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1 Introduction

In the last decades much progress has been made in the understanding of the mathematical
properties of Feynman integrals. Arguably many of the breakthroughs in this line of re-
search originated from the identification of classes of special functions suited for the solution
of Feynman integrals by means of various analytic methods. It is a well-known fact that
while many Feynman integrals admit representations in terms of so-called multiple poly-
logarithms (MPLs) [1, 2], this space of functions is not sufficient to express integrals when
the number of physical scales is sufficiently large. More recently, the scientific community
has centered its attention to the study of Feynman integrals whose geometric properties
are defined by elliptic curves. Following early investigations of [3] and [4], many integrals
involving elliptic curves have been computed in the literature [5–67].

In a parallel line of research, a class of functions, the so-called Elliptic Multiple Polylog-
arithms, describing all iterated integrals on the torus has been identified in the mathematics
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literature [68] (see also [69, 70]). While these functions formally solve the problem of gen-
eralising MPLs to more complicated geometries, their definition is not naturally suited for
physical applications. Progress in this direction has been made in [35], where eMPLs are
defined on the complex plane, and their structure naturally adapts to representations of
Feynman integrals commonly used in the physics literature (e.g. Feynman parameters).

Special functions such as MPLs and eMPLs, frequently appear when computing Feyn-
man integrals in dimensional regularisation. More specifically, Feynman integrals admit a
Laurent expansion with respect to the dimensional regulator and the coefficients of this
expansion can be often computed explicitly in terms of known special functions. In prac-
tice it is often possible to truncate the Laurent series, as the computation of physically
relevant quantities requires only a few expansion orders. Nonetheless it is interesting to
explore the analytic structure of these coefficients at higher orders or, more generally, to
all orders of the dimensional regulator. In this context, all orders results for the equal- and
different-mass sunrise integrals have been obtained in [16] and [55], respectively, in terms
of iterated integrals of modular forms.

In this paper we consider a two-loop sunrise integral topology with two internal masses
and pseudo-threshold kinematics [71] (see also [6, 56]). More precisely, we consider two
different internal masses, denoted by m and M , and external kinematics p2 = −m2. This
integral family appears when considering non-relativistic limits of Quantum Chromody-
namics (NRQCD) and Quantum Electrodynamics (NRQED) (see for example [6] and [56]).
Examples of phenomenological applications of NRQCD are the study of heavy-quarkonium
production and decay (see refs. [72–77] and references therein) and the near-threshold
production of tt̄ [40, 41, 78–94]. Similarly, an important application of NRQED is the
calculation of the parapositronium decay rate (see refs. [95–101]).

The analytic structure of the sunrise topology considered in this paper has been stud-
ied by means of differential equations in [102–106] and by using an effective-mass anal-
ysis in [107–110]. This integral family admits a closed-form solution in terms of 4F3-
hypergeometric functions, as shown in [71] (the corresponding off-shell diagrams with equal
masses are considerably more complicated and their explicit solution requires Appell’s F2
hypergeometric functions [111]). Moreover, similar results exist for three-point and four-
point two-loop Feynman diagrams in NRQCD kinematics (see ref. [56] for O(ε0) results
and [112] for results to every order in ε in terms of s+1Fs-hypergeometric functions with
s ≤ 7). In this paper we consider the two-loop sunrise integral family discussed above and
derive results in terms of eMPLs valid to all orders of the dimensional regulator.

The paper is organised as follows. In section 2 we define the sunrise integral family and
we present the 4F3-hypergeometric representation for the finite sunrise integral considered
in this paper. In section 3 we present a double integral representation for the relevant 4F3-
hypergeometric functions. In section 4 we review properties of eMPLs and we present our all
orders result for the sunrise integral. In section 5 we draw our conclusions. In appendix A,
B and C we present the detailed derivations of the double integral representations for the
relevant 4F3-hypergeometric functions. In appendix D we provide a representation for the
integral family in terms of one-dimensional integrals over polylogarithmic expressions, up
to O(ε). In appendix E we provide definitions relevant to the main results of the paper.
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2 The sunrise integral

Following ref. [71] we study the sunrise integral topology defined as,

Ji1,i2,i3(m2,M2) =
∫ ∫

dDk1d
Dk2 (µ2)2ε

[k2
2 −m2]i1 [k2

1 −M2]i2 [(k1 − k2 − q)2 −M2]i3

∣∣∣∣∣
q2=−m2

, (2.1)

with D = 4 − 2ε. This integral family has three master integrals, which can be chosen to
be J1,1,1, J1,1,2, J1,2,2 and which can be solved in closed form in terms of hypergeometric
functions [71] as,

J1,2,2(m2,M2) =− N̂1
M2

(1 + ε)
ε(1− ε) ×

[
1
64F3

(
1, 3

2 ,1+ ε
2 ,

3
2 + ε

2
2−ε, 5

4 ,
7
4

∣∣∣− m4

4M4

)

−
(
M2

m2

)1−ε
ε

(1 + ε)(1 + 2ε)4F3

(
1, 1

2 +ε,1+ ε
2 ,1+ε

3
2−

ε
2 ,

3
4 + ε

2 ,
5
4 + ε

2

∣∣∣− m4

4M4

)

−
(
M2

m2

)−ε 1− ε
(2− ε)(3 + 2ε)4F3

(
1, 3

2 + ε
2 ,1+ε, 3

2 +ε
2− ε2 ,

5
4 + ε

2 ,
7
4 + ε

2

∣∣∣− m4

4M4

) , (2.2)

J1,1,2(m2,M2) =N1
1

2ε(1− ε) ×
[

4F3

(
1, 1

2 ,1+ ε
2 ,

1
2 + ε

2
2−ε, 3

4 ,
5
4

∣∣∣− m4

4M4

)

−
(
M2

m2

)1−ε 1
ε

4F3

(
1, 1

2 +ε, ε2 ,ε
3
2−

ε
2 ,

1
4 + ε

2 ,
3
4 + ε

2

∣∣∣− m4

4M4

)

−2
(
M2

m2

)−ε 1− ε
(2− ε)(1 + 2ε)4F3

(
1, 1

2 + ε
2 ,1+ε, 1

2 +ε
2− ε2 ,

3
4 + ε

2 ,
5
4 + ε

2

∣∣∣− m4

4M4

) , (2.3)

J1,1,1(m2,M2) =−M2N̂1
1

ε2(1− ε) ×
[

4F3

(
1, 1

2 ,
ε
2 ,

1
2 + ε

2
2−ε, 3

4 ,
5
4

∣∣∣− m4

4M4

)

+
(
M2

m2

)1−ε 1
(1− 2ε)4F3

(
1,− 1

2 +ε, ε2 ,ε
3
2−

ε
2 ,

1
4 + ε

2 ,
3
4 + ε

2

∣∣∣− m4

4M4

)

−
(
M2

m2

)−ε 1− ε
(2− ε)(1 + 2ε)4F3

(
1, 1

2 + ε
2 ,ε,

1
2 +ε

2− ε2 ,
3
4 + ε

2 ,
5
4 + ε

2

∣∣∣− m4

4M4

) , (2.4)

where the normalization constant is,

N̂1 = Γ2(1 + ε)(µ2)2ε

(m2M2)ε
m2

M2 . (2.5)

3 Integral representations

In this section we show that the hypergeometric functions of eqs. (2.2)–(2.4) admit a two-
fold integral representation. The derivation of this result relies on multiple identities for
hypergeometric functions [6, 56] and is presented in appendix A. This representation will be
used in the next sections to derive an explicit expression for the sunrise integrals considered
in this paper valid to all orders of the dimensional regulator in terms of eMPLs.
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We introduce the dimensionless ratio,

t = m2

2M2 , (3.1)

and restrict ourselves to the Euclidean region t ∈ [0, 1]. We find,

J1,2,2 = N̂1
M2

[
J

(1)
1,2,2(t) + (2t)ε−1 J

(2)
1,2,2(t) + (2t)ε J (3)

1,2,2(t)
]
,

J1,1,2 = N̂1

[
J

(1)
1,1,2(t) + (2t)ε−1 J

(2)
1,1,2(t) + (2t)ε J (3)

1,1,2(t)
]
,

J1,1,1 = M2N̂1

[
J

(1)
1,1,2(t) + (2t)ε−1 J

(2)
1,1,2(t) + (2t)ε J (3)

1,1,2(t)
]
, (3.2)

where,

J
(1)
1,2,2(t) = − 1 + ε

6ε(1− ε) 4F3

(
1, 3

2 ,1+ ε
2 ,

3
2 + ε

2
2−ε, 5

4 ,
7
4

∣∣∣− t2) = K̂

22+2εεt2
I

(1)
1 (t) ,

J
(1)
1,1,2(t) = 1

2ε(1− ε) 4F3

(
1, 1

2 ,1+ ε
2 ,

1
2 + ε

2
2−ε, 3

4 ,
5
4

∣∣∣− t2) = K̂

21+2ε(1− 2ε)εt2 I
(1)
2 (t) ,

J
(1)
1,1,1(t) = − 1

ε2(1− ε) 4F3

(
1, 1

2 ,
ε
2 ,

1
2 + ε

2
2−ε, 3

4 ,
5
4

∣∣∣− t2) = − 1
ε2(1− ε)

− K̂

22ε−1ε(1− 2ε)2t2
Ĩ

(1)
3 (t) ,

J
(2)
1,2,2(t) = 1

(1 + 2ε)(1− ε) 4F3

(
1, 1

2 +ε,1+ ε
2 ,1+ε

3
2−

ε
2 ,

3
4 + ε

2 ,
5
4 + ε

2

∣∣∣− t2) = K̂

21+4εt1−ε
I

(2)
1 (t) ,

J
(2)
1,1,2(t) = − 1

2ε2(1− ε) 4F3

(
1, 1

2 +ε, ε2 ,ε
3
2−

ε
2 ,

1
4 + ε

2 ,
3
4 + ε

2

∣∣∣− t2) = − 1
2ε2(1− ε)

+ 1
(1− 2ε)

K̂

24εt1−ε
Ĩ

(2)
2 (t) ,

J
(2)
1,1,1(t) = − 1

ε2(1− ε)(1− 2ε) 4F3

(
1,− 1

2 +ε, ε2 ,ε
3
2−

ε
2 ,

1
4 + ε

2 ,
3
4 + ε

2

∣∣∣− t2)
= − 1

(1− ε)(1− 2ε)ε2 −
22−4εK̂

(1− 2ε)2t1−ε
Ĩ

(2)
3 (t) ,

J
(3)
1,2,2(t) = 1 + ε

ε(2− ε)(3 + 2ε) 4F3

(
1, 3

2 + ε
2 ,1+ε, 3

2 +ε
2− ε2 ,

5
4 + ε

2 ,
7
4 + ε

2

∣∣∣− t2) = − K̂

22+4εεt2
I

(3)
1 (t) ,

J
(3)
1,1,2(t) = − 1

ε(2− ε)(1 + 2ε) 4F3

(
1, 1

2 + ε
2 ,1+ε, 1

2 +ε
2− ε2 ,

3
4 + ε

2 ,
5
4 + ε

2

∣∣∣− t2) = − K̂

21+4ε(1− 2ε)εt2 I
(3)
2 (t) ,

J
(3)
1,1,1(t) = − 1

ε2(2− ε)(1 + 2ε) 4F3

(
1, 1

2 + ε
2 ,ε,

1
2 +ε

2− ε2 ,
3
4 + ε

2 ,
5
4 + ε

2

∣∣∣− t2) = 1
ε2(2− ε)(1 + 2ε)

+ 21−4εK̂

(1− 2ε)2εt2
Ĩ

(3)
3 (t) , (3.3)

where K̂ is defined as,
K̂ = Γ(1− ε)

Γ(1− 2ε)Γ(1 + ε) , (3.4)
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while the factors I(i)
j (t) and Ĩ

(i)
3 (t) (j = 1, 2), (i = 1, 3) represent the relevant double

integrals,
I

(i)
j (t) = I

(i)
j,1(t)− 2ε

1 + i
I

(1)
j,2 (t), Ĩ(i)

3 (t) = I
(i)
3,1(t)− 2ε

1 + i
I

(i)
3,2(t) , (3.5)

with,

I
(1)
1,1 (t) =

∫ 1

0
dp pε−1(1− p)−ε−

1
2
(
(p2t2 + 1)−

1
2 − 1

)
,

I
(1)
1,2 (t) =

∫ 1

0
dp pε−1 (1− p)−ε−

1
2 (p2t2 + 1)−

1
2 J (1)(q(p)),

I
(1)
2,1 (t) =

∫ 1

0
dp pε−2(1− p)−ε−

1
2
(
(p2t2 + 1)

1
2 − 1

)
,

I
(1)
2,2 (t) =

∫ 1

0
dp pε−2 (1− p)−ε−

1
2 (p2t2 + 1)

1
2 J (1)(q(p)),

Ĩ
(1)
3,1 (t) =

∫ 1

0
dp pε−3(1− p)−ε+

1
2

(
(p2t2 + 1)

1
2 − 1− (pt)2

2

)
,

Ĩ
(1)
3,2 (t) =

∫ 1

0
dp pε−3 (1− p)−ε+

1
2 (p2t2 + 1)

1
2 J̃ (1)(q(p)),

I
(2)
1 (t) =

∫ 1

0
dp p3ε−1(1− p)−ε−

1
2
(
p2t2 + 1

)−ε− 1
2 J (2)(pt),

I
(2)
2 (t) =

∫ 1

0
dp p3ε−2(1− p)−ε−

1
2
(
p2t2 + 1

)−ε+ 1
2 J (2)(pt),

Ĩ
(2)
2 (t) =

∫ 1

0
dp p3ε−2(1− p)−ε−

1
2
(
p2t2 + 1

)−ε+ 1
2 J̃ (2)(pt),

Ĩ
(2)
3 (t) =

∫ 1

0
dp p3ε−3(1− p)−ε+

1
2
(
p2t2 + 1

)−ε+ 1
2 J̃ (2)(pt),

I
(3)
1,1 (t) =

∫ 1

0
dp p2ε−1(1− p)−ε−

1
2

((
p2t2 + 1

)− ε2− 1
2 − 1

)
,

I
(3)
1,2 (t) =

∫ 1

0
dp p2ε−1(1− p)−ε−

1
2
(
p2t2 + 1

)− ε2− 1
2 J (3)(q(p)),

I
(3)
2,1 (t) =

∫ 1

0
dp p2ε−2(1− p)−ε−

1
2
(
(p2t2 + 1)

1
2−

ε
2 − 1

)
,

I
(3)
2,2 (t) =

∫ 1

0
dp p2ε−2 (1− p)−ε−

1
2 (p2t2 + 1)

1
2−

ε
2 J (3)(q(p)),

Ĩ
(3)
3,1 (t) =

∫ 1

0
dp p2ε−3(1− p)−ε+

1
2

(
(p2t2 + 1)

1
2−

ε
2 − 1− (1− ε) (pt)2

2

)
,

Ĩ
(3)
3,2 (t) =

∫ 1

0
dp p2ε−3 (1− p)−ε+

1
2 (p2t2 + 1)

1
2−

ε
2 J̃ (3)(q(p)), (3.6)

where

J (1)(q) = qε
∫ q

0
dz
(
(1− z)−

1
2 − 1

)
z−ε−1, J (2)(pt) =

∫ pt

0
dz z−ε

(
z2 + 1

)ε− 1
2 ,

J (3)(q) = q
ε
2

∫ q

0
dz
(
(1− z)−

ε
2−

1
2 − 1

)
z−

ε
2−1, J̃ (1)(q) = J (1)(q)− (pt)2

2(1− ε) ,

J̃ (2)(pt) = J (2)(pt)− 1
(p2t2 + 1)

1
2−ε

(pt)1−ε

1− ε , J̃ (3)(q) = J (3)(q)− (1 + ε)
(2− ε)(pt)2 (3.7)
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and
q(p) = p2t2

p2t2 + 1 . (3.8)

Integrals with tildes are used when the corresponding integrals have singularities for
small p values in (3.6) and for small z values in (3.7). They are constructed from the
corresponding integrals by extracting the leading asymptotics of subintegral expressions
for small p and for small z, respectively, and, therefore, they are finite.

In appendix D we present results for the integrals discussed in this paper in terms of
one-fold integral over polylogarithmic expressions, up to O(ε). In principle, results of this
form can be extended to any order of ε (see for example [110] and [64, 67]).

4 All orders result in terms of elliptic polylogarithms

In this section we derive eMPL representations for the sunrise integrals J1,2,2, J1,1,2 and
J1,1,1 valid to all orders of the dimensional regulator. Specifically, we start with a short
review of eMPLs, discussing their definition and the basic analytic properties. We then
discuss the general structure of the integral representations presented in the previous section
and we show that, by defining a new integration variable, their dependence on the relevant
elliptic curve can be made explicit. We conclude by discussing the general solution strategy
used to express these integrals in terms of eMPLs to all orders of the dimensional regulator,
and present our final results.

4.1 Elliptic polylogarithms

We are interested in the computation of iterated integrals of the form,∫ x

0
dx1R1(x1, y(x1))

∫ x1

0
dx2R2(x2, y(x2))· · ·

∫ xn−1

0
dxnRn(xn, y(xn)) , (4.1)

where Ri are rational functions of their arguments and y(x) is an elliptic curve,

y(x) =
√

(x− a1)(x− a2)(x− a3)(x− a4) . (4.2)

All iterated integrals of the form (4.1) can be expressed in terms of eMPLs. In the complex
plane, eMPLs are defined as

E4 ( n1,...,nk
c1,...,ck ;x) =

∫ x

0
dt ϕn1(c1, t)E4 ( n2,...,nk

c2,...,ck ; t) , (4.3)

with ni ∈ Z and ci ∈ C ∪ {∞}. The recursion starts at E4 ( ;x) = 1. By construction, the
kernels ϕn(c, x) have at most simple poles, and they are (see [35] for a detailed discussion),1

ϕ0(0, x) = c4
y(x) ,

ϕ1(c, x) = 1
x− c

, ϕ−1(c, x) = y(c)
(x− c)y(x) − (δc0 + δc1) 1

x− c
,

ϕ−1(∞, x) = x

y(x) , ϕ1(∞, x) = c4
y(x) Z4(x) ,

1In what follows we will encounter eMPLs evaluated at x = 0 and x = 1 and in order to make possible
divergent behaviour at these points manifest we regulated kernel ϕ−1(c, x) in x = 0 and x = 1 when c = 0
and c = 1 respectively (see section 4.2).
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ϕn(∞, x) = c4
y(x) Z

(n)
4 (x) , ϕ−n(∞, x) = x

y(x) Z
(n−1)
4 (x)− δn2

c4
,

ϕn(c, x) = 1
x− c

Z
(n−1)
4 (x)− δn2 Φ4(x) ,

ϕ−n(c, x) = y(c)
(x− c)y(x) Z

(n−1)
4 (x) , (n > 1) (4.4)

where y(c) and c4 are independent of x with,

c4 = 1
2
√
a13a24 with aij = ai − aj . (4.5)

Moreover we define,

E4
(
~1
~0 ;x

)
≡ log(x)n

n! , (4.6)

where ~1 and ~0 are vectors with entries equal to 1 and 0 respectively, and n = length(~1) =
length(~0). The function Z4(x) is defined by first introducing an auxiliary function Φ4(x),

Φ4(x) ≡ Φ̃4(x) + 4c4
η1
ω1

1
y

= 1
c4 y

(
x2 − s1

2 x+ s2
6

)
+ 4c4

η1
ω1

1
y
, (4.7)

where η1, ω1, s1, s2, c4 are independent of x and they are defined in [35], and,

Φ̃4(x) = 1
c4y

(
x2 − s1x

2 + s2
6

)
, (4.8)

whose primitive is,
Z4(x) =

∫ x

a1
dtΦ4(t) . (4.9)

In the next sections we will see that, in our integral representations, the function Φ4(x)
appears only in the last (outer) integration, and only the case Z(1)

4 (x) = Z4(x) need to
be considered.

Elliptic polylogarithms are a generalisation of ordinary multiple polylogarithms
(MPLs), defined recursively as,

G(a1, a2, . . . , an;x) =
∫ x

0

dt

t− a1
G(a2, . . . , an, t), (4.10)

with G(;x) ≡ 1 and,

G(~0, x) ≡ log(x)n

n! . (4.11)

By definition we see that MPLs are a subset of eMPLs,

E4
( 1,...,1
c1,...,cn ;x

)
= G(c1, c2, . . . , cn;x) , (4.12)

where ci 6=∞.
The appearance of the function Z4(x) and its regularised powers Z4(x)(n) is due to the

requirement that, in analogy to MPLs, integration kernels have at most simple poles [35].
The integrals considered in this paper do not involve Z4(x) and its regularised powers.
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As for all iterated integrals, eMPLs satisfy a shuffle algebra, with the shuffle product
defined as,

E4
(
a1 ... an
a′1 ... a

′
n

;x
)
E4
(
b1 ... bm
b′1 ... b

′
m

;x
)

=
∑

~c=~a�~b

E4
( c1 ... cn+m
c′1 ... c

′
n+m

;x
)
. (4.13)

The vector ~c is the vector obtained by performing all the shuffles of ~a and ~b, preserving the
ordering of the elements of ~a and ~b respectively.

4.2 Regularisation

As we will see in the next sections we are interested in computing definite integrals of
the form, ∫ 1

0
f(x)dx = F (1)− F (0), ∂F (x)

∂x
= f(x) . (4.14)

In some cases individual functions inside the primitive develop divergences when evaluated
at the integration bounds, and in order to compute the definite integral one needs to
perform two limits, ∫ 1

0
f(x)dx = lim

x→1
F (x)− lim

x→0
F (x). (4.15)

We illustrate how the limits are performed for the case,

F (x) = E4
(
−1
−1 ; 1

)
E4 ( 1

1 ;x) + E4
(

1 −1
0 −1 ;x

)
− E4

(
1 −1
1 −1 ;x

)
. (4.16)

From eq. (4.16) we see that F (0) = 0, while two eMPLs, E4 ( 1
1 ;x) and E4

(
1 −1
1 −1 ;x

)
,

are divergent for x = 1, therefore the computation of the integral (4.14) requires the
computation of the following limit,∫ 1

0
f(x)dx = lim

x→1
F (x). (4.17)

The limits can be computed by performing shuffle regularisation. Specifically, we first use
shuffle identities to isolate the logarithmic divergences,

E4
(

1 −1
1 −1 ;x

)
= E4

(
−1
−1 ;x

)
E4 ( 1

1 ;x)− E4
(
−1 1
−1 1 ;x

)
, (4.18)

and by inserting this result in (4.16) we find,

F (x) = E4
(
−1
−1 ; 1

)
E4 ( 1

1 ;x)−E4
(
−1
−1 ;x

)
E4 ( 1

1 ;x) +E4
(
−1 1
−1 1 ;x

)
+E4

(
1 −1
0 −1 ;x

)
. (4.19)

The divergences in x = 1 are now only carried by factors of E4 ( 1
1 ;x) = log(1−x). However

it is easy to see that the divergences explicitly cancel in the limit, and we obtain,∫ 1

0
f(x)dx = lim

x→1
F (x) = E4

(
−1 1
−1 1 ; 1

)
+ E4

(
1 −1
0 −1 ; 1

)
. (4.20)

We remark that for the choice of the integration kernels (4.4), divergent eMPLs at the
integration bounds considered in this work, i.e. 0 and 1, are those of the form,

E4
( 1 ~m

1 ~n ; 1
)
, E4 ( 1 ... 1

0 ... 0 ; 0) ,
(
~m
~n

)
6=
(

1,...,1
0,...0

)
, (4.21)
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implying that only E4
( 1 ~m

1 ~n ;x
)
need to be shuffle regulated. As discussed above, after

shuffle regularisation, the diverging terms are powers of E4 ( 1
1 ;x) and E4 ( 1

0 ;x), and a
manifestly finite result is obtained by taking the limit x → 1 and x → 0 as described
above. For a finite result all divergent factors are multiplied by a vanishing expression in
the limits.

In what follows we use a more direct and equivalent procedure to compute definite
integrals involving singular primitives. Specifically, we formally compute definite integrals
as the difference of the primitive evaluated at the integration bounds. Finally, we shuffle
regulate the result and set to zero all divergent logarithms.

4.3 Elliptic polylogarithms and all orders result

In this section we show that the double integrals of section 3 can be expressed as a Q-linear
combinations of eMPLs to all orders of the dimensional regulator. We start by observing
that the integrals of eq. (3.6) have the following general form,2∫ 1

0
dp

n1∑
i=1

f1,i(p)g1,i(p)ε
∫ h(p)

0

n2∑
j=1

f2,j(z)g2,j(z)εdz, n1, n2 ∈ N, (4.22)

where f1,i(p), g1,j(p) are algebraic functions of p, with algebraic factors,

√
1− p,

√
1 + t2p2, 0 < p < 1, 0 < t < 1, (4.23)

f2,j(z), g2,j(z) are algebraic functions with algebraic factors,
√

1− z,
√

1 + z2, 0 < z < 1, (4.24)

while h(p) is a rational function of p. The dependence on the relevant elliptic curve can be
made explicit for all integrands by the variable change,

p(x) = 1− x2, 0 < x < 1. (4.25)

After the variable change we can write,

−
∫ 1

0
dx

n1∑
i=1

f ′1,i(x, y(x))g′1,i(x, y(x))ε
∫ h(p(x))

0

n2∑
j=1

f2,j(z)g2,j(z)εdz , (4.26)

where the elliptic curve is,

y(x) =
√

1
t2

+ (1− x2)2, (4.27)

and,
f ′1,i(x, y(x)) = dp(x)

dx
f1,i(p(x)), g′1,i(x, y(x)) = g1,i(p(x)) . (4.28)

For integral J1,2,2, f ′1,i(x, y(x)) is a rational function on the elliptic curve y(x) with at most
simple poles, implying that it can be expressed as a Q-linear combination of kernels ϕ0(0, x),

2Integrals I
(1)
i,1 and I

(3)
i,1 (i = 1, 2, 3) are in fact one-fold integrals, but for the general discussion of this

section includes trivially the simpler case.
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ϕ1(c, x), ϕ−1(c, x), ϕ−1(∞, x). For integrals J1,1,2 and J1,1,1 the function f ′1,i(x, y(x))
depends also on Φ4(x), as shown in appendix C, and the solution of the integrals in terms
of eMPLs introduces the additional kernels ϕ1(∞, x), ϕ−2(∞, x), ϕ±2(c, x), and it requires
the application of integration by parts identities (see appendix E). In order to introduce the
formalism used in this paper we continue the discussion of this section considering quantities
related to integral J1,2,2. The derivation of the results for all the integrals is presented in
the next sections and the appendices. The function g′1,i(x, y(x)) takes the form,

g′1,i(x, y(x)) = y(x)αR1,i(x), α ∈ N, (4.29)

where R1,i is a rational function, which implies that upon expanding in powers of ε, the
resulting logarithmic factor can be evaluated in terms of eMPLs of the form E4 ( 1

c ;x), i.e.
ordinary MPLs. The ε expansion is performed according to,

g′1,i(x, y(x))ε =
∞∑
i=0

log(g′1,i(x, y(x)))iεi

i! . (4.30)

The logarithm can be expressed as Q-linear combinations of eMPLs, by using the general
identity,

log(a(x, y(x))) = log(a(0, y(0))) +
∫ x

0
dz
da(z, y(z))

dz

1
a(z, y(z)) , (4.31)

for regular and non-vanishing a(0, y(0)). As anticipated, eq. (4.29) implies that the inte-
grand on the right hand side can be expressed as a Q-linear combination of ϕ1(c, x). For a
subset of integrals we have that a(x, y(x)) = xβr(x, y(x)), with regular and non-vanishing
r(0, y(0)), β 6= 0, and the identity above is ill-defined. Nonetheless in these cases we
simply have,

log(a(x, y(x))) = log(r(0, y(0))) + β log(x) +
∫ x

0
dz
dr(z, y(z))

dz

1
r(z, y(z)) . (4.32)

Results of the same form can be obtained for the inner integral. This is achieved by
changing the upper integration bound to x, by using the fact that,∫ a(x)

0
b(z)dz =

∫ a(1)

0
b(z) +

∫ x

1
dz

∂

∂x

∫ a(x)

0
b(z)dz, (4.33)

and
∂

∂x

∫ a(x)

0
b(z)dz = b(a(z))db(z)

dz
, (4.34)

where the choice of unit lower integration bound is conventional at this point, and will be
clarified later. For the case at hand, the identities above imply,∫ h(p(x))

0

n2∑
j=1

f2,j(z)g2,j(z)εdz =
∫ x

1

n2∑
j,k=1

f2,j(h(p(z)))g2,j(h(p(z)))εd(f2,k(z)g2,k(z)ε)
dz

dz

+
∫ h(p(1))

0

n2∑
j=1

f2,j(z)g2,j(z)εdz. (4.35)
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For the h(p(x)) considered in this work, h(p(1)) = 0, so that the last integral on the right
hand side vanishes. Moreover, for the relevant f2,j(z) and g2,j(z), we can write,∫ x

1

n2∑
j,k=1

f2,j(h(p(z)))g2,j(h(p(z)))εd(f2,k(z)g2,k(z)ε)
dz

dz=
∫ x

1

n∑
i=1

f ′2,i(z,y(z))g′2,i(z,y(z))εdz ,

(4.36)
where f ′2,i(z, y(z)) are rational functions on y(z) with at most simple poles while g′2,i(z, y(z))
have the same form as eq. (4.29). Logarithms and prefactors may be expressed as Q-
linear combinations of eMPLs and integration kernels respectively as discussed in the pre-
vious paragraph.

This analysis implies that integrals of the form eq. (4.22) formally evaluate to,

n′∑
l=1

Cl

∞∑
i,j=0

εi+j

i!j!

∫ 1

0
dxk1,l(x)L1,l(x)i

∫ x

1
dzk2,l(z)L2,l(z)j , n′ ∈ N, Cl ∈ Q , (4.37)

where Li,j(x) are Q-linear combinations of eMPLs of depth one, while ki,j(x) are Q-linear
combinations of integration kernels. These integrals can be directly evaluated in terms of
eMPLs by shuffle expanding products of eMPLs of the integrands, and by using recursively
the definition of eMPLs.

Eq. (4.37) is not well defined in general, since double integrals might be individually
divergent, while only the full linear combination corresponds to a finite result. Nonetheless
a manifestly finite result can be obtained by performing shuffle regularisation as described
in 4.2. More precisely, diverging powers of logarithms (in our case powers of E4 ( 1

0 ; 0) and
E4 ( 1

1 ; 1)) are isolated by using shuffle identities and are subsequently set to zero.
In order to make the notation more compact, and make properties of the result in

terms of eMPLs manifest, we use the following notation for the double integrals of (4.37).
By denoting a primitive of ki,j(x) as Ki,j(x), and by defining the bilinear ∗-operator as,

E4
(
~n
~c ;x

)
∗ E4

(
~m
~d

;x
)

= E4
(
~n ~m
~c ~d

;x
)
, (4.38)

we can write

Reg
0,1

n′∑
l=1

Cl

∞∑
i,j=0

εi+j

i!j! K1,l(x) ∗ L1,l(x)i
[
K2,l(z) ∗ L2,l(z)j

]x
1
, (4.39)

where all products of eMPLs are shuffle expanded before applying the ∗-operator, and these
operations are carried out for the inner square brackets first. Finally, the lower and upper
scripts applied to the square brackets denote the following operation,

[F (x)]x1 = F (x)− F (1) , (4.40)

while the regularisation operator is,

Reg 0,1F (x) = Reg
x→1

F (x)− Reg
x→0

F (x) , (4.41)

where Regx→x0 , x0 ∈ {0, 1} denotes the regularised limit operation described in section 4.2.
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4.4 Sunsets

By applying the procedure described above we obtain one of the main results of this paper,
i.e. an explicit expression for the integrals of eq. (3.6) in terms of eMPLs valid to all orders
of the dimensional regulator.

4.4.1 J1,2,2

Combining eqs. (3.3), (E.1) and (E.2) to the right hand side of eq. (3.2), we obtain the
following expression for J1,2,2,

M2 J1,2,2 = N̂1
K̂1
4t2 Ĵ1,2,2,

Ĵ1,2,2 =
[1
ε
I

(1)
1 (t) +

(
t2

2

)ε
I

(2)
1 (t)− 1

ε

(
t

2

)ε
I

(3)
1 (t)

]

=
[1
ε
I

(1)
1,1 (t)− I(1)

1,2 (t) +
(
t2

2

)ε
I

(2)
1 (t)−

(
t

2

)ε (1
ε
I

(3)
1,1 (t)− 1

2 I
(3)
1,2 (t)

)]
, (4.42)

where,

I
(1)
1,1 (t) = Reg

0,1

∞∑
i=0

εi

i!K1 ∗ Li1, ,

I
(1)
1,2 (t) = Reg

0,1

∞∑
i,j=0

εi+j

i!j! K2 ∗ Li3
[
K3 ∗ Lj2

]x
1
,

I
(2)
1 (t) = Reg

0,1

∞∑
i,j=0

εi+j

i!j! K4 ∗ Li5
[
K5 ∗ Lj4

]x
1
,

I
(3)
1,1 (t) = Reg

0,1

∞∑
i=0

εi

i!K6 ∗ Li6 + Reg
0,1

∞∑
i=0

εi

i!K4 ∗ Li7 ,

I
(3)
1,2 (t) = Reg

0,1

∞∑
i,j=0

εi+j

i!j! K7 ∗ Li8
[
K9 ∗ Lj4

]x
1

+ Reg
0,1

∞∑
i,j=0

εi+j

i!j! K7 ∗ Li8
[
K8 ∗ Lj9

]x
1
, (4.43)

where Ki and Li are depth one eMPLs and their definition is provided in appendix C.
Since the integrals I(2)

1 (t) and I(3)
1 (t) contribute to Ĵ1,2,2 with the corresponding factors,

it is convenient to present also(
t2

2

)ε
I

(2)
1 (t) = Reg

0,1

∞∑
i,j=0

εi+j

i!j! K4∗L̂i5
[
K5∗Lj4

]x
1
,

(
t

2

)ε
I

(3)
1,1 (t) = Reg

0,1

∞∑
i=0

εi

i!K6∗L̂i6+Reg
0,1

∞∑
i=0

εi

i!K4∗L̂i7 ,(
t

2

)ε
I

(3)
1,2 (t) = Reg

0,1

∞∑
i,j=0

εi+j

i!j! K7∗L̂i8
[
K9∗Lj4

]x
1
+Reg

0,1

∞∑
i,j=0

εi+j

i!j! K7∗L̂i8
[
K8∗Lj9

]x
1
, (4.44)

where,
L̂5 = l5 + 2 log t− log 2, L̂k = lk + log t− log 2 (k = 6, 7, 8) . (4.45)
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We see that the integral J1,2,2 in the form of the elliptic integrals is finite since K1 =
K4 +K6 (see appendix E) and,

I
(1)
1,1 (t)−

(
t

2

)ε
I

(3)
1,1 (t) = Reg

0,1

∞∑
i=1

εi

i!K1 ∗
(
Li1− L̂i6

)
+Reg

0,1

∞∑
i=1

εi

i!K2 ∗
(
Li1− L̂i7

)
∼ O(ε). (4.46)

4.4.2 J1,1,1 and J1,1,2

Combining eqs. (3.2) and (3.3), we obtain the following expression for J1,1,2 and J1,1,1,

J1,1,j = J sing
1,1,j + Jreg1,1,j (j = 1, 2), (4.47)

J sing
1,1,2 = − N̂2

2(1− ε)ε2 , Jreg1,1,2 = K̂1 N̂1
2(1− 2ε)t2 Ĵ1,1,2,

Ĵ reg
1,1,2 =

[1
ε
I

(1)
2 (t) +

(
t2

2

)ε
Ĩ

(2)
2 (t)− 1

ε

(
t

2

)ε
I

(3)
2 (t)

]
, (4.48)

J sing
1,1,1 =

{
m2

ε2

[
1

(2− ε)(1 + 2ε) −
(2t)−ε

(1− ε)

]
− M2

(1− ε)(1− 2ε)ε2

}
N̂2,

J reg
1,1,1 = −M2 2K̂1 N̂1

(1− 2ε)2t2
Ĵ1,1,1, Ĵ1,1,1 =

[1
ε
Ĩ

(1)
3 (t) +

(
t2

2

)ε
Ĩ

(2)
3 (t)− 1

ε

(
t

2

)ε
Ĩ

(3)
3 (t)

]
,

(4.49)

where

N̂2 = (2t)ε−1 N̂1 = Γ2(1 + ε)(µ2)2ε

(M2)2ε . (4.50)

Results for I(i)
2 (t), Ĩ(2)

2 (t), Ĩ(2)
3 (t) and Ĩ

(i)
3 (t) (i = 1, 3) shown in (3.5) and (3.6) can

be expressed in terms of eMPLs by using the strategy of the previous sections and by
applying integration by parts identities (see [35]). However, upon variable change (4.25),
one encounters kernels of the form xa

y(x) with a > 2, which render the integration by parts
identities quite cumbersome. We show in appendix C that one can reduce these integrals
to the computation of integrals I(j)

21 (t) and I(j)
31 (t) (j = 1, 2, 3) (defined below in eqs. (4.54)–

(4.57) and (4.60) and (4.61)), which require considering only kernels with at most simple
poles, and x2

y(x) (see appendix C), which has a double pole at infinity. The results presented
in appendix C take the form,

I
(i)
2 (t) = 1

2(1− 3ε)

[
(1− 4ε) I(i)

1 (t)− t2I(i)
21 (t) + 2(1− 2ε)t2I(i)

31 (t)
]
, (4.51)

Ĩ
(i)
3 (t) = (1− 2ε)

2(2− 3ε)

[
2t2

(
I

(i)
1 (t)− I(i)

31 (t)
)
− I(i)

2 (t) + C
(i)
3 t2

]
, (4.52)

where,

C
(1)
3 = 5− 6ε

1− ε
1
K̂1

, C
(3)
3 = 2(5− 4ε)

(1 + 2ε)(2− ε)
1
K̂2

, (4.53)
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and,

I
(1)
21 (t) =

∫ 1

0

dp p1+ε(1− p)−1/2−ε

(1 + t2p2)(1/2)

{
1− εJ (1)(q)

}
, (4.54)

I
(1)
31 (t) =

∫ 1

0

dp pε(1− p)−1/2−ε

(1 + t2p2)1/2

{
1− εJ (1)(y)

}
, (4.55)

and,

I
(3)
21 (t) =

∫ 1

0

dp p1+2ε(1− p)−1/2−ε

(1 + t2p2)(1+ε)/2

{
1− ε

2J
(3)(q)

}
, (4.56)

I
(3)
31 (t) =

∫ 1

0

dp p2ε(1− p)−1/2−ε

(1 + t2p2)(1+ε)/2

{
1− ε

2J
(3)(y)

}
. (4.57)

The results for I(2)
2 (t) and I(2)

3 (t) are,

Ĩ
(2)
2 (t) = 1

2(1−3ε)

[
(1−4ε)I(2)

1 (t)− t2 I(2)
21 (t)− 2(1−4ε)t1−ε

(1−ε)(1+2ε)
1
K̂2

+2(1−2ε) t2I(2)
31 (t)

]
,

(4.58)

Ĩ
(2)
3 (t) = 1−2ε

2(2−3ε)

[
2t2
(
I

(2)
1 (t)−I(2)

31 (t)
)
− Ĩ(2)

2 (t)
]
, (4.59)

where,

I
(2)
21 (t) =

∫ 1

0

dp p1+3ε

(1− p)1/2+ε (1 + t2p2)1/2+ε J
(2)(tp), (4.60)

I
(2)
31 (t) =

∫ 1

0

dp p3ε

(1− p)1/2+ε (1 + t2p2)1/2+ε J
(2)(p). (4.61)

For integrals I(1)
j (t) with (j = 21, 31) and (i = 1, 2, 3) we have,

I
(1)
j (t) = Reg

0,1

∞∑
i=0

εi

i!Kj∗Li1−εReg
0,1

∞∑
i,j=0

εi+j

i!j! Kj∗Li3
[
K3∗Lj2

]x
1
,

(
t2

2

)ε
I

(2)
1 (t) = Reg

0,1

∞∑
i,j=0

εi+j

i!j! Kj∗L̂i5
[
K5∗Lj4

]x
1
,

(
t

2

)ε
I

(3)
j (t) = Reg

0,1

∞∑
i=0

εi

i!Kj∗L̂i6

− ε2

Reg
0,1

∞∑
i,j=0

εi+j

i!j! K7∗L̂i8
[
K9∗Lj4

]x
1
+Reg

0,1

∞∑
i,j=0

εi+j

i!j! K7∗L̂i8
[
K8∗Lj9

]x
1

 ,

(4.62)

where Ki and Li are depth one eMPLs and their definition is provided in appendix E.
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We see that all singularities in Jreg1,1,2(t) and Jreg1,1,1(t), which can be represented as,

Jreg1,1,2(t) = − (1− 4ε)N2
(1− 3ε)(1− ε)(1− 2ε)(1 + 2ε) + J

reg
1,1,2(t) , (4.63)

Jreg1,1,1(t) = − M2N1
(1− 2ε)(2− 3ε)

[
(5− 6ε)
ε(1− ε) −

2(5− 4ε)(2t)ε

ε(2− ε)(1 + 2ε) + 2(1− 4ε)(2t)ε−1

(1− 3ε)(1− ε)(1 + 2ε)

]
+ J

reg
1,1,1(t) , (4.64)

are exactly cancelled. Indeed, we have,

J
reg
1,1,2 = K̂1 N̂1

2(1− 2ε)t2 J̃1,1,2, J
reg
1,1,1 = −M2 2K̂1 N̂1

(1− 2ε)2t2
J̃1,1,1, (4.65)

and

J̃1,1,2(t) = 1
2(1− 3ε)

{
(1− 4ε) Ĵ1,2,2(t)− t2 Ĵ (21)(t)

)
+ 2(1− 2ε)t2 Ĵ (31)(t)

}
, (4.66)

J̃1,1,1(t) = (1− 2ε)
2(2− 3ε)

{
2t2

(
Ĵ1,2,2(t)− Ĵ (31)(t)

)
− Ĵ1,1,2(t)

}
, (4.67)

where

Ĵ (j1)(t) =
[1
ε
I

(1)
j1 (t) +

(
t2

2

)ε
I

(2)
j1 (t)− 1

ε

(
t

2

)ε
I

(3)
j1 (t)

]
(j = 2, 3) . (4.68)

The cancellation of the 1/ε poles in Ĵ (j1)(t) can be shown in the same way as in eq. (4.46).
We conclude this section by remarking that the regularisation procedure described

in section 4.2, and applied to the results of eqs. (4.43), (4.62), is meaningful only if the
corresponding integral expressions are finite. In our derivations, all integrals I(m)

i (t), Ĩ(n)
j (t)

contributing to J122, J112, J111, and for which we provide eMPLs expressions, are finite in
the ε → 0 limit. Therefore, the coefficients of their ε-expansion are well defined integrals
where shuffle regularisation can be safely applied. In order to validate our argument we
performed sample analytical and numerical checks. Specifically, we computed the first
three ε orders (εi, i = {0, 1, 2, 3}) of integrals I(i)

1,k, i = {1, 3}, k = {1, 2} and I(2)
1 by using

the expressions of eq. (4.43), and checked the cancellation of divergent eMPLs at t = {0, 1}
analytically (when possible), and numerically by using the integral definition of eMPLs.
Moreover, we compared numerically these results against a direct numerical evaluation of
the corresponding integral expressions of eq. (3.6) finding agreement. Finally, by using
the same numerical routines, we computed integral J122 up to and including O(ε2), and
found full agreement with a numerical evaluation performed with the computer program
FIESTA [113].

4.5 Example

We show how the solution strategy of the previous section works in practice by considering
integral I(2)

1 (t). The dependence on the elliptic curve is made explicit by applying the
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variable change (4.25),

I
(2)
1 (t) =

∫ 1

0
dx

2
t (1− x2) y(x)

((
1− x2)3
t2x2y(x)2

)ε ∫ t(1−x2)

0
dz

1√
z2 + 1

(
z + 1

z

)ε
. (4.69)

By applying eq. (4.35) the inner integral can be expressed as∫ t−tx2

0
dz

1√
z2 + 1

(
z + 1

z

)ε
= −

∫ x

1
dz

2z
y(z)

(
ty2(z)
1− z2

)ε
. (4.70)

All the ε-powers can be expanded in ε by eq. (4.30). For example we have(
ty2(x)
1− x2

)ε
=
∞∑
i=0

εi

i! logi
(
ty2(x)
1− x2

)
. (4.71)

The resulting logarithm can be expressed in terms of eMPLs by eq. (4.31),

log
(
ty2(x)
1− x2

)
= log

(
t2 + 1

)
− log(t) +

∫ x

0
dz

2z
(
t2
(
z2 − 1

)2 − 1
)

t2 (z2 − 1) y(z)2 . (4.72)

The integrand above can be written in terms of the integration kernels as,

2z
(
t2
(
z2 − 1

)2 − 1
)

t2 (z2 − 1) y(z)2 =
4∑
i=1

ϕ1 (ai, z)− ϕ1(−1, z)− ϕ1(1, z) , (4.73)

where we denoted with ai the four roots of the elliptic curve,

a1 = −
√
t− i√
t

, a2 =
√
t− i√
t

, a3 = −
√
t+ i√
t

, a4 =
√
t+ i√
t

. (4.74)

Upon integration we find,

L4 ≡ log
(
ty2(x)
1− x2

)
=

4∑
i=1

E4
( 1
ai ;x

)
−E4

( 1
−1 ;x

)
−E4 ( 1

1 ;x)+log
(
t2 + 1

)
− log(t) . (4.75)

Finally, all prefactors can be expressed in terms of integration kernels, for example, referring
to eq. (4.69),

2
t (1− x2) y(x) = ϕ−1(−1, x)− ϕ−1(1, x)− ϕ1(1, x) . (4.76)

By taking the primitive of eq. (4.76) we obtain,

K4 ≡ E4
(
−1
−1 ;x

)
− E4

(−1
1 ;x

)
− E4 ( 1

1 ;x) . (4.77)

By applying these methods to all relevant logarithms and prefactors, we obtain a result
in terms of integrals of the form (4.37), which are directly evaluated to eMPLs by, e.g.,
eq. (4.39),

I
(2)
1 (t) = Reg

0,1

∞∑
i,j=0

εi+j

i!j! K4 ∗ Li5
[
K5 ∗ Lj4

]x
1
, (4.78)

where,

L5 = −
4∑
i=1

E4
( 1
ai ;x

)
+ 3E4

( 1
−1 ;x

)
− 2E4 ( 1

0 ;x) + 3E4 ( 1
1 ;x)− log

(
t2 + 1

)
,

K5 = −2E4 (−1
∞ ;x) . (4.79)
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5 Conclusions

In this paper we studied a family of sunrise integrals with two different internal masses and
pseudo-threshold kinematics in dimensional regularisation. These integrals admit a closed-
form solution in terms of hypergeometric functions [71] and we use this representation as
the starting point of our analysis. Specifically, we show that all relevant hypergeometric
functions admit a representation in terms of double iterated integrals depending on one
elliptic curve and no other algebraic functions. When expanding these integrals with respect
to the (vanishing) dimensional regulator, the coefficients of the expansion are iterated
integrals over rational functions on the relevant elliptic curve. We derive an expression
for the relevant sunrise integrals valid to all orders of the dimensional regulator in terms
of eMPLs.

A Integral representations for the hypergeometric functions

In this section we provide the derivation of the integral representations for the
4F3-hypergeometric functions of eq. (2.2), identities eq. (3.3). Similar techniques have
been used in refs. [6, 56, 114–118]. In what follows we use the following definitions and
identities,

K̂1 =
Γ
(

1
2

)
Γ
(

1
2 − ε

)
Γ(ε+ 1)

= K̂

22ε , K̂2 =
Γ
(
ε+ 1

2

)
Γ
(

1
2 − ε

)
Γ(2ε+ 1)

= K̂1
22ε = K̂

24ε , (A.1)

where K̂ is defined in eq. (3.4). We present a detailed derivation only for diagram J1,2,2.
For diagrams J1,1,2 and J1,1,1 we present only the final results as their derivation follows
steps similar to those of J1,2,2.

The first type of hypergeometric functions. The first 4F3-hypergeometric function
of J1,2,2 admits the following series representation,

F
(1)
1 (t)≡ 4F3

(
1, 3

2 ,1+ ε
2 ,

3
2 + ε

2
2−ε, 5

4 ,
7
4

∣∣∣∣∣− t2
)
,

=
∞∑
m=0

Γ(m+ 3
2)Γ(m+1+ ε

2)Γ(m+ 3
2 + ε

2)
Γ(m+2−ε)Γ(m+ 5

4)Γ(m+ 7
4)

Γ(2−ε)Γ(5
4)Γ(7

4)
Γ(3

2)Γ(1+ ε
2)Γ(3

2 + ε
2)

(−t2)m , (A.2)

where t = m2/(2M2) as defined in eq. (3.1) of the main text. The product Γ(α)Γ(1/2 +α)
can be written as,

Γ(α)Γ(1/2 + α) = 21−2α√π Γ(2α) , (A.3)

which results in the following simplified expression for F1(t),

∞∑
m=0

Γ(m+ 3
2)Γ(2m+ 2 + ε)

Γ(m+ 2− ε)Γ(2m+ 5
2)

Γ(2− ε)Γ(5
2)

Γ(3
2)Γ(2 + ε)

(−t2)m . (A.4)
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It is convenient to use the following integral representations for the ratio of gamma func-
tions,

Γ(2m+ 2 + ε)
Γ(2m+ 5

2)
=
∫ 1

0
dp
p2m+1+ε(1− p)−1/2−ε

Γ(1
2 − ε)

. (A.5)

We find,

F1(t) =
∫ 1

0
dp
p1+ε(1− p)−1/2−ε

Γ(1
2 − ε)

∞∑
m=0

Γ(m+ 3
2)

Γ(m+ 2− ε)
Γ(2− ε)Γ(5

2)
Γ(3

2)Γ(2 + ε)
(−(tp)2)m . (A.6)

In order to proceed with our analysis it is convenient to consider first the series on the
right hand side in the limit ε = 0,

∞∑
m=0

Γ(m+ 3
2)

(m+ 1)! (−(tp)2)m =
∞∑
m=1

Γ(m+ 1
2)

m! (−(tp)2)m−1 = −
Γ(1

2)
(tp)2

[
1

(1 + t2p2)1/2 − 1
]
.

(A.7)
In the general case we have,

∞∑
m=0

Γ(m+ 3
2)

Γ(m+ 2− ε) (−(tp)2)m =
∞∑
m=1

Γ(m+ 1
2)

Γ(m+ 1− ε) (−(tp)2)m−1

= −
Γ(1

2)
Γ(1− ε)(tp)2

[
2F1

(
1, 1

2; 1− ε;−p2t2
)
− 1

]
. (A.8)

Using standard properties of the 2F1-function,

2F1
(
a, b; c; z

)
= (1− z)b 2F1

(
c− a, b; c; z − 1

z

)
, (A.9)

we obtain,

2F1

(
1, 1

2; 1− ε;−p2t2
)

= 1
(1 + t2p2)1/2 2F1

(1
2 ,−ε; 1− ε; q(p)

)
, (A.10)

where q was defined in eq. (3.8) of the main text, and in what follows we suppress the
p-dependence of q(p) for ease of notation. The last 2F1-function admits the following
representation,

2F1

(1
2 ,−ε; 1− ε; q

)
=
∞∑
m=0

Γ(m+ 1
2)

m!Γ(1
2)

−ε
m− ε

qm = 1−ε
∞∑
m=1

Γ(m+ 1
2)

m!Γ(1
2)

1
m− ε

qm . (A.11)

Using the integral representation for the factor 1/(m− ε) =
∫ 1

0 dz z
m−1−ε, we have,

2F1

(1
2 ,−ε; 1− ε; q

)
= 1− ε

∫ 1

0

dz

z1+ε

[ 1√
1− zq − 1

]
= 1− ε

∫ q

0

dz1q
ε

z1+ε
1

[ 1√
1− z1

− 1
]
.

(A.12)
Combining these results, eq. (A.8) can be written as,

∞∑
m=0

Γ(m+ 3
2)

Γ(m+ 2− ε) (−(tp)2)m = −
Γ(1

2)
Γ(1− ε)(tp)2 f

(1)
1 (pt) , (A.13)
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where
f

(1)
1 (pt) = 1

(1 + t2p2)1/2

{
1− εJ (1)(q)

}
− 1 (A.14)

and J (1)(q) is defined in eq. (3.7).
The final result for F (1)

1 (t) reads,

F
(1)
1 (t) = − 3(1− ε)

2(1 + ε)t2 K̂1 I
(1)
1 (t) , I

(1)
1 (t) =

∫ 1

0
dp pε−1(1− p)−1/2−ε f

(1)
1 (pt) , (A.15)

where the normalization K̂1 was determined in eq. (A.1). We note that the elliptic structure
of eq. (A.15) is carried by the product (1− p)−1/2−ε(1 + t2p2)−1/2.

The first 4F3-hypergeometric functions of J1,1,2 and J1,1,1, F (1)
2 (t) and F (1)

3 (t), admit
the following series representations,

F
(1)
2 (t)≡ 4F3

(
1, 1

2 ,1+ ε
2 ,

1
2 + ε

2
2−ε, 3

4 ,
5
4

∣∣∣∣∣− t2
)

=
∞∑
m=0

Γ(m+ 1
2)Γ(m+1+ ε

2)Γ(m+ 1
2 + ε

2)
Γ(m+2−ε)Γ(m+ 3

4)Γ(m+ 5
4)

Γ(2−ε)Γ(3
4)Γ(5

4)
Γ(1

2)Γ(1+ ε
2)Γ(1

2 + ε
2)

(−t2)m , (A.16)

F
(1)
3 (t)≡ 4F3

(
1, 1

2 ,
ε
2 ,

1
2 + ε

2
2−ε, 3

4 ,
5
4

∣∣∣∣∣− t2
)

=
∞∑
m=0

Γ(m+ 1
2)Γ(m+ ε

2)Γ(m+ 1
2 + ε

2)
Γ(m+2−ε)Γ(m+ 3

4)Γ(m+ 5
4)

Γ(2−ε)Γ(3
4)Γ(5

4)
Γ(1

2)Γ( ε2)Γ(1
2 + ε

2)
(−t2)m . (A.17)

In a similar way we obtain,

F
(1)
2 (t) = (1−ε)

t2
K̂1

∫ 1

0
dppε−2(1−p)−1/2−ε

[(
1+ t2p2

)1/2 {
1−εJ (1)

2 (q)
}
−1
]
,

F
(1)
3 (t) = 2ε(1−ε)

(1−2ε)t2 K̂1

∫ 1

0
dppε−3(1−p)1/2−ε

[(
1+ t2p2

)1/2 {
1−εJ (1)

2 (q)
}
−1
]
, (A.18)

where
J

(1)
2 (q) = qε

∫ q

0
dz
(
(1− z)

1
2 − 1

)
z−ε−1 . (A.19)

The second type of the hypergeometric functions. The second 4F3-hypergeometric
function of J1,2,2 admits the following series representation,

F
(2)
1 (t) ≡ 4F3

(
1, 1

2 + ε, 1 + ε
2 , 1 + ε

3
2 −

ε
2 ,

3
4 + ε

2 ,
5
4 + ε

2

∣∣∣∣∣− t2
)

=
∞∑
m=0

Γ(m+ 1
2 + ε)Γ(m+ 1 + ε

2)Γ(m+ 1 + ε)
Γ(m+ 3

2 −
ε
2)Γ(m+ 3

4 + ε
2)Γ(m+ 5

4 + ε
2)

Γ(3
2 −

ε
2)Γ(3

4 + ε
2)Γ(5

4 + ε
2)

Γ(1
2 + ε)Γ(1 + ε

2)Γ(1 + ε)
(−t2)m.

(A.20)

As in the previous section, we express F2(t) as,
∞∑
m=0

Γ(m+ 1 + ε
2)Γ(2m+ 2 + 2ε)

Γ(m+ 3
2 −

ε
2)Γ(2m+ 3

2 + ε)
Γ(3

2 −
ε
2)Γ(1

2 + ε)
Γ(1 + ε

2)Γ(1 + 2ε) (−t2)m , (A.21)
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where we used the standard identity,

2F1
(
a, b; c; z

)
= (1− z)c−b−a 2F1 (c− a, c− b; c; z) . (A.22)

By turning to integral representations for gamma functions,

Γ(2m+ 1 + 2ε)
Γ(2m+ 3

2 + ε)
=
∫ 1

0
dp
p2m+2ε(1− p)−1/2−ε

Γ(1
2 − ε)

, (A.23)

we find,

F
(2)
1 (t) =

∫ 1

0
dp
p2ε(1− p)−1/2−ε

Γ(1
2 − ε)

∞∑
m=0

Γ(m+ 1 + ε
2)

Γ(m+ 3
2 −

ε
2)

Γ(3
2 −

ε
2)Γ(3

2 + ε)
Γ(+ ε

2)Γ(1 + 2ε) (−(tp)2)m .

(A.24)
As before, we consider first the ε = 0 limit,

∞∑
m=0

Γ(m+ 1)Γ(1
2)

Γ(m+ 3
2)

(−t2)m = 2 2F1

(
1, 1; 3

2;−t2
)

= 2
(1 + t2)1/2 2F1

(1
2 ,

1
2; 1

2;−t2
)

= 1
(1 + t2)1/2

∞∑
m=0

Γ(m+ 1
2)

m!Γ(1
2)

1
m+ 1

2
(−t2)m. (A.25)

By taking 1/(m+ 1/2) =
∫ 1

0 dz z
m−1/2, we find (z = s2),

1
(1 + t2)1/2

∞∑
m=0

Γ(m+ 1
2)

m!Γ(1
2)

1
m+ 1

2
(−t2)m = 1

(1 + t2)1/2

∫ 1

0

dz

z

1√
1 + zt2

= 2
(1 + t2)1/2

∫ 1

0

ds√
1 + s2t2

= 1
t
√

1 + t2
log
√

1 + t2 + 1√
1 + t2 − 1

. (A.26)

In the general case,

∞∑
m=0

Γ(m+ 1 + ε
2)Γ(3

2 −
ε
2)

Γ(m+ 3
2 −

ε
2)Γ(1 + ε

2)
(−t2)m

= 2F1

(
1 + ε

2 , 1; 3
2 −

ε

2;−t2
)

= 1
(1 + t2)1/2+ε 2F1

(1
2 − ε,

1
2 −

ε

2; 3
2 −

ε

2;−t2
)

= 1
(1 + t2)1/2+ε

∞∑
m=0

Γ(m+ 1
2 − ε)

m!Γ(1
2 − ε)

(1
2 −

ε
2)

m+ 1
2 −

ε
2

(−t2)m, (A.27)

and by taking 1/(m+ 1/2− ε/2) =
∫ 1

0 dz z
m−1/2−ε/2, we have (z = s2),

1−ε
2(1+ t2)1/2+ε

∞∑
m=0

Γ(m+ 1
2−ε)

m!Γ(1
2−ε)

1
m+ 1

2−
ε
2

(−t2)m = 1−ε
2(1+ t2)1/2+ε

∫ 1

0

dz

z
1
2 + ε

2

1
(1+zt2)

1
2−ε

= 1−ε
(1+ t2)1/2+ε

∫ 1

0

ds

sε
1

(1+s2t2)
1
2−ε
≡ 1−ε

(1+ t2)1/2+ε t1−ε
J (2)(t) , (A.28)

where J (2)(t) is defined in eq. (3.7).
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The final results for F (2)
1 (t) reads,

F
(2)
1 (t) = (1− ε)(1 + 2ε)

22t1−ε
K̂2 I

(2)
1 (t) , I

(2)
1 (t) =

∫ 1

0
dp p3ε−1(1− p)−1/2−ε f

(2)
1 (pt) , (A.29)

where
f

(2)
1 (pt) = 1

(1 + t2p2)1/2+ε J
(2)(pt) (A.30)

and J (2)(y) is defined in (3.7). The normalization K̂2 is defined in eq. (A.1).
The second 4F3-hypergeometric functions of J1,1,2 and J1,1,2 admit the following series

representation,

F
(2)
2 (t)≡ 4F3

(
1, 1

2 +ε, ε2 , ε
3
2−

ε
2 ,

1
4 + ε

2 ,
3
4 + ε

2

∣∣∣∣∣− t2
)

=
∞∑
m=0

Γ(m+ 1
2 +ε)Γ(m+ ε

2)Γ(m+ε)
Γ(m+ 3

2−
ε
2)Γ(m+ 1

4 + ε
2)Γ(m+ 3

4 + ε
2)

Γ(3
2−

ε
2)Γ(1

4 + ε
2)Γ(3

4 + ε
2)

Γ(1
2 +ε)Γ( ε2)Γ(ε)

(−t2)m ,

(A.31)

F
(2)
3 (t)≡ 4F3

(
1,−1

2 +ε, ε2 , ε
3
2−

ε
2 ,

1
4 + ε

2 ,
3
4 + ε

2

∣∣∣∣∣− t2
)

=
∞∑
m=0

Γ(m− 1
2 +ε)Γ(m+ ε

2)Γ(m+ε)
Γ(m+ 3

2−
ε
2)Γ(m+ 1

4 + ε
2)Γ(m+ 3

4 + ε
2)

Γ(3
2−

ε
2)Γ(1

4 + ε
2)Γ(3

4 + ε
2)

Γ(−1
2 +ε)Γ( ε2)Γ(ε)

(−t2)m .

(A.32)

Splitting the cases m = 0 and m 6= 0, we have:

F
(2)
2 (t) = (1− ε)

(1− 2ε)

[
1− 2ε2K̂2

t1−ε
I

(2)
2 (t)

]
= 1− (1− ε)

(1− 2ε)
2ε2K̂2
t1−ε

Ĩ
(2)
2 (t),

I
(2)
2 (t) =

∫ 1

0
dp

p3ε−2

(1− p)1/2+ε f
(2)
2 (pt) , Ĩ

(2)
2 (t) =

∫ 1

0
dp

p3ε−2

(1− p)1/2+ε f̃
(2)
2 (pt) , (A.33)

F
(2)
3 (t) = 1 + 4ε2(1− ε)K̂2

(1− 2ε)t1−ε Ĩ
(2)
3 (t), Ĩ

(2)
3 (t) =

∫ 1

0
dp

p3ε−3

(1− p)−1/2+ε f̃
(2)
2 (pt) (A.34)

where

f
(2)
2 (pt) =

(
1 + t2p2

)1/2−ε
J (2)(pt), f̃

(2)
2 (pt) = f

(2)
2 (pt)− (pt)1−ε

1− ε . (A.35)

The form f̃
(2)
2 (pt) is conveninet at small p behaviour, because it is ∼ O(p3−ε). Indeed,

st small t, the integral
∫ 1

0 ds/[sε(1 + s2t2)
1
2−ε] has the following form∫ 1

0

ds

sε
1

(1 + s2t2)
1
2−ε
≈ 1

(1− ε) +O(t2) (A.36)

and, thus,

J̃ (2)(pt) = J (2)(pt)− 1
(1 + t2p2)1/2−ε

(pt)1−ε

(1− ε) ∼ O((pt)3−ε) . (A.37)
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The third type of hypergeometric functions. The third 4F3-hypergeometric function
admits the following series representation,

F
(3)
1 (t)≡ 4F3

(
1, 3

2 + ε
2 ,1+ε, 3

2 +ε

2− ε
2 ,

5
4 + ε

2 ,
7
4 + ε

2

∣∣∣∣∣− t2
)

(A.38)

=
∞∑
m=0

Γ(m+ 3
2 + ε

2)Γ(m+ 3
2 +ε)Γ(m+1+ε)

Γ(m+2− ε
2)Γ(m+ 5

4 + ε
2)Γ(m+ 7

4 + ε
2)

Γ(2− ε
2)Γ(5

4 + ε
2)Γ(7

4 + ε
2)

Γ(3
2 + ε

2)Γ(1+ε)Γ(3
2 +ε)

(−t2)m.

The previous sum simplifies to,
∞∑
m=0

Γ(m+ 1 + ε
2)Γ(2m+ 2 + 2ε)

Γ(m+ 3
2 −

ε
2)Γ(2m+ 3

2 + ε)
Γ(3

2 −
ε
2)Γ(1

2 + ε)
Γ(1 + ε

2)Γ(1 + 2ε) (−t2)m . (A.39)

By considering the following representations for ratios of gamma functions,

Γ(2m+ 2 + 2ε)
Γ(2m+ 5

2 + ε)
=
∫ 1

0
dp
p2m+1+2ε(1− p)−1/2−ε

Γ(1
2 − ε)

, (A.40)

we find,

F
(3)
1 (t) =

∫ 1

0
dp
p1+2ε(1− p)−1/2−ε

Γ(1
2 − ε)

∞∑
m=0

Γ(m+ 3
2 + ε

2)
Γ(m+ 2− ε

2)
Γ(2− ε

2)Γ(5
2 + ε)

Γ(3
2 + ε

2)Γ(2 + 2ε)
(−(tp)2)m .

(A.41)
As in the previous sections, we consider first the limit of the right hand side of the

previous equation, which is equivalent to eq. (A.7). In the general case,
∞∑
m=0

Γ(m+ 3
2 + ε

2)
Γ(m+2− ε

2) (−(tp)2)m =
∞∑
m=1

Γ(m+ 1
2 + ε

2)
Γ(m+1− ε

2) (−(tp)2)m−1

=−
Γ(1

2 + ε
2)

Γ(1− ε
2)(tp)2

[
2F1

(
1, 1

2 + ε

2;1− ε2;−p2t2
)
−1
]
. (A.42)

By using eq. (A.9) we obtain,

2F1

(
1, 1

2 + ε

2; 1− ε

2;−p2t2
)

= 1
(1 + t2p2)1/2+ ε

2
2F1

(1
2 + ε

2 ,−
ε

2; 1− ε

2; q
)
. (A.43)

The last 2F1-function admits the following representation,

2F1

(1
2 + ε

2 ,−
ε

2; 1− ε

2; q
)

=
∞∑
m=0

Γ(m+ 1
2 + ε

2)
m!Γ(1

2 + ε
2)

(− ε
2)

m− ε
2
qm

= 1− ε

2

∞∑
m=1

Γ(m+ 1
2 + ε

2)
m!Γ(1

2 + ε
2)

1
m− ε

2
qm . (A.44)

By using the integral representation 1/(m− ε
2) =

∫ 1
0 dz z

m−1− ε2 , we find (z1 = zq),

2F1

(1
2 + ε

2 ,−
ε

2; 1− ε

2; q
)

= 1− ε

2

∫ 1

0

dz

z1+ ε
2

[
1

(1− zq)
1
2 + ε

2
− 1

]

= 1− ε

2

∫ q

0

dz1q
ε
2

z
1+ ε

2
1

[
1

(1− z1)
1
2 + ε

2
− 1

]
, (A.45)
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so that eq. (A.8) reads,
∞∑
m=0

Γ(m+ 3
2 + ε

2)
Γ(m+ 2− ε

2) (−(tp)2)m = −
Γ(1

2 + ε
2)

Γ(1− ε
2)(tp)2

[
1

(1 + t2p2)1/2+ ε
2

{
1− ε

2J
(3)
1 (q)

}
− 1

]
,

(A.46)
where J (3)(q) is defined in eq. (3.7).

The final result for F3(t) is,

F
(3)
1 (t) = −(2− ε)(3 + 2ε)

4(1 + ε)t2 K̂2 I
(3)
1 (t) , I

(3)
1 (t) =

∫ 1

0
dp pε(1− p)−1/2−ε f

(3)
1 (pt) , (A.47)

where
f

(3)
1 (pt) = 1

(1 + t2p2)1/2+ ε
2

{
1− ε

2J
(3)(q)

}
− 1 . (A.48)

The third 4F3-hypergeometric functions of J1,1,2 and J1,1,1, F (3)
2 (t) and F (3)

3 (t), admit
the following series representations,

F
(3)
2 (t)≡ 4F3

(
1, 1

2 + ε
2 ,1+ε, 1

2 +ε

2− ε
2 ,

3
4 + ε

2 ,
5
4 + ε

2

∣∣∣∣∣− t2
)

(A.49)

=
∞∑
m=0

Γ(m+ 1
2 + ε

2)Γ(m+ 1
2 +ε)Γ(m+1+ε)

Γ(m+2− ε
2)Γ(m+ 3

4 + ε
2)Γ(m+ 5

4 + ε
2)

Γ(2− ε
2)Γ(3

4 + ε
2)Γ(5

4 + ε
2)

Γ(1
2 + ε

2)Γ(1+ε)Γ(1
2 +ε)

(−t2)m ,

F
(3)
3 (t)≡ 4F3

(
1, 1

2 + ε
2 , ε,

1
2 +ε

2− ε
2 ,

3
4 + ε

2 ,
5
4 + ε

2

∣∣∣∣∣− t2
)

(A.50)

=
∞∑
m=0

Γ(m+ 1
2 + ε

2)Γ(m+ 1
2 +ε)Γ(m+ε)

Γ(m+2− ε
2)Γ(m+ 3

4 + ε
2)Γ(m+ 5

4 + ε
2)

Γ(2− ε
2)Γ(3

4 + ε
2)Γ(5

4 + ε
2)

Γ(1
2 + ε

2)Γ(ε)Γ(1
2 +ε)

(−t2)m .

Proceeding in a similar way we obtain,

F
(3)
2 (t) = (2−ε)(1+2ε)

2(1−ε)t2 K̂2

∫ 1

0
dp

p2ε−2

(1−p)1/2+ε

[(
1+ t2p2

)1/2− ε2
{

1− ε2J
(3)
2 (q)

}
−1
]
,

F
(3)
3 (t) = 2ε(2−ε)(1+2ε)

(1−ε)(1−2ε)t2 K̂2

∫ 1

0
dp

p2ε−3

(1−p)−1/2+ε

[(
1+ t2p2

)1/2− ε2
{

1− ε2J
(3)
2 (q)

}
−1
]
,

(A.51)

where
J

(3)
2 (q) = q

ε
2

∫ q

0
dz
(
(1− z)−

ε
2 + 1

2 − 1
)
z−

ε
2−1 . (A.52)

B Relations between integrals J
(j)
2 (q) and J (j)(q) (j = 1, 3)

It is very convenient to present the results for F (1)
j (t) and F

(3)
j (t) (j = 2, 3) shown in

the eqs. (A.18) and (A.51), respectively, as integrals whose subintegral expressions depend
on the universal structures J (1)(q) and J (3)(q). This is the subject of this appendix. In
particular, this makes it possible to express the integrals contributing to F (1)

j (t) and F (3)
j (t)

(j = 2, 3), through the corresponding integrals appearing in F
(1)
1 (t) and F (3)

1 (t) shown in
eqs. (A.15) and (A.47) (see the evaluation in appendix C below), which strongly helps in
building eMPL representations for J1,1,2(t) and J1,1,1(t).
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We first express integral J (1)
2 (q) as,

J
(1)
2 (q) =

∫ q

0

dzqε

z1+ε

[ 1− z√
1− z

− 1
]

= J (1)(q)− J (1)(q) , (B.1)

where
J

(1)(q) =
∫ q

0

dzqε

zε
1√

1− z
. (B.2)

Secondly, by performing an integration by parts,

J
(1)
2 (q) = −1

ε

qε

zε

[√
1− z−1

]
|q0 + 1

ε

∫ q

0

dzqε

zε
(−1/2)√

1− z
= 1
ε

[
1−

√
1− q

]
− 1

2ε J
(1)(q) , (B.3)

and, thus, from (B.3),
J

(1)(q) = 2
[
1−

√
1− q

]
− 2ε J (1)

2 (q). (B.4)

By combining (B.1) and (B.4) we arrive at,

(1− 2ε) J (1)
2 (q) = J (1)(q)− 2

[
1−

√
1− q

]
. (B.5)

Results for F (1)
2 (t) and F (1)

3 (t) can be rewritten as,

F
(1)
2 (t) = (1−ε)

(1−2ε)t2 K̂1

∫ 1

0

dppε−2

(1−p)1/2+ε

[(
1+t2p2

)1/2 {
1−2ε

√
1−q−εJ (1)(q)

}
−(1−2ε)

]
,

F
(1)
3 (t) = 2ε(1−ε)

(1−2ε)2t2
K̂1

∫ 1

0

dppε−3

(1−p)ε−1/2

[(
1+t2p2

)1/2 {
1−2ε

√
1−q−εJ (1)(q)

}
−(1−2ε)

]
,

(B.6)

where J (1)(q) is defined in eq. (3.7).
We can simplify these results by observing that,

q = t2p2

1 + t2p2 , 1− q = 1
1 + t2p2 (B.7)

and, thus, [(
1 + t2p2

)1/2 {
1− 2ε

√
1− q − εJ (1)(q)

}
− (1− 2ε)

]
=
[(

1 + t2p2
)1/2 {

1− εJ (1)(q)
}
− 1

]
≡ f (1)

2 (pt) . (B.8)

The final results for F (1)
2 (t) and F (1)

2 (t) read,

F
(1)
2 (t) = (1− ε)

(‘1− 2ε)t2 K̂1 I
(1)
2 (t) , I

(1)
2 (t) =

∫ 1

0
dp pε−2(1− p)−1/2−ε f

(1)
2 (pt) ,

F
(1)
3 (t) = 2ε(1− ε)

(1− 2ε)2t2
K̂1 I

(1)
3 (t) , I

(1)
3 (t) =

∫ 1

0
dp pε−3(1− p)1/2−ε f

(1)
2 (pt) . (B.9)

For small p values one can see from eq. (B.8) that,

f
(1)
2 (pt) = (1− 2ε)

(1− ε)
(pt)2

2 +O(p4), (B.10)
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therefore integral I(1)
3 (t) is singular. We define a new integral, Ĩ(1)

3 (t), by extracting the
leading asymptotic from f

(1)
2 (pt). We have,

f̃
(1)
2 (pt) = f

(1)
2 (pt)− (1− 2ε)

(1− ε)
(pt)2

2 , (B.11)

and,

I
(1)
3 (t) = Ĩ

(1)
3 (t) + (1− 2ε)2

2ε(1− ε)
t2

K̂1
, (B.12)

where,

Ĩ
(1)
3 (t) =

∫ 1

0
dp pε−3(1− p)1/2−ε f̃

(1)
2 (pt) , (B.13)

and,
F

(1)
3 (t) = 1 + 2ε(1− ε)

(1− 2ε)2t2
K̂1 Ĩ

(1)
3 (t) , (B.14)

We now represent integral J (3)
2 (q) through J (3)(q). First, as for (B.1) we can represent

integral J (3)
2 (q) as,

J
(3)
2 (q) = J

(3)
1 (q)− J (3)(q), (B.15)

where
J

(3)(q) =
∫ q

0

dzqε/2

zε/2
1

(1− z)(1−ε)/2 . (B.16)

We then perform an integration by parts for J (3)
2 (q),

J
(3)
2 (q) = −2

ε

qε/2

zε/2

[
(1− z)(1−ε)/2 − 1

]
|q0 + 2

ε

∫ q

0

dzqε/2

zε/2
(−1/2)(1− ε)
(1− z)(1−ε)/2

= 2
ε

[
1− (1− q)(1−ε)/2

]
− 1− ε

ε
J

(3)(q) , (B.17)

and, thus,

J
(3)(q) = 1

1− ε

(
2
[
1− (1− q)(1−ε)/2

]
− ε J

(3)
2 (q)

)
. (B.18)

By combining (B.15) and (B.18),

J
(3)
2 (q) = 1− ε

1− 2ε J
(3)(q)− 2

1− 2ε
[
1− (1− q)(1−ε)/2

]
. (B.19)

For F (3)
2 (t) and F (3)

3 (t) we have,

F
(3)
2 (t) = (2− ε)(1 + 2ε)

2(1− ε)(1− 2ε)t2 K̂2

∫ 1

0
dp

p2ε−2

(1− p)1/2+ε

[(
1 + t2p2

)1/2− ε2

×
{

1− ε− ε(1− q)(1−ε)/2 − ε

2(1− ε)J (3)(y)
}
− (1− 2ε)

]
,

F
(3)
3 (t) = 2ε(2− ε)(1 + 2ε)

(1− ε)(1− 2ε)2t2
K̂2

∫ 1

0
dp

p2ε−3

(1− p)−1/2+ε

[(
1 + t2p2

)1/2− ε2

×
{

1− ε− ε(1− q)(1−ε)/2 − ε

2(1− ε)J (3)(q)
}
− (1− 2ε)

]
, (B.20)

where J (3)(q) is defined in eq. (3.7).
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Again, by using (B.7) we can simplify these results,
[(

1 + t2p2
)1/2− ε2

{
1− ε− ε(1− q)(1−ε)/2 − ε

2(1− ε)J (3)
1 (q)

}
− (1− 2ε)

]
= (1− ε)

[(
1 + t2p2

)1/2− ε2
{

1− ε

2J
(3)(q)

}
− 1

]
≡ (1− ε)f (3)

2 (pt) . (B.21)

We obtain,

F
(3)
2 (t) = (2− ε)(1 + 2ε)

2(1− 2ε)t2 K̂2 I
(3)
2 (t) , I

(3)
2 (t) =

∫ 1

0
dp

p2ε−2

(1− p)1/2+ε f
(3)
2 (pt) ,

F
(3)
3 (t) = 2ε(2− ε)(1 + 2ε)

(1− 2ε)2t2
K̂2 I

(3)
3 (t) , I

(3)
3 (t) =

∫ 1

0
dp

p2ε−3

(1− p)−1/2+ε f
(3)
2 (pt) . (B.22)

As for F (1)
3 (t), at small p values one can see that,

f
(3)
2 (pt) = (1− 2ε)

(2− ε) (pt)2 +O(p4). (B.23)

Therefore we define a finite integral Ĩ(3)
3 (t) as,

f̃
(3)
2 (pt) = f

(3)
2 (pt)− (1− 2ε)

(2− ε) (pt)2, (B.24)

and,

I
(3)
3 (t) = Ĩ

(3)
3 (t) + (1− 2ε)2

2ε(2− ε)(1 + 2ε)
t2

K̂2
, (B.25)

where,

Ĩ
(3)
3 (t) =

∫ 1

0
dp p2ε−3(1− p)1/2−ε f̃

(3)
2 (pt) , (B.26)

and,

F
(3)
3 (t) = 1 + 2ε(2− ε)(1 + 2ε)

(1− 2ε)2t2
K̂2 Ĩ

(3)
3 (t) , (B.27)

C Improved representations

After the variable change p = 1 − x2, the results obtained for I(i)
2 (t), Ĩ(2)

2 (t), Ĩ(2)
3 (t) and

Ĩ
(i)
3 (t) (i = 1, 3), eqs. (B.9), (B.13), (A.33), (A.34), (B.22) and (B.26) respectively, contain
integration kernels of the form xa/y(x), a > 2 and are therefore not optimal for expressing
them in terms of eMPLs. Here we present alternative representations for the integrals
I

(i)
2 (t), Ĩ(2)

2 (t), Ĩ(2)
3 (t) and Ĩ

(i)
3 (t), which can be expressed in terms of I(i)

1 (t) and I
(2)
1 (t),

shown in eqs. (A.15), (A.29) and (A.47), and simpler terms. These representations depend
on kernels with at most simple poles and x2/y(x).
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Integrals I
(1)
2 (t) and Ĩ

(1)
3 (t). Using the following property,

1
p(1− p) = 1

p

1
1− p , (C.1)

we can split the result (B.9) for I(1)
2 (t) as the combination of two parts:

I
(1)
2 (t) =

∫ 1

0

dp

p1−ε(1− p)1/2+ε f
(1)
2 (pt) +

∫ 1

0

dp (1− p)1/2−ε

p2−ε f
(1)
2 (pt) = Î

(1)
21 (t) + Î

(1)
22 (t) ,

(C.2)
where f (1)

2 (pt) is defined in eq. (B.8).
We note that,

f
(1)
2 (pt) = f

(1)
1 (pt) + t2p2

(1 + t2p2)1/2

{
1− εJ (1)(q)

}
, (C.3)

where f (1)
1 (pt) is defined in eq. (A.14).

Then,

Î
(1)
21 (t) = I

(1)
1 (t) + t2

∫ 1

0

dp p1+ε(1− p)1/2−ε

(1 + t2p2)1/2

{
1− εJ (1)(q)

}
= I

(1)
1 (t) + t2 I

(1)
21 (t) , (C.4)

Î
(1)
22 (t) =

∫ 1

0

dp (1− p)1/2−ε

p2−ε f
(1)
1 (p) + t2

∫ 1

0

dp pε(1− p)1/2−ε

(1 + t2p2)1/2

{
1− εJ (1)(q)

}
=
∫ 1

0

dp (1− p)1/2−ε

p2−ε f
(1)
1 (p) + t2 I

(1)
22 (t) . (C.5)

We now integrate Î(1)
22 (t) by parts as,∫ 1

0

dp

pα+1 F (p) = − 1
α

[
F (p)
pα
|10 −

∫ 1

0

dp

pα
dF (p)
dp

]
, (C.6)

where F (p) is some function and α = 1− ε. We have,

Î
(1)
22 (t) = − 1

1− ε

[
(1− p)1/2−ε

p1−ε f
(1)
2 (p) |10 +

(1
2 − ε

)
Î

(1)
21 (t)

− t2 I(1)
21 (t) + ε

∫ 1

0

dp (1− p)1/2−ε

p1−ε (1 + t2p2)−1/2
dJ (1)(q)
dp

]
, (C.7)

where,
(1− p)1/2−ε

p1−ε f
(1)
2 (p) |10 = 0 , (C.8)

and,

dJ (1)(q)
dp

= 2
p(1 + p2t2)

[
εJ (1)(q) +

√
1 + p2t2 − 1

]
= − 2

p(1 + p2t2)1/2 f
(1)
1 (p) . (C.9)
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The last term in (C.7) can be expressed as,

ε

∫ 1

0

dp (1− p)1/2−ε

p1−ε (1 + t2p2)−1/2
dJ (1)(q)
dp

= −2ε
∫ 1

0

dp (1− p)1/2−ε

p2−ε f
(1)
1 (p)

= −2ε
[
Î

(1)
22 (t)− t2 I(1)

22 (t)
]
, (C.10)

and, by using (C.5), the r.h.s. of (C.7) takes the following form,

− 1
1− ε

[(1
2 − ε

)
Î

(1)
21 (t)− (1− 2ε) t2I(1)

22 (t)− 2ε Î(1)
22 (t)

]
, (C.11)

which leads to,

Î
(1)
22 (t) = 1− 2ε

2(1− 3ε)

[
−Î(1)

21 (t) + 2t2I(1)
22 (t)

]
. (C.12)

Therefore, integral I(1)
2 (t) can be represented as,

I
(1)
2 (t) = 1

2(1− 3ε)

[
(1− 4ε) Î(1)

21 (t) + 2(1− 2ε)t2 I(1)
22 (t)

]
, (C.13)

and, by using (C.3), we can rewrite (C.13) in the following form,

I
(1)
2 (t) = 1

2(1− 3ε)

[
(1− 4ε)

(
I

(1)
1 (t) + t2I

(1)
21 (t)

)
+ 2(1− 2ε)t2 I(1)

22 (t)
]
. (C.14)

After the replacement p = 1− x2 (see eq. (4.25)), we have,

I
(1)
21 (t) ∼

∫ 1

0

dp pε(1− p)1/2−ε

(1 + t2p2)1/2 = 2
∫ 1

0

dxx2

ty

[
1− x2

x2

]ε
, (C.15)

I
(1)
22 (t) ∼

∫ 1

0

dp p1+ε(1− p)−1/2−ε

(1 + t2p2)1/2 = 2
∫ 1

0

dx (1− x2)
ty

[
1− x2

x2

]ε
. (C.16)

We now consider integral Ĩ(1)
3 (t), eq. (B.13). Repeating the derivation for I(1)

2 (t),
we obtain,

Ĩ
(1)
3 (t) = 1− 2ε

2(2− 3ε)

[
2t2

(
I

(1)
1 (t)− I(1)

31 (t)
)
− I(1)

2 (t) + (5− 6ε)
(1− ε)

t2

K̂1

]
, (C.17)

where,

I
(1)
31 (t) =

∫ 1

0

dp pε(1− p)−1/2−ε

(1 + t2p2)1/2

{
1− εJ (1)

1 (q)
}
, (C.18)

with, ∫ 1

0

dp pε

(1− p)1/2+ε (1 + t2p2)1/2 = 2
∫ 1

0

dx

ty

[
1− x2

x2

]ε
. (C.19)

Since I(1)
22 (t) = I

(1)
31 (t) − I

(1)
21 (t), eq. (C.14) can be replaced by (4.51) with i = 1 in the

main text.
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Integrals I
(3)
2 (t) and Ĩ

(3)
3 (t). Using (C.1), we can split the result (B.9) for I(3)

2 (t) as:

I
(3)
2 (t) =

∫ 1

0

dp

p1−2ε(1− p)1/2+ε f
(3)
2 (p) +

∫ 1

0

dp (1− p)1/2−ε

p2−2ε f
(3)
2 (p) = Î

(3)
21 (t) + Î

(3)
22 (t) ,

(C.20)
where f (3)

2 (tp) is defined in eq. (B.21).
We note that,

f
(3)
2 (p) = f

(3)
1 (p) + t2p2

(1 + t2p2)(1+ε)/2

{
1− ε

2J
(3)(q)

}
, (C.21)

where f (3)
1 (pt) is defined in eq. (A.48).

Then,

Î
(3)
21 (t) = I

(3)
1 (t)+ t2

∫ 1

0

dpp2ε(1−p)1/2−ε

(1+ t2p2)(1+ε)/2

{
1− ε2J

(3)(q)
}

= I
(3)
1 (t)+ t2 I

(3)
21 (t) , (C.22)

Î
(3)
22 (t) =

∫ 1

0

dp (1−p)1/2−ε

p2−2ε f
(3)
1 (p)+ t2

∫ 1

0

dpp2ε(1−p)1/2−ε

(1+ t2p2)(1+ε)/2

{
1− ε2J

(3)(q)
}

=
∫ 1

0

dp (1−p)1/2−ε

p2−2ε f
(3)
1 (p)+ t2 I

(3)
22 (t) . (C.23)

Now we integrate integral Î(3)
22 (t) by parts as in eq. (C.6) with α = 1− 2ε. We have,

Î
(3)
22 (t) =− 1

1−2ε

[
(1−p)1/2−ε

p1−2ε f
(3)
2 (p) |10 +

(1
2−ε

)
Î

(3)
21 (t)

−(1−ε)t2 I(3)
22 (t)+ ε

2

∫ 1

0

dp (1−p)1/2−ε

p1−2ε (1+ t2p2)−(1−ε)/2
dJ (3)(q)
dp

]
, (C.24)

with,
(1− p)1/2−ε

p1−2ε f
(3)
2 (p) |10 = 0, (C.25)

and,
dJ (3)(q)
dp

= − 2
p(1 + p2t2)(1−ε)/2 f

(3)
1 (p) . (C.26)

Therefore, the last term in (C.24) can be represented as,

ε

2

∫ 1

0

dp (1− p)1/2−ε

p1−2ε (1 + t2p2)−(1−ε)/2
dJ (3)(q)
dp

= −ε
∫ 1

0

dp (1− p)1/2−ε

p2−2ε f
(3)
1 (p)

= −ε
[
Î

(3)
22 (t)− t2I(3)

22 (t)
]
, (C.27)

and, using (C.23), the r.h.s. of (C.24) takes the following form:

− 1
1− 2ε

[(1
2 − ε

)
Î

(3)
21 (t)− (1− 2ε) t2I(3)

22 (t)− ε Î(3)
22 (t)

]
, (C.28)
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which leads to,

Î
(3)
22 (t) = 1− 2ε

2(1− 3ε)

[
−Î(3)

21 (t) + 2t2I(3)
22 (t)

]
. (C.29)

Therefore integral I(3)
2 (t) can be represented as,

I
(3)
2 (t) = 1

2(1− 3ε)

[
(1− 4ε) Î(3)

21 (t) + 2(1− 2ε)t2I(3)
22 (t)

]
, (C.30)

and, by using (C.21), we have,

I
(3)
2 (t) = 1

2(1− 3ε)

[
(1− 4ε)

(
I

(3)
1 (t) + t2I

(3)
21 (t)

)
+ 2(1− 2ε)t2I(3)

22 (t)
]
. (C.31)

After the replacement p = 1− x2, we have,

I
(3)
21 (t) ∼

∫ 1

0

dp p2ε(1− p)1/2−ε

(1 + t2p2)(1+ε)/2 = 2
∫ 1

0

dxx2

tŷ

[
(1− x2)2

x2(ty)

]ε
, (C.32)

I
(3)
22 (t) ∼

∫ 1

0

dp p1+2ε(1− p)−1/2−ε

(1 + t2p2)(1+ε)/2 = 2
∫ 1

0

dx (1− x2)
ty

[
(1− x2)2

x2(ty)

]ε
. (C.33)

Now we consider integral Ĩ(3)
3 (t), eq. (B.26). Proceeding as above we have,

Ĩ
(3)
3 (t) = 1− 2ε

2(2− 3ε)

[
2t2
(
I

(3)
1 (t)− I(3)

31 (t)
)
− I(3)

2 (t)
]
, (C.34)

where,

I
(3)
31 (t) =

∫ 1

0

dp p2ε(1− p)−1/2−ε

(1 + t2p2)(1+ε)/2

{
1− ε

2J
(3)
1 (q)

}
, (C.35)

with, ∫ 1

0

dp p2ε

(1− p)1/2+ε (1 + t2p2)(1+ε)/2 = 2
∫ 1

0

dx

ty

[
(1− x2)2

x2(ty)

]ε
. (C.36)

Since I(3)
22 (t) = I

(3)
31 (t) − I

(3)
21 (t), eq. (C.31) can be replaced by (4.51) with i = 3 in the

main text.

Integrals Ĩ
(2)
2 (t) and Ĩ

(2)
3 (t). Using (C.1), we can split the result (A.33) for Ĩ(2)

2 (t) as
the combination of two parts:

Ĩ
(2)
2 (t) =

∫ 1

0

dp

p1−3ε(1− p)1/2+ε f̃
(2)
2 (tp) +

∫ 1

0

dp (1− p)1/2−ε

p2−2ε f̃
(2)
2 (tp) = Ĩ

(2)
21 (t) + Ĩ

(2)
22 (t) .

(C.37)
It is convenient to express Ĩ(2)

21 (t) as,

Ĩ
(2)
21 (t) = Î

(2)
21 (t)− 2t1−ε

(1− ε)(1 + 2ε)
1
K̂2

, Î
(2)
21 (t) = I

(2)
1 (t) + t2 I

(2)
21 (t) , (C.38)
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where f (2)
2 = (1 + t2p2)f (2)

1 and,

I
(2)
21 (t) =

∫ 1

0

dp p1+3ε

(1− p)1/2+ε (1 + t2p2)1/2+ε J
(2)(tp) , (C.39)

with, ∫ 1

0

dp p3ε+1

(1− p)1/2−ε (1 + t2p2)1/2+ε = 2
∫ 1

0

dx (1− x2)
ty

[
(1− x2)3

x2(ty)2

]ε
. (C.40)

We now consider the second part of the r.h.s. of (C.37). We integrate the term Ĩ
(2)
22 (t)

by parts as in eq. (C.6) with α = 1− 3ε. We have,

Ĩ
(2)
22 (t) = 1

1−3ε

[
−(1−p)1/2−ε

p1−3ε f̃
(2)
2 (pt) |10−(1/2−ε) Ĩ(2)

21 (t)

+(1−2ε)t2
∫ 1

0

dpp3ε(1−p)1/2−ε

(1+t2p2)1/2+ε J (2)(tp)

+
∫ 1

0

dp(1−p)1/2−ε

p1−3ε (1+t2p2)−(1−ε)/2
dJ (2)(tp)

dp
−
∫ 1

0

dp(1−p)1/2−ε

p1−3ε
t1−ε

pε

]
, (C.41)

with,
(1− p)1/2−ε

p1−3ε f̃ (2)(p) |10 = 0 , (C.42)

and,
dJ (2)(tp)

dp
= t1−ε

pε(1 + p2t2)1/2−ε , (C.43)

and the last terms in the r.h.s. of (C.41) cancel exactly. Eq. (C.41) can be represented as,

1
1− 3ε

[
−(1/2− ε) Ĩ(2)

21 (t) + (1− 2ε) t2I(2)
22 (t)

]
, (C.44)

where,

I
(2)
22 (t) =

∫ 1

0

dp p3ε(1− p)1/2−ε

(1 + t2p2)1/2+ε J (2)(tp) , (C.45)

is such that, ∫ 1

0

dp p3ε(1− p)1/2−ε

(1 + t2p2)1/2+ε = 2
∫ 1

0

dxx2

ty

[
(1− x2)3

x2(ty)2

]ε
. (C.46)

Therefore we have that,

Ĩ
(2)
2 (t) = 1

2(1−3ε)

[
(1−4ε) Ĩ(2)

21 (t)+2(1−2ε) t2I(2)
22 (t)

]
(C.47)

= 1
2(1−3ε)

[
(1−4ε)

(
I

(2)
1 (t)+t2 I(2)

21 (t)− 2t1−ε

(1−ε)(1+2ε)
1
K̂2

)
+2(1−2ε) t2I(2)

22 (t)
]
.

– 31 –



J
H
E
P
0
9
(
2
0
2
1
)
0
7
2

Now we consider the integral Ĩ(2)
3 (t) shown in (A.34). Proceeding as above we have

for Ĩ(2)
3 (t),

Ĩ
(2)
3 (t) = 1− 2ε

2(2− 3ε)

[
2t2

(
I

(2)
1 (t)− I(2)

31 (t)
)
−Ĩ(2)

3 (t)
]
, (C.48)

where,

I
(2)
31 (t) =

∫ 1

δ

dp p3ε(1− p)−1/2−ε

(1 + t2p2)1/2+ε J (2)(p), (C.49)

with,

I
(2)
31 (t) ∼

∫ 1

0

dp p3ε(1− p)−1/2−ε

(1 + t2p2)1/2+ε = 2
∫ 1

0

dx

ty

[
(1− x2)3

x2(ty)2

]ε
. (C.50)

Since I(2)
22 (t) = I

(2)
31 (t) − I(2)

21 (t), eq. (C.47) can be replaced by (4.58) in the main text of
the paper.

D Leading terms of the ε-expansion and one-fold integrals

In this section we derive a one-fold integral representation for the first two orders of the
ε-expansion of J1,2,2, J1,1,2 and J1,1,1, (see eqs. (2.2)–(2.4), respectively). These representa-
tions generalise the results of refs. [6] and [56], where only the finite part of the expansion
was considered. The first two ε orders considered here can be expressed as one-fold integrals
over logarithms and dilogarithms with algebraic prefactors. A similar analysis shows that
to arbitrary order of the dimensional regulator the result is in terms of one-fold integrals
over higher weight MPLs.

Inner integrals. We start by considering integral J (2)(p), defined in eq. (3.7), at order ε0,

J (2)(pt, ε = 0) =
∫ tp

0

ds√
1 + s2

, (D.1)

which can be evaluated directly by means of the variable change,

s2 =
√

1 + s2 − s√
1 + s2 + s

, (D.2)

leading to,

J (2)(pt, ε = 0) = 1
2

∫ 1

R2

ds2
s2

= −1
2 logR2 ≡ J (2)

0 (p) , (D.3)

with

R2 =
√

1 + t2p2 − tp√
1 + t2p2 + tp

=
1−√q
1 +√q . (D.4)

By means of the same variable change, we evaluate the next ε order,

J (2)(pt) = 1
21+ε

∫ 1

R2

ds2

s
1+ε/2
2

(1 + s2)2ε

(1− s2)2ε = J
(2)
0 (pt) + εJ

(2)
1 (pt) +O(ε2) , (D.5)
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where J (2)
0 (pt) is given in (D.3) and,

J
(2)
1 (p) = 1

8 log2R2 + ζ2 + Li2(−R2)− 1
2 Li2(R2) . (D.6)

We now consider integrals J (1)(p) and J (3)(p), defined in eq. (3.7), at order ε0,

J (1)(p, ε = 0) = J (3)(p, ε = 0) =
∫ q

0

dz

z

( 1√
1− z

− 1
)
. (D.7)

By introducing a regulator δ we have,∫ y

δ

dz

z
= log q − log δ , (D.8)

while the remaining term can be evaluated by the variable change,

z = 1− s2, s = (1− s1)
(1 + s1) , (D.9)

and, ∫ q

δ

dz

z
√

1− z
=
∫ R1

δ/4

ds1
s1

= logR1 − log δ4 , R1 = 1−
√

1− q
1 +
√

1− q . (D.10)

The full result can be written as,

J (i)(p, ε = 0) = log(4R1)− log δ = log 4R1
q
≡ J (i)

0 (p), (i = 1, 3) . (D.11)

At the next order we have,

J (i)(p) = J
(i)
0 (p) + εJ

(i)
1 (p) +O(ε2), (i = 1, 3) , (D.12)

where J (1)
0 (p) = J

(3)
0 (p) are given in (D.11) and,

J
(1)
1 (p) = J

(1)
1 (p)− 2Li2(−R1), J

(3)
1 (p) = 1

2 J
(1)
1 (p) + 2Li2(R1)− 4Li2(−R1) , (D.13)

with,
J

(1)
1 (p) = log q log(4R1)− 1

2 log2 q − log 4 logR1 . (D.14)

Results for the sunrise integrals. Consider eqs. (4.42) and (4.47)–(4.50). In order to
obtain the ε-expansion of J1,2,2 up to and includingO(ε), we use the expressions for integrals
I(i)(t) (i = 1, 3) in eq. (3.5) and their integral representations in eq. (3.6). We have,

I
(1)
1,1 (t) =

∫ 1

0

dp

p
√

1−p

(
1√

1+p2t2
−1
) [

1+ε l1 + ε2

2 l21

]
+O(ε2) ,

I
(1)
1,2 (t) =

∫ 1

0

dp

p
√

1−p
1√

1+p2t2

[
J

(1)
0 +ε (l1J (1)

0 +J
(1)
1 )

]
+O(ε2),(

t2

2

)ε
I

(2)
1 (t) =

∫ 1

0

dp

p
√

1−p
1√

1+p2t2

[
J

(2)
0 +ε (l2J (2)

0 +J
(2)
1 )

]
+O(ε2) ,

(
t

2

)ε
I

(3)
1,1 (t) =

∫ 1

0

dp

p
√

1−p

(
1√

1+p2t2

[
1+ε l32 + ε2

2 l232

]
−
[
1+ε l31 + ε2

2 l231

])
+O(ε2) ,(

t

2

)ε
I

(3)
1,2 (t) =

∫ 1

0

dp

p
√

1−p
1√

1+p2t2

[
J

(3)
0 +ε (l32J

(3)
0 +J

(3)
1 )

]
+O(ε2) , (D.15)
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where,

l1 = log
(

p

1− p

)
, l2 = log

(
p3t2

2(1− p)(1 + p2t2)

)
= log

(
pq

2(1− p)

)
,

l31 = log
(

p2t

2(1− p)

)
, l32 = log

(
p2t

2(1− p)
√

1 + p2t2

)
= log

(
p
√
q

2(1− p)

)
, (D.16)

with J (i)
0 and J (i)

1 (i = 1, 2, 3) given in eqs. (D.5), (D.6), (D.11)–(D.14).
Combining all terms, we obtain the following finite expression,

Ĵ1,2,2 =
∫ 1

0

dp

p
√

1− p

[
b0 + 1√

1 + p2t2
B0 + ε

(
b1 + 1√

1 + p2t2
B1

)]
+O(ε2) , (D.17)

Ĵ reg
1,1,2 =

∫ 1

0

dp

p2√1− p

[
b0 − (pt) + 1√

1 + p2t2
B0 + ε

(
b1 − (pt)

(
1 + l31

)
+ 1√

1 + p2t2
B1

)]
+O(ε2) , (D.18)

Ĵ reg
1,1,1 =

∫ 1

0

dp
√

1− p
p3

[
b0 − (pt) + (pt)2

4 (2b0 − 1) + 1√
1 + p2t2

B0 + ε

(
b1 − (pt)

(
1 + l31

)
+ (pt)2

4

[
b2

0 − 3b0 + 1
2 + l1(2b0 − 1)

]
+ 1√

1 + p2t2
B1

)]
+O(ε2) , (D.19)

where,

b0 = log
(
pt

2

)
, B0 = log(R1R2), b1 = log

(
pt

2

)
log

(
p3t

2(1− p)2

)
,

B1 = J
(2)
1 + Li2(R1) + 1

4 log2(R1)− 1
2 log(R1R2) log

(
pq

4(1− p)

)
+ 1

4 log
(
q

4

)
log(R1)

− 1
8 log2

(
q

4

)
− log2 2 , (D.20)

where J (2)
1 is given in eq. (D.6).

The terms ∼ (pt) and ∼ (pt)2 in (D.18) and (D.19) appear upon replacing I(2)
i (t)→ Ĩ

(2)
i

(i = 2, 3) and I(j)
3 (t)→ Ĩ

(j)
3 (j = 1, 3), respectively.

Up to O(ε0), the results (4.42), (4.47)–(4.49) and (D.17)–(D.19) are in full agreement
with [56]. Here, however, the results (D.17)–(D.19) are given up to O(ε1).

E Definitions for elliptic polylogarithms

We provide here definitions relevant to the all orders results of the main text of the paper.

Results for Li and Ki. In this section we provide the definitions for the various factors
appearing in eqs. (4.43), (4.44) and (4.62). Specifically, the eMPLs expressions for the
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relevant logarithms are defined as,

L1 = E4
( 1
−1 ;x

)
− 2E4 ( 1

0 ;x) + E4 ( 1
1 ;x) ,

L2 =
4∑
i=1

E4
( 1
ai ;x

)
− 2E4

( 1
−1 ;x

)
− 2E4 ( 1

1 ;x) + log
(
t2 + 1

)
− 2 log(t),

L3 = −
4∑
i=1

E4
( 1
ai ;x

)
+ 3E4

( 1
−1 ;x

)
− 2E4 ( 1

0 ;x) + 3E4 ( 1
1 ;x)− log

(
t2 + 1

)
+ 2 log(t),

L4 =
4∑
i=1

E4
( 1
ai ;x

)
− E4

( 1
−1 ;x

)
− E4 ( 1

1 ;x) + log
(
t2 + 1

)
− log(t),

L5 = −
4∑
i=1

E4
( 1
ai ;x

)
+ 3E4

( 1
−1 ;x

)
− 2E4 ( 1

0 ;x) + 3E4 ( 1
1 ;x)− log

(
t2 + 1

)
,

L6 = 2E4
( 1
−1 ;x

)
− 2E4 ( 1

0 ;x) + 2E4 ( 1
1 ;x) ,

L7 = −1
2

4∑
i=1

E4
( 1
ai ;x

)
+ 2E4

( 1
−1 ;x

)
− 2E4 ( 1

0 ;x) + 2E4 ( 1
1 ;x)− 1

2 log
(
t2 + 1

)
,

L8 = −
4∑
i=1

E4
( 1
ai ;x

)
+ 3E4

( 1
−1 ;x

)
− 2E4 ( 1

0 ;x) + 3E4 ( 1
1 ;x)− log

(
t2 + 1

)
+ log(t),

L9 = 1
2

4∑
i=1

E4
( 1
ai ;x

)
− E4

( 1
−1 ;x

)
− E4 ( 1

1 ;x) + 1
2 log

(
t2 + 1

)
− log(t), (E.1)

while the primitives of the relevant integration kernels are defined as,

K1 = E4
(
−1
−1 ;x

)
− E4

(−1
1 ;x

)
− E4

( 1
−1 ;x

)
,

K2 = E4
(
−1
−1 ;x

)
− E4

(−1
1 ;x

)
− E4 ( 1

1 ;x) ,

K3 =
4∑
i=1

E4
( 1
ai ;x

)
+ 2E4

(
−1
−1 ;x

)
+ 2E4

(−1
1 ;x

)
− 2E4

( 1
−1 ;x

)
,

K4 = E4
(
−1
−1 ;x

)
− E4

(−1
1 ;x

)
− E4 ( 1

1 ;x) ,

K5 = −2E4 (−1
∞ ;x) ,

K6 = E4 ( 1
1 ;x)− E4

( 1
−1 ;x

)
,

K7 = E4
(
−1
−1 ;x

)
− E4

(−1
1 ;x

)
− E4 ( 1

1 ;x) ,

K8 = −
4∑
i=1

E4
( 1
ai ;x

)
− 2E4

( 1
−1 ;x

)
− 2E4 ( 1

1 ;x) ,

K9 = 2E4
(
−1
−1 ;x

)
+ 2E4

(−1
1 ;x

)
+ 2E4 ( 1

1 ;x) . (E.2)

For the sunrises Ĵ reg
1,1,2 and Ĵ reg

1,1,1 we have (see eq. (4.62)):

K31 = 1
c4
E4 ( 0

0 ;x) ,

K21 = 1
c4
E4 ( 0

0 ;x)−K(a)
21 −K

(b)
21 ,

K
(a)
21 = s1

2 E4 (−1
∞ ;x)−

(
s2
6c4

+ 4c4η1
ω1

)
E4 ( 0

0 ;x) , K
(b)
21 = c4 Ẑ4(x), (E.3)
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where,
Ẑ4(x) ∗ Lia(x) ≡

∫
dxΦ4(x)Lia(x) = Z4(x) ? Lia(x) , (E.4)

where the definition of the product of the ?-operator for a eMPL is provided in the next
subsection.

Definition of the ?-operator. In order to obtain an eMPLs expression with the ?-
operator we need to perform integrals of the form:

Z4(x) ? E4
( a1 a2 ...
b1 b2 ... ;x

)
≡
∫
dxΦ4(x)E4

( a1 a2 ...
b1 b2 ... ;x

)
. (E.5)

When E4 = 1, the ?-operator is trivial (see eq. (4.9)). For more complicated cases, we
can use the integration by parts. We have,∫

dxΦ4(x)E4
( a1 a2 ...
b1 b2 ... ;x

)
=Z4(x)E4

( a1 a2 ...
b1 b2 ... ;x

)
−
∫
dxZ4(x) ∂

∂x
E4
( a1 a2 ...
b1 b2 ... ;x

)
=Z4(x)E4

( a1 a2 ...
b1 b2 ... ;x

)
−
∫
dxZ4(x)φa1(b1, x)E4

( a2 ...
b2 ... ;x

)
. (E.6)

By noticing that Z(1)
4 (x) = Z4(x) and that Z(n)

4 (x) appears only in the last integration
(see discussion in the main text after eq. (4.9)), we have the following possible cases.

1. Let a1 = b1 = 0, then,

Z4(x)φ0(0, x) = c4Z4(x)
y(x) = φ1(∞, x), (E.7)

and, thus, the last term in r.h.s. of (E.6) evaluates to,∫
dxφ1(∞, x)E4

( a2 ...
b2 ... ;x

)
= E4

(
1 a2 ...
∞ b2 ...

;x
)
. (E.8)

2. Let a1 = 1 and b1 = c, where c is some constant. Then we have,

Z4(x)φ1(c, x) = Z4(x)
x− c

= φ2(c, x) + Φ4(x) . (E.9)

Thus, for the last term in r.h.s. of (E.6) we have the following results,∫
dxZ4(x)φ1(c, x)E4

( a2 ...
b2 ... ;x

)
= E4

(
2 a2 ...
c b2 ...

;x
)

+
∫
dxΦ4(x)E4

( a2 ...
b2 ... ;x

)
. (E.10)

3. Let a1 = −1 and b1 = c, where c is also some constant. Then we have,

Z4(x)φ−1(c, x) = Z4(x)y(c)
(x− c)y(x) −

(
δ0
c + δ1

c

) Z4(x)
x− c

, (E.11)

where δ0
c and δ1

c are Cronecker symbols. Considering the results (4.4) with Z(n)
4 (x),

we have,

Z4(x)φ−1(c, x) = φ−2(c, x)−
(
δ0
c + δ1

c

)
[φ2(c, x) + Φ4(x)] . (E.12)
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Thus, for the last term in r.h.s. of (E.6) we have the following results,∫
dxZ4(x)φ−1(c, x)E4

( a2 ...
b2 ... ;x

)
= E4

(
−2 a2 ...
c b2 ...

;x
)
−
(
δ0
c + δ1

c

) [
E4
(

2 a2 ...
c b2 ...

;x
)

+
∫
dxΦ4(x)E4

( a2 ...
b2 ... ;x

)]
.

(E.13)

Therefore, in cases 2 and 3 we expressed the initial integral (E.5) as a combination
of eMPLs and integrals of the form (E.5) with lower depth. Therefore these integrals
can be expressed fully in terms of eMPLs by iterating the application of the IBP
identities (E.6) and by using the definition of Z4(x), eq. (4.9).

4. Let a1 = −1 and b1 =∞, then we have,

Z4(x)φ−1(∞, x) = xZ4(x)
y(x) = φ−2(∞, x) + 1

c4
. (E.14)

Thus, for the last term in r.h.s. of (E.6) we have the following results,∫
dxZ4(x)φ−1(∞, x)E4

( a2 ...
b2 ... ;x

)
= E4

(
−2 a2 ...
∞ b2 ...

;x
)

+ 1
c4

∫
dxE4

( a2 ...
b2 ... ;x

)
. (E.15)

The last term in the r.h.s. can be transformed by integration by part as,∫
dxE4

( a2 ...
b2 ... ;x

)
= (x+d)E4

( a2 ...
b2 ... ;x

)
−
∫
dx (x+d)φa2(b2, x)E4

( a2 ...
b2 ... ;x

)
, (E.16)

where d is arbitrary constant.
Finally, the following cases need to be considered.

4.1. Let a2 = b2 = 0, then in the case d = 0 we have,
c4x

y(x) = φ−1(∞, x), (E.17)

and the last term in r.h.s. of (E.16) evaluates to,∫
dxE4

(
0 a3 ...
0 b3 ...

;x
)

= E4
(
−1 0 a3 ...
∞ 0 b3 ...

;x
)
. (E.18)

4.2. Let a2 = 1 and b2 = c1, where c1 is some constant. Then, we have, when d = −c1,
x+ d

x− c1
= 1 . (E.19)

Then, the last term in r.h.s. of (E.16) has the following form,∫
dxE4

(
1 a3 ...
c1 b3 ...

;x
)

= (x− c1)E4
(

1 a3 ...
c1 b3 ...

;x
)
−
∫
dxE4

( a3 ...
b3 ... ;x

)
. (E.20)

As in cases 2 and 3 we expressed reduced integrals in the r.h.s. of (E.16) as a com-
bination of eMPLs and lower depth integrals. The iterative application of the IBP
procedure (E.6) terminates with, ∫

dx = x+ d1 , (E.21)

where d is arbitrary constant.
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4.3. Let a2 = −1 and b2 = c2, where c1 is some constant. Then, we have, when d = −c2,

x+ d

(x− c2)y(x) = 1
y(x) = 1

c4
φ0(0, x), (E.22)

and, thus, the last term in r.h.s. of (E.16) has the closed form,∫
dxE4

(
−1 a3 ...
c2 b3 ...

;x
)

= (x− c2)E4
(
−1 a3 ...
c2 b3 ...

;x
)
−− 1

c4
E4
(

0 a3 ...
0 b3 ...

;x
)
. (E.23)

4.4. Let a2 = −1 and b2 =∞, then in the case d = 0, we have,

(x+ d)x
y(x) = x2

y(x) = c4Φ4(x) + s1
2

x

y(x) −
s2
6

1
y(x) − 4c2

4
η1
ω1

1
y(x) , (E.24)

and, thus, the last term in r.h.s. of (E.16) has the following form,∫
dxE4

(
−1 a3 ...
∞ b3 ...

;x
)

=
(
x+ s1

2

)
E4
(
−1 a3 ...
∞ b3 ...

;x
)
−
(
s2
6 + 4c2

4
η1
ω1

)
E4
(

0 a3 ...
0 b3 ...

;x
)

+ c4

∫
dxΦ(x)E4

( a3 ...
b3 ... ;x

)
. (E.25)

Therefore, we reduced any integral of the form (E.5) to the computation of integrals
of the form (E.5) with lower depth. Iterating (E.6) several times and using (4.9) we can
compute any integral of the form (E.5) in terms of eMPLs.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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