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1 Introduction

The presence of integrable structures in various instances of the AdS/CFT correspondence
has led to remarkable insight into both gauge and string theory [1, 2]. This motivates
the search for integrable deformations of these models, which has been fruitfully
pursued in particular in string theory, in the form of Yang-Baxter deformed sigma
models [3–5]. There is a variety of Yang-Baxter deformations, with distinct algebraic
properties and interpretations in terms of string theory and AdS/CFT. In this paper we
focus on inhomogeneous Yang-Baxter deformations — algebraically leading to trigonometric
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quantum (q) deformed algebras — also referred to as η deformations. These deformations
are determined by a so-called R operator, which solves the modified (inhomogeneous)
classical Yang-Baxter equation (mCYBE).1

While Yang-Baxter deformations preserve kappa symmetry [5], this is not sufficient
to guarantee that the corresponding backgrounds satisfy the supergravity equations of
motion [11]. In general these backgrounds only satisfy a set of generalized supergravity
equations [12], which derive from kappa symmetry [13]. These generalized equations should
guarantee scale invariance, but not Weyl invariance [12–14].2 A sufficient condition for
Weyl-invariance is unimodularity of the R operator [17, 18]. For superalgebras, the freedom
to chose different Dynkin diagrams underlying the canonical Drinfel’d-Jimbo solution to
the mCYBE, allows one to find unimodular inhomogeneous deformations [19, 20]. Starting
from fermionic Dynkin diagrams give unimodular supergravity backgrounds, while others
yield only solutions of the generalized supergravity equations.

The original Yang-Baxter deformation of AdS5×S5 [5, 11] is based on the distinguished
Dynkin diagram, and does not correspond to a supergravity background. Previous studies
of its integrable structure show a particularly interesting feature however. At the level of
the spectrum and exact S matrix [21, 22], this distinguished η deformation of AdS5 × S5

displays so-called “mirror duality” [23–26]. In this class of models, combining the mirror
transformation — a double Wick rotation interchanging worldsheet space and time — with
inversion of the deformation parameter, κ→ 1/κ, is a symmetry of the scattering theory.
This interestingly relates the spectral and thermodynamic properties of pairs of models with
relatively inverse deformation parameters. Independently, it is possible to consider the effect
of the mirror transformation, at the level of the gauge fixed string action, and translate
this to a set of transformation rules for the background fields of the sigma model [24, 25].
This gives what we can call a geometric mirror transformation. We can then ask if the
(κ-dependent) background fields are compatible with mirror duality. At the level of the
metric and B field this is the case, however the Ramond-Ramond (RR) forms of the
distinguished deformation are not manifestly compatible with this structure. In fact the
mirror transformation here gives a complex background. This leads to the question whether
there is some other inhomogeneous deformation of AdS5 × S5 which does have manifest
mirror duality at the geometric level. For AdS5 × S5 the answer appears to be negative. In
particular, also the RR forms of the unimodular fermionic deformation of AdS5 × S5 break
geometric mirror duality [19], while mirror duality at the spectral level has thus far not
been investigated in this case. Interestingly, applying the geometric mirror transformation
to undeformed AdS5 × S5 yields a supergravity background, mirror AdS5 × S5. It is an
open question to understand whether this integrable model can be related to the maximal
deformation limit — mirroring the undeformed limit — of some inhomogeneous Yang-Baxter
deformation of AdS5 × S5.

1There are also homogeneous Yang-Baxter deformations [6], including e.g. the well-known real β
deformation of the AdS5 × S5 string [7], which algebraically correspond to twisted symmetry [8, 9], see
also [10]. This twisted symmetry has been used to conjecture field theory duals [8].

2There have been further proposals regarding Weyl invariance for generalized supergravity backgrounds [15,
16]. These proposals have certain troublesome features, however, as discussed in [16].
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Moving beyond AdS5 × S5, deformations of AdS3 × S3 × T4 offer an interesting area
of investigation, due to extra freedom with interesting consequences. Firstly, the group
structure of AdS3 and S3 makes it possible to define two [20, 27, 28] and three-parameter
deformations [29] of this background. At least in the two-parameter case some of these
are also known to correspond to supergravity backgrounds [20]. Secondly, in contrast
to AdS5 × S5, here it is possible to find a (single-parameter) unimodular inhomogeneous
deformation which is manifestly invariant under mirror duality at the geometric level [20].

In this paper, we compute the massive tree level S matrices for various two-parameter
deformations of AdS3 × S3 × T4, including fermions to quadratic level (sections 2 and 3),
and contrast these with the conjectured exact S matrix [28] (section 4).3 We consider all
deformations of AdS3 × S3 × T4 which use the same Dynkin diagram for the R operator in
each factor of the symmetry algebra psu(1, 1|2)⊕2. Two of them are based on the fermionic
Dynkin diagram, are hence unimodular, with one giving manifestly mirror dual backgrounds
for one-parameter deformations. The other four cases are not unimodular, two based on the
distinguished Dynkin diagram, and two on the xox one. Despite these backgrounds being
geometrically distinct, the minimal rank of the light-cone symmetry algebra means that
there is only one Dynkin diagram and hence essentially a unique exact S matrix common
to all these models. This is in interesting contrast to AdS5 × S5, where the fermionic and
distinguished deformations have inequivalent S matrices [31]. For AdS3 × S3 ×T4, different
inhomogeneous deformations manifest themselves as one particle changes of basis.4 Our
results give an overview of the perturbative structure of the single particle phases relating
the “different” S matrices. Our results match the two-parameter limit of the tree-level
bosonic S matrix of the three-parameter deformations of AdS3× S3×T4 computed in [33].5

Beyond our tree-level verification of the exact S matrix, we also revisit the topic of
mirror duality. First, in section 5, we show that the exact S matrix for single-parameter
deformations of AdS3 × S3 × T4 satisfies a mirror-duality relation analogous to one of the
distinguished q-deformed AdS5 × S5 S matrix. This guarantees mirror duality at the level
of the spectrum, modulo certain assumptions on the as of yet not fully known dressing
phases. This relationship holds for all deformations of AdS3 × S3 ×T4 which we considered.
We also discuss why it is unlikely that the two-parameter deformed S matrix could have
mirror duality. Second, in section 6, we come back to the question of mirror duality for the
fermionic deformation of AdS5 × S5. Because the S matrix for this deformation differs from
the distinguished one, and the fermionic deformed background is not manifestly mirror self
dual, it was a priori not clear whether the spectrum of this Weyl-invariant q deformation of
AdS5 × S5 has mirror duality. We verify that the fermionic deformed S matrix satisfies the
same mirror duality relations as the distinguished deformed S matrix, manifesting mirror
duality at the spectral level also here.

3Determining the exact dressing phase(s) for two-parameter deformations is an open problem. In general,
determining the complete AdS3×S3×T4 exact S matrix, including massless excitations and dressing phases,
is an involved problem already in the undeformed case, see e.g. [30].

4Similar observations were made regarding the effect of different choices of real form underlying
inhomogeneous deformations, in [32].

5Further related work on a subsector of the three-parameter deformed bosonic S matrix recently
appeared in [34].
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2 Determining the interaction Lagrangians

We would like to compute the tree-level two-body worldsheet S matrix of the massive
excitations of various inhomogeneous deformations of the AdS3 × S3 × T4 string in the
light-cone gauge. To do so, we need the corresponding action for each deformation in the
light-cone gauge, expanded to quartic order in the fields. In our previous paper [31] we
determined this expanded action for deformations of AdS5 × S5. Here we follow the same
approach and conventions, applied to various deformations of AdS3 × S3 × T4.

2.1 Two-parameter deformations of AdS3 × S3 × T4

The two-parameter inhomogeneous deformations of AdS3× S3×T4 that we are considering,
share the metric and B field [28]

ds2 = 1
F (ρ)

[
−(1 + ρ2)dt2 + dρ2

1 + ρ2 + ρ2dψ2 − (κ−(1 + ρ2)dt− κ+ρ
2dψ)2

]

+ 1
F̃ (r)

[
(1− r2)dϕ2 + dr2

1− r2 + r2dφ2 + (κ−(1− r2)dϕ+ κ+r
2dφ)2

]

+ dxidxi ,

B = ρ

F (ρ)(κ+dt ∧ dρ+ κ−dρ ∧ dψ) + r

F̃ (r)
(κ+dϕ ∧ dr + κ−dr ∧ dφ) ,

(2.1)

where the xi, i = 1, . . . , 4 are the torus coordinates, κ± are the two deformation
parameters, and

F (ρ) = 1 + κ2
−(1 + ρ2)− κ2

+ρ
2 , F̃ (r) = 1 + κ2

−(1− r2) + κ2
+r

2 . (2.2)

Including fermions, we will consider the backgrounds constructed in [20], namely two
deformations based on the fermionic Dynkin diagram of psu(1, 1|2) (denoted ferm1 and
ferm2), two based on the distinguished Dynkin diagram (dist1 and dist2), and finally
two based on the xox one (xox1 and xox2). Only the backgrounds based on the fermionic
Dynkin diagram correspond to solutions of the supergravity equations of motion. The first
of these, ferm1, has dilaton Φ and RR fluxes F = dC with

e−2Φ = e−2Φ0 F (ρ)F̃ (r)
P (ρ,r)2 , (2.3)

C2 =−
√

1+κ2
+

1+κ2
−

e−Φ0

P (ρ,r)

[
ρ2dt∧dψ+r2dϕ∧dφ+κ2

−

(
1+ρ2

)
r2dt∧dφ

−κ2
−ρ

2
(
1−r2

)
dψ∧dϕ+κ+κ−

(
ρ2−r2−ρ2r2

)
dt∧dϕ−κ+κ−ρ

2r2dψ∧dφ
]
,

C4 =−
√

1+κ2
+

1+κ2
−

e−Φ0

P (ρ,r)

[
κ−ρ

2dt∧dψ+κ−r2dϕ∧dφ−κ−
(
1+ρ2

)
r2dt∧dφ

+κ−ρ2
(
1−r2

)
dψ∧dϕ−κ+

(
ρ2−r2−ρ2r2

)
dt∧dϕ+κ+ρ

2r2dψ∧dφ
]
∧J2 ,
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where
J2 = dx1 ∧ dx2 − dx3 ∧ dx4, (2.4)

and
P (ρ, r) = 1− κ2

+

(
ρ2 − r2 − ρ2r2

)
+ κ2

−

(
1 + ρ2

) (
1− r2

)
. (2.5)

The ferm2 background corresponds to

e−2Φ = e−2Φ0 F (ρ) F̃ (r)
Q(ρ,r)2 , (2.6)

C2 =−
√

1+κ2
−

1+κ2
+

e−Φ0

Q(ρ,r)

[(
1+ρ2

)
dt∧dψ−

(
1−r2

)
dϕ∧dφ+κ2

+

(
1+ρ2

)
r2dt∧dφ

−κ2
+ρ

2
(
1−r2

)
dψ∧dϕ+κ+κ−

(
1+ρ2

)(
1−r2

)
dt∧dϕ−κ+κ−

(
1+ρ2r2

)
dψ∧dφ

]
,

C4 =−
√

1+κ2
−

1+κ2
+

e−Φ0

Q(ρ,r)

[
κ+
(
1+ρ2

)
dt∧dψ−κ+

(
1−r2

)
dϕ∧dφ−κ+

(
1+ρ2

)
r2dt∧dφ

+κ+ρ
2
(
1−r2

)
dψ∧dϕ−κ−

(
1+ρ2

)(
1−r2

)
dt∧dϕ+κ−

(
1+ρ2r2

)
dψ∧dφ

]
∧J2 ,

with
Q (ρ, r) = 1− κ2

+ρ
2r2 + κ2

−

(
1 + ρ2r2

)
. (2.7)

The second of these backgrounds is manifestly compatible with mirror duality for the
one-parameter deformation κ+ = κ, κ− = 0. The remaining (generalized supergravity)
backgrounds we consider are given in appendix A.

2.2 Gauge fixing and expansion

Given the above backgrounds, we proceed analogously to our previous discussion for
deformations of AdS5 × S5 [31], where all technical details can be found. Here we briefly
indicate the adaptations required for deformations of AdS3 × S3 × T4. The coordinates t
and ϕ are used to form the light-cone coordinates x±, and we change our basis of transverse
fields from ρ, ψ, r, φ to z1, z2, y1, y2, via

ρ eiψ = z1 + iz2
1− z2/4 , r eiφ = y1 + iy2

1 + y2/4 , (2.8)

where z2 = z2
1 + z2

2 and y2 = y2
1 + y2

2. For the spinors and gamma matrices, we use exactly
the conventions of [31], directly replacing the additional z3, z4, y3 and y4 directions of
AdS5 × S5 by the four torus fields x1, . . . , x4. We then light-cone and κ gauge fix as in [31],
ending up with an action depending on the eight bosonic fields z1, z2, y1, y2 and x1, . . . , x4,
and eight complex Grassmann fields (fermions) labeled θ13, θ14, θ23, θ24, η31, η32, η41, and
η42 in line with the conventions of [31]. We then expand the action to fourth order in
bosons, quadratic order in fermions, forming the starting point for our computation of the
tree level S matrices.6 We focus on massive excitations, and drop the massless torus bosons
x1, . . . , x4, and massless fermions θ13, θ24, η31, and η42.

6The resulting interaction Lagrangians are too large to practically present them here; they can be found
in the Mathematica notebook attached to the this paper as Supplementary Material.
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deformation βζ βχ

ferm1 1 1
ferm2 1 1

dist1
(
κ−−i
κ−+i

)2
1

dist2 κ−−i
κ−+i

κ+−i
κ++i

κ−−i
κ−+i

κ++i
κ+−i

xox1 −κ−−i
κ−+i −κ−−i

κ−+i

xox2 1 1

Table 1: Values for the phases βζ and βχ in eq. (2.10). They are included to ensure that
the kinematic Lagrangians of all six cases take the same form eq. (2.11).

2.3 Common quadratic Lagrangian

To calculate the S matrix we perform a further change of basis. We work with the complex
bosonic fields

Y = 1
2
√

1 + κ2
−

(y1 + iy2) , Z = 1
2
√

1 + κ2
−

(z1 + iz2) , (2.9)

and the complex fermionic fields

ζL = βζ√
2

(
θ14 + iθ†23

)
, χL = − βχ√

2

(
η41 + iη†32

)
,

ζR = − i√
2

(
θ14 − iθ†23

)
, χR = − i√

2

(
η41 − iη†32

)
.

(2.10)

We introduced the phases βζ and βχ to make all quadratic parts of the Lagrangians of
the different deformations take an identical form. The choices for each of the different
deformations are listed in table 1. The common quadratic part of the Lagrangians is

L2 = 2
(
|(∂τ + iκ+κ−)Y |2 − |∂σY |2 −m2|Y |2 + |(∂τ + iκ+κ−)Z|2 − |∂σZ|2 −m2|Z|2

)
+ iζ†L(∂τ + ∂σ + iκ+κ−)ζL + iζ†R(∂τ − ∂σ + iκ+κ−)ζR −mζ†LζR +mζ†RζL

+ iχ†L(∂τ + ∂σ + iκ+κ−)χL + iχ†R(∂τ − ∂σ + iκ+κ−)χR −mχ†LχR +mχ†RχL ,

(2.11)
where the mass is m =

√
(1 + κ2

+)(1 + κ2
−). The field content is two complex bosonic and

four complex fermionic fields. Note that at the level of the quadratic terms the deformation
enters as a shift of ∂τ by ±iκ+κ− and a deformation of the mass terms. In contrast, the
deformation of the interaction terms takes a more complicated form.

Lastly, let us connect the undeformed κ± → 0 limit of the quadratic terms to existing
results: Firstly, we reproduce the bosonic and fermionic expressions of [35] in the q → 0
limit7 up to a simple normalization of the bosonic fields. Secondly, when compared to

7Here q controls the mixing of NSNS and RR fluxes, and should not be confused with the q of the
quantum deformation discussed in the next section.
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deformation β ϕY± ϕZ± ϕζ± ϕχ±

ferm1 eiπ/4
√
κ−−i√
κ−+i

1 1 1 1

ferm2 eiπ/4
√
κ−−i√
κ−+i

1 1
ϕ±(κ+, κ−)
× ϕ∗±(κ−, κ+)

ϕ∗±(κ+, κ−)
× ϕ±(κ−, κ+)

dist1 e3iπ/4 κ−−i
κ−+i 1 1 ϕ2

±(κ+, κ−) 1

dist2 e3iπ/4 κ−−i
κ−+i 1 1 ϕ2

±(κ+, κ−) 1

xox1 e3iπ/4 κ−−i
κ−+i 1 1 ϕ2

±(κ+, κ−) 1

xox2 eiπ/4
√
κ−−i√
κ−+i

ϕ∗±(κ−, κ+) ϕ±(κ−, κ+) ϕ±(κ+, κ−) ϕ∗±(κ+, κ−)

Table 2: Values for the phases β, ϕY± , ϕZ± , ϕζ± , and ϕχ± in eq. (3.1). We include them
to compensate for possible basis differences of the creation and annihilation operators. As
a result, the T matrices of all six cases take the same form; it is given in section 3.2. The
common factor ϕ±(κ1, κ2) =

√
p+i(κ1±κ2ω±)√
p−i(κ1±κ2ω±)

is the same as the one appearing in this T
matrix, see eq. (3.7).

the AdS5 × S5 quadratic Lagrangian [36], we observe that the bosonic part is a simple
truncation, while the fermionic part has inherently different mass terms.

3 Perturbative S matrix

Using the kinetic and interaction part of the gauge-fixed Lagrangian we are now able to
calculate the tree-level scattering matrix using Feynman diagram methods. Firstly, we give
the mode expansions of the asymptotic scattering states, and subsequently we calculate
the T matrices for all six cases. Lastly, we show that, similarly to the factorization in the
AdS5 × S5 case, they can be reduced into smaller building blocks.

From the algebraic perspective — discussed in the next section — all six T matrices
are expected to be equal, at least up to a unitary change of basis. However, we want all six
T matrices to be exactly identical to simplify comparison with the exact algebraic result.
We achieve this by using the phase freedom of creation and annihilation operators to absorb
any possible basis differences with extra phase factors in the mode expansions.

3.1 On-shell mode expansion

To determine the in- and out-states of the Feynman amplitudes we need to solve the
equations of motion for L2. They reduce the four complex to four real fermionic degrees of
freedom. Further we express the complex bosonic fields as pairs of real bosonic particles.
In total the particle content of the theory is four real bosons and four real fermions that we
will denote by {Y±, Z±, ζ±, χ±}. They are encoded in the on-shell mode expansions of the

– 7 –
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original fields, valid for all six cases

Y (τ, σ) = 1√
2π

∫
dp 1

2
√
ω̃p

(
ei(pσ−ω

+
p τ)aY+(p)ϕY+ + e−i(pσ−ω

−
p τ)a†Y−(p)ϕ∗Y−

)
,

Z(τ, σ) = 1√
2π

∫
dp 1

2
√
ω̃p

(
ei(pσ−ω

+
p τ)aZ+(p)ϕZ+ + e−i(pσ−ω

−
p τ)a†Z−(p)ϕ∗Z−

)
,

ζL(τ, σ) = β√
2π

∫
dp 1√

2ω̃p
f+p

(
−ei(pσ−ω

+
p τ)aζ+(p)ϕζ+ + e−i(pσ−ω

−
p τ)a†ζ−(p)ϕ∗ζ−

)
,

ζR(τ, σ) = β√
2π

∫
dp 1√

2ω̃p
f−p

(
−ei(pσ−ω

+
p τ)aζ+(p)ϕζ+ − e−i(pσ−ω

−
p τ)a†ζ−(p)ϕ∗ζ−

)
,

χL(τ, σ) = β√
2π

∫
dp 1√

2ω̃p
f+p

(
ei(pσ−ω

+
p τ)aχ+(p)ϕχ+ − e−i(pσ−ω

−
p τ)a†χ−(p)ϕ∗χ−

)
,

χR(τ, σ) = β√
2π

∫
dp 1√

2ω̃p
f−p

(
ei(pσ−ω

+
p τ)aχ+(p)ϕχ+ + e−i(pσ−ω

−
p τ)a†χ−(p)ϕ∗χ−

)
.

(3.1)

These are complemented by their complex conjugate versions for the respective anti-fields
(with (ax)∗ ≡ a†x). The phases β and ϕx differ for the six cases and are given in table 2.
The positive-energy dispersion relation is

ω±p = ±κ+κ− +
√
p2 +m2 , (3.2)

with m2 = (1 + κ2
+)(1 + κ2

−) as before. The normalization factor ω̃p =
√
p2 +m2 is

chosen such that the worldsheet momentum and energy take their canonical form, i.e.
Pws =

∫
dp
∑
x p a

†
xax and Hws =

∫
dp
∑
x ω

x
p a
†
xax, where x runs over all types of particles

{Y±, Z±, ζ±, χ±}. The wave functions f±p =
√
±p+ ω̃p are fixed by the fermionic equations

of motion and by requiring that the quadratic Lagrangian takes the canonical form

L2 =
∫

dp
∑
x

(
ia†x(p)∂τax(p)− ωxpa†x(p)ax(p)

)
(3.3)

when inserting the mode expansions with time-dependent creation and annihilation operators
into (2.11).

3.2 Perturbative T matrix

Next we calculate the 2 → 2 scattering matrix S from the deformed, gauge-fixed and
expanded interaction Lagrangian, closely following the notation of [31]. We expand S in
inverse powers of the string tension h using the tree-level matrix T

S = 1 + i

h
T + . . . . (3.4)

The procedure of Feynman diagrams provides us then with the tree-level amplitudes. Details
are given in appendix B — here we will only present the results. But first let us introduce
some notation. The scattering amplitudes depend on two momenta, p1 and p2, with p1 > p2
by assumption. The scattering states are |a†x1(p1)a†x2(p2)〉 = a†x1(p1)a†x2(p2) |0〉. To simplify
further the states are labeled by their particle content and the first and second particle are
taken to depend on p1 and p2 respectively. For example

|Y+ζ−〉 ≡
∣∣∣a†Y+

(p1)a†ζ−(p2)
〉
, |Z−χ+〉 ≡

∣∣∣a†Z−(p1)a†χ+(p2)
〉
. (3.5)

– 8 –
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Now all six cases give the same T matrix, as we expect from the algebraic perspective.
Possible unphysical phase discrepancies were prevented by carefully choosing the phases of
table 2. We give the action of T on the incoming states in the following:

Boson-Boson

T |Y±Y±〉 = 2(A+ B) |Y±Y±〉
T |Y±Y∓〉 = 2A |Y±Y∓〉+ C |ζ±ζ∓〉+ C∗ |χ±χ∓〉
T |Z±Z±〉 = −2(A+ B) |Z±Z±〉
T |Z±Z∓〉 = −2A |Z±Z∓〉 − C |ζ±ζ∓〉 − C∗ |χ±χ∓〉

T |Y±Z±〉 = 2G |Y±Z±〉 − H |ζ±χ±〉+H∗ |χ±ζ±〉
T |Y±Z∓〉 = 2G |Y±Z∓〉
T |Z±Y±〉 = −2G |Z±Y±〉 − H |ζ±χ±〉+H∗ |χ±ζ±〉
T |Z±Y∓〉 = −2G |Z±Y∓〉

Fermion-Fermion

T |ζ±ζ∓〉 = C∗ |Y±Y∓〉 − C∗ |Z±Z∓〉
T |χ±χ∓〉 = C |Y±Y∓〉 − C |Z±Z∓〉
T |ζ±χ±〉 = −H∗ |Y±Z±〉 − H∗ |Z±Y±〉
T |χ±ζ±〉 = H |Y±Z±〉+H |Z±Y±〉

Boson-Fermion

T |Y±ζ±〉 = (A+ B + G) |Y±ζ±〉+H |ζ±Y±〉
T |Y±ζ∓〉 = (A+ G) |Y±ζ∓〉+ C∗ |χ±Z∓〉
T |Y±χ±〉 = (A+ B + G) |Y±χ±〉+H∗ |χ±Y±〉
T |Y±χ∓〉 = (A+ G) |Y±χ∓〉 − C |ζ±Z∓〉

T |Z±ζ±〉 = (−A− B − G) |Z±ζ±〉 − H |ζ±Z±〉
T |Z±ζ∓〉 = (−A− G) |Z±ζ∓〉+ C∗ |χ±Y∓〉
T |Z±χ±〉 = (−A− B − G) |Z±χ±〉 − H∗ |χ±Z±〉
T |Z±χ∓〉 = (−A− G) |Z±χ∓〉 − C |ζ±Y∓〉

T |ζ±Y±〉 = (A+ B − G) |ζ±Y±〉+H∗ |Y±ζ±〉
T |ζ±Y∓〉 = (A− G) |ζ±Y∓〉 − C∗ |Z±χ∓〉
T |ζ±Z±〉 = (−A− B + G) |ζ±Z±〉 − H∗ |Z±ζ±〉
T |ζ±Z∓〉 = (−A+ G) |ζ±Z∓〉 − C∗ |Y±χ∓〉

T |χ±Y±〉 = (A+ B − G) |χ±Y±〉+H |Y±χ±〉
T |χ±Y∓〉 = (A− G) |χ±Y∓〉+ C |Z±ζ∓〉
T |χ±Z±〉 = (−A− B + G) |χ±Z±〉 − H |Z±χ±〉
T |χ±Z∓〉 = (−A+ G) |χ±Z∓〉+ C |Y±ζ∓〉
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We only work to second order in fermions and therefore our result does not contain four-
fermion amplitudes. The coefficients all carry two implicit indices — omitted for brevity —
that match the ± indices of the state they stand next to. For example the last line contains
coefficients A±∓, G±∓, and C±∓. The coefficients are

Aµ1µ2 = 1
4D

(
(p1 − p2)2 +

(
κ2

+ + κ2
−

)
(ω1 − ω2)2 + 2κ+κ−(µ1µ2ω1ω2 + 1)(µ1ω1 + µ2ω2)

)
Bµ1µ2 = 1

D

(
p1p2 +

(
κ2

+ + κ2
−

)
ω1ω2

)
Gµ1µ2 = 1

4D
(
−
(
1 + κ2

+ + κ2
−

) (
p2

1 − p2
2

)
− 2κ+κ−

(
p2

1µ2ω2 − p2
2µ1ω1

))
Cµ1µ2 = −ϕ∗1ϕ∗2

m

p1 + p2

√
ω2

1 − 1
√
ω2

2 − 1 sinh
(1

2

(
arsinh p1

m
+ arsinh p2

m

))
Hµ1µ2 = ϕ∗1ϕ2

m

p1 − p2

√
ω2

1 − 1
√
ω2

2 − 1 cosh
(1

2

(
arsinh p1

m
+ arsinh p2

m

))
(3.6)

where µ1,2 = ± and ωi ≡ ωµipi , see eq. (3.2). In addition D = p1ω2 − p2ω1 and the phase

ϕj =

√
pj + i(κ+ + µjκ−ωj)√
pj − i(κ+ + µjκ−ωj)

. (3.7)

The operator T satisfies the classical Yang-Baxter equation8

[T23,T13] + [T23,T12] + [T13,T12] = 0 (3.8)

for all terms that our restriction to processes with at most two fermions allowed us to check.
Furthermore, the bosonic amplitudes match the two-parameter limit of the amplitudes
computed in [33].

We want to comment on the phase factors ϕj appearing in the final amplitudes. These
factors are directly influenced by the extra phases in the mode expansions, see table 2. We
fixed these phases such that the perturbative result matches the algebraic result. However,
as we will see in section 4, the algebraic result cannot fix the phases completely; there
is still the freedom to choose the phase α, see eq. (4.16). In principle we could use this
freedom and choose the extra phases such that the phase factors ϕj would disappear, as is
common practice in previous works on deformed S matrices. However, this would introduce
either a discontinuity in the phase of the amplitudes for non-zero κ± or a sign (branch
choice) mismatch with the undeformed result. To avoid these complications, we refrain
from modifying the extra phases and accept the final amplitudes to be complex.

3.3 Factorization

Similarly to the AdS5 × S5 case, it is possible to write the T matrix in a factorized form.
For this we write the single particle states as product states of two of the psuq(1|1)2

c.e.

8The Tij are the graded embeddings (using the graded permutation operator P g
ij , defined, for example,

in eq. (3.8) of [36]) of T into the product of three spaces. Explicitly these are

T12 = T⊗ 1 , T13 = P g
23T12P

g
23 , T23 = P g

12P
g
13T12P

g
13P

g
12 = 1⊗ T .
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representations considered in the next section. We further index the bases {φ±, ψ±} of the
two representations (see section 4.2) from 1 to 4 for the first and 1̇ to 4̇ for the second copy.
We get

Y+ = φ+ ⊗ φ+ ↔ 11̇ , Z+ = ψ+ ⊗ ψ+ ↔ 33̇ ,
Y− = φ− ⊗ φ− ↔ 22̇ , Z− = ψ− ⊗ ψ− ↔ 44̇ ,
ζ+ = φ+ ⊗ ψ+ ↔ 13̇ , χ+ = ψ+ ⊗ φ+ ↔ 31̇ ,
ζ− = φ− ⊗ ψ− ↔ 24̇ , χ− = ψ− ⊗ φ− ↔ 42̇ .

(3.9)

The indices allow us to express the matrix elements of T as

TPṖQQ̇
MṀNṄ

= (−1)εṀ (εN+εQ)T PQMN (−κ+,−κ−)δṖ
Ṁ
δQ̇
Ṅ

+ (−1)εQ(εṀ+εṖ )δPMδ
Q
NT

Ṗ Q̇

ṀṄ
(κ+, κ−)

(3.10)

up to the four-fermion amplitudes that we did not compute. The T PQMN are the matrix
elements of the expansion of the exact psuq(1|1)2

c.e. S matrix that will be derived in the
next section. εM is 0 if M is a bosonic index (1 or 2) and 1 if it is a fermionic index (3 or 4).
Note that the pairs of undotted and dotted indices only take the values 11̇, 22̇, 33̇, 44̇, 13̇,
24̇, 31̇, and 42̇. If we denote the operation of truncating a matrix to the subspace spanned
by these indices with [ · ]trunc, then we can express T in the basis-independent form

T = [T (−κ+,−κ−)⊗ 1 + 1⊗ T (κ+, κ−)]trunc . (3.11)

The factor T (κ+, κ−) is specified by9

T cdab = Aδcaδdb + Bδabδdaδcb ,

T γδαβ = −Aδγαδδβ − Bδαβδδαδ
γ
β ,

T cδaβ = Gδcaδδβ , T γdαb = −Gδγαδdb ,
T 34

12 = T 43
21 = C , T 12

34 = T 21
43 = C∗ ,

T 31
13 = T 42

24 = H , T 13
31 = T 24

42 = H∗ .

(3.12)

The sign inversion in the first factor of eq. (3.10) effectively behaves like a complex
conjugation, T (−κ+,−κ−) = T (κ+, κ−)∗. This only affects the complex coefficients C and
H, whose phases ϕj get conjugated — everything else is invariant.

In the undeformed limit κ± → 0 the T matrix matches the q = 0 case of [35]. In
the one-parameter limit κ− → 0 and when identifying κ+ ≡ κ the matrix T matches the
truncation of the tree-level T matrix of η-deformed AdS5 × S5 of [31] up to phases of the
terms containing C and H, even though the structure of the T ’s differ.

9Latin indices take values 1 and 2, Greek indices take values 3 and 4, and unspecified entries are zero.
The coefficients are defined above in section 3.2. Again we suppressed their two indices. The first index of
each coefficient is + if a = 1 or α = 3 and − if a = 2 or α = 4, cf. eq. (3.9). The second index depends in
the same manner on b or β.
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4 The exact q-deformed S matrix

In the previous section we obtained the tree-level contribution to the massive two-body
scattering matrix using perturbation theory. In fact, the all-loop scattering matrix can
in some cases be bootstrapped (at least partially, up to the dressing factors) using the
symmetries of the light-cone gauge fixed theory. This is in particular true for the AdS3 ×
S3×T4 superstring [37]. The two-parameter integrable deformations of the AdS3× S3×T4

superstring that we consider are expected to correspond to quantum deformations, for which
the symmetry algebra of the original theory is promoted to a quantum group [28, 38]. It
turns out that these quantum-deformed symmetries are powerful enough to also bootstrap
the scattering matrix in the deformed case [21, 31] and a proposal for the doubly q-deformed
S matrix has been obtained in [28].

In this section we review the symmetries of the various two-parameter integrable
deformations of the AdS3 × S3 × T4 superstring, as well as of their light-cone gauge fixed
theories, and recall the expression of the expected exact S matrix. We then expand the
latter in inverse powers of the string tension and match the tree-level contribution with the
perturbative results obtained in the previous section.

4.1 Symmetries of the deformed theories

The symmetry algebra of the AdS3 × S3 superstring is given by two copies of the psu(1, 1|2)
superalgebra. It contains the symmetry algebra of AdS3 (so(2, 2) ∼= su(1, 1)⊕ su(1, 1)) and
of the three-sphere (so(4) ∼= su(2)⊕ su(2)) as (bosonic) subalgebras. Upon light-cone gauge
fixing and taking the decompactification limit to have well-defined asymptotic scattering
states, this symmetry algebra becomes

[psu(1|1)⊕ psu(1|1)]⊕2
c.e. . (4.1)

Each of the two psu(1, 1|2) copies is broken down to two psu(1|1) factors and the symmetry
algebra gets enhanced by four central charges. The exact scattering matrix can then be
bootstrapped using these symmetries. More precisely, we impose

∆op(X) S = S∆(X) , (4.2)

where X is an element of the symmetry algebra (4.1), ∆ denotes the coproduct that turns
this symmetry algebra into a Hopf algebra, and ∆op is the opposite coproduct.10 As can be
readily seen, this equation leaves the freedom to choose an overall prefactor. In fact, due to
the structure of (4.1) there will be four possible overall prefactors and these are the four
dressing factors. They are constrained by requiring the S matrix to be braiding unitary,
matrix unitary and crossing symmetric,

S12S21 = 1 , S†S = 1 ,
(
C−1 ⊗ 1

)
SST⊗1

1̄2 (C ⊗ 1)S12 = 1 , (4.3)

10In the presence of central elements the coproduct is deformed by introducing the braiding, so as to
obtain a non-trivial S matrix.
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where C is the charge conjugation matrix, ST denotes the super-transposition (see for
instance [21] or footnote 14) and 1̄ denotes the antipode representation, encoding the
particle to antiparticle transformation.

For the various two-parameter integrable deformations of the AdS3 × S3 superstring,
the symmetry algebra is conjectured to correspond to a quantum group [28]

psuqL(1, 1|2)⊕ psuqR(1, 1|2) , (4.4)

with two different parameters qL and qR in the two copies, allowing for asymmetric
deformations. The case qL = qR corresponds to the one-parameter η-deformations, and the
limit qL = qR → 1 sends them all to the undeformed theory. Quantum groups are defined
through the choice of a Cartan-Weyl basis. For superalgebras, not all Cartan-Weyl bases
are equivalent, the inequivalent choices are characterized by different Dynkin diagrams.
Quantum groups associated to different Dynkin diagrams will have different properties. In
particular, the psu(1, 1|2) algebra admits three different Dynkin diagrams

#−⊗−# ⊗−#−⊗ ⊗−⊗−⊗ , (4.5)

with # and ⊗ denoting bosonic and fermionic simple roots respectively. This is why we
have different deformed models to start with. Also the symmetry algebra of the light-cone
gauge fixed theory is assumed to correspond to a quantum group. An analysis similar to
the one performed in the AdS5 × S5 case indicates that the two copies are deformed in an
opposite way, leading to the light-cone symmetry algebra[

psuq−1
L

(1|1)⊕ psu(1|1)q−1
R

]
c.e.
⊕
[
psuqL(1|1)⊕ psu(1|1)qR

]
c.e.

. (4.6)

The fact that the symmetry algebra factorizes into two copies linked by the central elements
(which are the same for both copies) indicates that also the S matrix will factorize,

S = Sq−1
L ,q−1

R
⊗ SqL,qR , (4.7)

where the factorized q-deformed S matrix SqL,qR is invariant under[
psuqL(1|1)⊕ psu(1|1)qR

]
c.e.

. (4.8)

As noted previously, quantum groups based on different Dynkin diagrams are not equivalent.
Their coproducts are related by a twist and hence also the S matrices will be related
by a twist. This is precisely what happened in the case of the η-deformed AdS5 × S5

superstring [31], whose light-cone gauge fixed symmetry algebra is given by two copies of
centrally extended q-deformed psu(2|2). In contrast, psu(1|1) is a rank one superalgebra
with a unique Dynkin diagram, formed by a single fermionic simple root ⊗. We thus expect
all the deformations to have the same factorized scattering matrix, up to one-particle change
of basis and possibly different dressing factors.

Even though there is a unique Dynkin diagram one can still choose different Cartan-
Weyl bases in the two psu(1|1) copies. These bases are related by Weyl transformations and
one expects the resulting S matrices to be related by a one-particle change of basis. This is
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C + + +
−C −+
−+C +
−−−C

⊕

C −−−
+C +−
+−C −
+ + +C


(a) ferm1.


C + + +
−C −+
−+C +
−−−C

⊕

C −+−
+C + +
−−C −
+−+C


(b) ferm2.

C + + +
−C + +
−−C +
−−−C

⊕

C −−−
+C −−
+ +C −
+ + +C


(c) dist1.


C + + +
−C + +
−−C +
−−−C

⊕

C −+ +
+C + +
−−C −
−−+C


(d) dist2.

C + + +
−C −−
−+C +
−+−C

⊕

C −−−
+C + +
+−C −
+−+C


(e) xox1.


C + + +
−C −−
−+C +
−+−C

⊕

C −+−
+C +−
−−C −
+ + +C


(f) xox2.

Figure 1: Structure of an element in psu(1, 1|2)⊕2. The blue and red elements each
generate a psu(1|1)⊕2 subalgebra. After deformation the symmetry algebra is promoted
to a quantum group associated to the Cartan-Weyl basis (C,+,−) where C denotes the
Cartan elements, + denotes the positive roots and − denotes the negative roots. The choice
of Cartan-Weyl basis differs for the different deformations. When going from ferm1 to
ferm2 (or dist1 to dist2, xox1 to xox2), positive and negative roots are exchanged in the
second copy. The two deformations are thus related by an inversion qR → q−1

R .

what happens when going from the ferm1 to the ferm2 background for instance. By looking
at the action of the Drinfel’d-Jimbo operator R in the Lagrangian of the two-parameter
deformations one sees that between ferm1 and ferm2 the notion of positive and negative
root is exchanged in the second copy, see figure 1. One thus expects the two factorized S
matrices to be related by qR → q−1

R . We will see later that this is indeed the case and it
can be reabsorbed into a one-particle change of basis. The same holds for the distinction
between the two distinguished and xox backgrounds.

Finally let us note that quantum integrability imposes strong constraints on the S
matrix S. The set of incoming momenta should be the same as the set of outgoing momenta
(in particular there cannot be any particle production) and an n-body scattering event
should be decomposable into a sequence of two-body scattering events. This entails that it
is sufficient to know the two-body S matrix, and consistency requires the latter to satisfy
the quantum Yang-Baxter equation.
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4.2 Fundamental q-deformed S matrix

The fundamental S matrix compatible with the symmetry algebra (4.8) has been constructed
and analyzed in [28]. Here we recall its expression and its main properties. Let us consider
two different two-dimensional representations {|φ+〉 , |ψ+〉} and {|φ−〉 , |ψ−〉} of (4.8) with
qL ∈ R>0, 6=1 and qR ∈ R>0, 6=1. Upon removing the central elements, {|φ+〉 , |ψ+〉} transforms
in the fundamental representation of one psu(1|1) copy, while {|φ−〉 , |ψ−〉} forms the
fundamental representation of the other psu(1|1) copy.11 The central elements will however
non-trivially mix the two representations. The states |φ±〉 are bosonic, while the states
|ψ±〉 are fermionic. The S matrix acts as12

R|φ±φ±〉 = A±± |φ±φ±〉 R |ψ±ψ±〉 = F±± |ψ±ψ±〉 (4.9)
R|φ±ψ±〉 = B±± |φ±ψ±〉+ C±± |ψ±φ±〉 R |ψ±φ±〉 = D±± |ψ±φ±〉+ E±± |φ±ψ±〉
R |φ±φ∓〉 = A±∓ |φ±φ∓〉+B±∓ |ψ±ψ∓〉 R |ψ±ψ∓〉 = E±∓ |ψ±ψ∓〉+ F±∓ |φ±φ∓〉
R |φ±ψ∓〉 = C±∓ |φ±ψ∓〉 R |ψ±φ∓〉 = D±∓ |ψ±φ∓〉

with coefficients given by

A±± = U1V1W1
U2V2W2

x−1 − x
+
2

x+
1 − x

−
2
, F±± = 1 ,

B±± = 1
U2V2W2

x+
1 − x

+
2

x+
1 − x

−
2
, D±± = U1V1W1

x−1 − x
−
2

x+
1 − x

−
2
,

C±± = −γ1
γ2

x+
2 − x

−
2

x+
1 − x

−
2
, E±± = −γ2

γ1

U1V1W1
U2V2W2

x+
1 − x

−
1

x+
1 − x

−
2
,

C±∓ = U1V1W1U2V2W2
1− x−1 x

−
2

1− x+
1 x

+
2
, D±∓ = 1 ,

A±∓ = U2V2W2
1− x+

1 x
−
2

1− x+
1 x

+
2
, E±∓ = U1V1W1

1− x−1 x
+
2

1− x+
1 x

+
2
,

B±∓ = i
γ1γ2

1− x+
1 x

+
2
, F±∓ = −iU1V1W1U2V2W2

γ1γ2

(x+
1 − x

−
1 )(x+

2 − x
−
2 )

1− x+
1 x

+
2

,

(4.10)

and identities

U2 = W−2x
+ + ξ

x− + ξ
= W 2x

+

x−
1 + x−ξ

1 + x+ξ
, V 2 = W−2 1 + x+ξ

1 + x−ξ
= W 2x

+

x−
x− + ξ

x+ + ξ
. (4.11)

Encoded in these relations is the closure condition

ξ2
(
U − U−1

)2
−
(
V − V −1

)2
+
(
1− ξ2

) (
W −W−1

)2
= 0 , (4.12)

11This is why in the literature these are sometimes also denoted by {|φL〉 , |ψL〉} and {|φR〉 , |ψR〉}, but
the notation with ± will allow us to simplify expressions.

12A brief comment about notation. In harmony with the previous sections we use S for the full S matrix, S
for the factorized S matrix (including the dressing factors) and R for the factorized S matrix with a specific
choice of dressing factors. In particular, R does not need to satisfy braiding unitarity, matrix unitarity and
crossing symmetry. Schematically we have S = RR with R the dressing factors.
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which can also be written as

W−2
(
x+ + 1

x+ + ξ + 1
ξ

)
= W 2

(
x− + 1

x−
+ ξ + 1

ξ

)
. (4.13)

ξ is a free parameter of the S matrix, which vanishes in the limit qL → 1 or qR → 1.13 The
relation between U , V , W and the energy ω, momentum p and charge µ is given by

VWµ = q
1
2 (ω+µ)
L , V W−µ = q

1
2 (ω−µ)
R , U = e

ip
2 , (4.14)

where µ = +1 for the first representation {|φ+〉 , |ψ+〉} and µ = −1 for the second
representation {|φ−〉 , |ψ−〉}.

When writing the action of the S matrix it is implicitly assumed that U , V , W as well
as x± have been evaluated in their respective representation. More precisely, what is meant
by F+− for instance is

F+− = −iU1,+V1,+W1,+U2,−V2,−W2,−
γ1,+γ2,−

(
x+

1,+ − x
−
1,+

) (
x+

2,− − x
−
2,−

)
1− x+

1,+x
+
2,−

, (4.15)

where the ± subscript refers to the representation of particle 1 and 2.
The parameter γ encodes the relative normalization of the fermions |ψ±〉 with respect

to the bosons |φ±〉. It is a gauge-like quantity which can be factored out by an appropriate
change of basis. It will be convenient to write

γ =
√
iαUVW (x− − x+) , (4.16)

where α is a not-yet specified complex quantity, which can depend on x±. For the special
value α = 1 one exactly recovers the S matrix of [28]. For the moment we will keep it
unspecified and will choose an expression such that α → 1 in the undeformed limit, no
discontinuities appear in the S matrix due to γ and the tree-level expansion matches the
perturbative results.

Properties. This S matrix satisfies the quantum Yang-Baxter equation,

R12R13R23 = R23R13R12 , (4.17)

a version of braiding unitarity

R12R21 =


1 (±,±) sector ,

U1V1W1U2V2W2
1− x−1 x

−
2

1− x+
1 x

+
2

(±,∓) sector ,
(4.18)

13If we denote by g/2 the proportionality factor multiplying the two central elements with non-trivial
coproduct then

ξ2 = −
(g/2)2(qL − q−1

L )(qR − q−1
R )

1− (g/2)2(qL − q−1
L )(qR − q−1

R )
.
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and crossing relations

(C−1 ⊗ 1)RST⊗1
1̄2 (C ⊗ 1)R12 =


U1V1W1

x−1 − x
+
2

x+
1 − x

+
2

(±,±) sector ,

U1V1W1
1− x−1 x

−
2

1− x+
1 x
−
2

(±,∓) sector .
(4.19)

The ST superscript denotes the supertranspose.14 The 1̄ means that we consider the antipode
representation, with x̄±+ = 1/x±− and x̄±− = 1/x±+, where again the ± subscript denotes the
representation.15 The charge conjugation matrix is given by

C |φ±〉 = |φ∓〉 , C |ψ±〉 = ic± |ψ∓〉 , c± = (α±ᾱ∓)−1/2 . (4.20)

Notice that c± = 1 when α± = 1.
The S matrix is physically unitary for real momenta and positive energies

R†12R12 = 1 , (4.21)

provided that |α+| and |α−| are two real numbers (no dependence on x±) satisfying
|α+||α−| = 1, and that one imposes the reality conditions (U∗, V ∗,W ∗) = (U−1, V,W ),
together with

ξ ∈ iR ,
(
x±
)∗ = x∓ + ξ

1 + x∓ξ
, (4.22)

in the region16

(qL − q−1
L )(qR − q−1

R ) > 0 ⇔ (1− qL)(1− qR) > 0 , (4.23)

and the reality conditions

ξ ∈ (−1, 1) ,
(
x±
)∗ = − x∓ + ξ

1 + x∓ξ
, (4.24)

in the remaining region(
qL − q−1

L

) (
qR − q−1

R

)
< 0 ⇔ (1− qL)(1− qR) < 0 . (4.25)

For the one-parameter deformation, only the region (4.23) and reality conditions (4.22) are
possible.

Finally, in the limit qL,R → 1 with ξ → 0 and α → 1 one recovers the undeformed
S matrix of the AdS3 × S3 × T4 superstring with pure Ramond-Ramond fluxes, whose
action can directly be obtained from (4.9) and (4.2) by sending V → 1, W → 1 and setting
U = x+/x− = eip/2. To recover the undeformed version of the closure condition one assumes

14Using the notation R|ΦaΦb〉 = Rcdab |ΦcΦd〉 with (Φ1,Φ2,Φ3,Φ4) = (φ+, φ−, ψ+, ψ−) then
RST⊗1 |ΦaΦb〉 = (−1)(|a|+1)|c|Radcb |ΦcΦd〉, with |1| = |2| = 0 (bosonic states) and |3| = |4| = 1
(fermionic states).

15We also have Ū± = U−1
∓ , V̄± = V −1

∓ and W̄± = W∓.
16Recall that we restrict to real, positive and non-trivial deformations qL,R ∈ R>0, 6=1.
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that qL,R = e−κ/g and ξ = iκ for small κ. The parameter g is the one defined in footnote 13.
Expanding (4.12) and neglecting higher powers of κ gives rise to

ω2 = 1 + 4g2 sin2
(
p

2

)
, (4.26)

while (4.13) gives (
x+ + 1

x+

)
−
(
x− + 1

x−

)
= 2i

g
. (4.27)

Symmetries. From the relation (4.14) it immediately follows that the S matrix has a
left-right symmetry

qL ↔ qR , |φ±〉 ↔ |φ∓〉 , |ψ±〉 ↔ |ψ∓〉 . (4.28)

This is to be expected since when exchanging qL and qR one effectively exchanges the two
psu(1|1) copies in (4.8), and this can be reabsorbed into a swapping of the two representations.
The central elements do not break this symmetry.

The S matrix is also invariant under17

qL → q−1
L , ξ → iξ√

1− ξ2 , α± → α± , (4.29)

and18

qR → q−1
R , ξ → iξ√

1− ξ2 , α± → α± . (4.30)

These two transformations map the region (4.23) with reality conditions (4.22) to the
region (4.25) with reality conditions (4.24) and vice versa. We can combine them to deduce
that

qL → q−1
L , qR → q−1

R , ξ → −ξ , α± → α± , (4.31)

is another symmetry of the S matrix. Therefore, provided that α remains invariant under
inversion of the deformation parameter qL and/or qR, one has

RqL,qR = Rq−1
L ,qR

= RqL,q−1
R

= Rq−1
L ,q−1

R
. (4.32)

In order to match with the results from perturbation theory and avoid discontinuities in
the S matrix we ended up choosing α such that it is not invariant under inversion of the
deformation parameter. However, due to the gauge-like nature of γ, it is important to note
that the discrepancy only manifests itself as a one-particle change of basis of the S matrix.
The S matrix is thus physically invariant under the above transformations.

17Under qL → q−1
L we have

U → U , V →W−µ , W → V −µ , x±+ → i
√

1− ξ2
x±+

1 + ξx±+
, x±− → −i

ξ + x±−√
1− ξ2

.

18Under qR → q−1
R we have

U → U , V →Wµ , W → V µ , x±+ → −i
ξ + x±+√

1− ξ2
, x±− → i

√
1− ξ2

x±−

1 + ξx±−
.
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Diagonalization. The S matrix can be diagonalized by means of the nested coordinate
Bethe Ansatz. This procedure has been successfully applied to the undeformed S matrix
in [39]. The results for the deformed case are very similar. We seek to find states |Ψ〉µ1µ2

such that19

R|Ψ〉IIµ1µ2
= RI,I

µ1µ2P
g
(
|Ψ〉IIµ2µ1

∣∣∣
x1↔x2

)
. (4.33)

The level-II vacua

|0〉II++ = |φ+φ+〉 , |0〉II−− = |ψ−ψ−〉 , |0〉II+− = |φ+ψ−〉 , |0〉II−+ = |ψ−φ+〉 , (4.34)

trivially satisfy this equation with

RI,I
++ = A++ , RI,I

−− = −F−− , RI,I
+− = C+− , RI,I

−+ = D−+ . (4.35)

The identity (4.33) is also satisfied for the following states with one excitation propagating
above the level-II vacuum,

|y〉II++ = f+(y, x1) |ψ+φ+〉+ f+(y, x2)RII,I
++(y, x1) |φ+ψ+〉 ,

|y〉II−− = f−(y, x1) |φ−ψ−〉+ f−(y, x2)RII,I
−−(y, x1) |ψ−φ−〉 ,

|y〉II+− = f+(y, x1) |ψ+ψ−〉+ f−(y, x2)RII,I
−+(y, x1) |φ+φ−〉 ,

|y〉II−+ = f−(y, x1) |φ−φ+〉+ f+(y, x2)RII,I
+−(y, x1) |ψ−ψ+〉 .

(4.36)

The auxiliary functions are

f+(y, x) = yγ

h(y)− x+ , f−(y, x) = iy

γ

x+ − x−

1− h(y)x− , (4.37)

and the auxiliary S matrix elements read

RII,I
++(y, x) = UVW

h(y)− x−

h(y)− x+ , RII,I
−−(y, x) = − 1

UVW

1− h(y)x+

1− h(y)x− ,

RII,I
−+(y, x) = RII,I

++(y, x) , RII,I
+−(y, x) = RII,I

−−(y, x) .
(4.38)

We introduce two auxiliary excitations y± and define the function h(y±) = (y±)±1. These
auxiliary excitations then have trivial S matrix RII,II(yµ1,1, yµ2,2) = 1.

Due to factorization these results are readily extended to a scattering event involving
M I

+ fundamental representations with µ = +1 and M I
− fundamental representations with

µ = −1. The Bethe equations for the M II
± auxiliary excitations y± read

1 =
M I
±∏

j=1
RII,I
±±(y±,k, xj)

M I
∓∏

j=1
RII,I
∓∓(y±,k, xj) , k = 1, . . . ,M II

± . (4.39)

19P g is the graded permutation operator, see footnote 8.
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Dressing factors. As already mentioned, the symmetries only fix the S matrix up to
four dressing factors. It will be convenient to define the “dressed” fundamental S matrix S
through

S |Φ±Φ±〉 = R±±R|Φ±Φ±〉 , S |Φ±Φ∓〉 = R±∓R|Φ±Φ∓〉 , (4.40)

with Φ ∈ {φ, ψ}. The four coefficients R++, R+−, R−+ and R−− are the four dressing
factors.20 This dressed S matrix also satisfies the quantum Yang-Baxter equation,

S12S13S23 = S23S13S12 . (4.41)

Moreover, if the dressing factors are pure phases, |R±±| = 1 and |R±∓| = 1, and satisfy

(R±±)12(R±±)21 = 1 ,

(R±∓)12(R∓±)21 = 1
U1,±V1,±W1,±U2,∓V2,∓W2,∓

1− x+
1,±x

+
2,∓

1− x−1,±x
−
2,∓

,

(R∓±)1̄2(R±±)12 = 1
U1,±V1,±W1,±

x+
1,± − x

+
2,±

x−1,± − x
+
2,±

,

(R∓∓)1̄2(R±∓)12 = 1
U1,±V1,±W1,±

1− x+
1,±x

−
2,∓

1− x−1,±x
−
2,∓

,

(4.42)

then we have braiding unitarity, crossing symmetry and matrix unitarity (upon imposing
the reality conditions (4.22) or (4.24))

S12S21 = 1 , (C−1 ⊗ 1)SST⊗1
1̄2 (C ⊗ 1)S12 = 1 , S†12S12 = 1 . (4.43)

Notice that in principle the factorized S matrix does not need to be itself a physical S
matrix, but (4.43) will imply (4.3). Solving the equations (4.42) is an arduous task, that
we do not undertake in this paper.

4.3 Tree-level expansion and matching the perturbative calculations

Now that we presented the all-loop S matrix based on the conjectured symmetries of the
deformed models, we should check that the results are compatible with the perturbative
calculations. We assume that in the large tension limit h→∞ the deformation parameters
behave as

qL = 1− κL
h

+O
(
h−2

)
, qR = 1− κR

h
+O

(
h−2

)
, (4.44)

and

ξ =

√
κ2
− − κ2

+√
1 + κ2

−

+O
(
h−1

)
, κ± = 1

2 (κL ± κR) . (4.45)

20In the undeformed case, the discrete left-right symmetry imposes R++ = R−− as well as R+− = R−+,
so that there are only two unknown dressing factors [40]. Similarly, in the deformed case, if we assume that
the left-right symmetry (4.28) also holds for the dressing factors then we are left with only two unknown
quantities R++ and R+−. The other two dressing factors R−− and R−+ can be obtained by swapping
qL ↔ qR.
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For the unknown parameter α, we assume that it has an expansion of the type

α = ϕ−2 +O(h−2) , (4.46)

with phase ϕ given in (3.7). From the relation |α| = 1 +O(h−2) and

(1− qL) (1− qR) = κLκR
h2 +O

(
h−3

)
=
κ2

+ − κ2
−

h2 +O
(
h−3

)
, (4.47)

it follows that these choices of α and ξ ensure unitarity of the S matrix for all values of (real
and unequal) κ+ and κ− in the h → ∞ limit. Rescaling p → p/h and neglecting O(h−2)
terms gives

U = 1 + ip

2h , V = 1− κ+ω + µκ−
2h , W = 1− κ+ + µκ−ω

2h . (4.48)

Plugging this into the closure condition (4.12) and choosing the positive energy branch one
obtains the dispersion relations in the two different representations,

ω = µκ+κ− +
√
p2 +m2 , m =

√(
1 + κ2

−

)(
1 + κ2

+

)
. (4.49)

We then introduce the T matrix as the tree level contribution to the dressed S matrix,

S = 1 + i

h
T +O

(
h−2

)
. (4.50)

The four dressing factors have an expansion of the type Rµ1µ2 = 1 + iR
(1)
µ1µ2/h+ . . . and will

contribute to the diagonal elements of T . Since we have not solved the conditions (4.42)
we do not have an explicit expression for the dressing factors. We can however find R(1)

µ1µ2

by solving the tree-level version of (4.42). A solution is given by

R
(1)
±± = −(A±± + B±±) , R

(1)
±∓ = −G±∓ , (4.51)

where the coefficients Aµ1µ2 , Bµ1µ2 and Gµ1µ2 have been defined in (3.2).21 A tree-level
expansion then gives22

T |φ±φ±〉 = +(A+ B) |φ±φ±〉 T |ψ±ψ±〉 = −(A+ B) |ψ±ψ±〉
T |φ±ψ±〉 = +G |φ±ψ±〉+H |ψ±φ±〉 T |ψ±φ±〉 = −G |ψ±φ±〉+H∗ |φ±ψ±〉
T |φ±φ∓〉 = +A |φ±φ∓〉+ C |ψ±ψ∓〉 T |ψ±ψ∓〉 = −A |ψ±ψ∓〉+ C∗ |φ±φ∓〉
T |φ±ψ∓〉 = +G |φ±ψ∓〉 T |ψ±φ∓〉 = −G |ψ±φ∓〉

(4.52)

where again Cµ1µ2 and Hµ1µ2 have been defined in (3.2). Labeling the states as in (3.9) this
precisely matches the perturbative tree-level expansion (3.2)

21Notice that
R

(1)
−− = R

(1)
++

∣∣∣
κ−→−κ−

, R
(1)
−+ = R

(1)
+−

∣∣∣
κ−→−κ−

,

in agreement with footnote 20.
22We use the same notation as in section 3, omitting the two ± indices for brevity.
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It would be interesting to find a natural all-loop expression for α which admits (4.46)
as large tension expansion. To preserve unitarity we also would like |α+| and |α−| to be
two real numbers (independent of x±) related by |α+||α−| = 1. A possibility is to choose

α =

(
U − U−1

)
−
(
W −W−1

)
(
U − U−1

)
+
(
W −W−1

) . (4.53)

This is a pure phase |α|=1 and is such that c± = 1 in (4.20).
The S matrix symmetry transformations (4.29) and (4.30) correspond to exchanging

κ+ ↔ −κ− and κ+ ↔ κ− respectively, which are symmetries of the functions A,B and G. In
the functions C and H this transformation only affects the phases. Their combination (4.31)
corresponds to changing the sign of both deformations parameters κ± → −κ±, which results
into complex conjugation ϕ→ ϕ∗.

5 Mirror duality of the S matrix for deformed AdS3 × S3 × T4

Superstrings on various AdS backgrounds (e.g. AdS5×S5 and AdS3×S3×T4) are described
by a semi-symmetric space sigma model, with fields that are maps from the two-dimensional
worldsheet parameterized by τ and σ to the ten-dimensional target space. The “mirror”
model is obtained by performing a double Wick rotation and exchanging the time and
space coordinates on the worldsheet, τ → iσ̃ and σ → iτ̃ (we denote the quantities in the
mirror model by tildes). In some cases, this mirror theory also describes strings moving
on a new, mirror background. The mirror theory can be analyzed in its own right, and
one can compute the corresponding perturbative and exact S matrices. For undeformed
AdS5 × S5 or AdS3 × S3 × T4 superstrings the mirror background and mirror S matrix are
different from the original background and S matrix. For one-parameter deformations of
AdS3 × S3 × T4 with qL = qR, it turns out that for the ferm2 background (and only this
one), the mirror background is not new, but rather it is related to the original deformed
background by an inversion of the deformation parameter κ+ → 1/κ+. This is the concept
of geometric mirror duality. In this section we show that this duality also manifest itself
at the level of the exact S matrix. Moreover, due to the invariance (up to a one-particle
change of basis) of the S matrix under qR → q−1

R , mirror duality will also be present in the
other one-parameter limit qL = q−1

R . We however find it unlikely that the notion of mirror
duality can be extended to the two-parameter case.

5.1 Duality of the dispersion relations

The closure condition (4.12) leads to the dispersion relations

ξ2 sin2
(
p

2

)
+ sinh2

(
a+
2 ω + a−

2 µ

)
− (1− ξ2) sinh2

(
a−
2 ω + a+

2 µ

)
= 0 , (5.1)

where we defined

qL = e−aL , qR = e−aR , a± = 1
2(aL ± aR) . (5.2)
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In the special case a− = 0, a+ = a (qL = qR) the dispersion relation is invariant under

p→ ±iωa , ω → ± ip
a
, ξ → ±1

ξ
, (5.3)

where all choices of sign are allowed. Parametrizing ξ = i tan(θ/2), θ ∈ (−π, π] this
corresponds to a shift θ → ±(θ+π). Similarly, in the special case a+ = 0, a− = a (qL = q−1

R )
the dispersion relation is invariant under

p→ ±iωa , ω → ± ip
a
, ξ → ±

√
1− ξ2 , (5.4)

which again corresponds to a shift θ → ±(θ+ π) if one defines ξ = sin(θ/2). The invariance
under (5.4) is a direct consequence of the invariance under (5.3) and the invariance (up to a
one-particle change of basis, which does not affect the dispersion relation or the spectrum)
of the S matrix under inversion of the deformation parameters as stated in (4.32). This
is a first hint that the S matrix will have “mirror duality” when qL = qR or qL = q−1

R .
Beyond these two cases, both sinh2 functions in (5.1) depend on the energy, and while
p→ −p leaves the dispersion relation invariant, this is not the case of the transformation
ω → −ω. Hence (5.1) cannot be invariant under an analytic continuation of the type
p → ]1iω, ω → ]2ip, where ]1,2 denote energy-independent constants. This hinders the
extension of mirror duality to the two-parameter case.23

5.2 Mirror S matrix

One can study the mirror model in its own right and compute the corresponding S matrix
S̃(x̃1, x̃2). The symmetries are expected to be the same in the original and mirror theories,
up to the identification of the central elements. The mirror S matrix again factorizes, and
its matrix part is obtained by analytic continuation

R(x1, x2)→ R̃(x̃1, x̃2) , (5.5)

where the arrow denotes the mirror map

p→ iω̃ , ω → ip̃ . (5.6)

In other words, R̃(x̃1, x̃2) takes the same form as in (4.9), but with tilded quantities
x̃, Ũ , Ṽ , W̃ , and with the identification

Ṽ W̃µ = q
1
2 (ip̃+µ)
L , Ṽ W̃−µ = q

1
2 (ip̃−µ)
R , Ũ = e−

ω̃
2 . (5.7)

The variables x̃± satisfy relations similar to (4.2) and (4.13), but where all the quantities
now have a tilde, except for ξ.24 The mirror S matrix may have a different bound state

23It was observed in [28] that the two-parameter and one-parameter deformations are closely related at
the algebraic level. It may thus come as a surprise that the dispersion relations have different behaviors
under mirror transformation. This is however to be expected, since the map found in [28] also involves the
central elements, mixing energy ω, momentum p and charge µ.

24By definition the mirror transformation preserves the parameters qL, qR and ξ of the S matrix.
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structure, resulting in new dressing factors, that are not necessarily related to the original
dressing factors by a simple analytic continuation.

We want this mirror S matrix to be unitary for real momenta and positive energies.
Due to the complex exponents in (5.7) the conditions to impose on Ṽ and W̃ and ultimately
on x̃ are complicated for arbitrary qL and qR. Here we will focus on the one-parameter case
only. Unitarity is ensured if |α̃+| and |α̃−| are real numbers that do not depend on the
momentum which satisfy |α̃+||α̃−| = 1 (this in fact follows from the same requirements for
the original untilded quantities) and for the reality conditions

ξ ∈ iR , Ũ∗ = Ũ , Ṽ ∗ = Ṽ −1 , W̃ ∗ = W̃ , (x̃±)∗ = 1 + x̃∓ξ

x̃∓ + ξ
, (5.8)

in the case qL = qR and

ξ ∈ (−1,+1) , Ũ∗ = Ũ , Ṽ ∗ = Ṽ , W̃ ∗ = W̃−1 , (x̃±)∗ = 1
x̃∓

, (5.9)

in the other case qL = q−1
R . These two cases are related through (4.29) or (4.30). Contrary

to what is happening for the original S matrix (see (4.22) and (4.24)), these conditions
break unitarity if one tries to go beyond the one-parameter case.

5.3 Mirror duality of the S matrix with qL = qR or qL = q−1
R

By definition the mirror S matrix will have the same parameters qL, qR, ξ as the original
S matrix. Mirror duality of the S matrix is then the statement that this mirror S matrix
S̃(x̃1, x̃2) is equivalent to another S matrix S(x1, x2) but now with different parameters
q̃L, q̃R and ξ̃. To show that our exact q-deformed S matrix indeed has this property in
the one-parameter case we follow [23], with slight adaptations for the qL = q−1

R case. We
introduce the functions25

xs(u; θ) = −i csc(θ)
(
eiu − cos(θ)− (1− eiu)

√
cos(u)− cos(θ)

cos(u)− 1

)
,

xm(u; θ) = −i csc(θ)
(
eiu − cos(θ) + (1 + eiu)

√
cos(u)− cos(θ)

cos(u) + 1

)
,

ys,m(u; θ) = i cos
(
θ

2

)
xs,m(u; θ)− sin

(
θ

2

)
,

1
zs,m(u; θ) = i cos

(
θ

2

) 1
xs,m(u; θ) − sin

(
θ

2

)
.

(5.10)

In the case qL = qR = e−a we define x± = xs(u± ia; θ) and x̃± = xm(u± ia; θ), so that the
equation (4.13) as well as its tilded counterpart are satisfied. For u ∈ R one then has the
desired reality conditions

(x±)∗ = x∓ + ξ

1 + x∓ξ
, (x̃±)∗ = 1 + x̃∓ξ

x̃∓ + ξ
. (5.11)

25It is convenient to trade the parameter ξ in favor of θ to treat the two one-parameter cases in parallel.
We define ξ = i tan(θ/2) in the case qL = qR and ξ = sin(θ) in the case qL = q−1

R . In both cases mirror
duality will manifest itself through an invariance under a shift θ → θ + π.
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In the case qL = q−1
R = e−a we define x±+ = ys(u + ia; θ), x±− = zs(u + ia; θ) and x̃±+ =

ym(u± ia; θ), x̃±− = zm(u± ia; θ), so that the equation (4.13) as well as its tilded counterpart
are again satisfied for both representations. These functions satisfy the desired reality
conditions for u ∈ R, namely

(x±)∗ = − x∓ + ξ

1 + x∓ξ
, (x̃±)∗ = 1

x̃∓
. (5.12)

Moreover, we have the relation

xs(u+ π; θ + π) = xm(u; θ) , (5.13)

which translates to

sin
(
θ

2

)
ys(u+ π; θ + π) + 1

2 = cos
(
θ

2

)
ym(u; θ)− 1

2 ,

cos
(
θ

2

) 1
zs(u+ π; θ + π) + 1

2 = − sin
(
θ

2

) 1
zm(u; θ) −

1
2 .

(5.14)

For both cases this relation implies that

U(u+ π; θ + π) = Ṽ (u; θ) ⇔ p(u+ π; θ + π) = −ap̃(u; θ) ,

V (u+ π; θ + π) = Ũ(u; θ) ⇔ ω(u+ π; θ + π) = 1
a
ω̃(u; θ) .

(5.15)

Plugging into (5.6) this explains the invariance of the dispersion relation under (5.3)
and (5.4).

At the level of the factorized S matrix, mirror duality is realized if

DS(p1(u+ π; θ + π), p2(u+ π; θ + π); θ + π)D−1 = S̃(−p̃1(u; θ),−p̃2(u; θ); θ) , (5.16)

where D is the matrix realization of a permutation exchanging bosons and fermions. This
additional operator needs to be introduced to account for the fact that under a mirror
transformation, the AdS and sphere coordinates are exchanged, which results into a swapping
|φ〉 ↔ |ψ〉, as follows from (3.9). It is convenient to split (5.16) into relations for the matrix
part and the dressing phases of the S matrix.

The matrix part of the S matrix, with the choice (4.53) for α, satisfies a relation similar
to the one highlighted in [23], namely

DR(p1, p2)D−1 =
{
A±±(p1, p2)R(−p1,−p2) (±,±) sector ,
C±∓(p1, p2)R(−p1,−p2) (±,∓) sector ,

(5.17)

with
D |φaφb〉 = − |ψaψb〉 ,
D |φaψb〉 = − |ψaφb〉 ,
D |ψaφb〉 = + |φaψb〉 ,
D |ψaψb〉 = − |φaφb〉 .

(5.18)
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This identity is in fact satisfied for all qL and qR. If one restricts to the (±,±) sectors then
the first line of (5.17) is also satisfied for D = (−1)FM ⊗M , F being the fermion number
operator and M the matrix representation of the permutation (3, 4, 1, 2), i.e.

M |φ±〉 = |ψ±〉 , M |ψ±〉 = |φ±〉 . (5.19)

This is precisely the equation highlighted in [23] for the distinguished su(2|2) invariant S
matrix of AdS5 × S5.26 The relation does however not hold in the (±,∓) sectors.27

Consequently, if the dressing factors satisfy

R±±(p1(u+ π; θ + π), p2(u+ π; θ + π); θ + π)
R̃±±(−p̃1(u; θ),−p̃2(u; θ); θ)

= 1
A±±(p1, p2) ,

R±∓(p1(u+ π; θ + π), p2(u+ π; θ + π); θ + π)
R̃±∓(−p̃1(u; θ),−p̃2(u; θ); θ)

= 1
C±∓(p1, p2) ,

(5.20)

then (5.16) is satisfied. From this analysis we conclude that, provided the conditions on
the dressing factors are satisfied, given a q-deformed S matrix with parameter θ (or ξ), its
mirror S matrix (which by definition also has parameter θ) is then equivalent to another
q-deformed S matrix but with parameter θ + π (or 1/ξ in the qL = qR case,

√
1− ξ2 in the

qL = q−1
R case).

6 Mirror duality of the fermionic S matrix for AdS5 × S5

To conclude the analysis of mirror duality in η-deformed theories, we consider the case
of the η-deformed AdS5 × S5 superstring based on the distinguished and fully fermionic
Dynkin diagrams of psu(2, 2|4). The background associated to the distinguished deformation
can be found in [11] and does not exhibit geometric mirror duality. The distinguished
S matrix [21] was however shown to have spectrum mirror duality in [23]. As far as the
fermionic deformation is concerned, the background obtained in [19] is also not geometric
mirror dual. Its corresponding factorized S matrix [31] reads

R|φaφb〉 = A |φaφb〉 , R|ψaψb〉 = −D |ψaψb〉 ,

R|φ1φ2〉 = A−B
q + q−1 |φ1φ2〉+ ϕ12

â1
â2

qA+ q−1B

q + q−1 |φ2φ1〉+ g2
f1

b̂1
â2

qC

q + q−1 |ψ3ψ4〉 −
b̂2
â2

q2C

q + q−1 |ψ4ψ3〉 ,

R|φ2φ1〉 = ϕ̂12
â2
â1

q−1A+ qB

q + q−1 |φ1φ2〉+ A−B
q + q−1 |φ2φ1〉 −

b̂1
â1

q2C

q + q−1 |ψ3ψ4〉+ g1
f2

b̂2
â1

qC

q + q−1 |ψ4ψ3〉 ,

R|ψ3ψ4〉 = − D − E
q + q−1 |ψ3ψ4〉 − ϕ21

b̂2

b̂1

qD + q−1E

q + q−1 |ψ4ψ3〉 −
f1
g2

â2

b̂1

q−1F

q + q−1 |φ1φ2〉+ â1

b̂1

q−2F

q + q−1 |φ2φ1〉 ,

R|ψ4ψ3〉 = −ϕ̂21
b̂1

b̂2

q−1D + qE

q + q−1 |ψ3ψ4〉 −
D − E
q + q−1 |ψ4ψ3〉+ â2

b̂2

q−2F

q + q−1 |φ1φ2〉 −
f2
g1

â1

b̂2

q−1F

q + q−1 |φ2φ1〉 ,

R|φaψb〉 = G |φaψb〉+Hab |ψbφa〉 , R|ψaφb〉 = L |ψaφb〉+Kab |φbψa〉 ,

26The equation looks different from the one in [23], but this is only due to the fact that the authors use
the graded S matrix. Our S matrix is related to the one in the mentioned paper through an additional
minus sign when the two outgoing particles are fermions, as well as an overall factor.

27To have D = (−1)FM ⊗M for all sectors the permutation matrix should be modified to M |φ±〉 = |ψ±〉,
M |ψ±〉 = i |φ±〉.
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(6.1)

where

H13 = f2
f1

b̂1

b̂2
H , H14 = H , H23 = â2

â1

b̂1

b̂2
H , H24 = g1

g2

â2
â1
H ,

K13 = f1
f2

b̂2

b̂1
K , K14 = K , K23 = â1

â2

b̂2

b̂1
K , K24 = g2

g1

â1
â2
K ,

ϕ12 = q1/2f1x
−
1 + q−2C1−1/2g1x

+
2

q1/2f1x
−
1 + q−2C2−1/2g1x

+
2
, ϕ̂12 = q−1/2g2x

−
1 + q−2C2+1/2f2x

+
2

q−1/2g2x
−
1 + q−2C1+1/2f2x

+
2
,

(6.2)

and
fj = 1 + ξ/x−j , gj = 1 + ξx+

j . (6.3)

The ten coefficients A,B, . . . , L can be found in [31]. We take28

γ = q−3/2
√
iq1/2UV (x− − x+) , (6.4)

together with the reality conditions

âj = qCj−1/2 , b̂j = qCj+1/2 . (6.5)

This fermionic S matrix satisfies the same relation as its distinguished counterpart,
namely

DR(p1, p2)D−1 = AR(−p1,−p2) , (6.6)

where D = M ⊗ (−1)FM . Therefore also the fermionic S matrix will have spectrum mirror
duality.

7 Conclusions

In this paper we computed the tree level S matrices for two parameter η deformations of
AdS3 × S3 × T4 for various choices of Dynkin diagram underlying the deformation. Given
judicious choices of mode expansion summarized in table 2, these tree level S matrices all
agree with the perturbative expansion of the exact two parameter q-deformed S matrix. Next,
we investigated the mirror duality properties of this exact S matrix in the one-parameter
deformation limit, as well as the exact S matrix for fermionic η-deformed AdS5 × S5. We
showed that both of these exact S matrices are compatible with mirror duality, where in the
AdS3 × S3 ×T4 case we assume certain properties of the thus far undetermined q-deformed
dressing phases.

There are various open questions associated to these models and S matrices. In terms
of deformations of AdS3 × S3 × T4, it would be interesting to determine the deformed
dressing phases for the two parameter deformed S matrix. Moreover, particularly for the
two parameter deformation it would be insightful to investigate the mirror theory. Based

28With respect to [31] there is an additional factor of i in γ. This is to match with the convention used
in [23]. It can be reabsorbed into a rescaling of the fermions.
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on e.g. the more involved structure of the dispersion relation (5.1), we expect this to be
quite different from the single parameter case. It would also be good to understand the full
background of the three parameter deformation [29], and determine its S matrix and the
effect of the various deformations on the spectrum of this theory. Then, coming back to
AdS5 × S5, here the relation between the mirror AdS5 × S5 background and inhomogeneous
deformations of AdS5 × S5, is still a bit of a mystery that deserves further investigation.29

Moreover, it would be interesting to investigate whether the Bethe ansatz equations and
spectrum for the fermionic deformation of AdS5 × S5 differ from those of the distinguished
deformation, and if so, to determine the effect of the change of Dynkin diagram on the
spectrum. In general, it would be nice to extend the perturbative computation of these
deformed AdSn × Sn S matrices to loop level.30 Moreover, it would be interesting to
investigate a possible algebraic interpretation of the differences in the mode expansion (one
particle change of basis) of table 2, related to the choice of Dynkin diagram determining
the deformation, as well as a presumably similar interpretation of the results of [32] relating
to different implementations of the real form of the algebra. Finally of course it would be
exciting to understand whether these deformations can be implemented in the field theories
dual to the undeformed AdS3 × S3 × T4 and AdS5 × S5 strings.
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A Generalized supergravity backgrounds

Here we provide the fluxes F for the generalized supergravity backgrounds corresponding to
deformations based on the distinguished and xox Dynkin diagrams of psu(1, 1|2), as derived
in [20].31 The first distinguished background, dist1, has

F1 = N F̂1 ,

F3 = N

(
F̂3 + 2κ−

1− κ2
−
F̂1 ∧ J2

)
,

F5 = N

(
−1

2(1 + ?)F̂1 ∧ J2 ∧ J2 + 2κ−
1− κ2

−
F̂3 ∧ J2

)
,

(A.1)

29Mirror AdS5 × S5 by definition corresponds to an integrable sigma model, it is one-loop Weyl invariant,
and it is spectrally equivalent to a maximal deformation limit of η deformed AdS5 × S5, while at the same
time, geometrically it differs from the maximal deformation limit of all known inhomogeneous deformations
of AdS5 × S5.

30For the distinguished case the one-loop S matrix has been studied using unitarity techniques in [41].
31We take this opportunity to correct a typo in the five-forms F5 of [20]. The term J2 ∧ J2 should be

replaced by dx1 ∧ dx2 ∧ dx3 ∧ dx4 = − 1
2J2 ∧ J2.
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where J2 is given in equation (2.4),

N = 2
√

1 + κ2
+

1 + κ2
−

1− κ2
−√

F (ρ)F̃ (r)
, (A.2)

and

F̂1 = κ−
[(

1 + ρ2
)

dt+
(
1− r2

)
dϕ
]

+ κ+
[
−ρ2dψ + r2dφ

]
,

F̂3 = 1
F (ρ)

[
ρ dt ∧ dρ ∧ dψ − κ2

+ρr
2 dt ∧ dρ ∧ dφ− κ2

−ρ
(
1− r2

)
dρ ∧ dψ ∧ dϕ

− κ+κ−ρ
(
1− r2

)
dt ∧ dρ ∧ dϕ− κ+κ−ρr

2 dρ ∧ dψ ∧ dφ
]

+ 1
F̃ (r)

[
r dϕ ∧ dr ∧ dφ+ κ2

+ρ
2r dψ ∧ dϕ ∧ dr − κ2

−

(
1 + ρ2

)
r dt ∧ dr ∧ dφ

− κ+κ−(1 + ρ2)r dt ∧ dϕ ∧ dr + κ+κ−ρ
2r dψ ∧ dr ∧ dφ

]
.

(A.3)

The second distinguished background, dist2, has

F1 = M F̂1 ,

F3 = M

(
F̂3 + 2κ+

1− κ2
+
F̂1 ∧ J2

)
,

F5 = M

(
−1

2(1 + ?)F̂1 ∧ J2 ∧ J2 + 2κ+
1− κ2

+
F̂3 ∧ J2

)
,

(A.4)

where

M = 2
√

1 + κ2
−

1 + κ2
+

1− κ2
+√

F (ρ)F̃ (r)
. (A.5)

Note that the dependence on κ+ and κ− is exchanged between equations (A.1) and (A.4),
except that it remains the same in equations (A.3).

Finally, the first xox deformation, xox1, corresponds to

F1 = L F̂1 ,

F3 = L F̂3 ,

F5 = −L2 (1 + ?)F̂1 ∧ J2 ∧ J2 ,

(A.6)

with

L = 2

√(
1 + κ2

−

)(
1 + κ2

+

)
√
F (ρ) F̃ (r)

, (A.7)

and a change of sign of t and ψ in the expressions for the F̂ . The second xox deformation,
xox2, is obtained from xox1 through the map

ρ→
i
√

1 + κ2
−
√

1 + ρ2√
F (ρ)

, r →

√
1 + κ2

−
√

1− r2√
F̃ (r)

, t↔ ψ , ϕ↔ φ . (A.8)
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B Feynman diagrammatics

We calculated the entries of the perturbative T matrix with the use of Feynman diagrams.
The implementation uses Mathematica together with the packages FeynRules [42] and
FeynArts [43]. The code is directly derived from our previous work on η-deformed AdS5 ×
S5 [31] and we refer the reader to its appendix B for a detailed account of the implementation.
All modifications performed for the present case are described in the following.

The AdS3 × S3 model only has two massive complex bosons and four massive complex
fermions. We regard the former as four real bosons. The latter become real on shell, and
therefore the treatment of [31] still applies. Due to the different quadratic Lagrangian (2.11)
and mode expansions (3.1) in comparison to the AdS5 × S5 model, the prefactors and
fermionic wave functions change: the prefactors become 1

2
√
ω̃p

and 1√
2ω̃p

for bosons and
fermions respectively. The bosonic wave functions are ϕY± and ϕZ± for incoming Y and Z
particles respectively and ϕ∗Y± and ϕ∗Z± for outgoing ones. The fermionic wave functions
are (in the notation of figure 2.3 of [44])

uζL = −β f+p ϕζ+ uζR = −β f−p ϕζ+
ūζL = β f+p ϕ

∗
ζ− ūζR = −β f−p ϕ∗ζ−

vζL = −β∗f+p ϕ
∗
ζ+ vζR = −β∗f−p ϕ∗ζ+

v̄ζL = β∗f+p ϕζ− v̄ζR = −β∗f−p ϕζ−

uχL = β f+p ϕχ+ uχR = β f−p ϕχ+

ūχL = −β f+p ϕ
∗
χ− ūχR = β f−p ϕ

∗
χ−

vχL = β∗f+p ϕ
∗
χ+ vχR = β∗f−p ϕ

∗
χ+

v̄χL = −β∗f+p ϕχ− v̄χR = β∗f−p ϕχ−

(B.1)

where β and the various ϕx are defined in table 2.
The dispersion (3.2) differs from the AdS5 × S5 case, and in particular depends on the

particle species. This changes the relation between T and the modified Feynman amplitudes
M to

T(p1, p2) =
∫

dk1 dk2 δ(p1 + p2 − k1 − k2)δ(ωp1 + ωp2 − ωk1 − ωk2)M(p1, p2, k1, k2)

= ω̃p1ω̃p2

|p1ω̃p2 − p2ω̃p1 |
(M(p1, p2, p1, p2) +M(p1, p2, p2, p1)) . (B.2)

Here pi and ki denote the momenta of and simultaneously label the incoming and outgoing
particles. Due to energy and momentum conservation the outgoing momenta are restricted to
take on the same values as the incoming momenta. To follow the existing literature we assume
that p1 > p2. We want to highlight that even though the energies ωi = µiκ+κ−+ ω̃i contain
a constant shift dependent on the “charge” µi of the particle species, these contributions
cancel in the energy-conservation delta function and only the ω̃i contribute to the final
kinematic factor of the second line. This is due to the observation that only amplitudes for
which µp1 + µp2 = µk1 + µk2 holds are non-zero, i.e. µ is a conserved.
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