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1 Introduction

To construct a model of de Sitter space and dark energy in string theory is a great challenge.
Over the years, evidence has accumulated suggesting that many, possibly all, attempts
made so far suffer from instabilities [1, 2]. For a review, see [3]. It is therefore of great
importance to find alternative routes towards finding dS space. In [4], we proposed that
dark energy can be realized through an expanding bubble of true vacuum in a metastable
AdS5. Contrary to previous attempts, our focus is not on obtaining a time independent,
metastable string vacuum with a positive vacuum energy. Instead, our model makes explicit
use of an unstable higher dimensional AdS space with our universe riding on a bubble of true
vacuum1 that mediates the decay of the unstable AdS. Our model has much in common
with the braneworlds of Randall and Sundrum, [5, 6], but there are also crucial differences
as explained in section 2.

Our model was further studied in [7], where we showed, using a five dimensional bulk
with stretched strings, how this will, through junction conditions generate an effective
theory of four dimensional Einstein gravity on our dark bubble. In subsequent works, [8, 9],
we worked out how to imprint a Schwarzschild geometry on the dark bubble and the back-
reaction thereof on the bulk. For other aspects of these dark bubbles see, e.g., [10–13].

In this paper, we work out in detail, the embedding of certain four dimensional struc-
tures on the dark bubble into AdS5 for two illuminating examples. We first examine a
thin shell of matter, stabilized by its internal pressure, and then move on to consider a
black hole. The new five dimensional metric that we find can also be used to realize black
holes in four dimensional Randall-Sundrum (RS) braneworlds. A key observation in our
paper is that the five dimensional spacetimes above (outside) and below (inside) our dark

1We call this a dark bubble since it is a bubble that gives rise to dark energy in four dimensions.
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bubble are very different. We show how these two different views, one from above and the
other from below, project the same effective four dimensional theory of gravity on the dark
bubble in a rather miraculous way.

The rest of the paper is organized as follows. We begin with a brief review of the
dark bubble model. Then in section 3, we discuss the first example of a four dimensional
rigid spherical shell of matter and demonstrate the uplifting of this construction to the
five dimensional bulk spacetimes outside and inside of our dark bubble. While outside the
dark bubble, we have a solution sourced by a stringy distribution, there is no source below
and therefore, the junction condition across demands a non trivial choice of boundary
conditions imposed on the brane from the bulk spacetime on either side. In section 4, we
move to our second example, namely, exploring the possibility of having a black hole on
our bubble wall.2 We show that it is possible in our construction by considering different
non-linear corrections in gravitational perturbation theory. Finally, we conclude with an
invitation to upcoming research activities in this direction.

2 Brief review of dark bubbles

Let us briefly summarize the most important features of our model. As a simple example
we consider a spherical bubble of AdS5 (with cosmological constant Λ−) expanding in an
AdS5 spacetime with a larger cosmological constant Λ+ > Λ−, where Λ± = −6k2

±. The
surface of the bubble represents a Friedmann cosmology with the induced metric

ds2
4 = −dτ2 + a(τ)2dΩ2

3 . (2.1)

With the AdS5 metrics written in global coordinates ds2
5 = −(1 + k2

±r
2)dt2 + dr2/(1 +

k2
±r

2) + r2dΩ2
3, the Israel junction conditions force the radius of the bubble, a(τ), where τ

is proper time, to obey

σ = 3
8πG5

√k2
− + 1 + ȧ2

a2 −

√
k2

+ + 1 + ȧ2

a2

 , (2.2)

where σ is the tension of the brane supporting the bubble wall. For large k± we find

ȧ2

a2 ≈ −
1
a2 + 8πG4

3 Λ4 , (2.3)

which is nothing else than the Friedmann equation (with the four dimensional Newton’s
constant obtained from the five dimensional one through G4 = 2k−k+

k−−k+
G5) in the presence of

a positive cosmological constant given by Λ4 = 3(k−−k+)
8πG5

−σ. One can show that the induced
metric on the bubble wall is described by the full four dimensional Einstein equations [7].

One can generate radiation on the four dimensional world through a combination of
radiation on the bubble wall and a nontrivial metric inside and outside of the bubble. In the

2See [14–18] for some of the earliest works towards constructing black holes on RS braneworlds. See [19]
and references therein, for a review of RS braneworld black holes and a more exhaustive list of work in this
direction.
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presence of an AdS-Schwarzschild metric with ADM mass, M±, the Friedmann equation
becomes:

ȧ2

a2 ≈ −
1
a2 + 8π

3 G4

(
Λ4 + 3

4π2

(
M+
k+
− M−

k−

) 1
a4

)
. (2.4)

We see, for instance, how M+ > 0 on the outside but M− = 0 on the inside leads to a
positive density of radiation.

At this point it is useful to contrast our model to the braneworlds of Randall and
Sundrum, [5, 6]. Contrary to those models, where the inside of the bubble is identified
with itself across the brane, our bubble has an inside and an outside. This is why there
is a minus sign between the two terms in the junction conditions, which carry over to the
expression for G4 as well as to the effective 4D radiation density.

As was shown in [8], you can get a massive particle if you let a string pull upwards
from the brane. With a homogeneous distribution of many such strings, one reproduces
the Friedmann equations in the presence of dust. What happens is that the dark bubble
eats the strings as it expands. The energy from the strings is used so that the effective
energy density on the bubble, and hence H2, decays only as 1/a3 rather than 1/a4 as in the
case of radiation. Let us now move on and consider some other interesting configurations.

3 A rigid shell of matter uplifted in the fifth dimension

To better understand the physics of the four dimensional spacetime on the dark bubble, it
is illustrative to consider a thin, rigid shell of matter with a radius r0 much larger than its
Schwarzschild radius. This could, for instance, be a shell made of ordinary baryonic matter
such as iron. We showed in [4, 7] that a point mass in four dimensions is the end point
of a string located at a fixed radial distance, stretching in the fifth dimension. Following
this intuition, the five dimensional structure corresponding to the rigid shell on the dark
bubble would be expected to be located at a fixed coordinate radius and stretching in the
fifth dimension. The proper radius rp ≡ krz then increases towards the boundary, giving
a conical structure as sketched in figure 1a.

The matter imprint on the dark bubble will then be interpreted as the holographic
projection of this five dimensional object into four dimensions. Just as a shell of matter
in four dimensions has a complicated equation of state (so as to remain stable against
collapse but still possible to deform), the same would be expected to be true for the five
dimensional extended structure.

The five dimensional picture below the dark bubble is, however, quite different. There
are no matter sources in this region, and the spacetime must be a solution of the Einstein’s
equations with just a negative cosmological constant. The existence, and form, of this
solution is quite surprising. As we will show in the next section, the solution contains a
holographic “shadow” of the structure above the dark bubble, and the resulting picture
will look like figure 1b. We will also see how the construction nicely generalizes the simpler
examples studied in [8, 9], where we made use of some techniques introduced in [17, 20].
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AdS5CHR
k+

k−

(a)

k+

k−

(b)

Figure 1. A cross-section of a thin, rigid shell of four dimensional matter on the dark bubble seen
(a) from outside, and (b) from inside. The two figures are given in two different gauges as explained
in the text. The gray region indicates the inside of the dark bubble.

3.1 Uplifting upwards

Let us first consider the five dimensional bulk spacetime above the brane as sketched in
figure 1a. Above the brane, it is convenient to work in a gauge in which the brane is
flat. Spacetime outside the structure is expected to be that of a matter source. Since this
structure lies far outside its own Schwarzschild radius, the metric just outside it should be
given by the CHR metric3 [14]

ds2 = k2
+z

2
[
−
(

1− 2M
r

)
dt2 + dr2

1− 2M/r
+ r2dΩ2

2

]
+ dz2

k2
+z

2 , (3.1)

while the spacetime inside is empty AdS5. For simplicity, we have taken the radius of
the bubble (which we now call z to be very large compared to the AdS radius 1/k+, so
that the bubble wall is approximately flat and the metric looks like the Poincaré patch
metric. The structure that supports the rigid shell of matter on the brane is located at
r = r0 = constant. In terms of the proper time (τ) on this structure, the induced metric is
simply ds2 = k2

+z
2 (−dτ2 + r2

0dΩ2
2
)

+ dz2/k2
+z

2. The stress tensor on it (Sij) is determined
by the thin-shell junction conditions matching five dimensional AdS to CHR and reads

Sττ = − 2
k+r0z

(
1−

√
1− 2M

r0

)
,

Sθθ = Sφφ = 1
k+r0z

(
1−M/r0√
1− 2M/r0

− 1
)
,

Szz = 2
k+r0z

(
1− 3M/2r0√

1− 2M/r0
− 1

)
.

(3.2)

When this structure ends on the dark bubble, Bianchi identities, which require the stress
tensor to be covariantly conserved, produce a delta function contribution on the dark

3This is the metric sourced by a neutral black string in five dimensions and induces four dimensional
Schwarzschild geometry on constant z slices. Symmetry arguments similar to Birkhoff’s theorem would
lead to the conclusion that the metric outside a cylindrically symmetric matter distribution is given by the
CHR metric outside the four dimensional Schwarzschild radius of such a structure.
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bubble at z = z0. To see this explicitly, let us write down the covariant conservation
equation ∇µTµν

!= 0 for ν = z (Tµν refers to the five dimensional stress tensor). Explicitly,
this gives

∇µTµν = ∂µT
µν + ΓσγσT γν + ΓνσµT σµ

!= 0

⇒ z∂zT
z
z + 4T zz

!= T tt + T rr + T θθ + T φφ .
(3.3)

The stress tensor obtained in equation (3.2), dressed up with a properly normalized delta
function4 localized at r = r0 gives

T ij = Sij

√
1− 2M/r0
k+z

δ(r − r0), T rr = 0. (3.4)

As a consistency check, this indeed satisfies equation (3.3). For this structure to end on
the brane at z = z0, T zz must be further dressed up with a step function Θ(z − z0),

T zz = 2
√

1− 2M/r0
k2

+r0z2

(
1− 3M/2r0√

1− 2M/r0
− 1

)
δ(r − r0)Θ(z − z0), (3.5)

which gives

T tt + T θθ + T φφ = z∂zT
z
z + 4T zz = 4

√
1− 2M/r0
k2

+r0z2

(
1− 3M/2r0√

1− 2M/r0
− 1

)
δ(r − r0)Θ(z − z0)

+ 2
√

1− 2M/r0
k2

+r0z

(
1− 3M/2r0√

1− 2M/r0
− 1

)
δ(r − r0)δ(z − z0).

(3.6)
The delta function in z arises from the derivative of the step function and induces matter on
the dark bubble that exactly corresponds to the two dimensional shell of matter embedded
in four dimensions.

3.2 Uplifting downwards

There is no matter below the brane and the five dimensional metric is simply a vacuum
solution to Einstein’s equations with a negative cosmological constant. However, the five
dimensional structure extending upwards will result in bending of the brane. One could,
in principle, find a smooth global coordinate transformation that straightens out the bent
brane (corresponding to a gauge choice in which the brane is located at a constant z = z0),
but we will not do this here, and will stick to the bent gauge.

The spacetime below the brane (inside the dark bubble) deviates from empty AdS5 in
response to the bending of the brane and can be computed order by order in the bending,
which is proportional to the mass induced on the dark bubble. Let us write this perturbed
metric as

ds2 = dz2

k2
−z

2 + k2
−z

2ηabdxadxb +

perturbation︷ ︸︸ ︷
χabdxadxb

= dz2

k2
−z

2 + k2
−z

2
[
− (1 + ht(r, z)) dt2 + (1 + hr(r, z)) dr2 + (1 + ha(r, z)) r2dΩ2

2

]
.

(3.7)

4The properly normalized delta function is δ(r−r0)/√grr = δ(r−r0)
√

1− 2M/r/kz, so that it integrates
to unity along the radial direction i.e.,

∫ √
grrδ(r − r0)/√grr = 1.

– 5 –
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Choosing the perturbation to be traceless (habηab = 0), Einstein’s equations at linear order
in the perturbation give the following differential equation for the time component ht:

∂rrht + 2
r
∂rht + 5k4z3∂zht + k4

−z
4∂zzht = 0. (3.8)

To solve this equation, we can use the fact the time-time component of the metric gives
the gravitational potential of the solution to linear order in the perturbation χ/r. It was
shown in [8] that in vacuum, this is given by the Bessel function K2 in momentum space.
To get to position space, we need to superimpose the Bessel functions by integrating their
Fourier transform over the shell of matter at r = r0 (given by

∫
dΩ0 below) which sources

the solution. This gives

ht =
∫

d3~p

∫
dΩ0 e

i~p·(~r−~r0)K2(p) = 2π
∞∫
−∞

dp
π∫

0

dθ sinθeipr cosθp2K2(p)
∫

dΩ0e
ipr0 cosθ0

= 16π2
∞∫
−∞

dpsinpr
pr

sinpr0
pr0

p2K2(p) = 8π3

rr0

 1+2k4
−z

2 (r+r0)2√
1+k4

−z
2 (r+r0)2

−
1+2k4

−z
2 (r−r0)2√

1+k4
−z

2 (r−r0)2

 .
(3.9)

Einstein’s equations further give a differential equation for the radial component of the
perturbation in terms of the time component:

3∂zhr + r∂rzhr + ∂zht = 0, (3.10)

which can be solved to give (we have dropped the constant 8π3 from ht)

hr = 1
3r0k4

−z
3r3

[(
1− k4

− (2r − r0) (r + r0) z2
)√

1 + k4
−z

2 (r + r0)2 − (r0 7→ −r0)
]
.

(3.11)
The angular piece ha can be simply found from the tracelessness of the perturbation ht +
hr + 2ha = 0 to give

ha = 1
3r0k4

−z
3r3

1+k4
−z

2 (2r2−rr0+2r2
0
)
+k8
−z

4 (r−r0)2 (4r2+rr0+r2
0
)√

1+k4
−z

2 (r−r0)2
−(r0 7→−r0)

 .
(3.12)

Note that in the limit r0 → 0, i.e., when the spherical shell of matter on the brane shrinks
to a point source at r = 0, the metric perturbation reduces to the result for a point source
obtained in [8]. This is simply a consistency check, which ensures that the metric induced
on the bent brane is, to leading order in M/r, given by the Schwarzschild metric. In fact,
the solution we have found here is exact up to the leading order in M/r and all orders in
1/k2
−zr ∼ RAdS/rp, where rp is the proper radius.
This is an interesting solution, which despite the parameter r0, is a vacuum solution

with no matter in the bulk. At small radius, the gravitational potential given by ht ap-
proaches a constant, which smoothly transitions into a 1/k−r behavior far away as shown
in figure 2. The width of the transition can be determined by taking the second derivative

– 6 –
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ht

r0 r

(a)

ht

r0 r

(b)

Figure 2. Gravitational potential below the brane as a function the coordinate distance r. This
approaches a constant at small r and falls off as 1/k−r at large r, with a transition around r = r0.
The width of the transition is proportional to 1/k2

−z. This can be seen in the figures above where (b)
is plotted for larger values of k− as compared to (a), for a fixed value of z, e.g., z = 2, r0 = 1, k− = 5
for (a) and k− = 15 for (b).

of the metric perturbation, which approaches a Gaussian of width ∼ 1/k2
−z close to r0. Ex-

pressed in terms of proper length, the width of the shadow is given by k−z× 1/k2
−z = k−1

− ,
which is the AdS-length. The transition becomes sharper as the AdS length becomes mi-
croscopic, but continues to be smooth. Another way to think of this spacetime is that it is
a solution to five dimensional Einstein’s equations with a negative cosmological constant,
with the boundary condition that it induces Schwarzschild geometry on a brane that bends
in response to induced four dimensional matter.

We therefore have a metric below the brane that transitions smoothly from AdS at
r � r0 to that of a point source at r � r0 with no matter localized at r = r0. The transi-
tion, which takes place in vacuum, is made possible by five dimensional gravitational back-
reaction of the spherical shell of matter and the corresponding structure on the outside.

This solution is also valid for a Randall-Sundrum braneworld, in which case reflection
symmetry across the brane would imply the same vacuum solution on either side of the
brane, without any material structure to support the spherical shell of matter in four
dimensions. The brane would bend simply due to matter placed on it.

3.3 Sewing the bulk across the bubble wall

To summarize, we have generated a structure that extends outwards from the bubble wall
in the fifth dimension and its endpoint on the dark bubble induces a macroscopic shell of
four dimensional matter. We have performed the analysis in the limit where the shell of
matter in the four dimensional braneworld is much bigger than its Schwarzschild radius
r0 � 2M , but we expect the shadow shell to be the structure that persists to all orders.
The matter source on the brane causes it to bend, which in turn sources the geometry
below the brane (inside of the dark bubble), given in equations (3.9), (3.11) and (3.12).
Pictorially one can imagine how the two pieces in figure 1a and figure 1b can be stitched

– 7 –
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together. Whether we come from above or from below, the induced metric on the dark
bubble will be Schwarzschild (at linear order) and all junction conditions will be satisfied.

It is worth stressing here again that the two different choices of gauges on the two sides
of the dark bubble make the analysis simpler in this construction. While above the brane,
where there is a source, we specifically worked with the straight gauge, it was convenient
to choose bent gauge in the construction of the five dimensional bulk spacetime below
the brane, where there is no source. These two different gauges are useful to have, for a
fully consistent five dimensional picture on either side of the brane while producing the
same effective four dimensional gravity on the brane. This makes the analysis of junction
conditions across the brane extremely interesting. In [8] we discussed the computation of
the four dimensional gravitational propagator in momentum space using straight gauge,
and argued that in order to achieve the correct behavior we needed modes in the form
of the Bessel function K2 on one side while a specific combination of Bessel functions K2
and I2 on the other side. This combination was responsible for a purely non-normalizable
behavior of the modes on our dark bubble. Furthermore, we also mentioned that in the
case of a bent gauge, to reproduce the same four dimensional gravity on the braneworld,
we need only K2 on both sides of the brane.

Note that while considering the metric below the brane in the present work, we actually
only considered pureK2. Therefore our present construction relying on two different choices
of gauges inside and outside the dark bubble, is interesting from the perspective of mode
mixing. It is possible that one could have a bit of I2 modifying higher order corrections of
the metric outside of the dark bubble, and possibly on the braneworld as well. However,
we leave a detailed analysis of this for a future work.

4 Black holes on dark bubbles

If we want to consider black holes on our dark bubbles, we must go beyond linearized
gravity. In the preceding section, we discussed a solution to leading order in M/r and to
all orders in 1/k2zr ∼ RAdS/rp. The question is whether it is possible to find this solution
to all orders in M/r. We will try to answer this question in this section.

Let us first discuss the global properties of the spacetime below the brane. The first
order expression is valid as long asM/r is small. Is it possible to move away from the brane
on the inside (small z) and pass through r = 0 using just the first order corrections? To
see whether this is possible, let us note that the proper Schwarzschild radius on the brane
is ∼ kMz0. The Schwarzschild radius is much larger than the AdS5 radius, so k2Mz0 � 1.
The radius of the dark bubble (determining the curvature of the universe) is even larger,
so kz0 � k2Mz0 � 1, which implies that M � 1/k. The proper Schwarzschild radius
away from the brane (in units of AdS5 radius) at some z is kMz. It turns out that the
first order corrections obtained in [8] are finite when r = 0, and proportional to k2Mz.
For k2Mz � 1, so that it is enough to consider first order results in M/r, we need that
z is small enough. Hence, the metric goes to the AdS5 metric for small enough z, which
is to be expected since this is a mode designed to vanish as z goes to zero. Therefore, if

– 8 –
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the spacetime below the brane were to have a horizon, it will be capped off and contained
above some finite and small z.

It is furthermore possible to systematically calculate corrections to all orders in 1/k2zr,
order by order in χ/r. Note that the orders are coupled and care is needed when truncating
the expansions. This can be done in Gauss normal coordinates, where the metric can be
written as

ds2 = dz2

k2z2 + k2z2
(
−gttdt2 + grrdr2 + gθθr

2dΩ2
2

)
. (4.1)

To linear order in χ/r and quadratic order in 1/k2zr, Einstein’s equations with a negative
cosmological constant give

gtt = 1− 4χ
r
, grr = 1 +

χ

r

(
2− 1

k4r2z2

)
, gθθ = 1 +

χ

r

(
1 + 1

2k4r2z2

)
. (4.2)

At leading (zeroth) order in 1/k2rz, this leads to the familiar expression from [8]

ds2 = dz2

k2z2 + k2z2
[
−
(

1− 4χ
r

)
dt2 +

(
1 + 2χ

r

)
dr2 +

(
1 +

χ

r

)
r2dΩ2

2

]
. (4.3)

To second order in 1/k2rz and second order in χ/r, we get

gtt = 1− 4χ
r

+
χ2

r2

(45
8 − c1 + 7

8k4r2z2

)
,

grr = 1 +
χ

r

(
2− 1

k4r2z2

)
+
χ2

r2

(5
4 − 2c1 − c2 + 2 + 3c1

k4r2z2

)
,

gθθ = 1 +
χ

r

(
1 + 1

2k4r2z2

)
+
χ2

r2

(
c2 + c1

k4r2z2

)
,

(4.4)

with a number of free parameters ci. We can continue to solve Einstein’s equations per-
turbatively to higher orders in χ/r and 1/k2zr, with more free parameters. However, in
practice, we are mainly interested in the metric to all orders in χ/r, and leading order
in 1/k2rz. To find this, it is convenient to choose a gauge where the determinant of the
metric is independent of the perturbations at leading order in 1/k2rz. Furthermore, we can
impose that there are no corrections beyond linear order in the angular part of the metric.
Remarkably, we then find that the perturbative solution can be re-summed at zeroth order
in 1/k2rz to give a metric that is an exact solution to all orders in χ/r

ds2
5 = k2z2

[
− 1− 2χ/r

(1 + χ/r)2 dt2 + 1
(1− 2χ/r)dr2 +

(
1 +

χ

r

)
r2dΩ2

2

]
+ dz2

k2z2 . (4.5)

A brane embedded in this geometry at

z(r) = z0

√
1 +

χ

r
, (4.6)

has an induced metric that is exactly Schwarzschild (to all orders in χ/r and zeroth order
in 1/k2rz)

ds2
4 = k2z2

0

[
−
(

1− 2M
ρ

)
dt2 + dr2

1− 2M/ρ
+ ρ2dΩ2

2

]
, (4.7)

– 9 –
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where ρ = r+χ is the new radial coordinate. We also note that M = 3χ/2 consistent with
the results obtained in [8, 9]. Note that the contribution from dz2/

(
k2z2) is sub-leading

and does not contribute at this order. We can also re-sum the perturbation series at the
next order (linear) in 1/k2rz, to obtain an exact solution to all orders in χ/r given by

gtt = 1− 2χ/r
(1 + χ/r)2 + 1

8k4r2z2 ·
χ2

r2 ·
(1− 2χ/r) (7− 2χ/r)

(1 + χ/r)4 ,

grr = 1
(1− 2χ/r) −

1
8k4r2z2 ·

χ

r
· 8− 17χ/r − 10χ2/r2

(1− 2χ/r) (1 + χ/r)2 ,

gθθ =
(

1 +
χ

r

)
+ 1

8k4r2z2 ·
χ

r
· (1− 2χ/r) (4 + χ/r)

(1 + χ/r) ,

(4.8)

which gives an exact (in χ/r) embedding of the Schwarzschild brane at

z(r) = z0

√
1 +

χ

r

(
1− 1

16k4r2z2
0
·
χ2

r2 ·
1− 2χ/r

(1 + χ/r)3

)
. (4.9)

The induced metric is Ricci flat and represents a Schwarzschild geometry to quadratic order
in 1/k2rz0 and all orders in χ/r. A coordinate transformation can be performed to change
to Schwarzschild coordinates as in equation (4.7), but we will not do that here.

The metric obtained in equation (4.8) is quite remarkable in that it has a coordinate
singularity at r = 2χ, but has no curvature singularities. Moreover, there is no source
below the brane at r = 0. The horizon at r = 2χ is therefore a shadow horizon and arises
due to the bending of the brane that gets capped off at a finite but small z. This is shown
in figure 3. This is a remarkable geometry, and as discussed in section 3, can represent
black holes on our dark bubbles as well as braneworld black holes for a Randall-Sundrum
geometry. This could be relevant for the old problem of finding an explicit metric of a four
dimensional braneworld black hole mentioned in, e.g., [15], and generalizing recent results
for three dimensional BTZ black holes in, e.g., [21]. Let us reiterate that for a Randall-
Sundrum braneworld, the brane can bend in response to matter on the brane and this is
the geometry on either side of the brane.

Note that in order to obtain the full metric on both sides, one needs to re-sum to all
orders in 1/k2zr. Since we have not been able to do that here, we can only reliably talk
about the metric when this quantity is small enough that the above result at linear order
makes sense. In the above, we have a reliable picture of the horizon of the black structure
that supports the black hole on the dark bubble from outside at leading order in 1/k2zr.
To study the nature of the horizon inside of the dark bubble, one needs to move into the
bulk, away from the bubble wall. For this, one needs the full metric re-summed to all
orders in 1/k2zr. However, based on the discussion in section 3, we would expect there
to be a shadow shell with a smoothly capped geometry inside the bubble. Based on this
intuition, let us speculate the nature of the full geometry below.

The metric above, combined with the shadow shell of section 3 on the inside, leads to
the intriguing geometry sketched in figure 3. The brane only bends gently before entering
through the horizon, with z increasing by a factor of only

√
3/2. Inside the horizon,
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horizon

k+

k−

Figure 3. A dark bubble with a black hole with its interior shown in dark gray. The horizon
extends below the brane, into the dark bubble and is smoothly capped off at small z.

however, the metric diverges towards r = 0 where the singularity sits at z → ∞. Note
how this is consistent with the fact that our metric was constructed, in the Poincaré patch
corresponding to the limit of a large dark bubble, under the assumption that there were
no sources. The horizon that we find requires a singularity but it sits at infinity. What
would an observer on the dark bubble observe entering through the horizon? Inside a
Schwarzschild black hole, using Schwarzschild coordinates, one finds a time dependent
geometry that contracts towards the future singularity in a finite time. r is time, while
t is an infinite space-like coordinate. The same story plays out regardless of when one
enters the black hole. The only difference is where in the spatial coordinate t that one
enters. The dark bubble adds another twist to the story. While the observations within
the four dimensional world are identical, there is also a five dimensional interpretation.
What happens when you enter through the horizon is that you step into an elevator that
brings you up in z so that you hit the singularity at infinity in a finite time. At whatever
time that you enter, the elevator will be ready to bring you along on its journey. One
might wonder how the time-like brane fits with a space-like singularity, but it works just
in the same way as with space time outside and inside of a black hole horizon. Inside of
the horizon, it is the radial direction that is time. This direction ends when you reach the
space-like singularity at z = ∞, which is spanned by the spatial direction that was time
outside of the horizon. Depending on when you enter into the black hole you will hit the
singularity at different points along its length.

5 Discussion and outlook

In this article we have demonstrated that our model proposed in [4], which can incorporate
dark energy into string theory, is also capable of describing non-trivial gravitational phe-
nomena such as black holes. In the process, we have also discussed another very interesting
toy example of a thin shell of matter in four dimensions and its evolution in the fifth dimen-
sion leading to two completely different bulk extensions above and below our dark bubble.

– 11 –
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The two different bulk extensions were necessitated by the fact that the five dimensional
spacetime above the dark bubble is sourced by physical strings attached to it, while there is
no source below the dark bubble. Our challenge was to combine these two five dimensional
pictures in such a way that they reproduce the same gravitational description on our dark
bubble. In particular, if we look from above, the end points of the strings result in an
effective Schwarzschild geometry on the dark bubble. Therefore, it was natural to expect
that the same geometry should be induced on the brane also from the five dimensional
bulk geometry inside the dark bubble. In this work we showed that this can actually be
achieved by imposing different boundary conditions from either side of the dark bubble.

We then proceed further by adding perturbative corrections in the form of expansions
inM/r and RAdS/rp to the metric outside the dark bubble. We are able to obtain a solution,
exact in all orders in M/r and at linear order in RAdS/rp, which induces a Schwarzschild
metric on our dark bubble. This metric has a horizon and a singularity that sits at r → 0
and z →∞. We also find the solution to the next perturbative order in RAdS/rp, but are
unable to re-sum the corrections to find the find the full bulk metric. This prevents us
from writing down the solution inside the bubble, away from the dark bubble. However,
since the spacetime inside the bubble is empty AdS5, we expect this vacuum solution to
be of the same form as the matter shell that we have obtained. Based on this intuition, we
propose in figure 3, the full solution representing a black hole on the dark bubble. Clearly,
there will be corrections when the scale of the horizon approaches RAdS, or when one is
too close to the singularity. Such corrections will appear in the bulk and will affect the
four dimensional expressions as well. Similarly, the expansion that we did to obtain the
Friedmann cosmology will receive corrections when the energy densities are too high. In
addition to these kinds of corrections, which in principle are calculable (if one could solve
the Einstein equations to all orders in M/r and RAdS/rp at the same time), there can also
be loop contributions that we have not taken into account.

Let us briefly comment on some braneworld black hole solutions and their possible re-
lation to the solution that we have found above.5 While the CHR solution [14] describes a
black string with an induced Schwarzschild metric on the bubble wall, it is known to suffer
from horizon shredding due to the Gregory-Laflamme instability [22]. A very promising
solution is that constructed by Plebanski-Demianski solution [23], which is the AdS exten-
sion of the C-metric [24] and is referred to as the AdS-C metric. This is a four dimensional
metric that describes accelerated black holes with conical deficit at one or both poles.
These are interpreted as cosmic strings pulling on the black holes and accelerating them.
This metric has been studied extensively in the context of Randall-Sundrum braneworlds
e.g., in [15, 16]. Although attempts have been made to construct analogous solutions in
five dimensions, to the best of our knowledge, there are no known analytic five dimensional
AdS-C metrics. Since the four dimensional AdS-C metric looks like an accelerating black
hole being pulled by a radially stretched cosmic string, it is indeed a candidate for a black
hole on the dark bubble. This is a very interesting and relevant solution and we would
like to construct a four dimensional analog of our present solution to compare it with the
results obtained from the AdS-C metric.

5We would like to thank the referee for pointing out these interesting results and references.
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Some other solutions of interest include black droplets and black funnels [25], which
describe black holes on the brane with their horizon either disconnected (black droplet) or
connected smoothly (black funnel) to the Poincaré horizon in the bulk. The black droplet
metric looks qualitatively similar to the metric inside our dark bubble and once we have the
re-summed metric on the inside of the brane, they should indeed be compared. However,
as with the AdS-C metric, these metrics are analytically known only for AdS4 with only
numerical results available in five dimensions [26, 27].

Although it is immensely encouraging to find such a black hole like solution, it is
far from clear whether such a configuration yields a realistic outcome of gravitational
collapse. While the solution formally exists, as we have shown, we believe that there
are new possibilities that distinguish our model from Randall-Sundrum braneworlds. In
particular, there is the intriguing possibility of realizing the black shell alternative to a
black hole proposed in [28, 29]. We will address this question in an upcoming work.
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