ
eHD3

]
− 1

8

[(
Y †l

)
γβ
GαγeHD4 + (Yl)αγ G

∗βγ
eHD4

]
= (Yν)αiM

−2
i

(
Y †ν
)
iβ

[
1
8
(
Y †ν Yν

)
kk

(1 + 2Lk) + 7g2
2 − 9g2

1
288 (11 + 6Li)

]
+ 1

32 (3 + 2Li)
[
(Yν)αi

(
Y †ν YνM

−2Y †ν
)
iβ

+
(
YνM

−2Y †ν Yν
)
αi

(
Y †ν
)
iβ

]
− 1

16 (3 + 2Li)
[
(Yν)αiM

−2
i

(
Y †ν YlY

†
l

)
iβ

+
(
YlY

†
l Yν

)
αi
M−2
i

(
Y †ν
)
iβ

]
−g

2
2

72δ
αβ
(
Y †ν Yν

)
ii
M−2
i (5 + 6Li) + 1

8 (Yν)αiM
−1
i

(
Y T
ν Y

∗
ν

)
ik
M−1
k

(
Y †ν
)
kβ

× (1 +Li +Lk) , (5.22)

CαβHe = GαβHe− g1δ
αβGBDH −

1
2

(
Y †l

)
αγ

(Yl)λβ G
γλ
`D + 1

4

[(
Y †l

)
αγ
GγβeHD2 + (Yl)γβ G

∗γα
eHD2

]
−1

4

[(
Y †l

)
αγ
GγβeHD4 + (Yl)γβ G

∗γα
eHD4

]
= g2

1
36δ

αβ
(
Y †ν Yν

)
ii
M−2
i (5 + 6Li)−

1
24

(
Y †l Yν

)
αi
M−2
i

(
Y †ν Yl

)
iβ

(5 + 6Li) . (5.23)
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• ψ2H3

CαβUH = (Yu)αβ
(
g2GWDH +2λGDH + 1

2G
′
HD− iG′′HD

)

= (Yu)αβ
[

2λ
3 tr

(
YνM

−2Y †ν
)
− g

2
2

36
(
Y †ν Yν

)
ii
M−2
i (5+6Li)+ 1

4

(
Y †ν YlY

†
l Yν

)
ii

×M−2
i (1+2Li)−

1
2
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki

Lik
M2
i −M2

k

− 1
2
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

×M
4
i (1+Lk)−M2

iM
2
k (1+2Lk)+M4

kLi

MiMk (M2
i −M2

k )2

]
, (5.24)

CαβdH = (Yd)αβ
(
g2GWDH +2λGDH + 1

2G
′
HD+iG′′HD

)

= (Yd)αβ
[

2λ
3 tr

(
YνM

−2Y †ν
)
− g

2
2

36
(
Y †ν Yν

)
ii
M−2
i (5+6Li)+ 1

4

(
Y †ν YlY

†
l Yν

)
ii

×M−2
i (1+2Li)−

1
2
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki

Lik
M2
i −M2

k

− 1
2
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

×M
4
i Lk−M2

iM
2
k (1+2Li)+M4

k (1+Li)
MiMk (M2

i −M2
k )2

]
, (5.25)

CαβeH = GαβeH +(Yl)αβ
(
g2GWDH +2λGDH + 1

2G
′
HD+iG′′HD

)
− 1

2

(
YlY

†
l

)
αγ

(Yl)λβG
γλ
`D

−2λGαβeHD1 + 1
4

[(
Y †l Yl

)
γβ
GαγeHD2 +

(
YlY

†
l

)
αγ
GγβeHD2−2(Yl)αγ (Yl)λβG

∗λγ
eHD2

]

−λGαβeHD2−
1
2

[(
Y †l Yl

)
γβ
GαγeHD3 +(Yl)αγ (Yl)λβG

∗λγ
eHD3

]
+ 1

4

[(
Y †l Yl

)
γβ
GαγeHD4

−
(
YlY

†
l

)
αγ
GγβeHD4

]
+λGαβeHD4 +(Yl)γβ

(
G
′(1)αγ
H` +G

′(3)αγ
H` +iG′′(1)αγ

H`

)
+(Yl)αγG

′γβ
He

= (Yl)αβ
[

2λ
3 tr

(
YνM

−2Y †ν
)
− g

2
2

36
(
Y †ν Yν

)
ii
M−2
i (5+6Li)+ 1

4

(
Y †ν YlY

†
l Yν

)
ii

×M−2
i (1+2Li)−

1
2
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ki

Lik
M2
i −M2

k

− 1
2
(
Y †ν Yν

)
ik

(
Y †ν Yν

)
ik

×M
4
i Lk−M2

iM
2
k (1+2Li)+M4

k (1+Li)
MiMk (M2

i −M2
k )2

]
− 1

3

(
YlY

†
l YνM

−2Y †ν Yl

)
αβ

−λ2 (Yν)αiM
−2
i

(
Y †ν Yl

)
iβ

(3+2Li)+ 1
8 (Yν)αiM

−2
i

(
Y †ν YlY

†
l Yl

)
iβ

(3+2Li)

+
(Yν)αi

(
Y T
ν Y

∗
ν

)
ik

(
Y †ν Yl

)
kβ

8MiMk (M2
i −M2

k )2
[
3M4

i (1+2Lk)−2M2
iM

2
k (5+Lk+5Li)

+M4
k (7+6Li)

]
− 1

2 (Yν)αi
(
Y †ν Yν

)
ik

(
Y †ν Yl

)
kβ

M2
i (1−2Lik)−M2

k (1−Lik)
(M2

i −M2
k )2 . (5.26)
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• Four-quark

C
(1)αβγλ
QU = −1

6 (Yu)αλ
(
Y †u

)
γβ
GDH = − 1

18tr
(
YνM

−2Y †ν

)
(Yu)αλ

(
Y †u

)
γβ
, (5.27)

C
(8)αβγλ
QU = − (Yu)αλ

(
Y †u

)
γβ
GDH = −1

3tr
(
YνM

−2Y †ν

)
(Yu)αλ

(
Y †u

)
γβ
, (5.28)

C
(1)αβγλ
Qd = −1

6 (Yd)αλ
(
Y †d

)
γβ
GDH = − 1

18tr
(
YνM

−2Y †ν

)
(Yd)αλ

(
Y †d

)
γβ
, (5.29)

C
(8)αβγλ
Qd = − (Yd)αλ

(
Y †d

)
γβ
GDH = −1

3tr
(
YνM

−2Y †ν

)
(Yd)αλ

(
Y †d

)
γβ
, (5.30)

C
(1)αβγλ
QUQd = (Yu)αβ (Yd)γλGDH = 1

3tr
(
YνM

−2Y †ν

)
(Yu)αβ (Yd)γλ . (5.31)

• Four-lepton

Cαβγλ`` = Gαβγλ`` − g1
2 δ

γλGαβB` + g2
2

(
2δγβGαλW`− δγλG

αβ
W`

)
= g2

2 − g2
1

144 δγλ (Yν)αiM
−2
i

(
Y †ν
)
iβ

(11 + 6Li)−
g2

2
72δ

γβ (Yν)αiM
−2
i

(
Y †ν
)
iλ

(11 + 6Li)

−1
8 (Yν)αiM

−2
i

[(
Y †ν
)
iβ

(
YlY

†
l

)
γλ
−
(
Y †ν
)
iλ

(
YlY

†
l

)
γβ

]
(3 + 2Li)

−1
8 (Yν)αi

(
Y †ν
)
iλ

(Yν)γk
(
Y †ν
)
kβ

Lik
M2
i −M2

k

− 1
4 (Yν)αk (Yν)γk

(
Y †ν
)
iβ

(
Y †ν
)
iλ

×M
2
i (1 +Lk)−M2

k (1 +Li)
MiMk (M2

i −M2
k ) , (5.32)

Cαβγλ`e = Gαβγλ`e − 1
2 (Yl)αλ

(
Y †l

)
γβ
GDH − g1δ

γλGαβB` + 1
2

[(
Y †l

)
γβ
GαλeHD1 + (Yl)αλG

∗βγ
eHD1

]
+1

4

[(
Y †l

)
γβ
GαλeHD2 + (Yl)αλG

∗βγ
eHD2

]
− 1

4

[(
Y †l

)
γβ
GαλeHD4 + (Yl)αλG

∗βγ
eHD4

]
= −1

6tr
(
YνM

−2Y †ν
)

(Yl)αλ
(
Y †l

)
γβ

+ 1
4

(
Y †l

)
γβ

(
YνM

−2Y †ν Yl
)
αλ

+1
4 (Yl)αλ

(
Y †l YνM

−2Y †ν

)
γβ

+ 1
8 (Yν)αiM

−2
i

(
Y †ν
)
iβ

(
Y †l Yl

)
γλ

(3 + 2Li)

−g
2
1

72δ
γλ (Yν)αiM

−2
i

(
Y †ν
)
iβ

(11 + 6Li) . (5.33)

• Semileptonic

C
(1)αβγλ
`Q = G

(1)αβγλ
`Q + g1

6 δ
γλGαβB`

= 1
16 (Yν)αiM

−2
i

(
Y †ν
)
iβ

[
g2

1
27δ

γλ (11 + 6Li) +
(
YuY

†
u −YdY

†
d

)
γλ

(3 + 2Li)
]
,

(5.34)

C
(3)αβγλ
`Q = G

(3)αβγλ
`Q + g2

2 δ
γλGαβW`

= 1
16 (Yν)αiM

−2
i

(
Y †ν
)
iβ

[
−g

2
2
9 δ

γλ (11 + 6Li) +
(
YuY

†
u +YdY

†
d

)
γλ

(3 + 2Li)
]
,

(5.35)
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Cαβγλ`U = Gαβγλ`U + 2g1
3 δγλGαβB`

= 1
8 (Yν)αiM

−2
i

(
Y †ν
)
iβ

[
2g2

1
27 δ

γλ (11 + 6Li)−
(
Y †u Yu

)
γλ

(3 + 2Li)
]
, (5.36)

Cαβγλ`d = Gαβγλ`d − g1
3 δ

γλGαβB`

= 1
8 (Yν)αiM

−2
i

(
Y †ν
)
iβ

[
−g

2
1

27δ
γλ (11 + 6Li) +

(
Y †d Yd

)
γλ

(3 + 2Li)
]
, (5.37)

Cαβγλ`edQ =
(
Y †d

)
γλ

[
(Yl)αβ GDH −G

αβ
eHD1−

1
2G

αβ
eHD2 + 1

2G
αβ
eHD4

]
=
(
Y †d

)
γλ

[
1
3tr
(
YνM

−2Y †ν
)

(Yl)αβ −
1
2
(
YνM

−2Y †ν Yl
)
αβ

]
, (5.38)

C
(1)αβγλ
`eQU = (Yu)γλ

[
− (Yl)αβ GDH +GαβeHD1 + 1

2G
αβ
eHD2−

1
2G

αβ
eHD4

]
= (Yu)γλ

[
−1

3tr
(
YνM

−2Y †ν
)

(Yl)αβ + 1
2
(
YνM

−2Y †ν Yl
)
αβ

]
. (5.39)

5.3 Simplified results

To simplify the above results and make them more illuminating, we now assume that the
masses of heavy Majorana neutrinos are exactly degenerate, i.e., M1 = M2 = M3 = M and
take the matching scale to be µ = M . All the divergences can be simply dropped in the MS
scheme. Thus for the effective couplings and the Wilson coefficient of the dimension-five
operator, we have

m2
eff = m2 + 1

(4π)2

(
2M2 − m2

2 −
m4

3M2

)
tr
(
Y †ν Yν

)
, (5.40)

λeff = λ+ 1
(4π)2

[
5g2

2m
2 − 18λ− 24λm2

18M2 tr
(
Y †ν Yν

)
+ m2

M2 tr
(
Y †ν YνY

†
ν Yν

)

− 2M2 − 3m2

2M2 tr
(
Y †ν YνY

T
ν Y

∗
ν

)
− m2

2M2 tr
(
Y †ν YlY

†
l Yν

)]
, (5.41)

Y eff
l = Yl −

1
(4π)2

[(
1
4 + m2

3M2

)
tr
(
Y †ν Yν

)
Yl −

(
5
8 + 3m2

4M2

)
YνY

†
ν Yl

]
, (5.42)

Y eff
u = Yu −

1
(4π)2

(
1
4 + m2

3M2

)
tr
(
Y †ν Yν

)
Yu , (5.43)

Y eff
d = Yu −

1
(4π)2

(
1
4 + m2

3M2

)
tr
(
Y †ν Yν

)
Yd , (5.44)

C
(5)
eff = C(5) + 1

(4π)2


2λ+ g2

1 + g2
2

4 −
tr
(
Y †ν Yν

)
2

C(5) − 3
8
(
C(5)Y ∗ν Y

T
ν + YνY

†
ν C

(5)
) ,
(5.45)
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where C(5) = YνY
T
ν /M is the tree-level contribution to the Wilson coefficient of the unique

dimension-five operator. The tree-level contributions to the Wilson coefficients of O(1)αβ
H`

and O(3)αβ
H` are given by

[
O(1)
H`

]αβ
tree

= −
[
O(3)
H`

]αβ
tree

= 1
4M2

(
YνY

†
ν

)
αβ

. (5.46)

Again, the one-loop-level Wilson coefficients of the operators listed in table 2 should be
multiplied by an overall loop factor 1/ (4π)2, which will not be explicitly shown in all
the Wilson coefficients. Under the assumption of mass degeneracy, the simplified Wilson
coefficients can be found below:

• X2H2

CHB = g2
1

24M2 tr
(
Y †ν Yν

)
, (5.47)

CHWB = g1g2
12M2 tr

(
Y †ν Yν

)
, (5.48)

CHW = g2
2

24M2 tr
(
Y †ν Yν

)
. (5.49)

• H4D2

CH� = − 1
72M2

[
5
(
g2

1 + 3g2
2

)
tr
(
Y †ν Yν

)
+ 24tr

(
Y †ν YνY

†
ν Yν

)
+ 78tr

(
Y †ν YνY

T
ν Y

∗
ν

)
− 18tr

(
Y †ν YlY

†
l Yν

)]
, (5.50)

CHD = − 1
18M2

[
5g2

1tr
(
Y †ν Yν

)
+ 9tr

(
Y †ν YνY

†
ν Yν

)
+ 36tr

(
Y †ν YνY

T
ν Y

∗
ν

)
+ 9tr

(
Y †ν YlY

†
l Yν

)]
. (5.51)

• H6

CH = 1
M2

{
λ

[(
12λ− 5g2

2
)

9 tr
(
Y †ν Yν

)
− 2tr

(
Y †ν YνY

†
ν Yν

)
− 3tr

(
Y †ν YνY

T
ν Y

∗
ν

)
+ tr

(
Y †ν YlY

†
l Yν

)]
+ 1

3tr
(
Y †ν YνY

†
ν YνY

†
ν Yν

)
− tr

(
Y †ν YνY

†
ν YνY

T
ν Y

∗
ν

)}
. (5.52)

• ψ2XH

CαβeB = g1
24M2

(
YνY

†
ν Yl

)
αβ

, (5.53)

CαβeW = 5g2
24M2

(
YνY

†
ν Yl

)
αβ

. (5.54)

– 28 –



J
H
E
P
0
9
(
2
0
2
1
)
1
6
3

• ψ2DH2

C
(1)αβ
HQ = −5δαβg2

1
216M2 tr

(
Y †ν Yν

)
, (5.55)

C
(3)αβ
HQ = −5δαβg2

2
72M2 tr

(
Y †ν Yν

)
, (5.56)

CαβHU = −5δαβg2
1

54M2 tr
(
Y †ν Yν

)
, (5.57)

CαβHd = 5δαβg2
1

108M2 tr
(
Y †ν Yν

)
, (5.58)

C
(1)αβ
H` = 1

M2

{
5δαβg2

1
72 tr

(
Y †ν Yν

)
+
[ 11

288
(
11g2

1 + 27g2
2

)
− 1

8tr
(
Y †ν Yν

)] (
YνY

†
ν

)
αβ

−11
16
(
YνY

†
ν YνY

†
ν

)
αβ
− 1

2
(
YνY

T
ν Y

∗
ν Y
†
ν

)
αβ
− 3

16
(
YlY

†
l YνY

†
ν

)
αβ

− 3
16
(
YνY

†
ν YlY

†
l

)
αβ

}
, (5.59)

C
(3)αβ
H` = 1

M2

{
−5δαβg2

2
72 tr

(
Y †ν Yν

)
+
[ 11

288
(
−9g2

1 + 7g2
2

)
+ 1

8tr
(
Y †ν Yν

)] (
YνY

†
ν

)
αβ

+ 3
16
(
YνY

†
ν YνY

†
ν

)
αβ

+ 1
8
(
YνY

T
ν Y

∗
ν Y
†
ν

)
αβ
− 3

16
(
YlY

†
l YνY

†
ν

)
αβ

− 3
16
(
YνY

†
ν YlY

†
l

)
αβ

}
, (5.60)

CαβHe = 5
72M2

[
2δαβg2

1tr
(
Y †ν Yν

)
− 3

(
Y †l YνY

†
ν Yl

)
αβ

]
. (5.61)

• ψ2H3

CαβUH = 1
36M2 (Yu)αβ

[ (
24λ− 5g2

2
)

tr
(
Y †ν Yν

)
− 18tr

(
Y †ν YνY

†
ν Yν

)
− 27tr

(
Y †ν YνY

T
ν Y

∗
ν

)
+ 9tr

(
YνY

†
ν YlY

†
l

)]
, (5.62)

CαβdH = 1
36M2 (Yd)αβ

[ (
24λ− 5g2

2
)

tr
(
Y †ν Yν

)
− 18tr

(
Y †ν YνY

†
ν Yν

)
− 27tr

(
Y †ν YνY

T
ν Y

∗
ν

)
+ 9tr

(
YνY

†
ν YlY

†
l

)]
, (5.63)

CαβeH = 1
36M2 (Yl)αβ

[ (
24λ− 5g2

2
)

tr
(
Y †ν Yν

)
− 18tr

(
Y †ν YνY

†
ν Yν

)
− 27tr

(
Y †ν YνY

T
ν Y

∗
ν

)
+ 9tr

(
YνY

†
ν YlY

†
l

)]
+ 1
M2

[
−3λ

2
(
YνY

†
ν Yl
)
αβ

+ 3
4
(
YνY

†
ν YνY

†
ν Yl
)
αβ

+ 11
8
(
YνY

T
ν Y

∗
ν Y
†
ν Yl
)
αβ
− 1

3

(
YlY

†
l YνY

†
ν Yl

)
αβ

+ 3
8

(
YνY

†
ν YlY

†
l Yl

)
αβ

]
. (5.64)
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• Four-quark

C
(1)αβγλ
QU = − 1

18M2 tr
(
Y †ν Yν

)
(Yu)αλ

(
Y †u

)
γβ
, (5.65)

C
(8)αβγλ
QU = − 1

3M2 tr
(
Y †ν Yν

)
(Yu)αλ

(
Y †u

)
γβ
, (5.66)

C
(1)αβγλ
Qd = − 1

18M2 tr
(
Y †ν Yν

)
(Yd)αλ

(
Y †d

)
γβ
, (5.67)

C
(8)αβγλ
Qd = − 1

3M2 tr
(
Y †ν Yν

)
(Yd)αλ

(
Y †d

)
γβ
, (5.68)

C
(1)αβγλ
QUQd = 1

3M2 tr
(
Y †ν Yν

)
(Yu)αβ (Yd)γλ . (5.69)

• Four-lepton

Cαβγλ`` = 1
M2

[
11
(
g2

2 − g2
1
)

144 δγλ
(
YνY

†
ν

)
αβ
− 11g2

2
72 δγβ

(
YνY

†
ν

)
αλ
− 1

8
(
YνY

†
ν

)
αλ

(
YνY

†
ν

)
γβ

− 1
2
(
YνY

T
ν

)
αγ

(
Y ∗ν Y

†
ν

)
βλ
− 3

8
(
YνY

†
ν

)
αβ

(
YlY

†
l

)
γλ

+ 3
8
(
YνY

†
ν

)
αλ

(
YlY

†
l

)
γβ

]
,

(5.70)

Cαβγλ`e = − 1
M2

[
11g2

1
72 δγλ

(
YνY

†
ν

)
αβ

+ 1
6tr
(
Y †ν Yν

)
(Yl)αλ

(
Y †l

)
γβ
− 1

4
(
YνY

†
ν Yl
)
αλ

(
Y †l

)
γβ

− 3
8
(
YνY

†
ν

)
αβ

(
Y †l Yl

)
γλ
− 1

4 (Yl)αλ
(
Y †l YνY

†
ν

)
γβ

]
. (5.71)

• Semileptonic

C
(1)αβγλ
`Q = 1

16M2

(
YνY

†
ν

)
αβ

[
11g2

1
27 δγλ + 3

(
YuY

†
u − YdY

†
d

)
γλ

]
, (5.72)

C
(3)αβγλ
`Q = 1

16M2

(
YνY

†
ν

)
αβ

[
−11g2

2
9 δγλ + 3

(
YuY

†
u + YdY

†
d

)
γλ

]
, (5.73)

Cαβγλ`U = 1
8M2

(
YνY

†
ν

)
αβ

[
22g2

1
27 δγλ − 3

(
Y †u Yu

)
γλ

]
, (5.74)

Cαβγλ`d = 1
8M2

(
YνY

†
ν

)
αβ

[
−11g2

1
27 δγλ + 3

(
Y †d Yd

)
γλ

]
, (5.75)

Cαβγλ`edQ = 1
M2

(
Y †d

)
γλ

[1
3tr

(
Y †ν Yν

)
(Yl)αβ −

1
2
(
YνY

†
ν Yl

)
αβ

]
, (5.76)

Cαβγλ`eQU = 1
M2 (Yu)γλ

[
−1

3tr
(
Y †ν Yν

)
(Yl)αβ + 1

2
(
YνY

†
ν Yl

)
αβ

]
. (5.77)

Further simplifications could be made by noticing the strong hierarchy among the SM
fermion Yukawa couplings. Since this can be easily achieved by just ignoring the relatively
small Yukawa couplings, it is unnecessary to do this explicitly.
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Note that the redundant operators in the Green’s basis have been removed via the
EOMs of relevant fields, whereas new independent operators appear in the Warsaw basis.
Though the heavy Majorana neutrinos do not directly interact with quarks in the type-
I seesaw model, the pure quark interactions (i.e., the four-quark operators) are present.
With eqs. (5.27)–(5.31), one can easily find that all these four-quark operators result from
the ODH in the Green’s basis. Therefore, the complete Lagrangian of the SEFT up to the
one-loop level reads

LSEFT = LSM

(
m2 → m2

eff , λ→ λeff , Yl → Y eff
l , Yu → Y eff

u , Yd → Y eff
d

)
+
[1

2
(
C

(5)
eff

)
αβ
O(5)
αβ + h.c.

]
+ 1

4C
(6)
αβ

[
O(1)αβ
H` −O(3)αβ

H`

]
+
∑
i

CiOi , (5.78)

where Oi denote the dimension-six operators listed in table 2 including Hermitian con-
jugations of the non-Hermitian operators, while Ci refer to the one-loop contributions to
corresponding Wilson coefficients. The coefficients Ci are suppressed both by the mass
scale of the heavy Majorana neutrinos and by the loop factor, i.e., 1/M2 and 1/

(
16π2).

Unlike what we have done for the dimension-five operator, the tree- and one-loop-level
contributions to the Wilson coefficients of O(1)αβ

H` and O(3)αβ
H` are not summed up.

Before ending this section, we briefly discuss possible applications of the one-loop
matching results. First, a self-consistent calculation of radiative decays of charged leptons
in the SEFT has been performed in ref. [40] where the one-loop matching for the relevant
operators is carried out via diagrammatic calculations. One can observe that the Wilson
coefficients of the operators Oαβ`D , O

αβ
eB , O

αβ
eW , OαβeHD1, O

αβ
eHD2, O

αβ
eHD3, and O

αβ
eHD4 given in

eqs. (4.16)–(4.22) in the Green’s basis exactly coincide with those given in eqs. (11), (15)
and (18) of ref. [40], after µ = O (Mi) is taken and the different conventions for the last
four operators are considered. Actually, one can check that if µ = O (Mi) is not taken
during the matching done in ref. [40], the results are exactly the same as those given
in eqs. (4.16)–(4.22) as they should be. After applying the EOMs of relevant fields, we
obtain the Wilson coefficients of operators OαβeB and OαβeW in the Warsaw basis, as shown in
eqs. (5.15) and (5.16). These results are identical to those in eq. (23) of ref. [40]. Then, one
may also make use of the above results to study the contributions from the heavy Majorana
neutrinos to other leptonic observables. For instance, OαβeH contributes to H → `−α `

+
β (α = β

for decays into the same lepton flavor and α 6= β for lepton-flavor-violating decays), while
O(1)αβ
H` and O(3)αβ

H` lead to Z → νανβ at both the tree and one-loop levels. But the latter
make contributions to Z → `−α `

+
β only at the one-loop level, together with OαβHe, O

αβ
eB and

OαβeW , since at the tree level the combination O(1)αβ
H` − O(3)αβ

H` just modifies the coupling
of ordinary neutrinos to W and Z gauge bosons. Besides `−β → `−αγ, O

αβ
eB and OαβeW

also contribute to magnetic and electric dipole moments of charged leptons, while the
semi-leptonic operators cause the µ–e conversion. The operators Oαβγλ`` and Oαβγλ`e imply
µ → eee and also ` → `νν, resulting in a shift of the Fermi constant GF. Finally, the
pure- and semi-leptonic operators provide us with non-standard interactions of ordinary
neutrinos, which could be probed in future neutrino oscillation experiments [74, 75].
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6 Summary

The compelling experimental evidence for neutrino masses and lepton flavor mixing indi-
cates that the SM is incomplete and serves only as an EFT at the electroweak scale. The
type-I seesaw model with three right-handed neutrinos is a simple and natural extension
of the SM to accommodate tiny masses of active neutrinos. Since these right-handed neu-
trinos may be too heavy to be directly produced and detected in the terrestrial collider
experiments, one usually explores their low-energy phenomenological consequences by us-
ing the precision measurements. For this purpose, it is useful to establish the low-energy
EFT of the type-I seesaw model by integrating out the heavy Majorana neutrinos and thus
their impact is encoded in the Wilson coefficients of higher-dimensional operators.

In this work, we have carried out the complete one-loop matching of the type-I seesaw
model onto the SMEFT up to dimension-six operators by using the functional approach.
First of all, such an investigation adds another example of a complete one-loop matching
for a given UV model. We explain the generic framework of the functional approach to
both the tree-level and the one-loop matching. After integrating out the heavy Majorana
neutrinos, we obtain one dimension-five operator and one dimension-six operator at the tree
level, which are well-known in the literature, and 31 independent dimension-six operators
(barring flavor structure and Hermitian conjugates) in the Warsaw basis with the one-loop
matching. This number is just about one half of that for the independent dimension-
six operators in the SMEFT. The tree-level and one-loop contributions to the Wilson
coefficients of these dimension-six operators are presented up to O

(
M−2). It is worth

pointing out that parts of the one-loop contributions to the Wilson coefficients of O(1)αβ
H`

and O(3)αβ
H` come from the tree-level contributions via the redefinitions of H and `. In

addition, the one-loop threshold corrections to the couplings in the SM and also to the
coefficient of the dimension-five operator are given up to O

(
M−2), which are the very

matching conditions for the two-loop RGEs of these couplings.
However, we have assumed that the masses of three heavy Majorana neutrinos are

nearly degenerate and they can be integrated out simultaneously. If their masses are hi-
erarchical, one should integrate out heavy Majorana neutrinos sequentially, and construct
the EFT between any two mass scales and implement the RGEs to connect the physical
parameters at those two mass scales. More explicitly, the Wilson coefficients of the oper-
ators are needed to be evolved down to the energy scale of relevant experiments from the
matching scale via their RGEs. For a self-consistent calculation, the two-loop RGEs have
to be derived, which is obviously out of the scope of this work. We leave the construction
of the EFTs at the intermediate scale and two-loop RGEs in the SEFT for future works.
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