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1 Introduction

A significant subject in String Theory is the integrability in the AdS/CFT correspon-
dence [1–3] (For a comprehensive review, see [4]). Although there are a lot of research
directions, we are interested in the sigma-model classical integrability here. In the typical
case of AdS/CFT, the string-theory side is basically described by a 2D non-linear sigma
model (NLSM)1 with target space AdS5×S5 together with the Virasoro constraints af-
ter fixing 2D diffeomorphism. Then the classical integrability is ensured by the fact that
AdS5×S5 is described as a symmetric coset which exhibits the Z2-grading.

Many integrable backgrounds are known apart from AdS spaces and spheres. Some
of the examples are γ-deformations of S5 [5, 6], gravity duals of non-commutative gauge
theory [7, 8] and Schrödinger spacetimes [9–11]. Such integrable backgrounds may be
constructed by performing Yang-Baxter deformations [12, 13] of AdS5×S5 [14–16]. There
are other integrable-deformation methods such as bi-Yang-Baxter deformations [13, 17] and
λ-deformations [18–21]. It would be worth noting that 2D integrable NLSMs and integrable
deformations of them can be described in a unified way based on a 4D Chern-Simons (CS)
theory [22, 23] (For related progress, see [24–34]).

On the other hand, there are a lot of non-integrable backgrounds such as AdS black
holes [35] and AdS solitons [36–38]. The T 1,1 background [39], whose metric is given by

ds2 = 1
6

2∑
r=1

(
dθ2
r + sin2 θr dφ

2
r

)
+ 1

9
(
dψ + cos θ1 dφ1 + cos θ2 dφ2

)
, (1.1)

is also one of the non-integrable examples [40–42]. For the coset construction of T 1,1 and its
Yang-Baxter deformation, see [43, 44]. The AdS5×T 1,1 geometry is well studied because it
is a gravity dual of N = 1 superconformal field theory (SCFT) [45]. In relation to SCFT,
possible generalizations or deformations of this geometry have intensively been studied.

1We will concentrate on the bosonic part only here.
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Recently, Arutyunov, Bassi and Lacroix (ABL) [46] have found a family of integrable
deformed T 1,1 NLSMs.2 We refer to the NLSMs with the integrable deformed T 1,1 as the
ABL model for brevity. In this paper, we will derive the ABL model from a 4D CS theory.
We start from a certain meromorphic one-form with four double poles and six simple zeros.
Then by taking an appropriate boundary condition, we can reproduce the classical action
of 2D NLSM with four parameters (up to the overall factor). This is nothing but the ABL
model. Then we explicitly derive the sigma-model background with target-space metric
and anti-symmetric two-form. Finally, we present two simple cases 1) an anisotropic T 1,1

model and 2) a G/H λ-model. The latter one can be seen as a one-parameter deformation
of the Guadagnini-Martellini-Mintchev (GMM) model [52].

This paper is organized as follows. Section 2 is a short review of a derivation of 2D
NLSMs from a 4D CS theory. This part is basically based on the seminal work [23]. Then
in section 3, we derive the ABL model and the sigma-model background is explicitly com-
puted. In addition, two simple examples are presented. Section 4 is devoted to conclusion
and discussion. Appendix A explains a scaling limit of the ABL model which leads to the
GMM model by following [46].

2 2D NLSM from 4D CS theory

In this section, we give a derivation of 2D NLSMs from a 4D CS theory by following [22, 23].
Let G be a Lie group with the Lie algebra g, and gC denotes the complexification of

g. We now consider a 4-dimensional spaceM×CP 1, whereM and CP 1 are parametrized
by coordinates (τ, σ) and (z, z̄), respectively. A 4D CS action is defined as [22],3

S[A] = i

4π

∫
M×CP 1

ω ∧ CS(A) , (2.1)

where A is a gC-valued one-form and CS(A) is the CS three-form defined as

CS(A) ≡
〈
A, dA+ 2

3A ∧A
〉
. (2.2)

〈·, ·〉 is a non-degenerate adjoint-invariant bilinear form gC × gC → C. Then ω is a mero-
morphic one-form defined as

ω ≡ ϕ(z)dz (2.3)

and ϕ is a meromorphic function on CP 1. This function is found to be a twist function
characterizing the Poisson structure of the underlying integrable field theory [49]. The pole
and zero structure of ϕ will be important in the following discussion. We denote the sets
of poles and zeros by p and z, respectively.

2The discussion in [46] is based on an affine Gaudin model [47–49] and covers more general cases. This
family of T 1,1 models is a special case of it. For the off-critical value of the B-field, classical chaos appears
for some initial conditions [50, 51].

3For the notation and convention here, see [24].
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Note that an extra gauge symmetry

A 7→ A+ χdz (2.4)

can alway gauge away the z-component of A like

A = Aσ dσ +Aτ dτ +Az̄ dz̄ . (2.5)

By taking a variation of the action (2.1), we obtain the bulk equation of motion

ω ∧ F (A) = 0 , F (A) ≡ dA+A ∧A (2.6)

and the boundary equation of motion

dω ∧ 〈A, δA〉 = 0 . (2.7)

The boundary conditions satisfying (2.7) play an important role to describe integrable
deformations [22, 23]. Note that the boundary equation of motion (2.7) does not vanish
only onM× p ⊂M× CP 1, because the relation

dω = ∂z̄ϕ(z) dz̄ ∧ dz (2.8)

indicates that only the pole of ϕ can contribute as a distribution. This can be seen by
rewriting the equation (2.7) to

∑
x∈p

∑
p≥0

(resx ξpxω) εij 1
p!∂

p
ξx
〈Ai, δAj〉

∣∣
M×{x} = 0 , (2.9)

where εij is the antisymmetric tensor. Here the local holomorphic coordinates ξx are
defined as ξx ≡ z − x for x ∈ p\{∞} and ξ∞ ≡ 1/z if p includes the point at infinity. The
expression (2.9) manifestly shows that the boundary equation of motion has the support
only onM× p.

In terms of the components, the bulk equation of motion (2.6) reads

∂σAτ − ∂τAσ + [Aσ, Aτ ] = 0 , (2.10)
ω (∂z̄Aσ − ∂σAz̄ + [Az̄, Aσ]) = 0 , (2.11)
ω (∂z̄Aτ − ∂τAz̄ + [Az̄, Aτ ]) = 0 . (2.12)

The factor ω is kept since ∂z̄Aσ and ∂z̄Aτ are in general distributions on CP 1 supported
by z.

Lax form. By performing a formal gauge transformation

A = −dĝĝ−1 + ĝLĝ−1 (2.13)

with a smooth function ĝ :M× CP 1 → GC, the z̄-components of L can be taken to zero:

Lz̄ = 0 . (2.14)

– 3 –
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Hence the one-form L takes the form

L ≡ Lσdσ + Lτdτ . (2.15)

The one-form will be specified as a Lax pair for 2D theory later, and so we refer to L as
the Lax form.

The bulk equations of motion (2.6) in terms of the Lax form L are expressed as

∂τLσ − ∂σLτ + [Lτ ,Lσ] = 0 , (2.16)
ω ∧ ∂z̄L = 0 . (2.17)

These equations mean that L is a meromorphic one-form with poles at the zeros of ω,
namely z can be regarded as the set of poles of L.

Reality condition. To ensure the reality of the 4D action (2.1) and the resulting ac-
tion (2.22), we suppose some condition for the form of ω and the configuration of A [23].

For a complex coordinate z, an involution µt : CP 1 → CP 1 is defined by complex
conjugation z 7→ z̄. Let τ : gC → gC be an anti-linear involution which satisfies

〈B,C〉 = 〈τB, τC〉 , ∀B,C ∈ gC . (2.18)

Then a real Lie subalgebra g of gC is given as the set of the fixed points under τ . The
associated operation to the Lie group G is denoted by τ̃ : GC → GC.

One can see that the action (2.1) is real if ω and A satisfy

ω = µ∗tω , (2.19)
τA = µ∗tA . (2.20)

Recalling the relation (2.13), the condition

τ̃ ĝ = µ∗t ĝ , τL = µ∗tL , (2.21)

leads to (2.20).

From 4D to 2D via the archipelago conditions. The 4D action (2.1) can be reduced
to a 2D action with the WZ term when ĝ satisfies the archipelago condition [23]. By
performing an integral over CP 1, we obtain

S
[
{gx}x∈p

]
= 1

2
∑
x∈p

∫
M

〈
resx(ϕL), g−1

x dgx
〉
− 1

2
∑
x∈p

(resx ω)
∫
M×[0,Rx]

IWZ [gx] . (2.22)

Here IWZ[u] is the Wess-Zumino (WZ) three-form defined as

IWZ[u] ≡ 1
3〈u

−1du, u−1du ∧ u−1du〉 , (2.23)

where Rx is the radius of the open disk on CP 1.
The action (2.22) is invariant under a gauge transformation

gx 7→ gxh , L 7→ h−1Lh+ h−1dh , (2.24)

with a local function h :M→ G. One can seen this as the residual gauge symmetry after
taking the gauge (2.14).

– 4 –
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3 The ABL model from 4D CS theory

In this section, we shall consider 2D NLSMs with a family of deformed T 1,1 manifolds,
which have been presented by Arutyunov-Bassi-Lacroix [46]. We will refer to them as the
ABL model for brevity as explained in Introduction.

Here, let us reproduce the ABL model from 4D CS theory. In the ABL model, the 2D
surfaceM is embedded into the Lie group G×G. By defining a subgroup H ⊂ G as fixed
points of an involutive automorphism, this model exhibits a gauge Hdiag-symmetry, where
Hdiag = {(h, h) ∈ G ×G |h ∈ H} rather than Gdiag = {(g, g) ∈ G ×G | g ∈ G}. Then the
target space is reduced to a coset (G×G)/Hdiag.

Twist function. Let us start with the following meromorphic one-form,

ω = ϕABL(z) dz = 2K
z(z2 − ζ2

+)(z2 − ζ2
−)∏2

i=1(z2 − z2
i )2 dz , (3.1)

where ϕABL(z) is a twist function with ζ± ∈ CP 1 and z1, z2 ∈ R. This ω has the four
double poles and the six simple zeros

p = {±z1,±z2} , z = {0,±ζ+ ,±ζ−,∞} . (3.2)

The twist function in (3.1) corresponds to the case with N = 2 and T = 2 in (3.14) in [46].

Boundary condition. In specifying a 2D integrable model associated with ω, we need
to choose a solution to the boundary equations of motion,

εαβ〈〈(Aα, ∂ξpAα), δ(Aβ , ∂ξpAβ)〉〉p = 0 , p ∈ p . (3.3)

Here we used the formula (2.9) with (3.1) and the double bracket is defined as

〈〈(x, y), (x′, y′)〉〉p ≡ (resp ω)〈x, x′〉+ (resp ξpω)
(
〈x, y′〉+ 〈x′, y

〉
)

= bp〈x, x′〉+ cp
(
〈x, y′〉+ 〈x′, y〉

)
, (3.4)

where the constants bp and cp (p ∈ p) are given by

b±z1 =
K((ζ2

+ + ζ2
−)(z2

1 + z2
2)− 2(z2

1z
2
2 + ζ2

+ζ
2
−))

(z2
1 − z2

2)3 = −b±z2 ≡ −k ,

c±z1 = ±
K(z2

1 − ζ2
+)(z2

1 − ζ2
−)

2z1(z2
1 − z2

2)2 , c±z2 = ±
K(z2

2 − ζ2
+)(z2

2 − ζ2
−)

2z2(z2
1 − z2

2)2 .

(3.5)

The boundary equations of motion (3.3) take the same form as in the PCM with the WZ
term case [23].

To derive the ABL model, we take the following solution:

(A|z=±z1 , ∂zA|z=±z1) ∈ {0}n gab , (A|z=±z2 , ∂zA|z=±z2) ∈ {0}n gab , (3.6)

where gab is an abelian copy of g. The boundary condition (3.6) is nothing but

A|z=±z1,2 = 0 . (3.7)

– 5 –
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3.1 Lax form

Before deriving the sigma model action, we shall derive the Lax pair by employing the
boundary condition (3.6).

We take ĝ at each pole of the twist function (3.1) as

ĝ(τ, σ, z)|z=z1 = g1(τ, σ) , ĝ(τ, σ, z)|z=−z1 = g̃1(τ, σ) ,
ĝ(τ, σ, z)|z=z2 = g2(τ, σ) , ĝ(τ, σ, z)|z=−z2 = g̃2(τ, σ) ,

(3.8)

where gk , g̃k ∈ G (k = 1, 2). Note that gk take values in G (not GC) due to the reality
condition (2.21). The associated left-invariant currents are defined as

j1 ≡ g−1
1 dg1 , j̃1 ≡ g̃−1

1 dg̃1 , j2 ≡ g−1
2 dg2 , j̃2 ≡ g̃−1

2 dg̃2 , (3.9)

and the relations between the gauge field A and the Lax form L at each pole are written as

A|z=z1 = −dg1g
−1
1 + Adg1L|z=z1 , A|z=−z1 = −dg̃1g̃

−1
1 + Adg̃1L|z=−z1 ,

A|z=z2 = −dg2g
−1
2 + Adg2L|z=z2 , A|z=−z2 = −dg̃2g̃

−1
2 + Adg̃2L|z=−z2 ,

(3.10)

where the adjoint action Adg : gC → gC is defined as Adg L = gLg−1.
Recall that L should have poles at the zeros of ω as mentioned just below (2.17).

Hence, taking account of the configuration of the zeros (3.1), we suppose an ansatz for the
Lax form as

L =

U [1]
+ + z U

[2]
+ +

U
[3]
+

z − ζ+
+

U
[4]
+

z + ζ+

 dσ+ +

U [1]
− + z−1 U

[2]
− +

U
[3]
−

z − ζ−
+

U
[4]
−

z + ζ−

 dσ− ,
(3.11)

where U [k]
± (k = 1, . . . , 4) are undetermined smooth functions of τ and σ, and the light-cone

coordinates are defined as

σ± ≡ 1
2 (τ ± σ) . (3.12)

In order to obtain the explicit expression of the Lax pair under the boundary condi-
tion (3.6), we rewrite the relations in (3.10) as

j1,± = U
[1]
± + z±1

1 U
[2]
± +

U
[3]
±

z1 − ζ±
+

U
[4]
±

z1 + ζ±
, (3.13)

j̃1,± = U
[1]
± − z±1

1 U
[2]
± −

U
[3]
±

z1 + ζ±
−

U
[4]
±

z1 − ζ±
, (3.14)

j2,± = U
[1]
± + z±1

2 U
[2]
± +

U
[3]
±

z2 − ζ±
+

U
[4]
±

z2 + ζ±
, (3.15)

j̃2,± = U
[1]
± − z±1

2 U
[2]
± −

U
[3]
±

z2 + ζ±
−

U
[4]
±

z2 − ζ±
. (3.16)

– 6 –



J
H
E
P
0
9
(
2
0
2
1
)
0
3
7

By solving these equations with respect to U [k]
± (k = 1, 2, 3, 4), we obtain

U
[1]
± =

(j1,± + j̃1,±)
(
z2

1 − ζ2
±
)
− (j2,± + j̃2,±)

(
z2

2 − ζ2
±
)

2
(
z2

1 − z2
2
) , (3.17)

U
[2]
± =

z∓1
1 (j1,± − j̃1,±)

(
z±2

1 − ζ
±2
±

)
− z∓1

2 (j2,± − j̃2,±)
(
z±2

2 − ζ
±2
±

)
2
(
z±2

1 − z
±2
2

) , (3.18)

U
[3]
± = −

(z1z2)∓1 (z2
1 − ζ2

±
) (
z2

2 − ζ2
±
)

4ζ±
(
z2

1 − z2
2
) [

z±1
2

(
j1,±

(
z±1

1 + ζ±1
±

)
+ j̃1,±

(
z±1

1 − ζ
±1
±

))
− z±1

1

(
j2,±

(
z±1

2 + ζ±1
±

)
+ j̃2,±

(
z±1

2 − ζ
±1
±

))]
, (3.19)

U
[4]
± =

(
z2

1 − ζ2
±
) (
z2

2 − ζ2
±
)

4ζ±
(
z2

1 − z2
2
) [

z∓1
1

(
j1,±

(
z±1

1 − ζ
±1
±

)
+ j̃1,±

(
z±1

1 + ζ±1
±

))
− z∓1

2

(
j2,±

(
z±1

2 − ζ
±1
±

)
+ j̃2,±

(
z±1

2 + ζ±1
±

))]
. (3.20)

Then the Lax pair can be rewritten as

L±(z) = η
(0)
1,±(z)J (0)

1,± + η
(1)
1,±(z)J (1)

1,± + η
(0)
2,±(z)J (0)

2,± + η
(1)
2,±(z)J (1)

2,± , (3.21)

where J (k)
s,± (k = 0, 1, s = 1, 2) are defined as

J
(0)
1,± = j1,± + j̃1,±

2 , J
(1)
1,± = j1,± − j̃1,±

2 ,

J
(0)
2,± = j2,± + j̃2,±

2 , J
(1)
2,± = j2,± − j̃2,±

2 ,

(3.22)

and the coefficients η(k)
s,± (k = 0, 1, s = 1, 2) are

η
(0)
±,1(z) =

(z2 − z2
2)(z2

1 − ζ2
±)

(z2 − ζ2
±)(z2

1 − z2
2)
, η

(1)
±,1(z) =

(
z

z1

)±1
η

(0)
±,1(z) ,

η
(0)
±,2(z) = −

(z2 − z2
1)(z2

2 − ζ2
±)

(z2 − ζ2
±)(z2

1 − z2
2)
, η

(1)
±,2(z) =

(
z

z2

)±1
η

(0)
±,2(z) .

(3.23)

3.2 2D action

Next, let us derive the 2D action under the boundary condition (3.6).
For this purpose, we evaluate the residues of ϕABL L at z = ±z1 ,±z2. By using the

expression (3.21) of the Lax form, we obtain

resz=±z1(ϕABLL) =
(
−J (0)

1,+ρ
(0)
12 + J

(0)
2,+ρ

(0)
21 ± J

(1)
1,+c

(1)
1,+ ± J

(1)
2,+ρ

(1)
21

)
dσ+

+
(
J

(0)
1,−ρ

(0)
21 − J

(0)
2,−ρ

(0)
12 ∓ J

(1)
1,−c

(1)
1,− ∓ J

(1)
2,−ρ

(1)
12

)
dσ− ,

resz=±z2(ϕABLL) =
(
J

(0)
1,+ρ

(0)
12 − J

(0)
2,+ρ

(0)
21 ± J

(1)
1,+ρ

(1)
12 ∓ J

(1)
2,+c

(1)
2,+

)
dσ+

+
(
−J (0)

1,−ρ
(0)
21 + J

(0)
2,−ρ

(0)
12 ∓ J

(1)
1,−ρ

(1)
21 ± J

(1)
2,−c

(1)
2,−

)
dσ− ,

(3.24)
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where the constants ρ(k)
rs (r, s = 1, 2 , k = 0, 1) are defined as

ρ
(0)
11 = ρ

(0)
22 = K

2
ζ2
− − ζ2

+
(z2

1 − z2
2)2 , ρ

(0)
12 = K

(z2
1 − ζ2

+)(z2
2 − ζ2

−)
(z2

1 − z2
2)3 ,

ρ
(0)
21 = −K

(z2
1 − ζ2

−)(z2
2 − ζ2

+)
(z2

1 − z2
2)3 ,

(3.25)

and

ρ
(1)
11 = K

2
(z4

1 − 2ζ2
+z

2
1 + ζ2

−ζ
2
+)

z2
1(z2

1 − z2
2)2 , ρ

(1)
12 = K

z2(z2
1 − ζ2

+)(z2
2 − ζ2

−)
z1(z2

1 − z2
2)3 ,

ρ
(1)
21 = −K

z1(z2
1 − ζ2

−)(z2
2 − ζ2

+)
z2(z2

1 − z2
2)3 , ρ

(1)
22 = K

2
(z4

2 − 2ζ2
+z

2
2 + ζ2

−ζ
2
+)

z2
2(z2

1 − z2
2)2 .

(3.26)

Furthermore, the constants c(1)
s,± (s = 1, 2) are

c
(1)
1,− =

K
(
z2

1 − ζ2
−
)

2z2
1
(
z2

1 − z2
2
)3 (ζ2

+

(
z2

2 − 3z2
1

)
+ z2

1

(
z2

1 + z2
2

))
,

c
(1)
1,+ =

K
(
z2

1 − ζ2
+
)

2z2
1
(
z2

1 − z2
2
)3 (z2

1

(
z2

1 − 3z2
2

)
+ ζ2
−

(
z2

1 + z2
2

))
,

c
(1)
2,− =

K
(
z2

2 − ζ2
−
)

2z2
2
(
z2

1 − z2
2
)3 (ζ2

+

(
z2

1 − 3z2
2

)
+ z2

2

(
z2

1 + z2
2

))
,

c
(1)
2,+ =

K
(
z2

2 − ζ2
+
)

2z2
2
(
z2

1 − z2
2
)3 (z2

2

(
z2

2 − 3z2
1

)
+ ζ2
−

(
z2

1 + z2
2

))
.

(3.27)

Note that the above constants satisfy the relations

ρ
(0)
12 + ρ

(0)
21

2 = −ρ(0)
11 = −ρ(0)

22 ,
c

(1)
1,+ + c

(1)
1,−

2 = ρ
(1)
11 ,

c
(1)
2,+ + c

(1)
2,−

2 = −ρ(1)
22 . (3.28)

By using (3.28), we obtain

〈resz=z1(ϕABL L), j1〉+
〈
resz=−z1(ϕABL L), j̃1

〉
= 2

1∑
k=0

(
2ρ(k)

11

〈
J

(k)
1,+, J

(k)
1,−

〉
+ ρ

(k)
12

〈
J

(k)
1,+, J

(k)
2,−

〉
+ ρ

(k)
21

〈
J

(k)
2,+, J

(k)
1,−

〉)
dσ+ ∧ dσ− , (3.29)

〈resz=z2(ϕABL L), j2〉+
〈
resz=−z2(ϕABL L), j̃2

〉
= 2

1∑
k=0

(
2ρ(k)

22

〈
J

(k)
2,+, J

(k)
2,−

〉
+ ρ

(k)
12

〈
J

(k)
1,+, J

(k)
2,−

〉
+ ρ

(k)
21

〈
J

(k)
2,+, J

(k)
1,−

〉)
dσ+ ∧ dσ− . (3.30)

The residues of ω at each pole are

−resz=±z1ω = resz=±z2ω = k = K
2z2

1z
2
2 + 2ζ2

−ζ
2
+ − (z2

1 + z2
2)(ζ2

− + ζ2
+)

(z2
1 − z2

2)3 . (3.31)

– 8 –



J
H
E
P
0
9
(
2
0
2
1
)
0
3
7

Then, the 2D action (2.22) is rewritten as

S[gk] =
∫
M

2∑
r,s=1

(
ρ(0)
rs

〈
J

(0)
r,+, J

(0)
s,−

〉
+ ρ(1)

rs

〈
J

(1)
r,+, J

(1)
s,−

〉)
2 dσ+ ∧ dσ−

+ k

2

∫
M×[0,Rr]

(
IWZ [g1] + IWZ [g̃1]

)
− k

2

∫
M×[0,Rs]

(
IWZ [g2] + IWZ [g̃2]

)
. (3.32)

Here we would like to impose a relation between js and j̃s (s = 1, 2). Note that the
resulting action (3.32) is invariant under the exchange of j1 and j̃1 (j2 and j̃2) . This
invariance is respected if js, j̃s are related as j̃1 = f1(j1), j̃2 = f2(j2) with involutive
automorphisms fs : g→ g (s = 1, 2). The maps fs thus satisfy

fs([x, y]) = [fs(x), fs(y)] , fs ◦ fs(x) = x , x ∈ g . (3.33)

It is significant to argue a consistent condition for fs (s = 1, 2). The introduction of them
was apparently independent but it seems likely that we should impose that f1 = f2 as a
possible consistent condition. This condition is compatible with the preceding work [46]
based on the dihedral affine Gaudin model [47–49]. There might be a possibility to remove
this condition but we will not try to exhaust here. In the following, we will work under
this condition.

By utilizing the involutions fs, the vector space g can be decomposed as g = h ⊕ m,
i.e., the generators

h = 〈Jâ〉 , m = 〈Pǎ〉 , â = 1, . . . , dim h , ǎ = 1, . . . , dimm , (3.34)

are introduced so that

fs(Pǎ) = −Pǎ , fs(Jâ) = Jâ . (3.35)

The vector subspace h is also a subalgebra of g, and thus there exists the associated Lie
subgroup H. Then the projection operators into h,m are defined as

P(0) : g→ h , P(1) : g→ m , (3.36)

and then j̃s and J (k)
s are expressed as

j̃s = fs(js) = fs
(
P(0)(js) + P(1)(js)

)
= P(0)(js)− P(1)(js) , (3.37)

J (0)
s = P (0)

s (js) , J (1)
s = P (1)

s (js) . (3.38)

By using the commutation relation of the Lie algebra for the symmetric coset and the
orthogonality of m and h with respect to the bilinear form 〈·, ·〉, we can see

〈P(0)(g−1
s dgs), P(0)(g−1

s dgs) ∧ P(1)(g−1
s dgs)〉 = 0 , (3.39)

〈P(1)(g−1
s dgs), P(1)(g−1

s dgs) ∧ P(1)(g−1
s dgs)〉 = 0 . (3.40)

Hence, we obtain

IWZ [g1] = IWZ [g̃1] , IWZ [g2] = IWZ [g̃2] . (3.41)
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Then, by using the expressions of j̃s in (3.37), the 2D action can be further rewritten as

S[g1, g2] =
2∑

r,s=1

∫
d2σ

(
ρ(0)
rs

〈
J

(0)
r,+, J

(0)
s,−

〉
+ ρ(1)

rs

〈
J

(1)
r,+, J

(1)
s,−

〉)
+ kIWZ[g1]− kIWZ[g2] .

(3.42)

The Lax form (3.21) becomes

L±(z) =
2∑
r=1

1∑
k=0

η
(k)
±,r(z) J (k)

r,± . (3.43)

The expressions (3.42) and (3.43) are the same as the classical action and the associated
Lax pair given in [46].

Gauge invariance. The action (3.42) exhibits a local Hdiag-symmetry, which is regarded
as a gauge symmetry. The diagonal subgroup Hdiag = {(h, h) ∈ G × G |h ∈ H} acts on
G×G as

g1 7→ g1h , g2 7→ g2h , (3.44)

where h is a smooth mapM→ H. Noting that the Wess-Zumino terms vary according to
the Polyakov-Wigmann formula [53], we can see that the action (3.42) is invariant if the
following conditions hold:

∑1,2
r,s ρ

(0)
rs = 0 ,

ρ
(0)
11 + ρ

(0)
12 − k

2 = ρ
(0)
21 + ρ

(0)
22 + k

2 = 0 ,

ρ
(0)
11 + ρ

(0)
21 + k

2 = ρ
(0)
12 + ρ

(0)
22 − k

2 = 0 ,

(3.45)

⇔ ρ
(0)
11 = ρ

(0)
22 , ρ

(0)
12 − ρ

(0)
21 = k ,

ρ
(0)
12 + ρ

(0)
21

2 + ρ
(0)
11 = 0 . (3.46)

These relations are indeed satisfied by the parametrization (3.26) and (3.31). The gauge
invariance under (3.44) is nothing but the unbroken part of the 2D gauge invariance un-
der (2.24). Although the original gauge group is Gdiag = {(g, g) ∈ G × G | g ∈ G}, the
grading condition (3.37) explicitly break Gdiag/Hdiag and only Hdiag survives.

3.3 Examples

The resulting action (3.42) and Lax form (3.43) are a bit abstract and complicated. Hence,
it is instructive to see a simple case with G = SU(2) and H = U(1). Then it is easy to
read off the background metric and B-field.

The generators of su(2) are represented by {iσa/2 , i = 1, 2, 3}, where σa are the Pauli
matrices. The bilinear form 〈·, ·〉 becomes the trace operation. In this case, the involutive
automorphisms fs (s = 1, 2) are defined as

fs

(
iσ1
2

)
= − iσ1

2 , fs

(
iσ2
2

)
= − iσ2

2 , fs

(
iσ3
2

)
= iσ3

2 . (3.47)
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We choose the parameters {φ1, θ1, ψ1, φ2, θ2, ψ2} = {xµ} (µ = 1, . . . , 6) to express (g1, g2) ∈
SU(2)× SU(2) as

g1 = exp
(
iσ3
2 φ1

)
exp

(
iσ2
2 θ1

)
exp

(
iσ3
2 ψ1

)
,

g2 = exp
(
− iσ3

2 φ2

)
exp

(
− iσ2

2 θ2

)
exp

(
− iσ3

2 ψ2

)
.

(3.48)

Then the gauge transformation (3.44) corresponds to the shift

(ψ1, ψ2) 7→ (ψ1 + α,ψ2 − α) . (3.49)

The ABL background. By substituting the parametrization (3.48), the resulting action
is given by

S[xµ] = −1
4

∫
d2σ (Gµν +Bµν) ∂−xµ∂+x

ν , (3.50)

where Gµν and Bµν are the background metric and B-field, respectively. By using the
relations (3.46), Gµν and Bµν are expressed as, respectively,

1
2Gµνdx

µdxν

=
2∑
r=1

[
ρ(1)
rr

(
dθ2
r+sin2 θrdφ

2
r

)
+ρ(0)

rr (cosθrdφr+dψr)2
]

−
(
ρ

(0)
12 +ρ(0)

21

)(
cosθ1dφ1+dψ1

)(
cosθ2dφ2+dψ2

)
−
(
ρ

(1)
12 +ρ(1)

21

)[
−sinθ1 sinθ2 cos(ψ1+ψ2)dφ1dφ2+cos(ψ1+ψ2)dθ1dθ2

+sinθ1 sin(ψ1+ψ2)dφ1dθ2+sinθ2 sin(ψ1+ψ2)dθ1dφ2
]

=
2∑
r=1

ρ(1)
rr

(
dθ2
r+sin2 θrdφ

2
r

)
+ρ(0)

11
(
dψ1+dψ2+cosθ1dφ1+cosθ2dφ2

)2
−
(
ρ

(1)
12 +ρ(1)

21

)[
−sinθ1 sinθ2 cos(ψ1+ψ2)dφ1dφ2+cos(ψ1+ψ2)dθ1dθ2

+sinθ1 sin(ψ1+ψ2)dφ1dθ2+sinθ2 sin(ψ1+ψ2)dθ1dφ2
]
,

(3.51)

B= 1
2Bµνdx

µ∧dxν

=kcosθ1 dφ1∧dψ1+kcosθ2 dψ2∧dφ2

+
(
ρ

(0)
12 −ρ

(0)
21

)(
cosθ1dφ1+dψ1

)
∧
(
cosθ2dφ2+dψ2

)
+
(
ρ

(1)
12 −ρ

(1)
21

)[
−sinθ1 sinθ2 cos(ψ1+ψ2)dφ1∧dφ2+cos(ψ1+ψ2)dθ1∧dθ2

+sinθ1 sin(ψ1+ψ2)dφ1∧dθ2+sinθ2 sin(ψ1+ψ2)dθ1∧dφ2
]

=k
(
dψ1+dψ2+cosθ1dφ1

)
∧
(
dψ1+dψ2+cosθ2dφ2

)
+
(
ρ

(1)
12 −ρ

(1)
21

)[
−sinθ1 sinθ2 cos(ψ1+ψ2)dφ1∧dφ2+cos(ψ1+ψ2)dθ1∧dθ2 (3.52)

+sinθ1 sin(ψ1+ψ2)dφ1∧dθ2+sinθ2 sin(ψ1+ψ2)dθ1∧dφ2
]
.
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By taking a gauge choice ψ2 = 0, these are further simplified as

1
2Gµνdx

µdxν =
2∑
r=1

ρ(1)
rr

(
dθ2
r + sin2 θrdφ

2
r

)
+ ρ

(0)
11 (dψ + cos θ1dφ1 + cos θ2dφ2)2

−
(
ρ

(1)
12 + ρ

(1)
21

) [
− sin θ1 sin θ2 cosψ dφ1dφ2 + cosψ dθ1dθ2

+ sin θ1 sinψ dφ1dθ2 + sin θ2 sinψ dθ1dφ2
]
,

(3.53)

B = 1
2Bµνdx

µ ∧ dxν

= k(dψ + cos θ1dφ1) ∧ (dψ + cos θ2dφ2)

+
(
ρ

(1)
12 − ρ

(1)
21

) [
− sin θ1 sin θ2 cosψ dφ1 ∧ dφ2 + cosψ dθ1 ∧ dθ2

+ sin θ1 sinψ dφ1 ∧ dθ2 + sin θ2 sinψ dθ1 ∧ dφ2
]
,

(3.54)

where we have renamed ψ1 as ψ.
In the following, we will consider two specific cases by taking some parametrization.

Example 1) Anisotropic T 1,1 model. For simplicity, let us first impose the following
condition:

ρ
(1)
12 + ρ

(1)
21 = 0 . (3.55)

This condition (3.55) is solved in terms of z1, z2 as

ζ2
+ = z2

1z
2
2

z2
1 + z2

2 − ζ2
−

⇔ ζ2
− =

−z2
1z

2
2 + z2

1ζ
2
+ + z2

2ζ
2
+

ζ2
+

. (3.56)

By introducing a new quantity r defined as

r ≡ ρ(1)
22 /ρ

(1)
11 =

−z2
2 + ζ2

−
z2

1 − ζ2
−

, (3.57)

the coefficients are expressed as

ρ
(1)
11 = K

2
1

z2
1 + rz2

2
,

ρ
(1)
22 = rρ

(1)
11 ,

ρ
(0)
11 = r

1 + r
ρ

(1)
11 ,

ρ
(1)
12 − ρ

(1)
21 = − 4rz1z2

(1 + r)(z2
1 − z2

2)
ρ

(1)
11 ,

k = − 2r(z2
1 + z2

2)
(1 + r)(z2

1 − z2
2)
ρ

(1)
11 .

(3.58)
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Then the metric, B-field and the twist function are given by, respectively,

1
2Gµνdx

µdxν = ρ
(1)
11

[(
dθ2

1 + sin2 θ1dφ
2
1
)

+ r
(
dθ2

2 + sin2 θ2dφ
2
2
)

+ r

1 + r

(
dψ + cos θ1dφ1 + cos θ2dφ2

)2]
,

(3.59)

1
2Bµνdx

µ ∧ dxν = ρ
(1)
11

[
− 2r(z2

1 + z2
2)

(1 + r)(z2
1 − z2

2)
(dψ + cos θ1dφ1) ∧ (dψ + cos θ2dφ2)

±− 4rz1z2
(1 + r)(z2

1 − z2
2)(

− sin θ1 sin θ2 cosψ dφ1 ∧ dφ2 + cosψ dθ1 ∧ dθ2

+ sin θ1 sinψ dφ1 ∧ dθ2 + sin θ2 sinψ dθ1 ∧ dφ2
)]
,

(3.60)

ϕABL = 2K
z
(
rz2

1 + z2
2 − (1 + r)z2)((1 + r)z2

1z
2
2 − (z2

1 + rz2
2)z2)

(1 + r)(z2
1 + rz2

2)(z2 − z2
1)2(z2 − z2

2)2 . (3.61)

There remain three independent parameters ρ(1)
11 , r and z1/z2 now. Note here that the

original T 1,1 case is not included in this example because the vanishing B-field means that
r = 0. The GMM model is also not included. The parameter r may be rather seen as an
anisotropic parameter. In the isotropic case with r = 1, the coefficient of the U(1)-fiber is
fixed as 1/2 and the B-field remains complicated.

Finally, the Lax pair is given by

L+ = 1
(1+r)z2

1z
2
2−(z2

1 +rz2
2)z2×

×
[
z2

1(z2
2−z2)

(
J

(0)
1,++ z

z1
J

(1)
1,+

)
+rz2

2(z2
1−z2)

(
J

(0)
2,++ z

z2
J

(1)
2,+

)]
,

L−= 1
rz2

1 +z2
2−(1+r)z2

[
(z2

2−z2)
(
J

(0)
1,−+ z1

z
J

(1)
1,−

)
+r(z2

1−z2)
(
J

(0)
2,−+ z2

z
J

(1)
2,−

)]
.

(3.62)

Example 2) G/H λ-model. As the second example, let us suppose the following con-
ditions:

z2
1 = ζ2

+ , z2
2 = ζ2

− . (3.63)

Then the parameters in (3.25) and (3.26) are expressed as

k = K
ζ2
− − ζ2

+
(z2

1 − z2
2)2 = −K 1

z2
1 − z2

2
,

ρ
(0)
11 = ρ

(0)
22 = ρ

(1)
11 = ρ

(1)
22 = k

2 ,

ρ
(0)
21 = −k , ρ

(1)
21 = z1

z2
ρ

(0)
21 ,

ρ
(0)
12 = ρ

(1)
12 = 0 .

(3.64)
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This parametrization corresponds to the limit where the poles and zeros of the twist func-
tion (3.1) coincide. In this case, the resulting action and Lax pair are given by, respectively,

S[g1, g2] =
{ 2∑
r=1

∫
d2σ

k

2 tr(Jr,+, Jr,−) + kIWZ [g1]− kIWZ [g2]

− k

∫
d2σ tr

(
J

(0)
2,+J

(0)
1,−

)
− z1
z2
k

∫
d2σ tr

(
J

(1)
2,+J

(1)
1,−

)}
, (3.65)

L =
(
J

(0)
2,+ + zJ

(1)
2,+

)
dσ+ +

(
J

(0)
1,− + z1

z2z
J

(1)
1,−

)
dσ− . (3.66)

This is nothing but the Lagrangian and Lax pair of a G × G/H sigma model related to
the tripled G/H λ-model formulation4 [54, 55] . Notably, in the limit z1/z2 → 0, the
action (3.65) reduces to that of the GMM model [52]. Another family including the GMM
model can be obtained by considering a scaling limit described in appendix A. See (A.6).

The flatness condition for this Lax pair is obtained as

0 = ∂+L− − ∂−L+ + [L+,L−]

= ∂+J
(0)
1,− − ∂−J

(0)
2,+ +

[
J

(0)
2,+, J

(0)
1,−

]
+ z1
z2

[
J

(1)
2,+, J

(1)
1,−

]
+ z1
z2z

(
∂+J

(1)
1,− +

[
J

(0)
2,+, J

(1)
1,−

])
+ z

(
−∂−J (1)

2,+ +
[
J

(1)
2,+, J

(0)
1,−

])
, (3.67)

and this is equivalent to the equations of motion of the model. Note that as we take
the limit z1/z2 → 0, the term with 1/z is lost, and thus we cannot reproduce all of the
equations of motions. A possible way to care this point would be to prepare another Lax
pair by scaling the spectral parameter as z′ = zz2/z1 [46].

The background metric and B-field for the model (3.65) are given by, respectively,

Gµνdx
µdxν = k

2∑
r=1

(
dθ2
r + sin2 θrdφ

2
r

)
+ k(dψ + cos θ1dφ1 + cos θ2dφ2)2

+ 2z1
z2

k
[
− sin θ1 sin θ2 cosψ dφ1dφ2 + cosψ dθ1dθ2

+ sin θ1 sinψ dφ1dθ2 + sin θ2 sinψ dθ1dφ2
]
,

(3.68)

B = k(dψ + cos θ1dφ1) ∧ (dψ + cos θ2dφ2)

+ z1
z2
k
[
− sin θ1 sin θ2 cosψ dφ1 ∧ dφ2 + cosψ dθ1 ∧ dθ2

+ sin θ1 sinψ dφ1 ∧ dθ2 + sin θ2 sinψ dθ1 ∧ dφ2
]
.

(3.69)

Notably, this result coincides with a parafermionic deformation of the GMM background
presented in [56]. When z1/z2 = 0, the target space of the original GMM model is
reproduced.

4The deformation parameter z1/z2 corresponds to λ̃ in [54].
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4 Conclusion and discussion

In this paper, we have derived the ABL model from a 4D CS theory with a meromor-
phic one-form (3.1) with four double poles and six simple zeros by specifying a boundary
condition. Then we have explicitly derived the sigma-model background with metric and
anti-symmetric two-form (i.e., the ABL background). As its special cases, we have pre-
sented an anisotropic T 1,1 model and a G/H λ-model. The latter can be regarded as a
one-parameter integrable deformation of the GMM model.

It would be very interesting to consider the ABL background in the context of
AdS/CFT. The first task is to find out a possible string-theory embedding of the ABL
background. It is nice to try to identify the remaining components of type IIB supergrav-
ity for the ABL background. A possibility is to consider a variant of the ABL model for
G = SL(2) and H = U(1). This is a natural extension of the work [57], which considered
the GMM model for G = SU(2) × SL(2) and H = U(1) × U(1) so as to be a supergravity
background. Once the ABL background has been embedded into string theory, it would
be nice to explore the dual gauge theory.

Another future direction is to consider a relation between the present result and 6D
holomorphic CS theory [58, 59]. Along this line, it may be possible to derive a new family
of 4D integrable systems. We would like to report some results in the near future in
another place.

We hope that the ABL background we have derived would open up a new arena in the
study of the integrability in AdS/CFT.
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A A scaling limit of the ABL model

It is helpful to give a brief explanation about a scaling limit of the ABL model considered
in [46].

Let us first redefine the parameters of the model as

z1 = 1 , z2 = 1
α
, K = λ2

2
α2 , ζ1 = λ

λ2α
, ζ2 = λ1

λ
, (A.1)
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and then take the α → 0 limit while keeping λ1 , λ2 and λ fixed. In this limit, the twist
function (3.1) becomes

ϕ1(z) = 2z(λ2
1 − λ2z2)

(z2 − 1)2 . (A.2)

The poles and zeros of ϕ1(z) are listed as

p = {±1,∞} , z =
{

0,±λ1
λ

}
. (A.3)

Here, z = ±1 are double poles and z = ∞ is a simple pole, z = 0 ,±λ1
λ are simple zeros.

The Lax pair (3.43) reduces to

L+(z) = 1
λ2z2 − λ2

1

(
(λ2 − λ2

1)
(
J

(0)
1,+ + z J

(1)
1,+

)
+ λ2(z2 − 1) J (0)

2,+

)
, (A.4)

L−(z) = J
(0)
1,− + z−1 J

(1)
1,− , (A.5)

and the resulting action is given by

S[g1, g2] =
2∑
r=1

∫
d2σ

(
λ2

2
〈
J

(0)
r,+, J

(0)
r,−

〉
+ λ2

r

2
〈
J

(1)
r,+, J

(1)
r,−

〉)
− λ2

〈
J

(0)
2,+, J

(0)
1,−

〉
+ λ2 IWZ[g1]− λ2 IWZ[g2] . (A.6)

Note here that the flatness condition of the Lax pair (A.5) does not describe all the equa-
tions of motion of the action (A.6). The specific choice λ2 = λ2

1 = λ2
2 leads to the GMM

model [52, 57]. This choice corresponds to the limit z1/z2 → 0 in (3.65).
The other equations of motion come from the flatness condition of another Lax pair

which can be obtained by taking a different scaling limit. To see this, let us redefine z as
z/α, and then take the same limit (A.1). Then, the twist function (3.1) becomes

ϕ2(z) = −2(λ2 − λ2
2z

2)
z(z2 − 1)2 . (A.7)

The poles and zeros of ϕ2(z) are listed as

p = {0,±1} , z =
{
∞,± λ

λ2

}
, (A.8)

where z = ±1 are double poles and z = 0 is a simple pole, z = ∞ ,±λ1
λ are simple zeros.

The Lax pair (3.43) becomes

L̃+(z) = J
(0)
2,+ + z J

(1)
2,+ , (A.9)

L̃−(z) = 1
λ2

2z
2 − λ2

(
λ2(z2 − 1) J (0)

−,1 + (λ2
2 − λ2)

(
z2J

(0)
−,2 + z J

(1)
−,2

))
. (A.10)

We can check that the flatness condition of (A.10) leads to the remaining equations of
motion of the action (A.6).
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