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1 Introduction and summary

Nambu-Goldstone theorems are some of our strongest non-perturbative constraints on the
dynamics of Quantum Field Theories (QFTs). Let us review the setup for continuous
internal (non space-time) symmetries in a QFT in d space-time dimensions. By Noether’s
theorem, there exists a charge Q which is an extended operator depending topologically
on a co-dimension 1 surface Σ. If in some state |Ω〉 we have for some local operator O(0)

〈Ω|[Q,O(0)]|Ω〉 6= 0 ,

then it can be shown by a deformation of Σ that, roughly speaking, 〈Ω|j0(x)O(0)|Ω〉 cannot
decay faster than 1/|x|d−1 as we take |x| → ∞. This algebraic decay of a correlation
function implies gapless excitations of |Ω〉 in infinite volume. Furthermore, under various
additional assumptions about the nature of the state |Ω〉, the existence of an ordinary
massless boson (or a superfluid mode) can be established. Incidentally, if 〈Ω|j0(x)O(0)|Ω〉 6=
0 holds true, this means that also 〈Ω|O†(x)O(0)|Ω〉 must decay algebraically at most.
And under some assumptions it cannot decay faster than 1/|x|d−2.1 This is unacceptable
in d = 2 since it leads to a violation of clustering, due to the connected correlator not
decaying. Hence no such states |Ω〉 can exist in d = 2, which is the familiar statement of
the Coleman-Mermin-Wagner theorem [1, 2].

In finite volume (in the absence of boundaries) no state |Ω〉 can have the property
that 〈Ω|[Q,O(0)]|Ω〉 6= 0. This is simply because we can diagonalize Q in finite volume.
Thus, the phenomenon of symmetry breaking is really due to the infinite volume limit.
When symmetry breaking occurs, the Hilbert space of the finite volume theory becomes
closer and closer to a direct sum of sub-Hilbert spaces which do not communicate via the
action of local operators. When we take the infinite volume limit we only keep one of
these sub-Hilbert spaces. But these sub-Hilbert spaces can still communicate by the action
of extended operators such as Q. This is why symmetry breaking may occur in infinite
volume and this is why the notion of superselection sectors exists. These comments will be
important below.

1The argument for this invokes inserting a complete set of states and recalling that the matrix elements
of jµ are suppressed by a factor of momentum at small momentum. It would be nice to understand to what
extent this argument about the matrix elements is general.
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The situation for space-time symmetries is, in principle, similar. There are however
some interesting differences. Given the energy-momentum (EM) tensor of the theory, Tµν ,
we can construct the space-time symmetries of the infinite volume theory living in Rd−1,1

from the conserved currents
J (ξ)
µ = ξνTµν ,

where ξ is a Killing vector satisfying as usual ∂(νξµ) = 0. The currents J (ξ)
µ of course lead

to the usual translations, rotations, and boosts. We denote these charges by Q(ξ). There
can exist a state |Ω〉 and a local operators O(0) (which may or may not have spin indices,
which we suppress for now) such that

〈Ω|[Q(ξ), O(0)]Ω〉 6= 0 . (1.1)

For constant ξ, namely the translation symmetry, this can be easily achieved in any
state which is not translationally invariant. Similarly, for rotations the commutator would
be generally nonzero in a non-isotropic state for any operator O with spin indices. A general
discussion of various allowed symmetry breaking patterns can be found in [3]. A rather
common situation is the spontaneous breaking of boost symmetry in states |Ω〉 which are
homogeneous and isotropic. This is one of the focal points of our paper.2

From dimensional analysis, a nonzero commutator for the boost Killing vector (1.1)
(which we can take to be ξ1 = x0, ξ0 = x1, with the rest of the components vanishing)
means that correlators of some components of the EM tensor and O decay not faster
than 1/|x|d. This does not lead to any particular problems in d = 2 and hence there is no
obstruction for the spontaneous breaking of boost symmetry in two space-time dimensions.
We will indeed see some examples later.

The boost symmetry differs conceptually from ordinary (non space-time) symmetries
in that it cannot be preserved at finite volume. Indeed, if we compactify space while keeping
time intact, the symmetry between space and time is manifestly destroyed. Therefore, the
spontaneous breaking of boost symmetry does not necessarily mean that super-selection
sectors must arise! Thus, the boost symmetry Nambu-Goldstone theorem does lead to
an algebraic decay and hence a gapless spectrum of excitations of |Ω〉, but it does not
imply super-selection sectors since there is no sense in diagonalizing the boost symmetry
in compact space.

As we have argued above, the boost symmetry Nambu-Goldstone theorem leads to a
somewhat faster decay of correlation functions compared to the case of spontaneous break-
ing of ordinary global symmetries. Therefore, one-particle excitations are not necessary,
but rather, composite massless excitations could play a role. This was realized in the
beautiful recent paper [6].

While there is no boost symmetry in compact space, it is still true that if we focus our
attention on a small enough patch of our compact space, there is an approximate boost
symmetry. Depending on the state of the system, this approximate boost symmetry may

2There are important consequences of the spontaneous breaking of boost symmetry also in states which
break the spatial translation symmetry. See for example [4, 5]. Here our focus is on translationally invariant,
isotropic states.
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appear to be spontaneously broken. The algebraic decay and gapless excitations in the flat
space limit therefore entail some constraints on the spectrum of the finite volume theory.
The nature of these constraints can be understood on dimensional grounds. Take space
to be a hypercube V = Ld−1 where L is the length and V is the volume. Then to see a
state with finite energy density ε in a small patch of the hypercube we have to start from
a state with total energy E = εV . We assume that on distances ε−1/d � ∆x � L we
see an algebraic decay. Indeed, ε−1/d is a length scale in the infinite volume theory and
since we see an algebraic decay in infinite volume it must be true that there is an algebraic
decay at finite volume in the range ε−1/d � ∆x � L. An algebraic decay in the range
ε−1/d � ∆x � L is not to be taken for granted. It means that the gap above our state,
Egap, must be much smaller than ε1/d. So the energy of the excitations of |Ω〉 should scale
as εV + Egap with Egap � ε1/d. Clearly, for the consistency of an algebraic decay, the
gap has to be arbitrarily smaller than ε1/d. This means that the gap has to go to zero as
L → ∞, in agreement with the gapless nature of the excitations in infinite volume. We
can roughly speaking say that therefore

Egap ∼ L−γ ,

with γ > 0. We can think of γ as a certain critical exponent that measures how fast the
gap closes in finite space as we increase the volume.

Of course, the most natural choice is γ = 1 but this does not follow from our general
considerations. That γ = 1 is natural can be motivated based on Wilsonian considerations.
Let us take space to be infinite. The deep infrared theory should be a fixed point of the
renormalization group (perhaps in the Lifshitz sense) and hence there is a scale-free effective
field theory description of the gapless degrees of freedom that give rise to the algebraic
correlators at infinite volume. In that case, γ = 1 follows from dimensional analysis. The
above argument assumes that the long correlators are captured by some scale-free infrared
theory where the energy density is a cutoff scale. In practice, it could be that the gap
is even smaller than what is predicted by dimensional analysis if the low-energy modes
have additional degeneracy (which in finite volume is only approximate). Indeed, consider
states that are generic in the Eigenstate Thermalization Hypothesis (ETH) sense (see [7]
for a recent review and references). Those states have a macroscopic entropy and hence
an exponentially small gap. Our bound on the gap holds in all theories and appropriate
states, regardless of whether the states are generic.

Furthermore, one can already at this stage say a few words about the density of these
low-lying states. For instance, if there was just one such state with energy above |Ω〉
scaling like L−γ then the correlator in the range ε−1/d � ∆x � L would have behaved
non-algebraically. The same argument holds for any finite collection of states. We therefore
need infinitely many states that become gapless as L→∞.

The breaking of the boost symmetry is not a rare phenomenon. As we will see, in
a unitary theory, any state that in the infinite volume limit has a non-vanishing energy
density will break the boost symmetry. Therefore, the above constraints on the spectrum
hold for quite generic states in finite volume.
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Our purpose here is to apply these ideas to Conformal Field Theories (CFTs). CFTs
can be studied on the cylinder

Sd−1 × R ,

where the radius of the sphere is R. The energy spectrum is related to the spectrum of
scaling dimensions

E = ∆
R
. (1.2)

We consider states with a nontrivial macroscopic limit, i.e. states with nonzero energy
density. This means that we must take ∆Ω = sd−1εR

d with ε the energy density and
sd−1 the volume of the unit Sd−1. So as we take the macroscopic limit, we are discussing
states that correspond to operators with a large scaling dimension. From our general
considerations above we found that there are infinitely many states with energy going to
zero as R−γ . This means that there are infinitely many states with energy below

E = sd−1εR
d−1 + c ε(1−γ)/dR−γ , (1.3)

where c is some dimensionless constant and the power of ε in the second term is adjusted so
that the result makes sense dimensionally. This translates to having operators with scaling
dimensions

∆ = ∆Ω + c∆
1−γ
d

Ω . (1.4)

This means that the gap around heavy operators with scaling dimension ∆Ω is at most
∆

1−γ
d

Ω with γ > 0. As we have explained above, with some additional physical input it
follows that γ = 1 (or larger) and hence the gap around heavy operators scales like O(1).
This bound on the scaling dimension gap around heavy operators should hold very generally
and it does not require the genericity or typicality that is assumed in ETH. (Several of
the applications we will study here are in fact concerned with large charge ground states,
which are very atypical states.)

In CFTs on the cylinder (1.2) the gap constraint (1.4) may appear trivial given that
there are descendant states. (For a review of CFTs on the cylinder see for instance [8].)
Indeed, for any primary state |Ω〉 there is a family of states |∂NΩ〉 (where the index
contractions in the derivatives are not explicitly displayed) with scaling dimension ∆Ω +N

and hence energy E = ∆Ω/R + N/R for any non-negative integer N . There is therefore
an interesting twist in the story: we can ask if the descendant states are those responsible
for the low-energy theorems. The question of whether the descendant states are those
responsible for the low-energy theorems is the essential new question addressed in this
paper.

We will see that, perhaps surprisingly, the answer is negative. One must have new
primary states with dimension (1.4). Furthermore, in all examples we study, γ = 1 for
these new primary states, in agreement with the general arguments. The boost symmetry
Nambu-Goldstone theorem is not sufficient to completely determine the low lying spectrum
of primary excitations of |Ω〉 and indeed the structure of excitations differs in different
examples we study.

– 4 –
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A situation where the existence of new low-lying primaries as above is a nontrivial
constraint arises in the study of ground states at fixed, large charge Q for some U(1)
symmetry. From general considerations (which however do not apply in mean field theory)
one expects [9] (for a review and more references see [10])

∆ ∼ Q
d
d−1 .

These ground states are very non-generic heavy states and the constraints arising from
the spontaneous breaking of boost symmetry are satisfied quite differently in different
examples we study. Sometimes the excitations needed for the boost Nambu-Goldstone
theorem should be considered as a Regge trajectory of (primary) excitations of |Ω〉 —
the Regge trajectories appearing in these cases are reminiscent of [11]. This occurs in
the superfluid case and 2d, where these are one-particle states, and in mean field theory,
where the excitations are to be thought of as a particle and a (zero momentum) hole in the
Bose-Einstein condensate. Sometimes we find that the primary excitations are two-particle
states, as in the free Fermi surface.

The case of 2d CFTs provides an interesting testing ground for our considerations. As
briefly alluded to above, spontaneous breaking of boost symmetry is possible in 2d. The
states responsible for the algebraic decay of correlators are the Virasoro (but not global
conformal) descendants of the heavy state. Hence, we do not find any constraint on the
gap above a heavy operator. Nevertheless, the relevant Virasoro descendants form a Regge
trajectory. We also examine the fate of the large charge effective field theory of [9] in 2d. We
find that for compact CFTs, it just becomes the free compact scalar representation of the
u(1)×u(1) Kač-Moody algebra. And the theory only makes sense for c = 1. For situations
where the U(1) symmetry does not get enhanced to a current algebra, the effective theory
is nontrivial and it describes a single compact boson with arbitrary conformal anomaly. It
resembles the effective string theory of Polchinski-Strominger [12].

To put the present paper in context, let us point out that there has been a monumental
effort in recent years to understand the spectrum of scaling dimensions in CFTs. The
numerical bootstrap constraints on the low scaling dimension operators are beautifully
reviewed in [8] and [13], among others. There is then a complementary effort to understand
the scaling dimensions of various special heavy operators, e.g. the ground states at large
fixed charge, as reviewed in [10], large fixed spin [14, 15], and various combinations of
large charge and large spin [16, 17]. The present paper is aimed at understanding the
general constraints from the spontaneous breaking of boost symmetry. This is relevant for
the study of heavy operators quite generally. But except for some brief discussion of the
hydrodynamic regime, our focus here will be exclusively on the large charge ground states.

The outline of the paper is as follows. The paper consists of two parts. In Part I
we present an abstract argument for the bound on the gap in the operator spectrum of
CFTs around heavy operators. In section 2 we write the precise consequences of the
spontaneous breaking of boost symmetry (reviewing and very slightly extending [6]) and
dilatation symmetry. This results in some constraints on the low momentum, low frequency
behavior of Energy-Momentum correlation functions. We show how these constraints are
satisfied in states that obey the assumptions of hydrodynamics: the ballistic sound mode in
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hydrodynamics exists essentially because of the spontaneous breaking of boost symmetry.
In section 3, we discuss in more detail CFTs on the cylinder and review how the operator-
state correspondence can be used to relate matrix elements on the cylinder and the CFT
data. We explain some important properties of conformal blocks in heavy states and
conclude that descendants cannot play a role in the Nambu-Goldstone theorem for boosts.
Making the additional assumption that heavy state |Ω〉 is the ground state of some sector of
the theory, we present an argument that the Nambu-Goldstone theorem implies a bound on
the gap in the CFT operator spectrum. In Part II we examine a variety of examples, show
that our bound is obeyed and identify special sets of operators that saturate the Nambu-
Goldstone theorem. In section 4 we discuss the case of the superfluid. We identify in detail
the primary states that are responsible for the Nambu-Goldstone theorem. In section 5 we
repeat the exercise for mean field theory. In section 6 we repeat it for a free Fermi surface.
In section 7 we show that in d = 2 the Nambu-Goldstone sum rule is satisfied by a Regge
trajectory of one-particle-like states in the Verma module. We also discuss the role of the
large charge effective field theory in 2d. Three appendices contain technical details about
Green’s functions in nontrivial states, an extension of the free fermion discussion to d = 4,
and, finally, a derivation of some contact terms in correlation functions of the EM tensor.

Part I

Bounding the gap in the operator
spectrum
2 The boost Nambu-Goldstone theorem

While Nambu-Goldstone theorems for internal symmetries are thoroughly understood, the
case of spacetime symmetries provides us with new lessons to this day. One difference
explained in the introduction, is that breaking of the boost symmetry does not lead to
superselection sectors. Another difference is that while it is impossible to break continuous
internal symmetries in d = 2, boosts can be spontaneously broken in d = 2. Finally, as
mentioned above, in [6] it was shown that the boost Nambu-Goldstone theorem can be
saturated by multiparticle states; this is a novel phenomenon.3,4

In this section we review the formulation of the boost Nambu-Goldstone theorem in
translationally invariant energy eigenstates as a sum rule as discussed in [6], and extend
it to dilatations in CFTs. We demonstrate how these sum rules are obeyed in generic
ETH states, i.e. by hydrodynamics. Throughout the paper we use mostly minus signature,
gµν = diag(+1,−1,−1, . . . ).

3See [18, 19] for a different, but equivalent discussion of the role of multiparticle states in closing the
symmetry algebra of the theory. Ultimately, Landau’s derivation of the relation between couplings and the
Fermi velocity in Fermi liquid theory contains the same insights.

4It would be nice to understand whether this can happen for internal symmetries away from the vacuum
state — see footnote 1.
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The logic of the Nambu-Goldstone theorem requires us finding an order parameter
for which 〈Ω| δKiO(t, x) |Ω〉 6= 0, where Ki is a boost in the ith direction. Let us choose
O = T 0j , for which we have

〈Ω| δKiT 0j(t, x) |Ω〉 = i 〈Ω| [Ki, T 0j(t, x)] |Ω〉
= 〈Ω|T 00(t, x)δij + T ij(t, x) |Ω〉
= (ε+ P ) δij .

(2.1)

ε is the energy density and P is the pressure.
We can rewrite it as a sum rule obeyed by the following correlator

(ε+ P ) δij = i 〈Ω| [Ki, T 0j(0)] |Ω〉

= −i
∫
dd−1x xi

〈
[T 00(t, x), T 0j(0)]

〉
,

(2.2)

which we conveniently rewrite in momentum space as (see appendix A for our notation
and definition of the Green’s functions)5

2πδ(ω) (ε+ P ) δji = lim
k→0

∂

∂ki
G

(comm)
T 00,T 0j (ω, k) , (2.3)

where G(comm)
T 00,T 0j (ω, k) is the commutator Green’s function, or by using (A.4),

δ(ω) (ε+ P ) δji = lim
k→0

∂

∂ki
ρT 00,T 0j (ω, k) . (2.4)

(ρT 00,T 0j stands for the spectral density.) Our task is then to find states whose contribution
to the spectral density saturates the above sum rule. As usual, the Nambu-Goldstone
theorem is a constraint on the low-frequency behavior of Green’s functions.

2.1 The example of hydrodynamics

In the standard treatment of hydrodynamics, we obtain the retarded correlators G(R)
AB(ω),

see e.g. [20]. We want to extract the spectral density from this data. Using time reflec-
tion symmetry to deduce G(R)

T 00,T 0j (ω, k) = G
(R)
T 0j ,T 00(ω, k), using (A.4) we end up with the

formula

ρT 00,T 0j (ω, k) = 1
π

Im
[
G

(R)
T 00,T 0j (ω, k)

]
. (2.5)

We then calculate

G
(R)
T 00,T 0j (ω, k) = (ε+ P ) ωkj

ω2 − (csk)2 + iγsωk2

ρT 00,T 0j (ω, k) = (ε+ P )
π

γsω
2k2kj

(ω2 − (csk)2)2 + (γsωk2)2 .

(2.6)

5The Fourier transform is defined through

f(ω, k) =
∫
ddx ei(ωt−

~k·~x)f(t, x)

.
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If we plot this function for fixed k, we see two peaks at ω = ±csk. As we decrease k they
get narrower, but also get closer. To understand this better, let us examine them in a new
variable ω̂ ≡ ω/(csk), in terms of which, we have

ρT 00,T 0j (ω, k) = (ε+ P )
πcs

k̃j ω̂2

(ω̂2 − 1)2 + k̃2 ω̂2 ,

k̃ ≡ γsk

cs
.

(2.7)

Now it is a standard result that for small k̃
1
π

k̃j ω̂2

(ω̂2 − 1)2 + k̃2 ω̂2 ≈
k̃jω̂2

2k̃
[δ(ω̂ − 1) + δ(ω̂ + 1)]

= k̃j

2k̃
[δ(ω̂ − 1) + δ(ω̂ + 1)]

= csk
j

2 [δ(ω − csk) + δ(ω + csk)]

≈ cskj δ(ω) .

(2.8)

Putting the factors together, we learn that for small k

ρT 00,T 0j (ω, k) ≈ (ε+ P ) kjδ(ω) . (2.9)

Plugging this into the r.h.s. of (2.4), we verify that the equation indeed holds.
One wonders what states gave us the saturation of the sum rule. Hydrodynamics

differs from the other EFTs we study in Part II in that the sound mode is a collective
excitation, and there is no preferred set of states |Ω′〉 that gives rise to the above spectral
density. In harmony with ETH, all states |Ω′〉 close in energy to |Ω〉 contribute (see [21] for
a detailed analysis). Yet, one can say that it is the ballistic pole in hydrodynamics which
is responsible for the spontaneously broken boost symmetry.

2.2 The energy density spectral function

One can argue from conservation that ρT 00,T 00(ω, k) should go to −(ε+ P ) k2δ′(ω) at very
small momentum. One argument goes as follows: we have determined in (2.4) that for
k � ω:

ρT 00,T 0j (ω, k) ≈ (ε+ P ) kjδ(ω) , (2.10)

hence the Green’s function according to (A.2)

GT 00,T 0j (ω, k) =
∫ ∞
−∞

dω′
ρT 00,T 0j (ω′, k)

ω − ω′

≈ (ε+ P ) k
j

ω

(2.11)

Conservation of the stress tensor gives

GT 00,T 00(ω, k) = −kj
ω
GT 00,T 0j (ω, k) ≈ (ε+ P ) k

2

ω2 ,
(2.12)

– 8 –
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which is reproduced by

ρT 00,T 00(ω, k) ≈ −(ε+ P ) k2δ′(ω) . (2.13)

Let us see how this comes about in hydrodynamics.

G
(R)
T 00,T 00(ω, k) = (ε+ P ) k2

ω2 − (csk)2 + iγsωk2

ρT 00,T 00(ω, k) = (ε+ P )
π

γsωk
4

(ω2 − (csk)2)2 + (γsωk2)2

≈ (ε+ P )
c2
s

csk

2 [δ(ω − csk)− δ(ω + csk)]

≈ −(ε+ P ) k2δ′(ω) .

(2.14)

Note that −δ′(ω) is positive for ω > 0, as required for the spectral density.

2.3 Additional sum rules in CFTs

Let us ask what sum rules follow from the breaking of boosts Ki, dilatation D, and spe-
cial conformal transformations Sµ in a homogeneous and isotropic finite energy density
CFT state |Ω〉, which we imagine as the macroscopic limit of some CFT state on Sd−1

that corresponds to a heavy scalar operator. The idea is to find an operator for which
〈Ω| δO(t, x) |Ω〉 6= 0, where δO is the transformation of the operator under the generator
Ki, D, Si.

Let us first consider Ki. We have already worked out the case O = T 0j , and obtained
the sum rule (2.4). Similarly for O = J j , by using δKiJ j = J0δij , we get

δ(ω)ρ δji = lim
k→0

∂

∂ki
ρT 00,Jj (ω, k) , (2.15)

where ρ is the charge density.
Next we ask about D, for which we have δDO = ∆OO. We then write

∆O 〈Ω| O |Ω〉 = i 〈[D,O(0)]〉

= i

∫
dd−1x xµ 〈[Tµ0(t, x),O(0)]〉

= −i
∫
dd−1x xi

〈
[T i0(t, x),O(0)]

〉
.

(2.16)

This is then almost identical to (2.2), and we get

for O = T 00: δ(ω)dε = lim
k→0

∂

∂ki
ρT i0,T 00(ω, k)

for O = J0: δ(ω)(d− 1)ρ = lim
k→0

∂

∂ki
ρT i0,J0(ω, k) .

(2.17)

The right hand side of the first equation here is known from (2.4) to be equal to
(d− 1)(ε+ P )δ(ω), so we only learn that ε = (d− 1)P , which is true in CFT. The second
equation is a new sum rule. We will check it for the superfluid in section 4.
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Finally we discuss Sµ. Since for a primary O, [Sµ,O] = 0 we have to work with
descendants. Let us consider the variation

δSµ (i[Pν ,O]) = −[Sµ, [Pν ,O]]
= [[Pν , Sµ],O]
= −2i[ηµνD −Mµν ,O]
= −2ηµνδDO + 2δMµνO ,

(2.18)

where in the second line we used the Jacobi identity and [Sµ,O] = 0, while in the third the
conformal algebra. Since the last line is a linear combination of terms we have already con-
sidered, we conclude that we do not learn any new constraint from the sum rule associated
to the breaking of Sµ.

In appendix C we derive identities for the contact terms in certain products of the
energy-momentum tensor. The constraints above follow from these contact terms.

3 Conformal Field Theory

3.1 General considerations

The purpose of this section is to explore the implication of sum rules for the spectrum
of CFTs. The sum rules are obeyed by a state with finite energy and/or charge density.
The strategy is to start from a state of a CFT on Sd−1 × R. The state on the cylinder
Sd−1 ×R corresponds to an operator of the CFT in the plane with scaling dimension ∆Ω.
The energy E of the state is given by

E = ∆Ω
R

, ε = ∆Ω
sd−1Rd

,

where ε is the energy density and sd−1 is the volume of unit sphere Sd−1. Now we take
the macroscopic limit [11, 22] by considering a family of operators with ∆Ω →∞ and take
R→∞ while keeping ε fixed.6 Likewise the theory may have a conserved U(1) symmetry
and we can construct states with fixed charge density ρ = Q/(sd−1R

d−1).
In particular, we consider correlators of light operators of the form 〈Ω|OO|Ω〉 on the

cylinder and take the required limit. Since we are considering a family of operators in the
macroscopic limit, we are actually looking at a family of correlators, as we take R → ∞.
One of the underlying assumptions is that the correlators lead to a nice function of ∆Ω
and/or Q so that it makes sense to take the limit. In this limit the positions of the light
operators O remain fixed on the cylinder.

The question that we are interested in is what states are responsible for saturating
the sum rules discussed in section 2. The sum rules are obtained as limits of two point
functions on the cylinder, which we can rewrite by inserting a complete set of states

〈Ω| OO |Ω〉 =
∑
#
〈Ω|O|#〉〈#|O|Ω〉 . (3.1)

6The scale invariance of CFTs imply that R is just a convenient auxiliary parameter. We could set
R = 1 and discuss the macroscopic limit equally well: it would involve zooming in onto a small patch of
the cylinder in correlation functions.
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In the limits prescribed by the sum rule, only certain states |#〉 give contributions. For
example as we discuss in Part II, in the infinite volume limit, for the superfluid the |#〉’s
contributing are one particle states, while for free fermions they are particle-hole states [6].
If we trace them back to the states of CFT on the cylinder at finite R and then via
radial quantization to the operators on the plane, they correspond to certain operators
appearing in the s-channel conformal block decomposition of the four point correlator
〈Ω(0)O(z)O(1)Ω(∞)〉 (by s-channel we always mean the channel where we consider the
OPE of Ω(0)O(z)). Every s-channel conformal block sums up the contribution of a primary
and its descendants in (3.1).

In our arguments below, we assume that the states |Ω〉 are ground states in some sector
of the theory. This translates to the fact that in the S channel expansion of 〈Ω|OO|Ω〉, we
only have operators with scaling dimension larger than Ω. In cases where it is possible to
construct EFT to describe the correlator in these heavy states, the heavy state effectively
acts like vacuum for the EFT modes. We note that in the intuitive discussion of the
Introduction, we did not need to make this assumption, and we expect that our conclusions
remain true for arbitrary heavy scalar operators; it would be interesting to generalize our
arguments to such states.

At the end of the day, we will be interested in spinning conformal blocks where O
carries spin index. Nonetheless in the macroscopic limit, the difference between scalar
blocks and spinning blocks is inconsequential. So, let us illustrate the basic concepts of
conformal blocks using scalar operators O

〈Ω(0)O(z)O(1)Ω(∞)〉 = (zz̄)−
1
2 (∆Ω+∆O)∑ |CΩO∆|2G∆Ω+∆,`(z, z̄) , (3.2)

where G∆Ω+∆,`(z, z̄) is the conformal block. Here we have parametrized the scaling dimen-
sion of the operators appearing in the intermediate channel in a way such that ∆ denotes
the excitation over the state Ω i.e CΩO∆ is the OPE coefficient involving the operator Ω,
O and the operator appearing in the s-channel with scaling dimension ∆Ω + ∆. This is a
convenient choice as one of the main results of our paper involves putting a bound on this
gap compared to ∆Ω, i.e putting a bound on ∆. We will come back to the discussion of
gap in due time.

Starting from (3.2), one can transform to the cylinder and write down the correlator
of O in the heavy state |Ω〉.

〈Ω|O(τ, ~n1)O(0, ~n2)|Ω〉 =
∑
|CΩO∆|2g∆,`(z, z̄) , (3.3)

where we defined the O operator on the cylinder by conformally transforming it from the
plane. Furthermore, we have defined g∆,` as

g∆,`(z, z̄) ≡ (zz̄)−∆Ω/2G∆Ω+∆,`(z, z̄) . (3.4)

Note, the l.h.s. of (3.3) is defined on the cylinder and thus the cross ratio z, z̄ on the r.h.s.
should be understood as a function of cylinder coordinates. In particular, the conformally
transformed operators O are inserted at (τ, ~n1) and (0, ~n2) with ~n1 · ~n2 = cos θ. The cross
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ratio z, z̄ is related to τ and θ in following way
√
zz̄ = eτ/R ,

z + z̄

2
√
zz̄

= cos θ . (3.5)

The limit R→∞ is taken in a way, so that θR ≡ x and τ are kept fixed and identified with
the coordinate in the macroscopic limit. The macroscopic limit reads in terms of u = τ+ix
and ū = τ − ix

z = 1 + u

R
, z̄ = 1 + ū

R
, R→∞ , u, ū fixed . (3.6)

In what follows, we will be establishing that in the macroscopic limit, the descendants
are suppressed i.e the conformal blocks take a very simple form. This will be followed by the
discussion on the implication of this suppression for the spectrum of primaries appearing
in the s-channel. Along the way, we will explore how and which of these primaries survive
the macroscopic limit and eventually saturate the sum rule.

3.2 Supression of descendants

In this subsection we show that the primaries dominate the s-channel expansion in the
macroscopic limit. We will first consider the heavy operator limit which amounts to ∆Ω →
∞. (This limit is not the macroscopic limit since we do not yet scale the coordinates as
required in the macroscopic limit. The suppression of descendants in this limit was studied
in [11].) Afterwards, we will keep the energy/charge density fixed and take R →∞ limit,
i.e. the macroscopic limit.

Let us start with the blocks showing up in 〈ΩOOΩ〉, where Ω is the heavy primary
with ∆Ω →∞ and O has O(1) scaling dimension. We write the block as an expansion in
Gegenbauer polynomials C` ≡ C(d/2−1)

`

(
z+z̄

2
√
zz̄

)
:

g∆,`(z, z̄) =
∑
m,n

rm,n (zz̄)(∆+m+n)/2C`+m−n ,

r00 = 1 ,

r10 = 1
2(2`+ d− 2)

(`+ 1)(∆ + ∆O + `)2

∆Ω + ∆ + `
,

r01 = 1
2(2`+ d− 2)

(`+ d− 3)(∆ + ∆O − `− d+ 2)2

∆Ω + ∆− `− d+ 2
...

(3.7)

(The sum is restricted to ` + m − n ≥ 0.) From the recursion relations of [23], one can
show that

rm,n = r̃m,n

∆m+n
Ω

+ . . . ,

r̃m,n ≈ m!n! , for 1� m,n� ∆Ω,
(3.8)

where there are some powers ofm, n that we suppressed. We conclude that the contribution
of the k = m+n level descendants is suppressed by 1/∆k

Ω. This suggests that we should be
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able to approximate the conformal block by the first term (m = n = 0) in (3.7). Since we
will be eventually interested in setting z, z̄ close to 1 as in (3.6) we need to make sure that
the descendants corresponding to m,n & ∆Ω continue to be suppressed. It can be shown
again from the recursion relations that the contribution from m,n � ∆Ω is suppressed
compared to that of the primary. Instead of going though a meticulous analysis of this
kind, we use the knowledge of the 4d blocks to demonstrate the absence of anomalously
large resummation effects.

The 4d conformal blocks are known in closed form [24]:

Gδ,`(z, z̄) = (−1)` zz̄

z − z̄
[kδ+`(z)kδ−`−2(z̄)− kδ−`−2(z)kδ+`(z̄)]

kβ(z) = zβ/22F1

(
β −∆−12

2 ,
β −∆−12

2 , β; z
) (3.9)

As a consistency check, we recover (3.7). Let us now investigate the macroscopic limit. Let
us first set ∆ = O(1), ` = O(1), and use z = 1 + u

R . We obtain using the definition (3.4)

g∆,`(z, z̄) = (zz̄)−∆Ω/2G∆Ω+∆,`(z, z̄) = (`+ 1) + (`+ 1)(2∆−∆O)(u+ ū)
2R + . . . . (3.10)

In order for our analysis to apply for the macroscopic limit we need to simultaneously
take z = 1 + u

R along with keeping the energy density fixed, in other words, we must study
the double scaling limit of the conformal blocks:

z ≡ 1 + u

R
, ∆ = ER , ` ≡ pR , ∆Ω ≡ εRd . (3.11)

Then w becomes a coordinate in the macroscopic limit, E is a fixed O(1) coefficient (whose
interpretation is the energy of the intermediate state above the energy of |Ω〉), p is the
modulus of the momentum of the intermediate state and ε is the energy density in |Ω〉.
The reason that we scale ∆ and ` as above is not immediately obvious but it will soon
become clear that this leads to an interesting macroscopic limit. We get

g∆,`(z, z̄) = R exp
(E

2 (u+ ū)
) 2 sinh

(p
2(u− ū)

)
u− ū

+ . . . . (3.12)

Noting that in 4d,

C
(1)
` (cos(x)) = sin ((`+ 1)x)

sin(x) (3.13)

and that
z + z̄

2
√
zz̄

= cos
(
u− ū
2iR

)
+ . . . , (3.14)

we realize that in the two limits discussed above

C
(1)
`

(
z + z̄

2
√
zz̄

)
=

(`+ 1) + . . . for ` = O(1) ,

R
2 sinh( p2 (u−ū))

u−ū for ` = O(R) .
(3.15)
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These are exactly the leading pieces of (3.10) and (3.12). Hence we find that the conclusion
that the primaries dominate the blocks is indeed correct, i.e. it is not spoiled by resum-
mation effect. These conclusions remain true for spinning blocks, which are obtained by
differential operators acting on scalar blocks [25, 26].

Before we proceed it is worth noting that from (3.15) we readily see that the inter-
esting intermediate blocks have ` = O(R) and ∆ = O(R), which makes sense, since these
correspond to intermediate states with finite momentum and frequency in infinite volume.

Thus far we have found that the contributions in the macroscopic limit are solely due
to the primary operators in the intermediate channel and hence the macroscopic confor-
mal blocks are exceedingly simple (3.12). The factor exp

(
E
2 (u+ ū)

)
is simply the time

dependence that follows from translating the operators in energy eigenstates. The spatial
dependence ∼ sinh( p2 (u−ū))

u−ū contains the absolute value of the momentum p = |~p|. It reflects
the sum over all momentum eigenstate with fixed |~p|. Using the fact that O is a scalar
operator, the matrix elements have a simple dependence on ~p and the Gegenbauer poly-
nomial arises through an integral of the form C

(d/2−1)
`=pR (cos(x/R)) ∼

∫
dd−1k δ(|~k| − p) ei~k·~x

(for details see (3.29)).

3.3 An alternative argument

For completeness let us present an intuitive argument for the suppression ∆−kΩ found in (3.8)
that also applies to spinning blocks. One can argue for this suppression by computing
matrix elements on the cylinder directly in the ∆Ω → ∞ limit. This computation can be
done in a straightforward way even for spinning operators. For example, let us derive that
the first descendant is indeed suppressed. To proceed, we recall that

〈Ω′(x)Tαβ(z)Ω(y)〉 = (y − z)∆−d

(y − x)2∆Ω+∆−d f(x, z) , (3.16)

where f(x, z) is the OPE coefficient CΩT00Ω′ times a kinematical function that carries the
spin indices and is independent of the operator dimensions. Ω′ is the primary with scaling
dimension ∆Ω +∆ appearing in the internal channel. We assume ∆ scales slower than ∆Ω,
hence Ω′ and Ω has the same scaling dimension to leading order in ∆Ω. From (3.16) it
follows that

〈∂µΩ′(x)Tαβ(z)Ω(y)〉 = 2∆Ω(x− y)µ(y − z)∆−d

(y − x)2∆Ω+∆−d+2 f(x, z) + (y − z)∆−d

(y − x)2∆Ω+∆−d∂µf(x, z) .

(3.17)
Now we map (3.16) and (3.17) from the plane onto the cylinder (T00(z(τ, θ)) should be

understood as the operator on the cylinder and Trr(z) should be understood as an operator
on the plane) via

〈Ω′|T00(z(τ, θ))|Ω〉 =
(
R

r

)−d
lim
y→∞

y2∆Ω〈Ω′(0)Trr(z)Ω(y)〉 ∼
(
R

r

)−d
f(0, z) ,

〈∂µΩ′|T00(z(τ, θ))|Ω〉 =
(
R

r

)−d
lim
y→∞

y2∆Ω〈∂µΩ′(0)Trr(z)Ω(y)〉 ∼
(
R

r

)−d
∂µf(0, z) ,

(3.18)
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and it follows from the above

〈∂µΩ′|T00|Ω〉
〈Ω′|T00|Ω〉

' O(1) , (3.19)

as the ratio of function f(x, z) and its derivative with respect to x at x = 0 is order one.
Note that we are not making any assumption on the OPE coefficient CΩT00Ω′ , since it
cancels out in the ratio. Now the contribution to the correlator coming from an s-channel
conformal block corresponding to a primary Ω′ is given by

〈Ω|T 00T 00|Ω〉 3
∑

α,β=Ω′,PΩ′,PPΩ′···
〈Ω|T 00|α〉N−1

αβ 〈β|T
00|Ω〉 , (3.20)

where Nαβ = 〈α|β〉. We follow the notation of [8] and by PΩ′ we mean the operator ∂Ω′.
In particular, for the first descendant PΩ′, we have

NPµΩ′,PνΩ′ = 〈Ω′|KµPν |Ω′〉 ' (∆Ω + ∆)δµν , (3.21)

where we used the commutation relation of K and P . Altogether, we find that the contri-
bution coming from the first descendant is suppressed, i.e.

〈Ω|T 00|∂Ω′〉N−1
PΩ′,PΩ′〈∂Ω′|T 00|Ω〉 ' 〈∂µΩ′|T 00|Ω〉|2∆−1

Ω ' 〈Ω′|T00|Ω〉∆−1
Ω . (3.22)

A similar argument implies that the level k descendant is suppresed by ∆−kΩ . The factors
m!n! in the conformal block in (3.8) can be accounted for from the number of distinct
states at level k = m+ n with spin `+m− n.

3.4 Implication for the gap

In this subsection, we combine the Nambu-Goldstone boost sum rules, the macroscopic
limit of CFTs and the form of conformal blocks in this limit to derive constraints on the
gap in the CFT operator spectrum. We will be studying the correlator

〈Ω|T00T00|Ω〉 , (3.23)

use the s-channel decomposition, and aim to put a bound on the gap ∆ = ∆Ω′−∆Ω, where
|Ω′〉 is an excited state (above the “vacuum” state |Ω〉) exchanged in the correlator. The
sum rule corresponding to the correlator in (3.23) was given in (2.13) and in CFTs takes
the form

ρT 00T 00(ω, p)
p2 = − dε

d− 1δ
′(ω) +O(p) . (3.24)

We chose to focus on a spectral density of two identical operators, since every contribution
to such a spectral density is positive definite for ω > 0. The obvious next step is to express
the l.h.s. of (3.24) with CFT data from the cylinder.
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To this end, we write the Euclidean correlator (for τ > 0) in the large charge limit at
finite R using the above results for conformal blocks:7

〈Ω|T00(τ, ~n1)T00(0, ~n2)|Ω〉 = ε2
[
1 +

∑
`

# `!
∆`

Ω
e−`|τ |/R C

(d/2−1)
` (cos θ)

]

+
∑
∆

C2
ΩT00∆
R2d

[
e−∆|τ |/R C

(d/2−1)
`(∆) (cos θ) +O (1/∆Ω)

]
,

(3.25)

where in the first line we wrote the contribution from the conformal block of Ω itself
(schematically including the descendants and using that its OPE coefficient CΩT000/R

d =
〈Ω|T00 |Ω〉 = ε), while in the second we included the blocks corresponding to other ex-
changed operators (and only wrote explicitly the contributions of the primaries of dimen-
sion ∆Ω + ∆ and spin `(∆)).

While the expression (3.25) is correct in the macroscopic limit, for the macroscopic limit
to actually exist, one must make some assumptions about the OPE coefficients C2

ΩT00∆.
(A similar logic holds in the discussion of ETH in CFT [22].) Indeed, the most important
exchanged operators which will contribute in the macroscopic limit are clearly such that
∆ ∼ R and ` ∼ R. In addition, there is a factor of Rd−3 from the Gegenbauer polynomials
as in (3.15) (where d = 4). Let us introduce the density of states by per unit energy and
per unit momentum

ρ(ω, p;R) =
∑
O
δ

(
ω − ∆O

R

)
δ

(
p− `O

R

)
, (3.26)

This is a finite volume, un-smeared object. In terms of ρ(ω, p;R) we obtain an expression
for the macroscopic limit of the correlator (3.25):

〈Ω|T00(τ, x)T00(0)|Ω〉 = ε2 +
∫
dω dp ρ(ω, p)

C2
ΩT00∆
Rd+3 e−ω|τ | Fp(x) , (3.27)

where Fp(x) is the Gegenbauer polynomial with the R-dependence stripped out (we will
soon write a concrete expression for it in any dimension; in d = 4 this can be read out
from (3.15) and we find Fp(x) = sin(px)/x).

For the macroscopic limit to exist the combination K(ω, p) ≡ ρ(ω, p)C2
ΩT00∆/R

d+3

must become R-independent in the appropriate sense.8

7We note that by mapping from the |z| < 1 region of plane to the cylinder, we naturally get τ < 0 and
the radial (or cylinder time) ordering T00(0, ~n2)T00(τ, ~n1). Here we instead wrote the answer for τ > 0.

8To make the required averaging procedure precise we introduce the smearing:

K(ω, p) = 1
4δ2

∑
O∈I(ω,p;R,δ)

C2
ΩT00∆

Rd+3 ,

I(ω, p;R, δ) ≡
{
O
∣∣∣ ∆O
R
∈ (ω − δ, ω + δ) , `O

R
∈ (p− δ, p+ δ)

}
,

(3.28)

where the set I contains operators whose energy and momentum in the macroscopic limit agrees with ω, p
respectively. Here we have introduced an infinitesimal window width δ; K(ω, p) should be independent of
δ to leading order in the macroscopic limit, and hence we do not include δ as its argument.
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Finally, to give an expression for Fp(x) that is valid in any dimension we use the
integral representation of the Gegenbauer polynomials:

lim
R→∞

C
(d/2−1)
pR (cos(x/R)) = lim

R→∞

Γ (pR+ d− 2)

2d−3Γ
(
d−2

2

)2
Γ(pR+ 1)

×
∫ π

0
dϑ sind−3(ϑ) (cos(x/R) + i sin(x/R) cos(ϑ))pR

= (pR)d−3

2d−3Γ
(
d−2

2

)2

∫ π

0
dϑ sind−3(ϑ) eipx cos(ϑ)

= 1
2d−2π(d−2)/2Γ

(
d−2

2

) Rd−3

p

∫
dd−1k δ

(∣∣∣~k∣∣∣− p) ei~k·~x .

(3.29)

The last relation is very intuitive: if we zoom in onto a small patch of the sphere, we
get plane waves with fixed |~p|, averaged over all directions. In d = 4 this precisely agrees
with (3.12). Therefore,

Fp(~x) = 1
2d−2π(d−2)/2Γ

(
d−2

2

)
p

∫
dd−1k δ

(∣∣∣~k∣∣∣− p) ei~k·~x (3.30)

The expression (3.30) allows us to rewrite (3.27) in a simpler form, after doing the p
integral

〈Ω|T00(τ, x)T00(0)|Ω〉 = ε2 + 1
2d−2π(d−2)/2Γ

(
d−2

2

) ∫ dω dd−1k K(ω, k)e−ω|τ | e
i~k·~x

k
. (3.31)

It is now straightforward to obtain an expression for the spectral density in the macroscopic
limit

ρT 00T 00(ω, p) ∼ 1
p

(K(ω, p)−K(−ω, p)) . (3.32)

We must now make contact with (3.24). We learn that, at the very least, K(ω, p)
must have support at ω = 0 and p = 0. This means that there must be operators with
∆gap/R → 0 as R → ∞. In more conventional CFT terms, if we denote the dimension of
the ground state by ∆Ω, we conclude that the gap ∆gap must be smaller than ∆1/d

Ω in the
sense that there must be operators with

∆gap/∆1/d
Ω → 0 (3.33)

as ∆Ω →∞. If we in addition recall the physical reasoning advocated in the introduction,
namely, that there is a scale invariant low energy theory describing the massless excitations
in the small ω regime, we would conclude that ∆gap = O(1). In addition, we can constrain
the angular momentum of these operators in a similar fashion since the sum rule (3.24)
implies that we need to take infinitesimal p. This means that the angular momentum must
satisfy

`/∆1/d
Ω → 0

and by a similar effective theory reasoning it follows that it is in fact O(1).
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This implies a surprisingly small primary gap of O(1) (for dimension and angular
momentum) around any heavy state. One can say more about the density of operators or
OPE coefficients using (3.24) if one makes additional assumptions about the density or OPE
coefficients separately. Incidentally, since the density ρ(ω, p;R) cannot decay as R → ∞
(because the number of participating operators cannot go to zero) we get a rather general
bound on the OPE coefficient C2

ΩT00∆ = O(Rd+3). (This bound can be strengthened by
requiring a more realistic density of states.)

Recalling that the sum rule (3.24) is linear in ε, we can refine this bound slightly. Since
the macroscopic limit is a double scaling limit, we can choose ε ∼ ∆Ω/R

d at will, while
R, ∆Ω → ∞. We can then resolve Rd+3 as ∆ΩR

3
(
∆Ω/R

d
)α

, and show that α = 0 by
contradiction: were α > 0, we take ε large, while for α < 0, we take ε small to derive a
violation of the sum rule. Hence we conclude

C2
ΩT00∆ = O(∆ΩR

3) . (3.34)

Part II

Examples
4 Superfluid phase

In the superfluid phase the ground state is homogenous, isotropic, has a finite charge
density, and breaks U(1) spontaneously. As in the previous section, we imagine this state
to be the macroscopic limit of a family of large charge states on the cylinder Sd−1 × R.
These states correspond to scalar operators of the underlying CFT. In the Q → ∞ limit,
there is a separation of energy scales; ρ−1/(d−1) (with ρ ∼ Q/Rd−1 the charge density) is
a UV scale while the IR scale is given by R. For distances much larger than the UV scale
but much less than R, the system is described by an effective field theory with 1/Q being
the expansion parameter [9, 27]. As we will see the UV scale is precisely related to ε−1/d

(where ε is the energy density) mentioned in the introduction while R plays the role of L.
In the infinite volume limit, the state with finite energy density breaks SO(d+ 1, 1)×U(1)
down to a SO(d) and a linear combination of U(1) and time translation. The action of the
effective field theory can be constructed in the CCWZ way [28, 29] in terms of a field χ

and its fluctuation π around the symmetry breaking saddle. The field π is identified with
the Goldstone mode, corresponding to the aforementioned spontaneous breaking.

In this section, we will elaborate on the general ideas described in the previous section
using the explicit example of superfluid EFT, which captures the large charge sector of
an underlying CFT. The aim is to identify the primary states that saturate the sum rule
for broken boost symmetries and discuss the connection to what we have found based on
general arguments in the previous section.
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4.1 General consideration

The effective field theory is described by the Euclidean action [9, 27]

S = −c1

∫
ddx
√
g |∂χ|d + · · ·+ i

∫
ddx
√
g ρχ̇ (4.1)

(Here we assume that the underlying CFT preserves parity, hence the parity violating
terms of [30] are forbidden.) The saddle point that describes a ground state with finite
homogenous charge density ρ is given by

χ = −iµτ + π

c1dµ
d−1 = ρ

(4.2)

Expanding around this saddle, we obtain the effective action for the Goldstone field π

Sπ = d(d− 1)
2 c1µ

d−2
∫
ddx
√
g

(
π̇2 + 1

d− 1∂iπ∂
iπ

)
+ · · · . (4.3)

For the purpose of examining the sum rules, we will eventually be interested in the
correlator involving the stress-energy tensor (in particular the components T00, T0i) and
current Ji. From (4.1), we obtain the stress-energy tensor (below we consider the Minkowski
signature metric and we use τ = it)9

T00 = ε+ i
dε

µ

dπ

dτ
+ · · · , T0i = dε

(d− 1)µ∂iπ + · · · , Tij = −ηij
ε

d− 1 + · · · ,

(4.4)
where we used that the (leading order in µ) energy density is

ε = c1(d− 1)µd . (4.5)

The two-point correlator of π on the cylinder in the large Q limit is given by

D(τ, x) =
µ2

sd−1Rd−1

dε

[
−|τ |+

∑
`=1

2`+ d− 2
d− 2

e−ω`|τ |/R

2ω`/R
C
d/2−1
` (cos θ)

]
, (4.6)

where θ = arccos(~n1 · ~n2) and τ are the angle and time separation between insertion of two
π fields respectively. Here ω` =

√
`(`+ d− 2)/(d− 1) .

Another relevant quantity for our purpose is the current Jµ corresponding to U(1) that
acts as a shift symmetry on the field χ:

J0 = ρ+ i
(d− 1)ρ

µ

dπ

dτ
, Ji = ρ

µ
∂iπ . (4.7)

In rest of this section, we will be heavily using (4.4), (4.6), (4.7).
9Note, in Euclidean signature, we have Euclidean stress energy tensor defined as Tµν = 2√

g
δS
δgµν

. The
Minkowski T is related via T ττ = −T 00 and T τi = −iT 0i. In the text, we use the index 0 and work with
the Minkowski T operator. The same applies for J .
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4.2 Sum rules

The three major sum rules that we have been discussing in this paper involves looking at
〈T00T00〉, 〈T00T0i〉 and 〈T00Jk〉 in the large charge state. For now, we will focus on the two
point correlator of T00 in the large charge state and will perform the analysis in detail by
working on the cylinder and then taking the macroscopic limit while tracking the set of
states, that are eventually going to saturate the corresponding sum rule. We will come
back to the other sum rules involving 〈T00T0i〉 and 〈T00Jk〉 later and verify them by working
directly in the macroscopic limit without performing the computation on the cylinder.

〈T00T00〉. The two point correlator in T00 in the large charge state is given by for τ > 0

〈T00(τ)T00(0)〉 = ε2
[
1 + d2

2(d− 2)
1

∆Ω
e−|τ |/RC

d/2−1
1 (cos θ) + · · ·

]

+ dε

sd−1Rd−1

[∑
`=2

(2`+ d− 2
2(d− 2)

)(
ω`
R

)
e−ω`|τ |/RC

d/2−1
` (cos θ) + · · ·

]
(4.8)

For τ < 0, the right hand side provides us with 〈T00(0)T00(τ)〉. We will keep this mind and
for brevity use 〈T00T00〉. We can compare the above with (3.25). In the first line on the
r.h.s. , we have two terms corresponding to the contribution coming from exchange of Ω and
its descendant. We have omitted the contributions coming from higher descendants. They
are suppressed in ∆Ω →∞ limit. In the previous section, we have argued that there is no
cumulative effect coming from considering all the descendants together. In the second line,
we have a contribution from a single Regge trajectory, one primary for each given integer
` ≥ 2 with the scaling dimension ∆Ω +∆, where we have ∆ =

√
`(`+ d− 2)/(d− 1) . Here

we denote ∆ as ω` since we have single Regge trajectory and sum over spin ` suffices. The
OPE coefficients can be read off as

C2
ΩT00∆ = d∆Ω

s2
d−1

(2`+ d− 2
2(d− 2)

)√
`(`+ d− 2)/(d− 1) . (4.9)

In what follows we will show that the states with ` ∼ pR contribute to the macroscopic
limit and then in the p → 0 limit saturate the sum rule. To obtain the macroscopic limit
we therefore only need to take the macroscopic limit of the OPE coefficients (4.9) and we
obtain for the spectral density

ρT 00T 00(ω, p) = dε

2
√
d− 1

p

[
δ

(
ω − p√

d− 1

)
− δ

(
ω + p√

d− 1

)]
. (4.10)

In the p→ 0 limit (4.10) yields

ρT 00T 00(ω, p) '
p→0
− dε

d− 1 p
2δ′(ω) = −(ε+ P )δ′(ω) , (4.11)

and the sum rule (2.13) is satisfied. We note that p → 0 limit means that ` = o(R), thus
it is clear that the states with ∆ = ` = o(R) from the Regge trajectory saturate the sum
rule. The OPE coefficients for these states

C2
ΩT00∆ = O

(
∆Ω`

2
)

= o
(
∆ΩR

2
)
. (4.12)

– 20 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
4

Comparing with the bound from (3.34) in section 3.4, we see that this is down by a factor of
1/R. The reason for this is that there are o(R) states in the superfluid in this kinematical
regime, whereas the bound (3.34) allows only one state (as a worst case scenario).

The rest of the sum rules. The two-point correlators of T0µ and Jµ in the macroscopic
limit can be found from the macroscopic limit of the two-point correlator of the π field:

〈π(τ, ~x)π(0)〉macro = µ2

d(d− 2)sd−1ε

√
d− 1(

1
d−1τ

2 + ~x · ~x
)d/2−1 . (4.13)

From (4.4) and (4.7) we immediately realize that all we need to know for these computations
is that for τ > 0

∂τ∂i〈π(τ, ~x)π(0)〉macro = µ2

sd−1ε

τ√
d−1xi(

1
d−1τ

2 + ~x · ~x
)d/2+1

≡ hi(x) .

(4.14)

In terms of this correlator:

〈T0i(x)T00(0)〉macro = −i d2ε2

(d− 1)µ2 hi(x) ,

〈T0i(x)J0(0)〉macro = 〈T00(x)Ji(0)〉macro = −idερ
µ2 hi(x) .

(4.15)

The Fourier transformed function h̃(ω, ~p) is defined through:

h̃i(ω, ~p) =
∫
ddx eiωτ−i~p·~x hi(x) . (4.16)

By rescaling τ =
√
d− 1 τ ′, ω = ω′/

√
d− 1, we get a standard Lorentz invariant integral

h̃i

(
ω′√
d− 1

, ~p

)
=
√
d− 1µ2

sd−1ε

∫
dτ ′ d~x eiω

′τ ′−i~p·~x τ ′xi(
τ ′2 + ~x · ~x

)d/2+1

=
√
d− 1πµ2

2dε
∂

∂ω′
∂

∂pi

[
Θ(ω′)Θ(ω′2 − p2)

(
ω′

2 − p2
)]

.

(4.17)

We use (A.13) and (A.4) to write

ρA,B(ω, ~p) = 1
2π
(
G̃A,B(ω, ~p)− G̃∗A,B(−ω,−~p)

)
, (4.18)

and get the following expressions for the spectral densities from (4.17):

ρT0iT00(ω, p) = 1
2(ε+ P )pi

[
Θ(ω)δ

(
ω − p√

d− 1

)
+ Θ(−ω)δ

(
ω + p√

d− 1

)]
'
p→0

(ε+ P )piδ(ω) ,

ρT00Ji(ω, p) = ρT0iJ0(ω, p) '
p→0

ρpiδ(ω) .

(4.19)

Hence the sum rules (2.4), (2.15), and (2.17) are all satisfied.
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We end this section with a remark about three-dimensional parity violating superflu-
ids [30]. The ground state contains vortices, but it is homogenous and isotropic, hence our
sum rules apply. The low lying excitations are phonons (the π excitations that we have been
studying) and other softer vortex excitations with spin ` and a gap of ∆ ∼ `(`+ 1)Q−3/2

above the ground state. (For parity preserving superfluids, the excitations with spin `

above the ground state have a gap ∆ ∼ `(` + 1). Vortex excitations in parity preserving
fluids only appear for ` >

√
Q [16, 17]. A natural question is what saturates the sum

rules in parity violating superfluids. The answer is that it is still the phonons, because [30]
found that the OPE coefficients involving the phonon modes, the ground state Ω and T00
(or other relevant components of T ) stay unchanged compared to the parity preserving one.
Thus the softer vortex modes should not contribute in the macroscopic limit and should
not play any role in the sum rule. This is corroborated by the fact that there are only
finitely many vortices on the cylinder, hence they disappear in the macroscopic limit. It
would be nice to check these claims explicitly.

5 Free scalar

In this section, we study the saturation of the sum rules associated with broken boosts and
scale invariance described in section 2 for the case of a free relativistic complex scalar field
in a finite charge density state in dimension d > 2.

The free scalar field does not lead to a state with finite energy density in the macro-
scopic limit due to the flat directions arising from the shift symmetry of the free scalar
action. Indeed, due to these flat directions, ∆ ∼ Q rather than ∆ ∼ Qd/(d−1). This means
that the effective field theory description of (4.1) is inappropriate, and should be replaced
by the approach [31–36]. In fact sometimes these two types of effective theories are con-
nected [37]. In our analysis of the boost symmetry realization on the large charge states
in free field theory, we will not use an effective theory approach, rather, we will pursue a
more straightforward analysis of the correlation functions.

5.1 General consideration

The Euclidean two-point correlation function in a theory of a free complex scalar field is
given by (we use the normalization of [38]):

G(x− y) ≡ 〈φ̄(x)φ(y)〉 = 1
(d− 2)sd−1

1
|x− y|2∆φ

, (5.1)

where sd−1 = 2π d2 /Γ(d2) and ∆φ = d−2
2 . We define the lightest operator of charge Q by the

following:

OQ ≡
((d− 2)sd−1)Q/2√

Q! φ̄Q. (5.2)

Its scaling dimension scales like ∆Q ∼ Q. Using radial quantization, the ground state of
charge Q on the cylinder is:

|Ω〉 ≡ OQ(0)|0〉.
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For the purpose of examining the sum rules, we will eventually be interested in the cor-
relators involving the U(1) current Jµ and the stress-tensor Tµν . On the plane, they are
given by the following expressions:

Tµν = ∂µφ̄∂νφ+ ∂ν φ̄∂µφ− gµνgαβ∂αφ̄∂βφ+ Tµνimp, T µνimp = χ
[
gµν∂2 − ∂µ∂ν

]
φ̄φ, (5.3)

Jµ = i
(
∂µφ̄φ− φ̄∂µφ

)
, (5.4)

where χ = d−2
2(d−1) is the coefficient of the curvature coupling term Rφ̄φ (with R the Ricci

scalar). In the next subsection, we will argue that the sum rules associated with the
broken boosts and dilatations are not affected by the improvement term, and therefore we
can ignore it when calculating correlation functions for the purpose of verifying the sum
rules (see subsection 5.2.1 for further details). For details about Wick rotating tensors to
Minkowski signature see footnote 9.

5.2 Sum rules

We would like to check how the sum rules described in section 2 are satisfied for the case
of the free bosonic field theory. For this purpose, one can take the following strategy: first,
calculate the correlators which are of interest for the saturation of the sum rules on the
plane. Then, map it onto the cylinder Sd−1 ×R and take the radius of the Sd−1 sphere to
infinity. This last step amounts to taking the infinite volume limit. In practice, taking the
macroscopic limit (as described in subsection 5.2.2) directly on the flat space correlators is
equivalent to performing the procedure described above.

In what follows, we will be using xµ, yµ as the coordinates on the plane. On the
cylinder, we want to evaluate

〈Ω|J i(0)T ττ (τ, θj)|Ω〉 ,

where (τ, θj) refer to the coordinate on the cylinder. We can choose a coordinate system
where we have only one angle θ. This correlator is related to a four-point correlator on the
plane

〈Ω(0)T rr(z, z̄)J i(1)Ω(∞)〉

by conformal transformation where we have

r = eτ/R , zz̄ = r2 ,
z + z̄√
zz̄

= 2 cos θ . (5.5)

We follow the usual convention (where xd denotes the Euclidean time on the plane)

z = xd + ix1 , z̄ = xd − ix1 .

In the macroscopic limit, as we let z → 1, T rr on the plane essentially becomes T dd.
Therefore, we will leverage that and on the plane we will calculate

〈Ω(0)T dd(z, z̄)J i(1)Ω(∞)〉.
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We deal with the right hand side of the sum rule in a similar way, going from the plane to
the cylinder.

The organization of this subsection is as follows: in subsection 5.2.1, we calculate the
correlation functions on the plane. In subsection 5.2.2, we define the macroscopic limit
associated with the free bosonic theory. In subsection 5.2.3, we calculate the spectral
density and show that the sum rules are satisfied.

5.2.1 Flat space correlators
The free field correlators are obtained using Wick contractions. We concentrate on

〈OQ(0)Tµν(x)Jρ(y)O−Q(∞)〉 .

Eventually, when taking the macroscopic limit, we will choose to work a particular configu-
ration where T, J lie in the (xd, x1) plane as mentioned previously and get the macroscopic
correlator and then covariantize to obtain the correlator for arbitrary insertion points of T
and J .

We first evaluate the contribution to

〈OQ(0)Tµν(x)Jρ(y)O−Q(∞)〉

from the non-improved stress energy tensor. We find that this results in:

〈OQ(0)Tµν(x)Jρ(y)O−Q(∞)〉
3 iQ [Hµρ(x− y)F ν(x) +Hνρ(x− y)Fµ(x)− gµνHαρ(x− y)Fα(x)] .

(5.6)

Here the functions F and H are given by:

Fµ(x) ≡ xµ

sd−1|x|d
, Hµν(x) ≡ 1

sd−1|x|d
(
ηµν − dxµxν

x2

)
. (5.7)

We can further evaluate the contribution to the correlator coming from Timp

〈OQ(0)Tµνimp(x)Jρ(y)O−Q(∞)〉

= iχQ
(
gµν∂2 − ∂µ∂ν

)
[F ρ(x− y) (G(y)−G(x)) + F ρ(y)G(x− y) + (Q− 1)F ρ(y)G(x)] .

(5.8)
Here G is given by (5.1). This correlator has a finite macroscopic limit, but at the end
of the day this does not contribute to the sum rules. The reason is that the improvement
terms drop from the expressions for the charges and the sum rules stem from looking
at the correlators of the charge generator and an operator that plays the role of an order
parameter. In what follows, we will thus work with the non-improved Tµν (unless otherwise
stated) in order to show the saturation of sum rules. The same conclusion holds for the
case of the free scalar field even when considering the sum rule associated with the broken
dilatations (2.17).

Finally, the right hand side of the sum rule requires us to find

〈OQ(0)Jd(z = 1, z̄ = 1)O−Q(∞)〉 = − iQ

sd−1
. (5.9)

Once we are equipped with the expression for the free space correlator, we take the macro-
scopic limit, which is the subject of the next subsection.
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5.2.2 Macroscopic limit

By the state/operator correspondence, the operator OQ in equation (5.2) describes a state
with charge density ρ on the cylinder Sd−1 × R. This can be seen by noting that

〈Ω|J0|Ω〉cyl = R1−d 〈OQ(0)J0(1)O−Q(∞)〉
〈OQ(0)O−Q(∞)〉 = ρ . (5.10)

In the macroscopic limit, the charge density is kept finite as we take R → ∞ limit. The
scaling dimension associated with the operator OQ satisfy ∆Q ∼ Q ∼ Rd−1. The energy
density reads:

ε = ∆H

sd−1Rd
→ 0. (5.11)

In the macroscopic limit, we take:

xµ = yµ + uµ

R
, where R→∞, and uµ is fixed. (5.12)

We also set yµ = δµ0 . In terms of z, z̄ we have:10

z = 1 + u

R
, z̄ = 1 + ū

R
. (5.13)

We note that the convention of taking the macroscopic limit is different compared to [11].
We made this choice in order to ensure that there is no parity transformation implemented
while taking the macroscopic limit. Altogether, the macroscopic limit of the correlation
functions which are of interest for the saturation of the sum rules is given by:

〈Ω|J i(0)T ττ (uµ)|Ω〉mac ≡ lim
R→∞

(
R1−2d 〈Ω(0)T dd(x)J i(1)Ω(∞)〉

〈Ω(0)Ω(∞)〉

∣∣∣∣
xµ=δµ

d
+uµ/R

)
, (5.14)

and
〈Ω|Jτ |Ω〉mac ≡ lim

R→∞

(
R1−d 〈Ω(0)Jd(1)Ω(∞)〉

〈Ω(0)Ω(∞)〉

∣∣∣∣
xµ=δµ

d
+uµ/R

)
. (5.15)

The correlators associated with the numerator on the right-hand side in both equations
above correspond to the correlators given by equations (5.6) and (5.9). Both limits are
well-behaved. Setting yµ = δµd , the resulting expressions (in Euclidean signature) in the
macroscopic limit after covariantizing are:

〈Ω|J i(0)T ττ (uµ)|Ω〉mac = −i ρd
sd−1

τui

ud+2 (5.16)

and
〈Ω|Jτ |Ω〉mac = −iρ . (5.17)

One can see from the last equation that the macroscopic limit has been taken in a way so
that the charge density ρ is constant.

10In this section we use the somewhat unfortunate notation u = τ+iu1, and when we refer to a spacetime
point, we always write uµ. (In previous sections we instead used u = τ+ix1, but here xµ is already reserved
for coordinates on the plane before mapping to the cylinder and taking the macro limit.
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5.2.3 Saturation of the sum rules

The sum rules are inherently statements in Minkowski signature. For the purpose of
evaluating the sum rules, we evaluate the following Wightman correlation function by
doing proper analytic continuation of (5.16) and recalling T 00 = −T ττ :

GT 00,Ji(u0, ~u) ≡ 〈Ω|T 00(u0, ~u)J i(0)|Ω〉 . (5.18)

Here we have defined (u0, ~u) to denote the Minkowski coordinates. The proper analytic
continuation is achieved by letting τ = iu0 + ε and then take ε→ 0+. We find that

GT 00,Ji(u0, ~u) = − ρd

sd−1

u0ui

ud+2 . (5.19)

We have already computed the spectral density from (a very close analog of) this
Green’s function in section 4, see (4.17) and (4.18). Plugging into those formulas we get

ρT 00,Ji(ω, ~p) = 1
2ρ p

i [Θ(ω)δ(ω − p) + Θ(−ω)δ(ω + p)]

'
p→0

ρpiδ(ω),
(5.20)

Thus, we find that the sum rule (2.15) associated with the broken boosts symmetry is
satisfied. As for the sum rule associated with the broken scale invariance, we note that in
the macroscopic limit, without including the improvement term in the stress-tensor (5.3),
the following happens to be true for the free scalar

〈Ω|T 0iJ0|Ω〉 = 〈Ω|T 00J i|Ω〉,

where Tµν above refers to the stress-tensor (5.3) without the improvement part Timp. To-
gether with the analysis shown at the beginning of subsection 5.2.1, this immediately tells
us that the sum rule associated with the broken scale symmetry (2.17) is satisfied. The
extra factor of (d− 1) in the sum rule comes from the contraction of spatial indices in the
expression for xiT 0i.

5.3 Sum rules from the cylinder vantage point

In this subsection, we identify the states that are responsible for saturation of the sum
rules discussed in the previous subsection. To this effect, we would like to study a sum rule
in analogy to the T 00T 00 sum rule that was studied in the superfluid case in section 4. In
the free scalar case, however, the energy density vanishes in the macroscopic limit and the
T 00T 00 spectral density hence vanishes in the p→ 0 limit. Instead, we study the sum rule
associated with the T 00J0 correlator, which reads:

ρT 00J0(ω, p) '
p→0
−ρp2δ′(ω) . (5.21)
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The above equation follows from combining the conservation of J with the T 00J i sum rule
just as in section 2.2. In the large Q limit, we can write for τ > 0

〈Ω|T00(τ)J0(0)|Ω〉 = Q2

s2
d−1R

2d−1

+ Q

s2
d−1R

2d−1

[∑
`=1

`2

(d− 2)e
−`|τ |/RC

(d/2−1)
` (cos θ)

]
︸ ︷︷ ︸

terms for the sum rule

+ · · · .
(5.22)

The r.h.s. of the above expression gives 〈Ω|J0(0)T00(τ)|Ω〉 for τ < 0. This equation should
be thought of as an analogue of (4.8) valid in the superfluid for the free scalar case. Here, the
dots indicate terms that are not important for reproducing the sum rule in the macroscopic
limit, i.e to reproduce the p→ 0 behavior of spectral density. Now it is easy to realize that
the sum rule is saturated by states living on the Regge trajectory ω` = `. The calculation
proceeds exactly the same way as in the superfluid case, with the only difference being
that here ω` = ` for all `. Once again, the states ` ∼ pR become important in the infinite
volume limit.

Now let us understand in detail how this single Regge trajectory on the cylinder comes
about from the previous calculation of the four-point correlator on the plane via Wick
contraction. Schematically, we have the following type of contractions in the correlator

〈φQ−2φφ|∂φ̄(x)∂φ(x)φ̄(y)∂φ(y)|φ̄φ̄ φ̄Q−2〉 ∼ Q2 ,

which gives the first line of (5.22), and

〈φQ−1φ|∂φ̄(x)∂φ(x)∂φ̄(y)φ(y)|φ̄ φ̄Q−1〉 ∼ Q ,

which gives the second line of (5.22). The contractions that yield result proportional to Q
survive in the macroscopic limit and eventually a part of it

Q

R2d−3∂
2
τG(τ, θ) (5.23)

is responsible for saturating the sum rules. G(τ, θ) is the free scalar propagator on the
cylinder:

G(τ, θ) = 1
(d− 2)sd−1

(
1 + e−2|τ |/R + 2e−|τ |/R cos θ

)− d−2
2 . (5.24)

The underbraced term in (5.22) comes precisely from the expansion of ∂2
τG(τ, θ) in terms

of Gegenbauer polynomials.
As a final remark, let us understand the single Regge trajectory in terms of single or

multiparticle states. Of course, it is clear that the relevant states would be labelled by a
single number p ∼ `R. The question is whether this corresponds to single or multiparticle
states. To proceed, recall that the relevant contribution arises from contracting one leg of T
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with the bra 〈Ω| and one leg of J with ket |Ω〉, and then contracting the leftover leg of T with
left over leg of J . We can think of breaking apart the TJ Wick contraction and inserting a
complete set of states. To make this notion more precise, we start by noting that the state
|Ω〉 defines a Bose-Einstein condensate on the cylinder. One can view it as created by the
zero angular momentum modes (a†0) of the scalar field φ, i.e. |Ω〉 ∼ (a†0)Q|0〉, where |0〉 is the
true vacuum. On the cylinder, we can annihilate states with zero angular momentum and
charge 1 from this condensate, and create a particle with angular momentum ` and charge
1 on top of it. This resembles a bit the case of a particle-hole pair in the theory of Fermi
surface (studied in section 6), albeit one important difference: the particle-hole excitations
on top of the Fermi surface are labelled by two numbers, the angular momentum of the
particle and the angular momentum of the hole, both of which can take non-zero values. In
the case of the free scalar field, however, the hole carries zero angular momentum. Thus,
the particle-hole pairs are labelled by a single number and form the Regge trajectory as
discussed above. Note that we need a particle-hole pair as opposed to a single particle
excitation on the cylinder since 〈Ω|Ta†`a0|Ω〉 is non-zero whereas 〈Ω|Ta†`|Ω〉 = 0 due to
the charge conservation on the cylinder. Nonetheless, in the macroscopic limit, both |Ω〉
and a0|Ω〉 define the same state with equal and finite charge density. Thus, as we take
R→∞ limit, the aforementioned particle-hole pair on the cylinder (that consists of a hole
carrying zero angular momentum) behaves like a single particle excitation, labelled by a
single momentum vector ~p in the infinite volume theory. This is similar to the behavior
described in section 5 of [6], in the context of the free massive particle.

6 Free fermions

We study systems of free fermionic field theories at finite charge density ρ and energy
density ε. In subsection 6.1 we address the large charge sector of these models in three
and four spacetime dimensions. In subsection 6.2 we consider the relativistic Fermi gas in
four dimensions, calculate the spectral density, and show the saturation of the sum rules
as described in section 2 for the broken symmetries.

6.1 Free fermions at large charge

In this subsection we consider free fermionic field theories with a global U(1) symmetry
in d = 3 and d = 4 dimensions. We denote the lightest operator of charge Q by OQ, its
dimension being ∆Q, and focus on the large Q limit. In addition, we restrict the discussion
to cases in which the ground state is homogeneous and isotropic. Under this assumption,
and in the limit of large charge, the lightest operator of charge Q can be constructed using
simple counting arguments. Similar arguments can be found in [39, 40], where the leading
order term in the expansion of ∆Q was calculated for the d = 3 case. Our main findings in
this subsection are:

1. There is no Q0 term in the expansion for ∆Q.

2. The energy difference between the first excited state and the ground state is O(1):

∆+1,Q −∆Q = O(1). (6.1)

– 28 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
4

We emphasize that the analysis described in this subsection holds only under the assump-
tion of a homogeneous and isotropic ground state. Towards the end of this subsection, we
make a comment regarding cases in which this is not the situation.

We start with the d = 3 case. The fermionic field ψ is a two component complex
Grassmann spinor. Under global U(1) symmetry it transforms as:

ψ → eiαψ. (6.2)

As a result of the Fermi statistics, operators of the form ψn vanish for all n > 2.11 Therefore,
in order to construct operators of charge Q under the transformation (6.2), one necessarily
has to include fermions dressed with derivatives, in order to construct a product with more
than two fermions. The resulting operator OQ is therefore expected to be of the form
ψ2(∂ψ)2(∂2ψ)2

··· .
The equation of motion reduces the number of independent physical degrees of freedom.

Hence, without loss of generality, we can eliminate ∂2ψ, as it is linearly dependent on
the other derivatives of ψ. We define by Dn an operator which consists of n spacetime
derivatives of the following form:

Dn ≡ ∂n0
0 ∂n1

1 , where n0 + n1 = n. (6.3)

Note that n therefore represents the total number of derivatives of type ∂0 and ∂1. The oper-
ator OQ will consist of multiplication of all the possible terms of the form ∏n

k=0(∂n−k0 ∂k1ψ)2,
where n takes all integer values between 0 to a maximal value that is determined by the
requirement of having a charge Q. Note that for each value of n, there are n+ 1 different
terms that contain n derivatives (from either ∂0 type, ∂1 type, or a mixed combination).
The fermions consist of two-complex components Grassmann fermions, hence each such
term can be taken with a power of two at most. Altogether, for large Q the operator OQ
takes the following form:

OQ ∝ (ψ)2(D1ψ)4 · · · (Dnmaxψ)2nmax+2, (6.4)

where nmax is determined by the condition that the total number of fermions in the operator
OQ is equal to Q:

Q = (nmax + 1)(nmax + 2). (6.5)

It is important to note that we are not obtaining all integer values of Q through this
construction, since nmax is an integer. We discuss the operators for Q’s that cannot be
produced through (6.5) later in this section: they have spin and hence do not correspond
to homogeneous states on the cylinder.

The total number of derivatives nder that appear in the operator (6.4) is given by:

nder = 2
3nmax(nmax + 1)(nmax + 2) = 2

3Qnmax. (6.6)

11We use the notation ψ2 = εabψaψb.
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Solving the quadratic equation (6.5) for nmax and plugging it into (6.6), one finds the total
number of derivatives associated with the operator OQ to be given by:

nder = 2
3Q

3
2 −Q+

√
Q

12 +O(Q−
1
2 ). (6.7)

The dimension ∆Q associated with the operator OQ is given by ∆Q = Q∆ψ + 1 · nder ,
where ∆ψ = 1 is the dimension of the fermionic field in d = 3. Thus, we get:

∆Q = 2
3Q

3
2 + 1

12
√
Q+O(Q−

1
2 ). (6.8)

Next, we turn to consider the case of a Weyl fermion in d = 4 dimensions.12
The operator OQ will consist of multiplication of all the possible terms of the form∏n
k,l=0(∂n−k−l0 ∂k1∂

l
2ψ)2, where again n takes all possible integer values between 0 to a max-

imal value that depends on Q.13 For each value of n, there are (n+2)(n+1)
2 different terms,

each can be taken with a power of 2 at most. This yields the following expression for the
large charge operator OQ:

OQ ∝ (ψ)2(D1ψ)6(D2ψ)12 · · · (Dnmaxψ)(nmax+1)(nmax+2). (6.9)

From the condition that the operator carries a charge Q under the global U(1) symmetry,
one finds the following relation for nmax:

Q = 1
3 (nmax + 3) (nmax + 2) (nmax + 1) . (6.10)

The total number of derivatives in the operator (6.9) reads:

nder = 1
4 (nmax + 3) (nmax + 2) (nmax + 1)nmax = 3

4nmaxQ. (6.11)

Using equation (6.10), we get:

nder = 3 4
3

4 Q
4
3 − 3

2Q+ 1
4 · 3 1

3
Q

2
3 +O(Q−

2
3 ). (6.12)

The dimension ∆Q is given by ∆Q = Q∆ψ + nder = 3
2Q+ nder. Using equation (6.12), we

find the following expression for the scaling dimension ∆Q:

∆Q = 3 4
3

4 Q
4
3 + 1

4 · 3 1
3
Q

2
3 +O(Q−

2
3 ), (6.13)

Note that as in the d = 3 case, there is no Q0 term in the expansion for ∆Q.
Excited states correspond to particle-hole excitations. The lowest order excitation

corresponds to removing a single fermion from the Fermi surface and replacing it with
an excited fermion, with an energy slightly above the Fermi energy. In the language of

12The same analysis can be automatically extended to the case of a Dirac fermion.
13Similar to the d = 3 case, without loss of generality, we can set ∂3ψ as the term which linearly depends

on the others using the equations of motion.
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Figure 1. An illustration describing the energy shells. For each j < jmax, there are 2j + 1
occupied states in each shell. At the outermost shell, which corresponds to the jmax shell, there are
δQ occupied states, where 0 ≤ δQ ≤ 2jmax + 1. For δQ = 0 or δQ = 2jmax + 1, the outermost shell
is filled and we recover the homogenous and isotropic ground state with an associated ∆Q that is
given by equation (6.8).

operators, this problem translates to removing a single fermion with nmax derivatives from
the operator (6.4) (or (6.9) in the d = 4 case), and replacing it with a fermion that carries
nmax + 1 derivatives. The resulting operator, which we denote by O+1,Q, corresponds to
the next-to-lightest operator that carries the same charge Q. Following (6.6) (or (6.11) in
the d = 4 case), the total number of derivatives such an operator contains is shifted by
+1 compared to the number of derivatives associated with the operator OQ. Hence, the
energy difference between the lowest energy excitation to the ground state energy satisfies:

∆+1,Q −∆Q = O(1). (6.14)

Let us make a comment regarding cases in which the ground state is not homogeneous
and isotropic. In terms of energy levels on the cylinder Sd−1×R, this corresponds to cases
in which the outermost energy shell is not fully occupied. For simplicity, we focus on d = 3
dimensions. ∆Q is then given by:

∆Q =
jmax−1∑
j= 1

2

(2j + 1) εj + δQεjmax , (6.15)

where εj ≡ j + 1
2 are the energy eigenvalues on the sphere, and the (2j + 1) factor above

represents the degeneracy. δQ represents the particles in the outermost, not necessarily
filled energy shell (as described in figure 1) and it is related to the charge Q by:

Q =
jmax−1∑
j= 1

2

(2j + 1) + δQ. (6.16)

In general, δQ can take any integer value in the range between 0 to 2jmax + 1, where
the latter corresponds to the case in which the outermost shell is filled and is associated
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(a) (b)

Figure 2. An illustration describing the behavior of the scaling dimension for a general value of
Q. Figure 2a describes ∆Q as a function of Q. In figure 2b, the blue dashed line shows ∆Q− 2

3Q
3/2

as a function of Q, while the orange line describes
√

Q

12 . The points in which the blue dashed line
meets the orange line correspond to cases in which Q is such that equation (6.5) is satisfied with
integer values of nmax.

with jmax, while the former corresponds to the case in which the outermost shell is the
jmax− 1 shell and it is also filled (see figure 1). Note that for δQ = 0 or δQ = 2jmax + 1 we
simply recover the homogeneous and isotropic ground state scenario described above: Q is
then such that equation (6.5) is satisfied with an integer value of nmax, as defined above,
and using the two equations (6.15), (6.16) one can reproduce the result (6.8) for ∆Q based
on the counting arguments.

In figure 2, we refer to the general Q case. One can see, from figure 2b, that ∆Q meets
the value (6.8) that is associated with a homogeneous and isotropic ground state only for
specific values of Q. These values correspond to the cases in which the outermost shell is
filled, as described above. It is also interesting to notice that the fluctuations which appear
in the graph of the difference between the ∆Q to the leading order term in equation (6.8),
∆Q− 2

3Q
3/2 (described in figure 2b), possess an amplitude of order O(

√
Q). We learn that

∆Q is not an analytic function of Q, if we try to define it for by using all integer Q’s. It is
however analytic, if we only consider Q’s that correspond to completely filled shells, and
analytically continue from these points.

The same analysis can be extended to other dimensions as well. In appendix B, we
discuss the d = 4 case. We find that similar to the d = 3 case, outside the scope of a
homogeneous and isotropic ground state there are fluctuations in the difference between
∆Q to the leading order term of (6.13), these fluctuations are of order O(Q2/3) (which is
the same order in Q as the next to leading order term in (6.13)), hence ∆Q is not analytic
in Q. In addition, we show that for a general number of spacetime dimensions d the leading
behavior of ∆Q in the large charge limit is given by:

∆Q '
Q→∞

2
1−dd/2e
d−1

dΓ(d− 1) [Γ(d)Q]d/(d−1) , (6.17)

where by dd/2e we refer to the ceiling function of d/2.
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6.2 Relativistic fermi gas

In [6], non-relativistic Fermi-liquid theories were studied and were shown to satisfy the sum
rule associated with the broken boost symmetry by a particle-hole continuum. We extend
this analysis to the case of a relativistic Fermi gas, a state of matter that consists of many
non-interacting fermions. We show that similar to the non-relativistic case, the sum rules
associated with the broken symmetries are satisfied by particle-hole states.

As in [6], we are interested in cases in which the ground state of the theory itself
breaks boosts, while preserving spacetime translational and spatial rotational invariance.
The ground state of the theory consists of fermionic particles that occupy all momentum
states with momenta |~p| ≤ pF , where pF is the corresponding Fermi momentum. It is
therefore taken to be a tensor product of single-particle momentum eigenstates:

|GS〉 ≡ N
∏
s

∏
|~p≤pF

|~p, s〉, |~p, s〉 ≡ cs†~p |0〉, (6.18)

where cs†~p is a fermionic creation operator creating a single particle state of momentum ~p

and spin s. The constant N is a normalization constant and chosen such that 〈GS|GS〉 = 1.
From the anti-commutation relations, {cr~p , c

s†
~q } = (2π)3δ(3)(~p − ~q) δrs, it is clear that

the following properties of the ground state (6.18) hold:

cs†~p |GS〉 = 0, |~p| ≤ pF ,

cs~p |GS〉 = 0, |~p| > pF .
(6.19)

The first line above simply represents Pauli’s exclusion principle, while the second line
states that one cannot annihilate a state which is not already contained in the Fermi
ground state (6.18).

Particle-hole states are defined by [6]:

|χ〉 = cr†~p1
cr
′
~p2 |FL〉, (6.20)

where p2 ≤ pF and p1 > pF . The annihilation operator cr′~p2
creates a hole with momentum

~p2 and spin r′, while the creation operator cs†~p1
creates a fermionic particle with momentum

~p1 and spin r. The total momentum associated with the particle-hole state |χ〉 is
given by the difference ~p = ~p1 − ~p2. The energy associated with such a state reads
E(~p, ~p2) = Ep1 − Ep2 , where Epi = |~pi| ≡ pi is the energy of a single particle state with
momentum ~pi.

In this subsection, we study the saturation of the sum rules associated with the broken
boosts and dilatation for the case of relativistic free Dirac fermions in d = 4 dimensions in
flat spacetime.

6.2.1 Matrix elements

The action of a free, massless Dirac fermion in d = 4 dimensions is given by:

S =
∫
d4x iψ̄ /∂ψ , (6.21)
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where ψ̄ = ψ†γ0, /∂ = γµ∂µ. The fermion can be written in terms of modes expansion:

ψ(x) =
∫

d3p

(2π)3
1√
2ωp

∑
s

(
cs~p u

s
~p e
−ipx + ds†~p v

s
~p e

ipx
)
,

ψ̄(x) =
∫

d3p

(2π)3
1√
2ωp

∑
s

(
ds~p v̄

s
~p e
−ipx + cs†~p ū

s
~p e

ipx
)
,

(6.22)

where cs~p , c
s†
~p and ds~p , d

s†
~p are the creation and annihilation operators of fermionic particles

and anti-particles (respectively). They satisfy the following anti-commutation relations:

{cr~p , c
s†
~q } = {dr~p , d

s†
~q } = (2π)3δ(3)(~p− ~q) δrs. (6.23)

The spinors us~p and vs~p represent the solutions of the massless Dirac equation. They satisfy:∑
s

us~p ū
s
~p =

∑
s

vs~p v̄
s
~p = γ · p , (6.24)∑

s

ūs~pγ
µus~p = 4pµ, (6.25)∑

r,r′

ūr
′
~p2γ

µur~p1 ū
r
~p1γ

νur
′
~p2 = 4 (pµ2 pν1 + pν2 p

µ
1 − g

µνp1 · p2) . (6.26)

The stress-tensor is given by:

Tµν(x) = i

4
[
ψ̄γµ∂νψ − ∂νψ̄γµψ + (µ↔ ν)

]
− ηµνL. (6.27)

We consider the system (6.21) in the ground state described by (6.18). The energy density
ε and pressure P are defined as the vacuum expectation values of T 00 and T ij (respectively)
with respect to the ground state (6.18) using:

ε ≡ 〈GS|T 00|GS〉 , P δij ≡ 〈GS|T ij |GS〉 . (6.28)

Here we have secretly used the fact that ground state is isotropic to pull out the factor δij
in defining the pressure P . Using 〈GS|cs†~p cs

′
~q |GS〉 = (2π)3δ(3)(~p− ~q), we find:

ε = −1
2

∫
d3q

(2π)3
qi
Eq

∑
s

(
ūs~q γ

ius~q

)
= p4

F

4π2 ,

P δij = 1
2

∫
d3q

(2π)3
1

2Eq
∑
s

(
qiūs~qγ

jus~q + qj ūs~qγ
ius~q

)
=⇒ P = 1

3
p4
F

4π2 .

(6.29)

In the last step, we have used (6.25) and integrated over a sphere of radius pF . Using
the anti-commutation relations (6.23), as well as the definitions of the ground state (6.18)
and the particle-hole state (6.20), one can show that the only nontrivial identity involving
creation-anihilation operator is given by:

〈FL|cs†~p c
s′
~q |χ〉 = (2π)6δs

′rδr
′sδ(3)(~q − ~p1)δ(3)(~p− ~p2) . (6.30)

We define the following matrix elements:

T µν(x) ≡ 〈FL|Tµν(x)|χ〉 . (6.31)
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A straightforward calculation yields:

T 00(0) = 1
4

1√
Ep1Ep2

(Ep1 + Ep2) ūr′~p2γ
0ur~p1 ,

T 0i(0) = 1
8

1√
Ep1Ep2

[
(Ep1 + Ep2) ūr′~p2γ

iur~p1 +
(
pi1 + pi2

)
ūr
′
~p2γ

0ur~p1

]
.

(6.32)

Using the relation (6.26), we get:

T 00T 0i∗(~p1, ~p2) = 1
8

1
Ep1Ep2

(Ep1 + Ep2)2
(
Ep2p

i
1 + Ep1p

i
2

)
(6.33)

+ 1
8

1
Ep1Ep2

(Ep1 + Ep2)
(
pi1 + pi2

)
(Ep2Ep1 + ~p1 · ~p2) ,

T 00T 00∗(~p1, ~p2) = 1
4

(Ep1 + Ep2)2

Ep1Ep2
(Ep1Ep2 + ~p1 · ~p2) , (6.34)

where we have defined T µνT ρσ∗(~p1, ~p2) ≡∑r,r′ T µν(0)T ρσ∗(0).

6.2.2 Saturation of the sum rules

Expanding (6.33), (6.34) in small ~p (where ~p ≡ ~p1 − ~p2), we get:

T 00T 0i∗(~p, ~p2) = p2p
i + (~p · ~p2)pi2

p2
+ 2p2p

i
2 +O(p2), (6.35)

and:
T 00T 00∗(~p, ~p2) = 2p2

2 + 2~p2 · ~p+O(p2). (6.36)

In order to evaluate the spectral density we need to integrate over ~p2. Note that in the
limit of small ~p, the energy associated with the state of momentum ~p is given by:

E(~p, ~p2) = Ep1 − Ep2 = p cos(θ) +O(p2), (6.37)

where θ is the angle between the vectors ~p2 and ~p.
The spectral function ρT 00T 0µ to the leading order is given by the following:

ρT 00T 0µ(ω, ~p) = GT 00T 0µ(ω, ~p)∓ G∗T 00T 0µ(−ω,−~p), (6.38)

where the ∓ sign takes the values of − for µ = 0 and + for spatial indices µ = i, and
GT 00T 0µ(ω, ~p) involves the following integral (see figure 3):

GT 00T 0µ(ω, ~p) ≡ 1
(2π)3

∫
d3p2 δ (ω − E(~p, ~p2)) T 00T 0µ∗(~p, ~p2)

=
[
p2
F

(2π)2

∫ π/2

0
dθ sin θ δ(p cos θ − ω)T 00T 0µ∗(p, pF , cos θ)

∫ 0

−p cos θ
dδp2

]
+ · · ·

=
χ[0,p](ω)

4π2
ωp2

F

p
T 00T 0µ∗(p, pF , ω/p).

(6.39)

Note that T 00T 0µ∗(~p, ~p2) is a function of p, p2 and the angle between the vectors, i.e. of
cos θ. At this point we change the integration variable from p2 to δp2 = p2 − pF and
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(a) (b)

Figure 3. An illustration describing the momentum space notation corresponding to the integral
in the expression for the spectral density (6.38) for a specific configuration of ~p1, ~p2: as p → 0,
p1 → p+

F , and p2 +p cos θ ≈ pF . Thus the variable δp2 ≡ p2−pF ranges from −p cos θ to 0 in p→ 0
limit. This will be useful in evaluation (6.39). Figure 3a describes a Fermi surface of radius pF in
this specific configuration in momentum space, while figure 3b zooms in on the triangle AOB.

from figure 3, we read off the limit of integral in p → 0 limit. For the same reason, we
have kept only the leading order terms in δp2 of T 00T 0µ∗(~p, ~p2) in the second line, which
amounts to replacing p2 with pF and we made the angle dependence explicit. We also
use (6.37) inside the delta function, which subsequently sets cos θ = ω/p leading to the
term T 00T 0µ∗(p, pF , ω/p) ≡ T 00T 0µ∗(p, p2, cos θ)|p2=pF , cos θ=ω/p. The function χ[0,p](ω) is
the characteristic function of the interval [0, p].

We start with the calculation of ρT 00T 00(ω, p). From (6.36), we read:
T 00T 0µ∗ (p, pF , ω/p) = 2p2

F + 2pFω, then:

ρT 00T 00(ω, ~p) =
χ[−p,p](ω)

2π2
ωp4

F

p
+ · · · '

p→0
−(ε+ p)p2δ′(ω) , (6.40)

as it should be, in accordance with (2.12).
Next, we turn to calculate ρT 00T 0i . For this purpose, it is convenient to define ~p = pẑ,

and keep ~p2 arbitrary. From (6.35), we read: T 00T 0z∗(p, pF , ω/p) = pF p(1 + ω2/p2) +
2p2
Fω/p . Plugging it into the expression for the spectral density (6.38), after covariantizing

the result for ρT 00T 0z , we find the following expression for the spectral density ρT 00T 0i :

ρT 00T 0i(ω, ~p) '
p→0

χ[−p,p](ω)
2π2

ω2p4
F

p3 pi = χ[−p,p](ω)3(ε+ P )
2

ω2

p3 p
i . (6.41)

Using the above result, it is straightforward to check the saturation of the sum rules. One
finds:

∂ρT 00T 0i

∂pj
(ω, ~p) = '

p→0
(ε+ P )δ(ω)δij , (6.42)

where we have used

χ[−p,p](ω)
(
ω2

p3

)
= [Θ(ω + p)−Θ(ω − p)]

(
ω2

p3

)
'
p→0

2
3δ(ω) .

Therefore, the sum rule associated with the broken boosts (2.4) is satisfied. Using (6.42)
one easily finds:

∂ρT 00T 0i

∂pi
(ω, ~p) '

p→0
3(ε+ P )δ(ω) = 4εδ(ω) , (6.43)

thus, the sum rule (2.17) associated with the broken dilatations is satisfied (with d = 4).
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While in this section we have been studying the CFT of a free fermion, the analysis is
in fact applicable to any (possibly interacting) CFT state around which the effective theory
is a free Fermi surface. To our knowledge it is not presently known if a such a free Fermi
surface is a natural end point under the RG evolution around heavy states. It would be
interesting to investigate it along the lines of [41, 42].

7 2d CFTs at large charge

7.1 Boost breaking in 2d CFTs

We will consider 2d CFTs on the cylinder with circle of radius R: ds2 = dτ2+R2(dθ)2, with
θ ' θ+2π. The advantage of the 2d setup is that we can construct the correlation functions
of the EM tensor explicitly and verify the existence of the large volume (macroscopic) limit.
The low-energy states responsible for the boost Nambu-Goldstone theorem can be also
identified. Remarkably, many of the things we find are similar to the superfluid discussion
in section 4.

TJ correlator. We take an arbitrary state |Ω〉 which corresponds to a spinless highest
weight state in the Verma module with dimension ∆. Let Φ be some primary and consider
first the four-point function in flat space (hΦ, h̄Φ, hΩ, h̄Ω stand for the obvious scaling
dimensions and we assume hΩ = h̄Ω.)

〈Ω(0)T (z)Φ(1)Ω(∞)〉 = ChΩ
z2 + ChΦ

z(z − 1)2 , (7.1)

where
〈Ω(0)Φ(1)Ω(∞)〉 = C . (7.2)

In order to transform this to the cylinder with a circle of radius R we need to plug z = eu/R

and take T (z) → R2z−2T (u) and Φ(1) → R∆ΦΦ(0).14 Therefore the following Euclidean
correlation function is found on the cylinder with coordinate u = τ + iRθ:

〈Ω|T (u)Φ(0)|Ω〉 = ChΩ
R2+∆Φ

+ ChΦ
2R2+∆Φ(cosh(u/R)− 1) .

The constant piece is necessary to account for the propagation of the state |Ω〉.
Let us now investigate the macroscopic limit. For concreteness, we take ∆Φ = 1 and Φ

to be a conserved current (1, 0) operator. C/(πR) = ρ is the charge density in the state |Ω〉
while hΩ/(πR2) = ε is the energy density. Evidently, to achieve a nontrivial macroscopic
limit, we need to take C to scale as a positive power of R — i.e., we change the state Ω
as a function of R such that C

R is finite in the R→∞ limit. This is the same as having a
constant charge density. Secondly, the constant ChΩ

R3 is proportional to ρε which we should
also hold fixed. Then the macroscopic limit becomes

〈Ω|T (u)J(0)|Ω〉 = π2ρε+ πρ

u2 .

14The transformation of the EM tensor T (z) → R2z−2T (u) is missing a constant — the famous ground
state energy from the Schwartzian. This is unimportant for us because we are considering the correlation
functions in heavy states and hence we drop this constant.
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Similarly,
〈Ω|T (u)J̄(0)|Ω〉 = π2ρε .

In components this becomes (assuming C is real) at separated points in Euclidean
signature (where T = π(Ttt − Ttx), T̄ = π(Ttt + Ttx), similary J = π(Jt − Jx), J̄ =
π(Jt + Jx)):15

〈Ω|Ttt(τ, x)Jt(0)|Ω〉 = ρε+ ρ

2π
(τ2 − x2)
(τ2 + x2)2 ,

〈Ω|Txt(τ, x)Jx(0)|Ω〉 = ρ

2π
τ2 − x2

(τ2 + x2)2 ,

〈Ω|Ttt(τ, x)Jx(0)|Ω〉 = −i ρ
π

τx

(τ2 + x2)2 ,

〈Ω|Txt(τ, x)Jt(0)|Ω〉 = −i ρ
π

τx

(τ2 + x2)2 .

(7.3)

We do not write the matrix elements containing Txx as they are the same up to a sign as
those containing Ttt.

Analytic continuation to Minkowski signature is implemented in the equations above
by setting τ = it±ε with ε→ 0+. The ± correspond to different (Minkowski) time ordering
of the operators:

〈Ω|Ttt(t, x)Jx(0)|Ω〉 = − ρ

2π
tx

x2 + t2

(
∂

∂x

1
t+ x− iε

− ∂

∂x

1
t− x− iε

)
〈Ω|Jx(0)Ttt(t, x)|Ω〉 = − ρ

2π
tx

x2 + t2

(
∂

∂x

1
t+ x+ iε

− ∂

∂x

1
t− x+ iε

) (7.4)

Now we use the familiar identity (with ε → 0+ assumed): 1
u+iε −

1
u−iε = −2πiδ(u) to

find an expression for the commutator in position space:

〈Ω|[Ttt(t, x), Jx(0)]|Ω〉 = −iρ tx

x2 + t2
(
δ′(t+ x) + δ′(t− x)

)
. (7.5)

The support of the commutators on the light-cone is of course due to the non-dissipative
nature of the excitations pertinent to this problem. In frequency and momentum space
we find

〈Ω|[Ttt(ω, k), Jx(0)]|Ω〉 =
∫ ∞
−∞

dt dx eiωt−ikx〈Ω|[Ttt(t, x), Jx(0)]|Ω〉

= −πρk(δ(ω + k) + δ(ω − k)) .

(7.6)

The spectral density is given by

ρTttJx(ω, k) = −1
2ρk(δ(ω + k) + δ(ω − k)) '

k→0
−ρkδ(ω) , (7.7)

as required by the sum rule (2.15) for the boost. (We remind the reader that in our
conventions gxx = −1, hence kx = −kx = −k, which explains the sign in (7.7).)

Similarly, one can show that

ρTxtJt(ω, k) = −1
2ρk(δ(ω + k) + δ(ω − k)) '

k→0
−ρkδ(ω) , (7.8)

and verify the sum rule (2.17) for the dilatation.
15To conform with both the conventions of the 2d CFT literature and the usual notion of Tµν in higher

dimensions, we use the definitions T ≡ − 4π√
g

δS
δguu

and Tµν ≡ 2√
g

δS
δgµν

.
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TT correlator. The correlator involving the energy momentum tensor is given by

〈Ω(0)T (z)T (1)Ω(∞)〉 = h2
Ω
z2 + 2hΩ

z(z − 1)2 + c/2
(z − 1)4 . (7.9)

This leads to an amplitude on the circle of radius R:

〈Ω|T (u)T (0)|Ω〉 = h2
Ω
R4 + hΩ

R4(cosh(u/R)− 1) + c

8R4(cosh(u/R)− 1)2 . (7.10)

The macroscopic limit requires to keep hΩ/R
2 ≡ πε fixed and c fixed. Then we obtain in

the macroscopic limit:

〈Ω|T (u)T (0)|Ω〉 = π2ε2 + 2πε
u2 + c

2u4 . (7.11)

Similarly
〈Ω|T (u)T̄ (0)|Ω〉 = π2ε2 .

We can now extract the energy-density correlator with itself as before by inserting T =
−2πTuu = −π(Tττ − iTτx) = π(Ttt − Ttx) and expanding to find:

〈Ω|Ttt(τ, x)Ttt(0)|Ω〉 = ε2 + 2ε(τ2 − x2)
π(x2 + τ2)2 + c

4π2
(x4 + τ4 − 6x2τ2)

4π2(x2 + τ2)4 (7.12)

The commutator is then given by (similar to the calculation of TJ commutator)

〈Ω|[Ttt(t, x), Ttt(0)]|Ω〉 = iε
(
δ′(x+ t)− δ′(x− t)

)
− i c

24π
(
δ′′′(x+ t)− δ′′′(x− t)

)
. (7.13)

This can be now transformed to frequency and momentum space to find

〈Ω|[Ttt(ω, k), Ttt(0)]|Ω〉 =
∫ ∞
−∞

dt dx eiωt−ikx〈Ω|[Ttt(t, x), Ttt(0)]|Ω〉

= 2πεk (δ(ω − k)− δ(ω + k)) + cπk3/6 (δ(ω − k)− δ(ω + k)) .

(7.14)
The spectral density is given by

ρTttTtt '
k→0
−2εk2δ′(ω)− k4

6
[
c δ′(ω) + 2ε δ′′′(ω)

]
+ · · · . (7.15)

The sum rule (2.13) is saturated by the first term, as ε+ P = 2ε in 2 dimension.
To understand which terms contribute to the sum rule we must study in detail the

intermediate states by inserting a complete set of states. It is obvious that the only states
〈Ω′| for which 〈Ω′|Ttt(0)|Ω〉 6= 0 are in the Verma module of |Ω〉 (left or right descendants
but not both). The usual basis of states LnN−N · · ·L

n1
−1|Ω〉 is inconvenient to use since it

is not orthonormal and the matrix elements are difficult to compute. Instead we use the
oscillator basis of [43], nicely reviewed in [44] (we are using their notations) and we start
by computing the wave function

〈U |T (u)|Ω〉 = 1
R2

∑
n≤0

e−nu/R〈U |Ln|Ω〉 = 1
R2

∑
n≤0

e−nu/RL−n · 1

= 1
R2

h− ∞∑
k=2

e−ku/R
k−1∑
p=1

p(k − p)upuk−p + 2
∞∑
k=1

e−ku/Rk(µk − iλ)uk

 .

(7.16)
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where u is our usual coordinate on the cylinder of radius R and uk is an infinite set of
variables collectively denoted U . µ, λ are related to hΩ and c via c = 1+24µ2, hΩ = λ2+µ2.
In this basis the monomials are orthogonal with norm

(1, 1) = 1 , (uk, ul) = δk,lSk,1 , (u2
k, u

2
l ) = δk,lSk,2 ,

(ukup, uqul) = δk,qδp,lSk,1Sl,1 + δk,lδp,qSk,1Sl,1 .

In the last term we assumed that the four indices are not all the same. We used Sk,j =
(2k)−jΓ(j + 1). We can unify the third and fourth formulas and write:

(1, 1) = 1 , (uk, ul) = δk,l
1
2k , (ukup, uqul) = (δk,qδp,l + +δk,lδp,q)

1
4kl .

Inserting a complete set of states, we find that only need to insert “single particle” and
“two particle” states:

〈Ω|T (u)T (0)|Ω〉 = 〈Ω|T (u)|Ω〉〈Ω|T (0)|Ω〉+
∑
k=1

2k〈Ω|T (u)|uk〉〈uk|T (0)|Ω〉

+ 4
∑
k<l

kl〈Ω|T (u)|ukul〉〈ukul|T (0)|Ω〉+ 2
∑
k

k2〈Ω|T (u)|u2
k〉〈u2

k|T (0)|Ω〉 .

The first term on the right hand side gives h/R4. The second term gives

4
R4

∞∑
k=1

2ke−ku/Rk(µk − iλ) 1
2kk(µk + iλ) 1

2k = 2
R4

∞∑
k=1

e−ku/Rk(µ2k2 + λ2) .

This is easily summed to give

1
R4 (λ2 + µ2) 1

(cosh(u/R)− 1) + 3
R4µ

2 1
(cosh(u/R)− 1)2 .

This accounts for almost the whole answer in (7.10), except that the coefficient of the second
term above is off. (In the full answer it is c/(8R4) = (3µ2 + 1/8)/R4 instead of 3µ2/R4

that we obtained from the one particle exchange.) One can check that the difference is
made up by the two-particle states. As we have seen above in (7.11)–(7.15), the first term,
1
R4 (λ2 +µ2) 1

(cosh(u/R)−1) is enough to saturate the boost Nambu-Goldstone theorem in the
macroscopic limit. Therefore, the boost Nambu-Goldstone theorem is saturated by one-
particle states |Ω〉 and |uk〉. Note that of these states, only |u1〉 is an ordinary conformal
descendant of |Ω〉 (indeed, it is proportional to the action of L−1 on |Ω〉).

In frequency space the commutator directly on the cylinder as a result of these one-
particle exchanges is (we denote by p = n/R, with n an integer, the momentum on the
circle of radius R)

〈Ω|[T (ω, p), T (0)]|Ω〉 = 2n
R4 (µ2n2 + λ2) δ

(
ω − n

R

)
+ · · · (7.17)

All the states that appear in the intermediate channel have energy and momentum that
are related by ωn = pn = n/R. This is because they are excitations of the ground state
given by the action of a holomorphic EM tensor.
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As always, the spectral density, being a sum of delta functions, needs some smearing
before it can be written in the infinite volume limit. By contrast, correlation functions
for u � R land themselves to a nice macroscopic limit more directly. From the spectral
density (7.17) we see that any one individual state, even if it has n ∼ R and λ2 ∼ R2 as
required in the macroscopic limit, leads to a vanishing spectral density in the macroscopic
limit (the contribution is suppressed as 1/R). As was discussed in detail in section 3.4, we
have to smear over a band of states centered around n ∼ R and λ2 ∼ R2 to recover the
correct result.

Note the nice analogy to the superfluid effective theory and mean field theory: in (4.8)
and (5.22) we have contributions from what is analogous to one-particle states in the
Verma module |un〉, of which |u1〉 is a conformal descendant of the ground state. These are
sufficient to reproduce the boost sum rule. The contribution comes from the states with
energy n ∼ R while the ground state has energy ∼ R2.

7.2 A compact boson effective theory

It is tempting to try and reproduce the above results with an effective theory. One candidate
is the superfluid EFT of section 4 specialized to d = 2, which could apply to the lowest
energy state at fixed (large) U(1) charge. In CFTs with a discrete operator spectrum it is
a fundamental result [45] that the U(1) symmetry is enhanced to a u(1)×u(1) Kač-Moody
algebra, and the Energy-Momentum tensor of the full theory decomposes to two separately
conserved Energy-Momentum tensors.

Below we present an effective theory in d = 2 with the following properties:

• The U(1) symmetry is of course not spontaneously broken — it is in the usual “log-
ordered” phase which is common in d = 2.

• It has one compact boson but it allows for an energy-momentum tensor with arbitrary
central charge.

• The U(1) symmetry can be promoted to a Kač-Moody symmetry only if the central
charge is c = 1.

Besides describing the compact boson large charge limit, which is somewhat trivial,
the theory we present is potentially interesting for situations where the U(1) symmetry of
a CFT does not enhance to Kač-Moody. Such CFTs must have a continuous spectrum16

and one might worry that the large charge limit would be necessarily more complicated.
A more realistic and interesting application for our EFT is to describe superfluids with

a boundary, or equivalently, the large charge limit of 3d boundary CFT (BCFT). Indeed,
the aforementioned shift in the central charge of a single compact boson will be crucial for

16The simplest such example is a noncompact complex scalar Φ, with the U(1) symmetry rotating around
the origin of the target space C and the associated current

Jµ = i
(
Φ†∂µΦ− Φ∂µΦ†

)
(7.18)

which does not get enhanced to a Kač-Moody symmetry.
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matching the boundary trace anomaly of the superfluid. For some literature on boundary
trace anomalies see [46–52]. We leave the development of this direction to future work.

7.2.1 First Look at the large charge effective theory

Let us start with the EFT (4.1) specialized to d = 2:17

S0 = κ

π

∫
d2x ∂ϕ∂̄ϕ , (7.19)

where ϕ is a compact scalar ϕ ∼ ϕ+ 2π. We expand the theory around ϕ = −iµτ +π such
that κµ/(2π) = ρ and κµ2/(4π) = ε and try to match the correlators we found from the
theory for the fluctuations: κ/π

∫
d2x ∂π∂̄π. The stress tensor of the theory S0 in (7.19)

is T = −κ(∂ϕ)2, which in terms of the fluctuations takes the form

T = κµ2

4 + iκµ∂π − κ(∂π)2 . (7.20)

The stress tensor two point function can be computed using the propagator

〈∂π(u)∂π(0)〉 = − 1
2κu2 , (7.21)

and we get

〈T (u)T (0)〉 = π2ε2 + 2πε
u2 + 1

2u4 . (7.22)

The first two pieces are exactly right but the third one is not. This is because our effective
theory has central charge 1 instead of c. We have so far merely reproduced the known
result that the compact boson has central charge 1.

If we want to reproduce (7.22) exactly, we face the question of how to make a single
compact boson ϕ have c 6= 1, which seems at first sight impossible. A similar in spirit
problem arises in the quantization of the effective string [12] and the solution here is
similar. We are allowed to add singular terms to the effective action since we are anyhow
expanding around a nontrivial background:

S1 = β

π

∫
d2x

∂2ϕ∂̄2ϕ

∂ϕ∂̄ϕ
. (7.23)

β will turn out to be proportional to the shift in central charge. Expanded about the
superfluid solution we find that this leads to a contribution to the effective action of the
fluctuations

S1 = − 4β
πµ2

∫
d2x ∂2π∂̄2π +O(1/µ4) . (7.24)

On the one hand, as will be discussed in the next section, S1 is somewhat trivial; one
manifestation of this is that it does not lead to a modification of the propagator (7.21)
up to O(1/µ4) (this is true since S1 vanishes on shell). On the other hand, the conformal

17By d2x we mean dτdx = 1
2dudū.
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symmetry of the action S = S0 + S1 is modified: with precision O(1/µ3) the deformed
action S is invariant under the corrected conformal transformations

δϕ(u, ū) = λ(u)∂ϕ− β

2κ
∂2λ(u)
∂ϕ

, (7.25)

(there is an independent antiholomorphic copy of the symmetry) and the stress tensor that
generates this symmetry is

T = −κ(∂ϕ)2 + β
∂ϕ∂3ϕ− (∂2ϕ)2

(∂ϕ)2 +O(1/µ3)

= κµ2

4 + iκµ∂π − κ(∂π)2 + 2iβ
µ

∂3π +O(1/µ2) .
(7.26)

The stress tensor two-point function can now be straightforwardly computed using Wick
contractions using the propagator (7.21). We get

〈T (u)T (0)〉 = (7.22) + 12β
u4 +O(1/µ) . (7.27)

If we set β = (c− 1)/24, we recover (7.11) to O(1/µ). To work out the predictions of the
EFT to higher orders, we need a more systematic approach, which we turn to next.

We will also see below that there is no holomorphic current, i.e. a weight (1, 0) primary
operator of the Virasoro symmetry generated by the deformed T of (7.26) unless β = 0.

7.2.2 Systematic development of the effective theory

There is a systematic procedure to construct all terms allowed by symmetry in the effective
action. We define the Weyl invariant metric ĝµν ≡ gµν |∂ϕ|2, where |∂ϕ|2 ≡ −gµν∂µϕ∂νϕ.
Then in the derivative expansion we can write the following terms:

Sderiv = κ

π

∫
d2x

√
ĝ
[
1 + α4,1R̂

2 + α4,2∇̂µ∇̂νR̂ ∂µϕ∂νϕ+ . . .
]
, (7.28)

where αk,i is the coefficient of the ith term at kth derivative order. We used the leading
order equation of motion ∇2ϕ = 0, that in 2d the Riemann tensor has only one independent
component, R̂, and that

∫
d2x
√
ĝR̂ is a topological invariant, the Euler characteristic of

the manifold to reduce the number of terms in (7.28). There is one famous term that is
missing from Sderiv, since it is not a local Weyl invariant in itself, but transforms with a
shift that is a total derivative. The Wess-Zumino term takes the form [53, 54]:

SWZ = α2

∫
d2x
√
g
[
(∂µτ)2 + τR

]
,

τ ≡ − log |∂ϕ| .
(7.29)

Note that τ here is a composite dynamical field (as opposed to a background field, which
is the more common case in the literature).

Let us now take gµν to be flat. In complex coordinates the leading order equation of
motion is ∂∂̄ϕ = 0, and by dropping terms proportional to it, we realize that SWZ = S1
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from (7.23) with β = πα2/4. So we make contact with the considerations in the previous
section. The equation of motion also implies that on shell ϕ(u, ū) = χ(u) + χ̄(ū) and

dŝ2 = ĝµνdx
µdxν

= −∂χ∂̄χ̄ gµνdxµdxν

= −∂χ∂̄χ̄ dzdz̄
= −dχdχ̄ ,

(7.30)

i.e. ĝµν is flat. This then implies that on-shell all curvature invariants that we used to build
Sderiv in (7.28) vanish. In addition, as we have seen before, SWZ is also a total derivative
modulo the equations of motion. The EFT is nontrivial despite the action having no terms
which are nonzero on-shell. This is because the EM tensor could (and should) receive
various corrections.

Since all the higher terms in the effective action vanish on-shell, we can use a powerful
general result in EFTs that there exists a field redefinition ϕ → ϕ̃, that makes the action
quadratic.

S = κ

π

∫
d2x ∂ϕ̃∂̄ϕ̃ . (7.31)

We can then expand around the superfluid background by taking ϕ̃ = −iµτ + π̃. The
relation between π and π̃ is (see also [55]):

π = π̃ − 2β
κµ2 ∂∂̄π̃ +O(1/µ3) . (7.32)

The symmetry transformation of (7.25) and the corresponding stress tensor (7.26) become

δπ̃(u, ū) = − iµ2 λ(u)− iβ

2κµ ∂
2λ(u) + λ(u)∂π̃ +O(1/µ2) ,

T (u) = κµ2

4 + iκµ∂π̃ + 2iβ
µ

∂3π̃ − κ(∂π̃)2 +O(1/µ2) ,
(7.33)

where in the first lines we collected terms that shift π̃ and hence their generators are linear
in π̃, while the second lines correspond to conformal transformations. (In the expression
of T we dropped terms proportional to the equation of motion.) To O(µ0) the symmetry
is just a combination of the shift and conformal symmetry of the free compact boson, and
correspondingly T is just a sum of the conventional current and stress tensor. At higher
orders the symmetry and its generator becomes more exotic. To the order we wrote down
formulas the computation of the stress tensor correlator is identical in the π̃ and π variables,
but the introduction of π̃ streamlines the computation at higher orders.

In summary, we are faced with the problem of constructing a tensor in a derivative
expansion from a free scalar governed by the action S = κ/π

∫
d2x ∂π̃∂̄π̃. The stress tensor

is supposed to obey the OPE

T (u)T (0) = c

2u4 + 2
u2 T (0) + 1

u
∂T (0) + regular , (7.34)
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which can be achieved order by order in 1/µ. The remarkable fact is that c is tunable.18
We could have started from this formulation of the problem, but for physical intuition and
to make contact with the literature, we took a detour.

Using the Mathematica package OPEdefs [56], by imposing the stress tensor OPE, we
found that the first few orders of the stress tensor are:

T (u) =κµ2

4 + iκµ∂π̃ − κ(∂π̃)2 + 1
µ

[
i(c− 1)

12 ∂3π̃ + γ1 ∂π̃∂
2π̃

]
+ 1
µ2

[(c− 1)
6

(
(∂2π̃)2 + ∂π̃∂3π̃

)
+ γ2 ∂

4π̃ + γ3 (∂π̃)2∂2π̃

]
+O(1/µ3) ,

(7.35)

where γi are arbitrary coefficients (they are not quite Wilson coefficients, since, as we
remarked, the action does not admit terms beyond the free kinetic term). We now attempt
to construct a (1, 0) holomorphic primary in the 1/µ expansion by imposing the OPEs:

T (u)j(0) = 1
u2 j(0) + 1

u
j′(0) + regular ,

j(u)j(0) = κ

2u2 + regular .
(7.36)

We succeed to O(µ0), but at O(1/µ) the most general Ansatz

j = κµ

2 + iκ∂π̃ + 1
µ

[
λ ∂3π̃ + γ1 ∂π̃∂

2π̃
]

+O(1/µ2) (7.37)

leads to a contradiction with (7.36): the OPE with T wants to set λ = −i(c− 1)/12, while
the OPE with j to λ = 0. (Of course these are consistent for c = 1.) This is how the
general theorem of [45] manifests itself in our concrete computation. The absence of a
holomorphic current in effective string theory is due to similar reasons [12].

7.2.3 Ground state energy

While there are undetermined coefficients in the stress tensor (7.35), it turns out that the
vacuum energy is universal in this 2d EFT to all orders in the large charge expansion.

The argument consists of two simple steps. First we note that while the conformal
transformations implemented by T in (7.35) are exotic (as displayed in (7.33)), L0 + L̄0
generates ordinary time translations on the cylinder. This can be seen either from the
transformation law it generates for constant λ(u) in (7.33), or by noticing that all higher
order terms in 1/µ are total derivatives,

T (u) = κµ2

4 +iκµ∂π̃−κ(∂π̃)2+∂ψ ,

ψ≡ 1
µ

[
i(c−1)

12 ∂2π̃+ γ1
2 (∂π̃)2

]
+ 1
µ2

[(c−1)
6 ∂π̃∂2π̃+γ2∂

3π̃+ γ3
3 (∂π̃)3

]
+O(1/µ3) .

(7.38)
18There is another stress tensor T = κ(∂φ)2 + V ∂2φ̃ (that of the linear dilaton CFT) that produces a

tunable central charge c = 1 + 6V 2/κ from a free scalar action for the noncompact scalar φ; our setup with
a compact ϕ is different as a linear dilaton term is forbidden.
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The cylinder partition function in the fixed Q sector can be written as

ZQ[β] = TrQ fixed
[
e−

β
R(L0+L̄0− c

12)]
=
∫
Q fixed

Dϕ̃ e−Sfree[ϕ̃] .
(7.39)

While our manipulations above were in classical field theory, we can argue that keeping
track of the Jacobian of the field redefinition ϕ→ ϕ̃ would not change the conclusion that
there exists a field redefinition that makes the theory free. The Jacobian is a local Weyl
invariant functional of ϕ, hence can be exponentiated and written in terms of ĝµν . Since
we have written all these terms in the action (7.28), keeping track of the Jacobian only
changes coefficients in the action. Then there must exist a field redefinition that makes the
action free. This argument is reminiscent of the classic argument of [57, 58].

In the β → ∞ limit from the representation as a trace, we see that we pick up the
ground state energy exp

[
− β
R

(
∆Q − c

12
)]
. Evaluating the path integral at fixed charge

gives

ZQ[β]→ exp
[
−β

(
κµ2R

2 − 1
12R

)]
, (7.40)

where the second term is the Casimir energy of the free real scalar. Using the relation (4.5)
with c1 = κ/(4π), we conclude that

∆Q = Q2

2κ + c− 1
12 +O(e−Q) . (7.41)

We hope that this prediction can be tested in a situation where our effective theory would
apply (e.g. in the context of BCFT).

We note that there exists another method for computing the dimension of the lowest
dimension large charge scalar, analogous to the approach of [55]. This method gives the
same result as (7.41).
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A The zoo of correlation functions

Consider the Euclidean time-ordered two point function of two (bosonic)19 operators A, B:

GAB(τ) = −〈Tτ A(τ)B(0)〉 , (A.1)
19For A, B fermionic operators, one needs to replace the commutator in (A.3) with anti-commutators.

– 46 –



J
H
E
P
0
9
(
2
0
2
1
)
0
6
4

where the symbol Tτ denotes the time-ordering operator, defined such that Tτ A(τ)B(0) =
A(τ)B(0) if τ > 0 and B(0)A(τ) if τ < 0. We define the Fourier transform of this function
as GAB(iν) =

∫∞
−∞ dτ GAB(τ)eiντ for real ν. It is a fundamental result, derived from

inserting a complete set of states, that this can be analytically continued to give a function
GAB(ω) on the complex ω plane (first sheet) except for the real ω axis, where it has a
branch cut. The function has the following spectral representation:

GAB(ω) =
∫ ∞
−∞

dω′
ρAB(ω′)
ω − ω′

. (A.2)

ρAB(ω) is called the spectral density associated with the operators A and B.
All other Green’s functions can be computed from GAB(ω) using an analytic continu-

ation. We are interested in the following Green’s functions:

G
(R)
AB(t) ≡ −iΘ(t) 〈[A(t), B(0)]〉 ,

G
(A)
AB(t) ≡ iΘ(−t) 〈[A(t), B(0)]〉 ,

G
(comm)
AB (t) ≡ 〈[A(t), B(0)]〉 = i

(
G

(R)
AB(t)−G(A)

AB(t)
)
,

(A.3)

where G(R)
AB(t) is the retarded function, G(A)

AB(t) is the advanced function and G
(comm)
AB (t)

is defined by the third line above as the correlator of the commutator [A(t), B(0)]. Its
Fourier transform is proportional (up to normalization) to the spectral function ρAB(ω).
From the above expressions, it is clear that the Fourier transformed function G

(R)
AB(ω) is

analytic in the upper half plane of complex ω, while G(A)
AB(ω) is analytic in the lower half

plane of complex ω. The following relations hold in momentum space:

G
(R)
AB(ω) = GAB(ω + iε)

G
(A)
AB(ω) = GAB(ω − iε)

G
(comm)
AB (ω) = i

[
G

(R)
AB(ω)−G(A)

AB(ω)
]

= i [GAB(ω + iε)−GAB(ω − iε)]

= i

∫ ∞
−∞

dω′ ρAB(ω′)
[ 1
ω − ω′ + iε

− 1
ω − ω′ − iε

]
= i

∫ ∞
−∞

dω′ ρAB(ω′)
[
−2πiδ(ω − ω′)

]
= 2πρAB(ω) .

(A.4)

As an example, let us see how these identities work out for the case of the complex
free scalar field. For the free scalar, the Euclidean propagator is given by

Gφ̄φ(iν, ~p) = −1
ν2 + |~p|2 (A.5)

One analytically continues to obtain a function defined on the complex ω plane except of
the real axis:

Gφ̄φ(ω, ~p) = 1
ω2 − |~p|2

, ω /∈ R (A.6)
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Now we can use (A.4) by choosing A = φ̄ and B = φ:

G
(comm)
φ̄φ

(ω) = G
(R)
φ̄φ

(ω)−G(A)
φ̄φ

(ω)

= i
[
Gφ̄φ(ω + iε, ~p)−Gφ̄φ(ω − iε, ~p)

]
= i

[ 1
(ω + iε)2 − |~p|2

− 1
(ω − iε)2 − |~p|2

]
= i

2|~p|

[ 1
(ω + iε)− |~p| −

1
(ω + iε) + |~p| −

1
(ω − iε)− |~p| + 1

(ω − iε) + |~p|

]
= 2π

2|~p| [δ(ω − |~p|)− δ(ω + |~p|)]

= (2π)sgn(ω)δ(pµpµ),
(A.7)

and the spectral function reads:

ρφ̄φ(ω) = sgn(ω)δ(pµpµ). (A.8)

(A.8) can also be obtained using an equivalent description of analytically continuing the
space-time coordinates. While the above method is used in section 2, the following method
is used in the rest of the paper.

We start with the Wightman correlation function for free scalar in Minkowski space-
time:

〈0|φ̄(t, ~x)φ(0)|0〉 = 1
(d− 2)sd−1

[
(ε+ it)2 + ~x · ~x

]−∆φ
, ε→ 0+, (A.9)

〈0|φ(0)φ̄(t, ~x)|0〉 = 1
(d− 2)sd−1

[
(−ε+ it)2 + ~x · ~x

]−∆φ
, ε→ 0+. (A.10)

The Fourier transformed Wightman function GW
φ̄φ

(ω, ~p) reads:

GW
φ̄φ

(ω, ~p) =
∫
ddx ei(ωt−~p·~x)〈0|φ̄(t, ~x)φ(0)|0〉

= 2πΘ(ω)Θ(p2
µ)4∆∗−∆φΓ(∆∗)

Γ(∆φ)
(p2
µ)∆φ−∆∗−1

Γ(∆φ −∆∗)
,

(A.11)

where we used the notation p2
µ ≡ pµp

µ = ω2 − ~p · ~p and ∆∗ = d−2
2 is the unitarity bound,

i.e. ∆φ ≥ ∆∗ is saturated by the free scalar field. In the limit where ∆φ → ∆+
∗ , one gets:

Θ(p2
µ)

(p2
µ)∆φ−∆∗−1

Γ(∆φ −∆∗)
→ δ(p2

µ).

Thus, for the free scalar field we find:

GW
φ̄φ

(ω, ~p) = 2πΘ(ω)δ(p2
µ) . (A.12)

The commutator correlator is given by:

G
(comm)
φ̄φ

(ω, ~p) =
∫
ddxei(ωt−~p·~x)〈0|

[
φ̄(t, ~x), φ(0)

]
|0〉

= GW
φ̄φ

(ω, ~p)− [GW
φ̄φ

(−ω,−~p)]∗ = 2πsgn(ω)δ(p2
µ) .

(A.13)

From above, one can rederive the spectral function (A.8).
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(a) (b)

Figure 4. An illustration describing the behavior of the scaling dimension for a general value of
Q in the d = 4 case. Figure 4a describes ∆Q as a function of Q. In figure 4b, the blue dashed line
corresponds to ∆Q− 34/3

4 Q4/3 as a function of Q, while the orange line describes Q2/3

4·31/3 . The points
in which the blue dashed line meets the orange line correspond to cases in which Q is such that
equation (6.10) is satisfied with integer values of nmax.

B ∆Q in the free fermionic phase

In this appendix, we extend the analysis described at the end of subsection 6.1 for the case
of d = 4 dimensions. Considering the d = 4 theory of free fermions on the cylinder S3×R,
we have:

∆Q =
jmax−1∑
j=1/2

g
(d=4)
j ε

(d=4)
j + δQε

(d=4)
jmax , (B.1)

where g(d=4)
j represents the degeneracy and it is given by:

g
(d=4)
j =

(
j + 3

2

)(
j + 1

2

)
, (B.2)

and ε(d=4)
j = j + 1 are the energy eigenvalues. The charge Q is given by:

Q =
jmax−1∑
j=1/2

g
(d=4)
j + δQ, (B.3)

where δQ represents the amount of occupied states in the outermost energy shell and it
can take values in the range 0 ≤ δQ ≤

(
jmax + 3

2

) (
jmax + 1

2

)
.

In figure 4, we describe the general Q case. One can see, from figure 4b, that ∆Q meets
the value (6.13) that is associated with a homogeneous and isotropic ground state only for
specific values of Q. These values again correspond to cases in which the outermost shell is
filled. Note that similar to the d = 3 case, there are fluctuations in the difference between
∆Q to the leading order term of (6.13), these fluctuations are of order O(Q2/3) (which is
the same order in Q as the next to leading order term in (6.13)), hence ∆Q is not analytic
in Q.

Let us make a comment regarding the leading order term in the expansion for ∆Q for
a general number of spacetime dimensions d. The energy eigenvalues for a general d are
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given by:
ε

(d)
j = j + d− 2

2 . (B.4)

In the Q → ∞ limit, the behavior of g(d)
j is governed by large j, and can be obtained for

any dimension (one can systematically study this using Hilbert series [59, 60]):

g
(d)
j '

j→∞

2
Γ(d− 1)j

d−2dim

1/2, 1/2, · · ·︸ ︷︷ ︸
r−1 times

 = jd−2

Γ(d− 1)2d
d
2 e−1 , (B.5)

where r is the rank of SO(d). Since we know that jmax(Q) is an increasing function of Q
and g(d)

j is increasing with j, the large Q behavior is controlled by large j behavior of g(d)
j .

At this point, we can use (B.5) and find:

Q '
jmax∑
j=1/2

jd−2

Γ(d− 1)2d
d
2 e−1 '

jmax

jd−1
max

Γ(d)2d
d
2 e−1. (B.6)

This can be solved in the leading order to obtain:

jmax(Q) =
[
Γ(d)21−d d2 eQ

]1/(d−1)
. (B.7)

This leads to:

∆Q =
jmax∑
j

ε
(d)
j g

(d)
j '

Q→∞

jmax(Q)∑
j

jd−1

Γ(d− 1)2d
d
2 e−1

 = jmax(Q)d
dΓ(d− 1)2d

d
2 e−1 . (B.8)

Substituting back the value of jmax(Q) using (B.7) in the above equation, we find the
result (6.17) for the leading order term in ∆Q in a general number of spacetime dimension.

C Contact terms in energy-momentum correlators

In the paper we have studied some general constraints on the spectrum of the theory in
the situation that the boost symmetry is spontaneously broken. This essentially boiled
down to studying the commutators of the conformal charges with the energy-momentum
operator. For a conformal Killing vector ξµ,

∂µξν + ∂νξµ = 2
d
ηµν∂ · ξ , (C.1)

we can define a corresponding conserved conformal charge Qξ =
∫
dd−1x ξµTµ0, where the

integral is over a space-like slice.
The general transformation rule of the Energy-Momentum tensor (assuming d ≥ 3) is

[Qξ, Tρσ] = ξλ∂λTρσ + ∂ξµ

∂xρ
Tµσ + ∂ξν

∂xσ
Tνρ + d− 2

d
∂ · ξTρσ . (C.2)

The above equation is equivalent to assigning some operator contact terms in the products
Tµµ (x)Tρσ(x′) and ∂µTµν(x)Tρσ(x′). Indeed, since ∂ν(ξµTµν) = ξµ∂νTµν + 1

d∂ · ξT
µ
µ (where
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we used the equation satisfied by conformal Killing vectors (C.1)), using the Stokes theorem
and the fact that Qξ is invariant under small deformations we can compute [Qξ, Tρσ] from
the contact terms in the products Tµµ (x)Tρσ(x′) and ∂µTµν(x)Tρσ(x′).

A very important fact is that the contact terms in the products Tµµ (x)Tρσ(x′) and
∂µTµν(x)Tρσ(x′) are not fixed uniquely by the commutators [Qξ, Tρσ]. To understand why
this is so, note that we can add contact terms

Tµν(x)Tρσ(x′)
∼ Aδd(x− x′) (ηµνTρσ + ηρσTµν) +Bδd(x− x′) (ηµρTνσ + ηµσTνρ + ηνρTµσ + ηνσTµρ)

(C.3)
with two arbitrary coefficients A,B. While these contact terms clearly modify the contact
terms in the products Tµµ (x)Tρσ(x′) and ∂µTµν(x)Tρσ(x′), they do not modify the commu-
tators [Qξ, Tρσ]. The latter statement is true as can be verified by a direct computation
or by observing that [Qξ, Tρσ] is a separated-points observable and hence it can only be
sensitive to the contact terms that truly originate from separated points physics.

Nevertheless the contact terms in the products Tµµ (x)Tρσ(x′) and ∂µTµν(x)Tρσ(x′) can
be completely fixed once the Energy-Momentum tensor correlators are precisely defined.

A local QFT can be coupled to a space-time metric g and hence we can define the
generating functional of connected correlators W [g]. The functional W [g] is not entirely
determined by the underlying theory. It suffers from an ambiguity by local terms, for
instance, in 3+1 dimensions we may add

∫
d4x
√
gR2 to W [g]. (R is the Ricci scalar.)

We can also add higher powers of R suppressed by a cutoff if we are dealing with an
effective theory. For reasons that will become clear shortly, such ambiguities should be
called ultra-local. These ambiguities will not affect our discussion below or the coefficients
A,B in (C.3). The Energy-Momentum correlators can be extracted, by definition, via
functional derivatives of W [g]:

〈Tµ1ν1(x1) · · ·Tµnνn(xn)〉 = (−2)n√
g(x1) · · ·

√
g(xn)

δ

δgµ1ν1(x1) · · ·
δ

δgµnνn(xn)W . (C.4)

Equivalently, the Energy-Momentum correlators can be worked out from the expansion of
the generating functional around some given background metric g as follows. We define

g′ρσ = gρσ + δgρσ .

The first few terms in the expansion are

W [g′] = W [g]− 1
2

∫
ddx

√
g(x)δgµν〈Tµν〉+ 1

8

∫
ddx

∫
ddy

√
g(x)

√
g(y)δgµνδgρσ〈TµνTρσ〉

− 1
8 · 3!

∫
ddx

∫
ddy

∫
ddz

√
g(x)

√
g(y)

√
g(z)δgµνδgρσδgφχ〈TµνTρσTφχ〉+ . . . . (C.5)

The functional derivative is defined in the obvious way

δ

δgµν(x)g
αβ(y) = 1

2
(
δαµδ

β
ν + δαν δ

β
µ

)
δd(x− y) . (C.6)
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The definition (C.4) is not unique, however, it has the advantage that Bose symmetry
is manifestly obeyed both at separated and coincident points. The definition (C.4) is
standard in the literature. See for instance [61, 62] and references therein.

We now see why scheme ambiguities such as
∫
d4x
√
gR2 do not matter for the coef-

ficients A,B in (C.3). Indeed, scheme ambiguities lead to c-number contact terms in TT
and not operator ones. Sometimes operator contact terms are referred to as semi-local
while c-number contact terms are referred to as ultra-local. (Operator contact terms are
referred to as semi-local since in the presence of additional operators there would be delta
functions over some positions but not all positions.)

To understand the consequences of diffeomorphism invariance we start with some met-
ric and perform a change of variables

ds2 = gµν(x)dxµdxν = ∂xµ

∂x′ρ
∂xν

∂x′σ
gµν(x)dx′ρdx′σ

As usual now we can view the new metric as a function of x′,

g′ρσ(x′) = ∂xµ

∂x′ρ
∂xν

∂x′σ
gµν(x(x′)) .

In the absence of gravitational anomalies (which we will assume throughout for simplicity)
the metrics g, g′ give rise to the same W [g] = W [g′]. The invariance of the effective action
under diffeomorphisms implies a differential equation∫

ddx (∇ρησ +∇σηρ) δ

δgρσ(x)W = 0 (C.7)

that is valid for any vector field η. (Note that there is no √g in this integral because the
functional derivative of W behaves as a density.) Equation (C.7) is of course equivalent to
the conservation equation ∇ρ〈Tρσ〉 = 0. Next we must vary this equation

δ

∫
ddx (∇ρησ +∇σηρ) δ

δgρσ(x)W = 0 .

A somewhat tedious computation of the variation above at the end of which we set
the metric to be flat again, reduces to the precise prescription of contact terms in the
product ∂µTµν(x)Tρσ(x′):

∂µTµν(x)Tρσ(x′)
=−δd(x−x′)∂νTρσ(x′)+∂xν δd(x−x′)Tρσ(x′)+∂xρ δd(x−x′)Tνσ(x′)+∂xσδd(x−x′)Tνρ(x′) .

(C.8)
While the expression above does not appear manifestly Bose invariant, it actually is.
Namely, if we act with another derivative on (∂x′)σ there is a symmetry under interchanging
x↔ x′ and ρ↔ ν.

With similar logic, in conformal field theories (which obey Weyl invariance upon cou-
pling to a background metric), one can find the contact term in the product Tµµ (x)Tρσ(x′):

Tµµ (x)Tρσ(x′) = 2δd(x− x′)Tρσ(x′) . (C.9)
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The statements (C.8), (C.9) contain more information than the commutators and hence
can be used as additional restrictions on correlation functions, including in the situation
that boost invariance is spontaneously broken. These additional restrictions are however
less useful since they are tied to the definition (C.4) more than to actual separated-points
physics.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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