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1 Introduction and conclusions

In recent years, there has been a growing interest in non-Lorentzian geometries that arise in
string theory. One such corner of string theory that enjoys nonrelativistic symmetries was
put forward more than twenty years ago, under the name nonrelativistic string theory [1–3].
This theory is a unitary and ultraviolet (UV) complete quantum gravity theory with a
Galilean-invariant string spectrum. Via T-duality [2–5], it gives a microscopic definition
of string theory in the discrete light cone quantization (DLCQ), which is relevant for
Matrix string theory [6–8]. When we consider open strings in nonrelativistic string theory,
Galilean-invariant Yang-Mills theories also emerge [9].

In flat spacetime, nonrelativistic string theory is defined by a two-dimensional relativis-
tic quantum field theory (QFT) with a nonrelativistic global symmetry group. In addition
to regular worldsheet fields that parametrize the target space coordinates, there are also a
pair of one-form worldsheet fields in the formalism of nonrelativistic string theory, namely,
a (1,0)-form λ and a (0,1)-form λ̄ . These one-form fields are related to dual coordinates
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that are conjugate to string windings, and they are responsible for the consistency and
salient features in nonrelativistic string theory. For example, λ and λ̄ play the role of a La-
grange multiplier in the string sigma model and select a two-dimensional longitudinal sector
in spacetime. This longitudinal sector is defined by a pair of worldsheet fields that form
the spacetime lightcone coordinates. The remaining transverse spacetime directions are in
form the same as in relativistic string theory. The longitudinal and transverse sectors are
related to each other by stringy Galilei boosts, under which λ and λ̄ transform nontrivially.

Interactions in the two-dimensional worldsheet QFT are induced by inserting vertex
operators, from which the spacetime geometry emerges as background fields. If the only
requirement is worldsheet conformal symmetry, then a marginal and classically conformal
operator λλ̄ will be included in the spectrum. This λλ̄ operator deforms the sigma model
towards the relativistic string sigma models [2, 10, 11]. In the literature, depending on the
purposes of the studies, there are two different perspectives on how this deformation term
should be treated, which we detail below:

• Nonrelativistic strings from a limit. The first perspective seeks a nonsingular limit
of spacetime (super)gravity that exhibits nonrelativistic behaviors [12–16]. From
the worldsheet point of view, this requires studying the renormalization group (RG)
flow of the worldsheet QFT with all possible vertex operators. In the presence of
the λλ̄ operator, the worldsheet QFT describes relativistic strings in background
fields, where the spacetime geometry is Lorentzian and parametrized in a frame of
choice with a two-dimensional foliation. This foliation structure does not persist
unless additional geometric constraints are imposed. The beta-functionals of the
background fields are reparametrizations of the standard ones for the metric, B-field,
and dilaton couplings in relativistic string sigma models. Requiring Weyl invariance
at the quantum level sets these reparametrized beta-functionals to zero, and leads to
the spacetime (super)gravity equations of motion. At the conformal fixed point, one
can fine tune the coupling (that we refer to as U) associated with the λλ̄ operator
to zero such that a nonrelativistic solution to the relativistic spacetime equations of
motion is obtained. The resulting geometry is non-Lorentzian and non-Riemannian,
equipped with a two-dimensional foliation restricted by certain geometric constraints
that arise from spacetime dynamics. This geometry is referred to as (torsional) string
Newton-Cartan geometry in the literature.1

Even though we tuned the physical value of U to zero at the conformal fixed point,
the beta-functional of U still gives rise a nontrivial equation of motion. Together
with other spacetime equations of motion, the vanishing beta-functional of U gives
rise to torsional constraints that restrict the foliation structure. Since the quantum
corrections to the λλ̄ operator are generated by torsions that distort the foliation
in string Newton-Cartan geometry, we refer to the λλ̄ operator as the torsional de-
formation. In this picture, the torsional constraints are determined by solving the
spacetime equations of motion order by order in the Regge slope α′. Therefore, a

1 String Newton-Cartan geometry with the zero torsion was discussed in [4, 17, 18]. Generalizations to
the torsional case were later introduced in [15, 16, 19].
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λλ̄ counterterm has to be included in the worldsheet QFT in order to determine the
spacetime dynamics at each loop order. In this sense, the resulting nonrelativistic
corner at U = 0 should be treated as a limit of relativistic string theory.

In the limiting procedure, it is possible that, at low orders in α′, the foliation con-
straints determined by the spacetime dynamics are not strong enough for the beta-
functionals to vanish at higher-loop orders. If this happens, there will be nonrelativis-
tic solutions that (i) solve the spacetime equations of motion determined by dynamics
at low orders in α′, (ii) but cannot be extended to higher orders unless a small U is
included. This nonzero U will deform the theory towards the relativistic regime.2

• Nonrelativistic string theory from first principles. In the other perspective, non-
relativistic string theory is defined by a renormalizable QFT without the torsional
deformation [4, 11, 18, 20]. This requirement is stronger than fine tuning the physical
value of U to be zero: the local counterterm associated with the λλ̄ operator is also
excluded now. This is achieved by evoking a symmetry principle that forbids the
torsional deformation from being generated at the quantum level. The target space
geometry is determined by the required worldsheet symmetries, which generate the
spacetime gauge transformations. In this way, nonrelativistic string theory is defined
by a renormalizable worldsheet QFT that satisfies certain nonrelativistic target-space
symmetries acting on worldsheet fields. This is in analogy with that relativistic string
theory is defined by a two-dimensional QFT invariant under the target-space (gauged)
Poincaré symmetry acting on worldsheet fields. If such a symmetry principle exists,
this nonrelativistic corner will define a full-fledged string theory on the same footing
as relativistic string theory, at least when the spacetime effective field theories (EFTs)
are concerned.3 In this way, nonrelativistic string theory can be studied from first
principles, independent of its embedding in any larger framework.

In [4, 17], a symmetry principle that defines nonrelativistic string sigma models is
proposed, where the transverse translations and string Galilei boosts commute into
a noncentral extension called ZA , with A the index of the longitudinal sector in
spacetime. This noncentral extension is realized in the string sigma model as a
symmetry transformation that imposes a zero-torsion condition on the longitudinal
Vielbein field, before any quantum calculation is performed. This eliminates any
torsion in the spacetime foliation structure. It has been shown in [11, 20] that the zero-
torsion condition leads to a nonrenormalization theorem: the torsional deformation
λλ̄ is not generated at all loops. Therefore, the symmetries realized in [4, 17] define
a notion of nonrelativistic string theory by a renormalizable worldsheet QFT.

It is recently suggested in [16] that the zero-torsion condition imposed by the ZA sym-
metry in the worldsheet QFT might be too strong for supersymmetrizations. More-
over, it is shown in [9, 14, 20] that a weaker version of the torsional constraints already

2 See more below (3.33) in section 3.2.
3 Statements in these notes for background geometries are only applicable to the zero-winding sector.

When windings are included, the situation is more complex and beyond these notes.
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suffice to protect the λλ̄ operator from being generated by quantum corrections at
the lowest loop order. These suggest that there might exist a modified symmetry
principle that imposes a weaker torsional constraint in nonrelativistic string sigma
models. Indeed, as we will detail in section 3.3, it is possible to consistently preserve
only half of the ZA transformation in the symmetry algebra. We will show that im-
posing the symmetry generated by Z0 +Z1 on the sigma model leads to the torsional
constraints that exactly match the ones found in [16] by requiring consistency with
supersymmetry. We will provide a Feynman diagram argument to confirm that the
halved ZA symmetry prohibits the λλ̄ operator from being generated by quantum
corrections at all loops. From the first perspective, the torsional constraints from
the halved ZA symmetry solve the vanishing beta-functional associated with the λλ̄
operator at U = 0 , with all orders in α′ included. Therefore, the two perspectives
converge in the nonperturbative regime.

In these notes, we discuss different symmetry principles under which nonrelativistic
string theories are defined from first principles, focusing on aspects of emergent spacetime
geometries. We will also frequently refer to the first perspective that treats nonrelativistic
strings as a limit of relativistic string theory; this will provide useful intuition for under-
standing the underlying symmetries.

These notes take the following structure. We start with a review of nonrelativistic
string theory in section 2, where we first focus on the free theory and then turn on vertex
operators that induce string interactions. Along the way, we develop a T-dual interpreta-
tion for the one-form fields in section 2.1; using this, we study in section 2.2 a formalism
in which operator product expansions can be evaluated in a compact way. In section 2.3,
we identify the vertex operator that gives rise to the torsional deformation that drives the
theory towards relativistic string theory. In section 3, we consider sigma models in curved
spacetime. In section 3.1, we study the torsional deformation in string sigma models with
arbitrary background fields. In section 3.2, we derive the beta-functionals that arise from
fine-tuning the torsional deformation to zero in the relativistic beta-functionals, using the
results given in [16]. Finally, in section 3.3, we discuss different spacetime gauge symme-
tries that act on worldsheet fields and apply them to define a renormalizable worldsheet
QFT, using which nonrelativistic string theories can be studied from first principles. In
addition, we give a list of appendices on relevant topics, including T-duality transforma-
tions in appendix A and the Hamiltonian formalism in appendix B. In appendix C, we use
a Feynman-diagram argument to show that the λλ̄ operator is not generated at all loops
in presence of the halved ZA symmetry. In appendix D, we summarize different symmetry
algebras that are used throughout the notes.

Note added. In the final stage of this work, we heard from Leo Bidussi, Troels Harmark,
Jelle Hartong, Niels A. Obers, and Gerben Oling of their study of classical sigma models
in a string Newton-Cartan geometry without geometric constraints [21].
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2 Nonrelativistic strings in flat spacetime

We start with collecting ingredients in nonrelativistic string theory that will be essential
in later discussions. Nonrelativistic string theory is defined on a two-dimensional Riemann
surface Σ that acts as the worldsheet, parametrized by σα = (τ, σ) and equipped with a
worldsheet metric hαβ . The imaginary time τ is related to the real time t via τ = it . The
worldsheet Σ is mapped to a foliated spacetime manifoldM by the worldsheet coordinates
Xµ(σα) = (XA, XA′) , with A = 0 , 1 and A′ = 2, · · ·, d−1 . We refer to the two-dimensional
foliation with coordinates XA as the longitudinal sector and the leaves with coordinates
XA′ as the transverse sector. Nonrelativistic string theory in flat spacetime is defined by
the following free action in imaginary time [4]:

S0 = 1
4πα′

∫
Σ
d2σ
√
h
(
DXA′ D̄XA′ + λ D̄X + λ̄DX

)
, (2.1)

where α′ is the Regge slope. We defined X ≡ X0 +X1 and X ≡ X0−X1 . We also defined
D ≡ h−1/2 εαβ

(
eα
τ − i eασ

)
∂β and D̄ ≡ h−1/2 εαβ

(
eα
τ + i eα

σ
)
∂β . Here, eαa, a = 1, 2 is

the worldsheet Zweibein field that satisfies hαβ = eα
aeβ

a . Moreover, ετσ = −εστ = 1 . We
will focus on the closed string sector in these notes and assume that the worldsheet Σ is
boundaryless. For the theory to have a nonempty spectrum, the X1-direction has to be
compactified over a circle of radius R [2]. We assume that all the other directions remain
uncompactified.

In conformal gauge, the free action (2.1) becomes [2]

S0 = 1
4πα′

∫
Σ
d2σ

(
∂XA′ ∂̄XA′ + λ ∂̄X + λ̄ ∂X

)
, (2.2)

with ∂ ≡ i ∂τ + ∂σ and ∂̄ ≡ −i ∂τ + ∂σ . The worldsheet (1, 0)-form λ and (0, 1)-form λ̄

play the role of a Lagrangian multiplier and impose the conditions

∂̄X = ∂X = 0 , (2.3)

which are solved by X = X(τ + iσ) and X = X(τ − iσ) . These constraints are responsible
for salient features of nonrelativistic string theory, including a string spectrum that enjoys
a Galilean-invariant dispersion relation and intriguing localization theorems in the moduli
space [2]. Another direct consequence of these one-form fields is that the free theory (2.2)
is invariant under an infinite number of spacetime isometries [22]. We parametrize these
spacetime isometries by (anti-)holomorphic functions f(X) , f̄(X) , gA′(X) , and ḡA′(X) .
Supplemented with ΛA′B′ that parametrizes spatial rotations, the symmetry transforma-
tions acting on the worldsheet fields are

δXA′ = gA
′+ gA

′− ΛA′B′XB′ , (2.4a)

δX = f , δλ = −λ df

dX
− 2 dgA′

dX
∂XA′ , (2.4b)

δX = f̄ , δλ̄ = −λ̄ df̄

dX
− 2 dḡA′

dX
∂̄XA′ . (2.4c)
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Note that there is no boost symmetry that transforms XA into XA′ , which implies that
the full Lorentzian boost symmetry is absent. These transformations form the extended
Galilean symmetry algebra that contains two copies of the Witt algebra [22].

2.1 One-form fields and dual coordinates

A spacetime interpretation of the one-form worldsheet fields λ and λ̄ are made manifest
by considering T-duality transformations in the longitudinal directions [4]. We already
compactified X1 over a circle. We now further compactify X0 over a circle, which can be
made sense of if one first perform a Wick rotation for X0. The periodicity in the imagi-
nary target-space time direction receives the physical interpretation as an inverse temper-
ature. To perform the T-dual of (2.13) along both longitudinal directions, we consider the
parent action,

Sparent = 1
4πα′

∫
Σ
d2σ

[
∂XA′ ∂̄XA′ + λ

(
ū+ v̄

)
+ λ̄

(
u− v

)]
+ 1

2πα′
∫

Σ
d2σ

[
Y0
(
∂̄u− ∂ū

)
+ Y1

(
∂̄v − ∂v̄

)]
.

(2.5)

It is useful to introduce the following definitions:

γ ≡ u− v , γ ≡ ū+ v̄ ; ρ ≡ −u− v , ρ̄ ≡ ū− v̄ . (2.6)

In terms of the new variables in (2.6), (2.5) becomes

Sparent = 1
4πα′

∫
Σ
d2σ

[
∂XA′ ∂̄XA′ + λ γ̄ + λ̄ γ − Y

(
∂̄ρ+ ∂γ̄

)
− Y

(
∂ρ̄− ∂̄γ

)]
. (2.7)

Integrating out Y ≡ Y0 + Y1 and Y ≡ Y0 − Y1 in (2.7) imposes ∂̄ρ + ∂γ̄ = ∂ρ̄ − ∂̄γ = 0 ,
which can be solved locally by

γ = ∂X , γ̄ = ∂̄X ; ρ = −∂X , ρ̄ = ∂̄X . (2.8)

Plugging (2.8) into (2.7) recovers the original action (2.2). Instead, we now integrate out
the auxiliary fields γ and γ̄ in the parent action (2.7), which gives the dual action

Sdual = 1
4πα′

∫
Σ
d2σ

(
∂XA′ ∂̄XA′ + ρ ∂̄Y + ρ̄ ∂Y

)
, (2.9)

together with the relations,
λ = −∂Y , λ̄ = ∂̄Y . (2.10)

The Lagrange multipliers ρ and ρ̄ in (2.9) impose the conditions ∂̄Y = ∂Y = 0 . The dual
action (2.9) and also describes nonrelativistic string theory as the original action (2.2),
with the duality dictionary,

λ←→ ρ , λ̄←→ ρ̄ , X ←→ Y , X ←→ Y . (2.11)

The worldsheet fields YA represent spacetime coordinates that are dual to XA. This is
consistent with the action (A.4) in appendix A, where the duality transformation is pre-
formed in two steps, first along X1 and then X0 . There, a relation to the discrete light
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cone quantization (DLCQ) of relativistic string theory is made manifest [4]. The relations
in (2.10) imply that λ and λ̄ encode the information of the dual worldsheet fields conjugate
to string windings.

In the original theory described by (2.2), only X1 is compactified over a circle of
radius R . Motivated by the T-duality transformations, but in the case where X0 is not
compactified, we introduce the field redefinitions,

λ = −∂Y , Y = Y (τ + iσ) ; λ̄ = ∂̄Y , Y = Y (τ − iσ) . (2.12)

These field redefinitions are in form the same as (2.10). We already learned that Y and Y
are conjugate to string windings while X and X are conjugate to string momenta. See [5, 9]
for related discussions in nonrelativistic open string theory.

The auxiliary coordinates Y and Y are reminiscent of spacetime doublings in double
field theory [23], but only taking place in the longitudinal sector. Nevertheless, naïvely
plugging the field redefinitions (2.12) back into the action (2.2) does not lead to an equiv-
alent theory. This is because the redefinitions (2.12) involve time derivatives that would
induce in the path integral a Jacobian det(∂∂̄) , which contributes extra ghost terms in the
action. Such ghosts compensate extra degrees of freedom introduced by the field redefini-
tions. In the following, we will keep using (2.2) as the defining action for nonrelativistic
string theory, and we will always take the path integral to be defined with respect to λ

and λ̄ . The quantities Y and Y are only introduced as auxiliary coordinates when winding
modes are concerned.

The same interpretation of λ and λ̄ can be extended to curved spacetime. The simplest
way to incorporate the dual coordinates in the theory there is by performing a Hamiltonian
analysis. Further details are included in appendix B.

2.2 Closed string vertex operators

Interactions between strings are generated by turning on appropriate vertex operators.
In order to consider strings propagating in a curved background, which is essentially a
coherent state of strings, we need to classify first excited closed string vertex operators
that are (1, 1)-forms. Requiring that these vertex operators are BRST invariant derives
the linearized spacetime equations of motion that dictate the target space dynamics. Before
classifying the vertex operators, we first revisit the mode expansions [2, 10] and introduce
a set of worldsheet coordinates in which the operator product expansions (OPE) take a
compact form. This formalism will facilitate later analysis of the OPEs.

Mode expansions. We start with revisiting the mode expansions of different world-
sheet fields, including both Xµ and the dual coordinates YA . In radial quantization, we
express (2.2) in terms of z = eτ+i σ and z̄ = eτ−i σ, with

S0 = 1
4πα′

∫
C
d2z

(
2 ∂zXA′ ∂z̄X

A′ + λz ∂z̄X + λz̄ ∂zX
)
, (2.13)

where
λz ≡ −

iλ

z
= −2 ∂zY , λz̄ ≡

iλ̄

z̄
= 2 ∂z̄Y . (2.14)

– 7 –
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Since the X1 direction is compactified, we have X1(σ + 2π) = X1(σ) + 2πRw , w ∈ Z .
The winding number w is defined operatorially by

ŵ = 1
2πR

∫ 2π

0
dσ ∂σX

1 = 1
4πR

∮
C

(
dz ∂zX − dz̄ ∂z̄X

)
, (2.15)

where the contour C is traversed counterclockwise along the string. Taking into account
that X = X(z) and X = X(z̄) , we find

X(z) = x+ iα′q ln z + i
√

2α′
∑
m 6=0

αm
mzm

, (2.16a)

X(z̄) = x− iα′q̄ ln z̄ + i
√

2α′
∑
m 6=0

α̃m
m z̄m

. (2.16b)

Since only the X1 direction is compactified, we have q = −q̄ = −wR/α′. In general, q and
−q̄ would take different values if X0 were (Wick-rotated and) compactified. The conjugate
momenta for XA in (2.13) are defined operatorially via

p̂0 = 1
4πα′

∫ 2π

0
dσ
(
λ− λ̄

)
, p̂1 = 1

4πα′
∫ 2π

0
dσ
(
λ+ λ̄

)
. (2.17)

Recall that Y = Y (z) and Y = Y (z̄) are (anti-)holomorphic. Therefore,

Y (z) = y + iα′p ln z + i
√

2α′
∑
m 6=0

βm
mzm

, (2.18a)

Y (z̄) = ȳ − iα′p̄ ln z̄ + i
√

2α′
∑
m 6=0

β̃m
m z̄m

, (2.18b)

where p = 1
2
(
p0 + p1

)
and p̄ = 1

2
(
p0 − p1

)
are respectively eigenvalues of the operators

p̂ = − 1
2πα′

∮
C
dz ∂zY, p̂ = − 1

2πα′
∮
C
dz̄ ∂z̄Y . (2.19)

In the compactified X1 direction, the momentum eigenstates have p1 = n/R , n ∈ Z .

Operator product expansions. The OPEs between XA and YA are determined by the
OPEs between λz , λz̄ , and XA,

:λz(z1)X(z2) :∼ −2α′
z12

, :λz̄(z̄1)X(z̄2) :∼ −2α′
z̄12

, (2.20)

where zab ≡ z1 − z2 and z̄ab ≡ z̄1 − z̄2 . Using (2.10), we find the induced OPEs,

:Y (z1)X(z2) :∼ α′ ln z12 , :Y (z̄1)X(z̄2) :∼ −α′ ln z̄12 . (2.21)

It follows that, under a choice of branches,

[Y (z1) , X(z2)] = iπα′, [Y (z̄1) , X(z̄2)] = iπα′. (2.22)

– 8 –
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Note that YA and XA do not commute. Moreover, we have

:XA′(z1 , z̄1)XB′(z2 , z̄2) :∼ −1
2 α
′ δA

′B′ ln |z12|2 . (2.23)

It is useful to write XA′ = ϕA
′(z) + ϕ̄A

′(z̄) and define

ϕ0(z) ≡ 1
2(X + Y ) , ϕ0(z̄) ≡ 1

2(X − Y ) , (2.24a)

ϕ1(z) ≡ 1
2(X − Y ) , ϕ1(z̄) ≡ 1

2(X + Y ) . (2.24b)

In terms of ϕµ and ϕ̄µ, the OPEs in (2.21) and (2.23) become

:ϕµ(z1)ϕν(z2) :∼ −1
2 α
′ ηµν ln z12 , :ϕµ(z̄1)ϕν(z̄2) :∼ −1

2 α
′ ηµν ln z̄12 . (2.25)

This formalism allows us to evaluate different OPEs in a compact way by directly borrowing
the relativistic results. This would simplify the calculation in [11] and may also be useful
for calculating amplitudes in matrix string theory [24].

Vertex operators. Finally, we study different closed string vertex operators, first the
tachyon states and then the first excited states that give rise to background fields. We will
also study the quantum consistency conditions required by BRST invariance.

• Closed string tachyon states. It is useful to group YA , XA , and XA′ into a single
multiplet, XI = (YA , XA, XA′)ᵀ . In terms of this notation, the tachyonic operator is

V = eiπ n ŵ :eiKI XI: , (2.26)

where KI ≡
(
qA, pA , k

A′
)
, q0 ≡ q + q̄ = 0 , and q1 ≡ q − q̄ = −2wR/α′ . For sim-

plicity, we have set the coupling constant in (2.26) to one. This tachyonic operator
corresponds to a common eigenstate for the operators (2.15) and (2.19). The phase
factor eiπwn̂ is a cocycle factor that is required such that the vertex operators com-
mute [25]. Since we will focus on the case where w 6= 0 but n = 0 , the cocycle factor
is set to 1.
In terms of the change of variables in (2.24), we find

V =:exp
(
iKµ ϕ

µ + iKµ ϕ
µ) : , (2.27)

where Kµ =
(
p+ q , p− q , kA′

)
and Kµ =

(
p̄− q̄ , p̄+ q̄ , kA′

)
. The BRST operator is

Q = 1
2πi

∮ (
dz J − dz̄ J̄

)
, (2.28)

where J and J̄ are the BRST currents,

J = c Tm+ :b c ∂zc : +3
2 ∂

2
zc , Tm = −α′−1 ηµν :∂zϕµ ∂zϕν : , (2.29a)

J̄ = c̃ T̃m+ : b̃ c̃ ∂z̄ c̃ : +3
2 ∂

2
z̄ c̃ , T̃m = −α′−1 ηµν :∂z̄ϕµ ∂z̄ϕν : . (2.29b)

– 9 –
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Here, Tm and T̃m form the stress energy tensor. The Grassmannian fields (b, c) and
(b̃, c̃ ) are the bc ghosts. The BRST transformation of V is given by[

Q,V(z, z̄)
]

= ∂z
(
cV
)
+ ∂z̄

(
c̃V
)

+
(
E ∂zc+ Ẽ ∂z̄ c̃

)
V , (2.30)

where
E = 1

4 α
′K2 − 1 , Ẽ = 1

4 α
′K2 − 1 , (2.31)

and K2 ≡ ηµν KµKν and K2 ≡ ηµν K
µ
K
ν . BRST invariance requires that [Q,V] be

a total derivative, such that the integrated vertex operators remains unchanged. This
imposes E = Ẽ = 0 and leads to the dispersion relation and level-matching condition,

E = α′ k2 − 4
2wR , nw = 0 , (2.32)

where k2 ≡ kA′kA′ and E ≡ −p0 denotes the energy. For (2.32) to be well defined,
we require n = 0 and w 6= 0 , under which Kµ = Kµ = (p0

2 −
wR
α′ ,

p0
2 + wR

α′ , kA′) . This
manifests its T-dual to the DLCQ of string theory. See more in appendix A.

• First excited closed string states. The corresponding vertex operators are

V1 = gµνVµν , Vµν = :∂zϕµ ∂z̄ϕν V : . (2.33)

The coefficient gµν can be decomposed into a symmetric tensor sµν and an anti-
symmetric tensor aµν , with gµν = sµν + aµν . The BRST transformation of V1 is

[
Q,V1(z, z̄)

]
= ∂z

(
c V1 + iFµ ∂zc ∂z̄ϕµ V

)
+ Eµν ∂zcVµν

+ ∂z̄
(
c̃ V1 + i F̃µ ∂z̄ c̃ ∂zϕµ V

)
+ Ẽµν ∂z̄ c̃ Vµν ,

(2.34)

where

Fµ = −1
4 α
′Kρ gρµ , Eµν = 1

4 α
′(K2 gµν −KµK

ρ gρν
)
, (2.35a)

F̃µ = −1
4 α
′K

ρ
gµρ , Ẽµν = 1

4 α
′(K2

gµν −Kν K
ρ
gµρ
)
. (2.35b)

BRST invariance requires Eµν = Ẽµν = 0 , which are the linearized equations of
motion in Fourier space. Moreover, the vertex operator V1 gains a quantum correction
at order α′. Requiring that the vertex operator remains unchanged imposes the
gauge-fixing conditions Fµ = F̃µ = 0 . We thus find that the corresponding physical
states satisfy

Kρ gρµ = K
ρ
gµρ = 0 , E = α′k2

2wR , nw = 0 . (2.36)

For the dispersion relation to be well defined, we require w 6= 0 , which implies n = 0 .
In general, all components of (2.33) have to be included in the spectrum, such that
the vertex operators are closed under OPEs.
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2.3 Deformation towards relativistic string theory

In addition to the vertex operators that represent physical asymptotic states with nonzero
windings in the X1 direction, there is also a zero-winding sector that contains intermediate
states carrying instantaneous Newtonian-like interactions. These zero-winding states are of
measure zero in the asymptotic limit and cannot be put on-shell [2, 10]. Inserting the vertex
operators (2.33) with a zero winding number in the path integral leads to sigma models
in geometry and Kalb-Ramond background fields [11]. The dynamics of such background
fields define the EFTs in spacetime, which contain no propagating degrees of freedom.
In the sigma model, these background fields contribute quadratic terms that modify the
free action (2.13). For example, one may turn on the Lagrangian terms ∂zX ∂z̄X and
∂zX ∂z̄X . The difference between these two terms is 2 ∂zXA ∂z̄X

BεAB , which corresponds
to a constant B-field in nonrelativistic string theory. We defined ε01 = −ε10 = 1 . Therefore,
we only need to worry about whether adding the Lagrangian term ∂zX ∂z̄X to (2.13)
changes the nature of the theory. The deformed action is

S′0 = 1
4πα′

∫
C
d2z

(
∂αX

A′∂αXA′ + λz ∂z̄X + λz̄ ∂zX + η ∂zX ∂z̄X
)
, (2.37)

where ∂zX ∂z̄X can be removed by performing a field redefinition, λz → λz−η ∂zX . Hence,
S′0 in (2.37) is equivalent to (2.13) that defines nonrelativistic string theory.

There exists another deformation that does change the nature of the theory. Note that
the general vertex operator (2.33) contains a term in the zero-winding sector

− 1
4 (s00 − 2 s01 + s11) :∂zY ∂z̄Y exp

(
i pAX

A + i kA′X
A′) : , (2.38)

which contributes the marginal interacting term

Sλλ̄ = 1
8πα′

∫
C
d2z λz λz̄ U [X] (2.39)

to the sigma model. We already summed over all momentum states. We have replaced
∂αY

A with λz and λz̄ , with respect to which the path integral is defined. However, when
the coupling U [X] = U0 is constant, Sλλ̄ is a quadratic term and already modifies the free
theory in (2.13). The deformed free action is

Sdef. = 1
4πα′

∫
C
d2z

(
2 ∂zXA′ ∂z̄X

A′ + λz ∂z̄X + λz̄ ∂zX + 1
2 U0 λz λz̄

)
. (2.40)

The dispersion relation in the string spectrum now receives a U0 deformation [26],

E = α′

2wR

[
k2 + 2

α′
(
N + Ñ − 2

)
− U0

(
E2 − n2

R2

)]
, (2.41)

where we reintroduced a nonzero winding number. Here, N and Ñ denote the string
excitation numbers. In contrast to nonrelativistic string theory that arises at U0 = 0 ,
where all physical states carry a nonzero winding number, now, there are also asymptotic
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states with w = 0 . These zero-winding states enjoy a well-defined relativistic dispersion
relation (we require that U0 > 0 for stability),

U0E
2 − k2 = U0

n2

R2 + 2
α′
(
N + Ñ − 2

)
. (2.42)

In this sense, a nonzero U0 deforms the theory towards the relativistic regime.
In the free theory, one can always tune U0 to zero. However, the λλ̄ operator will be

generated via OPEs when interactions are turned on by inserting various vertex operators
on the worldsheet, unless additional symmetry principles are applied. For example, consider
V1 = sA′0 ∂zϕ

A′∂z̄ϕ̄
0 , which does not contain ∂zY ∂z̄Y ; however, the commutation relation

[Q,V1] in (2.34) generates −wR
8 kA′ sA′0 ∂zY ∂z̄Y . This quantum contribution that is linear

in sµν vanishes when w = 0 , but we will see later in section 3 that there are nonzero
quantum contributions of higher orders in the background field fluctuations even in the
zero-winding sector. Therefore, the λλ̄ operator needs to be included in the theory unless
additional symmetries are imposed. This implies that in general U0 6= 0 in (2.40), in which
case the one-form fields λ and λ̄ remain (anti-)holomorphic, while the conditions (2.3) are
deformed to be

∂z̄X = −1
2 U0 λz̄ , ∂zX = −1

2 U0 λz , (2.43)

and all the analysis performed earlier in this section will be have to be modified accordingly.
The deformed action (2.40) enjoys the global symmetries,

δXA = ΘA + Λ εAB XB + U0 ΛAA′ XA′, δλz = Λλz + 2 ΛA′ ∂zXA′, (2.44a)

δXA′ = ΘA′ + ΛA′AXA + ΛA′B′XB′, δλz̄ = −Λλz̄ + 2 Λ̄A′ ∂z̄XA′, (2.44b)

where the full spacetime Lorentz boost transformation arises. Here, ΛA′ ≡ Λ0
A′ + Λ1

A′

and Λ̄A′ ≡ Λ0
A′ − Λ1

A′ parametrize the boost transformations between the longitudi-
nal and transverse sectors, Λ parametrizes the longitudinal Lorentz transformation, ΛA′B′
parametrizes the transverse rotations, and ΘA and ΘA′ parametrize the longitudinal and
transverse translations, respectively. The underlying symmetry is given by the Poincaré
algebra, which can not be embedded in the infinite-dimensional algebra associated with
the transformations in (2.4), unless the contraction U0 = 0 is applied. The relevant com-
mutation relations between different generators are given in appendix D.1.1. It is also
interesting to note that the transformations of λ and λ̄ induce

δYA = Θ̃A + εA
B(ΛYB − ΛBA′XA′) , (2.45)

where a boost that transforms YA into XA′ (but not vice versa) emerges. Finally, integrat-
ing out λz and λz̄ in (2.40) leads to the equivalent action

Sdef. = 1
2πα′

∫
C
d2z

[
∂zX

A′ ∂z̄X
A′ + U−1

0 (ηAB − εAB) ∂zXA ∂z̄X
B
]
, (2.46)

which is manifestly relativistic string theory in a constant B-field.
As we have seen above, the λλ̄ term deforms nonrelativistic string theory towards rela-

tivistic string theory. If one wishes to define nonrelativistic string theory as a self-contained
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corner of relativistic string theory by a renormalizable worldsheet QFT, a symmetry argu-
ment is required to protect the sigma model from the λλ̄ deformation at both the classical
and quantum level. We will discuss this in detail in section 3, where we will restrict
ourselves to the zero-winding sector and consider interacting two-dimensional QFTs that
perturb around the free fixed point defined by (2.1). We will see that the λλ̄ term is gen-
erated by log-divergent quantum corrections that correspond to spacetime torsions that
twist the foliation structure in the target space [11, 14, 20]. We will therefore refer to such
a deformation proportional to λλ̄ as the torsional deformation.

3 Nonrelativistic strings in curved backgrounds

After reviewing how the torsional deformation λλ̄ deforms nonrelativistic string theory
towards relativistic string theory, we now consider strings in arbitrary geometry, B-field,
and dilaton backgrounds, focusing on the zero-winding sector. We will consider target space
gauge symmetries under which a renormalizable worldsheet QFT without the λλ̄ term is
defined. We start with sigma models in unconstrained backgrounds that incorporate the λλ̄
operator, associated with a functional coupling U = U [X] . These sigma models describe
relativistic string theory but in an unconventional parametrization, which is however useful
for accessing the corner of nonrelativistic strings at U = 0 . We then analyze the RG
properties in the limit U → 0 . This perspective rooted in relativistic string theory will
provide us with intuition for constructing the spacetime gauge symmetries for defining
nonrelativistic string theory from first principles.

3.1 String sigma models in general background fields

Turning on interactions in the free action (2.2) gives rise to background fields to which
nonrelativistic string theory is coupled. Allowing the most general marginal terms that
are compatible with the worldsheet diffeomorphisms and (classical) conformal symmetry
in the sigma model, we obtain

S = 1
4πα′

∫
Σ
d2σ
√
hDXµ D̄Xν(Sµν [X] +Aµν [X]

)
+ 1

4πα′
∫

Σ
d2σ
√
h
{
λ D̄Xµ τµ[X] + λ̄DXµ τ̄µ[X] + λ λ̄U [X] + α′R(2) Φ[X]

}
,

(3.1)

where Sµν is symmetric and Aµν is antisymmetric. We defined R(2) as the Ricci scalar
associated with the worldsheet metric hαβ . The action (3.1) describes the full relativistic
string theory but with an unconventional parametrization of background fields. We have
required the QFT to be local, which means that the background fields are functionals of
Xµ but not the dual coordinates YA (with its incarnation in curved spacetime).4 More
generally, nonlocal dependences on λ and λ̄ can also be introduced in the backgrounds, by
exponentiating the vertex operators in (2.33). This will lead us to generalized geometry
where the dual coordinates Y and Y become visible. We will briefly discuss the connection
to generalized metric in appendix B.

4 Note that YA are integrals of the local fields λ and λ̄ . In this sense, YA are nonlocal.
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Define τµ0 = 1
2
(
τµ + τ̄µ

)
and τµ1 = 1

2
(
τµ − τ̄µ

)
. The functional coupling τµA can be

thought of as a longitudinal Vielbein field. Under reparametrizations of Xµ , we have

Sµν [X̃] = ∂Xρ

∂X̃µ

∂Xσ

∂X̃ν
Sρσ[X] , τµ

A[X̃] = ∂Xρ

∂X̃µ
τρ
A[X] , (3.2a)

Aµν [X̃] = ∂Xρ

∂X̃µ

∂Xσ

∂X̃ν
Aρσ[X] , U [X̃] = U [X] , Φ[X̃] = Φ[X] . (3.2b)

The parametrization of the background fields in Sµν , Aµν , τµA , U , and Φ is redundant.
This is because λ and λ̄ are defined up to (finite) field redefinitions, which we parametrize
by C , C , Cµ = Cµ0 + Cµ1, and Cµ = Cµ0 − Cµ1,

λ→ C−1(λ−DXµ C̄µ
)
, λ̄→ C̄−1(λ̄− D̄Xµ Cµ

)
. (3.3a)

Simultaneously, we take the redefinitions of the background fields as follows:

Sµν → Sµν −
(
CµA τνB+ CνA τµB + CµA CνB U

)
ηAB , τµ → C

(
τµ + Cµ U

)
, (3.3b)

Aµν → Aµν +
(
CµA τνB− CνA τµB + CµA CνB U

)
εAB , τ̄µ → C̄

(
τ̄µ + C̄µ U

)
, (3.3c)

and

U → C C̄ U , Φ→ Φ + 1
2 ln |CC̄| . (3.3d)

Here, C/C̄ and CC̄ parametrize a Lorentz boost in the longitudinal sector and a dilata-
tional transformation, respectively. Under the above redefinitions that can be treated as
Stueckelberg symmetries, the action (3.1) remains unchanged.

To further the discussion, it is useful to introduce a transverse Vielbein field EµA
′ that

is orthogonal to τµA , in the sense that, together with the inverse Vielbein fields EµA′ and
τµA , we have the following invertibility conditions:

τµA τµ
B = δBA , τµ

A τνA + Eµ
A′ EνA′ = δνµ , (3.4a)

EµA′ Eµ
B′ = δB

′
A′ , τµAEµ

A′ = EµA′ τµ
A = 0 . (3.4b)

We choose CµA in (3.3) such that the transformed Sµν τ
ν
A vanishes . We therefore write

the string action with the fixed CµA Stueckelberg symmetry as [16, 20]

S = 1
4πα′

∫
Σ
d2σ
√
hDXµ D̄Xν

(
Eµν +Aµν

)
+ 1

4πα′
∫

Σ
d2σ
√
h
(
λ D̄Xµ τµ + λ̄DXµ τ̄µ + λ λ̄U + α′R(2) Φ

)
,

(3.5)

where Eµν is symmetric and Aµν is anti-symmetric. Here, Eµν satisfies Eµν τνA = 0 . We
therefore choose the reparametrization of Xµ such that Eµν = Eµ

A′Eν
A′ . It is also possible

to further apply the dilatational symmetry parametrized by CC̄ such that U = 1 , in which
case the corner that describes nonrelativistic strings at the limit U → 0 is invisible. Bearing
in mind that at the end we aim to take the U → 0 limit in this formalism, we will leave
this dilatational symmetry unfixed.
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Integrating out λ and λ̄ in (3.1) gives the standard string action,

S = 1
4πα′

∫
Σ
d2σ
√
h
[
DXµ D̄Xν(Ĝµν + B̂µν

)
+ α′R Φ̂

]
, (3.6)

where

Ĝµν = 1
U
τµν + Eµν , B̂µν = − 1

U
τµ
A τν

BεAB +Aµν , Φ̂ = Φ− 1
2 ln |U | . (3.7)

In (3.6), it is not manifest that U → 0 is nonsingular. In contrast, the equivalent formal-
ism (3.5) of relativistic string theory gives a natural framework for zooming in the regime
around U = 0 . To study the spacetime gauge symmetries, it is convenient to introduce
a Vielbein field Êµ

M that satisfies Ĝµν = Êµ
ÂÊν

B̂ ηÂB̂, with Â = (A,A′) . The space-
time local gauge transformations of the background fields in (3.5) are then induced by the
local Lorentz transformation δΛ̂Êµ

Â = Λ̂ÂB̂ ÊµB̂, and the U(1) two-form transformation
δεB̂µν = ∂µεν − ∂νεµ . It is understood that all the quantities are covariant under the
diffeomorphisms, which we will therefore omit in the following discussions. Without loss
of generalities, we set U > 0 . Identifying

Êµ
A = U−1/2 τµ

A , Λ̂AB = ΛAB , (3.8a)

Êµ
A′ = Eµ

A′ , Λ̂AA′ = U1/2 ΛAA′ , Λ̂A′B′ = ΛA′B′ , (3.8b)

we find the induced infinitesimal spacetime gauge transformations,

δτµ
A = ΛD τµ

A + Λ εAB τµB + U ΛAA′ EµA
′
, δU = 2 ΛD U , (3.9a)

δEµ
A′ = ΛA′A τµA + ΛA′B′ EµB

′
, δΦ = ΛD Φ , (3.9b)

δAµν = ΛAA′ εAB
(
Eµ

A′ τν
B − EνA

′
τµ
B) . (3.9c)

Here, Λ ≡ −1
2 εA

BΛAB . Note that we also have an emergent dilatational symmetry
parametrized by ΛD . For the action (3.5) to be invariant under (3.9), we require

δλ = −
(
ΛD − Λ

)
λ+ ΛA′ EµA

′DXµ, (3.10a)

δλ̄ = −
(
ΛD + Λ

)
λ̄+ Λ̄A′ EµA

′D̄Xµ. (3.10b)

It is useful to introduce an additional gauge field mµ
A that transforms as

δmµ
A = −ΛDmµ

A + Λ εABmµ
B + ΛAA′ EµA

′
, (3.11)

such that
Bµν ≡ Aµν −

(
mµ

A τν
B −mν

A τµ
B − U mµ

Amν
B) εAB (3.12)

is invariant under ΛD , Λ , ΛAA′ , and ΛA′B′ . This new field Bµν only transforms under
diffeomorphisms and the U(1) two-form symmetry as δεBµν = ∂µεν − ∂νεµ , and will be
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identified as the Kalb-Ramond field in nonrelativistic string theory.5 The underlying sym-
metry algebra is the Poincaré group augmented with a longitudinal dilatational symmetry,
which is defined in appendix D.1.1.

3.2 Beta-functionals and torsional deformations

We now move on to the quantum aspects of the action (3.5) and study the renormalization
group flow structure. Not all components of the background fields in the two-dimensional
QFT defined by (3.5) have independent beta-functionals. This is due to the path-integral
identities,

0 =
∫

δ

δλ

(
e−S DXµ

)
=
∫

δ

δλ

(
e−S λ

)
, (3.13a)

0 =
∫

δ

δλ̄

(
e−S D̄Xµ

)
=
∫

δ

δλ̄

(
e−S λ̄

)
. (3.13b)

It follows that

〈D̄XµDXν τν · · · 〉 = −〈U λ D̄Xµ · · · 〉 , (3.14a)

〈DXµ D̄Xν τν · · · 〉 = −〈U λ̄DXµ · · · 〉 , (3.14b)

and

〈λ D̄Xµ τµ · · · 〉+ 〈λλ̄U · · · 〉 = 〈δ(2)(0) · · · 〉 , (3.15a)

〈λ̄DXµ τµ · · · 〉+ 〈λλ̄U · · · 〉 = 〈δ(2)(0) · · · 〉 . (3.15b)

Here, “· · · ” denotes insertions of other operators. From (3.15) we find

〈λ D̄Xµ τµ · · · 〉 = 〈λ̄DXµ τµ · · · 〉 . (3.16)

These path-integral identities are analogous to the ones considered in [11, 20]. A rigorous
treatment of these identities can be found in [20], only with slight modifications. The origin
of these path-integral identities can be attributed to the Stueckelberg symmetry in (3.3).
The one-loop effective action is

Γ1-loop = − log Λ
4πα′

∫
Σ
d2σ
√
hDXµ D̄Xν

(
βEµν + βAµν

)
− log Λ

4πα′
∫

Σ
d2σ
√
h
(
λ D̄Xµ βτµ + λ̄DXµ β τ̄µ + λ λ̄ βU + α′R(2) βF

)
.

(3.17)

Here, Λ denotes the UV cutoff scale. Define

F = Φ− 1
4 lnG , G =

[
det

(
τµ
A

Eµ
A′

)]2

. (3.18)

5 In [16], the background field Aµν (instead of Bµν) in these notes is referred to as the Kalb-Ramond
field, which transforms nontrivially under local spacetime gauge symmetries. In fact, when U = 0 , the
geometry background and Kalb-Ramond field are intertwined with each other [16]. How one splits the
background fields between the geometrical data and the Kalb-Ramond field in the U → 0 limit is a matter
of choice. We refer to Bµν as the Kalb-Ramond field in these notes so that it is cleaner to present the gauge
transformations of various background fields.
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The shift lnG is from the path-integral measure [18]. We denoted the beta-functionals
associated with the functional couplings Eµν , Aµν , τµA, U , and F as βEµν , βAµν , βτµA , βU ,
and βF , respectively. Taking (3.14) and (3.16) into account, (3.17) becomes

Γ1-loop = − log Λ
4πα′

∫
Σ
d2σ
√
h
[
DXA′ D̄XB′(βEA′B′ + βAA′B′

)
+ 1

4 DX D̄X εAB βτAB

+ 1
2 DX D̄X

A′(βA0A′ + βA1A′
)
− 1

2 DX
A′ D̄X

(
βA0A′ − βA1A′

)
− 1

2 λ D̄X
(
βτ00 − βτ01 − βτ10 + βτ11

)
− λ D̄XA′ (βτA′0 − βτA′1)

− 1
2 λ̄DX

(
βτ00 + βτ01 + βτ10 + βτ11

)
− λ̄DXA′ (βτA′0 + βτA′1

)
+ λ D̄X

(
ηAB βτAB

)
+ λ λ̄ βU + α′R(2) βF

]
.

(3.19)

We introduced the notation TA ≡ τµA Tµ , TA′ ≡ EµA′ Tµ , T(µν) ≡ 1
2
(
Tµν + Tνµ

)
, and

T[µν] ≡ 1
2
(
Tµν −Tνµ

)
. We defined DXA′ ≡ DXµEµ

A, DX ≡ DXµ τµ , DX ≡ DXµ τ̄µ , and
analogously for expressions that involve D̄ . The independent beta-functionals are

βτ(AB) βτA′A βEA′B′ βAAB βAAA′ βAA′B′ βU βF (3.20)

This is a direct generalization of [11, 20], now including βU .
Furthermore, the local divergence δ(2)(0) in (3.15) can be absorbed into the local

dilaton counterterm. Also note that the beta functional ηAB βτAB is associated with the
operator λD̄Xµ τµ in the effective action (3.19). We focus on part of (3.19),

Γ1-loop ⊃ −
log Λ
4πα′

∫
Σ
d2σ
√
h
[
λ D̄Xµ τµ

(
ηAB βτAB

)
+ λλ̄ βU

]
. (3.21)

Applying (3.15) and using the dilaton counterterm to absorb the divergence, we find

Γ1-loop ⊃ −
log Λ
4πα′

∫
Σ
d2σ
√
hλλ̄

(
βU − U ηAB βτAB

)
+ · · · . (3.22)

Accordingly, we replace βτ(AB) in (3.20) with the traceless quantity,

βτ{AB} ≡ β
τ
(AB) −

1
2 ηAB η

CD βτCD , (3.23)

and identify the list of independent beta-functionals to be

βτ{AB} βτA′A βEA′B′ βAAB βAAA′ βAA′B′ βU − U ηABβτAB βF (3.24)

This set of beta-functionals have a one-to-one correspondence to the components of the
tensor coupling in front of the closed string vertex operator (2.33). The fact that only the
transverse components βEA′B′ of βEµν show up in (3.24) indicates that the sigma model (3.5) is
renormalizable. These beta-functionals are defined for perturbations around the Galilean-
type ground state with

Eµ
A′ = δA

′
µ , τµ

A = δAµ , mµ
A = U = Bµν = Φ = 0 . (3.25)
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It is also manifest in (3.5) that U → 0 is a non-singular limit to take. This observation
continues to hold at quantum level, which can be argued as follows: the Lagrangian term
λ λ̄U [X] contains interacting operators of the form λ λ̄Xµ1 · · ·Xµn Uµ1···µn , with a coupling
constant Uµ1···µn . All quantum corrections from such interactions will be polynomials in
the coupling constants Uµ1···µn . Therefore, fine tuning the coupling constants Uµ1···µn to
zero does not lead to any singular behavior in the resulting beta-functionals.

The beta-functionals of (3.24) at U = 0 can be straightforwardly derived by apply-
ing (3.7) to the standard string sigma model (3.6). The beta-functionals for the background
fields Ĝµν , B̂µν , and Φ̂ in (3.6) are well-know [27]. Using the convention in [18], we write
these beta-functionals as

Gµν ≡ βĜµν = α′
(
R̂µν + 2 ∇̂µ∇̂νΦ̂− 1

4 ĤµρσĤν
ρσ
)

+O(α′2) , (3.26a)

Bµν ≡ βB̂µν = α′
(
−1

2∇̂
ρĤρµν + ∇̂ρΦ̂ Ĥρµν

)
+O(α′2) , (3.26b)

F ≡ βF̂ = −α′
(
∇̂µ∇̂µΦ̂ + 1

4R̂− ∇̂µΦ̂ ∇̂µΦ̂− 1
48 ĤµνλĤ

µνλ
)

+O(α′2) , (3.26c)

where Ĥµνρ ≡ ∂µB̂νρ + ∂νB̂ρµ + ∂ρB̂µν and F̂ ≡ Φ̂− 1
4 ln(−Ĝ) , with Ĝ the determinant of

Ĝµν . We already assumed that we are in the critical dimensions. Since we are ultimately
interested in the limit U → 0 , we will omit any derivatives acting on U in the calculation.
This is based on the following observation: although U appears in denominators (and in
lnU) in (3.7) and should be treated carefully in the U → 0 limit, derivatives of U only
appear in numerators and can be immediately set to zero. In the regime where U is
sufficiently small, the following expansions with respect to U have been worked out in [16]:

GAA − εAB BAB = α′ 〈S+〉+O(U) , G{AB} = α′ U−1 〈G〉{AB} +O(U) , (3.27a)

GAA + εAB BAB = α′ U−2 〈S−〉+O(U−1) , GA′B′ = α′ 〈G〉A′B′ +O(U) , (3.27b)

GAA′ − εABBBA′ = α′ U−1 〈V+〉AA′ +O(1) , BA′B′ = α′ 〈B〉A′B′ +O(U) , (3.27c)

GAA′ + εA
BBBA′ = α′ 〈V−〉AA′ +O(U) , F = −α′ 〈Φ〉+O(U) . (3.27d)

Note that the A and A′ indices in G and B come from contracting the curved index µ

with τµA and EµA′ , respectively.6 The notation G{AB} denotes the traceless part of GAB ,
analogous to the definition in (3.23). Here, 〈S±〉 , 〈V±〉AA′ , 〈G〉{AB} , 〈G〉A′B′ , 〈B〉A′B′ ,
and 〈Φ〉 are given in eq. (49) and (54) of [16]. The detailed expressions of these symbols
are not important here, and we simply need to note that they are independent of U . We
emphasize that (3.27) holds only under the condition ∂µU = 0 . Moreover, using (3.7) we

6 Our convention is slightly different from [16], where the curved index µ is contracted with the relativistic
inverse Vielbein field ÊµM .
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find

Gµν = −U−2 τµν β
U + U−1 (τµA βτνA + τν

A βτµA
)

+ βEµν , (3.28a)

Bµν = U−2 εAB τµ
A τν

B βU − U−1 (τµA βτνB − τνA βτµB) εAB + βAµν , (3.28b)

F = βΦ − 1
2 U

−1 βU − 1
4 β

E
A′A′ −

1
4 U τ

µν GAA = βF . (3.28c)

We already defined F in (3.18), which implies that βF = βΦ − 1
4 β

E
A′A′ −

1
2 η

AB βτAB .
From (3.28), we find

βτ{AB} = 1
2 U G{AB} , βAAB = 1

2 εAB
(
GCC − εCD BCD

)
, βF = F , (3.29a)

βτA′A = U GAA′ , βAAA′ = εA
B (GBA′ + εB

C BCA′
)
, (3.29b)

β(E)A′B′ = GA′B′ , βAA′B′ = BA′B′ , (3.29c)

and

βU − U ηAB βτAB = −1
2 U

2 GAA. (3.30)

Note that βU and ηAB βτAB appear in the same combination that we found earlier in (3.22).
The linearized beta-functionals in perturbations around flat background fields are consis-
tent with the results in [11].

As we have argued earlier, the beta-functionals in (3.24) are finite in the limit U → 0 .
Plugging (3.27) into (3.29) and (3.30), we find, at the lowest order in α′,

βτ{AB}

∣∣∣
U=0

= 1
2 α
′ 〈G〉{AB} , βAAB

∣∣∣
U=0

= 1
2 α
′ εAB 〈S+〉 , βF

∣∣∣
U=0

=−α′ 〈Φ〉 , (3.31a)

βτA′A

∣∣∣
U=0

= 1
2 α
′ 〈V+〉AA′ , βAAA′

∣∣∣
U=0

=α′ εA
B 〈V−〉BA′ , (3.31b)

β(E)A′B′
∣∣∣
U=0

=α′ 〈G〉A′B′ , βAA′B′
∣∣∣
U=0

=α′ 〈B〉A′B′ , (3.31c)

and
βU
∣∣∣
U=0

= −1
4 α
′ 〈S−〉 = α′ TA′B′ TA′B′ . (3.32)

We have defined Tµν
A ≡ ∂[µτν]

A, and accordingly Tµν ≡ ∂[µτν] and Tµν ≡ ∂[µτ̄ν] . Note
that βτAB , which is finite at U = 0 , drops out in (3.32). We have spelled out the explicit
expression for 〈S−〉, which can be found in eq. (49f) of [16]. The expression of βU in (3.32)
corroborates the results in [11, 14, 20], where the quantum calculation is performed us-
ing (3.5). Imposing Weyl invariance sets the beta-functionals to zero and gives rise to
the target-space equations of motion in [16, 19] that determine the spacetime dynamics
at U = 0 , describing a nonrelativistic corner of string theory. In the following discus-
sions, we will refer to the beta-functionals in (3.31) and (3.32) with the condition U = 0
imposed implicitly.
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Following similar arguments as in [11, 20], we give a nonrenormalization argument in
appendix C that shows βU vanishes at all loops if7

Tµν = −Ω[µτν] or Tµν = Ω[µτ̄ν] (3.33)

holds. Here, Ωµ denotes the longitudinal spin connection. The condition (3.33) implies that
TA′B′ = 0 or TA′B′ = 0 , which indeed sets βU to zero at the lowest order in α′ in (3.32). In
addition, the condition (3.33) also gives rise to an extra geometric constraint τµ TµA′ = 0,
with τµ ≡ 1

2 (τµ0 + τµ1). This extra constraint is needed for the nonrenormalization argu-
ment in appendix C. In this regard, the torsional constraints imposed by setting βU = 0
at the lowest α′ in (3.32) might not be sufficient for higher-loop contributions in βU to
vanish. According to (3.32), there may exist solutions to the vanishing beta-functionals at
the lowest α′ that violate the geometric constraint τµ TµA′ = 0 . If there are higher-loop
contributions to λλ̄ that also require τµ TµA′ = 0 for the associated beta-functional to van-
ish, then, for the solutions that violate such a geometric constraint to survive, a nonzero U
is needed at higher loops.8 This would deform the theory towards relativistic string theory.

The above observation that the λλ̄ operator is not renormalized under the condition
in (3.33) strongly suggest that there exists a notion of self-contained nonrelativistic string
theory defined by a renormalizable worldsheet QFT, and begs for a symmetry reasoning
that underlies the condition (3.33). One related symmetry argument has been given in [11,
20], which we review now. Note that the geometric constraints in (3.33) can be embedded
within the zero-torsion condition TµνA = εAB Ω[µτν]

B . These torsional constraints preserve
the two-dimensional foliation structure in the spacetime geometry. When the zero-torsion
condition is imposed, the (divergent and finite) quantum corrections to λλ̄ vanish identically
at all loop orders and U = 0 is protected [11, 20]. It is in this sense that we refer to the
λλ̄ term as the torsional deformation, as we have preluded in the previous section. From
the spacetime point of view, certain torsional constraints are needed in order to define a
genuinely nonrelativistic geometry equipped with a robust foliation structure.

When the zero-torsion condition is satisfied, there is an emergent ZA gauge symmetry
that protects U = 0 [11, 20], which we will detail in section 3.3. The associated symmetry
algebra is referred to as the string Newton-Cartan algebra, applying which to the sigma
model determines the appropriate spacetime geometry that nonrelativistic string theory
is coupled to. This spacetime geometry is string Newton-Cartan geometry with the zero-
torsion condition. However, it is suggested in [16] that zero-torsion constraint might be too
strong to be generalized to the supersymmetric case. Moreover, since the weaker conditions
in (3.33) already seem to protect U from receiving any quantum correction, one may suspect
that there is a modified notion of string Newton-Cartan symmetries that breaks part of
the ZA symmetry, which we explore next.

7 In a footnote of [9], there is a preliminary comment suggesting that the condition TA′B′TA′B′ = 0 from
the vanishing beta-functional βU = 0 at the lowest order in α′ might be sufficient for βU = 0 at higher
orders in α′. This statement does not seem to hold after a more careful examination. Instead, a stronger
condition (3.33) is required for the nonrenormalization argument in appendix C.

8 Note that the geometric constraint τµ TµA′ = 0 cannot be recovered in a perturbative manner with
respect to α′.
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3.3 Noncentral extensions and torsional constraints

We now return to the examination of nonrelativistic symmetry algebras that underly dif-
ferent string sigma models. The symmetries of the free theory have been classified in (2.4).
Generically, not all the infinite-dimensional symmetries of the free theory in (2.4) are pre-
served when interactions are turned on. In the following, we discuss three subalgebras
of (2.4) that are realized as the symmetry algebras underlying different sigma models that
describe strings propagating in non-Lorentzian geometries.

String Galilei symmetries. First, fine-tuning the physical value of the marginal cou-
pling U to zero in (3.5) leads to the classical action

S= 1
4πα′

∫
Σ
d2σ
√
h
[
DXµ D̄Xν(Eµν+Aµν

)
+ λ D̄Xµτµ + λ̄DXµτ̄µ + α′R(2) Φ

]
, (3.34)

where Aµν = Bµν +
(
mµ

A τν
B − mν

A τµ
B
)
εAB , with Bµν being the Kalb-Ramond field.

Classically, the sigma model (3.34) has a nonrelativistic string spectrum and the target
space geometry is described by the string Newton-Cartan data EµA

′ , τµA, and mµ
A, whose

gauge transformations are [16],

δτµ
A = ΛD τµ

A + Λ εAB τµB , (3.35a)

δEµ
A′ = ΛA′A τµA + ΛA′B′ EµB

′
, (3.35b)

δmµ
A = −ΛDmµ

A + Λ εABmµ
A + ΛAA′ EµA

′
, (3.35c)

which can be read off from (3.9) and (3.11) by setting U = 0 . Here, the full Lorentz
boost is absent, and the boost transformation ΛA′A only acts on the transverse Vielbein
field EµA

′ but not the longitudinal Vielbein field τµA. This broken boost transformation is
referred to as the string Galilei boost. Moreover, the dilaton transforms as a scalar with a
dilatational charge; infinitesimally, we have δΦ = ΛDΦ . The infinitesimal transformations
in (3.35) form the string Galilei algebra defined in appendix D.2.2.

Quantum mechanically, the λλ̄ term is generated because of the nontrivial beta-
functional (3.32). This implies that (3.34) is not renormalizable and a λλ̄ counterterm
has to be added in order to cancel the divergent quantum corrections, such that the beta-
functional (3.32) can be defined after imposing appropriate renormalization conditions.
Therefore, the string Galilei symmetries generated by (3.35) are not sufficient for protect-
ing (3.34) from the torsional deformation towards relativistic string theory.

String Newton-Cartan symmetries. In [17, 18], noncentral extensions of the string
Galilei algebra are studied, which leads to a larger subalgebra of the infinite-dimensional
algebra (2.4). This is dubbed as the string Newton-Cartan algebra, which has been realized
as the symmetry algebra underlying (3.34), together with the zero-torsion constraint in the
target space.

In string Galilei algebra, the string Galilei boost generator GAA′ and the transverse
translational generator PA′ commute.9 As a result, in (3.35a), τµA does not transform

9 In the Poincaré algebra, the boost and transverse translational generator would commute into the
longitudinal translational generator.
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into EµA
′ under the string Galilei boost. The string Galilei algebra can be extended by

requiring that GAA′ and PA′ commute into a new generator ZA , with

[GAA′ , PB′ ] = δA′B′ ZA . (3.36)

Gauging ZA will lead to the gauge field mµ
A that we introduced as a convenient parametri-

zation of the background fields thus far [17]. Note that ZA is a noncentral extension;
for example, the commutation relation between ZA and the longitudinal Lorentz boost
generator M is nontrivial. The ZA transformation, which we parametrize by σA , only acts
nontrivially on mµ

A , with

δZmµ
A = ∂µσ

A − εAB σB Ωµ . (3.37)

Here, Ωµ denotes the longitudinal spin connection. Requiring that (3.37) be a symmetry
transformation in (3.34) automatically leads to the zero-torsion condition [17, 18],

Tµν
A = εAB Ω[µτν]

B . (3.38)

This zero-torsion condition imposes the geometric constraints

TA′(AB) = TA′B′A = 0 . (3.39)

The remaining constraints from (3.38) can be used to solve for the spin connection
Ωµ [17, 18]. The full symmetry algebra that contains this ZA symmetry is the string
Newton-Cartan algebra, which we present in appendix D.3.3. Note that the longitudinal
dilatational symmetry parametrized by ΛD in (3.35) is not preserved by the constraints
in (3.39), unless the extra condition EµA′ ∂µΛD = 0 is imposed [18].

Since the λλ̄ operator simply does not exist, we can no longer combine the beta-
functional ηABβτAB with βU as in (3.22). In contrast, ηABβτAB becomes independent [11].
Nevertheless, nonrenormalization theorems proven in [20] show that all the beta-functionals
associated with τµ

A are trivially zero at all loops due to the ZA symmetry. In practice,
the nontrivial beta-functionals at U = 0 are βEA′B′ , βAµν , and βF in (3.31). Because we
do not have a counterterm associated with the λλ̄ operator, in this auxiliary limiting
procedure, U should be treated as an external parameter that does not receive any RG
flow. Moreover, the constraints in (3.39) have to be imposed before the U → 0 limit is
even considered.10 The appropriate limit of the relativistic beta-functionals that lead to the

10 This can be understood by the following argument: we want to compute the beta-functionals using the
sigma model (3.34) that realize the string Newton-Cartan symmetries, which means that the constraints
in (3.39) are already imposed. As a technical trick, we first turn on a small constant U = U0 as an
auxiliary parameter (but without any extra counterterm) and then evaluate the quantum corrections. This
is equivalent to introducing a Gaussian smearing of the constraints imposed by integrating out λ and λ̄

in the path integral at U0 = 0 . At the end of the calculation, we set U0 = 0 . This procedure does not
change the effective action. Since we now have an auxiliary λλ̄ operator in the sigma model, the quantum
calculation can be done equivalently by first integrating out λ and λ̄ in the path integral. This of course
leads to the standard relativistic sigma model, whose beta-functionals are given in (3.26). However, since
we assumed that there is no λλ̄ counterterm and imposed the constraints in (3.39), the same conditions
have to be applied to (3.26) as well. This means that βU has to be eliminated in (3.26). Finally, the desired
beta-functionals for the nonrelativistic string sigma model can be uncovered by setting U0 = 0 , which is
required by self-consistency.
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ones of nonrelativistic string sigma model with string Newton-Cartan symmetries has been
worked out in [18]. This reproduces the results found by explicit quantum calculations using
the action (3.34) [11, 20]. With the string Newton-Cartan symmetries imposed, we have
a well-defined notion of nonrelativistic string theory that forbids any deformation towards
relativistic string theory, at least when spacetime EFTs are concerned. The spacetime
dynamics of the EFTs is determined by the renormalizable worldsheet QFT.

Halve the noncentral extension. We already noted that the zero-torsion condi-
tion (3.38) is not invariant under the longitudinal dilatational symmetry. Is there a way to
develop a symmetry argument that prohibits the λλ̄ operator from being generated quan-
tum mechanically in (3.34), while preserving the longitudinal dilatational symmetry? This
can be achieved by breaking half of the ZA symmetry. In the meantime, requiring that the
longitudinal Lorentz boosts be preserved motivates us to break a lightlike part of the ZA
symmetry. Define Z ≡ Z0 + Z1 and Z ≡ Z0 − Z1 . We choose to break the Z symmetry
by taking the contraction Z → 0 in the string Newton-Cartan algebra.11 This defines a
self-consistent subalgebra that we present in appendix D.4.4. As a result, the commutation
relation in (3.36) becomes

[GA′ , PB′ ] = δA′B′ Z , [ḠA′ , PB′ ] = 0 , (3.40)

where GA′ ≡ G0A′ + G1A′ and ḠA′ ≡ G0A′ − G1A′ . Parametrizing the Z transformation
by σ,12 we find that the only nontrivial transformation under the action of Z is

δZ mµ =
(
∂µ + Ωµ

)
σ . (3.41)

We have defined mµ ≡ mµ
0 + mµ

1 and m̄µ ≡ mµ
0 − mµ

1 , with δZ m̄µ = 0 . Requiring
that (3.41) be invariant under (3.34), we find the following torsional constraint:

Tµν = Ω[µτ̄ν] , (3.42)

which coincides with the condition (3.33), under which the λλ̄ operator is protected against
quantum corrections. This statement is also evident from the nonrenormalization argu-
ments in appendix C. The condition (3.42) leads to the geometric constraints,

τµ TµA′ = 0 , TA′B′ = 0 . (3.43)

or, more explicitly, EµA′ τν ∂[µτ̄ν] = EµA′ E
ν
B′ ∂[µτ̄ν] = 0 . Here, τµ ≡ 1

2
(
τµ0 + τµ1

)
.

According to (3.32), the second condition in (3.43) already suffices for the λλ̄ operator to
be free from quantum corrections at the lowest order in α′. In addition, we now also have an
extra geometric constraint τµ TµA′ = 0 . In appendix C, we use Feynman diagrams to show
that the constraints in (3.43) are sufficient for higher-loop quantum corrections of λλ̄ to
vanish, which is expected from our symmetry argument. These constraints in (3.43) restrict
the foliation structure and still allow nonzero torsions. Moreover, they are compatible

11 One may instead choose to keep the Z symmetry and break the Z symmetry, which does not make any
physical difference.

12 This Lie group parameter σ should not be confused with the worldsheet coordinate σ .
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with the longitudinal dilatational symmetry parametrized by ΛD. Fascinatingly, (3.43) are
precisely the constraints found in [16], by requiring that the supersymmetry rules are finite
in a nonrelativistic limit of heterotic supergravity.

Since the λλ̄ operator is absent, the beta-functional ηAB βτAB cannot be combined with
βU as in (3.22) and now becomes independent. To acquire the correct set of independent
beta-functionals, we first impose the constraints (3.43) in (3.26) (under the parametriza-
tions in (3.7)), and then take the nonsingular limit U → 0.13 We emphasize that U = U0
is a constant auxiliary parameter that does not receive any RG flow. While the relations
in (3.29) continue to hold but now with the constraints in (3.43) being imposed, (3.30) is
modified to be

ηAB βτAB = 1
2 U0 GAA , (3.44)

where GAA is given in (3.27), with

GAA = 1
2 α
′ U−2

0 〈S−〉+ 2α′ U−1
0 〈Q〉+O(U−2

0 ) . (3.45)

Here, 〈S−〉 is given in (3.32). Taking (3.43) into account, we have 〈S−〉 = 0 and

〈Q〉 = −τµ
(
∂A′TA′µ −

1
2 TA

′B′ FA′B′µ + 2TµA′ ∂A′Φ
)

− τ̄µ
(
∂A′TA′µ + 2TµA′ ∂A′Φ

)
+ covariantizations.

(3.46)

We defined Fµνρ = ∂µAνρ + ∂ρAµν + ∂νAρµ . Plugging all the ingredients back into (3.44),
we find

ηAB βτAB

∣∣∣
U=0

= α′ 〈Q〉 . (3.47)

At the linearized order, (3.47) reproduces the result derived by evaluating OPEs in [11].
The remaining beta-functionals are the same as the ones in (3.31), now with the torsional
constraints (3.43) taken into account.

In this framework where the noncentral extension is halved, we are still able to achieve
a self-contained notion of nonrelativistic string theory defined by a (local) renormalizable
worldsheet QFT, which describes strings propagating in a torsional string Newton-Cartan
geometry. In particular, the torsional deformation λλ̄ is strictly prohibited. It is promising
that this new symmetry group defines the appropriate spacetime geometry that is extend-
able to a Galilean-type supergravity.
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A Longitudinal T-duality

In this appendix, following the discussions in section 2.1, we provide an equivalent analysis
of the longitudinal T-duality transformations along both the longitudinal space and time
coordinates. This will make manifest the connection to the discrete light cone quantization
(DLCQ) of relativistic string theory [4]. We first take the T-dual of (2.13) along the
X1-direction by rewriting the action in the equivalent form,

Sparent = 1
4πα′

∫
d2σ

[
∂αX

A′∂αXA′+λ
(
∂̄X0+ v̄

)
+λ̄

(
∂X0− v

)
+ Y1

(
∂̄v − ∂v̄

)]
. (A.1)

Integrating out the auxiliary field Y1 imposes ∂̄v = ∂v̄ , which can be solved locally by
v = ∂X1 , v̄ = ∂̄X1 . This gives back the original action (2.13). To pass on to the
T-dual frame, we instead integrate out v and v̄ , which induces the relations λ = −∂Y1 and
λ̄ = −∂̄Y1 , with Y1 gaining the interpretation of the dual coordinate compactified over a
circle of radius α′/R . The dual action is

S̃0 = 1
4πα′

∫
Σ
d2σ

(
∂αX

A′∂αXA′ − ∂Y1 ∂̄X
0 − ∂̄Y1 ∂X

0
)
, (A.2)

which describes relativistic string theory with a lightlike circle in the Y1-direction. This is
the DLCQ of string theory [6–8].

We now perform a second T-duality transformation along the X0-direction in (A.2).
Note that the X0-circle is lightlike now. We start with the equivalent action,

S̃parent = 1
4πα′

∫
Σ
d2σ

[
∂αX

A′∂αXA′ − ∂Y1 ū− ∂̄Y1 u+ Y0
(
∂̄u− ∂ū

)]
. (A.3)

Integrating out Y 0 in (A.3) imposes ∂̄u = ∂ū , which is solved locally by u = ∂X0 ,
ū = ∂̄X0. This sets S̃parent = S̃0 . Instead, rewriting (A.3) as

S′0 = 1
4πα′

∫
Σ
d2σ

(
∂αX

A′∂αXA′ − u ∂̄Y + ū ∂Y
)
, (A.4)

where Y = Y0 + Y1 and Y = Y0 − Y1 , we find that u and ū are Lagrange multipliers
that impose the (anti-)holomorphic conditions ∂̄Y = ∂Y = 0 . The action S′0 in (A.4)
describes nonrelativistic string theory with the spacetime coordinates (YA, XA′) , with YA
dual to XA.

B Hamiltonian formalism and generalized metric

In the course of understanding the spacetime geometry and the spacetime EFT in nonrel-
ativistic string theory, the formalism in (3.34) that involves string Newton-Cartan geom-
etry plays an important role. On the other hand, the interplay between string Newton-
Cartan geometry, the Kalb-Ramond and dilaton backgrounds reveals abundant redundan-
cies parametrized by the Stueckelberg symmetries in (3.3). It is therefore motivating to find
a formalism in which all the background fields are manifestly invariant under these Stueck-
elberg symmetries. This is indeed possible by passing on to the Hamiltonian formalism.
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We start with the action in (3.34). For simplicity, we work in flat worldsheet, which
means that the following discussion will not involve the dilaton term. Setting α′ = 1/2 ,
the action (3.34) now reads

S = − 1
4πα′

∫
Σ
d2σ

[
∂Xµ ∂̄Xν(Eµν +Aµν

)
+ λ ∂̄Xµ τµ + λ̄ ∂Xµ τ̄µ

)]
, (B.1)

where we are in the real time with ∂ = ∂t + ∂σ and ∂̄ = −∂t + ∂σ . Whether or not
any additional spacetime torsional constraint is imposed does not change the following
discussions. The canonical momentum conjugate to Xµ is

Pµ = Eµν ∂tX
ν −Aµν ∂σXν + 1

2
(
λ τµ − λ̄ τ̄µ

)
. (B.2)

It follows that

λ = P +Aµ ∂σXµ, Eµ
A′∂tX

µ = PA′ + EµA′ Aµν ∂σXν , (B.3a)

λ̄ = −P̄ − Āµ ∂σXµ, (B.3b)

where P ≡ P0+P1 , P̄ ≡ P0−P1 , Aµ ≡ A0µ+A1µ , and Āµ ≡ A0µ−A1µ . The Hamiltonian
is given by

H = 1
2

∫
Σ
d2σ XI GIJ XJ, (B.4)

where

XI =
(

Pν
∂σX

ν

)
, GIJ =

(
Eµν Lµν

Mµ
ν Nµν

)
, (B.5)

and GIJ is precisely the generalized metric in nonrelativistic string theory, with

Lµν = EµρAρν − εAB τµA τνB, Mµ
ν = −AµρEρν + εA

B τµ
A τνB , (B.6a)

Nµν = Eµν −AµρEρσAσν − 2 εAB τρAAρ(µ τν)
B. (B.6b)

Taking the local field redefinition Pµ ≡ −∂σYµ , we find the dual coordinate Yµ conjugate
to string windings. The Hamiltonian is therefore manifestly invariant under T-dualities. It
is also a straightforward exercise to show that the same GIJ arises as a U → 0 limit of the
generalized metric in relativistic string theory. Moreover, one can also show that all the
components in GIJ are invariant under the Stueckelberg symmetries. Similar discussions in
the context of double field theory can be found in [28–30]. In the most general case, the
spacetime geometry encoded by the generalized metric GIJ depends on both the coordinates
Xµ and Yµ , and nonlocal features due to string windings will become visible there.

It is also interesting to apply the first two equations in (B.3) as a redefinition of λ and
λ̄ in (B.1). This leads to

S = − 1
4πα′

∫
Σ
d2σ

[
−∂tXµ ∂tX

ν Eµν + ∂σX
µ ∂σX

ν Ẽµν + 2 ∂tXµ ∂σX
νÃµν

+ P ∂̄Xµ τµ − P̄ ∂Xµ τ̄µ
)]
,

(B.7)
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where
Ẽµν = Eµν − 2 εAB τρAAρ(µ τν)

B , Ãµν = Aµν − τρAAρντµA . (B.8)

This is a partially first-order formalism. We further perform a field redefinition with
PA = −∂σYµ τµA , where Yµ satisfies the orthogonality condition ∂σYµE

µ
A′ = 0 . This

field redefinition contributes the path integral measure non-dynamically. Therefore, we are
free to plug these field redefinitions directly into the action (B.7), which yields

S = − 1
4πα′

∫
Σ
d2σ

[
−∂tXµ ∂tX

ν Eµν + ∂σX
µ ∂σX

ν Ẽµν + 2 ∂tXµ ∂σX
νÃµν

− 2 ∂σYµ ∂̄Xν τµ τν + 2 ∂σYµ ∂Xν τ̄µ τ̄ν
)]
.

(B.9)

This is in analogy with the Tseytlin’s formalism in [31] and metastring theory [32], but
now in nonrelativistic string theory with only longitudinal monodromy.

C Nonrenormalization from torsional constraints

In this appendix, we show that, at U = 0 , βU discussed in section 3.2 vanishes at higher
loop orders under the condition Tµν = −Ω[µτν] or Tµν = Ω[µτ̄ν] in (3.33).

For simplicity, we set α′ = 1/(2π) in the following calculation. We focus on the λ- and
λ̄-dependent terms in the action (3.5), with U = 0 ,

Sλ = 1
2

∫
Σ
d2σ
√
hλ D̄Xµ τµ[X] , Sλ̄ = 1

2

∫
Σ
d2σ
√
h λ̄DXµ τ̄µ[X] . (C.1)

Since we already tuned U = 0 , so the λλ̄ term is not included. Any quantum corrections
to the λλ̄ operator necessarily involve vertices that arise from (C.1). Since the following
calculation does not involve the dilaton term, it is sufficient to work with flat worldsheet,
on which (C.1) becomes

Sλ = 1
2

∫
Σ
d2σ λ ∂̄Xµ τµ[X] , Sλ̄ = 1

2

∫
Σ
d2σ λ̄ ∂Xµ τ̄µ[X] . (C.2)

We now apply the background field method to compute quantum corrections from the
interactions in (C.2) to the λλ̄ term in the effective action, with all loops taken into account.
For our purpose, it is sufficient to take a linear splitting of worldsheet fields,

Xµ = Xµ
0 + `µ, λ = λ0 + ρ , λ̄ = λ̄0 + ρ̄ , (C.3)

where Xµ
0 , λ0 , and λ̄0 are classical fields that depend on the worldsheet coordinates, and

`µ, ρ , and ρ̄ are quantum fluctuations to be integrated out in the path integral.
Consider a Feynman diagram Γ (of any loop order) that contributes quantum correc-

tions to the marginal λ0λ̄0 term in the effective action. This Γ necessarily involves one
vertex proportional to λ0 and one vertex proportional to λ̄0 . Focusing on the action terms
pertain to the desired vertices that involve either λ0 or λ̄0 , and taking into account the
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expansions in (C.3), we find

Sλ = 1
2

∫
Σ
d2σ

(
λ0 + ρ

)
∂̄
(
Xµ

0 + `µ
) ∞∑
k=0

1
k! `

ν1 · · · `νk ∂ν1
· · · ∂ν

k
τµ[X0]

= 1
2

∫
Σ
d2σ λ0

{ ∞∑
k=1

∂ν1
· · · ∂ν

k
τµ[X0]

(k + 1)!
(
k ∂̄`µ − `µ∂̄

) (
`ν1 · · · `νk

)
+ ∂̄`µ τµ[X0]

}
+ · · ·

=
∫

Σ
d2σ

{
λ0 ∂̄`

µ
∞∑
k=1

k `ν1 · · · `νk ∂ν1 · · · ∂νk−1Tνk µ

(k + 1)! + 1
2 λ0 ∂̄`

µ τµ[X0]
}

+ · · · . (C.4)

Here, Tµν = ∂[µτν][X0] and “· · · ” denotes terms that are not relevant to the following
discussion. These omitted terms include the ones that involve ∂̄Xµ

0 or ∂̄λ0 and the ones
that do not contain λ0 . The term λ0 ∂̄`

µ τµ[X0] in Sλ is linear in the quantum fluctua-
tion `µ. This term determines the equations of motion that the background fields satisfy.
From (C.4), we observe that the vertex in Γ that gives rise to the external λ0 leg must be
proportional to (derivatives of) Tµν . Applying the same reasoning to Sλ̄ in (C.2), we also
conclude that Γ is proportional to (derivatives of) Tµν . Therefore,

Γ ∝ λ0 λ̄0 ∂γ1 · · · ∂γnTµρ ∂κ1 · · · ∂κn̄T νσ . (C.5)

Summing over all such Feynman diagrams evaluates the full quantum correction to the λλ̄
operator. This quantum correction includes contributions at all loop orders. The divergent
part of the quantum correction is by power counting logarithmic divergent, and contributes
the beta functional of U [X] . Recall that the physical value of U has been fine tuned to
zero. The final result has to be covariant, which implies that

βU = λ0 λ̄0

∞∑
n, n̄=0

αµνρσ γ1···γn κ1···κn̄ ∇γ1
· · · ∇γnD[µτρ]∇κ1

· · · ∇κn̄D[ν τ̄σ] . (C.6)

Here, D[µτν]
A ≡ Tµν

A + εAB Ω[µτν]
B and ∇µ is the covariant derivative associated with

the string Newton-Cartan geometry. The detailed form of the coefficient αµνρσ··· does not
matter for our nonrenormalization argument. From (C.6), we conclude that βU is exactly
zero when D[µτν] = 0 or D[µτ̄ν] = 0 is satisfied. The same argument also shows that the
finite part of the quantum corrections to the λλ̄ operator is zero.

In section 3.3, we require the Z (Z) symmetry in the sigma model such that D[µτ̄ν] = 0
(D[µτν] = 0) is imposed a priori. This leads to the geometric constraints in (3.43). Ac-
cording to the discussions in this appendix, the λλ̄ operator is not generated (finitely nor
divergently) at all loops when the geometric constraints (3.43) are imposed. Therefore,
imposing the Z symmetry in the worldsheet QFT is sufficient for protecting the sigma
model that describes nonrelativistic string theory from being deformed by the λλ̄ operator
towards the full string theory.

D Symmetry algebras

In this appendix, we collect different symmetry algebras that have been referred to in the
bulk of these notes.
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D.1 Poincaré algebra

In the Poincaré symmetry algebra that underlies the free action (2.40), the translational
generator P̂M and the Lorentz generator M̂MN are now parametrized by U0 , with

P̂A = U
1/2
0 HA , M̂AB = M εAB , M̂A′B′ = JA′B′ , (D.1a)

P̂A′ = PA′ , M̂AA′ = −M̂A′A = U
−1/2
0 GAA′ . (D.1b)

We will later consider the contraction U0 → 0 . The Poincaré algebra is defined by the
nonvanishing commutators,

[P̂L , M̂MN ] = ηLM P̂N − ηLN P̂M , (D.2a)

[M̂KL , M̂MN ] = −ηKM M̂LN + ηLM M̂KN − ηLN M̂KM + ηKN M̂LM . (D.2b)

Plugging (D.1) into (D.2) gives

[HA ,M ] = εA
BHB , [HA , GBA′ ] = ηAB PA′ , (D.3a)

[PA′ , JB′C′ ] = δA′B′ PC′ − δA′C′ PB′ , [GAA′ ,M ] = εA
B GBA′ , (D.3b)

[GAA′ , JB′C′ ] = δA′B′ GAC′ − δA′C′ GAB′ , (D.3c)

[JA′B′ , JC′D′ ] = δB′C′ JA′D′ − δA′C′ JB′D′ + δA′D′ JB′C′ − δB′D′ JA′C′ , (D.3d)

together with

[GAA′ , PB′ ] = U0 δA′B′ HA , [GAA′ , GBB′ ] = −U0
(
ηAB JA′B′ + δA′B′ εABM

)
, (D.4)

where L = (A,A′) . This is of course identical to the Poincaré algebra (D.2). For later
discussions, it is useful to note the operator representation of different generators,

longitudinal translations HA = ∂A (D.5a)

transverse translations PA′ = ∂A′ (D.5b)

longitudinal Lorentz boost M = εAB XB ∂A (D.5c)

Lorentz transformations GAA′ = XA ∂A′ − U0XA′ ∂A (D.5d)

transverse rotations JA′B′ = XA′ ∂B′ −XB′ ∂A′ (D.5e)

Moreover, the original action (2.40) is also invariant under the longitudinal dilata-
tional symmetry, generated by the longitudinal dilatational generator D . The additional
commutators that involve D are

[D ,HA] = HA , [GAA′ , D] = GAA′ . (D.6)

Note that the commutators in (D.3) will not change in any of the following algebras
that we are about to discuss.
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D.2 String Galilei algebra

In the contraction U0 → 0 , we find the string Galilei algebra, in which the commutators
in (D.3) and (D.6) remain unchanged, while both the commutators in (D.4) now vanish.
Unlike (D.5d), now, GAA′ = XA ∂A′ is the string Galilei boost generator. This string Galilei
algebra can be deformed back to the Poincaré algebra by turning on U0 6= 0 .

D.3 String Newton-Cartan algebra

In [4, 17], a larger symmetry subalgebra of the infinite-dimensional algebra (2.4) than the
string Galilei algebra has been realized in the string sigma model (3.34). This subalgebra
is referred to as the string Bargmann algebra [18, 33–35]. In addition to the unchanged
commutators in (D.3), we also have the noncentral extension generators ZA and Y that
satisfy the following nonvanishing commutators:

[GAA′ , PB′ ] = δA′B′ ZA , [ZA ,M ] = εA
B ZB , (D.7a)

[GAA′ , GBB′ ] = δA′B′ εAB Y , [HA , Y ] = εA
B ZA , (D.7b)

Note that Y has to be added for the Lie algebra to be closed. Moreover, Y can be further
extended to be YAB with the traceless condition YA

A = 0 , which leads to the string
Newton-Cartan algebra [13, 18]. This is the largest symmetry group that has been realized
in the interacting theory defined by (3.39). This further extension to include YAB does not
play any important role in our discussion.

Imposing the symmetry transformations generated by the string Newton-Cartan al-
gebra on the sigma model (3.34) as in (3.35) leads to the geometric constraints in (3.39).
These constraints prohibit the torsional deformation λλ̄ from being generated at all loops.
Since the longitudinal dilatational symmetry is not compatible with the required geomet-
ric constraints in (3.39), the symmetry algebra is not supplemented with any commutators
that involve the dilatational generator. Unlike the string Galilei algebra, the extended
algebras with a ZA generator is no longer deformable to the Poincaré algebra.

D.4 Modified string Newton-Cartan algebra

It is possible to break half of the ZA symmetry while preserving the longitudinal Lorentz
boosts. Define Z ≡ Z0 + Z1 and Z ≡ Z0 − Z1 , and setting Z = 0 in the string Bargmann
algebra, we find that (D.7a) should be replaced with the nontrivial commutators,

[GA′ , PB′ ] = δA′B′ Z , [Z ,M ] = Z , (D.8a)

[GAA′ , GBB′ ] = δA′B′ εAB Y , [H ,Y ] = Z , (D.8b)

while the remaining commutators in (D.3) are unchanged. Here, GA′ ≡ G0A′ + G1A′ and
H ≡ H0 + H1 . We only kept the nontrivial commutators here. These commutators, to-
gether with the ones in (D.3), form a subalgebra of the string Bargmann algebra. One
may also add in the YAB extensions as in the string Newton-Cartan algebra. Moreover, the
sigma model is also invariant under the symmetries generated by the longitudinal dilata-
tion, which means that our symmetry algebra is now supplemented with the commutators
in (D.6), together with [Z ,D] = Z and [Y,D] = 2Y .
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