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1 Introduction

The AdS/CFT correspondence [1–3] is a duality between strongly coupled quantum field
theories (QFTs) and classical gravity in AdS spacetime. In recent years, it has been conjec-
tured that the duality can describe realistic systems such as condensed matter physics [4–
8]. In particular, we can analyze the thermal states of QFTs by the black hole physics in
AdS/CFT. How can we directly test the existence of the dual black hole for a given QFT?
We will address this problem in this paper.

In astronomy, the Event Horizon Telescope [9] succeeded in constructing the first image
of the supermassive black hole in M87. They observed the photon sphere of the black hole,
and it is one of the most direct observations of the black hole in our real space. On
the other hand, there is a proposal that a similar observation of the black hole through
AdS/CFT [10, 11]. They considered QFT on Rt×S2 and applied a localized time-periodic
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external source in S2. In the dual gravitational picture, the external source is mapped
to the boundary condition of the bulk field. Because of the time-dependant boundary
condition, a wave is sent from the AdS boundary and propagates through the black hole
spacetime. The wave is diffracted by the black hole and, eventually, arrives at other points
on the AdS boundary. From the asymptotic data of the bulk field, which corresponds to the
response function on the QFT side, they constructed the image of the AdS black hole. The
formula for converting the response function to the image of the black hole has also been
obtained in refs. [10, 11]. In this paper, we apply this idea to the model of the holographic
superconductor.

In this paper, we consider imaging of the black hole dual to a superconductor. A model
of the holographic superconductor on S2 is composed of a Maxwell field and charged scalar
field in a fixed spherical AdS black hole background [12–14]. (We only focus on the probe
limit of the holographic superconductor.) When the Hawking temperature is smaller than
a critical temperature T < Tc, the AdS black hole becomes unstable against charged scalar
field perturbation. Resultantly, the U(1)-gauge symmetry is spontaneously broken, and the
black hole with the charged scalar field hair is to realize as a stable configuration [15–18].
We can identify this phase transition as the superconducting phase transition. We consider
a laser applied to one point of the superconductor on S2. From the dual gravitational
point of view, the external electromagnetic field is regarded as the boundary condition of
the bulk Maxwell field. We construct the image of the black hole through the response
function of the electromagnetic field, i.e., the electric current. The electric current can be
decomposed into the dissipative and non-dissipative parts (i.e., modes with phase difference
φ = 0, π/2 with respect to the applied external field.). We will see that the information of
the photon ring is mainly encoded in the dissipative part. We will also investigate how the
superconducting phase transition affects the image of the AdS black hole.

This paper is structured as follows. In the next section, we review the previous
work [10, 11] in which the image formation of the AdS black hole. In section 3, we in-
troduce the holographic model for the superconductor on S2. We explicitly construct the
gravitational solution in the superconducting phase. In section 4, we consider the linear
perturbation on the holographic superconductor. It is decomposed into vector and scalar
modes. In section 5, we show images of black holes dual to the superconductor. We esti-
mate the radius of the photon ring in the image and found that it changes discontinuously
for the vector mode. The final section is devoted to the conclusion.

2 Bulk imaging through AdS/CFT

We will review the imaging black hole through AdS/CFT correspondence [10, 11]. For
simplicity, let us consider a minimal coupled scalar field Ψ in Schwarzchild-AdS4 spacetime
(Sch-AdS4),

ds2 = −F (r)dt2 + dr2

F (r) + r2(dθ2 + sin2 θdϕ2) , (2.1)

F (r) = 1 + r2

L2 −
rh
r

(
1 + r2

h

L2

)
, (2.2)
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where rh is the radius of black hole horizon and L is the AdS radius. We define the tortoise
coordinate r∗ as

r∗ =
∫ r

∞

dr

F (r) . (2.3)

The scalar field Ψ obeys the following Klein-Gordon equation.

− 1
F
∂2
t Ψ + F∂2

rΨ + (r2F )′

r2 ∂rΨ + 1
r2D

2Ψ = 0 , (2.4)

where the prime denotes r-derivative and D2 is the scalar Laplacian on unit S2.
In the vicinity of the AdS boundary, the scalar field Ψ in this system behaves

Ψ(t, r, θ, ϕ) = SO(t, θ, ϕ)− 1
2r2 (∂2

t −D2)SO(t, θ, ϕ) + 〈O(t, θ, ϕ)〉
r3 +O(r−4) . (2.5)

According to the AdS/CFT dictionary, SO and 〈O〉 are two independent functions, and we
can regard them as the external scalar source and its response function in the dual CFT,
respectively. Note that when we deal with other fields like a vector field, we should be
careful which coefficient corresponds to the dual CFT value we want. We will mention the
holographic superconductor case in section 4 and appendix B.

Let SO be the following axisymmetric and monochromatically oscillating Gaussian
source localized at θ = π as

SO(t, θ, ϕ) = e−iωtg(θ) , (2.6)

g(θ) = 1
2πσ2 exp

[
−(π − θ)2

2σ2

]
. (2.7)

For σ � 1, the Gaussian function is decomposed into the scalar spherical harmonics as

g(θ) '
∞∑
l=0

clYl0 , cl ≡ (−1)l
√
l + 1/2

2π exp
[
−1

2(l + 1/2)2σ2
]
. (2.8)

Eq. (2.6) gives the normalization condition of Ψ at the AdS boundary. We also impose the
in-going boundary condition at the horizon of the Sch-AdS4. Then, we have the unique
solution of (2.5) and, in particular, the response function 〈O(t, θ, ϕ)〉 as the coefficient
of r−3 term. Schematically, the source SO at the AdS boundary excites the scalar field,
propagates in the bulk, and reaches another point at the AdS boundary as depicted in
figure 1. We can get the picture of a bulk object like a black hole by imaging the response
function through the lens.

Next, we introduce a virtual optical system in flat space and create the image of the
response function living on the AdS boundary, as if we observe the bulk figure from the
boundary. (Note that this optical system is in neither the bulk spacetime nor the boudary
S2.) In particular, we will apply the Fourier-Fresnel transformation to the response function
on a small patch of the AdS boundary. (See also [19–21].) We depicted a schematic picture
of our setup in figure 2. The picture on the left side shows the AdS spacetime with the
source at the south pole and the response 〈O(t, θ, ϕ)〉 on the AdS boundary. We set the
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BHSource

   

Response

      〈〉

Figure 1. Source and response.

Figure 2. Schematic diagram of a setup. We will project the response function onto the lens in
the virtual optical system and build its image on the hemispherical screen.

observation point at θ = θobs on the boundary. The picture on the right side shows the
virtual optical system in the 3-dimensional flat space (x, y, z) with a thin convex lens and a
hemispherical screen. We will read off the response on a small patch around the observation
point on the AdS boundary, copy the response function to the virtual optical system as
the incident wave on the lens, and build its image on the screen.

Let us consider a virtual optical system as depicted in figure 3. The thin lens is
located at {(xL, yL) ≡ (x, y, 0)|x2 + y2 ≤ d2}, and the screen is located at {(xs, ys, zs) ≡
(x, y, z)|x2 + y2 + z2 = f2, z ≥ 0}, where f is the focal length [19–21]. The incident plane
wave comes from z < 0 and the lens emits spherical waves to z > 0. LetM(~x) and M̃(~x)
be the wave function of a monochromatic incident wave and diffracted wave with frequency
ω, respectively. According to the wave optics [22], the conversion ofM to M̃ is given by

M̃(~x) = e
−iω |~x|

2
2f M(~x) . (2.9)
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d
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z
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Figure 3. A virtual wave optical system, where the lens is located at {(xL, yL) ≡ (x, y, 0)|x2 +y2 ≤
d2}, and the screen is located at {(xs, ys, zs) ≡ (x, y, z)|x2 + y2 + z2 = f2, z ≥ 0}.

The wave function on the screen I( ~xs) is expressed as the sum of wave functions which are
emitted from every point on the lens:

I( ~xs) =
∫
|~x|≤d

d2xM̃(~x)eiω| ~xs−~x| ' eiωf
∫
|~x|≤d

d2xM(~x)eiω~x·
~xs
f . (2.10)

Here, we assumed d � f for the second equality. Hence the image constructed by the
incident waveM(~x) is expressed as

|I( ~xs)|2 '
∣∣∣∣∣
∫
|~x|≤d

d2xM(~x)eiω~x·
~xs
f

∣∣∣∣∣
2

. (2.11)

To apply (2.11) to the response, we need to transform the S2 coordinate on the AdS
boundary (θ, φ) to a Cartesian coordinate on the lens (xL, yL). First, the Cartesian coor-
dinate on the AdS boundary (X, Y, Z) is given as

X(θ, φ) = sin θ cosφ , Y (θ, φ) = sin θ sinφ , Z(θ, φ) = cos θ . (2.12)

Next, rotate it around the Y -axis so that the observation point θ = θobs comes to the north
pole. The rotated Cartesian coordinate (X ′, Y ′, Z ′) is

X ′(θ, φ, θobs) = cos θobs X(θ, φ)− sin θobs Z(θ, φ) , (2.13)
Y ′(θ, φ) = Y (θ, φ) , (2.14)

Z ′(θ, φ, θobs) = sin θobs X(θ, φ) + cos θobs Z(θ, φ) . (2.15)

Then, the rotated S2 coordinate (θ′, φ′) on the AdS boundary is

θ′(θ, φ, θobs) = arccosZ ′ (θ, φ, θobs), φ′(θ, φ, θobs) = arctan
(

Y ′(θ, φ)
X ′(θ, φ, θobs)

)
. (2.16)
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Finally, we take a sufficiently small patch around θ′ = 0 (θ = θobs) on the AdS boundary,
and regard (θ′, φ′) as the radial coordinate and the angular coordinate on the lens, respec-
tively. Therefore, we obtain the following transformation formula of (θ, φ)→ (xL, yL).

xL(θ, φ, θobs) = θ′(θ, φ, θobs) cos
(
φ′(θ, φ, θobs)

)
, (2.17)

yL(θ, φ, θobs) = θ′(θ, φ, θobs) sin
(
φ′(θ, φ, θobs)

)
. (2.18)

We can construct the bulk image viewed at θ = θobs by evaluating (2.11) substituted the
response function on this coordinate system (xL, yL).

Before going to the next section, let us see the image of l mode spherical waveM(~x ) =
Yl0(θ) ' Pl(cos θ), where Pl is the Legendre function. It may be useful to understand
the behavior of the image. We can perform the integration of (2.11) analytically when
|~x| ≤ d � f . In this case, note that Pl(cos θ) ' J0(

√
λl θ), where λl = l(l + 1) and Jn(x)

is the Bessel function of the first kind. Then,

Il( ~xs) =
∫ d

0
dθ

∫ 2π

0
dϕ θJ0(

√
λl θ)eiωθ·sin θs cos (ϕ−ϕs)

= d2∆(d
√
λl, dω sin θs). (2.19)

Here, (θs, ϕs) denote angular coordinates of the hemisphere screen as we depicted in fig-
ure 3, and

∆(p, q) ≡ 2π
p2 − q2 [pJ1(p)J0(q)− qJ1(q)J0(p)] . (2.20)

Notice that the image amplitude of l component |Il( ~xs)|2 takes some large value at θs =
arcsin

√
λl
ω2 since there exists λl−ω2 sin θ2

s factor in a denominator of (2.19). (Although, its
value is finite: πd2

[
J0 (dω sin θs)2 + J1 (dω sin θs)2

]
.) We also depicted the typical behavior

of Il( ~xs) in figure 4. Roughly speaking, the l mode component wave yields a ring with
a radius sin θs =

√
λl
ω2 by the Fourier-Fresnel transformation in (2.11). Hence, when a

superposed wave packet of several l mode spherical waves comes into the lens, we see the
ring image of a dominant coefficient mode.

Although the Fresnel formula (2.19) is valid as long as d� f , the frequency ω of the
propagating field should be high enough to build high-resolution images. The resolution
of image, or the variance of image amplitude is naively determined by the second-order
derivative of image amplitude:[
− 1
Il( ~xs)

∂2Il( ~xs)
∂(sin θs)2

]
sin θs=

√
λl/ω2

= d2ω2
[
− 1

∆(p, q)
∂2∆(p, q)
∂q2

]
q=p

= d2ω2D(p), (2.21)

where p = d
√
λl, q = dω sin θs, and

D(p) ≡
[
− 1

∆(p, q)
∂2∆(p, q)
∂q2

]
q=p

= p2J0(p)2 + 2pJ0(p)J1(p) + (p2 − 5)J1(p)2

3p2 (J0(p)2 + J1(p)2) . (2.22)
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Figure 4. The behaviour of I( ~xs) for d = 0.5,
ω = 80, and l = 20, 40, 80. The dashed lines
represents θs = arcsin

√
λl/ω.
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0.4

p

D
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)

Figure 5. The behavior of D(p).

We depicted the behaviour of D(p) in figure 5, which shows D(p) ∼ O(1). Then, the
condition to get high-resolution image can be replaced in context of d and ω as follows.[

− 1
Il( ~xs)

∂2Il( ~xs)
∂(sin θs)2

]
sin θs=

√
λl/ω2

� 1 ↔ d2ω2 � 1 . (2.23)

Hence, we should set the parameters to satisfy ω � 1/d to obtain high-resolution images.
That is, if the wavelength of the incident wave is small enough compared to the lens radius,
we get a high-resolution image with less wave effect.

For an intuitive understanding of the image of the black hole, it is convenient to consider
the null geodesic in Sch-AdS4. (See also ref. [10] for detailed analysis.) We assume that
the orbital plane of the null geodesic is in the equatorial plane θ = π/2. Then, from the
geodesic equation, we have

ṙ2 = ω2 − `2v(r) , v(r) ≡ F (r)
r2 , (2.24)

where ω = F (r)ṫ and ` = r2ϕ̇ are the conserved energy and angular momentum, respec-
tively. The dot denotes the derivative by an affine parameter. The effective potential v(r)
has a maximal value

vmax = (1 + 3r2
h)2(4 + 3r2

h)
27r2

h(1 + r2
h)2 , (2.25)

at r = rmax = 3(1 + r2
h)rh/2. At the photon sphere r = rmax, there is an unstable circular

orbit satisfying ṙ = 0. The angular momentum per unit energy of such a null geodesic is
given by (

`

ω

)
photon sphere

= 1
√
vmax

. (2.26)

In the wave picture, the null geodesic with the angular momentum ` is composed of the
spherical harmonics Yl0 with ` ≤ l ≤ `+ ∆` (∆`� `). Therefore, the radius of the photon
ring predicted by the geodesic analysis is

sin θs = 1
√
vmax

. (2.27)
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As raising a horizon radius rh, vmax becomes smaller and the photon ring radius θs becomes
larger.

In the following of this paper, we will make the image of linear perturbative electro-
magnetic field on the background charged scalar and electromagnetic field in background
Sch-AdS4 spacetime. We will show what asymptotic coefficients correspond to the source
and its response as required. Then, we construct the observable from the response and
built its image through (2.11).

3 Holographic superconductor on S2

We consider the s-wave holographic superconductor without the back reaction from the
gravity [13]. Consider the following Einstein-Maxwell-charged scalar system, of which
Lagrangian density is

L = 1
16πG

(
R+ 6

L2

)
− 1

4FµνF
µν −DµΨ(DµΨ)∗ + 2|Ψ|2

L2 , (3.1)

where G,R,L, Fµν ,Dµ,Ψ are the gravitational constant, the Ricci scalar, the AdS radius,
the field strength, the covariant derivative with respect to the background metric and the
U(1) gauge field, and the charged scalar field, respectively. In our actual calculations,
we take the unit of L = 1. We will consider the scalar field and the U(1) gauge field as
the probe fields. This is achieved by taking G → 0. (See ref. [23] for the back reacted
case.) Then, we can choose the Sch-AdS4 (2.1) as the background spacetime solution.1

The charged scalar field Ψ and the U(1) gauge field Aµ follows the equations below.

DµDµΨ + 2Ψ
L2 = 0 , (3.2)

∇νF νµ = Jµ, Jµ ≡ i (Ψ∗DµΨ−Ψ (DµΨ)∗) . (3.3)

In this section, we will solve these equations of motion.

3.1 Normal and superconducting phases of holographic superconductor

Equations of motion (3.3) have a solution

Ψ = 0 , Φ = ρ

( 1
rh
− 1
r

)
. (3.4)

Here, we set Φ(rh) = 0 as the U(1)-gauge condition. The constant ρ is the U(1)-charge.
In this solution, the charged scalar field is trivial and U(1)-gauge symmetry in the bulk is
preserved. This solution has been identified as the normal phase of the superconductor [13].
As we increase the charge ρ for a fixed horizon radius rh, the normal phase solution (3.4)
becomes unstable against the charged scalar field perturbation [12]. At the onset of the
instability, there is a normal mode of the charged scalar field perturbation. We can extend

1We will consider both of the small (rh < L) and large (rh ≥ L) black hole branches. The CFT dual
of the small black hole has been studied in several literature [24–29]. In the CFT dual of the small black
hole, we would be able to see the its image.

– 8 –
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Figure 6. Ψ(2)(ε) for rh = 0.1, 0.3, 1.0.
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Figure 7. µ(ε) for rh = 0.1, 0.3, 1.0.

the normal mode to a nonlinear regime. Such a solution has the charged scalar hair
and the U(1)-symmetry is spontaneously broken. This solution has been identified as the
superconducting phase of the superconductor.

Let us explicitly construct the solution in the superconducting phase. Under the
spherically symmetric ansats, Φ = Φ(r) and Aµ = Φ(r)δtµ, equations of motion (3.2)
become

Ψ(r)′′ +
(
F (r)′

F (r) + 2
r

)
Ψ(r)′ + Φ(r)2

F (r)2 Ψ(r) + 2
L2F (r)Ψ(r) = 0 , (3.5)

Φ(r)′′ + 2
r

Φ(r)′ − 2Ψ(r)2

F (r) Φ(r) = 0 . (3.6)

We again set Φ(rh) = 0 as the U(1)-gauge condition. We can also assume that Ψ(r) is a
real valued function by choosing its appropriate phase. Then, solving the above equations
near the horizon, we obtain the regularity condition of the charged scalar field as Ψ′(rh) =
−2ε/(3rh), where we define the horizon value of the scalar field as

ε ≡ Ψ(rh) , q ≡ r2
hΦ′(rh) . (3.7)

Thus, the regular solution at the horizon is parameterized by three parameters, (rh, ε, q) in
the unit of L = 1. On the other hand, the asymptotic behaviours of these fields near the
AdS boundary are

Ψ(r →∞) = Ψ(1)

r
+ Ψ(2)

r2 + · · · , Φ(r →∞) = µ− ρ

r
+ · · · , (3.8)

where Ψ(1),Ψ(2), µ, ρ are constants with respect to r. As a new condition, we impose
Ψ(1) = 0. This condition determines the value of q for fixed rh and ε. Therefore, the
solutions satisfying the boundary conditions at the horizon and the infinity are specified
by the two parameters (rh, ε). Then, for a fixed horizon radius rh, we can regard the
other constants as functions of ε like q(ε),Ψ(2)(ε), µ(ε), ρ(ε). Figures 6, 7 and 8 show the
functional profiles of QFT values Ψ(2)(ε), µ(ε) and ρ(ε), respectively.

In the boundary QFT point of view, it is convenient to specify the solutions by µ

or Ψ(2) since we can regard them as the chemical potential and the order parameter of

– 9 –
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Figure 8. ρ(ε) for rh = 0.1, 0.3, 1.0.
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Figure 9. The condensation of Ψ(2) with
respect to the Hawking temperature T (rh),
where ρ is set to be constant.

the corresponding QFT respectively, according to the GKP-Witten relation. However, we
will choose ε as the parameter specifying the solution in this paper, because we focus on
phenomena on the gravity side. We can easily map (rh, ε) to quantities of QFT using
figures 6, 7 and 8.

In figure 9, we show the behaviour of Ψ(2) with respect to the Hawking temperature
T (rh) for constant ρ surface. We can see Ψ(2) rapidly goes to zero at some temperature.
This shows the condensation of the scalar field under a critical temperature, which corre-
sponds to the condensation of the Cooper pair during the superconducting phase in QFT.

4 Linear perturbation on the holographic superconductor

We will consider the charged scalar and the U(1) gauge field perturbations on the back-
ground. The background solutions are obtained in the previous section. We impose the
boundary conditions for perturbation fields as if there exists a point source for the U(1)
gauge field on the AdS boundary at the south pole. Then we observe its response through
a lens at some observation point on the AdS boundary, as we depicted in figure 2.

The linear perturbative equations of motion are

D2δΨ + 2
L2 δΨ = 2iδAµDµΨ + i(∇µδAµ)Ψ (4.1)

∇νδF νµ = δJµ, δJµ = i(δΨ∗DµΨ− δΨ(DµΨ)∗+ Ψ∗DµδΨ−Ψ(DµδΨ)∗) + 2Ψ2δAµ.

(4.2)
Ψ and Φ are the background solution as obtained in the previous section and Dµ = ∂µ +
iΦδtµ is the gauge covariant derivative. We decompose the perturbation into the vector
and scalar modes. Since we will only consider the axisymmetric external source in the
boundary theory, we focus on axisymmetric linear perturbation: ∂ϕδAµ = ∂ϕδΨ = 0.

4.1 Vector mode perturbation

In the following, we will study the vector mode perturbation. In S2, the vector spherical
harmonics (Ylm(θ))i simply relate to the scalar spherical harmonics Ylm(θ) as

(Ylm(θ, ϕ))i = εijD̂
jYlm(θ, ϕ) (l ≥ 1) , (4.3)
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where D̂ and εij are the covariant derivative and the Levi-Civita tensor on the unit S2.
We can decompose the axisymmetric vector mode by the vector spherical harmonics as

δAa = 0 , δAi = e−iωt
∞∑
l=1

clα
l(r)(Yl0(θ))i , δΨ = 0 , (4.4)

where a, b = t, r and i, j = θ, ϕ. Here, we consider the monochromatic wave with the
frequency ω. The constant cl is defined in eq. (2.8). The equation of motion for αl(r) is
given by the Schrödinger form as[

− d2

dr2
∗

+
(
l(l + 1)
r2 + 2Ψ2

)
F (r∗)

]
αl(r∗) = ω2αl(r∗) . (4.5)

We impose the in-going wave condition at the horizon dαl/dr∗|r=rh
= −iωαl|r=rh

. We also
set the normalization condition at the AdS boundary αl|r=∞ = 1. Then, the asymptotic
form of the gauge field δAi becomes

δAi|r=∞ = e−iωt
∞∑
l=1

cl(Yl0(θ))i = e−iωtεijD̂
j(
∞∑
l=1

clYl0) = e−iωtεijD̂
jg(θ) , (4.6)

where g(θ) is the Gaussian function defined in eq. (2.8). According to the AdS/CFT
dictionary, δAi|r=∞ correspond to the external source in the boundary theory. The above
equation implies that the spatially localized time-periodic external electromagnetic field is
applied to the superconductor on S2.

The asymptotic solution of αl(r) near the AdS boundary is

αl(r →∞) = 1 + αl(1)

r
+ · · · . (4.7)

Then the response (i.e., electric current) for the vector mode is given as follows:

〈JVi (t, θ)〉 = e−iωt
∞∑
l=1

clα
l(1) (Ylm(θ))i = e−iωtεijD̂

j〈JV (θ)〉 , (4.8)

where
〈JV (θ)〉 ≡

∞∑
l=1

clα
l(1)Ylm(θ) + const. . (4.9)

See appendix B for details. The constant term in 〈JV (θ)〉 is ambiguous. We determines it
so that

∫ d
0 dθ sin θ〈JV (θ)〉 = 0 is satisfied. We will use 〈JV (θ)〉 to construct the image of

the black hole. We will numerically solve eq. (4.5) to obtain the response.

4.2 Scalar mode perturbation

We will focus on the scalar mode perturbative solutions. We decompose the scalar mode
by the scalar harmonics as

δAa =
∞∑
l=1

cla
l
a(t, r)Yl0(θ), (4.10)

δAi =
∞∑
l=1

clβ
l(t, r)D̂iYl0(θ), (4.11)

δΨ =
∞∑
l=1

clψ
l(t, r)Yl0(θ) , (4.12)
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where cl is the constant defined in eq. (2.8). Since the Maxwell field does not have dynamical
degrees of freedom for l = 0, we only consider l ≥ 1. We will impose the gauge condition
as βl(t, r) = 0. Notice that since we consider 2 dimensional vector space, the l-component
of the field strength f lab(t, r) has only one degree of freedom. That is, we can describe it
by the scalar function f l(r) and the complete asymmetric tensor density εab as

f lab(t, r) = ∂aa
l
b(t, r)− ∂bala(t, r) = 1

r2 f
l(t, r)εab . (4.13)

Then, in the following analysis, we will deal with f l(t, r) instead of ala(t, r) itself. The
equation of motions for f l(t, r), ψl(t, r) and ψ∗l(t, r) are summarized as

Da

[
C(r)

(
Daf l(t, r) + εabr2jlb(t, r)

)]
= f l(t, r)

r2 , (4.14){
DaDa + 2

r
garDa −

l(l + 1)
r2 + 2

L2

}
ψl(t, r)

=
{

2iC(r)
(
εbaDbf

l − r2(jl)a
)(
Da + ∂ar

r

)
+ Ψ∗ψl −Ψψ∗l

}
Ψ . (4.15)

Here, Da is the covariant derivative with respect to the (t, r)-part of the metric and

jla(t, r) ≡ i
(
ψ∗lDaΨ− ψl(DaΨ)∗ + Ψ∗Daψl −Ψ(Daψl)∗

)
, (4.16)

C(r) ≡ 1
λl + 2r2|Ψ|2 . (4.17)

Details of derivation are in appendix A. We now assume the time dependence of the per-
turbation variable as f l(t, r) = e−iωtf l(r), ψl(t, r) = e−iωtψl(r) and ψ∗l(t, r) = e−iωtψ∗l(r).
We impose the in-going wave condition at the horizon r = rh as

∂f l

∂r∗
= −iωf l , ∂ψl

∂r∗
= −iωψl , ∂ψ∗l

∂r∗
= −iωψ∗l . (4.18)

At infinity, the asymptotic behaviors of f l(r), ψl(r) and ψ∗l(r) as

f l = f l(0) + f l(1)

r
+ f l(2)

r2 + · · · ,

ψl = ψl(1)

r
+ ψl(2)

r2 + · · · , ψ∗l = ψ∗l(1)

r
+ ψ∗l(2)

r2 + · · · .
(4.19)

As shown in appendix B, the leading term f l(0) is proportional to the response and the
second leading term f l(1) corresponds to the external electromagnetic field. This is contrary
to the vector mode. Then, we will solve eqs. (4.14) and (4.15) on the following boundary
condition.

f l(1) = −l(l + 1), ψl(1) = ψ∗l(1) = 0 . (4.20)

It is also shown in appendix A that, near the infinity, we can reproduce ala(t, r) from
f l(t, r) as

ala(t, r) '
1

l(l + 1)εbaD
bf l(t, r) . (4.21)
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The first condition in eq. (4.20) is equivalent to the boundary conditions alt|r=∞ = 1.
Therefore, as the external electromagnetic field in the superconductor, we have

δAt|r=∞ = e−iωt
∞∑
l=1

clYl0(θ) = e−iωt(g(θ)− g0) , (4.22)

where g0 =
∫ π

0 sin θ g(θ)/2. The responses are obtained by

〈JSt (t, θ)〉 = −e−iωt
∑
l

clf
l(0)Yl0(θ) = e−iωt〈JS(θ)〉 , (4.23)

〈JSi (t, θ)〉 = iωe−iωt
∑
l

cl
l(l + 1)f

l(0)D̂iYl0(θ) , (4.24)

where
〈JS(θ)〉 ≡ −

∞∑
l=0

clf
l(0)Yl0(θ) . (4.25)

See appendix B for the detail. They are related by the charge conservation:

∂t〈JSt (t, θ)〉+ D̂i〈JSi (t, θ)〉 = 0 . (4.26)

We will use 〈JS(θ)〉 for constructing the image of the black hole.

4.3 Imaging black hole from the dissipation part of the response function

Response functions are complex valued functions. Both of their real and imaginary parts
are observable. For the vector mode, the external electric field in S2 is given by

Ei = −δFti = −∂tδAi|r=∞ = εijD̂
jg(θ) sinωt , (4.27)

where we took the real part of eq. (4.6). As its response, we obtain the electric current as

〈JVi (t, θ)〉 = εijD̂
j
[
Re〈JV (θ)〉 cosωt+ Im〈JV (θ)〉 sinωt

]
. (4.28)

Again we used the real part of eq. (4.8). The first term in the electric current has
the phase difference π/2 with respect to the electric current. (Borrowing the terminol-
ogy from electric circuit theory, we can regard Re〈JV (θ)〉 and Im〈JV (θ)〉 as the “reac-
tance” and “resistance”, respectively.) Only Im〈JV (θ)〉 contributes to the Joule heating,
Q = limT→∞

∫ T
−T dtE

i〈JVi 〉/(2T ). The same applies to the scalar mode. We will refer
Im〈JV,S(θ)〉 as dissipation parts of the response functions since the “real” and “imaginary”
parts do not have proper meanings. (We can exchange their roles by the constant shift of
the time, t→ t+ π/(2ω).)

In the previous works [10, 11], the response function is directly used for constructing
the image of the black hole as explained in section 2. In this paper, we propose a new
prescription for constructing a clear image of the black hole: we use dissipation parts of the
response functions for constructing the image of the black hole, i.e., M(~x) = Im〈JV,S(θ)〉
in eq. (2.11). We can understand that the dissipation part of the response has clear
information about the photon sphere as follows. Let us consider the response function in
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l-space, αl(1) and f l(0). In the normal phase, Ψ(r) = 0, perturbation equations for vector
and scalar modes are identical and given by Schrödinger form (4.5). When the “energy” ω2

is larger than the top of the potential l(l + 1)vmax, the wave sent from the AdS boundary
directly plunges into the black hole and there should be a non-negligible dissipation (or
Joule heating in the QFT). Thus, Imαl(1) and Imf l(0) are also non-negligible. On the
other hand, when ω2 is smaller than the top of the potential, Imαl(1) and Imf l(0) are
suppressed by the tiny tunneling probability. It follows that they suddenly become small
at l ' ω/

√
vmax. This coincides with the angular momentum of the null geodesic on the

photon sphere. (See eq. (2.26).) In appendix C, we did the detailed WKB analysis and
showed that the photon ring appears at (2.27) in the image of the black hole constructed
by the formula (2.11).

5 Imaging holographic superconductor

We will show our results of the image of the holographic superconductor system. Let us
observe M at some observation point θ = θobs on the AdS boundary as we depicted in
figure 2. We will apply the Fourier-Fresnel transformation in eq. (2.11) to the observables
to construct the image.

5.1 Image of vector-mode perturbation

We depicted the image of the vector-mode gauge field perturbation in figure 10. The
horizontal line and the vertical line are xs/f and ys/f respectively. We set the horizon
radius rh = 0.3, frequency ω = 80, a lens radius d = 0.5, and variance of Gaussian source
σ = 0.01. A background scalar value at the horizon varies as ε = 0.0, 35.0, 41.0, and the
observation point varies as θobs = 0◦, 45◦, 60◦, 90◦. In terms of the boundary values, we will
build the images corresponding to µ(ε) = 2.533, 130.5, 153.1 or ρ(ε) = 0.7537, 5132, 7068,
which can be read from figure 7 and 8 respectively.

We obtain axisymmetric images when θobs = 0◦, which is trivial from the axisymmetry
of the system. However, each ring radius is non-trivially determined from the details of
the dual bulk. According to (2.27) and (4.5), we can estimate photon ring radius from an
effective potential given by

Veff(r∗; l, ε) =
(
l(l + 1)
r2 + 2Ψ2

)
F (r∗) . (5.1)

As shown in appendix C.5, in the WKB approximation, the photon ring radius is deter-
mined by xS/f = l0/ω where l = l0 is chosen so that the muximum value of the effective
potential equals to ω2, i.e, ω2 = max Veff(r∗; l0, ε). In figure 11, we depicted a cross-section
view of the image with solid lines and the photon ring radius calculated from the WKB
analysis with dashed lines with respect to rh = 0.1, 0.3, 1.0 with ω = 80, ε = 10.0, d = 0.5
and σ = 0.01. The vertical line is the image amplitude which is normalized by the maximum
amplitude, and the horizontal line is xs/f . It is a noteworthy fact that the ring radius of
images almost coincide with the photon ring radius estimated by the WKB approximation.
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θobs=0
◦ θobs=30

◦ θobs=45
◦ θobs=90

◦

ϵ=0.0

ϵ=35.0

ϵ=41.0

Figure 10. The image for a vector-mode perturbation. We calculate the image of a dissipation
part of the response, where rh = 0.3, ω = 80, d = 0.5, and σ = 0.01.

When constructing the image applying (2.11) to the weakly coupled theories, for ex-
ample, in the case of φ4-theory, the ring radius is given by θobs = π/2 regardless of the tem-
perature when ω is sufficiently large [11]. Then, we can qualitatively distinguish whether
QFT has its gravity dual or not by analyzing the temperature dependence of the image.
Hence, coincidence with the photon ring and temperature dependence of the ring images
in figure 10 represent not only an axisymmetric property of the system but also properties
of their gravity dual.

During the normal conducting phase ε = 0.0, we see a ring image with its radius
rs ∼ 0.646 at θobs = 0◦. According to eq. (2.27), the photon ring radius is given by
rs ' 0.647. Therefore, we conclude that the higher-order Einstein ring winding around the
vicinity of the photon sphere emerges in the image during the normal conducting phase.
As the observation point gets closer to the equator θobs = 90◦, the image transforms from
the ring image to 2 bright points. These 2 bright points represent the wave propagating
clockwise and counterclockwise on the ϕ = 0◦ and 180◦ surfaces.

During the superconducting phase ε > 0.0, there are some interesting transitions in
the image. First, the ring radius shrinks little by little for 0 < ε . 35. This represents
the 2nd order phase transition of the superconductor. For 35 . ε, the ring radius shrinks
drastically.

The change of images around ε ∼ 35 can be understood by considering the effective
potential Veff in (5.1). (See figure 12.)
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Figure 11. The rh dependence of a cross-section view of the image for a vector-mode perturbation.
Each dashed line represents a photon sphere radius calculated from the geodesic approximation.

The first term on the right hand side in (5.1) is the gravitational potential, and the
second term represents the contribution from the background scalar to the potential. Each
term corresponds to the left side potential hill and the right side potential hill, respectively,
in figure 12. When ω2 > Veff(r∗; l, ε) is satisfied for any r∗, an electromagnetic field falls
into the black hole, so the ring images of these l-components do not emerge in the image.
When ω2 ≤ Veff(r∗; l, ε) is satisfied at the maximum of the potential, null rays emitted from
the AdS boundary do not fall into the black hole. Particularly when ω2 = Veff(r∗; l, ε), null
rays propagate in a circular motion at the top of the potential, which we call an effective
photon sphere. As discussed in [10, 11] the contribution of the null rays winding around
the vicinity of the effective photon sphere is much larger than that with a smaller winding
number. Hence, we can roughly expect to see the ring image corresponding to l mode,
which satisfies ω2 = Veff(r∗; l, ε) at the top of the potential.

During 0 < ε . 35, the gravitational potential is higher than the background scalar
potential. The gravitational potential is lifted by the background scalar field as we raise ε.
Then, ω2 grazes the top of the effective potential even for small l. As we saw in section 2,
a small l wave emerges as a small ring. Therefore, the photon ring shrinks gradually as we
raise the amplitude of a background scalar field in 0 < ε . 35.

On the other hand, the background scalar potential is higher than the gravitational
potential when 35 . ε. Therefore, a drastic change in the image around ε ∼ 35 is originated
from such a transition of the potential top Although the ring radius is expected to shrink
gradually after the transition as we raise ε, we could not verify such behavior since the
image amplitude falls below the numerical error.

We showed a cross-section view of the black hole image for θobs = 0 in figure 13. The
vertical axis is the amplitude of the image, and the horizontal axis is xs/f . We set rh = 0.3,
θobs = 0◦, ω = 80, d = 0.5 σ = 0.01, and ε varies as ε = 0.0, 35.0, 41.0. The amplitude
decays as we raise ε since the background potential barrier grows and obstruct a wave
propagated from the AdS boundary.

We also depicted the amplitude of the black hole image with respect to the change in a
wave frequency in figure 14. We set rh = 0.3, ω = 20, 40, 80, ε = 10.0, θobs = 0, d = 0.5 and
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Figure 12. The behaviour of the effective potential with respect to tortoise coordinate: Veff(r∗; lε).
We set rh = 0.3, ω = 80, and ε = 0.0, 30.0, 40.0. A black solid line represents ω2.
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Figure 13. The ε dependence of a cross-section view of the image for a vector-mode perturbation.
We set rh = 0.3, θobs = 0◦, ω = 80, d = 0.5, σ = 0.01, and ε = 0.0, 35.0, 41.0.
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Figure 14. The ω dependence of a cross-section view of the image for a vector-mode perturbation.
A gray dashed line represents a photon sphere radius calculated from the geodesic approximation.

σ = 0.01. The vertical line is the image amplitude which is normalized by the maximum
amplitude, and the horizontal line is xs/f . A gray dashed line represents the photon sphere
radius calculated from the null geodesic approximation. The ring image becomes blurred
as we decrease ω due to the wave effect. We can see xs/f of the maximum amplitude gets
closer to the photon sphere radius calculated from a null ray approximation as we raise ω.
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◦ θobs=45
◦ θobs=90

◦

ϵ=0.0
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ϵ=45.0

Figure 15. The image for a scalar-mode perturbation. We calculate the image of a dissipation
part of the response, where rh = 0.3, ω = 80, d = 0.5, and σ = 0.01.

5.2 Scalar-mode perturbation

We showed the image of a scalar-mode gauge field perturbation in figure 15. The horizontal
line and the vertical line are xs/f and ys/f respectively. We set the horizon radius rh = 0.3,
frequency ω = 80, the lens radius d = 0.5, and the variance of the Gaussian source σ = 0.01.
A background scalar value at the horizon ε varies as ε = 0.0, 10.0, 45.0, and the observation
point varies as θobs = 0◦, 45◦, 60◦, 90◦. In terms of the boundary values, we will build the
images corresponding to µ(ε) = 2.533, 36.26, 168.1 or ρ(ε) = 0.7537, 391.5, 8530, which can
be read from figure 7 and 8 respectively.

As for a vector-mode perturbation, we see a photon ring at θobs = 0◦ during the normal
phase ε = 0.0. Also, as we vary the observation point from 0◦ to 90◦, each ring image tends
to be 2 bright points, which is also the same as a vector-mode perturbation qualitatively.

There are 2 critical differences in the image between a scalar-mode and a vector-mode
perturbation, which are both originated by the coupling of a gauge field perturbation and
scalar field perturbation in (4.14) and (4.15). First, the ring image does not shrink during
the superconducting phase. We showed a ring radius with respect to ε for a scalar-mode
and a vector-mode perturbation in figure 16. We set rh = 0.3, θobs = 0◦, ω = 80, d = 0.5,
and σ = 0.01. For a vector-mode perturbation, we see a radius gets smaller as we raise ε,
and it shrinks dramatically around ε ∼ 35. In contrast, a radius does not alter for a scalar-
mode perturbation. We expect a gauge field is scattered by a scalar field perturbation,
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Figure 16. The ε dependence of a ring ra-
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mode perturbation respectively.
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Figure 17. The ε dependence of an image
amplitude. Blue points and red points cor-
respond to a scalar-mode and a vector-mode
perturbation respectively.

and observe the effective photon ring with a larger radius compared to a vector-mode
perturbation. Second, the image amplitude does not decay as we raise ε. We depicted
the ε dependence of an image amplitude in figure 17 for a scalar-mode and a vector-mode
perturbation. We set rh = 0.3, θobs = 0◦, ω = 80, d = 0.5, and σ = 0.01. For a
vector-mode perturbation, the amplitude decays as ε becomes larger since the background
potential barrier screens the wave propagated from the AdS boundary. For a scalar-mode
perturbation, we guess that a gauge field obtains the energy to exceed such a potential
barrier due to its excitation by scalar-field. It is difficult to understand these behaviors
quantitatively, for example by considering an effective potential, since the equations of
motion for scalar-mode perturbations are complicatedly coupled.

6 Conclusion

We proposed a way to take the image of the black hole that is dual to a superconductor.
We considered an external time-periodic localized electromagnetic field in the supercon-
ductor and its response (i.e., electric current). We applied the Fourier-Fresnel transforma-
tion (2.11) to the response function after multiplying the window function. Then, we only
considered the dissipation part (or the imaginary part in our convention) of the response
function to take the clear image of the black hole. Typical images were summarized in
figures 10 and 15. We also estimated the radius of the photon ring in the image as a func-
tion of the scalar condensate ε ≡ Ψ(rh). For the vector mode, we found the discontinuous
change of the radius for a sufficiently large ε. On the other hand, for the scalar mode, we
did not find its discontinuous change. Then, the radius does not depend on ε much as far
as we studied. For the scalar mode, on the other hand, the radius does not depend on ε so
much and we did not find its discontinuous change as far as we studied. Our results indi-
cate that we can observe black holes by the tabletop experiment of superconductors if they
have gravitational duals. The observation of black holes can be used as the experimental
test of the existence of the gravitational dual for given materials.
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We only considered the probe limit of the holographic superconductor. The holographic
model with the back reaction to the metric has been considered in ref. [14]. We can also
apply the imaging of the black hole to such a model. It is also interesting to consider the
application to the p- or d-wave holographic superconductor models [30–32].

The other future direction is to apply our method to the Sachdev-Ye-Kitaev (SYK)
model [33, 34]. Originally, the SYK model was introduced as the (0+1)-dimensional model
but extended to (1+1)-dimensional spacetime [35–39]. The (1+1)-dimensional model is
probably a dual of the (2+1)-dimensional black hole. It is interesting to consider the
imaging of the black hole dual to the SYK model both on the gravity and field theory
sides. There is also an attempt to realize the SYK model in a real experiment [40]. It
would be nice if we can observe the black hole through such an experiment.

Acknowledgments

We would like to thank Takaaki Ishii and Chul-Moon Yoo for useful conversations. The
work of K. M. was supported in part by JSPS KAKENHI Grant Number JP18H01214 and
JP20K03976.

A Derivation of equations of motion for a scalar-mode perturbation

We will explain the derivation of (4.14) and (4.15) in this section. We start from pertur-
bative Maxwell equations (4.2) and the equations of motion for charged scalar field (4.1)
which aa(t, r), ψ(t, r) and ψ∗(t, r) follow.

First, we focus on the µ = b component of the Maxwell equation:

∇νδF νb = δJb . (A.1)

The right hand side is defined as

δJa =
∑
l

cl
(
ja(t, r) + 2|Ψ|2aa(t, r)

)
Yl0(θ) , (A.2)

where ja(t, r) is given in (4.16). The left hand side will be

∇νδF νb = 1
r2h

bc
∑
l

cl
{
Da

(
r2f lac(t, r)

)
− l(l + 1)alc(t, r)

}
Yl0(θ) , (A.3)

where we defined f lab(t, r) in (4.13). By comparing the coefficient of Yl0 on the both hand
sides, we get

Da
(
r2f lab(t, r)

)
−
{
l(l + 1) + 2r2|Ψ|2

}
alb(t, r) = r2jb . (A.4)

If we rewrite the above equation using f l(t, r), the µ = b component of Maxwell equation
leads to

Da

[
C(r)

(
Daf l(t, r) + εabr2jlb(t, r)

)]
= f l(t, r)

r2 . (A.5)

C(r) is given in (4.17). From eq. (A.4), we can reproduce alb(t, r) from f l(t, r) as

alb(t, r) = C(r)[εabDaf l(t, r)− r2jb] . (A.6)

By taking the limit of r →∞ in this equation, we have eq. (4.21).
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Next, the µ = i component of the Maxwell equation is given by

∇νδF νi = δJ i . (A.7)

The right hand side will be

δJ i = i
∑
l

cl
(
Ψ∗ψl −Ψψ∗l

) 1
r2 D̂

iYl0(θ) . (A.8)

The left hand side will be

∇νδF νi = − 1
r2

∑
l

clD
aala(t, r) D̂iYl0(θ) . (A.9)

By comparing both sides, we get

Daala(t, r) = −i
(
Ψ∗ψl(t, r)−Ψψ∗l(t, r)

)
. (A.10)

Finally, the equation of motion of the charged scalar field is

D2δΨ + 2
L2 δΨ = 2iδAµDµΨ + i(∇µδAµ)Ψ . (A.11)

The first term of left hand side leads to

D2δΨ =
∑
l

cl

{
DaDa + 2

r
(∂ar)Da −

l(l + 1)
r2

}
ψl(t, r)Yl0(θ) , (A.12)

and the second term of left hand side is

2
L2 δΨ =

∑
l

cl
2
L2ψ

l(t, r)Yl0(θ) . (A.13)

For the right hand side,

2iδAµDµΨ + i(∇µδAµ)Ψ

=
∑
l

cl

[
2iala(t, r)DaΨ + i

(
Daala(t, r) + 2

r
(∂ar) ala(t, r)

)
Ψ
]
Yl0(θ)

=
[
2iC(r)

(
εbaD

bf − r2jla

)(
Da + ∂ar

r

)
+ Ψ∗ψl −Ψψ∗l

]
ΨYl0(θ) . (A.14)

We used (A.10) and (4.21) to derive the third equality. Then, by comparing the both sides,
we get (4.15):{

DaDa + 2
r
garDa −

l(l + 1)
r2 + 2

L2

}
ψl(t, r)

=
{

2iC(r)
(
εbaDbf

l − r2(jl)a
)(
Da + ∂ar

r

)
+ Ψ∗ψl −Ψψ∗l

}
Ψ . (A.15)
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B The source and the response

We will derive an expression of the response (4.8), (4.23) and (4.24) in this section.
The Maxwell action in Sch-AdS spacetime is given as

S = −1
4

∫
d4x
√
−gFµνFµν , (B.1)

where g represents a determinant of the metric (2.1). Let us calculate the electric current
at the AdS boundary with respect to an infinitesimal change of a boundary value of a
gauge field Aµ|r=∞. Due to a change in Aµ|r=∞, a gauge field in the bulk also varies as
Aµ → Aµ + ∆Aµ. The deviation of the Maxwell action is

∆S = −1
2

∫
d4x
√
−gFµνFµν = −

∫
d4x
√
−gFµν∇µ∆Aν

= −
∫ √
−g∇µ (Fµν∆Aν) = −

∫
d3x
√
−hnµFµν∆Aν |r=∞ .

Here, we introduced an induced metric on the constant r hypersurface: hIJ ({I, J} =
{t, θ, φ}). h is its determinant and nµ is its unit normal vector. We used the Maxwell
equation ∇µFµν = 0 at the third equality. Near the AdS boundary, we get hIJdxIdxJ '
r2(−dt2 + dΩ2) and nµ ' r−1(dr)µ. We define the boundary electric current as

〈JI〉 = 1√
−h̃

∆S
∆AI

= −r2F rI |r=∞ , (B.2)

where h̃ is the determinant of rescaled metric: h̃IJ ' −dt2 +dΩ2 (r →∞). The boundary
electric current satisfies the conservation law automatically:

∇I〈JI〉 = −r2∇IF rI = 0 . (B.3)

For the vector mode, the electromagnetic tensors at the AdS boundary are

F rt|r=∞ = 0 , F ri|r=∞ ' −
1
r2 e
−iωt∑

l

clα
l(1)(Yl0(θ))i , (B.4)

where we used (4.7) for F ri. This gives the electric current in eq. (4.8).
For the scalar mode, we have

F rt = 1
r2 e
−iωt∑

l

clf
l(0)Yl0(θ) , (B.5)

F ri = − 1
r2 iωe

−iωt∑
l

1
l(l + 1)clf

l(0)D̂iYl0(θ) , (B.6)

where we have used (4.21) to get F ri. This gives the electric current in eqs. (4.23)
and (4.24).
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Figure 18. Effective potential for Maxwell perturbation equations for rh = 0.3.

C WKB analysis

In the normal phase of the holographic superconductor, Maxwell perturbation equations
for vector and scalar modes are identical. They are uniformly written in the Schrödinger
form as [

− d2

dr2
∗

+ U(r)
]
χ = 0 , U(r) = −ω2 + l(l + 1)v(r) , (C.1)

where χ = αl and χ = f l for the vector and scalar modes, respectively. The effective
potential v(r) is defined in eq. (2.24). The asymptotic solution near the infinity is

χ(r) = χ0 + χ1
r

+O
( 1
r2

)
= χ0 − χ1r∗ +O(r2

∗) . (C.2)

In the followings, we will determine the ratio of the source and response, χ1/χ0, by WKB
approximation.

Figure 18 shows the effective potential v(r) for rh = 0.3. The potential has the
maximum value vmax defined in eq. (2.25). For the WKB analysis, we need to consider
three cases depending on the number of turning points: l(l+ 1)vmax < ω2, l(l+ 1) < ω2 <

l(l + 1)vmax, and ω2 < l(l + 1).

C.1 l(l + 1)vmax < ω2

Firstly, we consider the case of l(l + 1)vmax < ω2. There is no turning point in this case
and the WKB solution is simply given by

χ(r∗) = 1
(−U)1/4 exp

[
−i
∫ r∗

0
dr∗
√
−U

]
, (C.3)

where we took in-going mode at the horizon. Near infinity r∗ ∼ 0, this solution behaves as

χ(r∗) '
1√
k

exp(−ikr∗) '
1√
k

(1− ikr∗) , (C.4)

where k2 = ω2 − l(l + 1). Therefore, we have
χ1
χ0

= ik . (C.5)
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C.2 ω2 < l(l + 1)

Secondly, let us consider the case of ω2 < l(l+1). There is single turning point in this case.
We denote the turning point as r∗ = a, i.e., U(a) = 0. For r∗ < a, the WKB solution is

χ(r∗ < a) = 1
(−U)1/4 exp

[
−i
∫ r∗

a
dr∗
√
−U

]
. (C.6)

This is essentially same solution as eq. (C.3), but we took r∗ = a as the lower bound of the
integration for later convenience. For r∗ > a, we obtain

χ(r∗ > a) = e−iπ/4

U1/4

{
exp

[∫ r∗

a
dr∗
√
U

]
+ i

2 exp
[
−
∫ r∗

a
dr∗
√
U

]}

= e−iπ/4+Γ0/2

U1/4

{
exp

[∫ r∗

0
dr∗
√
U

]
+ i

2e
−Γ0 exp

[
−
∫ r∗

0
dr∗
√
U

]}
.

(C.7)

At the last equality, we used
∫ r∗
a =

∫ 0
a +

∫ r∗
0 and defined

Γ0 ≡ 2
∫ 0

a
dr∗
√
U . (C.8)

Near the infinity, the solution behaves as

χ(r∗) '
e−iπ/4+Γ0/2
√
κ

{
eκr∗ + i

2e
−Γ0e−κr∗

}

' e−iπ/4+Γ0/2
√
κ

{
1 + i

2e
−Γ0 + κ(1− i

2e
−Γ0)r∗

}
,

(C.9)

where κ2 = l(l + 1)− ω2. Thus, we have

χ1
χ0

= −κ2− ie−Γ0

2 + ie−Γ0
. (C.10)

C.3 l(l + 1) < ω2 < l(l + 1)vmax

Finally, we consider l(l+1) < ω2 < l(l+1)vmax, where there are two turning points r∗ = a, b

(a < b). For r∗ < a, the WKB solution is same as eq. (C.6). For a < r∗ < b, the solution
is also same as eq. (C.7) but it is convenient to rewrite it as

χ(a < r∗ < b) = e−iπ/4+Γ/2

U1/4

{
exp

[∫ r∗

b
dr∗
√
U

]
+ i

2e
−Γ exp

[
−
∫ r∗

b
dr∗
√
U

]}
, (C.11)

where we use
∫ r∗
a =

∫ b
a +

∫ r∗
b and define

Γ ≡ 2
∫ b

a
dr∗
√
U . (C.12)

For b < r∗, the WKB solution is written as

χ(r∗ > b) = eΓ/2

(−U)1/4

{
c+ exp

[
i

∫ r∗

b
dr∗
√
−U

]
+ c− exp

[
−i
∫ r∗

b
dr∗
√
−U

]}
. (C.13)
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where
c+ = −i

(
1− e−Γ

4

)
, c− = e−Γ

(
1 + e−Γ

4

)
. (C.14)

Again, we determined c± using standard connection formulae of WKB. From
∫ r∗
b =

∫ 0
b +

∫ r∗
0 ,

above expression becomes

χ(r∗ > b) = eΓ/2+iδ/2

(−U)1/4

{
c+ exp

[
i

∫ r∗

0
dr∗
√
−U

]
+ c−e

−iδ exp
[
−i
∫ r∗

0
dr∗
√
−U

]}
, (C.15)

where
δ ≡ 2

∫ 0

b
dr∗
√
−U . (C.16)

Asymptotic solution near infinity is

χ(r∗) '
eΓ/2+iδ/2

k1/2

{
(c+ + c−e

−iδ) + ik(c+ − c−e−iδ)r∗
}
. (C.17)

Therefore, we obtain

χ1
χ0

= −ik c+ − c−e−iδ

c+ + c−e−iδ

= k
e−Γ tan(δ/2 + π/4) + 4i
e−Γ − 4i tan(δ/2 + π/4) .

(C.18)

C.4 WKB and full numerical solutions

Figure 19 shows χ1/χ0 obtained by the WKB approximation and full numerical calculation.
The background is the Schwarzschild-AdS with rh = 0.3. In the WKB analysis, we formally
regard l as a continuous parameter. There is a good agreement between them. When the
two turning points r∗ = a, b are separated enough, the tunneling probability e−Γ is highly
suppressed. Then, we have

Re
(
χ1
χ0

)
' − k

tan(δ/2 + π/4) , Im
(
χ1
χ0

)
' ke−Γ

4 sin2(δ/2 + π/4)
. (C.19)

When δ/2 + π/4 ' πm (m ∈ Z), real and imaginary parts of χ1/χ0 take large values and
this is the origin of spikes found in figure 19. The modes with δ/2 + π/4 ' πm correspond
to “normal modes” trapped in the outside of the potential b < r∗ < 0. (To be precise,
they should be regarded as quasinormal modes with tiny damping factors because of the
small tunneling probability e−Γ.) Spikes found in the response function is caused by the
reflection of the bulk wave at the time like boundary and this phenomena is characteristic
to the asymptotically AdS spacetime. In general, δ/2 + π/4 = πm is not exactly satisfied
since l is an integer and δ takes discrete values. However, depending on the parameters ω
and rh, δ/2 + π/4 “accidentally” has a value close to πm and then χ1/χ0 becomes large.
As discussed in section 2, if the response function has a spiky point at l = l0, we find
the ring in the image at sin θs = l0/ω Therefore, if we make the image from the response
function, it can be sensitive on the parameters and this is actually found in our previous
work [10, 11]. This is the reason why we proposed the prescription to take only imaginary
part of the response for imaging.
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Figure 19. Comparison of χ1/χ0 for rh = 0.3 between WKB approximation (purple curve) and
full numerical calculation (red dots). In the WKB analysis, the quantum number of the spherical
harmonics l is regarded as a continuous parameter for visibility.

C.5 Analytical calculation of the radius of the photon ring

As we can see in eq. (C.19) or figure 19b, the imaginary part of the response is exponentially
suppresed in the region of l(l+ 1)vmax > ω2 because of the tiny tunneling probability e−Γ.
Thus, we would be able to approximate the imaginary part of the respose function as

Im
(
χ1
χ0

)
'


√
ω2 − l(l + 1) (l < ω/

√
vmax)

0 (otherwise) .
(C.20)

Let us consider the image of the black hole constructed from this imaginary part of the
response function. For simplicity, we consider the case of σ = 0, i.e., the external electro-
magnetic field is given by the delta function.

Then, we can prove

n∑
l=0

clYl0(θ) ' 1
2cnYn0(θ) , (n� 1, θ � 1) , (C.21)

where cl = (−1)l(2l+ 1)1/2/(4π)1/2, which is equivalent to eq. (2.8) with σ = 0. The proof
is the follows:

n∑
l=0

clYl0(θ) = 1
4π

n∑
l=0

(−1)l(2l + 1)Pl(cos θ)

= 1
4π

n∑
l=0

(2l + 1)Pl(−1)Pl(cos θ)

= 1
4π

n+ 1
1 + cos θ{Pn+1(cos θ)Pn(−1)− Pn(cos θ)Pn+1(−1)}

= 1
4 cos2 θ/2

{
n+ 1
n+ 1/2cnYn0(θ)− n+ 1

n+ 3/2cn+1Yn+1,0(θ)
}

(C.22)
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where Pl is the Legendre polynomial. At the second equality, we used Pl(−1) = (−1)l. At
the third equality, we used the finite-sum-formula for the Legendre polynomial [41]:

n∑
l=0

(2l + 1)Pl(z1)Pl(z2) = n+ 1
z1 − z2

{Pn+1(z1)Pn(z2)− Pn(z1)Pn+1(z2)} . (C.23)

For θ � 1, the spherical harmonics is approximated as

Yl0(θ) '

√
l + 1/2

2π J0((l + 1/2)θ) , (C.24)

where Jm is the Bessel function. Since above function is continuous function of l, we have
Yn0(θ) ' Yn+1,0(θ) for n � 1 and θ � 1. We also obtain cn+1 ' −cn for n � 1. Then it
leads to eq. (C.21).

From eq. (C.20), the imaginary part of the response function in the real space is
given by

Im〈O(θ)〉 '
n∑
l=0

√
ω2 − l(l + 1)clYl0(θ) =

√
ω2 + D̂2

n∑
l=0

clYl0(θ)

' 1
2

√
ω2 − n(n+ 1)cnYn0(θ) ,

(C.25)

where we define n = ω/
√
vmax. This is proportional to the single spherical harmonics Yn0.

Then, as shown in section 2, we find the ring at

sin θS = n

ω
= 1
√
vmax

. (C.26)

This coincides with the result of the geodesic approximation (2.27).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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