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1 Introduction

Recent decades have witnessed much progress in the calculation of higher loop scattering
amplitudes. Among them, one of the most remarkable achievements is the almost com-
pletely solution of the calculation of the one loop amplitude by many tools, such as PV
reduction [1], OPP reduction [2], Unitarity cut [3-5] etc..

It’s well known that [1, 2, 4] under dimensional regularization, an one-loop scattering
amplitude or a general one-loop Feynman integral in D = dy — 2¢-dimensional spacetime
can be rewritten as a linear combination of some scalar master integrals (MIs) as

=37 CatiTaty + 22 Ca !+ + 2 C1 IS (L1)
’id0+1 ido il
where the coefficient C% (s = 1,--- ,dp + 1) is a rational function of external momenta,

and I’s is the s-gon scalar integral. If dy = 4, then the corresponding master integrals
are traditionally referred as tadpole, bubble, triangle, box and pentagon integrals (the
tadpole integrals vanish if the corresponding propagators are massless). So the task of
computing an one-loop amplitude is reduced to determining the coefficients of these master
integrals. These coefficients can be derived by either integrand reduction [2] algebraically,
or the unitarity method [3-5]. The idea underlying the unitarity method is to constrain
amplitudes by their branch cuts, more explicitly, comparing two sides of (1.1) after cutting
several propagators. By using the usual unitarity cuts (cut two propagators corresponding
to a physical channel), the explicitly analytical expressions of these coefficients have been
given in [6-8]. However, the analytic results of the tadpole coefficients are missing.



To obtain the coefficients of tadpole integrals by the usual unitary cut method, an idea
was proposed to add an auxiliary, unphysical propagator in the integrand [9]. Since we
need to compare the reduction coefficients of the physical integrand and auxiliary integrand
in this new frame, the method isn’t very efficient to calculate tadpole coefficients. Another
idea is that although the tadpole integrals vanish under the unitarity cuts in physical
channels, it survives under the single cut. Then naturally the single cut method was used
to calculate the tadpole coefficients [10]. Because of the divergence of integrals after single
cut and the dependence on the tensor reduction of the integrand, it’s not easy to compute
the tadpole coefficients for a general case.

In this paper, we will reconsider the computation of tadpole coefficients by using
differential operators. Differential operators have played an important role in the area of
scattering amplitude, for example, deriving the IBP relations and differential equations
of Feynman integrals [11], relating tree-level amplitudes of different theories [12] and the
expansion of Einstein-Yang-Mills amplitude [13, 14].

Roughly speaking, for a general tensor one-loop integral, we will first introduce an
auxiliary vector R* and assume its reduction to scalar master integrals,’ then consider
applying some differential operators with respect to R to the integral, so we obtain the
differential equations of tadpole coefficients after comparing two sides of the equation. Ac-
tually, the action of these differential operators of R is a little similar to the traditional PV
reduction [1]. Instead of trying to solve these differential equations directly, we transform
the differential equations into recurrence relations with the help of the general tensor form
of tadpole coefficients. With some known initial conditions, we can solve these expansion
coefficients iteratively. So the problem of calculating tadpole coefficients is reduced into
solving these recurrence relations, we will provide a general algorithm.

Our plan of this paper is following. In section 2, we discuss the integral reduction of a
general tensor 1-loop Feynman integral. First, we consider the action of differential oper-
ators and obtain the differential equations of reduction coefficients. Second, we transform
these differential equations into recurrence relations. In section 3, we derive the recurrence
relations of tadpole coefficients for four tensor integrals, namely bubbles, triangles, boxes,
pentagons, and provide a general algorithm for calculating tadpole coefficients with some
examples. Appendix A briefly reviews the traditional PV-reduction method to deal with
the tadpole coeflicient of a tensor tadpole, which is consistent with our results.

2 Integral reduction by differential operators

In this section, we will consider the integral reduction of a general 1-loop tensor integral
using differential operators with respect to an auxiliary vector R. First, in subsection 2.1 we
will derive the differential equations for the coefficients of the master integrals. Secondly,
using the general tensor structure of reduction coefficients, we transform the differential
equations of tadpole coefficients into recurrence relations in subsection 2.2.

The auxiliary vector R* closely resembles the polarization vectors in the expansion of Einstein-Yang-
Mills amplitude [13, 14].



2.1 Differential equations of reduction coefficients

Let us start with the following general one-loop m-rank tensor integral with n + 1
propagators

M1 fm
In—l—l -

dPy¢ ppigpz ... ppm
/ : (2.1)
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where the i-th propagator is given by P; = (¢ — K;)?> — M? and Ky = 0 (i.e., we have
chosen to translate the loop momentum ¢ — ¢ 4+ K to simplify the 0-th propagator Fy).
To simplify the manipulation of the tensor structure and utilize the tool of differential
operators, we introduce an auxiliary vector R and contract I/} 7*" with m RM’s to arrive

D m
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(2.2)

Note that the auxiliary vector R* is in the D = (4 — 2¢)-dimensional space as the D-
dimensional loop momenta ¢. By setting R = > /", o;R; into (2.2) and expanding the
result to find the coefficients of «j ...y, it is easy to see that we will get the reduction
of (2.1) up to a numerical factor. The simple but useful transformation from the form (2.1)
to the form (2.2) is, in fact, our first crucial step.

It’s well known that in dimensional regularization scheme, the integral I,(LT)I [R] can be
reduced into the linear combination of master integrals (including pentagon, box, triangle,

bubble and tadpole scalar integrals) as
IR Z Cl (m) I + Z m)I[ 4 -+ Z Ci (m)I}, (2.3)

where the reduction coefficients C(m),s = 1,---,5 are rational functions of external
momenta, masses and R. An important point of the reduction is that R can only appear
in the numerator of the reduction coefficients. The Lorentz invariance means that it can
only have following types of contractions:

R R; R-K;i=1,...,n; (2.4)

To find these reduction coefficients C'(m), we will try to establish some differential
equations by virtue of the following differential operators:

0 o J
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Let us start with the action of D;. Applying it to the equation (2.3), on the left-hand side
we have,

(m) dPe m(20- R)™ (20 - K;)
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(2.5)
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where we have defined f; = Mg + K? — M? and the subscript 7in I (m A) means that the
’L

propagator P; is removed from If;j:l Y. On the right-hand side, since DZ- acts only on the

coefficients C(m), we have 3.°_; 3, (D;Cs(m)) I's. Identifying both sides, we get the
equation

mI™ mfﬁl‘%)jumfzfﬁll ZZ( DiCl(m)) I, (2.7)

n+1; 0 iy
At this point, the differential operator D; doesn’t help us much for calculating the reduction
coefficients. However, if we make the inductive assumption that the reduction of tensor
integral m

n'+1
n, for example

s are already known for m’ < m,n’ <n,orm’ <m,n’ =nand m' = m,n’ <

MO = ZZCZS - L0, (2.8)

s=1 ig

where 0 of Cs(m — 1;0) is to remind us C (m — 1;0) is the reduction coefficient of an

integral with propagator Py being canceled out, the (2.7) can be written as

ZZ( il (m )I;'s=mizc§s< ﬂs—mzzm S
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+mf; Z > Cl(m—1)Ik. (2.9)
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By comparing the master integrals at the two sides of the above formula, we can get the
differential equation for each particular reduction coefficient C% (m).

It is found that the differential equations given by D;’s are not enough to uniquely
determine the reduction coefficients, so we need to consider the action of 7 on (2.3).
Similar to D;’s, on the left-hand side, we get

(m) _ 2 7(m=2) (m—2)

T =4m(m — 1)MGL" ™ + dm(m — 1)17:1;6 , (2.10)
while on the right-hand side, we have >°_; >, (TCi(m)) Is. So after the reduction
of integrals on the left-hand side, we can get another group of differential equations for
unknown reduction coefficients

25: ) (TCéS (m)) I = 4m(m Z ZCZS —2:0) ps
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+ 4m(m — 1) M¢ ZZCZS 2) 1%, (2.11)
s=1 ig

2.2 Recurrence relations for tadpole coefficients

Since our main goal is to compute the reduction coefficients of tadpole integral, we will
concentrate on the calculation of tadpole coefficients here. Without loss of generality,



let’s consider the tadpole integral with a propagator Py.?2 Comparing the two sides of
equations (2.9) and (2.11), since the 0-th propagator Py has been removed from I So it won’t
contribute to the tadpole coefficient of propagator Py, so we get the following differential
equations

D0V (m) = —mC\(m — 1,9) + mf;C (m — 1), (2.12)

and

7¢O (m) = 4m(m — )M (m - 2), (2.13)

where the superscript of Cfo)(m) reminds us it’s the tadpole coefficient with a propagator F.

Note that the above two differential equations (2.12) and (2.13) relate tadpole coef-
ficient C’( )( ) with rank m to tadpole coefficients with lower ranks (m — 1) or (m — 2),
which are already known according to the inductive assumption. Since directly solving the
differential equations (2.12) and (2.13) are complicated, we will try to transform the dif-
ferential equations into much simpler recurrence relations by noticing the tensor structure
of the tadpole coefficient, i.e., it can be expanded as

/ n
cVmy= S &M (MR- R) [[(R- Ky (2.14)
{7’077171}:0 k=1

(m)
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tions of (K; - K;), M?, and the summing indices satisfying 2ip + >}, ix = m (so the

with unknown coefficients c; (called expansion coefficient) being rational func-

summing is written as 3.’ to emphasize the constraint and if we choose i1, 2, - - , i, as free
(m) as ™

10, 21 'n 11, 12
because of the previous mentloned contractlons (2.4). For simplicity, we will also adopt

indices, we can just write c; ;). The above formula (2.14) always exists

the following conventions:

» First, we define the notations so0 = R-R,sg; = R-K;, fori =1,...,n,and s;; = K; - K},
fori,7=1,2,...,n

o Second, the mass dimension of C’fo) (m) is 2(m—n), and to make all expansion coefficients
(m)

¢ i dimensionless, we extract their mass dimension (Mg)°~" explicitly.
902503500

o Thirdly, we choose to extend the definition domain of i, k = 0,1,...,n to Z, but keep in

(m) . . ) — ) . noo.
mind that ¢; - i3 , vanishes if one index i, k = 0,1,...,n is negative or m — 3y i is

odd. The Conventlon of indices will simplify the considerations of boundary conditions
of recurrence relations in the future.

o Fourthly, due to any a permutation o :{K;, M;} — {Ky(;), My} leads both I( )1 and

the tadpole integral I} with propagator Py invariant, we have an) iy = chni)l(l),,.. i1y’

The permutation symmetry of the expansion coefficients can be used to check our results.

2Knowing it, by proper loop momentum shifting, for example, ¢ — (=10+ K, we can get the tadpole
coefficients of P;.



After taking above notations, the tadpole coefficient in (2.14) becomes

/
0 m ’L n 7
C{ )(m) = Z cﬁo,i)l,..., n *"s00 H 301« (2.15)
{0, yin}

and our goal is to determine the unknown expansion coefficients cl(0 1)1 in

(0)

above notation to express C; ' (m—1; z), one need to notice that it doesn’t contain the exter-

When using

nal momenta K; for the propagator P; has been canceled in integral 1%, so its expansion is
851

/! n
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where in the second equation, we have added d¢;, and the summation over j; for later
convenience.

To get the recurrence relations, we need to consider the action of D;, T on the (2.15).
Using the chain rule, it’s easy to get

0 0 - 0
D =K' —— = 2s0;—— ii— 2.1
b ORM %0 8800 + Z 5ij 88()]' ( 7)
and
0
=2D—+14 4 i i 2.18
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where D is the space-time dimension. First, we consider the action of differential operator
Dj in (2.12)

!
D; C(O)( ) = Z cﬁg’j}h ¥y (M2 fo—n H 30k [220803800 +Zzzs]130l ]
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where in the second equation we have used the fact 2ig + Y ;_; ix = m and redefined the
indices 4; and 4;, and i=Y.?_,ix. Using the expansion (2.15), the right-hand side is

mf;C% (m — 1) = mC{® (m — 1;7)

R T e e |
11, ,in k=1

+ Z C(m.,lA  LImM G, (M) ™ —/2=nglm=1=0/2 sf)kk. (2.20)
’ k=1



Comparing the two sides we have

<m+1_zll> 7/17 7' 7in+
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with a; = fj /Mg, Bj1 = sji/Mg. Secondly considering the operator 7, we have
TC'IO) Z c ]\/[2 fo— "Hs

2i0(2m+D —2ig—2)sp5 + > 2zjzk3]ksoj S0k —i—Z z]sﬂsol
0<j<k Jj=1

- n
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=

at the left hand side and

m—2 m—i)/2—1—n —1)/2—-1 - i
4m(m — 1) M2 Z Cfgh...,i)n(Moz)( )21 587(7)1 )/ S0k

11,8250 0yfn k=1

at the right-hand side. Comparing two sides, we get

dm(m — 1)05?? 2) < Z zk> <D +m+ Z ik — 2) an) in

k=1
+ Z 2 ij + 1)(% + 1)5]]665:?) gL gL in
0<j<k
3 (m)
. . m
+ Z(ZJ + 1)(% + 2)5]30117 42, sin
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(2.21)

st L i

(2.22)

(2.23)

(2.24)

Up to now, we have successfully transformed the differential equations to algebraic recur-

rence relations (2.21) and (2.24) for tadpole coefficients, then the next step is to solve these

relations explicitly.

3 Tadpole coefficients of tensor integrals

In the previous section, we have derived two types of recurrence relations (we will call

them D-type and T-type) of unknown expansion coefficients appearing in (2.15). In this

section, we will show that by the inductive assumption the expansion coefficients with



larger indices i are related to those expansion coefficients with lower indices through the
recurrence relations. Then with the boundary conditions,® these recurrence relations are
enough to recursively determine the tadpole coefficients for a general tensor 1-loop integral
with any rank. To illustrate this, we will take the tensor 1-loop integrals with up to
5 propagators as examples in next subsections, and an explicitly recursive algorithm is
provided in each subsection.

Before moving on complicated examples, let us first apply our method to the simplest
example, i.e., the reduction of tensor tadpole integrals. With n = 0 in (2.2), it is easy to
see that the tadpole coefficients are nonzero only when m is even, because the only existing
Lorentz contraction is R2. When m is even, according to (2.15), the tadpole coefficient of
a tensor tadpole integral is given by

OO (m) = ™ M2y 27, (3.1)

Since the tadpole coefficient only contains an unknown function ¢(™), only one recurrence
relation is necessary. For a tensor tadpole integral, there is no external momenta K;, so
we can only consider the T-type recurrence relation (2.24)

am(m — 1) 2 = m(D 4+ m — 2)c™), (3.2)
then
4(m —1) _
(m) - U072 (m=2)
c Dt m- 2)0 . (3.3)

With the boundary condition ¢ = 1, we immediately get

omy — __2M(m - DN (3.4)

[1Z,(D +2(i— 1))

so when m is even, the tadpole coeflicient is

w_ 2%(m— DU
[12,(D +2(i — 1))

This result (3.5) is consistent with that given by the traditional PV-reduction method in

O (m) = ™ (M2)% s (3.5)

the appendix A.

3.1 Tadpole coefficients of tensor bubble integral

Now we consider the first nontrivial case, n = 1 of (2.2), i.e., tensor bubble integral. For
now, the general form of tadpole coefficients (2.15) becomes

Z Czo 11 lo 1520 5611 Zcm) M2 300 501, (3.6)

20,81

3Specially, for m = 0,n < 4, the tensor integral I(m1 is just the master integral, so it can’t be reduced
further, then we have Cfo) (0) = do,n-



where in the second equation we have used the constraint 2ig 4+ i1 = m to solve 7g. Note
that when m is an even integer, ¢ must be even, while if m is an odd integer, ¢ must be
odd. We consider the recurrence relations resulted by the differential operator D;. Since
n =1, (2.21) can just give one recurrence relation

(i + 1)51105111) +(m—i+ 1)01(-@ = malc(mfl) - m507ic(m71). (3.7)

)

We should note that ¢™=1 in (3.7) is the known expansion coefficients appearing in the
reduction of tensor tadpole integrals (see (3.4)). Replacing @ by i + 1, we get

m)y_ 1 (m—1) m— 3 (m)
Civg = m (quCiH — mé(),i_i'_lc( n_ (m —1i)c ) . (3.8)

Note that cgm) is nonzero only for 0 < i < m and m — 7 is even.

For a certain rank m, by the inductive assumption given in the subsection 2.1, the ex-

m—1) (m-—1)

pansion coefficients cz( el are already known in equation (3.8), then equation (3.8)

(m) (m)

has established the relation between c;, 5 and ¢; . Then according to m = 2r or m = 2r+1

with 7 being a positive integer, the expansion coeflicient C§T2) is reduced into chT) or cngJrl).

Now the task becomes the determination of the initial expansion coefficient cézr) or cgwﬂ).

For m = 2r + 1,7 = 0, equation (3.7) becomes

(2r+1) _ 2r+1 (2r) (2r)
c = 1¢ c , 3.9
1 B ( 1€g ) (3.9)

which means that we can obtain c&QTH) from c(()%) and ¢(2"). Thus we only need to calculate

082”, and from c[()%) we can get all expansion coefficients by (3.9) and (3.8).

Now we consider the computation of c[()m) with m = 2r. When n = 1, the recurrence

relation (2.24) of the differential operator 7 with m = 2r,i = 0 becomes
r(D+2r — 2)cézr) + ﬁncgr) =4dr(2r — 1)0(()2T_2). (3.10)

Combining (3.8) with ¢ = 0, i.e.,

(2r) . r (2r-1) (2r) o 7 [ 2r 1 (2r—2) (2r—2) (27"):|
C =— | &1C — C = — | a1 C, — C — C . 311
2 /811 ( 161 0 ) 611 1 611 ( 1% ) 0 ( )

(2r)

we can solve ¢

(2r) 2r—1 o\ (2r-2) a1 (2r—2)
C =————||4— — ¢ + —c , 3.12
0 2r+D —3 l( Bn) 0 B11 (312)
with
a1 = fl/MOQ, 511 = Sll/Mg (313)

(0)
0

With the obvious boundary condition ¢y~ =0, this recurrence relation (3.12) can be solved as

@) o1~ 21 o?\" (2i-2)
= S| [a- 2] o, 3.14
0 P ( 2j+D—3) ( P (3.14)

i=1 \j=i



After getting the analytic expression of c(()ZT), we will show how to obtain other expan-

sion coefficients cgm) by using the recurrence relation (3.8) and (3.9) literately. Let us take
the expansion coefficients with rank from 1 to 3 as examples to illustrate the procedure of
calculation.

e m=1: Only cgl) is necessary to calculate. Using (3.9), we easily get

I (A C B ) N
¢ = (alco c )— B (3.15)

o m=2: c((JQ) and cg2) are unknown. First, c(()z) is given directly by (3.12)

2
@ 1 at ) 0, 2 (| _ o
R S o O e O] IS S 3.16
O " D-1 K 511) O 7 Bu ] (D —1)Bn (3.16)
then we use (3.8) to calculate c§2)
2 _ _1 (1) _ 5,2 a1 D
— 2 —9 = _ . 3.17
“ 261 ( “a 0 ) (D —1)8% (317

o m = 3: We need to calculate 053) and cég). First, we use (3.9) to calculate 053)

3 _ 3 @ _ @) _3 (4811 —4Dp11 + o7 D) 518
cq o (alco c ) (D-1)DF, , (3.18)
then we use (3.8) to calculate ng)
@ _ 1 (2) (3) 8611 — 8Df11 + i D? + 241D
= 38, - =- . 1
& = g, (e =) (D-1)DF, (319

The above three examples are enough to illustrate the procedure of calculating expansion
(m) (m)

coefficients c; ; from lower

. Rough speaking, we calculate the expansion coefficients c
rank to higher rank, and at a fixed rank m, we prefer to calculate the expansion coefficients
cz(-m) with smaller index 4 first. More explicitly, our algorithm is summarized as following,
as illustrate by figure 1.

Supposing we want to calculate the tadpole coefficients with rank mg, then we need

to calculate all expansion coefficients with rank my,

(0)

o Step 1: Consider the rank m = 0, which provides the boundary condition ¢, = 0.

e Step 2: Consider the rank m = 1, calculate the expansion coefficients cgl) by (3.8) as
illustrated before.

o Step 3: Consider the rank m = 2, calculate the expansion coefficients c((]Q), céQ) succes-

sively by (3.14) and (3.8) as illustrated before.
e Step 4: Consider the rank m = 3, calculate the expansion coefficients c§3), c:(33) succes-

sively by (3.8) as illustrated before.

~10 -



- ii/i/i.
A

Figure 1. Algorithm for the calculation of the expansion coefficients of tadpole coefficients of
tensor bubble integral. Here each point (i, m) represents an expansion coefficient cgm). The points
represented by black squares are the zero expansion coefficients, while the points represented by
blue or red circles are the unknown expansion coefficients we need to calculate. The red thick
arrow represents the recurrence relation (3.12), the orange thick arrows represents the recurrence

relation (3.9), and the cyan thick arrow represents the recurrence relation (3.8).

e Step m < myg: If m = 2r, calculate c(()%),cg%), e ’ngr) successively by using (3.14)

and (3.8). If m = 2r+1, calculate C(()2T+1), c?TH), . ,cgifll) successively by using (3.8).

o Final step: Combine all expansion coefficients to get the tadpole coefficient by (3.6).

It’s obvious that with the help of Mathematica, one can easily implement the three
key relations (3.14), and (3.8), thus the analytic expression of tadpole coefficients can be
nicely generated.

3.2 Tadpole coefficients of tensor triangle integral

Now we consider the second nontrivial case, n = 2 for (2.2), i.e., tensor triangle Feynman
integral. In this case, the general form of the tadpole coefficients (2.15) can be written as

O (m) = 3" (M) 2" (M3 so0) ™3 s siy (3.20)
11,12

- 11 -



As a result, the D-type recurrence relations coming from D;,i = 1,2 with n = 2 of (2.21)

are
(m 41— iy — i)™, o+ (i + 1)Buel™, , + (i + 1) B2 1
= malcgzgl) - méil,gcg;n_l)[i],
(m+1—iy — i)™+ (i1 + 1)Bract™ o, + (iz + 1)Bazel™) 1
= magc™ Y —mé, 0c V2, (3.21)

where we have added [1] or [2] behind cl(;n_l) or cgn_l) to stress that it corresponds to the

tadpole coefficients of the integrals with 1st or 2nd propagator being canceled. The above

formulas can be rewritten in a compact form as?
: (m)
1el™
G(]-a 2) ( (’Ll + )Cz}ﬂj)l,m ) — O(m) (ily ig), (322)
(G2 + 1)¢; fyi1
where we use the notation
(0™ (i1,i2))" = (O™ (ir, in), 05 (i1, i2)) (3.23)
with
Ogm) (2‘17 i2) =m {O&lcg??igl) _ 50,1'102(:1_1)[1]} — (m +1—1 — ’L.Q)Cz(:n—)l,ig?
OF™(i1,i2) = m [aael V) = doincl VRI| = (m 41— iy —in)ell), . (3.24)
Here we have defined the rescaled Gram matrix G(1,2,---,n) with (7, j) element being
(G2, )i = By = si5/M3,  1<i,j<n. (3.25)
And we will denote its corresponding determinant as A(1,2,---,n) and its (4, ) cofactor
as A'EZ')'
Note that two equations of (3.22) are symmetric for exchanging (1,2), so its result is
also symmetric for (1,2). We can easily solve cl(-?:flh, cz(:% 41 @s
Am L0
< <m>> ) (o ) GO (i i) (3.26)
Ciyia+1 12+1

More explicitly, they are

R
atbiz (G 41)A(L,2)

—|—m(51250,i2 an_l) [2]— B2260,i, Cz(;n_l) [i]) —I—m(mﬁzz —042512)0517,21)}
(m)  _ 1 o (m) (m)
Ci\ i1 = (A DA(L2) [(m+ 1—iy—ig) (61261-1_171-2 —Bncihirl)

—I—m(ﬁlzﬂso,ilcg?_l)[i]—51150,12657_1)[2])+m(042511—041512)053;1)}- (3.27)

c [(m+1—i1 —i2) (51201(-:72271 —52205?1)1,1'2)

4When we meet the multiplication of such vectors and Gram matrix, we always consider it as the matrix
multiplication by default.
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For a certain rank m, by the inductive assumption given in the subsection 2.1, the ex-
. . (m—-1) (m-1) (m—1)
pansion coefficients c; c i

i i G and c
1,22 11
equation (3.27) relates expansion coefficient ¢

are already known in equation (3.27), hence
(m) (m) (m) (m)

i1z Cirig+1 1O Ciy 1140 Ciyip—1- SO accord-
ing to rank m is even or odd, the expansion coefficient ™ will be iteratively reduced into

11,02
the algebraic expressions of c(()fg) or c%) and cgﬁ) finally. In the odd rank case, cgﬁ) can

be got from c%) by using the previously mentioned symmetry. Now the task becomes the

determination of the initial expansion coefficient c((fg) for m = 2r and c%) for m =2r + 1.

First, we consider the odd rank case with m = 2r+1. When i; = iy = 0, equation (3.27)

becomes
1) 2r+1 2r) 14 2r) 4 2r
Cg,o ) — A2 [51208 )[2] - 52266 )[1} + (01 B2 — 0@512)06’0)},
r 2r+1 )4 )4 r
C(()iﬂ) = {5120(()2 ] - /3116(()2 2] + (i1 — 041512)0(()?0)}7 (3.28)
A(1,2)
which means that we can obtain cfgﬂ) and c((f{ ) from c((fg) and c(()%). So we only need
to calculate c((fg), and from it we can get all expansion coefficients by (3.28) and (3.27)

recursively.

Now we consider the computation of c((fg). To calculate it, we need the 7T-type recur-

rence relations

8r(2r — 1)el % = (20 — iy —in) (D+2r +iy +iz — 2)cl ) +2(i1 4+ 1) (i2+ 1) Bracty 1111
(i1 + 1) (i1 +2)Biicl Dy 4, + (i2 4+ 1) (12 4+2) Baact ™) L. (3.29)

When i; = ig = 0, the recurrence relation (3.29) becomes

r(2r+ D — 2)0(()?6) + Bnc%) + ﬁZQC(()?;) + 51205?11) = 4r(2r — 1)0(()?5_2)- (3.30)

Since the above equation contains three unknown coefficients cg?; ), cg?g) and cﬁ ) with larger

indices, we need to reduce them to expansion coefficients with smaller indices. Using (3.27)
we have

2r r 2r 2r—1)4 2r—1
Cé,o) = ALY {— 5220[()70) + Biact [2] + (c1Baz — 042512)Cg,o )}7
2r r 2r 2r—1) 2 2r—1
C((),g) =AML {— Bllc((m) + Bract® V] + (azBi — 041512)0((),1 )}7
2 2r 2 2r—1)4 2r—1
Cg,l) = A(L2) |:/3126E)’0) - 5220(1 )[1] + (o1 2 — 042512)0[()71 )}7 (3.31)

then we use (3.8) and (3.28) to reduce the odd rank (2r — 1) expansion coefficients to
2r — 2 rank expansion coefficients. After combining the results and (3.30), we finally get a
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(2r)

recurrence relation of ¢y’ with respect to r as

2n _ 2r —1 20100612 — a3 P11 — o a2 44| 22
00 79+ D—4 A(1,2) 0,0
2r—1 -2)14 (2r—2) 4
2] + — 1
+ 2r+ D —4)A(1,2) {(042511 041512) 2] + (1822 — a2Br2) ¢ [ ]]
2r —1 - 2r—2 2r—2
=553 (4-a’G ey P + oG e, (3.32)
where al' = (a1, a2) and (¢ (2r= 2))T = (cézr_z)[i],cé%_m 2]) are two vectors, and G~! is
the inverse of Gram matrix G(1,2). Using the boundary condition c(()?% =0, it’s easy to get
the expression for cé?g) as
(QT) (21 Ter—1,\" "% (T -1 .(2—2)

(0)

where we have used the boundary condition (cy’)? = (0,0), so the summation is from
t=2tor.

(2r)

After obtaining the analytic expression of ¢’ recursively using (3.32), we will consider

( Y by using the recurrence relations (3.27), (3.28)
and (3.32) step by step. First, we note that two equations of (3.28) can be rewritten as

how to obtain all expansion coefficients c;

A2+ o) o)
< %2(7{“)) =(2r+1)G! (0075 a-—cy ) , (3.34)
€,
since the expressions of c((fg) and céz ") are known, then the results of c§2r+1),c((ff+1) are

easy to get. Second, we take several examples to illustrate the procedure of calculation.

o m = 1: We only need to calculate cg % and c(l) Using (3.28) and cég = c(o)[ 2] = céo)[ 1] =
0, it’s trivial to get cglg = c(()% =0.
e m = 2: We need to calculate c((f[)), cﬂ, %, 682% From (3.33), it’s trivial to see c(()a 0,

then using (3.27) and the symmetry we get

) . ) Don 1 612
cis = m( — 2B + 28126V [i] + 221 — a1ra)el]) = T BeA(1,2)
0(2) _ 6(2)’ _ /812
207 02hae T BA(L,2)
2 1 i 1 :
cﬁf = A(1,2) (251200,0 - 252201 )[1] +2(1 22 — OQBH)C(()’%) - A(1,2) (3:3)

e m = 3: We need to calculate cg ()), c(()% cf’%, cgsi cé% g% First, we use (3.34) to get

BN a4 (e
N | =-3G ¢y’ = 1 . 336
(cg)%) 0 T (D-1)A(1,2) (azﬁmalﬂm> (3.36)

B22
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Figure 2. Algorithm for the calculation of the expansion coefficients of tadpole coefficients of a
tensor triangle integral with rank m = 5 and m = 6. Here the each point (i,j) represents an
expansion coefficient ! j) and c( ) The points represented by black squares are the zero expansion
coefficients (we don’t draw those expansion coefficients with i+ j = even for m = 5 and i+ j = odd
for m = 6, for they all vanish according to the definition) while the points represented by blue
or green circles are the unknown expansion coefficients we need to calculate. The red thick arrow
represents the first one of the recurrence relations (3.27) and the cyan thick arrow represents the
second one of the recurrence relations (3.27).

Next using (3.27), we have

1

0333 = m( (51260 ) — Buel 0) + 3(a2f11 — a1pr2)c 2{)
_ 3agD 3(D +1)B12 (212 — a1892)
(D —1)p22A(1,2) (D —1)B22A(1,2)2 ’
Cg?:()) 3A(11,2)( - 252205?()) + 3512052) 2] + 3(a1 Bz — 042512)0%)
_ Q2 (2811822 + (D — 1)B%,) — a1(D + 1)B12022 _ a1 DBy (3.37)
(D - 1)ﬁ11A(17 2)2 (D - 1)6%1A(17 2) . .

Other expansion coefficients can be got by using the permutation symmetry.

The above three examples are enough to illustrate the procedure of calculating expansion

() ()

coefficients c; Rough speaking, we calculate the expansion coefficients G from lower

rank to hlgher rank, and at a fixed rank m, we prefer to calculate the expansmn coefficients
(m)
(2]

coefficients with rank m < mg to calculate the tadpole coefficient with rank mg. Now our

with smaller i + j first. For a general rank mg, we need to calculate all expansion

algorithm of calculating tadpole coefficient with rank mg is summarized as following, as
illustrate by figure 2.
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e Step 1: Consider the rank m = 0, which provides the boundary condition c(()g 0.

e Step 2: Consider the rank m = 1, the expansion coeflicients cég, cf()] are given by (3.34)
as illustrated before.

e Step 3: Consider the rank m = 2, calculate the expansion coefficients c((f()), cﬂ, cg?()), c((f%

successively by (3.32) and (3.27) as illustrated before.

e Step m < mg: If m = 2r, calculate c(() 0), c??, 526), e cgfg successively by using (3.32)

and (3.27). If m = 2r + 1, the equation directly gives the expressions of chTH) (QTH),

(+)

then calculate other expansion coefficients c¢;’ successively by using (3.27).

o Final step: combine all expansion coefficients to get the tadploe coefficient by (3.20).

With the help of Mathematica, one can easily implement the relations (3.32) and (3.42),
thus analytic reduction coefficients can be obtained for any rank.

3.3 Tadpole coefficients of tensor box integral

Now we consider the third nontrivial case, n = 3 of (2.2), i.e., the tensor box Feynman
integral, which is similar to the previous cases. In this case, the general form of the tadpole
coefficients (2.15) can be written as
0 2\ —3 2 m— ll 12 23
O m) = 37 (M) (Mgsoo) ™ el sth st (3.38)

11,12,13

As a result, the D-type recurrence relations are given by setting n = 3 in (2.21):

i1+1 /3’110“+1 inis T (12 1+ 1)51265Ti)2+1,¢3

m—1 1)z
13 + 1 /613 7,1712 i3+1 — =m (alcgllzlg) - 50 7'165;73 )[1])

(m+1_i1_i2_i3) 51 1,io,i3

(m

21 12 1,23

i1+1 5126214-1 injig T (i2 + 1)522011 i)2+1 is

(m—1)

+ (i1 +1)

+ (i3 +1)

(m+1—iy —iy—1i3)c + (i )
+ (i3 + 1)/5’23611 inyigt1 = M (azcmm — Boell 1)[9]) ;

+ (i1 +1)

+ (i3 +1)

(m

(m+1—11—22—13) 11127,3 1

i1+ 1 613611—&—1 i2,i3 + (22 + 1)&236“ ia+1,i3

1) A
3 + 1 533611 i9,i3+1 =m (a36511213) 50 743 'E’f:g )[3]) ’

where the notation [i] corresponds to the integral with i-th propagator being canceled.
These equations can be rewritten in a more compact form as
(m)
(,L]- + 1) 1,1+1 12,13
G (12 + 1) 51 l)2+1 i3 = O(m) (il’ i2, i3)7 (339)
(i3 + 1)ei™)

11712713—&-1
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where we have used the notation G = (f;;) with 4,5 =1,--- ,3 and defined the vector

T m . . . m . . . m . . .
(0(m)(i1,i2,i3)) = (0§ )(11722713)705 )(11,22713),O§ )(11,12713)) (3.40)
with

O™ (i, ia,i3) = m [alcfl iy — 00,50 Z’Zﬁ[i]} — (1 =iy —is =gl

Oém) (i, 72, 1) = [aQC( i — 800,y 1)[2]} —(m 41—y iz — ig)c")

11,212,213 412 Zl 413 11,22—1,23"
O:(Sm) <i17 7:27 13) |:OZ3C,51 79 Z;)g 50 ZS ’ET’LQ 1) [3]i| - (m + 1- il - Z.Q - i3)cz(TZ‘)2,i3—l' (341)
(m) (m) (m)
Then we can easily solve ¢ 1 ;, ;s ¢ 414, @0d ¢ 0 5o q Dy (3.39) as
(m)
Cir+1,ia,i3 ilil 0 0
Cz(':)?iz—i-l,ig =10 70 GO (i, iy, i3). (3.42)
M 0 0 i
i1,82,i3+1 13+1
More explicitly, they are
m 1 3 m),. . . 3 m),. . . L.
Cz(1+)1 Jdoyiz (i1+1)A(1,2,3) [Ag,%o§ )(21’22’23)+A5730£ )(21’22’23)+A( )Oé )(21’22’Z3>]’
m 1 3 m),. . . 3 m),. . . 3 m),. . .
C§17i)2+17i3 = (Z2+1)A(1 2 3) [Ag,%Og )(Z17Z27Z3>+A57%O§ )(Z17Z27Z3>+Aé7§0§ )(21,22,Z3):| 5
m 1 3 m),. . . 3 m),. . . L.
61(1,1)2,13+1 (i3+1)A(1,2,3) [Af(i,io§ )(21a22a23)+A5(3,%O£ )(21’Z2al3)+A( )Oig )(21’22’Z3>] .

(3.43)

For a certain rank m, by the inductive assumption given in the subsection 2.1, the

expansion coefficients cl(1 io 2 and cl(1 Zj) are already known in equation (3.43), hence
the equation (3.43) relates expansion coefficient cgl Jr)l gsia? Eﬁ)z a7 Eﬁ)z is41 1O CEI )1 igsia?

(m) (m)

Ciy siz—1,i32Ciy iz ig—1" As in previous subsections, according to rank m is even or odd, the

51 1)2 is Will be reduced into C(()%?o or C%?O, c((f}?o and C(()T,g?1 finally. As

before the other two expansion coefficients cgjll?o and 0(07,7(1)?1 can be got from c%?oby using
the permutation symmetry of {1,2,3}. So the task becomes the determination of the initial

expansion coefficient cj, for m = 2r or C%)o for m = 2r + 1.

expansion coefficient ¢

First, we consider the odd rank case with m = 2r + 1. When i1 = iy = i3 = 0,
equation (3.43) becomes

2r 41 1 3) ~(2r+1 3) ~(2r+1 3) ~(2r+1
450" = e (AHOF0,0.0) + AG0E 0,00+ AZOFV0.0,0)]
241 1 3) ~(2r+1 3) (241 3) ~(2r+1
0" = g (A0 0.0.0)+ AG0E Y 0.0.0) + ALKV 0.0,0)].
r 1 ” ., .
ot = e [AS10PTY(0,0,0) + AP0 (0,0,0) + AT (0,00
A(1,2,3)
(3.44)
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(2r) (2r

(2r+1)  @r+1) o9 c((fgjl) from cg 7 and 0070). So we only

which means that we can obtain ¢y, ¢51 9

(2r)

need to calculate 0070,0 and from it we can get all expansion coefficients by (3.44) and (3.43)
recursively.
Now we consider the computation of C(()?g,)o- Setting n = 3,41 = i9 = i3 = 0, the T-type

recurrence relation (2.24) becomes

2 2 2 2 2
2r(D +2r — 2)08,5,)0 + 251265},)0 + 251305,5,)1 + 252305,;)1 + 251102,5,)0

2 2 2r—2
+ 28023l + 2B33cg ) = 87(2r — 10>, (3.45)
Since the above equation contains six unknown coefficients c§21 )0, §25 )1, Sy 08?57)2 with larger
indices, we need to reduce them to expansion coefficients with smaller indices. Then we
use (3.43) to write expansion coefficients 0521)0,0525)1, e ,08?57)2 as 2r — 2 rank expansion

coefficients. After combining the results and (3.45), we finally get a recurrence relation of

08?6?0 with respect to r as

RCON 2r—1 (3) (3) (3)] (2r-2)q
0,007 (D+2r—5)A(123){[a1A Ay as Ay ]

+ar AP + a8+ as AL e V2] + [ar AR +ar AL s AR o2

+ [4A(1, 2,3) —a%Af{ —a%Agg —a%Agg —2a1a2AS’% —2a1a3A§?§—2a2a3Agg }082602)}

2r—1

= m |:(4—aTG71a)0826‘02)+OCTG7]'C(()?572)] s (346)

where we have used the same notations as in (3.2). Using the boundary condition C(()[,)()),o =0,
it’s easy to get the expression for it as

’ "o (& 25—1 L oNr—i i
”:Z(H@iH) (4-aTca) "(aTCep™), (347

(0»0))T

where we have considered (c; = (0,0,0), so the summation is from i = 2 to r.

Since we have obtained the analytic expression of c[()?g?o, we will show how to obtain all

expansion coefficients cg JL by using the recurrence relation (3.43), (3.44) and (3.46) step

by step. First we note (3.44) can be rewritten as

o2r 1)

€1,0,0
06?1“6 V| =@r+1)G (C(()Qg)o o — c(()Qg)) (3.48)
o

. . 2 2 2r+1)  (2r41) (2r+1
Since the expression of cg 6)0 and cé 5) are known, then the results of cg 0 ), cé IJS ), égf )

are easy to get. Second, we will take several examples to illustrate the procedure of cal-

culation. Here for simplicity we denote A(iy, 9, ,in;J1,J2, - ,jn) as the determinant
of a n x n matrix A with entry A, = Bi,j,- Specially, we denote A(iy,i, - ,ip) =
A(ila 7:27 e 77’71’ ilu i27 T 77’n)
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e m < 3: The essence of one-loop reduction is to expand the auxiliary vector R with ex-
ternal momenta to cancel the propagators. To reduce a tensor box integral to the scalar
tadpole integral with propagator Fy, we need to cancel other three propagators, ie.,
Py, P, P35, which means three R’s are required at least. So all the expansion coefficients
vanish for rank m < 3. This result can also be obtained from our explicit recurrence
relation (3.47) and (3.42).

. 3 3 3 . .
e m = 3: We need to determine cg ()) 0 cg % 15 cg % 0 cg 3 o, other expansion coefficients can

be got using the permutation symmetry. Using (3.43), we have

3 1 3) (3 3) ~(3 3) (3

o0 = 313z (A0 00,00+ A0 (0,0,0) + A0 (0,0,0)]
=0,

3 1 3) (3 3) (3 3) (3

i = 3 gy A0 01,1+ A%00,1,1) + AR0P 0, 1,1)]
6
- A(1,2,3)

3 1 3) (3 3) (3 3) (3

0= 313y (A0 02,0+ A0 (0,2,0) + A0 0,2,0)]

3823 3512A%

:BzzA(1,2,3) B2 A(1,2)A(1,2,3)’
! Dot 3) H(3 3) (3

o= 383y MO 20,0 + a0 (2,00 + A0 2.0,0)]

_ —BisA(2,3:1,3)

© BuA(1,3)A(1,2,3)

w/—\
O\-/

+ (2 ¢ 3), (3.49)

where we have used

01(0,0,0) = 3 (aclyo — cigli]) =0,

( ) =0
0§2(0,0,0) = 3 (ascly — c0[2]) =0,
=3 ) =0

)

o@(o, 11) =3 (onc?y — 20)) = 5 (g, o
057(0,1,1) = 3ascl] | —4ciy, =0,
057(0,1,1) = 3asel] | —4c’] =0,
0(0.2,0) = 3 (e — 3l11) = 50,
05(0,2,0) = 3asely o — 2¢51 o = 0,
0$(0,2,0) = 3 (agcffgﬂ — ) [3]) = 62235(112,2)’
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01(2,0,0) = 3a1c5y o — 26 o = 0,
(

A 3013
0$(2,0,0) = 3a9¢t2)  — 362 [3] = ,
2 ( ) 2620,0 2,0[ } ﬂ11A(1,3)
5 3P12
09(2,0,0) = 3a3¢l2 , — 3¢2[3] =
3 ( ) 3€2,0,0 2,0[ } BllA(172)

o m = 4: We need to determine c((f&o, cﬁ 0 cg% 0 0543 0 054% 0 6514()) o, other expansion coef-

ficients can be got using the permutation symmetry. Using (3.46) we find
.00 = 0. (3.50)

Next using (3.43), we have

1
o= TS AP01(0,1,0)+A83057(0,1,0)+A%05"(0,1,0)]
_ 1203 1205A(1,2;1,3)
T (D-1DA(1,2,3)  \(D—-1)A(1,2)A(1,2,3
1
! ()) 0= 3A(L,2,3) [AgO?)(1,0,0)+A§?%Og4)(1,0,0)+A§?§O§4)(170,0)}

_ 6 (2811 — 01 f12) A(2,3;1,2)
= D-1DBuAML A2 T(2¢3); (3.52)

)+(1<—>2)>, (3.51)

(9 1 (3) (4) (3) H(®) (3) H(4)
450~ X1.2.3) AP101Y(0,3,0)+ 205" (0,3,0)+ A0 (0,3,0)]

4Af’§{azﬁm [(D+1)B11 822+ DA(L,2)]+ 01 22 [(1— D) BT, — 2811 82 }
(D—1)B3A(1,2)2A(1,2,3)

1{aBas [(D+1)B2aaa + DA(2 )]+ fia [(1- D)8~ 2B ] }
(D-1)P%AZ3)A(1,2,3)

_.I_

4A; 3; (3) (3) AP) (202612301 22 +a2DpBi2)
T AL 2)A(L 2,32 | tesPAlst (D-1)
4A§ % (3) 1 2 (2042/5'23 3as P22+ a2 DBa3)
T A(2.3)A(1,2,3)2 B AL D1 )
(3.53)
4 1 3) (4
057%,1 = 2A(1,2.3) [A“Og (1, 1’1)+Af%0§4)(1>17 1)+Af§0§4)(17 1,1)}
2 2
B 12 (A%) (a3friz—aifss) 12 (A%) (c2fr2—a1B22) 12Af§(a2623—a3D622)
= (D=1)BAL3)AL2,3)° T (D-1BnAL2)A123° T (D—1)pnA(l,2,3)
12A(2,3) (0[3513—0&1Dﬁ33) 12A<1?% (2(13,323—&2(D+1)/333) (354)

(D—1)B33A(1,2,3)2 (D—1)B33A(1,2,3)2 ’
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—~
N
=

—
L—

)

i AT017(1,2,0)+ 475057 (1,2,0)+ A0 (1,2,0)]

Al

011/323

3
— 6A§7% (@2(D+1) P23 — 203 822)
N )2 (D—1) B2z

alﬂlegsg

Afé (cv2B12 —a1PB22)

Ag{)% (a2(D+1)B12 —2001 f22)
(D—1)B22A(1,2)

B22 522A 1,2)

ocsﬁ 23

(D—1)B22A(1,2)

Ags% (2823 — a3 PB22)
(D—1)B22A(2,3)

2,3
6A11
A(1, 2

3 B22A(1,2)

{ QBBIQAl )3

(4) 1
C
1007 4A(1,2,3)

2
N

522

a3ﬁ12 (

A(1,2,3) [QQDA(1,2)+(D+1)/812 (@1 B2z —agﬁlz)]
(D—-1)p22A(1,2)2 ’

(3.55)

= ———[A%0{Y(3,0,0)+A)05" (3,0,0+A{%05Y(3,0,0)]

APAP) [043513A(1»2)+042512A(1’3)]

= BuA(1,3)A(1,2,3)2

AuA(1,2)A

3T

)
3
2
3

Af
(1,
(

B11A(1,2)A(1,3)A(1,2,3)2

A(3) {alﬁlg [((D4+1)B11833+DA(1,3)]+ 311 [*2,311,333*(D*1)5%3] }
+A1

(D-1)pH A

(1,3)2A(1,2,3)

)

+

LA® AP) (a1 (D+2)B13—30sp11)
LIV (D—-1)BuA(1,3)A(1,2,3)?

Af;);{a1612 [(D+1)511,322+DA(1,2)]+a2511 [—2511522—(D—1),332] }

Af’% (01 (D+2)p12 —32611)
(Dil)ﬁllA(172)A(17273)2

(D-1)

where we have used

01"(0,1,0) =4 (a1’ ol

@1€0,1,0 1,0
05Y(0,1,0) = dazcl] o —
0§9(0,1,0) = 4 (asef) o~ et}
01"(1,0,0) = 4a;¢%) o —
054)(1, 0,0)=4 (a20130 0 cﬁ%
O:(;l)(la 0,0)=4 <a30130 0 653())

4 (3 3
Og)(O,?),O): (041003))0 cg[))

—4a [2,322533 +(D- 1)523}

H1A(1,2)°A(1,2,3)

_12(a3faz —azfa3)
[1]) T (D—-1)B22A(2,3)°

40(4) 0,0 = =0,

[ ]) 12 (a1 22 — a2 S12)
(D—1)B22A(1,2)’

4cf,0=0,

12 (a3fi1—a1Bi3)

(D—1)B11A(1,3)’

21)

) 12 (211 — a1 B12)
(D—1)BnA(L,2)°

)

: (3.56)

4o fa3 [(D+1)B22833+DA(2,3)]

(D—1)B22A(2,

4o 512A(2?§

3)2

4o 523A(1?%

522A(172)A(17273)

057(0,3,0) = dascl’) o —

. 4A;?;>:, (202812 — 31 B2 +2 D B12)

4
20((),%,0

B22A(2,3)A(1,2,3)’

(D-1)B3,A(2,3)

AAS) (—30r3Baz + 202823+ 02D a3

(D—1)B22A(1,2)A(1,2,3)
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3) (3)

O:(;l) (0,3,0)=4 (a30073’0 —Co4

3])

B —4aq [2511522 +(D— 1)5%2}

4o B2 [(D+1)p11P22+DA(1,2)]

(D—1)B22A(1,2)?

(D—1)B3,A(1,2)?

4CM3,312A§’§ 4C¥3/323Af%
BaA(1,2)A(1,2,3) " BaaA(2,3)A(1,2,3)’
4 3 4
oV (1,1,1) =4a;¢¥] ; —4cll |

_ 24(a3fiz—a1Dps3)

24A ) (i3 B3 — a2 fBs3)

(D_ 1)ﬁ33A(13 2, 3)
$(1,1,1) =daet] | —4el

O 1,11~
_ 24(a3faz—az2Df33)

(D—-1)B833A(2,3)A(1,2,3)°

24A<1?% (azPfiz—a1B33)

(Di 1)ﬁ33A(17 27 3)
oM (1,1,1) = dascl¥) | —4clY)

1,1,1 1,1,0
24 (av2B23 — a3 D Ba2)

(D—1)B33A(1,3)A(1,2,3)’

24A<1?% (a2B12—1PB22)

(D—1)B22A(1,2,3)

(D—1)B22A(1,2)A(1,2,3)°

0{"(1,2,0) = 4a;¢%) o —2¢
1204 P23 120&1512A§?§ 12A$§ (a2B12 — a1 B22)
T BaA(1,2,3) T BnA(,2)A(1,2,3) | (D—1)B2A(1,2)A(1,2,3)

12A(1?% (a2 P23 — vz B22)
(D—1)$2A(2,3)A(1,2,3)”
059(1,2,0) = dasc’) o261
_ 12(a2(D+1)B23—2a3822)
- (D_1)622A(17273)
4 3 3)r5
0(1,2,0) =4 (asef g —c{)13))
_ 12&3523A(1,2)+12/312Af§
o BQZA(LQ)A(LQv‘?’)

01Y(3,0,0) = 40165}  —2¢5

. 4Af% (1 (D+2)B13—3as3f11) 4Af§ (a1(D4+2)B12 —3a2811)

0§"(3,0,0) =4 (aacfy o — 53 [2])

. 40¢2ﬁ13Afg
T BuiA(1,3)A(1,2,3)

A[asBia (D+1)8u faat DA(L3)) +aa s (~2011800 —(D-1)5%) |

12Af§ (a2 (D+ 1)»612 —2alﬁ22)
(D—1)B822A(1,2)A(1,2,3)

i

12(D+1)B12 (o1 faz — a2 f12) —12a2 DA(1,2)
(D—1)B22A(1,2)?

)

)

405 B12A )
BLA(1,2)A(1,2,3)

+ (D—1)57,A(1,3)2 !
4 3 3)ra
05(3,0,0) = 4 (azel o~ 59 [3])
4a3[313A<1?% 40&3[312A<1?%

T BnA(L3)A(1,2,3) T BuA(L,2)A(1,2,3)

4 |:041512 ((D+1)B11B22+DA(1,2))+ 2811 (—2511522— (D—l)ﬁfz)}
(D-1)B11A(1,2)? )
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The above examples are enough to illustrate the procedure of calculating expansion coeffi-
SZIL 5773@ from lower rank
to higher rank, and at a fixed rank m, we prefer to calculate the expansion coeflicients
cz(rﬁg with smaller ¢ 4 j + k first. For a general rank mg, we need to calculate all expansion
coefficients with rank m < mg to calculate the tadpole coefficient with rank mg. The
5

cients ¢ Rough speaking, we calculate the expansion coefficients ¢

algorithm is the same as previous ones.

e Step 1: For rank m < 3, we have shown that all expansion coefficients vanish.
e Step 2: Consider the rank m = 3, calculate the expansion coeflicients Cg?(%,()ac(()?%,o’
06?871,- - ’Cg?(%,o by (3.43) as we illustrated before.

e Step 3: Consider the rank m = 4, combining the permutation symmetry, calculate the

expansion coefficients C(()A,%,Oacﬁ,Ovcg%,Oa ...,cf())’() successively by (3.46) and (3.43) as

illustrated before.

e Step m < mg: Combine the permutation symmetry, if m = 2r, calculate CSQS)O,CgQI )0,

(2r) (2r)

€500 "+ Cor 0.0 Successively (3.46) and (3.43). if m = 2r + 1, calculate cfgjgl), cff{l),
cfgzl) , cg?gzl) o 76531::}()),0 successively by using (3.43).

o Final step: Combine all expansion coefficients to get the tadpole coefficient by (3.38).

With the help of Mathematica, it is easy to implement recurrence relation (3.47) and (3.42)
to automatically produce analytic expression for reduction coefficients of any rank.

3.4 Tadpole coefficients of tensor pentagon integral

At last, we consider the fourth nontrivial case, n = 4 for (2.2), i.e., tensor pentagon integral.
In this case, the general form of tadpole coefficients (2.15) can be written as
0 2\ —4 2 m—1i]—1i9—13—1%g m . . . .
COtm)= 3 (M) (MGsoo) T, i sstststy. (3.57)
{i1,42,i3,i4 }

As a result, the D-type recurrence relations are given by setting n = 4 in (2.21):

(m+1—ip —iy—iz— Z'4)an—)1,iz,z‘3,z‘4 + (i1 + 1)511C§ﬁ17i27,~3,,~4 + (i2 + 1)512023)2“,1‘3,1‘4
(m=1)

11,12,13,14

+ (i + 1)Brachy iy 14, + (0 + DBrack s, 4, 11 = mane

O i H i DBract™ o (i + DBl

(m—1) [i],

— mdi, 0Cis,is,i4

(m+1—i1—i2—i3—i4)c

+ (i3 + 1)52305?7@)2,13“,14 + (s + 1)52402(:?22,1’3,14“ = ma2cz(:r}i;,1il,i4 - m5i27ocz(:r,li;,1i1 [2],
(m+1—iy —ip —i3 — i4)cgf?2,¢371,i4 + (i1 + 1)ﬁ130§ﬁ)1,i2,¢3,¢4 + (i2 + 1)52301('?7%)#1,1;3,14
+ (i3 + 1)53301(:?22,1‘3“,14 + (14 + 1)53465Ti)2,i3,i4+1 = ma30§$}ii,i4 - m5i3,005$,2 [‘3],
(m+1—1i —ig —ig— i4)cg??i)27i37i4_1 + (i1 + 1)51401(?21,1'2,1'3,@'4 + (i2 + 1)52405?;)2—1-1,1'3,1'4
+ (i3 + 1)53401(:722,1'3“,1‘4 + (14 + 1)544C§Ti)2,i3,z‘4+1 = mawET;,lii,u - m5i4,005$;2 [4].

(3.58)

(m)

°It is similar to the tensor triangle case, but due to there are three indices in Ci il

picture to illustrate the algorithm.

we don’t draw a
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These equations can be rewritten in a more compact form as where [i] means the i-th
propagator is removed from the propagators Py, Pi, P», P3, Py. These equations can be

rewritten in a more compact form as

C: L
11+1,i2,13,14
(m

( )
el (Z2 + )021,124-1,13,14 = O(W)(il’i%i&u)’ (3‘59)
( ) 11,42,03+1,i4

( ) 11,82,83,t4+1

where we have defined the vector O™ (i1, iy, i3, i4)" = (Ogm) (41,192, 13,14), Oém)
O§™ (i1, iz, is,ia), O™ (i1, iz, i3, a)) s

(ilu i27 i3a 7:4))

11,19,13,1 mac( —1) —0 m+1—i1—19—1i3—1 cm
1,22,13,%4 1G4 g g ig — 90,1 C z22314 122713 =24)Ci) 1 iy s i

m+1—i1—io—13—14)C; ™)

)
)iy iy 1,30
el
)l

(
(
(m+1—i1—i2—i3—l4 C;
(

11,12,13,%4) =M

ml)

Zlal2al3al4 m (043621712713724 50 ,i3C 1,02, 14

1712713 Lyig0

(i )= i) -
" ) o inia =00 [2]) =
(i )= 3)-
(i )= Sl]) -

Z17227Z37Z4 m CE4C“ 2, z3 iqa Y024 21 12, 13 m+1—21—7,2—13—14 CI’LQ 13,04—1"

(m) (m) (m) (m)

Then we can solve Civt1yinyigyia Ciryint1yis,ia0 Cir iz, iz+1,00 Ci o iz ia+

1 as

(m) L

Ci1+1,in,i3,ia i1+1 0 0

(m) 0 -0 o0

S A Il I GO (i iy, i3, is). (3.60)
Ciy iosis+1,i4 i3+1

m 0 0 L

Ciy yig,iz,ia+1 iq+1

More explicitly, they are

(m) _ 1 4) A(m),. . . . 4) A(m) ;. . ..
Cit41,in,iz,ia — (i1 + DA(L2,3.4) {A1,101 (i1, 82,13, 14) + Ay 505 7 (i1, 42, i3, 14)

+ Afg),O;(),m) (41,42, 43,44) + AﬁOim)(ih i2, 13, i4)},

(m) _ 1 4) A(m),. . . . 4) A(m) . . .
Ci1,i2+1,i3,i4 - (Zg—l— 1)A(1 2.3 4) [AQ,IOI (7’1722723?14) +A2,202 (117Z2al3724)

+ A(4)O(m) (7'17 192, 237 14) + Ag io( )(Zla 12, 237 Z4):|

(m) _ 1 4) A(m),. . . . 4) A(m) . . .
Citinyiz+1lda — (i3+1)A(1,2,3,4) [A?),IOI (11722723714)+A3,202 (11’22713724)

+ AL‘(?)Z}?))O:(),m) (ila i27 i37 14) + Agilz?LO( )(’Lla 12, Z3> Z4):|

(m) _ 1 4) A(m),. . . . 4) A(m) . . .
Ciy iosizyia+1 — (i4 + I)A(l, 2, 3’4) [A4,101 (11722723714) + A4,202 (11’227137Z4)
+ Aggogm) (ila Z.27 2.37 14) + Az(;ioz(}m) (ib i27 i3> Z4):| . (361)
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For a certain rank m by the inductive assumption given in the subsection 2.1, the

expansion coefficients {cl . kl) , Z(Zlkl }, Vi, j,k,l, are already known in equation (3.61).

Then equation (3.61) relates expansion coefficient cl( +1) Gkl € Z(T}rl kis C ETL 410 € l( J}c 141 With
(m) (m) (m) M)

Ci ks Cijo1k1:Cijk—115 Cijki—1> i other words, the calculation of expansion coefficients

(m) (m)

(m) (m) (m) (m) : : :
i+ 1,k00 Cijr1deds Cigkt10 Cijhi+l 1S reduced into the calculation of G jdeds Cije1kel>

c
c(m) c(m Then according to m is even or odd, the expansion coefficient ¢, ;
’L’,j,k)*l,l’ Z’7j7k7l71' g ) p i7j7k7l

is reduced into 06?67)070 or cfgz,lo).ﬁ Now the task becomes the determination of the initial

. . 2
expansion coefficient c(() 5)0 o for m = 2r or cg 0.0, 0) for m = 2r + 1.

First, we consider the odd rank case with m = 2r +1. When m = 2r + 1,41 = i3 =

i3 = 14 = 0, equation (3.61) becomes
r+1 1 4) (2r+1 4) ~(2r+1
g 0,0 0) ~A12.3.4) {AHO% )(07 0,0,0) + Ag,%Oé )(0» 0,0,0)

+A0F(0,0,0,0) + A0 (0,0,0,0)]

2r+1 1 4) (2r+1 241
60 = m[Aé,fO( 9(0,0,0,0) + AFJ05+(0,0,0,0)

+A850§(0,0,0,0) + AS0F(0,0,0,0)],

2r+1 1 4) ~(2r+1 4) H(2r+1
010 = Ao s ) A0 (0.0,0,0) + A5057(0,0,0,0)

+ AF08(0,0,0,0) + AHOF 1 (0,0,0,0)]

2D 1 (4) H(2r+1) (4) H(2r+1)
w500 = XA 25.9) [AL10P(0,0,0,0) + AT505(0,0,0,0)

+A808(0,0,0,0) + ALOF(0,0,0,0)], (3.62)

. . (2r+1)  (2r+1) (2r+1) (2r+1) (2r) (2r)
which means that we can obtain ¢;7g ¢ €100 €0.0.1.0> €001 {rom ¢yooo and ¢yop. SO

we only need to calculate 08?5,)0@ then from C(()?o,)o,o we can get all expansion coefficients
by (3.62) and (3.61) recursively.

Now we consider the computation of C(()?g,)o,o- When n = 4,11 = i = i3 = iy = 0, the
T-type relation (2.24) becomes

4r(2r— 1)0(()25020) =r(D+2r— 2)0(()26?0,0+5120§?f,)0,0+513Cf6,)1,0+/3146§?5,)071

2 2 2 2 2
+52300,1,1,0 +534C((),5,)1,1 +ﬁllcg,g,)o,o +5226((),§,)0,0 +B33C((J,5?270+544C((),5,)0,2’
(3.63)

2r 2 2
Since the above equation contains unknown expansion coefficients cg 1)0 0 cg 5 )1 0 ,08’67)072,

we use (3.61) to write them as 2r —2 rank expansion coefficients. Comblnlng these equations

SWhere c((ff J(;lo) , 6825#()) , c(()Qngll) can be got by using the permutation symmetry.
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)

and (3.63), we finally get the recurrence relation of 06?57070 as

o 2r—1
0000 ™ (D 4 2r —6)A(1, 2,3,4)
_ 2a1a2A§2 - 2a1a3A§g — 2010421 — 2a2a3A§2 - 2a3a4A;(;l4)J 68?5’6’20)

’

{ [4A(1> 2,3, 4) - O‘%AY}% - O‘%A(Qg - agA(g - aiAfi

(A + a2 A + a3 AL + 0a AT el 1]

A
+ (A + @A) + a3 AL + auad)) ooV 12
)
1 ]

(4 ) (2r—2) [
+ (1A% + 0208 1 Al 4 ag AW L2 m}

L D

+ (alAgﬁ + agAgg + agAg‘% + asA34)¢0.0.0

2r —1 _ 9 1 (203
= 5o g 4 a’ G ) +al G e (3.64)

where we have used the denotations in (3.2). Using the boundary condition cé?[))’o’o =0,

it’s easy to get the expression for C(()?S,)o,o as

(2r) _ - - 25 -1 TA—1 N7 T =1 (2i-2)
CO,O,O,O = ; (E 2.7—|—D—6) (4 -G a) (a G 00’070 ) s (365)
where we have considered (C((]o,o,o) )T = (0,0,0,0). Since we have obtained the analytical

. 2 . . . . .
expression of c(() 5)00, we will consider how to obtain all expansion coefficients 0573{ ; by

using the recurrence relation (3.61), (3.64) and (3.62) step by step. First we note (3.44)
can be rewritten as

(2r+1)
€1,0,0,0
2r+1)

€0,1,0,0 —1( (2r 2r

(2r+1) | = (2r+1)G (Cé),o,)o,o o — C((),o,)o) . (3.66)
€0,0,1,0

(2r+1)
€0,0,0,1

. . (2r) (2r
Since the expression of ¢y and ¢

c((fgilo), 08?5311) are easy to get. Second, we take several examples to illustrate the procedure

—

2r41) (2941
?0 are known, then the results of 057530), c(()for,o),

of calculation.

e m < 4: The essence of one-loop reduction is to expand the auxiliary vector R with
external momenta to cancel the propagators. To reduce a tensor pentagon integral to
the scalar tadpole integral with propagator Py, we need to cancel other four propagators,
ie., P1, Py, P3, Py, which means four R’s are required at least. So all the expansion
coeflicients vanish for rank m < 4.

4 4 4 4 .
e m = 4: We need to calculate cé())oo, ci())o 0,05 % 00 and cg % 0.0 other expansion coeffi-

cients can be got using the permutation symmetry. Using (3.64), we have

4
c5 0.0 = 0. (3.67)
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Then using (3.61), we have

(4)
€1,1,0,0

4)
€2,0,0,0

(4)
€4,0,0,0

(4)
€2,2,0,0

(4)
€2.1,1,0

(4)
€1,1,1,1

(4)
€1,3,0,0

_ 1 (4) H(4) (@) ()
_W[AIJOI (0’1’0’0)+A1,202 (07]-’070)

+4{430§7(0,1,0,0)+A{05(0,1,0,0)] =0,

1
C24(1,2,3,9)

+4150§"(1,0,0,0)+A140("(1,0,0,0)| =0,

{AY,?O?)(1,0,0,0)+A§‘20§4)(1,0,0,0)

1
C4A(1,2,3,4)

 BA(1,2:2,3)
© AuA(1,2)A(1,2,3)

1
2A(1,2,3,4)

+2{3057(1,2,0,0)+A1504"(1,2,0,0)]

o _GA(273)47 17274) (ﬂ24A(172)+612A(2747 1)2))
N BaaA(1,2)A(1,2,4)A(1,2,3,4)

A19019(3,0,0,0)+A{504(3,0,0,0)

+[5 permutations of (2,3,4)],

[af0("(1,2,0,0)+a(08" (1,2,0,0)

1
C2A(1,2,3,9)

+A0080(1,1,1,00+ A0 (1,1,1,0)]

[Afof7(1,1,1,0+A{5087(1,1,1,0)

12A(")
A(1,2,3)A(1,2,3,4)

1 4 4 4 4
= amzs g Ao )+A0Y 0.1,1,1)

+A%0Y (0,1,1,1)+A% 00, 1,1, 1)]

24
A(1727374> ’

1 1) 4 4) (4
= Az A1017(03,0,0+41508(0,3,0,0)

+A1080(0,3,0,0)+ 41017 (0,3,0,0)]

+(3+

4),

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

A(2,3,4;1,2,4) (B12A(2,4)A(4,1;1,2) + 524 A(1,2) A(4,1;2,4) )

A(1,2)A(2,4)A(1,2,4)

B —4
- $22A(1,2,3,4)

BQJA(254)A(37 4; 27 3)

T AR AR D)

+(3<—>4)},
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where we have used

01Y(1,0,0,0) = 4arel?) 5 ) — 4ei 00 = 0,
054 (1,0,0,0) = (0420%00 Cg?)(%o[é}) =0,
057(1,0,0,0) = 4 (agel’y 5,0 — ei’,0[8]) =0,
057(1,0,0,0) = 4 (s’ o0 — ’,04]) =0,
OYL) (0,1,0,0) =4 (0‘10(()?,00 - Cf()),om) =0,
0§7(0,1,0,0) = 4 (ascf] 4,0) = 4efg,00 = 0,
0§(0,1,0,0) = 4 (asef 0,0 — c500[31) =0,
01(0,1,0,0) = 4 (auc] g0 — c0[4]) = 0,
0{"(3,0,0,0) = 4a1¢}) o, — 2¢50.00 = 0,
054) (3,0,0,0) =4 (04201(3?3,00 Cg:%o[é})

4 (613A(13 4)A(37 4; 1) 3) + BlAA(lv 3)A(37 4; 4> 1))

(3)

057(3,0,0,0) = 4 (ase 0,

4 (B12A(1,4)A(2,451,2) + B14A(1,2)A(2

B11A(1,3)A(1,4)A(1,3,4)

(3) )

A

- C3, 00[3}

,4;4,1))

©)

0§(3,0,0,0) = 4 (e 50 —

Br1A(1, 2

3
Cg())o

2)A(1,4)A(1,

)

4)

A

[4]

4(B12A(1,3)A(2,3;1,2) + f13A(1,2)A(2,3;3,1))

B11A(1,2)A(1,3)A(1,2,3)

4 A
017(0,3,0,0) = 4 (aref} 0,0 — 50.0[11)
4 (Ba3A(2,4)A(3,4;2,3) + B2aA(2,3)A(3,4;4,2))
B Bl (2,3)A(2,4)A(2,3,4)
057(0,3,0,0) = dasei’) o ) — 2¢49 0.0 = 0,
Oi(%4) (Oa 37 0, 0) =4 (a3c(()?%,0 0 683()) 0[3})
4(612A( ) )A(4717172) +524A(152)A(4717274))
B BQQA(172)A(274)A(17274)
4 ~
017(0,3,0,0) = 4 (aue 0,0 — cb0.0[4])

4 (ﬂlQA(Z B)A(Sa 1; 17 2) + BQ?)A(L 2)A(37 1; 27 3))

0{"(1,2,0,0) = 4a1¢t) g 0 —
05Y(1,2,0,0) = 4ascl®) o —

BaaA(1,2)A(2,3)A(1,2,3)
4

208%00 =0,

205,2,0,0 =0,
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)

)

)

9

)

)



_12(B24A(1,2) + B12A(2,4;1,2))
B22A(1,2)A(1,2,4) ’

- 12 (523A(1a 2) + 612A(2a 37 17 2))
B22A(1,2)A(1,2,3) ’

4 A
Oi(i )(17 2,0, 0) = (O‘3c§g,0,0 - Cf()),o[?’D

4 A
OZ(L )(1’ 2,0, 0) = (O‘4Cﬁ2,0,0 - Cf()),o[‘l]) =

0V(1,1,1,0) = 4arel?) | ) — 4ei o =0,
05(1,1,1,0) = danel®] | o — 4¢) 1 =0,
05Y(1,1,1,0) = dagel”) | ) — et 50 =0,
4 3 3) A 24
Oé(l )(17 L1, 0) = 40‘405,%,1,0 - 405,%,1[4] = m7
4 3 3) (4 24
O0(0,1,1,1) =danel 1y = el = 35 5370
O§4) (07 1,1, 1) = 40[208:,?,1,1 - 408%()),171 =0,

05Y(0,1,1,1) = dagel’) | | — 4ei o1 =0,

0{(0,1,1,1) = daucy’) | | —4cf 14 =0.

The above examples are enough to illustrate the procedure of calculating expansion coef-
E?L ;- Rough speaking, we calculate the expansion coefficients cyﬁg ; from lower
rank to higher rank, and at a fixed rank m, we prefer to calculate the expansion coefficients

(m)

Ciikl with smaller index i 4+ j 4+ k 4 [ first. For general rank mg, we need to calculate all

ficients ¢

expansion coefficients with rank m < myg to calculate the tadpole coeflicient with rank my.
Now our algorithm of the calculating tadpole coefficient with rank mg is summarized as
following”

e Step 1: For rank m < 4, we have shown that all expansion coefficients vanish.

o Step 2: Consider the rank m = 4, calculate the expansion coefficients 08%370’0,0%7070,

Cﬁ,o,m ,04(1%7070 by and (3.64) and (3.61) as illustrated before.

e Step 3: Consider the rank m = 5, Combining the permutation symmetry, calculate

the expansion coefficients Cf()),oﬂ’ Cﬂ?LO’ e ’Cg?()LO,O successively by (3.64) and (3.61) as

illustrated before.

o Step m < mg: Combine the permutation symmetry, if m = 2r, calculate 68?67)070,05?{17)070,

(2r+1) (2r+1)

2 2 . .

0576.’)070,' . 705370’0 successively (3.64) and (3.61). if m = 2r+1, calculate ¢ig.¢11 10>
(2r+1) (2r+1) (2r+1) . .

€12.001C3.000:" " »Cori1,000 Successively by using (3.61).

o Final step: Combine all expansion coefficients to get the tadpole coefficient by (3.57).

With the help of Mathematica, it is easy to implement recurrence relations (3.65)
and (3.60) to automatically generate analytic expression of reduction coefficients of
any rank.

Tt is similar to the tensor triangle, but due to there are four indices in 057;),6 » we don’t draw a picture

to illustrate the algorithm.
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4 Conclusion

In this paper, we have considered calculating the reduction tadpole coefficient of general
one-loop integrals. This piece is missed part in the standard unitarity cut method. By
introducing the auxiliary vector R and the trick of differentiation over the auxiliary vector
R, we get the differential equations for tadpole coefficients. By expanding the tadpole
coefficients according to its tensor structure, we get some recurrence relations for expansion
coefficients. It is easy to organize recurrence relations to the form that coefficients of higher
rank and higher indices are expressed by coefficients of lower rank and lower indices, which
can easily be implemented into Mathematica and gives the expression of tadpole coefficients
automatically.

To demonstrate our algorithm, after discussing the recurrence relations for tensor bub-
bles, triangles, boxes and pentagons, we have shown the calculation of some examples.
Moreover, by changing the boundary conditions, our algorithm can be applied to calculat-
ing the reduction coefficients of other master integrals. We will show how to do this in the
further research.

As for the reduction of tensor higher-loop integral, by constructing differential op-
erators and expanding the coefficients in a general form, our method can also give the
recurrence relations. But differing from one-loop case, these relations are in general not
enough to uniquely determine coefficients. A further complexity is that for the higher-loop
integrals, the master basis are more complicated. In despite of these difficulties, it is still
an interesting question to apply our method to higher-loop cases.
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A The reduction of tadpole by PV-method

In this appendix, we use the traditional PV-reduction method to study following tadpole
integrals:

1 R ks
Abts (M) = WTQ/ dPy T’ Py = 2 Mg (A.1)

The key of PV-reduction is that by Lorentz symmetry the tensor structure at the both
sides of (A.1) must be the same. For the tadpole (A.1), there is no external momentum
to provide the tensor index, thus the only available one is the metric ¢g*¥, which must
be considered in the general D = 4 — 2e-dimension. Furthermore, because all u;’s are
symmetric, the tensor structure must be symmetric under index permutation. Thus we
have when s = 2r + 1, (A.1) is zero and when s = 2r we have

AR (Mo) = A(2r)[ghtH2 .. gher—tHer 4 Symmetrization]Aszo(Mo). (A.2)
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To determine the constant A(2r), we contract both sides of (A.1) with, for example, g, .
Using (A.2) the r.h.s. gives

AQ2r)(D 4+ 2(r — 1))[gh3#4 ... gH?*r—H2" 4 symmetrization], r > 2. (A.3)

When doing the contraction, there are two types of tensor structures in (A.2), one is with
g"*#2? and another one, with ght#igh2#i. For the former, g, ,,9"**? = D, while for the later
Gprpn g1 gH2Hs = gtk Furthermore, for the later one, since for each 7, j pair, which are
different tensor structures before contraction, we get the same tensor structure after the
contraction, thus when considering the remaining particular tensor structure, for example,
ghsta L gher—1t2r with (r — 1)’s g"¥, we get the overall factor 2(r — 1).

For the l.h.s., we have

Wrﬂ fhs ors | rs
dPy = /dD /dDEZ“S L PHs
/ M2+ze D/2 — M2 +ie + mD/z

= M A(2r — 2)[gh3Ha .. gH?r =12 symmetrization], (A.4)

Z7TD/2

where the second term in the first line belongs to the type of scaleless integral, which is zero
by definition under dimensional regularization scheme. Comparing these two calculations,
we get the recurrence relation

M2
A(2 — 9 _A(2r—2). A.
@) = 5rpe—pACr-2) (A5)
Using the boundary condition A(0) = 1, we get®
M2r
A(2r) = r> 1. (A.6)

[Ti=i (D +2(t - 1))

If we contract with R in (A.1), using (A.2) we get zero if s is odd and

D
I,1 = A(s = 2r)s(R?)" / (SW)KD e _1 2y (A7)

if s is even where the & is the total number of tensor structures in (A.2) given by

(2r)!
orypl”

K =

(A.8)

One can check that coefficients in (A.7) is the same as the one given in (3.5).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

80ne can check this result with Peskin’s book,(A.44)—(A.48) where one put n = 1 [15]. Another checking
can be found in [16], (3.1)~(3.4): one can check that when D =4, [[7_ (D +2(t —1)) = 2"(r + 1)!.
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