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1 Introduction

Partition functions of free fields on spheres, anti-de Sitter spaces, hyperbolic cylinders,
branched spheres, de Sitter spaces are important ingredients for tests of AdS/CFT du-
alities, evaluation of entanglement entropies, quantum corrections to black hole entropy
and evaluation of anomaly coefficients in even dimensions and the F -function in odd di-
mensions. There are numerous works in the literature which highlight the importance of
these partition functions, a partial list of these references can be obtained from the recent
work of [1]. It has always been useful to cast these one loop partition functions as integrals
over characters. One of the early instances was in [2] where the coincident heat kernel for
arbitrary spin fields on thermal AdS3 was written as a transform of the Harish-Chandra
character of SL(2, C). In higher dimensional AdS character integral representations were
found in [3–5] and [6, 7], in the former series of works, the integral also involved angular
integrations over the additional Cartan directions.
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Recently in [1] and [8] a very useful expression for the one loop partition function
for scalars, fermions and integer higher spin fields on spheres/euclidean patch of de Sitter
space as well as anti-de Sitter space was found. This integral representation has only one
integral over the Harish-Chandra character of the element in SO(1, 1) of these spaces just
as the one found in [2]. The expression for the one loop path integral on the sphere for
higher spin fields on Sd+1 can be summarised as follows

logZ = logZG + logZchr, (1.1)

logZchr =
∫ ∞

0

dt

2t
1 + e−t

1− e−t (χbulk(t)− χedge(t)) .

Here ZG contains the dependence of the dimensionless coupling constant of the theory.
The dimensionless coupling is obtained by considering an appropriate combination of the
coupling and the radius of the sphere. ZG also contains dependence of the volumes of
the gauge groups of the fields involved in the one loop partition function. The interesting
contributions arise from logZchr which can be split into 2 parts. The bulk contribution can
be written as an integral transform of Harish-Chandra characters of the group SO(1, d+1),
while the edge term can be written as integral transform of Harish-Chandra character but
with d → d − 2. The contributions from the characters are interesting. For example, in
the case of even d+ 1, the coefficient of the logarithmic divergence which is independent of
regularization and can be extracted from the 1/t coefficient of the integrand in logZchr. In
the case of odd d+ 1 one can extract the IR finite contribution to the partition function by
performing the integral using a regulator. In [1] expressions for logZchr were obtained for
scalars, fermions and higher spin fields in arbitrary dimensions. This was then extended
in [8] to the one loop partition funciton for these fields in AdSd+1 where now the integrand
involves Harish-Chandra characters for the group SO(2, d) and SO(2, d − 2) as bulk and
edge contributions respectively.

In this paper we obtain the character integral representation of the one loop partition
function for p-forms on spheres and anti-de Sitter spaces. It is known that after fixing
gauge the path integral of p-forms on spheres can be written as [9–11]

Zp[Sd+1] =
[ 1

detT ∆p

detT ∆p−1
detT ∆p−2

· · ·
(detT ∆1

det′∆0
Vol Sd+1

)(−1)p] 1
2
, (1.2)

where ∆p is the Hodge-de Rham operator acting on a form of degree p on the sphere.
The subscript T in the determinant refers to the fact that the determinant is taken over
co-exact or transverse p-forms. The prime in the determinant of the 0-form refers to the
fact that it does not include the zero mode. Finally the Vol Sd+1 is the volume of the d+ 1
dimensional sphere of radius R. From (1.2) we see that the key ingredient in the one loop
partition function of the p-form is the determinant of the co-exact p-form. Starting from
the eigen values of the Hodge-de Rham Laplacian of co-exact p-forms on Sd+1 and their
degeneracies, we show that the character part of the determinant of the co-exact p form

−1
2 log(detT∆Sd+1

p ) =
∫ ∞

0

dt

2t
1 + e−t

1− e−t

( p∑
i=0

(−1)iχdS(d−2i,p−i)(t)
)
, (1.3)
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where χdS(d,p)(t) is the SO(1, d + 1) Harish-Chandra character of the anti-symmetric tensor
of rank p, ∆ = d

2 + iν representation with iν = d
2 − p. This is given by

χdS(d,p)(t) =
(
d

p

)
e−(d−p)t + e−pt

(1− e−t)d . (1.4)

Form (1.3) we see the bulk and the edge characters on the sphere Sd+1 for the co-exact
p-form is given by

χdSbulk, (d,p)(t) = χdS(d,p)(t), χdSedge (d,p)(t) = −
p∑
i=1

(−1)iχdS(d−2i,p−i)(t). (1.5)

Note that the edge character involves characters in lower dimensions. The dimensions are
lowered by units of 2, while the degree of the p-forms are lowered by units of 1 all the way to
p = 0. It is clear that if 2p > d, the character involves powers of e+t, therefore these are the
‘naive’ characters in the sense of [1] and should be replaced by the corresponding ‘flipped’
character. Thus the character representation of the determinant of the co-exact p-form can
be written as difference of the bulk and edge character. Using this representation of the
determinant of the co-exact p-form, we evaluate the path integral of the p forms on the
spheres Sd+1 for 2 ≤ d ≤ 13. It is clear from (1.2) and (1.3) that the partition function of
the p-form is a difference of the bulk and the edge contribution. To emphasise this again,
note that the path integral involves a product of determinants of co-exact forms from 0 to
p (1.2). Therefore to evaluate the free energy of the p-form we would need to perform a
sum of (1.3) from p = 0 to p with alternating signs.

The integral in (1.3) can be regularised using the methods of [1]. For even d+1 we show
that the coefficient of the log divergence of the partition function which is renormalization
group invariant can be extracted easily from the coefficient of the t−1 term in the small t
expansion of the integrand. This coefficient precisely agrees with earlier results in literature.
For odd d + 1 we regulate the integral to obtain the infrared finite part of the partition
function and again the results agree with previous results in literature. For both even and
odd dimensions we observe that these results obey known properties under Hodge duality.

We then repeat the analysis for p-forms in anti-de Sitter space of d + 1 dimensions.
Here again the key ingredient to evaluate the partition function is the determinant of the
co-exact p form on AdSd+1. Starting from the Plancherel measure and the eigen values of
the Hodge-deRham Laplacian, we show that the character part of determinant of co-exact
p form on AdSd+1 for even d+ 1 is given by

−1
2 log(detT∆AdSd+1

p ) =
∫ ∞

0

dt

2t
1 + e−t

1− e−t
(
χAdS

bulk(t)− χAdS
edge(t)

)
, d+ 1 even (1.6)

where

χAdS
bulk(t) = χAdS

(d,p)(t), χAdS
edge(t) = −

p∑
i=1

(−1)iχAdS
(d−2i,p−i)(t). (1.7)
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χAdSd,p (t) is the SO(2, d) Harish-Chandra character of the anti-symmetric tensor of rank p,
∆ = d

2 + iν representation with iν = d
2 − p which is given by

χAdS
(d,p)(t) =

(
d

p

)
e−(d−p)t

(1− e−t)d . (1.8)

Similarly for AdSd+1 with d+ 1 odd is given by

−1
2 log(detT∆AdSd+1

p ) = log(R̃)
2πi

∮
C

dt

2t
1 + e−t

1− e−t
(
χAdS

bulk(t)− χAdS
bulk(t)

)
, d+ 1 odd. (1.9)

Here the contour C is a small circle around the origin, and R̃ is the dimensionless IR cutoff.
It can be taken as the ratio of the radial cutoff on AdS to the radius of AdS. The characters
χAdS

bulk(t), χAdS
bulk(t) are defined in (1.7). We perform the following consistency check on our

results for the partition function of p-forms: one loop free energies on even dimensional
spaces are determined by the trace anomaly of the theory leads to the prediction that ratio
of free energies in AdSd+1 to Sd+1 is given by

logZp[AdSd+1]
logZp[Sd+1] = 1

2 for even d+ 1. (1.10)

We verify that this relation is satisfied by the character integral representation of the
partition function.

We then study conformal invariant fields on hyperbolic cylinders. The fact that hyper-
bolic cylinders can be conformally mapped to spheres suggests that partition function of
these fields on these spaces should be identical. Indeed in [12] it was verified through direct
calculations that partition functions of conformal scalars and fermions in S1 × AdS2 pre-
cisely agrees with that on S3. More recently in [13], the free energies of conformal scalars
on hyperbolic cylinders and spheres were shown to agree to d = 100 by explicit calcula-
tions.1 Since we have found that partition functions are integral transforms of characters,
we can ask that if the integrands that occur in the character representation of the partition
functions on hyperbolic cylinders agree with the integrands of the partition functions on
spheres. We find that indeed that for conformal scalars we can sum over all the Kaluza-
Klein modes on the S1 of hyperbolic cylinders and show that the character which to begin
with was an AdS character becomes the character on the sphere. The character integral
representations on spheres and hyperbolic cylinders coincide and therefore provides a proof
that the free energies of conformal scalars on these spaces are same.

Conformal p-forms occur in even d + 1 dimensions. We show that the logarithmic
divergence of the gauge invariant partition function of the conformal d−1

2 -form in S1×AdSd
can be written as the following transform of characters.

logZ d−1
2

[S1 ×AdSd] = log(R̃)
2πi

∫
C

dt

2t
1 + e−t

1− e−t

d−1
2∑
i=0

(−1)iχdS(d, d−1
2 −i)

(t), d+ 1 even (1.11)

1See statement around equation 4.52 of [13].
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where χ[dS]
(d,p) is given in (1.4). Note the integral contains dS characters associated with the

sphere Sd+1, it does not contain edge characters. In fact the integrand is precisely the
bulk character of the conformal form on the sphere Sd+1. This is consistent with earlier
observations found by studying entanglement entropy [14–19]. Entanglement entropy of
theories with gauge symmetries evaluated using partition functions on hyperbolic cylinders
contain only the bulk contributions and misses out on the edge terms.

Finally we study the co-exact 1-form on the branched sphere Sd+1
q with branching q.

Using the known spectrum we write its free energy in terms of characters. From this result
we are led to propose that the free energy of the co-exact p-form on branched spheres is
given by

−1
2detT (∆Sd+1

q
p ) =

∫ ∞
0

dt

2t


1 + e

− t
q

1− e−
t
q

χdS(d,p)(t) +
(

1 + e−t

1− e−t

) p∑
i=1

(−1)iχdS(d−2i,p)(t)

 .
(1.12)

Note that the branching affects only the kinematic factor in front of the bulk character. The
kinematic factor in front the edge character remains invariant under branching. We verify
the proposal in (1.12) by evaluating the partition function p-forms on branched spheres
using (1.2) and comparing to existing results in the literature.

The organization of the paper is as follows: in section 2 we write the free energy
of p-forms on spheres in terms of characters, evaluate trace anomaly coefficients for even
dimensional spheres and F -terms for odd spheres. We also demonstrate that these partition
functions satisfy Hodge duality properties known in literature. In section 3 we examine
p-forms on AdS spaces. One of important steps in evaluating the p-form Free energy as
a transform of Harish-Chandra characters is to construct the Fourier transform of the
Plancherel measure of the co-exact p-forms in AdSd+1 We do this in section 3.1. We also
verify the prediction (1.10). Finally in section 4 we obtain character integral representations
for free energies of conformal p-forms including the conformal scalar on hyperbolic cylinders.
In the section 4.3 we determine the character integral representation for free energies of
p-forms on branched sphere by extrapolating the result for the 1-form. The appendices
contain a list of Harish-Chandra characters used in the paper and an alternate approach
to evaluate the Fourier transform of the Plancherel measure.

2 p-forms on spheres

The partition function of gauge fixed p-form field on a sphere in total d + 1 dimension is
given by [9–11]

Zp[Sd+1] =
[ 1

detT ∆p

detT ∆p−1
detT ∆p−2

· · ·
(detT ∆1

det′∆0
VolSd+1

)(−1)p] 1
2
. (2.1)

detT ∆p denotes the determinant of Hodge de-Rham Laplacian of the co-exact p-forms.
The prime in det′∆0 refers to the determinant of 0-form or scalar without the zero modes.
VolSd+1 refers to the volume of the d + 1 dimensional sphere. This arises due to the
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fact that the scalar has a zero mode, and integration over this zero mode results in the
volume. Therefore the building block of the partition function of p-forms is the determinant
of the co-exact p form. In section 2.1 we will show that upon choosing an appropriate
regulator, we can write the determinant of the co-exact p-form in terms of Harish-Chandra
characters. Then in section (2.2) use these determinants and evaluate the coefficient of
the logarithmic divergence in partition function of p-forms on even dimensional spheres.
We will demonstrate that the result obeys known properties under Hodge duality. In
section (2.3) we evaluate the infrared finite term in the partition function for p-forms on
odd dimensional spheres and observe that they satisfy Hodge duality.

2.1 Determinant of co-exact p-forms as character integrals

From the definition of the determinant in terms of its eigen values we have

−1
2 log(detT∆Sd+1

p ) = −
∞∑
n=1

1
2g

(p)
n log(λ(p)

n ), (2.2)

where the eigen values λ(p)
n and the degeneracies g(p)

n of the Hodge-deRham Laplacian of
co-exact p-forms on Sd+1 are given by [10]

λ(p)
n = (n+ p)(n− p+ d),

g(p)
n = (2n+ d)Γ[n+ d+ 1]

Γ[p+ 1]Γ[d− p+ 1]Γ[n](n+ p)(n+ d− p) .
(2.3)

In (2.2) the summation is from n = 1 to infinity for all values of p. Note that this includes
the case of p = 0 for which the zero eigen value is not part of the gauge fixed determinant.
Here we have focussed on the part of the one loop determinant that is independent of the
radius of the sphere as well as the coupling of the theory. We now replace the logarithm
by the identity

− log y =
∫ ∞

0

dτ

τ
(e−yτ − e−τ ). (2.4)

Substituting this identity in (2.2), we obtain

−1
2 log(detT∆Sd+1

p ) =
∫ ∞

0

dτ

2τ

( ∞∑
n=1

g(p)
n (e−τλ

(p)
n − e−τ )

)
. (2.5)

Here we wish to point out that our treatment differs from that of [1] in which the iden-
tity (2.4) was not used and therefore the second term in (2.2) was not present for [1]. As
such the integral in (2.5) is convergent at τ = 0 provided the second term can be regular-
ized. To regularize the second term we follow the approach introduced by [20]. First note
that the large n behaviour of the degeneracies is given by

g(p)
n =

( 1
n

)−d ( 2
Γ(d− p+ 1)Γ(p+ 1) +O

( 1
n

))
. (2.6)

Therefore the sum over the degeneracies can be performed by first choosing d to be a
sufficiently negative and continuing this result to positive values of d. We will refer to this

– 6 –
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as ‘dimensional regularization’. The result is given by [20, 21]
∞∑
n=1

g(p)
n = − cos pπ = (−1)p+1. (2.7)

Using this result in (2.5) we obtain

−1
2 log(detT∆Sd+1

p ) =
∫ ∞

0

dτ

2τ

( ∞∑
n=1

g(p)
n e−τλ

(p)
n + (−1)pe−τ

)
. (2.8)

Now that we have regulated the τ = 0 limit using dimensional regularization of the sum
there is no need of introducing a UV regulator as in [1]. However we find it convenient to
introduce an ε regulator. This will help us keep track of the branch cuts in the τ -plane
that arise in the integrand and will not serve as a UV regulator. Indeed finally we will
take the ε → 0 limit. We will also indicate how the branch cuts are present if ε was not
introduced. This results in

− 1
2 log(detT∆Sd+1

p ) =
∫ ∞

0

dτ

2τ e
− ε

2
4τ

( ∞∑
n=1

g(p)
n e−τλ

(p)
n + (−1)p

)
. (2.9)

For the second term ε is introduces by the change of variables τ → ε2

4τ . We will soon see
that this choice leads us to the character integral representation for the one loop partition
function. What we will obtain is the ‘naive’ character in the sense of [1]. The integral is
not regulated in the IR yet. To extract IR finite terms we need another regulator as in [1].
In section 2.3 we will discuss the procedure to extract the IR finite terms. Let us go back
to the integral in (2.9), by analytically continuing in n, from (2.3) we notice that

g(p)
n = 0, for −(p− 1) < n < 0, (2.10)

g
(p)
−p = (−1)p, and λ

(p)
−p = 0.

Using these properties of the degeneracies and eigen values, we can continue the sum
in (2.5) to continue to n = −p for the co-exact p-form. This extension resulted naturally
due to the properties of the degeneracies given in (2.10), which as far as we are aware has
not been noted earlier. We obtain

− 1
2 log(detT∆Sd+1

p ) =
∫ ∞

0

dτ

2τ e
− ε

2
4τ

 ∞∑
n=−p

g(p)
n e−τλ

(p)
n

 . (2.11)

Such an analytical continuation of the sums were also seen for higher spin fields by [1] using
a different approach. As we have mentioned our starting point (2.5) and the regulator used
is different from that of [1]. To show our approach yields the same results we have repeated
the analysis for partition function of massless symmetric rank s tensor using our approach
in appendix C and obtained the same conclusions of ([1]).

We now follow the steps of [1] and carry out the sum over n, After writing λ(p)
n as

difference of squares we get

1
2 log(detT∆Sd+1

p ) =
∫ ∞

0

dτ

2τ e
− ε

2
4τ

 ∞∑
n=−p

g(p)
n e−τ(n+ d

2 )2
e−τν

2
p

 , (2.12)
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where ν2
p = −(p − d

2)2. We can now linearise the sum over n by using the Hubbard-
Stratonovich trick. ∞∑

n=−p
g(p)
n e−τ(n+ d

2 )2
=
∫
C

du√
4πτ

e−
u2
4τ fp(u). (2.13)

Here the contour C runs from −∞ to ∞ slightly above the real axis as in figure 1. and

fp(u) =
∞∑

n=−p
g(p)
n eiu(n+ d

2 ). (2.14)

Substituting the degeneracies g(p)
n given in (2.3) this sum can be performed resulting in

fp(u) = e
1
2 i(d+2)uΓ(d+ 3)

(d− 2p)Γ(d− p+ 1)

×
[(
eiu
)−d+p−1 (

B(eiu; d− p+ 1,−d− 1)− 2B(eiu; d− p+ 1,−d− 2)
)

Γ(p+ 1)

+2 [2F̃1
(
d+ 3, p+ 1; p+ 2; eiu

)
]− 2F̃1

(
d+ 2, p+ 1; p+ 2; eiu

) ]
+(−1)peiu(

d
2−p), (2.15)

where B(eiu; d− p+ 1,−d− 1) is the incomplete beta function defined as

B(z, a, b) =
∫ z

0
ta−1(1− t)b−1 dt (2.16)

and 2F̃1(a, b, c; z) is the regularised hypergeometric function.

2F̃1(a, b, c; z) = 2F1(a, b, c; z)
Γ[c] . (2.17)

The last line of fp(u) in (2.15) comes from term n = −p in the sum. We can consider this
term as the contribution from the zero mode. Substituting this sum we obtain

− 1
2 log(detT∆Sd+1

p ) =
∫ ∞

0

dτ

2τ

∫
C

du√
4πτ

e−
ε2+u2

4τ eτν
2
pfp(u). (2.18)

Let us now perform the τ integral which results in

− 1
2 log(detT∆Sd+1

p ) =
∫
C

du

2
√
u2 + ε2

(
e−νp

√
u2+ε2fp(u)

)
. (2.19)

At this stage it is good to point out that all the previous steps could have also been
performed with ε = 0. However in the above step one would have obtained e−νp|u|/|u|
indicating the presence of branch cut. If one worked with ε = 0 one needs to keep track
of this, it is easier to do this with ε 6= 0, therefore we continue as before. We deform
the contour C from the real line to the contour C ′ which runs on the both sides of the
branch cut on the imaginary axis originating at u = iε on the u-plane as shown in figure 1.
Substituting u = it we obtain

− 1
2 log(detT∆Sd+1

p ) =
∫ ∞
ε

dt

2
√
t2 − ε2

(
eiνp
√
t2−ε2 + e−iνp

√
t2−ε2

)
fp(it). (2.20)

– 8 –
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We can now take ε→ 0 and the resulting integral is on the positive real axis in the t- plane
as shown in figure 2. Now it can be shown by explicit check that the following remarkable
identity holds2

(e( d2−p)t + e−( d2−p)t)fp(it) = 1 + e−t

1− e−t
p∑
i=0

(−1)iχdS(d−2i,p−i)(t), (2.21)

χdS(d,p)(t) =
(
d

p

)
e−t(d−p) + e−tp

(1− e−t)d . (2.22)

Therefore the partition function of the co-exact p-form reduces to

−1
2 log(detT∆Sd+1

p ) =
∫ ∞

0

dt

2t
1 + e−t

1− e−t

( p∑
i=0

(−1)iχdS(d−2i,p−i)(t)
)

(2.23)

which is an integral representation in terms of SO(1, d+1−2i) Harish-Chandra characters.
The term i = 0, is the ‘naive’ bulk character in the sense of [1] of the co-exact p-form,
while all terms i ≥ 1 constitute the ‘naive’ edge characters.

Just as a check, let us examine the co-exact 1-form, we obtain

−1
2 log(detT∆Sd+1

1 ) =
∫ ∞

0

dt

2t
1 + e−t

1− e−t

(
d
e−(d−1)t + e−t

(1− e−t)d − 1 + e−(d−2)t

(1− e−t)d−2

)
. (2.24)

We can compare this expression for the co-exact 1-form to the partition function of the
transverse traceless for s = 1. On comparing with (F.12) of [1] we see that we are missing
the non-local term logZres which in the end cancels off in (F.16). We have obtained directly
equation (F.16) of [1] which is local. This reason for this may be attributed to our different
starting point in (2.5). Ref. [1] did not have the second term which resulted from the use
of the representation of the logarithm in (2.4). As a consistency check of our approach we
repeat the analysis for rank s symmetric traceless tensors in appendix C and obtain the
same conclusions. It is interesting that our starting point directly gives the representation
of the path integral for the co-exact p-forms as well as transverse traceless tensors directly
without any non-local terms. It would also be interesting to repeat the analysis using the
starting point of [1] for the co-exact p-forms and reproduce our results, it would require
the identification of the number of killing tensors of these forms.

Let us now examine the entire bulk contribution to the partition function of the 1-form
using the expression for the path integral in (2.1) which includes the ghosts. We obtain

logZ1[Sd+1]
∣∣∣
bulk

=
∫ ∞

0

dt

2t
1 + e−t

1− e−t

(
d
e−(d−1)t + e−t

(1− e−t)d − e−dt + 1
(1− e−t)d

)
(2.25)

Thus we see that the character in the integrand can be identified with the χ̂bulk, s in
equation (G.18) for [1], which is the naive bulk character. Now to obtain the ‘flipped’
character3 from (2.25) we need to subtract the coefficient which contributes at the t→∞

2We have checked this for all values of p, d ≤ 14.
3We will review the procedure of obtaining the ‘flipped’ character in the examples discussed subsequently.
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u
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Figure 1. Integration contour in u-plane.

ε−ε

t

Figure 2. Integration contour in t-plane.

limit from the term in the curved bracket. This results in

log Z̃1[Sd+1]
∣∣∣
bulk

=
∫ ∞

0

dt

2t
1 + e−t

1− e−t

(
d
e−(d−1)t + e−t

(1− e−t)d − e−dt + 1
(1− e−t)d + 1

)
(2.26)

The procedure of ‘flipping’ does not change the coefficient of the 1/t term for even d + 1
or the IR finite term for odd d+ 1 as discussed subsequently. However as noted in [1] the
expression in the curved bracket of (2.26) coincides with the character of the unitary irre-
ducible representation of SO(1, d+1) belonging to the exceptional series which is called the
Harish-Chandra character of the massless 1-form or the rank one tensor. It is an interesting
question whether the ‘flipped’ bulk character coincides with for all p-forms coincides with
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characters of unitary irreducible representation of [1] belonging to the exceptional series.
As a small step we perform this check for the 2-form in d+ 1 = 6 below.

Finally note that the character sum in the integrand of (2.23) runs all the way over to
the 0-form in d− 2p dimensions. Therefore if 2p > d, we would have terms which grow in
t exponentially. We should then think of these characters as naive characters and convert
them to flipped characters using the rules given in [1].

Let us now apply the expression (2.23) to obtain character integral representations of
the one loop determinants of the p-form.

1-form on S4. From the expression given in (2.1) for the gauge fixed determinant of the
1-form on S4, the one loop partition function is given by

logZ1[S4] = −1
2 log(detT∆S4

1 ) + 1
2 log(det′∆S4

0 ). (2.27)

Here we have ignored the dependence on the radius of the sphere. Substituting the expres-
sion in (2.23) we obtain

logZ1[S4] =
∫ ∞

0

dt

2t
1 + e−t

1− e−t

( 1∑
i=0

(−1)iχdS(3−2i,1−i)(t)− χ
dS
(3,0)(t)

)
, (2.28)

= −
∫ ∞

0

dt

2t

(
2
(
e−t + 1

)2 (−3e−t + e−2t + 1
)

(1− e−t)4

)
.

The second line in the above equation is obtained by substituting the explicit values of
the characters given in (2.22). The coefficient of the logarithmic divergence which is a
renormalization group invariant can be obtained by examining the coefficient of 1

t of the
integrand. This is given by

logZ1[S4]|log divergence = −31
45 . (2.29)

As expected this agrees with the trace anomaly coefficient of the 1-form.4

2-form on S6. From (2.1), we see that partition function of the 2-form is given by the
following combination of the determinant of co-exact forms

logZ2[S6] = −1
2 log(detT∆S6

2 ) + 1
2 log(detT∆S6

1 )− 1
2 log(det′∆S6

0 ). (2.30)

Again we have ignored the dependence on the radius. Using the character integral repre-
sentation of the partition function of the co-exact form we get

logZ2[S6] =
∫ ∞

0

dt

2t
1 + e−t

1− e−t
( 2∑
i=0

(−1)iχdS(5−2i,2−i)(t)−
1∑
i=0

(−1)iχdS(5−2i,1−i)(t) + χdS(5,0)(t)
)
.

(2.31)
4There are several references from which this coefficient can be read out from. One reference is [21].

This paper quotes values for F̃ = (−1)
d+1

2 F for even d+ 1. Note that we are looking at the logZ = −F .
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Finally substituting the Harish-Chandra characters from (2.23) we obtain

logZ2[S6] =
∫ ∞

0

dt

2t

(
e−t + 1

)2 (3e−4t − 16e−3t + 32e−2t − 16e−t + 3
)

(1− e−t)6 . (2.32)

The trace anomaly of the conformal 2-form can be read out easily from the coefficient of
the 1

t term which is given by

logZ2[S6]
∣∣∣
log divergence

= 221
210 . (2.33)

This again agrees with coefficient of the trace anomaly for the conformal 2-form in litera-
ture, see [21]

Let us verify that if indeed the bulk character for the 2-form coincides with that of
the character of the corresponding unitary irreducible representation (UIR) of SO(1, 6)
in the exceptional series. According to the notation of [22], the 2-form coincides with
p = 3,∆ = 3, r = 2, ~x = 0 in the exceptional series.5 It corresponds to a Young tableaux of
a single column with 2 boxes or Y3 = (1, 1). The contribution to the character comes from
the second summation of equation (13) of [22]. We need to correct this by a factor of 2 as
pointed out in [1]. With this correction, the character of the UIR is given by

χdS(q = e−t, ~x = 0) = 2q
5 − 5q4 + 10q3

(1− q)5 (2.34)

Here the coefficients in the numerator are the dimensions corresponding to the singlet, a
vector and an anti-symmetric tensor of SO(5). The overall factor of 2 is the correction noted
by [1] which agrees with the older results of [23]. Now let us examine the bulk character of
the 2-form in from our analysis, we use (2.30) and extract the bulk contribution from each
of the determinants.

logZ2[S6]
∣∣∣
bulk

=
∫ ∞

0

dt

2t
1 + e−t

1− e−t

[(
5
2

)
e−2t + e−3t

(1− e−t)5 −
(

5
1

)
e−t + e−4t

(1− e−t)5 +
(

5
0

)
1 + e−5t

(1− e−t)5

]
(2.35)

We now subtract the coefficient which contributes at the t→∞ limit from the term in the
square bracket to go over to the flipped character. We obtain

log Z̃2[S6]
∣∣∣
bulk

=
∫ ∞

0

dt

2t
1 + e−t

1− e−t

[(
5
2

)
e−2t + e−3t

(1− e−t)5 −
(

5
1

)
e−t + e−4t

(1− e−t)5 +
(

5
0

)
1 + e−5t

(1− e−t)5 − 1
]

(2.36)
Simplifying the terms in the square bracket we obtain

log Z̃2[S6]
∣∣∣
bulk

=
∫ ∞

0

dt

2t
1 + e−t

1− e−t

(
20e−3t − 10e−4t + 2e−5t

(1− e−t)5

)
(2.37)

We see that terms in the curved bracket of (2.37) precisely coincides with the character
of the UIR (2.34) corresponding to the 2-form in d + 1 = 6. It will be interesting to
verify whether such a statement holds for all p-forms in arbitrary dimensions, as it was
demonstrated for the case of massless symmetric tensors in [1].6

5This ‘p’ refers to the p used in [22] not the p-form. In general for a given p-form, the ‘p’ of [22] is p+ 1.
6We have also verified the fact that the UIR of the 2-form in d+ 1 = 7 coincides with the corresponding

flipped character.
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2-form on S4. Let us now consider the case of 2-form on S4 for which 2p > d. From (2.1)
we see that the partition function is given by

logZ2[S4] = −1
2 log(detT∆S4

2 ) + 1
2 log(detT∆S4

1 )− 1
2 log(det′∆S4

0 ). (2.38)

Using the character representation in (2.23) for each of the co-exact p-forms that occur in
the above expression we obtain

logZ2[S4] =
∫ ∞

0

dt

2t
1 + e−t

1− e−t

( 2∑
i=0

(−1)iχdS(3−2i,2−i)(t)−
1∑
i=0

(−1)iχdS(3−2i,1−i)(t) + χdS(3,0)(t)
)
.

(2.39)

Note that the characters that occur for the co-exact 2-form on S4 are given by

χdS(3−2i,2−i) =
(

3− 2i
2− i

)(
e−(2−i)t + e−(1−i)t

)
(1− e−t)3−2i , (2.40)

with i running from 0 to 2 at i = 2, this naive character which grow as et and therefore
cannot be considered as character of a unitary representation of SO(1, d+ 1). This feature
also occurred in [1] for character representation of one loop determinants of massless higher
spin fields with spins ≥ 2. We can follow the same procedure developed in [1] to deal with
such naive characters. We replace the naive character by the flipped character. Let x = e−t,
and consider the character χ =

∑
k ckx

k with terms k < 0, then the flipped character is
given by

[χ]+ = χ− c0 − ck(xk + x−k). (2.41)

As explained in [1], this procedure can be thought of as a contour deformation so that
the integration is done over the negative t axis and removing zero modes from the path
integral.

Let us demonstrate this for the character corresponding to the co-exact 2-form.

χ =
2∑
i=0

(−1)iχdS(3−2i,2−i)(t) (2.42)

=
(3
2
) (
x2 + x

)
(1− x)3 −

(1
1
)
(x+ 1)
1− x +

(−1
0
) (
x−1 + 1

)
(1− x)−1 ,

= 1
x
− 1 + 10x2 + 25x3 + 46x4 + · · ·

The flipped character is then given by

[χ]+ = χ− (−1)−
(
x−1 + x

)
, (2.43)

= x(−1 + 13x− 8x2 + 2x3)
(1− x)3 .

Note the integral with the flipped character has the same UV divergence as the original
naive character. The reason is that the additional contributions to convert the naive
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p

d+ 1
2 4 6 8 10 12 14

0 1
3

29
90

1139
3780

32377
113400

2046263
7484400

5389909963
20432412000

31374554287
122594472000

1 −2 −31
45 −1271

1890 −4021
6300 −456569

748440 −1199869961
2043241200 − 893517041

1571724000

2 +4 +209
90 +221

210 +2603
2520 +13228

13365 +1296877349
1362160800 +2686807471

2918916000

3 −4 −5051
1890 −8051

5670 −5233531
3742200 −1417811

1051050 −456732097
350269920

4 +6 +16259
3780 +7643

2520 +1339661
748440 +15630799

8845200 +933250433
544864320

5 −6 −29221
6300 −12717931

3742200 −525793111
243243000 −7280049421

3405402000

6 +8 +712777
113400 +66688

13365 +33321199
8845200 +3698905481

1459458000

7 −8 −4947209
748440 −5622011

1051050 −14090853421
3405402000

8 +10 +61921463
7484400 +9469842149

1362160800 +3112707713
544864320

9 −10 −17545799561
2043241200 −2558351617

350269920

10 +12 +209714029963
20432412000 +26038135471

2918916000

11 −12 −16610757041
1571724000

12 +14 +1502508218287
122594472000

13 −14

Table 1. Logarithmic divergence in the partition function of p-forms on even spheres.

character to the flipped character in (2.41) together with the factor (1 + x)/(1 − x) in
the integral transform is an odd function of t and therefore will not contribute to the
coefficient of 1

t .
Extracting the logarithmic divergence from (2.39) we obtain

logZ2[S4]
∣∣∣
log divergence

= 209
90 . (2.44)

This coefficient agrees with the result quoted in [21].

2.2 Logarithmic divergence on even spheres

Proceeding as described in the previous section we can extract the coefficient of the loga-
rithmic divergence for p forms on spheres in even d+ 1 with 2 ≤ (d+ 1) ≤ 14. The result
is summarised in table 1.

Note that the p-forms which are Hodge dual to each other do not have the same
logarithmic divergence in the partition function. The difference in this coefficient between
such Hodge dual pair of p forms have been seen to be integer multiples of 2. Consider the
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(0, 2)-form pair on S4, from table (1) we see that the difference in the logarithmic divergence
is −2. Similarly the coefficients for (1, 3) and (2, 4)-form pairs on S6 and S8differ by +2
and −2 respectively. Now consider the (0, 4), (1, 4)-pair on S6 and S8, the coefficient of the
logarithmic divergence differ by −4 and 4 respectively. These jumps in the trace anomaly
coefficients agree with that noted earlier in [21].

2.3 IR finite term or the F-term on odd spheres

Consider the case d + 1 is odd, the character integral representation of the determinant
of the co-exact p form is given by (2.23) with the characters given in (2.22). Using the
definition of the characters it is easy to see that for d even, The characters are all even
functions of t which makes the integrand in (2.23) is an even function since the remaining
factor (1 + e−t)/t(1 − e−t) is also an even function of t. Therefore the contour in t can
be extended to the whole real line as shown in figure 3. Note that to ensure that the
integrand is IR finite one always replaces the character by the flipped character. The
additional terms one adds to flip the character is always even and the flipped character by
construction converges as t→∞ in the complex plane. This enables us to close the contour
using a large semi-circle in either the upper half or lower half plane. In figure 3 we have
chosen to close the contour D in the upper half plane. The integral then can evaluated
by summing over the residues that occur on the imaginary axis. This results in the IR
finite term. The IR finite term of the partition function is negative of what is known as
the F-term in the literature. We illustrate this method in two examples.

2-form on S7. The character for the co-exact 2-form in d = 6 is given by

χ(t) =
2∑
i=0

(−1)iχdS(6−2i,2−i)(t), (2.45)

= 1− 2x+ 3x2 + 52x3 + 242x4 + · · · , x = e−t

Therefore the flipped character is given by

[χ(t)]+ = χ(t)− 1. (2.46)

The IR finite term is obtained by evaluating the integral

−1
2 log(detT∆S7

2 )
∣∣∣∣
IR finite

=
∫
D

dt

4t
1 + e−t

1− e−t [χ(t)]+ (2.47)

Here D is the contour in the upper half plane as shown in figure 3. Then evaluating the
residues we obtain

−1
2 log(detT∆S7

2 )
∣∣∣∣
IR finite

= 9
32π2 ζ(3) + 1

16π4 ζ(5)− 15
64π6 ζ(7). (2.48)
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D

ε−ε

t

Figure 3. Contour for extracting the contribution of IR finite term in odd spheres.

2-form on S3. The naive character for the co-exact 2 form in d = 2 is given by

χ(t) =
2∑
i=0

(−1)iχdS(2−2i,2−i)(t), (2.49)

= 1
x2 −

2
x

+ 3 + 5x2 + 6x3 + 8x4 + · · ·

Therefore the flipped character is given by

[χ(t)]+ = χ(t)− 3 + 2(et + e−t)− (e−2t + e−2t). (2.50)

Proceeding as before, the IR finite contribution to the one loop determinant is given by

−1
2 log(detT∆S7

2 )
∣∣∣∣
IR finite

=
∫
D

dt

4t
1 + e−t

1− e−t [χ(t)]+, (2.51)

= − 1
4π2 ζ(3).

We use the method described to obtain the values of the IR finite terms for p forms for
0 ≤ p ≤ 7 in 3 ≤ d + 1 ≤ 9. We have compared the results of these finite terms wherever
possible with the results of [21] and noted that they agree. For instance the results of
the IR finite part evaluated in equations (2.29)–(2.34) of [21] agree with the corresponding
values in table 2. There are differences in sign, due to the fact that what is quoted in [21]
is a quantity called F̃ = (−1)d/2 times the sphere free energy in odd d+ 1, while we have
evaluated logZ which is negative of the free energy. It is easy to observe the IR finite part
respects Hodge duality as was seen earlier in [20, 21]. For example the values of the IR
finite part for the Hodge-dual pair of forms (0, 1) in d = 2 agree. The same property holds
for the pairs (0, 3), (1, 2) in d = 4, other Hodge-dual pairs can be seen in table 2.
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d+ 1 p = 0

3 − ζ(3)
4π2

5 − 23ζ(3)
48π2 + ζ(5)

16π4

7 949ζ(3)
1440π2 + 13ζ(5)

48π4 − ζ(7)
64π6

9 − 16399ζ(3)
20160π2 + 2087ζ(5)

3840π4 + ζ(9)
256π8 − 31ζ(7)

256π6

d+ 1 p = 1

3 − ζ(3)
4π2

5 5ζ(3)
16π2 + 3ζ(5)

16π4

7 179ζ(3)
288π2 + 17ζ(5)

48π4 − 5ζ(7)
64π6

9 841ζ(3)
960π2 + 1249ζ(5)

3840π4 + 7ζ(9)
256π8 − 101ζ(7)

256π6

d+ 1 p = 2

5 5ζ(3)
16π2 + 3ζ(5)

16π4

7 49ζ(3)
144π2 − 7ζ(5)

24π4 − 5ζ(7)
32π6

9 − 1987ζ(3)
2880π2 + 21ζ(9)

256π8 − 2333ζ(5)
3840π4 − 71ζ(7)

256π6

d+ 1 p = 3

5 ζ(5)
16π4 − 23ζ(3)

48π2

7 − 49ζ(3)
144π2 − 7ζ(5)

24π4 − 5ζ(7)
32π6

9 205ζ(3)
576π2 + 91ζ(5)

256π4 + 75ζ(7)
256π6 + 35ζ(9)

256π8

d+ 1 p = 4

7 179ζ(3)
288π2 + 17ζ(5)

48π4 − 5ζ(7)
64π6

9 205ζ(3)
576π2 + 91ζ(5)

256π4 + 75ζ(7)
256π6 + 35ζ(9)

256π8

d+ 1 p = 5

7 − 949ζ(3)
1440π2 + 13ζ(5)

48π4 − ζ(7)
64π6

9 − 1987ζ(3)
2880π2 + 21ζ(9)

256π8 − 2333ζ(5)
3840π4 − 71ζ(7)

256π6

d+ 1 p = 6

9 841ζ(3)
960π2 + 1249ζ(5)

3840π4 + 7ζ(9)
256π8 − 101ζ(7)

256π6

d+ 1 p = 7

9 − 16399ζ(3)
20160π2 + 2087ζ(5)

3840π4 + ζ(9)
256π8 − 31ζ(7)

256π6

Table 2. IR finite part of the partition function on odd spheres.

3 p-forms on anti-de Sitter space

The construction of the partition function of gauge fixed p-form field on AdSd+1 proceeds
along the same lines as that done for the sphere. The partition function is given by

Zp[AdSd+1] =
[ 1

detT ∆p

detT ∆p−1
detT ∆p−2

· · ·
(detT ∆1

det ∆0

)(−1)p] 1
2
, (3.1)

where detT ∆p denotes the determinant of Hodge de-Rham Laplacian of co-exact p-form
field and det ∆0 is the determinant of 0-form on AdS. Note that the 0-form Laplacian does
not have a discrete zero mode unlike the case for spheres. Therefore the one loop path
integral does not contain the volume of AdS. The expression implies again that the key
ingredient to evaluate the partition function is the determinant of the co-exact p-forms
on AdS. In section 3.1 we will show that these determinants can be written in terms of
Harish-Chandra characters of the anti-de Sitter group. In section 3.2 we evaluate the trace
anomaly coefficient in AdSd+1 with d+ 1 even and show that it is proportional to that of
Sd+1 as expected since these spaces are conformally flat.

3.1 Determinant of co-exact p-forms as character integrals

To evaluate determinants, we need both the eigen values and their degeneracies of the
Hodge-deRham Laplacian. Since AdS is non-compact, the eigen values are part of con-
tinuous spectrum distributed through a measure known as the Plancherel measure. These

– 17 –



J
H
E
P
0
9
(
2
0
2
1
)
0
9
4

eigen values of the Laplacian are given by [24]

∆pψ
(ui)
λ = −

(
λ2 +

(
d

2 − p
)2)

ψ
(ui)
λ , (3.2)

where λ runs from 0 to ∞ and ψ
(ui)
λ is the basis of eigen functions for co-exact p-forms.

The Plancherel measure is given by [24]

µp(λ) = N(d)ĝ(p)×


λ tanh(πλ)

∏ d
2
j= 1

2
(j2+λ2)

( d2−p)
2+λ2

, for d odd∏ d
2
j=0(j2+λ2)

( d2−p)
2+λ2

, for d even
(3.3)

where the product runs over half integers for d odd and integers for d even. The normal-
izations are given by

N(d) = Vol(AdSd+1)
2dΓ(d+1

2 )π
d+1

2
, ĝ(p) = d!

p!(d− p)! . (3.4)

By Vol(AdSd+1) we refer to the regularised volume given by

Vol(AdSd+1) =


π
d
2 Γ
(
−d

2

)
, for d odd

2(−π)
d
2

Γ( d2 +1) log R̃ for d even.
(3.5)

Here R̃ is the dimensionless IR cutoff, the ratio fo the radial cutoff to the radius of AdS.
Using these inputs let us proceed to evaluate the determinant of the co-exact p-form

−1
2 log(detT∆AdSd+1

p ) = −1
2

∫ ∞
0

dλµp(λ) log
[
λ2 +

(
d

2 − p
)2]

. (3.6)

We again replace the logarithm by the identity in (2.4) to obtain

− 1
2 log(detT∆AdSd+1

p ) =
∫ ∞

0

dτ

2τ

∫ ∞
0

dλµp(λ)(e
−τ
(
λ2+( d2−p)

2
)
− e−τ ). (3.7)

The integral over the Plancherel measure vanishes∫ ∞
0

dλµp(λ) = 0. (3.8)

Just as in the case of equation (2.7) for spheres, we obtain this result in (3.8) by choosing d
to be sufficiently negative and then analytically continuing the result to positive d.7 Thus
we can proceed by regulating only the first term which results in

− 1
2 log(detT∆AdSd+1

p ) =
∫ ∞

0

dτ

4τ e
− ε

2
4τ

∫ ∞
−∞

dλµp(λ)e
−τ
(
λ2+( d2−p)

2
)
. (3.9)

7Since µp(λ) is an even function of λ, it is equivalent to show
∫∞
−∞ dλµp(λ) = 0. By replacing µp(λ)

with its Fourier transform Wp(u) and performing the integration over λ we see that we get
∫∞
−∞ dλµp(λ) =

limu→0 Wp(u). From (3.24) we see that in this limit Wp(u) vanishes for sufficiently large negative d.
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Here we have used the fact that the Plancherel measure is symmetric in λ. We now write
the Plancherel measure in terms of its Fourier transform.

µp(λ) =
∫
C

du

2πe
−iλuWp(u). (3.10)

Here C is a contour chosen to ensure the Fourier transform is well defined, which will be
detailed subsequently. The contour differs when d+ 1 is even or odd. We will denote this
as Ce, Co respectively. Substituting (3.10) in (3.9) and performing the integration over λ,
we obtain

− 1
2 log(detT∆AdSd+1

p ) =
∫
C
du

∫ ∞
0

dτ

8(πτ3)
1
2
e−

ε2+u2
4τ −τ( d2−p)

2
Wp(u). (3.11)

After integration over τ we obtain

− 1
2 log(detT∆AdSd+1

p ) =
∫
C

du

4
√
u2 + ε2

e−( d2−p)
√
u2+ε2Wp(u). (3.12)

We can take the ε → 0 limit at the end.8 Thus the task of determining the one loop
determinant is reduced to finding the Fourier transform Wp(u).

Fourier transform of the Plancherel measure. To construct the Fourier transform
Wp(u), consider the ratio of the Plancherel measure of the p-form to the 0-form. From (3.3)
we see that this is given by

µp(λ)
µ0(λ) = ĝ(p)

λ2 +
(
d
2

)2

λ2 +
(
d
2 − p

)2 . (3.13)

From the definition of the Fourier transform in (3.10), the inverse is given by

Wp(u) =
∫ ∞
−∞

dλeiλuµp(λ), (3.14)

where the integral is on the real line. Using the relation in (3.13), we obtain the following
the following differential equation satisfied by Wp(u).

d2

du2Wp(u)−
(
p− d

2

)2
Wp(u) = ĝ(p)

(
d2W0(u)
du2 − d2

4 W0(u)
)
. (3.15)

Here we have assumed that the derivative with respect to u can be taken inside the integral
involved in the defining the Fourier transform. W0(u) has been constructed in [8], On
substituting W0(u) the differential equation in (3.15) becomes an inhomogenous second
order ordinary differential equation for Wp(u).

Before we solve the differential equation, let us recall the construction of W0(p) which
was done in [8]. For both even and odd d it is given by

W0(u) = 1 + e−u

1− e−u
e−

d
2u

(1− e−u)d . (3.16)

8After performing the integration over τ one gets the factor | d2 − p| in the exponent. We have chosen
one branch since we expect the answer to be analytic in d, p. This will be seen in the subsequent analysis.
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However the contour relating W0(u) to the Plancherel measure in (3.10) is different in even
and odd dimensions.

For d+ 1 even: the contour is given by

µ0(λ) = 1
2

(∫
R+iδ

+
∫
R−iδ

)
du

2πe
−iλuW0(u), d+ 1 even. (3.17)

The contour is the sum of the line integrals above and below the real line. Since W0(u)
has no branch cuts on the real line, the two line integrals can be replaced by a single line
integral above the real line as shown in figure 4. We call this contour Ce. The normalization
of W0 is such that results in the factor N(d) in (3.4) for d+ 1 even in µ0(λ).9

For d + 1 odd, the contour for obtaining the Plancherel measure from its Fourier
transform is given by

µ0(λ) = − i
π

log(R̃)
(∫

R−iδ
−
∫
R+iδ

)
du

2πe
−iλuW0(u). (3.18)

Since W0(u) has no branch cuts on the real line, the contour can be deformed to a small
circle around the origin as shown in figure 5. We call this contour Co. Again, the normal-
ization of W0 and the factors in the equation (3.18) are such that results in the factor N(d)
in (3.4) for d+ 1 odd.

We can now substitute W0 in the r.h.s. of (3.15) we obtain

d2

du2Wp(u)−
(
p− d

2

)2
Wp(u) = (d+ 2)!

p!(d− p)!
(1 + e−u)e−

(d+2)
2 u

(1− e−u)d+3 . (3.19)

For p 6= d
2 , the general solution of the differential equation is given by the following function

depending on constants c1, c2.

F (x) = c1x
d
2−p + c2x

p− d2 + (3.20)
x−

d
2−pΓ(d+ 3)

(d− 2p)Γ(p+ 1)Γ(d− p+ 1)

{
x2p[B(x; d−p+1,−d−1)− 2B(x; d−p+1,−d−2)]

+xd[2B(x; p+ 1,−d− 2)−B(x;p+ 1,−d− 1)]
}
.

To fix the integration constants, let us first expand in small x, we get

F (x) = c1x
p− d2 + c2x

1
2 (d−2p)

d− 2p + · · · (3.21)

To fix the boundary conditions, we demand that Wp(u) is analytic in p. Therefore we
demand that at p = 0, the function obeys the expansion obeyed by W0 given in (3.17).
This implies that we set c1 = 0. Further more note that W0 has a zero at x = −1, this
must be true forWp as well, since the factor 1+x

1−x arises due to the kinematic factor that the

9Our normalization of W0(u) differs from that in [8].
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we are examining partition functions for bosons.10 Thus, setting c1 = 0 and demanding
that Wp(x) admits a zero at x = −1 we obtain

c2 = Γ(d+ 3)
Γ(p+ 1)Γ(d− p+ 1) (3.22)

×
{

2(−1)2p−dB(−1; d− p+ 1,−d− 2) + (−1)2p−d+1B(−1; d− p+ 1,−d− 1)

−2B(−1; p+ 1,−d− 2) +B(−1; p+ 1,−d− 1)
}
.

Imposing these boundary conditions lead to the following expression for Wp(x)

Wp(x) = x−
d
2−pΓ(d+ 3)

(d− 2p)Γ(p+ 1)Γ(d− p+ 1)

{
x2p[B(x; d−p+1,−d−1)− 2B(x; d−p+1,−d−2)

]
+2(−1)2p−dxdB(−1; d− p+ 1,−d− 2) + (−1)−d+2p+1xdB(−1; d− p+ 1,−d−1)
+xd

[
2B(x; p+ 1,−d− 2)−B(x; p+ 1,−d− 1)

−2B(−1; p+ 1,−d− 2) +B(−1; p+ 1,−d− 1)
]}
. (3.23)

Though this expression for Wp(x) seems non-illuminating, it can be written in terms of
AdS Harish-Chandra characters as follows

Wp(u)e(− d2 +p)u = 1 + e−u

1− e−u
p∑
i=0

(−1)i
(
d− 2i
p− i

)
e−(d−p−i)u

(1− e−u)d−2i , (3.24)

= 1 + e−u

1− e−u
p∑
i=0

χAdS
(d−2i,p−i),

χAdS
(d−2i,p−i) =

(
d− 2i
p− i

)
e−(d−p−i)u

(1− e−u)d−2i .

We have verified the above identity for all p-forms in dimensions 2 ≤ d ≤ 20. We would
like to emphasise that as a cross check we have also directly verified that Wp(u) given
in (3.24) solves the differential equation for Wp(u) in (3.15). In the appendix B for d + 1
even, we have performed the Fourier transform in (3.14) using the method of residues and
have demonstrated that the result for Wp(u) is as given in (3.24). Therefore the method of
residues provides another cross check especially for the choice of the boundary conditions
we used in the differential equation (3.15) to obtain Wp(u).

Let us now examine the case p = d
2 , this situation occurs only when d+ 1 is odd. This

case needs a separate discussion one of the independent solution becomes logarithmic. For
this case the differential equation determining Wp(u) reduces to

d2

du2Wp(u) =
Γ(2p+ 3) (e−u + 1)

(
e−(p+1)u

)
Γ(p+ 1)2 (1− e−u)2p+3 , p = d

2 . (3.25)

10The partition function of the simple harmonic oscillator also admits such a factor [1].
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The most general solution of this differential equation is given by

F (x) = c1 log(x) + c2 + xp+1Γ(2p+ 3) 2F̃1(p+ 1, 2p+ 2; p+ 2;x)
Γ(p+ 2) , (3.26)

where x = e−u and
2F̃1(p+ 1, 2p+ 2; p+ 2;x) is the regularised hypergeometric function defined in (2.17).

It is clear that we need to set c1 = 0 if we wish to obtain an expression in terms of
Harish-Chandra characters. Again demanding that F (x) has a zero at x = −1, we obtain

c2 = (−1)pΓ(2p+ 3)
Γ(p+ 2) 2F̃1(p+ 1, 2p+ 2; p+ 2;−1), (3.27)

= (−1)p.

Substituting these boundary conditions, the solution of the differential equation for
p = d

2 is given by

Wp= d
2
(x) = Γ(2p+ 3)

Γ(p+ 2) xp+1
2F̃1(p+ 1, 2p+ 2; p+ 2;x) + (−1)p, p = d

2 (3.28)

Again it can be verified that the above expression can be written in terms of Harish-Chandra
characters as follows

Wp= d
2
(u) = 1 + e−u

1− e−u
p∑
i=0

(−1)iχAdS
(d−2i,p−i), p = d

2 (3.29)

where we have re-introduced u = − log x. Note that in this case p = d
2 , ν = d

2 − p = 0.
As a cross check we have also verified that the Fourier transform in (3.29) satisfies the
differential equation (3.25).

We conclude that for all value of p, d, the expression for the transform Wp(u) is given
in (3.24).

The one loop determinant. Let us now finally use Wp(u) in equation (3.12) to write
down the one loop determinant of the co-exact p-form on AdSd+1. For this we need to
specify the contour C. We have already used the fact that our results should be continuous
in p. Therefore we choose the contour to be the same as the one used for the case p = 0
in (3.17) and (3.18) for d+ 1 even and d+ 1 odd respectively.

For even d+ 1 substituting (3.24) in (3.12) and using the contour in (3.17) we obtain

−1
2 log(detT∆AdSd+1

p ) = 1
2

(∫
R+iδ

+
∫
R−iδ

)
du

4
√
u2 + ε2

e(−
d
2 +p)√u2+ε2Wp(u), (3.30)

Wp(u)e(−
d
2 +p)u = 1 + e−u

1− e−u
p∑
i=0

(−1)i
(
d− 2i
p− i

)
e−(d−p−i)u

(1− e−u)d−2i , d+ 1 even.

Since there is no branch cut on the real line, the contour below the real line and above
the real line are equivalent. The contour is shown in figure 4. Furthermore note that
Wp(u) = Wp(−u) when d+ 1 is even. The remaining terms in the integrand are symmetric
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Ce
ε

−ε

u

Figure 4. Contour Ce in the u-plane for even AdSd+1.

in u. Thus we can restrict the integral over the positive real axis. Using these inputs and
finally taking the ε→ 0 limit, we obtain

−1
2 log(detT∆AdSd+1

p ) =
∫ ∞

0

du

2u
1 + e−u

1− e−u
p∑
i=0

(−1)iχAdS
(d−2i,p−i)(u), d+ 1 even. (3.31)

For d + 1 odd, we substitute (3.24) in (3.12) and use the contour (3.17). This results
in the following

−1
2 log(detT∆AdSd+1

p ) = 1
2πi log(R̃)

(∫
R−iδ

−
∫
R+iδ

)
du

2
√
u2 + ε2

e(−
d
2 +p)√u2+ε2Wp(u),

d+ 1 odd. (3.32)

The branch cut in the integrand occurs only on the imaginary axis, choosing chosing δ � ε,
we can deform the contour to a small circle around u = 0 and then take ε→ 0. The contour
is shown in figure 5. Therefore we obtain

−1
2 log(detT∆AdSd+1

p ) = 1
2πi log(R̃)

∫
C0

du

2u
1 + e−u

1− e−u
p∑
i=0

(−1)iχAdS
(d−2i,p−i)(u), d+ 1 odd.

(3.33)

In the next section we will verify that (3.31) is indeed the expression for the one loop
partition of all p-forms in even dimensional AdS space by comparing it to corresponding
partition function on even dimensional spheres. For the odd dimensions we will provide a
cross check that (3.33) is the partition function for p = d

2 in section 4.2.

3.2 Trace anomaly cross check for even AdS

In conformally flat backgrounds and in even dimensions, free energies are proportional to
the trace anomaly coefficient ad+1, that appears with the Euler density as defined by the
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Coε

−ε

u

Figure 5. Contour Co in the u-plane for even AdSd+1.

expectation value of the trace of the stress tensor

〈Tµµ 〉 = 1
(4π)

d+1
2

∑
j

c(d+1)jI
(d+1)
j+1 − (−1)

(d+1)
2 ad+1Ed+1

 . (3.34)

Here Ed+1 is the Euler density which is given by

Ed+1 = 1
2
d+1

2
δ
ν1···νd+1
µ1···µd Rµ1µ2

ν1ν2 · · ·R
µdµd+1
νdνd+1 (3.35)

and I(d+1)
j are independent Weyl invariants of weight −(d+1). It is known that for instance

in d + 1 = 4 dimensions, the variation of the partition function in conformally flat back
ground with respect to the metric is given by [25, 26]

2
√
g

δ logZ
δgµν

= 〈Tµν〉, (3.36)

= − a4
(4π)2

(
gµν

(
R2

2 −R
2
λρ

)
+ 2RµλRνλ −

4
3RR

µν

)
.

This equation is true for both S4 and AdS4, both these spaces are conformally flat. Inte-
grating the above equation, we obtain

logZ = a4

∫
d4x
√
gS(R(2)). (3.37)

Here S(R(2)), refers to a function made of the various quadratic invariants of the curvature
tensor. Now the curvature tensor on spheres and anti-de Sitter spaces of unit radius differ
just by a sign.

Rµνρσ|Sd+1 = gµρgνσ − gµσgνρ, Rµνρσ|AdSd+1 = gµσgνρ − gµρgνσ. (3.38)
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This implies that S(R(2)) evaluated on AdS4 and S4 would be identical. Furthermore since
both the spaces are Einstein, we see that S(R(2)) would be constant in the space. This
leads us to conclude

logZ[AdS4]
logZ[S4] = Vol(AdS4)

Vol(S4) = 1
2 . (3.39)

To obtain the last line we have substituted the regularised volume of AdS4 given in (3.5)
and the volume of sphere given by

Vol(Sd+1) = 2 π
d
2 +1

Γ
(
d
2 + 1

) , (3.40)

which results in
Vol(AdSd+1)

Vol(Sd+1) = (−1)
d+1

2

2 . (3.41)

We can repeat this analysis in d+ 1 = 6. In this case, the equation corresponding to (3.38)
is known and is given by [26]

2
√
g

δ logZ
δgµν

= 〈Tµν〉, (3.42)

= − a6
(4π)3

[3
2R

µ
λR

ν
σR

λσ − 3
4R

µνRλσR
σ
λ −

1
2g

µνRσλR
λ
ρR

ρ
σ,

−21
20R

µλRνλR+ 21
40g

µνRσλR
λ
σR+ 39

100R
µνR2 − 1

10g
µνR3

]
.

Integrating this equation we get

logZ = a6

∫
d6x
√
gS(R(3)), (3.43)

where the S(R(3)) is a function of cubic invariants constructed out of the curvature tensor.
Using the fact that the curvature tensor on AdS and the sphere differ by a sign as in (3.38),
we see that

S(R(3))|AdS6 = −S(R(3))|S6 . (3.44)

Using (3.43), (3.41) and (3.44) we conclude that

logZ[AdS6]
logZ[S6] = −Vol(AdS6)

Vol(S6) = 1
2 . (3.45)

Indeed noting the fact that the Euler density in (3.35) is a homogenous polynomial com-
posed of curvature tensors of order d+1

2 allows us to conclude that in d+ 1 dimensions that
the free energies are given by

logZ = ad+1

∫
dd+1x

√
gS(R( d+1

2 )). (3.46)
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Here S
(
R( d+1

2 )) is a function invariants made of d+1
2 powers of the curvature tensor. From

the properties of the curvature in AdS and spheres we have

S
(
R( d+1

2 )) |AdSd+1 = (−1)
d+1

2 S
(
R( d+1

2 )) |Sd+1 . (3.47)

Then from (3.46), (3.41) and (3.47) we conclude

logZ[AdSd+1]
logZ[Sd+1] = (−1)d+1 Vol(AdSd+1)

Vol(Sd+1) = 1
2 . (3.48)

Thus from the trace anomaly we can conclude that free energies in two conformally flat
backgrounds is the same functional of the curvatures. This leads to the prediction that the
ratio of free energies in even dimensional AdS and spheres is half. Since we have written
down the partition function in both these spaces in terms of Harish-Chandra characters we
can verify that this prediction is indeed true.

Let us examine the coefficient of the logarithmic divergence of the partition function.
This is the only term which does not depend any prescription to regulate the integral
in (3.31). The logarithmic divergence is determined by the coefficient of the 1

u term of the
integrand. This can be extracted by considering a small circle Cr of radius r around the
origin. Therefore the coefficient of the logarithmic divergence of the partition function of
the co-exact p-form in even AdSd+1 given in (3.31)

−1
2 log(detT∆AdSd+1

p )|log divergence = 1
2πi

∫
Cr

du

2u
1 + e−u

1− e−u
p∑
i=0

(−1)i
(
d− 2i
p− i

)
e−u(d−p−i)

(1− e−u)d−2i

= 1
2πi

∫
Cr

du

2u
1 + eu

1− eu
p∑
i=0

(−1)i
(
d− 2i
p− i

)
eu(p−i)

(1− eu)d−2i .

(3.49)

In the last line we have also used the fact that d+ 1 is even. Note that in this integration
u = riθ, and θ runs from 0 to 2π. The result is invariant if we start the contour at θ from π

and take it all the way to 3π in the counter-clock wise direction. The contour still remains
the same. This effectively is a change of variable θ → θ̂ + π, where θ̂ runs from 0 to 2π.
But performing this change of variables sends u→ −u. Therefore we see that

−1
2 log(detT∆AdSd+1

p )|log divergence (3.50)

= 1
2πi

∫
Cr

du

2u
1 + e−u

1− e−u
p∑
i=0

(−1)i
(
d− 2i
p− i

)
e−u(p−i)

(1− e−u)d−2i .

As a cross check we have explicitly verified that indeed that coefficient of the 1
u term

in (3.50) agrees with that of (3.49). Now adding (3.49) and (3.50) we see that

−1
2 log(detT∆AdSd+1

p )|log divergence = 1
2

1
2πi

∫
Cr

du

2u
1 + e−u

1− e−u

( p∑
i=0

(−1)iχdSd−2i,p−i(u)
)
,

= −1
4 log(detT∆Sd+1

p )|log divergence. (3.51)
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In the first line of the above equation we have used the definition of the SO(1, d+1) Harish-
Chandra character given in (2.22). We have shown that the coefficient of the logarithmic
divergence in the partition function of the co-exact p-form on even dimensional AdSd+1
is half that on the even sphere Sd+1. Therefore it is clear that the same fact holds for
the logarithmic divergence of the partition function of the p-forms in these spaces since
the co-exact forms form the key ingredient of the partitions functions as given by (2.1)
and (3.1). This concludes our check of prediction given in (3.48).

4 Hyperbolic cylinders and branched spheres

In this section we study one loop partition functions of conformal scalars as well as confor-
mal p-forms on hyperbolic cylinders. We show these partition functions can be written in
terms of Harish-Chandra characters. Partition functions on hyperbolic cylinders naturally
arise on evaluating entanglement entropy of conformal field theories across a spherical en-
tangling surface [27]. When the ratio of the radius of S1 to that of AdS is q the cylinder
is referred to as S1

q × AdSd. Then the Rényi entropy across a spherical entangling surface
can be evaluated given the partition function of a conformal field theory on the hyperbolic
cylinder. The work of [1, 8] and the previous sections in this paper have demonstrated
that one loop partition functions on spheres and anti-de Sitters spaces have nice character
integral representations. It is natural to ask the question whether the same can be said
about the partition functions on hyperbolic cylinders.

Hyperbolic cylinders S1
q × AdSd are known to be conformally equivalent to branched

spheres Sd+1
q [27]. Therefore we expect that the character representation of the partition

function of conformal scalars on hyperbolic cylinders to agree with that of the branched
sphere. In section 4.1 we indeed show that this expectation is true. In section 4.2 we show
that the character integral representation of conformal p-form partition functions on the
hyperbolic cylinder agrees with only the bulk character of the corresponding partition func-
tion on the sphere. This is consistent with the earlier observations of [14–16, 19, 28, 29] that
partition function on hyperbolic cylinders miss out the edge modes or the non-extractable
classical contribution to entanglement entropy. The character integral representation of
the conformal p-form we derive generalises the observation seen first for 1-forms, to confor-
mal p-forms in arbitrary dimensions. Finally in section 4.3, we obtain a character integral
representation for 1-forms in arbitrary dimensions on branched spheres. Using this input,
together with the observations for character representation of conformal p-forms on hyper-
bolic cylinders S1

q ×AdSd we propose the character integral representation of the partition
functions of co-exact p-form on branched spheres in all dimensions. We verify that this
proposal agrees with previous evaluations of these partition functions by [18].

4.1 Conformal scalars

We will first evaluate the partition function of conformal scalars on the hyperbolic cylinder
and show that it can be written in terms of Harish-Chandra characters. We will see these
characters turn out to be characters for the sphere and the partition function is identical
to that of conformal scalars on the branched sphere.
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Conformal scalars on S1
q ×AdSd. The Weyl invariant action of the real scalar in d+1

dimensions is given by

S = −1
2

∫
dd+1x

√
g

(
∂µφ∂

µφ+ d− 1
4d Rφ2

)
. (4.1)

Here R is the curvature. The metric on S1
q ×AdSd is given by

ds2
S1
q×AdSd = dτ2 + du2 + sinh2 udΩ2

d−1, (4.2)

where τ is the coordinate on the circle with the identification τ ∼ τ + 2πq. The radial
coordinate on AdSd is u and Ωd−1 refers to the d − 1 sphere. Using this metric, we can
evaluate the curvature scalar on the hyperbolic cylinder which is given by

R|S1
q×AdSd = −d(d− 1). (4.3)

The partition function of Weyl invariant scalar on this background is given by the deter-
minant

Z[S1
q ×AdSd] =

 1
det(−∂2

τ −∆0 +m2
S1
q×AdSd

)

 1
2

, (4.4)

where the mass arises from the curvature coupling and is given by

m2
S1
q×AdSd = −

(
d− 1

2

)2
. (4.5)

Here ∆(0) is the spin-0 Laplacian on AdSd. We decompose the scalar using the eigen modes
of the spin-0 Laplacian on AdSd and the Kaluza-Klein modes on the circle S1. The eigen
values of the spin-0 Laplacian on AdSd are given by

∆(0)ψ
{λ,u} = −

[
λ2 +

(
d− 1

2

)2]
ψ
{λ,u}
λ , (4.6)

ψ{λ,u} are the corresponding eigen functions, {u} labels other quantum numbers on AdSd.
Using these eigen values and the Kaluza-Klein decomposition of the partition function. we
obtain

logZ[S1
q ×AdSd] = −1

4

∞∑
n=−∞

∫ ∞
−∞

dλµ
(d)
0 (λ) log

(
n2

q2 + λ2
)
. (4.7)

Note that the shift in the eigen value of the Laplacian in (4.6) precisely cancels the mass
due to the curvature coupling. The mass in (4.5) saturates the Brietenholer-Freedman
bound. We have labelled the Plancherel measure for scalars with the superscript (d) to
indicate that we are in AdSd. This measure is given by the expressions in (3.3), with p = 0
and d → d − 1 since we are in AdSd. We replace the logarithm by the identity in (2.4)
to obtain

logZ[S1
q ×AdSd] = 1

4

∫ ∞
0

dτ

τ

∞∑
n=−∞

∫ ∞
−∞

dλµ
(d)
0 (λ)

(
e
−τ
(
λ2+n2

q2

)
− e−τ

)
. (4.8)
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Just as in the case of (3.8), by analytically continuing from large negative d we have∫ ∞
0

dλµ
(d)
0 = 0. (4.9)

Therefore we can proceed by regulating the first term as

logZ[S1
q ×AdSd] =

∫ ∞
0

dτ

4τ e
− ε

2
4τ

∫ ∞
−∞

dλµ
(d)
0 (λ)

(
e−τλ

2 + 2
∞∑
n=1

e
−τ
(
λ2+n2

q2

))
. (4.10)

Now replace the Plancherel measure by its Fourier transform given by

W
(d)
0 (u) = 1 + e−u

1− e−u
e−

d−1
2 u

(1− e−u)d−1 . (4.11)

Note that here d in equation (3.16) has been replaced by d − 1 as we are in AdSd. Then
following the same steps as in equations (3.9), (3.11) and (3.12) we are led to

logZ[S1
q ×AdSd] =

∫
C

du

4
√
ε2 + u2

(
1 + 2

∞∑
n=1

e
−n
q

√
ε2+u2

)
W

(d)
0 (u). (4.12)

Here the contour is Co or Ce as defined in figure 4 and figure 5 depending on whether d is
odd or even respectively.

For the case when d is even substituting W d
0 and using the contour Ce as shown in

figure 4 we obtain

logZ[S1
q ×AdSd] = 1

2

∫
R+iδ

du

2u
1 + e−u

1− e−u
e−

d−1
2 u

(1− e−u)d−1
1 + e

− 1
q

√
ε2+u2

1− e−
1
q

√
ε2+u2 . (4.13)

We have summed the geometric series in (4.12). We can use the fact that the integrand is
even to integrate only over the positive real axis, and then take the ε → 0 limit and then
take δ → 0. Thus we arrive at

logZ[S1
q ×AdSd] =

∫ ∞
0

du

2u
1 + e

−u
q

1− e−
u
q

χdS(d,0) conf(u), (4.14)

where the SO(1, d+ 1) Harish-Chandra character is given by

χdS(d,0) conf(u) = e−
(d−1)

2 t + e−
d+1

2 t

(1− e−t)d . (4.15)

We observe that this character corresponds to that of the conformal scalar on Sd+1.
The SO(1, d+ 1) Harish-Chandra character of the scalar of mass m is given by

χdS(d,0) ν(u) = e−( d2 +iν)t + e−( d2−iν)t

(1− e−t)d (4.16)

and ν is related to the mass by the following

iν =

√
d2

4 −m
2. (4.17)
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This mass induced by the curvature coupling on the sphere Sd+1 can be read out from (4.1)
with R = d(d+ 1). We see that this mass is

m2
Sd+1 = d2 − 1

4 . (4.18)

Substituting this mass in (4.17) we see that the Harish-Chandra character reduces to that
seen in (4.14).

We can proceed with the same analysis for the case of d is odd. The analysis is identical
except that the contour Ce is replaced by Co of figure (5). The result is given by

logZ[S1
q ×AdSd] = log(R̃)

2πi

∫
Co

du

2u
1 + e

−u
q

1− e−
u
q

χdS(d,0) conf(u). (4.19)

The interesting thing to note from (4.14) and (4.19) is that we stared with the
SO(2, d− 1) Harish-Chandra characters on AdSd. The sum over all the Kaluza-Klein
modes resulted in SO(1, d+1) Harish-Chandra characters. Note that the we have included
the zero Kaluza-Klein mode as well. In literature usually this is omitted since it just re-
sults it is q independent [30]. However we see here that it is including this term, that the
integrand organises as a character. Furthermore observe that at q = 1, these results are
identical to partition function of the conformal scalar on sphere Sd+1. Indeed, we will show
that the partition function of conformal scalars on branched spheres Sd+1

q precisely agrees
with that obtained in (4.14) and (4.19) for S1

q ×AdSd.

Conformal scalars on branched spheres Sd+1
q . The metric on the branched sphere

is given by
ds2|Sd+1

q
= cos2 φdτ2 + dφ2 + sin2 φdΩ2

d−1, (4.20)

where τ ∼ τ + 2πq and 0 ≤ φ ≤ π
2 . Given the Weyl invariant action (4.1) and the Ricci

curvature R = d(d+ 1), the partition function of conformal scalar on the branched sphere
can be written as

Z[Sd+1
q ] = 1

det(−∆0 +m2
Sd+1
q

)
1
2
. (4.21)

The curvature induced mass can be read off from (4.18).
The eigenvalue and their corresponding degeneracies for the scalar Laplacian on the

branched sphere are known [31]. They are labelled by 2 integers

λ(0)
n,m = (n+ m

q
)(n+ m

q
+ d), n,m ∈ {0, · · ·∞} (4.22)

with degeneracies

g
(0)
n,m=0 =

(
d+ n− 1
d− 1

)
, n ∈ {0, · · ·∞} (4.23)

g
(0)
n,m>0 = 2

(
d+ n− 1
d− 1

)
, n ∈ {0, · · ·∞}, m ∈ {1, · · ·∞}
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Therefore the free energy of the conformal scalar

logZ[Sd+1
q ] = −1

2

∞∑
n,m=0

g(0)
n,m log

(
λ(0)
n,m + d2 − 1

4

)
, (4.24)

=
∫ ∞

0

dτ

2τ

∞∑
n,m=0

g(0)
n,m(e−τ(λ(0)

n,m) − e−τ ).

In the second line of the above equation we have again used the identity (2.4). It can be
shown by looking at sufficiently large negative d and using zeta function regularization for
the summation over m we obtain

∞∑
n,m=0

g(0)
n,m = 0. (4.25)

Therefore we can proceed by regulating the first term

logZ[Sd+1
q ] =

∫ ∞
0

dτ

2τ e
− ε

2
4τ

∞∑
n,m=0

g(0)
n,me

−τ(λ(0)
n,m). (4.26)

We can now perform the Hubbard-Stratonovich trick given in (2.13) and following the same
steps as in equation (2.11) to (2.20) we obtain

logZ[Sd+1
q ] =

∫ ∞
ε

dt

2
√
t2 − ε2

(
eiν
√
t2−ε2 + e−iν

√
t2−ε2

)
f (0)
q (it). (4.27)

with ν = i
2 and

f (0)
q (u) =

∞∑
n,m=0

g(0)
n,,me

i(n+m
q

+ d
2 )u

= e
iud
2

(1− eiu)d
1 + e

iu
q

1− ei
u
q

. (4.28)

Substituting these expressions in (4.27) and taking the ε → 0 limit the partition function
becomes

logZ[Sd+1
q ] =

∫ ∞
0

dt

2t
1 + e

− t
q

1− e−
t
q

χdS(d,0) conf(u), (4.29)

with the character as given in (4.15).
For d+ 1 odd, comparison with equation (4.14), with (4.29) we see that the integrands

are identical. For the case when d + 1 is even comparison of (4.19) with (4.29) shows
that the regularization independent quantity, the logarithmic divergence of the expression
in (4.29) and that given in (4.19) are identical provided we relate the cut off to regulate
the integral in (4.29) to R̃ in (4.19). Indeed as recently mentioned in [13], the agreement
of free energies of the conformal scalar on the hyperbolic cylinder and the branched sphere
coincides was verified till d = 100.11 It is interesting to note here that since their character

11See [32] for a discussion for fermions.
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D −Fq SEE

2 q2+1
6q

1
3

4 − 3q4+1
360q3 − 1

90

6 31q6+7q2+2
30240q5

1
756

8 − 289q8+56q4+20q2+3
1814400q7 − 23

113400

10 6657q10+1188q6+462q4+99q2+10
239500800q9

263
7484400

12 − 6803477q12+1153152q8+469040q6+117117q4+18200q2+1382
1307674368000q11 − 133787

20432412000

14 16018495q14+2620800q10+1095952q8+298155q6+56420q4+6910q2+420
15692092416000q13

157009
122594472000

Table 3. Logarithmic divergence of the partition function of conformal scalars on branched
spheres and universal terms in entanglement entropies.

d+1 −Fq=1

3 3ζ(3)−2π2 log(2)
16π2

5 2π2ζ(3)−15ζ(5)+2π4 log(2)
256π4

7 − 82π4ζ(3)−150π2ζ(5)−945ζ(7)+60π6 log(2)
61440π6

9 1588π6ζ(3)−210π4ζ(5)−13230π2ζ(7)−26775ζ(9)+1050π8 log(2)
6881280π8

11 − 70146π8ζ(3)+48500π6ζ(5)−383670π4ζ(7)−1338750π2ζ(9)−1611225ζ(11)+44100π10 log(2)
1651507200π10

13 7157604π10ζ(3)+8436890π8ζ(5)−24019380π6ζ(7)−124289550π4ζ(9)−248128650π2ζ(11)−212837625ζ(13)+4365900π12 log(2)
871995801600π12

Table 4. IR finite term or the ‘F’-term on odd spheres for conformal scalars.

integral representations coincide and therefore the agreement of the partitions functions is
manifest.

Given the partition function on the branched cylinder, one can evaluate the universal
contribution to Rényi entropy across spherical entangling surfaces in even dimensions from
the logarithmic divergence of the free energy Fq on hyperbolic cylinders. The Rényi entropy
Sq and the entanglement entropy SEE are given by

Sq = −Fq + qFq=1
1− q , SEE = lim

q→1
Sq. (4.30)

In table 3 we have listed both these entropies for the conformal scalar are listed for even
4 ≤ d + 1 ≤ 14. These have been evaluated using the character integral representation
We have seen that they precisely agree with earlier evaluations in [33]. The IR finite term
when d+ 1 is odd is also a regularization independent term. We have evaluated this finite
part from the character integral representation for the corresponding partition function in
table 4. These precisely agree with that evaluated in table 1 of [34].
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4.2 Conformal p-forms

In [19] a procedure to fix gauge on hyperbolic cylinders was introduced. Using this method
the gauge invariant partition functions of the conformal 1-form on S1

q × AdS3 and the 2-
form on S1

q ×AdS5 was obtained. The conclusion in both the cases was the gauge invariant
partition function can be thought of as the partition function of the tower of Kaluza-Klein
tower of co-exact p-forms with the Hodge-de Rham Laplacian along the AdS directions.
Though this observation was explicitly demonstrated only for the 1-form in d+1 = 4 and 2-
form in d+ 1 = 6, the method developed in [19] is such that the result can be extrapolated
to conformal p = d−1

2 on the hyperbolic cylinder S1
q × AdSd. To summarise the gauge

invariant partition function of conformal p forms is given by the following determinant

Z[S1
q ×AdSd] =

[
1

detT (−∂2
τ −∆p)

] 1
2

, p = d− 1
2 (4.31)

Here ∆p is the Hodge-deRham Laplacian acting on co-exact forms. The operator ∂2
τ picks

out the Kaluza-Klein mass along the S1 direction.
Let us follow the same analysis we carried for conformal scalars on hyperbolic cylinders.

The eigen values of the Hodge-deRham operator acting on co-exact p-forms are given by

∆pψ
{λ,u}
i1i2···ip = −λ2ψ

{λ,u}
i1i2···ip . (4.32)

Here {u} refer to other quantum numbers on AdSd and ψ refers to the eigen functions.
Using these eigen values and the Fourier expansion on S1, the partition function can be
written as

logZ[S1
q ×AdSd] = −1

2

∞∑
n=−∞

∫
dλµ(d)

p (λ) log
(
n2

q2 + λ2
)
. (4.33)

Following the same steps as in equations (4.7) to (4.12) we get

logZ[S1
q ×AdSd] = 1

2πi log R̃
∫
Co

du

2u
1 + e

−u
q

1− e−
u
q

W (d)
p (u), (4.34)

where W (d)
p (u) is the Fourier transform of the Plancherel measure of the p = d−1

2 -form in
AdSd. From (3.24) we see that this is given by

W (d)
p (u) = 1 + e−u

1− e−u
p∑
i=0

(−1)i
(
d− 1− 2i
p− i

)
e−u(d−1−p−i)

(1− e−u)d−1−2i , p = d− 1
2 (4.35)

Here we have replaced d→ d− 1 in (3.24) and the exponential factor on the l.h.s. becomes
trivial since p = d−1

2 . Now remarkably the equation in (4.35) can be re-written as

W (d)
p (u) = 1 + e−u

1− e−u
p∑
i=0

(−1)i
(
d− 1− 2i
p− i

)
e−u(d−1−p−i)

(1− e−u)d−1−2i , (4.36)

=
p∑
i=0

(−1)i
(

d

p− i

)
e−u(p−i) + e−u(d−p+i)

(1− e−u)d , p = d− 1
2

– 33 –



J
H
E
P
0
9
(
2
0
2
1
)
0
9
4

What is important to note is that in the second line consists of sum of SO(1, d+ 1) Harish-
Chandra characters of the same dimension d. Substituting this expression into (4.34) we
obtain

logZ[S1
q ×AdSd] = 1

2πi log R̃
∫
Co

du

2u
1 + e

−u
q

1− e−
u
q

p∑
i=0

(−1)i
(

d

p− i

)
e−u(p−i) + e−u(d−p+i)

(1− e−u)d ,

=
∫
Co

du

2u
1 + e

−u
q

1− e−
u
q

p∑
i=0

(−1)pχdS(d,p−i)(u), p = d− 1
2 (4.37)

From the last line we see that at q = 1 the gauge invariant partition function of the
conformal p-form on S1

q × AdSd can be written as a character integral of only the bulk
characters of the partition function of the p forms on the sphere Sd+1. That is consider
the determinant of all the co-exact forms that appear in the one loop partition function
in (2.1). Then only the bulk character of each of the p-form appears in (4.37), the edge
modes are missing. This behaviour was observed in the study of the entanglement entropies
of the Maxwell in d+ 1 = 4 [14–16, 28, 29] field as well as the 2 form in d+ 1 = 6 [17–19]
and seen by Partition functions on the corresponding hyperbolic cylinders miss the edge
modes. Here we see that this is true for conformal forms in all even dimensions and it can
be seen at the level of the integrand in the character integral representation.

Thus entanglement entropy across spherical entangling surfaces evaluated using parti-
tion functions on hyperbolic cylinders miss out the edge modes. In [35, 36] it was shown
that the edge modes of the 1-form in d + 1 = 4 dimensions contribute only to the classi-
cal part of the entanglement entropy is non-extractable. It will be interesting to repeat
this analysis for p-forms and demonstrate that the edge contributions are classical and
non-extractable.

4.3 p-forms on branched spheres

In section 4.1 we derived the character integral representation of the one loop partition
function of the conformal scalar on branched spheres. In this section we wish to generalise
that computation to arbitrary p-forms. For this purpose we would need the eigen values
and the corresponding degeneracies of the Hodge-deRham Laplacian on branched spheres.
As far as we are aware it is only for the 1-form, these properties are known explicitly in
arbitrary dimensions. Though there are generating functions for degeneracies, from which
one can possibly obtain the degeneracies for other p-forms [18]. Therefore we will first focus
on the co-exact 1-form in arbitrary dimensions and obtain the character integral represen-
tation of the one loop partition function. From this result we propose the character integral
for arbitrary co-exact p-forms on branched spheres. We will demonstrate that the proposal
agrees with earlier evaluations of the partition functions of p-forms on branched spheres.

1-form. From [31] we see that the eigen values of the Hodge-deRham Laplacian of the
1-form on the branched sphere Sd+1

q are labelled by 2 integers and are given by

λ(1)
n,m =

(
n+ m

q

)(
n+ m

q
+ d

)
− 1 + d, with n+m ≥ 1, n,m ∈ {0, 1, 2, · · · } (4.38)
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The result for the eigen values in [31] was written for the vector Laplacian, but we have
shifted it by d which arises due to the curvature terms relating the Hodge-deRham Lapla-
cian and the usual Laplacian. These eigen values have degeneracies

g
(1)
n,m=0 = 1

n+ 1

(
d+ n− 2
n− 1

)
{(d+ 1)(n− 4) + (d+ 1)2 − n+ 5}, n = 1, 2, · · · , (4.39)

g(1)
n,m = 2d

(
d+ n− 1
d− 1

)
, n = 0, 1, · · · m = 1, 2, · · ·

The partition function is therefore given by

−1
2 log detT∆Sd+1

q

1 = −1
2

∞∑
n,m=0

g(1)
n,m log(λ(1)

n,m). (4.40)

Again using the identity (2.4) we rewrite the partition function as

−1
2 log detT∆Sd+1

q

1 =
∫ ∞

0

dτ

2τ

∞∑
n,m=0

g(1)
n,m(e−τλ

(1)
n,m − e−τ ). (4.41)

Now the second term involves the sum over degeneracies. To regulate that term, we look
at sufficiently negative d and perform the sum over m using zeta function regularization.
We obtain ∞∑

n=1

∑
g

(1)
n,m=0 = 1,

∞∑
n=0

∞∑
m=1

g(1)
n,m = 0. (4.42)

Therefore the equation (4.41 )reduces to

− 1
2 log detT∆Sd+1

q

1 =
∫ ∞

0

dτ

2τ e
− ε

2
4τ

 ∞∑
n,m=0

g(1)
n,m − 1

 , (4.43)

Note that the above equation is similar to (2.9) with p = 1. In fact the second term
in (4.43) can be absorbed in the first term by noting from (4.39) that

g
(1)
0,m=0 = 0, g

(1)
−1,m=0 = 1, λ

(1)
−1,m=0 = 0. (4.44)

Therefore we rewrite (4.43) as

−1
2 log detT∆Sd+1

q

1 =
∫ ∞

0

dτ

2τ e
− ε

2
4τ

 ∞∑
n=−1

g
(1)
n,m=0e

−λ(1)
n,m=0τ +

∞∑
n=0,m>0

g(1)
n,me

−λ(1)
n,mτ

 . (4.45)
We can now follow the same steps as in (2.11) to (2.20) to obtain

−1
2 log detT∆Sd+1

q

1 =
∫ ∞
ε

dt

2
√
t2 − ε2

(
e(

d
2−1)√t2−ε2 + e−( d2−1)√t2−ε2) (f1(it) + f2(it)), (4.46)

where

f1(u) =
∞∑

n=−1
g

(1)
n,m=0e

iu((n+ d
2 ) = e

1
2 i(d−2)u (deiu + e2iu − 1

)
(1− eiu)d

, (4.47)

f2(u) =
∞∑

m=1,n=0
g(1)
n,me

iu
(
(n+m

q
+ d

2

)
= 2de

iu(dq+2)
2q

(1− eiu)d
(
1− e

iu
q

) . (4.48)
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d+ 1 p = 0

2 q2+1
6q

4 57q4+60q2−1
360q3

6 4315q6+5040q4−245q2+2
30240q5

8 7q2(33953q6+43200q4−3248q2+100)−3
1814400q7

d+ 1 p = 1

2 −2

4 − 33q4+30q2+1
180q3 − 1

3

6 2−5q2(271q4+252q2+7)
7560q5 − 29

90

8 − 7(7297q6+7200q4+98q2−40)q2+3
302400q7 − 1139

3780

d+ 1 p = 2

4 57q4+60q2−1
360q3 + 2

6 955q6+840q4+35q2+2
5040q5 + 31

45

8 7q2(3233q6+2880q4+112q2+4)−3
120960q7 + 1271

1890

d+ 1 p = 3

4 −4

6 2−5q2(271q4+252q2+7)
7560q5 − 209

90

8 − 7(2497q6+2160q4+98q2+8)q2+3
90720q7 − 221

210

d+ 1 p = 4

6 4315q6+5040q4−245q2+2
30240q5 + 4

8 7q2(3233q6+2880q4+112q2+4)−3
120960q7 + 5051

1890

d+ 1 p = 5

6 −6

8 − 7(7297q6+7200q4+98q2−40)q2+3
302400q7 − 16259

3780

Table 5. Coefficient of the logarithmic divergence of the partition function of p-forms on branched
spheres in even dimension using (4.50).

Substituting these expressions in (4.46), rearranging the terms and taking the ε→ 0 limit,
one loop determinant of the co-exact 1-form on branched spheres Sd+1

q can be written as

−1
2 log detT∆Sd+1

q

1 =
∫ ∞

0

dt

2t

1 + e
− t
q

1− e−
t
q

[(
d

1

)
e−t + e−(d−1)t

(1− e−t)d

]
(4.49)

−1 + e−t

1− e−t

[(
d− 2

0

)
1 + e−(d−2)t

(1− e−t)d−2

]}

=
∫ ∞

0

dt

2t

1 + e
− t
q

1− e−
t
q

χdS(d,1)(t)−
1 + e−t

1− e−tχ
dS
(d−2,0)(t)

 .
Proposal for the determinant of co-exact p-forms on branched spheres. From
the explicit calculation of the determinant of the 1-form in (4.49), we see that it is only
the kinematic factor of the bulk character which acquires dependence of the branching
parameterq for spheres Sd+1. The kinematic factor of the edge character is blind to the
branching. Using this input, we propose that the determinant of co-exact p-forms on
branched spheres is given by

−1
2 log detT∆Sd+1

q

1 =
∫ ∞

0

dt

2t

1 + e
− t
q

1− e−
t
q

χ
[dS]
(d,2p)(t) + 1 + e−t

1− e−t
p∑
i=1

(−1)iχ[dS]
(d−2i,p−i)

 . (4.50)

Using the determinant of the co-exact p-form on the branched sphere, one can evaluate
the partition function of the p-form by using this input in the ghosts for ghosts expression
of (2.1). In table 5 we have listed the coefficient of the logarithmic divergence for p-form
partition functions on branched spheres using the proposal (4.50) in (2.1).
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As far as we are aware there are few explicit calculations of one loop determinants of
p-forms on branched spheres with p > 1. In even d + 1, [18] has put forward a method
to evaluate these partition functions. It does not rely on the explicit knowledge of the
degeneracies of the Hodge-deRham Laplacian. As a check of the proposal in (4.50) we have
compared the coefficient of the logarithmic divergence of the partition functions in table 5
for p = 2 in d + 1 = 4, 6, p = 3 in d + 1 = 6, 8 to that given in equation (13) of [18]. Our
values coincides with that of [18] upon identification of qours → 1

qDowker
. It is interesting to

note that q deformation does not change the Hodge-duality properties of the p-forms. For
instance the (0, 2) pair on S4

q differ by −2. Similarly the (1, 3) and (2, 4) pair on S6
q differs

by 2 and −2 respectively.

5 Conclusions

In this paper we have generalized the construction given in [1, 8] of the one loop partition
function on spheres and anti-de Sitter space in terms of Harish-Chandra characters to p-
forms. We have also seen how character integral representations make relations between
partition functions manifest. For instance the equivalence of the conformal scalar parti-
tion function on the hyperbolic cylinder and the branched sphere was manifest from the
character integral representations. It also provided insights in entanglement entropy for
conformal p-forms.

In [8] the character integral representation was useful to evaluate the partition function
of higher-spin Vasiliev theories. In this context it would be important to obtain character
integral representations of fermionic higher spin fields. This would enable the revisiting
various one loop calculations in the literature. Some examples of these are one loop cal-
culations in AdS4 × S7 done by [37] or that done around black holes with near horizon
geometry AdS2 × S2 in [38, 39]. Partition functions of supersymmetric higher spin theo-
ries can also be evaluated. The character integral representation enables writing down the
partition function once the field content and the mass spectrum of the theory is known.
Therefore such partition functions can be obtained with considerable ease.

The representation of the partition function of conformal p-forms in terms of Harish-
Chandra characters on the hyperbolic cylinder has allowed us to show that partition
function on hyperbolic cylinders capture the bulk contribution to the entanglement
entropy. In [35, 36] it was shown for the 1-form in 4 dimensions the contribution of the
edge modes to the entanglement entropy are classical and non-extractable. It would be
interesting to repeat this analysis for the arbitrary p-form. A similar question can be
addressed for gravitons. In [19] it was shown that the entanglement entropy of linearised
gravitons or higher spin fields in d+ 1 = 4 evaluated using the hyperbolic cylinder method
and that from the branched sphere differ by the partition function on the sphere S2 which
constitute the edge modes. Here too it would be interesting to show that these modes are
non-extractable or classical.
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A Harish-Chandra characters

Here we briefly list the various Harish-Chandra characters used in the paper. For more
details see [1, 8, 22].

AdS characters. The easiest to understand are the SO(2, d) characters associated with
the minimally scalars on AdSd+1. Let the mass of the scalar in AdSd+1 be m, The scal-
ing dimension or the value of the Cartan H in a SO(2, 1) of the lowest weight of this
representation is given by

∆+ = d

2 +

√
d2

4 +m2. (A.1)

Then the Harish-Chandra character of this massive representation is given by

χAdS
(d,0)m(t) = TrH∆+

(e−Ht) = e−t∆+

(1− e−t)d . (A.2)

Here the trace is taken over H∆+ all in the representation. For simplicity let us take t real
and t > 0. Setting m = 0 in (A.2) we obtain

χAdS
(d,0)(t) = e−td

(1− e−t)d . (A.3)

We call this the character of the 0 form.
Consider the co-exact p-form which satisfy the equations of motion

(∆T +m2)Ai1,···ip = 0, (A.4)

where ∆T is the Hodge-deRham Laplacian on AdSd+1. The scaling dimension of the lowest
weight of this representation is given by [40]

∆+ = d

2 +

√(
d

2 − p
)2

+m2. (A.5)

The Harish-Chandra character of this representation is given by

χAdS
(d,p)m(t) =

(
d

p

)
e−t∆+

(1− e−t)d . (A.6)

Setting m2 = 0 in this expression we obtain

χAdS
(d,p)(t) =

(
d

p

)
e−t(d−p)

(1− e−t)d . (A.7)

Here we would like to mention that though we have obtain the above expression by setting
m = 0 in the Harish-Chandra character corresponding to the massive representation it
does not correspond to the characters of the unitary irreducible representations belonging
to the exceptional series. In this paper we will loosely refer to the above limit of the
massive character of the p form as a Harish-Chandra character. This character forms the
basic building blocks of all the character integral representations for p-forms on AdS-spaces.
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dS characters. Let us discuss more about the de Sitter group SO(1, d+ 1). Consider a
minimally coupled scalar of mass

m2 = d2

4 + ν2. (A.8)

Then the corresponding Harish-Chandra character of this representation is given by

χdS(d,0)ν(t) = e−t∆+ + e−t∆−

(1− e−t)d , ∆± = d

2 ± iν. (A.9)

Setting m = 0 we obtain

χdS(d,0)(t) = e−td + 1
(1− e−t)d , (A.10)

As mentioned for the AdS case we will still refer to the above character as Harish-Chandra
character though it does not correspond to a character of any UIR. While the conformally
coupled scalar on Sd+1 has mass

m2
conf = d2 − 1

4 , iνconf = 1
2 . (A.11)

Therefore its character becomes

χdS(d,0)conf(t) = e−
d−1

2 t + e−
d+1

2 t

(1− e−t)d . (A.12)

Finally consider the p-form with satisfies the equation (A.5) on Sd+1. Here we define
ν such that

m2 =
(
d

2 − p
)2

+ ν2. (A.13)

The character of corresponding to the p-form is given by

χdS(d,p)ν(t) =
(
d

p

)
e−t∆+ + e−t∆−

(1− e−t)d , (A.14)

where ν is obtained by solving (A.13). Setting m = 0 in (A.14) we obtain

χdS(d,p)(t) =
(
d

p

)
e−t(d−p) + e−tp

(1− e−t)d . (A.15)

Again we wish to emphasise that in this paper we will still refer to the above expression as a
Harish-Chandra character for convenience though it does not correspond to any character
of UIR of massless p-forms. The building blocks of the integral representations for the
partition functions of p-forms on spheres are the characters in (A.15). The reason the
characters of the de Sitter group appear though we are on the sphere is due to the fact
that the Wick rotated de Sitter space in the static patch is a sphere.
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B Wp(u) by direct Fourier transform

In this appendix we evaluate the Fourier transform of the Plancherel measure µp(λ) directly
by re-writing the transform as a sum of residues. This can be done for d+ 1 even. We will
see that the result agrees with (3.24) obtain by the differential equation method developed
in the main text. We start with the Fourier transform.

Wp(u) =
∫ ∞
−∞

dλeiλuµp(λ). (B.1)

We can choose u > 0 and close the contour to be the large semi-circle in the upper half
plane. Therefore the integral reduces to the sum over residues at λ = i

(
n + 1

2
)
and for

u < 0 we sum over residues at λ = −i
(
n + 1

2
)
. The result is analytic in u. Let us choose

the upper half plane to perform the integration. We obtain

Wp =
∞∑
n=0

Res
(
eiλuµp(λ)

)∣∣∣
λ=i(n+ 1

2)

=
∞∑
n=0
−

(
(2n+ 1)Γ(d+ 1)e−(n+ 1

2)u)∏ d
2
j= 1

2

(
j2 +

(
i
(
n+ 1

2

))2
)

((
d
2 − p

)2
+
(
i
(
n+ 1

2

))2
)

(Γ(p+ 1)Γ(d+ 1− p))

= e( d2−p)u
1 + e−u

1− e−u
p∑
i=0

(−1)i
(
d− 2i
p− i

)
e−u(d−p−i)

(1− e−u)d−2i . (B.2)

Observe that this result coincides with (3.24) obtained using the differential equation
method. It is analytic in p, d and therefore can be extended to all values of p, d.

C Massless symmetric traceless tensors of rank spin s

The partition function of massless symmetric spin s field on Sd+1 is given by [41]

Zs =
(
−∆(s−1)⊥ − (s− 1)(s+ d− 2)
−∆(s)⊥ + s− (s− 2)(s+ d− 2)

) 1
2

(C.1)

Here ∆(s)⊥ refers to the Laplacian on Sd+1 acting on the transverse traceless spin s field.
The mass term arises due to the curvature coupling. The eigen-value and the degeneracy
is given by

λ(s)
n = n(n+ d)− s

g(s)
n = (d+ 2n)(d+ 2s− 2)(n− s+ 1)(d+ n− 2)!(d+ s− 3)!(d+ n+ s− 1)

(d− 2)!d!(n+ 1)!s!
(C.2)

Using the same procedure followed in section 2, the free energy can be written as

− logZs =
∫ ∞

0

dτ

2τ

[( ∞∑
n=s

g(s)
n (e−τ(λ(s)

n +s−(s−2)(s+d−2)) − e−τ )
)

−
( ∞∑
n=s−1

g(s−1)
n (e−τ(λ(s−1)

n −(s−1)(s+d−2)) − e−τ )
)]
. (C.3)
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s g
(s)
n

∑∞
n=s g

(s)
n

0 (d+2n)Γ(d+n)
d!n! 0

1 n(d+n)(d+2n)Γ(d+n−1)
Γ(d)Γ(n+2) 1

2 (d−1)(d+2)(n−1)(d+n+1)(d+2n)Γ(d+n−1)
2d!Γ(n+2)

1
2 (d+ 2)(d+ 3)

3 (d+4)(n−2)(d+n+2)(d+2n)Γ(d+n−1)
6Γ(d−1)Γ(n+2)

1
12d(d+ 3)(d+ 4)(d+ 5)

4 (d+1)(d+6)(n−3)(d+n+3)(d+2n)Γ(d+n−1)
24Γ(d−1)Γ(n+2)

1
144d(d+ 1)(d+ 2)(d+ 5)(d+ 6)(d+ 7)

Table 6. Examples illustrating
∑∞
n=s g

(s)
n = −

∑s−1
n=−1 g

(s)
n .

The sum over the degeneracy g(s)
n can again be performed by working at sufficiently negative

d and analytically continuing the result to positive d. Note that the large n behaviour of
the degeneracy is

g(s)
n =

( 1
n

)−d(2(d+ 2s− 4)(d+ s− 5)!
(d− 4)!(d− 2)!s!n2 +O

(( 1
n

)5/2
))

(C.4)

Therefore the sum
∑∞
n=s g

(s)
n converges in the large negative value of d ≤ −2 . We evaluate

the sum and observe that
∞∑
n=s

g(s)
n = (d+ 2s− 3)(d+ 2s− 2)(d+ 2s− 1)Γ(d+ s− 2)Γ(d+ s− 1)

s!Γ(d)Γ(d+ 2)Γ(s)

= −
s−1∑
n=−1

g(s)
n (C.5)

This remarkable relation allows us to extend the sum from n = −1 to n = ∞. Just to be
explicit, we present the sum of degeneracy for few cases in a table 6.

Due to the relation (C.5) we can re-write (C.3) as

− logZs =
∫ ∞

0

dτ

2τ

[( ∞∑
n=−1

g(s)
n (e−τ(λ(s)

n +s−(s−2)(s+d−2))
)

−
( ∞∑
n=−1

g(s−1)
n (e−τ(λ(s−1)

n −(s−1)(s+d−2))
)]
. (C.6)

We now perform the Hubbard-Stratonovich trick given in (2.13) and follow the same steps
as in equation (2.11) to (2.20) and obtain

logZs =
∫∞
ε

dt
2
√
t2−ε2

[ (
eiνs
√
t2−ε2 + e−iνs

√
t2−ε2

)
f (s)(it)

+
(
eiν
′
s−1
√
t2−ε2 + e−iν

′
s−1
√
t2−ε2

)
f (s−1)(it)

]
(C.7)

with νs = i(s+ d−4
2 ) , ν ′s−1 = i(s+ d−2

2 ) and

f (s)(u) =
∞∑

n=−1
g(s)
n eiu(n+ d

2 ) (C.8)
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Substituting (C.8) in (C.7) and taking the limit ε→ 0 we obtain

logZs =
∫ ∞

0

dt

2t

[ ∞∑
n=−1

g(s)
n (e−t(n−s+2) + e−t(n+s+d−2))

−
∞∑

n=−1
g(s−1)
n (e−t(n+s+d−1) + e−t(n−s+1))

]
(C.9)

This agrees with the (G.9) of [1]. Therefore we obtain directly the ‘naive’ character of
massless symmetric rank s tensor on Sd+1. Note that first two terms correspond in (C.9)
correspond to the one loop determinant of the transverse traceless spin s field. It does not
have any non-local terms just as in the case of the co-exact p-form discussed in section 2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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