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Abstract: In this work, we have proposed a modular A4 symmetric model of neutrino
mass which, simultaneously, explains observed baryon asymmetry of the Universe (BAU).
In minimal extension of the standard model (SM) with two right-handed neutrinos we work
in a supersymmetric framework. At Type-I seesaw level, the model predicts scaling in the
neutrino mass matrix. In order to have correct low energy phenomenology, we propose
two possible scenarios of scale-breaking in the neutrino mass matrix emanating from Type-
I seesaw. Scenario-1 is based on the dimension-5 Weinberg operator whereas scenario-2
implements Type-II seesaw via scalar triplet Higgs superfields (∆, ∆̄). Interestingly, the
breaking patterns in both, otherwise dynamically different scenarios, are similar which can
be attributed to the same charge assignments of superfields (∆, ∆̄) and the Higgs superfield
Hu under modular A4 symmetry. The breaking is found to be proportional to the Yukawa
coupling of modular weight 10 (Y 10

1,1′). We, further, investigates the predictions of the model
under scenario-2 (Type-I+II) for neutrino mass, mixings and matter-antimatter asymmetry
of the Universe. The model predicts normal hierarchical neutrino masses and provide a
robust range (0.05− 0.08)eV for sum of neutrino masses (∑mi). Lepton number violating
0νββ decay amplitude (Mee) is obtained to lie in the range (0.04− 0.06)eV. Future 0νββ
decay experiments such as NEXT and nEXO shall pose crucial test for the model. Both CP
conserving and CP violating solutions are allowed in the model. Interesting correlations are
obtained, specially, between Yukawa couplings of modular weight 2 and complex modulus
τ . Contrary to Y 2

2 and Y 2
3 , the Yukawa coupling Y 2

1 is found to be insensitive to τ and
thus to CP violation because complex modulus τ is the only source of CP violation in
the model. We, also, investigate the prediction of the model for BAU. The model exhibit
consistent explanation of BAU for right-handed Majorana neutrino mass scale in the range
((1− 5)× 1013)GeV.
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1 Introduction

The discovery of Higgs Boson at Large Hadron collider (LHC) has validated the standard
model (SM) of particle physics as low energy effective theory. Although, SM explains the in-
teractions of fundamental particles, mass generation through Higgs mechanism but flavour
structure (masses and mixing) of fermions is unknown. There are some of mysteries/puzzles
which still remain unanswered: origin of neutrino masses, large favor mixing in lepton sec-
tor, matter-antimatter asymmetry, to name few. In SM, neutrino is massless as dictated
by underlying symmetry SU(3)C ×SU(2)L×U(1)Y . The absence of right-handed neutrino
in SM prohibits neutrino mass generation through Higgs mechanism. The flavor mixing in
lepton sector is large as compared to quark sector which is not addressed by SM. Also, CP
violation in quark sector is insufficient to explain observed matter-antimatter asymmetry
which calls for additional sources of CP violation in the leptonic sector. In view of these
unexplained observations, beyond standard model (BSM) physics has been explored in dif-
ferent dimensions. The quest of understanding the origin of matter-antimatter asymmetry
in the Universe and underlying dynamics of neutrino mass generation is long standing.
The framework of model building serves the platform which can address the simultane-
ous explanation for neutrino mass generation and observed matter-antimatter asymmetry
through leptogenesis. In the top-down approach, the new particle content including usual
SM particles, obeys some higher symmetry which could be a new Abelian global symmetry,
non-Abelian discrete symmetry or some cyclic symmetry. Neutrino oscillation data hints
that lepton mixing could have group theoretical origin. Discrete symmetries have been
useful in understanding the flavor structure of fermions and have been explored at the
length in the literature, for review see [1–5]. Non-Abelian discrete symmetries on sponta-
neous breaking have domain wall problem where one has to deal with distinct degenerate
vacua [6–8]. Also, origin of non-Abelian symmetries is not exactly known, although some
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works suggest origin of non-Abelian symmetries from continuous symmetries which require
fine tuning such as breaking of gauged SO(3)→ A4 [9].

Recently, Modular symmetries have gained much attention in addressing flavor issues
due to its connection to more fundamental theory for example, string theory. String theory
of two dimensional torus have geometrical modular symmetry. Compactification of het-
erotic and D-brane models [10–14] leads to modular symmetry and flavor groups S3, S4, A4
and A5 as its finite congruence subgroups of Modular groups. Modular symmetries differ
from usual flavor symmetries in the sense that Yukawa couplings are not free. Yukawa
couplings comprises of modular forms which, also, transform like other matter fields under
modular symmetry [13, 14]. A complex modulus τ breaks the symmetry of the theory which
restricts the inclusion of extra flavon fields having specific vacuum expectation value (vev)
alignments. Yukawa couplings of different order depend on the complex modulus τ . Seesaw
mechanisms remains the integral part of finite modular group based models. Finite mod-
ular groups have been explored in different dimensions e.g. with in type-I+II seesaw [15],
Type-II seesaw [16], inverse seesaw realization [17, 18], linear seesaw realization [19, 20] and
scotogenic or radiative scenarios [21–23]. In literature, different phenomenological ansatz
like texture zeros [24–27], hybrid textures [28–30], scaling neutrino mass matrix [31–33],
magic neutrino mass matrix [34–36] have been proposed to understand the mechanism
of neutrino mass generation. The flavor theoretic realization of these ansatze, based on
non-Abelian discrete groups, rely on introducing one or more flavon fields and thus, suffers
from flavon alignment perplexities. Also, the emergence of the possible higher dimensional
operators reduces the predictability of the flavor model. Texture zeros have been realized
using finite modular group in [37, 38].

In the present work we focus on scaling mass matrix which was firstly proposed in
ref. [31]. We have shown that modular forms of even weights naturally lead to scaling in
the neutrino mass matrix provided we astutely assign the representations and weights under
the modular group. Scaling requires that the ratio of certain elements of neutrino mass
matrix are equal. The stability of scaling ansatz against renormalization group running
from some seesaw scale to low scale is a sublime feature. Apart from inverted hierarchical
neutrino mass, scaling ansatz results in vanishing reactor angle which is phenomenologically
disallowed. Here, we propose theoretical origin of scaling ansatz and its breaking in a
modular A4 symmetric model to have consistent low energy phenomenology and observed
BAU. In this work, we propose two possible dynamically different scenarios of scale-
breaking in the neutrino mass matrix based on (i) dimension-5 Weinberg operator and (ii)
implementing Type-II seesaw via scalar triplet Higgs superfields (∆, ∆̄) in a supersymmetric
framework. SM particle content is enlarged by introducing two right-handed neutrinos, one
scalar field φ [39] and one scalar triplet Higgs field (∆). At Type-I seesaw level, the interplay
of two right-handed neutrinos and scalar field φ yields scaling in the neutrino mass matrix
with vanishing lightest mass eigenvalue and θ13 = 0 [31, 40]. The breaking patterns of both
the scenarios are proportional Yukawa coupling of modular weight 10.

This paper is organized as follows. In section 2, we briefly introduce the finite modular
groups and construction of higher modular weight Yukawa couplings. In section 3, we
discuss the model setup, in detail. Numerical analysis and important results are discussed
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in section 4. In section 5, we have discussed the scenario for successful leptogenesis. Finally,
we conclude in section 6

2 Modular symmetry

Modular functions are subclass of functions which are invariant under linear fractional
transformations defined as

γ : z → γ(τ) = aτ + b

cτ + d
, (2.1)

such that ad − bc = 1, where a, b, c and d are integers (Z) and τ is a complex number.
Modular group (Γ) is defined as group of these linear fractional transformations acting on
upper half complex plane. It is isomorphic to PSL(2, Z) (projective special linear group)
of 2 × 2 matrices with unit determinant and integers (Z) as its elements. Modular group
is generated by matrices

S =
(

0 1
−1 0

)
; T =

(
1 1
0 1

)
,

satisfying the relations S2 = I and (ST )3 = I. Generators act on complex number τ as

S : τ → −1
τ
, T : τ → τ + 1.

Series of groups, Γ(N), is defined as

Γ(N) =
{[
a b

c d

]
∈ SL(2, Z),

[
a b

c d

]
=
[
1 0
0 1

]
(modN)

}
, (2.2)

such that Γ(1) = SL(2, Z). Since γ and −γ determines same linear transformations,
Γ̄(N) which gives distinct linear transformations such that Γ̄ = Γ̄(1) = Γ(1)/{I,−I} =
PSL(2, Z). It is to be observed that Γ̄(N) = Γ(N)/{I,−I} for N≤ 2 and Γ̄(N) = Γ(N)
for N > 2. These are also called as infinite modular groups. Finite modular groups are
defined as quotient group ΓN = Γ̄/Γ̄(N). Finite Modular groups ΓN are isomorphic to
permutation group such that Γ2 ' S3 [22, 41], Γ3 ' A4 [38, 42], Γ4 ' S4 [43–45] and
Γ5 ' A5 [46, 47].

2.1 Modular forms of different weights for Γ3 ' A4

Here, we intend to describe mermorphic functions on upper half complex plane which
remain invariant under all transformations in modular group such that f(γτ) = f(τ) (γ
being some transformation). The required invariance is very restrictive in nature. Instead,
we focus on the mermorphic functions f(τ) so that upon transformations, f(γτ) have same
zeros and poles as that of f(z). Modular forms f(τ) are holomorphic functions of weight
2k and level N with well defined transformation properties under the group Γ(N) such
that for k ≥ 0,

f(γτ) = (cτ + d)2kf(τ), (2.3)

where, γ =
[
a b

c d

]
∈ Γ(N).
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Modular forms are invariant under infinite modular group Γ(N) up to factor (cτ + d)2k,
but they indeed transforms under the finite modular group ΓN . Modular forms spanned
a linear space of finite dimension. It is possible to choose a basis in linear space, in which
transformation is described by a unitary representation ρ of ΓN ,

fi(γτ) = (cτ + d)kρij(γ)fj(τ); γ ∈ ΓN . (2.4)

The transformations can be described by unitary representation. In fact, it is easy to
observe that

f(τ)→ eiα(cτ + d)kf(τ). (2.5)

Further, for modular weight 2,

d

dτ
log f(τ)→ (cτ + d)2 d

dτ
log f(τ) + kc(cτ + d),

the inhomogeneous term, kc(cτ + d), should vanish for all modular weight. It means that
invariance under finite modular group is preserved provided sum of modular weights should
be zero i.e. ∑ ki = 0.

Modular forms along with modular weights play crucial role in model building. For
instance, if N = 3, Γ3 ' A4 serves as non-linear realization of A4 non-Abelian discrete
symmetry. Linear space of modular forms having modular weight 2k and level k have
2k + 1 dimension. It results in modular forms for different weights as:

• For k = 0, there exist only one trivial modular form which is independent of τ and
is constant.

• For k = 1, there exist three modular forms which are linearly independent forming a
triplet of A4 having modular weight 2.

• Modular forms of higher weights can be constructed using the products of modular
forms of weight 2.

Dedekind eta-function is defined in upper half complex plane as

η(τ) = q1/24
∞∑
n=1

(1− qn), (2.6)

where q = ei2πτ has important role in construction of modular forms. Modular forms of
weight 2 are constructed using Dedekind η-function and its derivative as [48]

Y 2
1 (τ) = i

2π

[
η
′(τ/3)
η(τ/3) + η

′((τ + 1)/3)
η((τ + 1)/3) + η

′((τ + 2)/3)
η((τ + 2)/3) − 27η

′(3τ)
η(3τ)

]
,

Y 2
2 (τ) = −i

π

[
η
′(τ/3)
η(τ/3) + ω2 η

′((τ + 1)/3)
η((τ + 1)/3) + ω

η
′((τ + 2)/3)
η((τ + 2)/3)

]
,

Y 2
3 (τ) = −i

π

[
η
′(τ/3)
η(τ/3) + ω

η
′((τ + 1)/3)
η((τ + 1)/3) + ω2 η

′((τ + 2)/3)
η((τ + 2)/3)

]
,

(2.7)
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where ω = ei2π/3. Modular forms satisfy the constraint

Y 2
2 + 2Y 2

1 Y
2

3 = 0. (2.8)

The modular forms constructed above are arranged as A4 triplet

Y =

Y
2

1
Y 2

2
Y 2

3

 ,
where Y 2

1 , Y 2
2 and Y 2

3 are components of triplet with modular weight 2. Modular forms of
higher weights can be constructed using modular forms of weight 2, as follows

Y 4
1 =

(
(Y 2

1 )2 + 2Y 2
2 Y

2
3

)
, Y 4

1′ =
(
(Y 2

3 )2 + 2Y 2
1 Y

2
2

)
, Y 4

3 =

 (Y 2
1 )2 − Y 2

2 Y
2

3
(Y 2

3 )2 − Y 2
1 Y

2
2

(Y 2
2 )2 − Y 2

1 Y
2

3

 ,
Y 6

1 = (Y 2
1 )3 + (Y 2

2 )3 + (Y 2
3 )3 − 3Y 2

1 Y
2

2 Y
2

3 ,

Y 6
3,1 =

(
(Y 2

1 )2 + 2Y 2
2 Y

2
3

) Y
2

1
Y 2

2
Y 2

3

 , Y 6
3,2 =

(
(Y 2

3 )2 + 2Y 2
1 Y

2
2

) Y
2

3
Y 2

1
Y 2

2

 ,
and the total dimension is 7. For k = 8, modular forms are

Y 8
1 =

(
(Y 2

1 )2 + 2Y 2
2 Y

2
3

)2
,

Y
(8)

1′ =
(
(Y 2

1 )2 + 2Y 2
2 Y

2
3

) (
(Y 2

3 )2 + 2Y 2
1 Y

2
2

)
,

Y 8
1′′ =

(
(Y 2

3 )2 + 2Y 2
1 Y

2
2

)2
,

Y 8
3,1 =

(
(Y 2

1 )2 + 2Y 2
2 Y

2
3

) (Y 2
1 )2 − Y 2

2 Y
2

3
(Y 2

3 )2 − Y 2
1 Y

2
2

(Y 2
2 )2 − Y 2

1 Y
2

3

 ,

Y 8
3,2 =

(
(Y 2

3 )2 + 2Y 2
1 Y

2
2

) (Y 2
2 )2 − Y 2

1 Y
2

3
(Y 2

1 )2 − Y 2
2 Y

2
3

(Y 2
3 )2 − Y 2

1 Y
2

2

 ,
corresponding to a total dimension of 9. Also, Yukawa couplings of modular weight 10 are

Y 10
1 =

(
(Y 2

1 )2 + 2Y 2
2 Y

2
3
) (

(Y 2
1 )3 + (Y 2

2 )3 + (Y 2
3 )3 − 3Y 2

1 Y
2

2 Y
2

3
)
,

Y 10
1′ =

(
(Y 2

3 )2 + 2Y 2
1 Y

2
2
) (

(Y 2
1 )3 + (Y 2

2 )3 + (Y 2
3 )3 − 3Y 2

1 Y
2

2 Y
2

3
)
,

Y 10
3,1 =

(
(Y 2

1 )2 + 2Y 2
2 Y

2
3
)2 Y

2
1
Y 2

2
Y 2

3

 , Y 10
3,2 =

(
(Y 2

3 )2 + 2Y 2
1 Y

2
2
)2 Y

2
2
Y 2

3
Y 2

1

 ,
Y 10

3,3 =
(
(Y 2

1 )2 + 2Y 2
2 Y

2
3
) (

(Y 2
3 )2 + 2Y 2

1 Y
2

2
) Y

2
3
Y 2

1
Y 2

2

 .
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Symmetry DeL DµL DτL ecR µcR τ cR N c
1 N c

2 Hu Hd φ

SU(2)L 2 2 2 1 1 1 1 1 2 2 1
U(1)Y -1

2 -1
2 -1

2 1 1 1 0 0 1
2 -1

2 0
A4 1 1′ 1′′ 1 1′′ 1′ 1 1′ 1 1 1
-kI -5 -5 -5 -1 -1 -1 -1 -3 0 0 -2

Table 1. Field content of the model and charge assignments under SU(2)L, U(1)Y , A4 including
modular weights.

Y n
m Y 4

1 Y 4
1′ Y 6

1 Y 8
1 Y 8

1′ Y 8
1′′ Y 10

10 Y 10
1′

A4 1 1′ 1 1 1′ 1′′ 1 1′
-kI 4 4 6 8 8 8 10 10

Table 2. Transformation of Yukawa couplings of higher order under A4 modular symmetry.

3 The model

In this section, we construct the supersymmetric model in context of minimal Type-I+II
seesaw scenario using A4 modular symmetry. We extend the usual SM content by two
CP conjugated superchiral neutrino fields N c

1 , N c
2 which are singlets under A4 having SM

representation SU(2)L × U(1)Y ∼ (1, 0) and singlet ‘flavon’ field (or weighton) φ ∼ (1,0). It
may be noted here that φ do not compete with complex modulus τ for symmetry breaking
as it being singlet does not have any vacuum expectation value (vev) alignment.

A4 irreducible representations are assigned such that charged lepton mass matrix and
right-handed Majorana neutrino mass matrix obtained are diagonal. Lepton doublets DiL

and CP conjugated right-handed charged lepton superfields eciR are transforming as trivial
or non-trivial A4 singlets, each having modular weight -5. Higgs doublet superfields Hu,
Hd with hypercharges 1/2, −1/2 are assigned singlet representations of A4 with modular
weights 0, as shown in table 1. The right-handed superfields N c

1 (A4 ∼ 1), N c
2 (A4 ∼

1′) are assigned modular weights −1 and −3 resulting in diagonal right-handed Majorana
mass matrix with scalar singlet field φ which is A4 trivial singlet having modular weight
equal to −2.

In order to write invariant superpotential, at tree level, for the field content considered
in the model, we employ the Yukawa couplings (Y n

m) having even modular weights (n =
4, 6, 8, 10 and m = 1, 1′, 1′′) such that sum of modular weight is zero for each invariant term
(table 2). The product rules of A4 modular symmetry discussed in the previous section are
used to write higher order Yukawa couplings.

The superpotential relevant for charged lepton masses reads as

Wl = α′(DeLHde
c
RY

6
1 ) + β′(DµLHdµ

c
RY

6
1 ) + γ′(DτLHdτ

c
RY

6
1 ), (3.1)

where α′, β′ and γ′ are coupling constants and Y 6
1 is singlet Yukawa coupling of modular

weight 6.
The vacuum expectation values of Higgs superfields, Hu andHd, are vu/

√
2 and vd/

√
2,

respectively. These are connected to the SM Higgs vev, as vH = 1
2

√
v2
u + v2

d and ratio of
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Higgs superfields is tan β = vu
vd
. Thus, charged lepton mass matrix takes the diagonal

form as

Ml = vd√
2

α
′Y 6

1 0 0
0 β′Y 6

1 0
0 0 γ′Y 6

1

. (3.2)

For Type-I seesaw mechanism, we have assigned the charges for the superfields in such a
way to have diagonal right-handed neutrino mass matrix. The superpotential relevant to
neutrino mass generation through Type-I seesaw mechanism is

W I
ν = g1(DeLHuN

c
1Y

6
1 ) + g2(DeLHuN

c
2Y

8
1′′) + g3(DµLHuN

c
2Y

8
1′) + g4(DτLHuN

c
2Y

8
1 )

+ yφ1φN
c
1N

c
1Y

4
1 + yφ2φN

c
2N

c
2Y

8
1′ ,

where gi (i = 1, 2, 3, 4) are coupling constants. Assuming the vev of scalar field φ to be vφ,
the Dirac and right-handed Majorana neutrino mass matrices are given by

mD = vu√
2

g1Y
6

1 g2Y
8

1′′

0 g3Y
8

1′

0 g4Y
8

1

 ≡
g
′
1 g
′
2

0 g′3
0 g′4

, (3.3)

mR =
(
yφ1vφY

4
1 0

0 yφ2vφY
8

1′

)
≡
(
M1Y

4
1 0

0 M2Y
8

1′

)
≡
(
M ′1 0
0 M ′2

)
, (3.4)

respectively, where yφi(i = 1, 2) are coupling constants. Type-I seesaw contribution to
Majorana neutrino mass matrix is

mν1 = −mDm
−1
R mT

D =


g′21
M ′1

+ g′22
M ′2

g′2g
′
3

M ′2

g′3g
′
4

M ′2
g′2g
′
3

M ′2

g′22
M ′2

g′2g
′
4

M ′2
g′3g
′
4

M ′2

g′2g
′
4

M ′2

g′24
M ′2

, (3.5)

Majorana neutrino mass matrix in eq. (3.5) is scaled wherein column 3 is scaled with
respect to column 2 by factor g′4

g′2
. The exact scaling in neutrino mass matrix provides

θ13 = 0 and is thus, phenomenologically disallowed. In fact, we can have two dynamically
distinct possibilities of scale-breaking in the neutrino mass matrix (eq. (3.5)) viz.,

Scenario 1: Introducing the dimension-5 Weinberg operator contributing to the scale-
breaking and non-zero θ13 without requiring additional scalar field.

Scenario 2: Alternatively, retaining the overall superpotential of the model to tree level
dimension-4 where scale-breaking is accomplished via introducing scalar triplet
Higgs superfields (∆, ∆̄). Furthermore, it is to be noted that the terms like
Y 10

1 (DeLHu)(DeLHu) are at sub-leading mass dimension-5 and are suppressed (al-
though allowed by the symmetries of the model) [49].

These two possibilities are discussed below.
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Scenario 1. The dimension-5 Weinberg terms are not forbidden by the symmetry of the
model and shall contribute to the overall structure of neutrino mass matrix. This possibility
leads to the superpotential

W ′IIν = 1
Λ[a1Y

10
1 DeLHuHuDeL + a2Y

10
1′ (DeLHuHuDτL +DτLHuHuDeL)

+ a3Y
10

1′ DµLHuHuDµL + a4Y
10

1 (DµLHuHuDτL +DτLHuHuDµL)], (3.6)

where ai (i = 1, 2, 3, 4) are coupling constants and Λ is scale of lepton number violation
(LNV). After the SSB, the contribution to effective Majorana neutrino mass matrix is
given by

m′ν2 = v2
u

Λ

a1Y
10

1 0 a2Y
10

1′

0 a3Y
10

1′ a4Y
10

1
a2Y

10
1′ a4Y

10
1 0

 ≡
a
′
1 0 a′2

0 a′3 a
′
4

a′2 a
′
4 0

. (3.7)

In this case, the total effective Majorana neutrino mass matrix is

m′ν = mν1 +m′ν2 =


g′21
M ′1

+ g′22
M ′2

+ a′1
g′2g
′
3

M ′2

g′3g
′
4

M ′2
+ a′2

g′2g
′
3

M ′2

g′22
M ′2

+ a′3
g′2g
′
4

M ′2
+ a′4

g′3g
′
4

M ′2
+ a′2

g′2g
′
4

M ′2
+ a′4

g′24
M ′2

. (3.8)

Scenario 2. In order to achieve scale-breaking using triplet seesaw (Type-II seesaw),
we have included one pair of scalar triplet Higgs superfields (equivalent to single scalar
triplet Higgs field in non-supersymmetric version) ∆ ∼ (3,1) and ∆̄ ∼ (3,-1) in SU(2)L ×
U(1)Y representation having vector notation ∆ (∆0, ∆+, ∆++), ∆̄ (∆̄0, ∆̄−, ∆̄−−). The
scalar triplets ∆, ∆̄ are assigned singlet representations of A4 with modular weights 0. The
Type-II seesaw contribution to neutrino masses emanates from the superpotential

W II
ν = M∆∆̄ + λ1Hu∆̄Hu + λ2Hd∆Hd +K1Y

10
1 DeL∆DeL

+K2Y
10

1′ (DeL∆DτL +DτL∆DeL) +K3Y
10

1′ DµL∆DµL

+K4Y
10

1 (DµL∆DτL +DτL∆DµL), (3.9)

where Ki (i = 1, 2, 3, 4) are coupling constants. Scalar triplet Higgs field acquires vev v∆
resulting in Type-II contribution to effective Majorana neutrino mass matrix given by

mν2 = v∆

K1Y
10

1 0 K2Y
10

1′

0 K3Y
10

1′ K4Y
10

1
K2Y

10
1′ K4Y

10
1 0

 ≡
K

′
1 0 K ′2

0 K ′3 K
′
4

K ′2 K
′
4 0

. (3.10)

The total neutrino mass matrix is

mν = mν1 +mν2 =


g′21
M ′1

+ g′22
M ′2

+K ′1
g′2g
′
3

M ′2

g′3g
′
4

M ′2
+K ′2

g′2g
′
3

M ′2

g′22
M ′2

+K ′3
g′2g
′
4

M ′2
+K ′4

g′3g
′
4

M ′2
+K ′2

g′2g
′
4

M ′2
+K ′4

g′24
M ′2

. (3.11)

It is interesting to note that the scale-breaking patterns in both (eqs. (3.7) and (3.10)),
otherwise dynamically different scenarios, are similar. This is due to the same charge
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Figure 1. Variation of Yukawa couplings of modular weight 2 (|Y 2
1 |, |Y 2

2 |, |Y 2
3 |) with real (fig-

ure 1(a)) and Imaginary part (figure 1(b)) of complex modulus τ .

assignments of superfields (∆, ∆̄) and the Higgs superfield Hu under modular A4 symmetry
(table 1).

The model predictions, based on eq. (3.11), for neutrino mass, mixings and other
derived quantities like CP invariants (JCP , I1, I2) and effective Majorana mass appearing
in neutrinoless double beta (0νββ) decay, are discussed in the next section

4 Numerical analysis

In charged-lepton basis, neutrino mixing matrix can be parameterized in terms of three
mixing angles (θ12, θ23, θ13), one Dirac-type (δ) and two Majorana-type (α, β) CP -violating
phases viz.

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13




1 0 0
0 eiα2 0
0 0 ei

β
2

 (4.1)

where cij = cos θij and sij = sin θij (i, j = 1, 2, 3 : i < j). Using mixing matrix in eq. (4.1),
neutrino mixing angles are given by

sin2 θ13 = |Ue3|2 , sin2 θ23 = |Uµ3|2

1− |Ue3|2
, sin2 θ12 = |Ue2|2

1− |Ue3|2
. (4.2)

Also, we can calculate the Jarlskog CP invariant from matrix elements of U as

JCP = Im
[
Ue1Uµ2U

∗
e2U

∗
µ1

]
= s23c23s12c12s13c

2
13 sin δ, (4.3)

and other two CP invariants I1 and I2 related to Majorana phases (α, β) as

I1 = Im [U∗e1Ue2] = c12s12c
2
13 sin

(
α

2

)
, I2 = Im [U∗e1Ue3] = c12s13c13 sin

(
β

2 − δ
)
. (4.4)

The effective mass for the neutrinoless double beta decay is given by

Mee =
∣∣∣m1 cos2 θ12 cos2 θ13 +m2 sin2 θ12 cos2 θ13e

iα +m3 sin2 θ13e
i(β−2δ)

∣∣∣ . (4.5)
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Figure 2. Variation of Yukawa couplings of higher modular weight with real part of complex
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Parameter Best fit ± 1σ range 3σ range
Normal neutrino mass ordering (m1 < m2 < m3)

sin2 θ12 0.304+0.013
−0.012 0.269− 0.343

sin2 θ13 0.02221+0.00068
−0.00062 0.02034− 0.02420

sin2 θ23 0.570+0.018
−0.024 0.407− 0.618

∆m2
21

[
10−5eV2

]
7.42+0.21

−0.20 6.82− 8.04

∆m2
31

[
10−3eV2

]
+2.541+0.028

−0.027 +2.431−+2.598

Inverted neutrino mass ordering (m3 < m1 < m2)
sin2 θ12 0.304+0.013

−0.012 0.269− 0.343

sin2 θ13 0.02240+0.00062
−0.00062 0.02053− 0.02436

sin2 θ23 0.575+0.017
−0.021 0.411− 0.621

∆m2
21

[
10−5eV2

]
7.42+0.21

−0.20 6.82− 8.04

∆m2
32

[
10−3eV2

]
−2.497+0.028

−0.028 −2.583−−2.412

Table 3. Experimental data of neutrino oscillation parameters from NuFIT 5.0 used in the numer-
ical analysis [55].
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Figure 4. Variation of neutrino mixing angles with sum of neutrino masses
∑
mi for Normal hierar-

chy. The grey shaded region is disallowed by cosmological bound on sum of neutrino masses [60, 61].
Horizontal lines represent 3σ limits of respective mixing angle (table 3).

The model prediction for Mee has been investigated in light of the 0νββ decay experiments
like SuperNEMO [50], KamLAND-Zen [51], NEXT [52, 53], nEXO [54].

Using the relations derived above and obtained structure of effective Majorana neutrino
mass matrix (eq. (3.8)), we carry out the numerical analysis. The model contains free real
coupling constants gi, (i = 1, 2, 3, 4) and Ki(i = 1, 2, 3, 4) which are varied randomly in
the range (0.01 − 1). Yukawa couplings are dependent on complex modulus τ whose real
and imaginary parts are varied in the fundamental domain i.e. |Re(τ)| ≤ 0.5, Im(τ) > 0,
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Figure 5. Variation of Effective Majorana mass |Mee| with sum of neutrino masses
∑
mi for normal

hierarchy (figure 5(a)) and with sin2 θ23(figure 5(b)). The horizontal lines are the sensitivity reach
of 0νββ decay experiments. The grey shaded region is disallowed by cosmological bound on sum of
neutrino masses [60, 61].
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Horizontal (Vertical) lines represent 3σ experimental limits of Rν(sin2 θ23).

while |τ | > 1 [15]. We have worked in the approximation in which tan β = 5 [56–58].
Also, vacuum expectation value (vev) of Higgs fields (vH) is 246GeV while Type-II scalar
triplet field assumes vev O(0.01)eV [59]. The lightest right-handed neutrino mass scale
i.e. M1 is varied randomly between (1 − 5) × 1013 GeV whereas M2 is varied in the range
(1 − 5) × 1014 to ascertain the non-degenerate right-handed neutrino masses required for
successful leptogenesis.

We numerically diagonalize the neutrino mass matrix (eq. (3.8)) to obtain mass eigen-
values (m1,m2,m3) from which model prediction for the mass-squared differences and
mixing angles have been obtained. Using the experimental values of the mass-squared
differences (table 3) the allowed parameter space for mixing angles, CP invariants and
Mee have been obtained. The model satisfies the neutrino oscillation data for normal hi-
erarchical neutrino mass spectrum. The Yukawa couplings of modular weight 2 are shown
as a function of real and imaginary part of complex modulus τ in figure 1. The Yukawa
couplings of higher modular weight can be constructed from the Yukawa couplings of mod-
ular weight 2. Also, Yukawa couplings having modular weights (4, 6, 8, 10) are functions
of complex modulus τ which have been used to write invariant superpotential. The vari-
ation of these Yukawa couplings with real and imaginary parts of complex modulus τ are
shown in figure 2 and figure 3, respectively. Using the eigenvectors obtained from the
diagonalization of eq. (3.8) alongwith eq. (4.2), we obtain predictions for the mixing an-
gles. In figure 4, we depict the correlation between sum of neutrinos mass eigenvalues
(Σmi) and neutrino mixing angles (θ12, θ23, θ13). It is evident from figure 4 that a very
narrow range of sum of neutrino masses (0.05− 0.08)eV is allowed, which is well below the
current cosmological bound [60, 61]. Also, the implication of the model for lepton num-
ber violating 0νββ decay is shown in figure 5. The allowed parameter space of effective
Majorana mass Mee and sum of neutrino masses constitutes two regions degenerated in
the range of Σmi = (0.05 − 0.08)eV. The lower (upper) region corresponds to Mee in the
range (0 − 0.01)eV ((0.04 − 0.06)eV). The sensitivity reach of 0νββ decay experiments
like SuperNEMO [50], KamLAND-Zen [51], NEXT [52, 53], nEXO [54] are, also, shown
in the figure. It is evident from (Mee-sin2 θ23) plot (figure 5(b)) that the lower region
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of Mee (see figure 5(a)) is disallowed as it correspond to θ23 outside experimental range.
Hence, model predicts the neutrinoless double beta decay amplitude to be with in the range
((0.04−0.06)eV) which is well within the sensitivity reach of 0νββ decay experiments. The
prediction for the CP invariants JCP , I1 and I2 are shown in figure 6. In figure 7, we have
shown prediction of the model for possible neutrino mass hierarchy. From the correlation
between Rν ≡ ∆m2

21
|∆m2

32|
and sin2 θ23, it is evident that model predicts normal hierarchical neu-

trino masses (NH) because inverted hierarchy (IH) does not follow experimental bounds
on sin2 θ23.

In the next section, we discuss leptogenesis framework in the current model setup to
explain baryon asymmetry of the Universe.

5 Leptogenesis

Within the framework of Type-I+II seesaw, there can be contribution to baryon asymme-
try from the decay of both heavy fields i.e. right-handed neutrino as well as scalar triplet.
Also, it is necessary to obey the Sakharov’s condition to observe successful leptogenesis [62].
For hierarchical spectrum of new heavy fields such that M ′

1 � M
′
2 and M

′
1 � M∆, only

right-handed decay mode will be dominant one. Here, lepton number violation and CP

asymmetry is generated by the decay of right-handed neutrino fields [63]. This lepton num-
ber violation is then converted to baryon number violation via sphaleron processes with
some efficiency factor (Keff) dictating CP asymmetry being washout, during conversion.
The right-handed neutrino decay contributes to CP asymmetry, εN , through the interfer-
ence of tree level and one loop decay processes (shown in figures 8(a) and 8(b)). In the
approximation M ′

1 �M
′
2, the CP asymmetry can be written as [64, 65]

εN = 3M ′1
16πv2

H

Im[m†Dmν1m
∗
D]11

(m†DmD)11
. (5.1)

The contribution to CP asymmetry from Type-II seesaw, at one loop, is through the
decay of right-handed neutrino with scalar triplet mediating as virtual particle as shown
in figure 8(c). In the approximation, M ′

1 �M∆, CP asymmetry is given by [64, 65]

ε∆ = 3M ′1
16πv2

H

Im[m†Dmν2m
∗
D]11

(m†DmD)11
. (5.2)

The total CP asymmetry ε = εN1 + ε∆ is then converted into baryon asymmetry through
sphaleron processes. In the strong washout regime, efficiency factor is [66]

Keff = 2× 10−2
(
M ′1 × 0.01eV
(m†DmD)11

)1.1

. (5.3)

The out of equilibrium decay of right-handed neutrino requires that m̄ < m∗, where effec-
tive neutrino mass, m̄ = (m†DmD)11

M ′1
and equilibrium neutrino mass m∗ =

√
64g∗π5

45 .
v2
H

Mpl
≈

1.08× 10−3eV. The baryon asymmetry thus produced can be approximated as

|ηB| ≈ 0.96× 10−2εKeff . (5.4)
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Figure 8. One loop-level diagrams contributing to CP asymmetry.
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Figure 9. Variation of baryon asymmetry with lightest right-handed neutrino mass M ′1 for normal
hierarchy. Dashed line denotes the value observed baryon asymmetry |ηB | = (6.12± 0.04)× 10−10.

Using allowed model parameter space of mD, mν1 and mν2 obtained in section 4 we eval-
uated the CP asymmetry with the help of eqs. (5.1) and (5.2)

Employing constraints M ′
1 � M

′
2 and m∗ > m̄ in the numerical analysis, with effi-

ciency factor given in eq. (5.3), we estimate the baryon asymmetry of the Universe (BAU)
using eq. (5.4). The variation of baryon asymmetry with right-handed neutrino mass is
shown in figure 9. It is evident from figure 9 that the observed value of baryon asymme-
try is consistent for right-handed neutrino mass scale in the range ((1 − 5) × 1013) GeV.
Also, complex modulus τ is the only source of CP violation and hence is responsible for
generating baryon asymmetry. It is to be noted that in modular symmetry the Yukawa
couplings are not free and are, in general, holomorphic functions of modulus τ , so it is
imperative to investigate implication of observed BAU on |Y 2

1 |, |Y 2
2 | and |Y 2

3 |. In figure 10,
we have depicted the variation of baryon asymmetry with Yukawa couplings of modular
weight 2. The Yukawa couplings |Y 2

1 |, |Y 2
2 | and |Y 2

3 | are, further, constrained in the range
(0.98− 1.02), (0.10− 0.75) and (0.01− 0.28), respectively.

6 Conclusions

In conclusion, we have proposed a modular A4 symmetric model in the supersymmetric
framework wherein, along with Type-I seesaw, the effective Majorana neutrino mass matrix
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Figure 10. Variation of baryon asymmetry with absolute value of Yukawa couplings of modular
weight 2 (|Y 2

1 |, |Y 2
2 |, |Y 2

3 |) for normal hierarchy. Dashed line denotes the value observed baryon
asymmetry |ηB | = (6.12± 0.04)× 10−10.

can be generated via two scenarios viz., (i) allowing dimension-5 Weinberg operator and
(ii) retaining the overall superpotential of the model to tree level dimension-4 where scale-
breaking is accomplished via introducing scalar triplet Higgs superfields (∆, ∆̄). In minimal
setup of beyond standard model field content, Type-I seesaw results in scaling neutrino
mass matrix giving vanishing lowest neutrino mass eigenvalue and θ13 = 0. Interestingly,
the breaking patterns in both, otherwise dynamically different scenarios, are similar which
can be attributed to the same charge assignments of superfields (∆, ∆̄) and the Higgs
superfield Hu under modular A4 symmetry. The breaking is found to be proportional
to the Yukawa coupling of modular weight 10 (Y 10

1,1′) ameliorating the correct low energy
phenomenology. Furthermore, scenario-2 has been numerically investigated to predict the
correct low energy phenomenology and matter-antimatter asymmetry. We find that the
model satisfies neutrino oscillation data for normal hierarchical neutrino masses. Although
the model contains Yukawa couplings of different weights (2,4,6 and 8) but scale-breaking
depends on Yukawa coupling of modular weight 10 (Y 10

1,1′) only. The constraint to have
correct low energy phenomenology restricts Yukawa couplings of different weights to narrow
ranges as shown in figures 1–3 which are consistent with perturbative limit max [Y n

m] ≤√
4π [21]. The Yukawa couplings of lowest weight (weight 2) especially |Y 2

2 | and |Y 2
3 |
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have sharp correlation with imaginary part of complex modulus τ(figure 1) whereas |Y 2
1 |

is insensitive to τ and thus to CP violation. One of the interesting feature of the model
is the appearance of lower bound on sum of neutrino masses. In fact the model predicts
a very robust range for ∑mi (0.05 − 0.08)eV (figures 4 and 5). The effective Majorana
mass Mee is found to be in the range (0.04 − 0.06)eV. In the near future, 0νββ decay
experiments will, hopefully, reach the sensitivity of a few meV to Mee. These experiments
especially NEXT and nEXO shall provide crucial test for viability the model. Furthermore,
there is, however, no decisive prediction about the possible CP violation. The model is
consistent with both CP conserving and CP violating solutions. Also, we have studied
the leptogenesis in the framework of Type-I+II seesaw. For successful baryogenesis, the
right-handed Majorana neutrino mass scale is to be quite high ((1− 5)× 1013)GeV) which
corresponds to the region where flavour effects are negligible [67] (figure 9). The observed
baryon asymmetry, further, constrain Yukawa couplings of modular weight 2 as shown in
figure 10. The constrained ranges of Yukawa couplings of modular weight 2 are |Y 2

1 | →
(0.98–1.02), |Y 2

2 | → (0.10–0.75) and |Y 2
3 | → (0.01–0.28). For ready reference, it is useful

to give benchmark points satisfying the neutrino phenomenology and BAU viz. gi(i =
1, 2, 3, 4) = (0.01, 0.50, 0.25, 0.30),Ki(i = 1, 2, 3, 4) = (0.70, 0.50, 0.50, 0.50) for the complex
modulus τ = (0.25 + i1.85) in the fundamental range.
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